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Abstract

Pristine and nanocomposite (NC) hybrid electrodes of polyaniline (PANI)-nickel

hydroxide [Ni(OH)2] have been prepared by single and two-step

electrodeposition processes, respectively, onto stainless-steel (SS) substrates.

Enhanced reversibility and stability of amorphous PANI- Ni(OH)2 NC electrodes

compared to single electrode materials have been explored. PANI has a

nanofibrous morphology, Ni(OH)2 has nanoplatelet-type morphology, and the

NC electrodes retain an overall nanofibrous morphology. The maximum specific

capacitance (SC), obtained from integrated charge under voltammetric conditions,

for PANI (electro-deposited for 5 min), NC (electrodeposition of Ni(OH)2 for 10

min and 20 min onto PANI electrode surface) and Ni(OH)2 (electrodeposited for

10 min) electrodes, are 0.59, 39.06, 32.36, and 113.8 F/g, respectively,

suggesting higher electrochemical performance of Ni(OH)2 electrode compared

to PANI and NC electrodes. The retention in SC values with faster scan rates

from 10 to 100 mV/s for PANI, NC (10 min), NC (20 min) and Ni(OH)2 are
.e00801
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38.7, 61.1, 52.4, and 29.0 %, respectively, explicitly confirming a higher

reversibility in NC electrodes. The retention in SC values with increase of cycle

number up to 1000 for PANI, NC (10 min), NC (20 min) and Ni(OH)2
electrodes are 34.9, 61.5, 67.5, and 40.7 % respectively, demonstrating higher

electrochemical stability of NC electrodes over pure-phase electrodes. Nearly

2.15, 79.36, 66.66 and 406.83 mC/cm2 charges on PANI, NC (10 min), NC (20

min) and Ni(OH)2 electrodes, respectively, are obtained. Inner to total charge and

outer to total charge ratios have been used to explain contributing sites to total

charge in pristine and NC electrodes.

Keyword: Materials science

1. Introduction

Electrochemical supercapacitors (ES), have attracted considerable attention in recent

years, as they are capable of providing a higher power density than batteries, in addi-

tion to high energy density compared to traditional capacitors, long cyclability and

fast charge/discharge capability, which are useful in miniaturized consumer elec-

tronic products (where high operating potential is required and energy density is

directly proportional to the square of operating potential window) such as memory

back-up systems, electrical vehicles and industrial power/energy management etc.

[1, 2, 3]. Based on the charge storage mode, they are divided in two categories

i.e. electrical double layer capacitors and pseudocapacitors or faradaic capacitors.

In an electric double layer capacitor, energy is physically stored by means of ionic

accumulation at the electrode/electrolyte interface, whereas in a pseudocapacitor, en-

ergy is stored due to reversible surface or near-surface faradaic reactions. As a result,

the SC of the ES is proportional to the accessible surface area of the electrode ma-

terial in contact with the electrolyte ions/redox species. The SC value of the active

material can be increased by converting the bulk structure to its nanostructure form

which eventually possesses a high surface area and smaller particles (which shorten

the path length of ion transfer and release mechanical stress during charge/discharge

process) [4, 5, 6, 7, 8]. PANI is a commonly used material for ES applications due to

availability of several preparation methods for different morphologies, its low-cost

and environmental and chemical stabilities etc. [9]. Due to considerable electronic

conductivity and moderate SC value, nanofibers/nanowires of PANI are useful for

ES [10]. The structure is based on repeating units of aniline, connected in such a

way that forms a backbone of alternating nitrogen atoms and benzene rings. PANI

exhibits leucoemeraldine, emeraldine, and pernigraniline states depending upon

the degree of oxidation of the nitrogen atoms. Of these, only emeraldine salt is elec-

trically conductive [11]. The main drawback of PANI electrode lies in its lower

cycling stability and electrochemical inactivity in alkaline solution [12]. Hence, it
on.2018.e00801
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is necessary to make composite of PANI with other suitable inorganic nanostructures

not only to overcome its limited stability, but also to boost the overall capactiance.

NCs of PANI with polymers [13], metals [14], metal oxides [15], carbon [16] and

graphite [17] etc., have been studied with an aim to achieve higher SC value and

more stability i.e. cyclability.

Among the series of transition metal oxides/hydroxides, nickel hydroxide [Ni(OH)2]

is one active metal hydroxide used as an ES material. With well-defined redox ac-

tivity, low-cost, layered morphology and high SC value, it has been extensively stud-

ied over the last few decades [18, 19]. However, it suffers weak adhesion between

the nickel-based material and the current collector (substrate), leading to the loss

of active material and short cycle life as an ES electrode [20]. In order to overcome

this drawback, NCs of Ni(OH)2 with MnO2 [21], Ni3S2/3D GN (three-dimensional

graphene network) [22], graphene oxide [23], CoO/rGO [24], Co3O4/RGO [25] etc.,

have been studied with enhanced performance. The pioneering work on composite

oxides as electrode materials for supercapacitors, such as Co3O4@MWCNT nano-

cable, and CoOOH nanoplates with multi-walled carbon nanotubes have proven

high cyclic stability over 10,000 cycles [26, 27].

PANI polymerized from aniline in aqueous acidic solution can be converted to

several forms with different electrical properties by acid/base treatments and/or

oxidation. When semi-oxidized PANI film is immersed in hydrazine aqueous solu-

tion/ascorbic acid (15 h), it generally reduces to leucoemeraldine state and when

immersed in ammonium peroxydisulfate solution (15 h), oxidizes into pernigraniline

state [28] which can also be protonated by dipping in strong acidic solution and de-

protonated by immersing in alkaline solution. The electrochemical oxidation/reduc-

tion of PANI electrode can be obtained by cyclic voltammetry (CV) between -0.2 to

0.8 V in the acidic medium. In the anodic electrode potential scan of a CV, PANI

demonstrates leucoemeraldine-emeraldine-pernigraniline state sequence, while in

the cathoic scan PANI follows the reverse sequence i.e. pernigraniline-

emeraldine-leucoemeraldine states. The CV of PANI film in voltage window -0.2

to 0.6 V in alkaline solution is electrochemically inactive but mechanically stable

[29]. Thus, the direction of polarization of PANI electrode at specific voltage can

be used to convert a particular oxidation state of PANI. As PANI electrode is polar-

ised at negative potential, anionic species are expelled due to electrostatic repulsion,

while concentration of cationic species increases [30]. Here, single step and two-step

electrodeposition methods were developed to deposit PANI, Ni(OH)2 and NC elec-

trodes, respectively. We have investigated the structural, morphological, and electro-

chemical supercapacitive properties of pristine PANI, Ni(OH)2 and PANI-Ni(OH)2
NC electrodes.
on.2018.e00801
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2. Experimental

Aniline, nickel nitrate hexahydrate, sulphuric acid and sodium hydroxide of

analytical reagent grade were purchased from Merck and used without further pu-

rification. The working electrode i.e. pieces of SS (1 cm � 4 cm) were cleaned

with acetone and distilled water ultrasonically, polished with emery paper, and

dried in air before each trial. An Epsilion potentiostat was used for electrodeposi-

tion under galvanostatic mode in a three-electrode system. The standard three-

electrode glass cell consisted of SS as working electrode (on which plastic tape

was fixed except on one side 1 � 1 cm2 area and contact terminal), a platinum

plate of 1.5 cm � 1.5 cm as counter electrode, and a Ag/AgCl reference electrode.

The depth and distance of the working electrode in the solution was 1 cm from

solution surface as well as from the reference and counter electrode. The aniline

monomer solution of 0.5 M and 0.5 M of sulphuric acid were prepared separately

in distilled water. In the 20 ml, stirring solution of 0.5 M aniline, 0.5 M sulphuric

acid solution was poured drop-by-drop to adjust the p
H of solution <2. In first step,

for PANI thin film electrodeposition on 1 cm2 SS, polymerization of the mixed

homogeneous 20 ml solution of 0.5 M aniline and 0.5 M sulphuric acid was car-

ried out as mentioned above at constant potential of 0.75 V for 5 min and is rep-

resented by (A). The Ni(OH)2 thin film electrodes (D), were grown by

electrodeposition on a 1 cm2 SS surface area in a 20 ml solution of 0.05 M nickel

nitrate at a constant potential of -1.0 V for 10 min. Finally, in a second step, PANI-

Ni(OH)2 NC electrodes were obtained by electrodeposition of Ni(OH)2 on previ-

ously deposited 1 cm2 PANI (electrode) surface for 10 min (is represented by (B))

and 20 min (represented by (C)). All electrodes were immersed in distilled water

for 2 min and dried in air at room temperature before further measurements. In

summary, electrodes A and D were phase pure PANI and Ni(OH)2 whereas B

and C were their composites.

The X-ray diffraction (XRD) patterns were obtained by using a (Ultima IV, Rigaku

2500) diffractometer with Cu�Ka radiation in the 2q range of 10e80� with scan rate
0.5 sec/step. The surface appearance and elemental analysis of the electrodes were

investigated using field emission scanning electron microscopy (FESEM) and en-

ergy dispersive X-ray (EDX) images obtained using a Hitachi S-4800 scanning elec-

tron microscope. All the electrochemical properties were studied in 1.0 M NaOH

electrolyte solution.
3. Results and discussion

The electrodeposition of PANI was carried out at constant potential of 0.75 V for 5

min, since above this potential the pernigraniline (non-conducting) state of PANI is

dominant [31]. The electrodeposition of green PANI was obtained from the mixed
on.2018.e00801
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homogenous solution of aniline and sulphuric acid. At applied potential of 0.75 V in

a three-electrode system, a current through the conducting substrate (SS) initiated the

deposition of a compact layer/film of PANI i.e. lateral growth. With completion of

lateral growth i.e. a compact layer covering the surface of SS by PANI, the aniline

monomer continues to grow vertically in 1D on the already present active nuclei sites

in compact layer instead of forming new nuclei to form 2D planar thin film-type

morphology. The eventual deposited film comprises a nanofiber-type morphology

of PANI [32]. The electrodeposition of Ni(OH)2 and NC film electrodes from the

Ni(NO3)2 precursor was achieved by reduction of the nitrate ions on the SS/PANI

electrode surface to produce hydroxide ions [33]. The local p
H of solution was

increased (on account of the generation of the OH‾ ions) and there was the precip-

itation of Ni(OH)2 at the electrode surface,

NO3
� þ 7H2O þ 8e�%NH4

þ þ 10 OH� (1)

Ni2þ þ 2 OH�%Ni(OH)2 (2)

In Ni(OH)2 electrodeposition, the concentration of the Ni(NO3)2 precursor (0.05 M)

was low in order to ensure efficient utilization of electrochemically generated OH

ions because at high concentration, Ni4(OH)4
4þ could be formed at the electrode sur-

face blocking OH ions from the reaction interface before deposition occurs [34, 35].

At the time of electrodeposition of Ni(OH)2 onto PANI, PANI undergoes reduction

from emeraldine state to leucoemeraldine state with time, as its colour was observed

to change from green to greenish yellow or pale yellow.

Fig. 1 shows the XRD patterns of the PANI and PANI/Ni(OH)2 NC and Ni(OH)2
electrodes. The peaks with asterisks ‘*’ are of SS. All clearly discernible peaks

were from the SS substrate and there was no diffraction from either PANI or

Ni(OH)2, confirming an amorphous nature.

The FESEM images of the PANI, NC for 10 min and 20 min, and Ni(OH)2 are

presented in Fig. 2 (AeD). The FESEM of PANI [Fig. 2(A)] electrode surface

confirms the nanofiber-type morphology. These nanofibers were non-uniform in

size and shape. Instantaneous nucleation is a process of nuclei creation at a

high rate on a small number of active sites and progressive nucleation is a process

of nuclei creation at a low rate but on a large number of active sites. In the present

case, the concentration of the aniline was higher (0.5 M), and we assume an

instantaneous nucleation process might be dominant. This resulted in increase

of current density, which increased the rate of deposition. This process is a likely

cause for the increase in length of the nanofibers with time [36, 37]. In Fig. 2(B

and C), FESEM images of the NC electrodes of PANI- Ni(OH)2 show no
on.2018.e00801
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Fig. 1. The XRD patterns of PANI (A, 5 min), NC (10 min) (B), NC (20 min) (C), and Ni(OH)2 (D, 10

min) electrodes.

Fig. 2. FESEM images of PANI (A), NC (10 min) (B), NC (20 min) (C), and Ni(OH)2 (D) electrode

surfaces.
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considerable change in the fibrous-type morphology, as deposition of Ni(OH)2 on

PANI was relatively slow due to increased resistance of PANI in neutral medium,

as the current was decreased in order to maintain the constant potential drop

across the electrode. Fig. 2(D) displays the FESEM image of cathodic electrode-

posited Ni(OH)2. The prepared electrode exhibited platelet-type surface
on.2018.e00801
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morphology. Such 2D structure with several wide spaces could be useful for ES

application by promoting ionic diffusion/transfer process at the electrode/electro-

lyte interface. Fig. 3 shows the EDX spectra between energy (keV) and number of

Kilocounts (Kcnt) per energy interval of emitted X-rays of PANI (A), (B) NC (10

min), (C) NC (20 min) and Ni(OH)2 (D) electrodes. The peaks qualitatively

confirm the presence of C and N of PANI, C, N, Ni and O of NCs and Ni and

O (and some trace amount of N may be on account of non-reduced nitrate ions

present in Ni(OH)2, as it was electrodeposited from precursor of Ni(NO3)2.H2O)

of Ni(OH)2. The peak at ~2.15 keV in all EDX spectra is from the gold coating

for imaging.

Fig. 4 presents typical CV curves of PANI (A), NCs (B, C) and Ni(OH)2 (D) elec-

trodes in 1 M NaOH electrolyte solution at a scan rate of 10 mV/s in the potential

range from -0.2e0.5 V for PANI and 0.1e0.5 V for NCs (B, C) and Ni(OH)2
(D), while inset in Fig. 4 is an enlarged view of PANI CV. In the CV of PANI an

absence of pronounced peak, caused by its inactivity in NaOH electrolyte, contrib-

uted extremely low capacitance value. But in the CVs of (B), (C) and (D) electrodes,

two strong redox peaks for faradaic redox reactions were confirmed, suggesting the

capacitance was mainly due to faradaic redox reactions. Thus, the capacitance of

Ni(OH)2 electrode in alkaline electrolyte solution was from the charge storage a)

in the electric double layer at the electrode/electrolyte interface, and b) in the elec-

trode material by redox reactions on the surface and hydroxyl ion diffusion in the
Fig. 3. The EDX mapping on PANI (A), NCs (10 min) (B), NCs (20 min) (C) and Ni(OH)2 (D) electrode

surfaces.

on.2018.e00801
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M NaOH electrolyte (inset is enlarged CV of PANI).
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electrode active material [38]. For Ni(OH)2, in alkaline medium, the surface faradaic

reaction follows [39];

Ni(OH)2 þ OH ‾%NiOOH þ H2O þ e‾ (3)

From the observations of CV curves, it was inferred that, this capacitance was

mainly from the Ni(OH)2 rather than PANI in NC electrodes. The SC values of pris-

tine and NC electrodes were calculated from the areas of CV curves according to

equation,

Cs ¼ 1
mVV dV

dt

Z
IðVÞdV ð4Þ

where, Cs is the SC (F/g), A ¼ R
IðVÞdV is area of CV (cm2), m is the mass of

active electrode material (g), VV is potential window of CV (V) and dV/dt is the

scan rate (V/s). The SC values calculated at scan rate of 10 mV/s for (A), (B),

(C) and (D) electrodes were 0.59, 39.00, 32.36, 113.80 F/g, respectively. The SC

value of NC electrode i.e. (B) was higher than NC electrode (C) which was

unprecedented. The SC value obtained for Ni(OH)2 electrode was greater than

that of PANI as well as NC electrodes.

The CVs of pristine and NC electrodes for 10e100 mV/s scan rates are presented in

Fig. 5 (AeD). With increasing scan rate, the current density also increased and the

oxidation peaks shifted to a more positive potential and the reduction peaks to a more

negative potential. This was assigned to an increase of the internal diffusion resis-

tance within the electro-active material with an increase in scan rate [40]. The
on.2018.e00801
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increase in current density with scan rate was non-linear [Fig. 6(a)], suggesting the

accessible active sites of electrode material by electrolyte species (cations/anions)

were surface and diffusion-based. The dependence of SC with scan rate is repre-

sented in Fig. 6(b), where with increase of scan rate from 10 to 100 mV/s the reten-

tion of SC values of AeD electrodes, respectively, were 38.7, 61.1, 52.4 and 29.0%,

suggesting higher SC retention in NCs electrodes than both PANI and Ni(OH)2
electrodes.

The charge (q*) with a scan rate (v ¼ dV/dt) is given by [41];

q* ¼ 1
v

Z
IðVÞdV ð5Þ

where,
R
IðVÞdV represents an area of the respective CV. Fig. 7 illustrates the

dependence of charge (q*) on the scan rate to detect the consequence of the

cation/anion diffusion resistance on as prepared individual and NCs electrodes.

The charge is widely used to quantify the electrochemically active sites of the elec-

trode materials accessed by the aqueous electrolyte that contribute to capacitance

[42]. The electrochemically active sites can be categorized as the outer electrochem-

ical active sites that account for outer charge - related to the surface of a thin film, as

opposed to the physical outer surface or the entire porous material) (q0*) contribu-

tion and the inner active sites (surfaces of material comprising internal porosity)

responsible for inner charge (qi*) contribution to the total charge. It is known
on.2018.e00801
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Fig. 7. (a) q* vs. 1/v1/2, (b) 1/q* vs. v1/2 plots of; PANI (A), NC-10 min (B), NC-20 min (C), and

Ni(OH)2 (D) electrodes. (c) Enlarged view of Fig. (b) for (B), (C) and (D) electrodes.

Fig. 6. (a) Current density vs. scan rate, (b) SC vs. scan rate plots of; PANI (A), NC (10 min) (B), NC (20

min) (C), and Ni(OH)2 (D) electrodes.
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that outer and inner charge contributions come from electrode surface/electrolyte

and bulk electrode/electrolyte interfaces, respectively, where for porous materials

outer charges contribute less than inner charges, which is opposite in relatively

compact materials. The estimation of outer charge (q0*) can be made by the extrap-

olation of the charge q* to v ¼ N (v is a scan rate) from the graph plot of 1/v 1/2 vs.

q* [Fig. 7a]. The estimation of total charge (qt*) can be obtained by the extrapola-

tion of charge q* to v ¼ 0, from the plot of v1/2 vs. 1/q* [43, 44, 45] [Fig. 7b]. The

enlarged view of plots for (B), (C), and (D) electrodes are given in Fig. 7 (c), as the

variations in Fig. 7(a) are not clearly distinguished. The qi* is thus defined as the
on.2018.e00801
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Table 1. Total, outer and inner charges and their ratios for; (A), (B), (C), and (D)
electrodes.

Electrodes qt*mC/cm2 qo*mC/cm2 qi*mC/cm2 qo*/qt* qi*/qt*

A e PANI 2.15 0.997 1.15 0.464 0.536

B e PANI/Ni(OH)2(10 min.) 79.36 19.82 59.54 0.250 0.750

C e PANI/Ni(OH)2(20 min.) 66.66 11.39 55.27 0.171 0.829

D e Ni(OH)2 406.83 22.66 384.17 0.056 0.944
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difference between total charge and outer charge. Table 1 represents calculated

charges and their charge ratios for four electrodes. The ratios of qi*/qt* and q0*/

qt* represent the contribution of electrochemical charge in the SC due to inner

and outer active sites, respectively. From the Table 1 it was concluded that the

contribution of total (due to an excess inner charge) charge in D electrode was

higher than other electrodes.

As for real supercapacitor operations, besides a high SC value, excellent long term

cycle stability has prime importance. The CV (at a scan rate of 40 mV/s) of (A) elec-

trode (-0.2e0.5 V) and of (B), (C) and (D) electrodes (0.1e0.5 V) over 1000 cycles

are presented in Fig. 8, confirming chemical stability and mechanical robustness of

an individual electrode. The variations of SC as a function of cycle number are given

in Fig. 9 for all electrodes. It is seen from data of Fig. 9 that all electrodes could with-

stand over 1000 cycles with a retention of 34.9, 61.54, 67.5 and 40.7% in SC values
Fig. 8. CV of PANI (A), NC-10 min (B), NC-20 min (C), and Ni(OH)2 (D) electrodes over 1000 cycles.
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of electrodes (A), (B), (C) and (D) respectively, indicating an improvement in the

cyclic stability of NC electrodes over the PANI and Ni(OH)2 electrodes. The CV

curves of NC electrodes (B) and (C) (from Fig. 8) demonstrate well-defined pairs

of oxidation/reduction peaks from 1 to 1000 cycles, as compared to Ni(OH)2 elec-

trode (D). In the CV of electrodes (B), (C) and (D), the oxidation and reduction

peak potentials were both shifted towards more positive potentials. The differences

of oxidation and reduction peak potentials of electrodes (B), (C) and (D) for 1 to

1000 cycle were 0.154 to 0.153 V, 0.136 to 0.132 V and 0.152 to 0.17 V, respec-

tively. The potential difference between the oxidation and reduction potentials is a

measure of the reversibility of the redox reaction and the relatively smaller values

obtained here is an indication of a better reversibility [33, 46, 47] in electrode (B)

and (C). In the NC of PANI-Ni(OH)2, the fading with cycling is observed due to

small but finite difference of oxidation and reduction peak potential of electrodes

for 1 to 1000 cycles and expected conducting paths are not provided by PANI net-

works as it acts as insulator in alkaline solution.
4. Conclusions

Room temperature electrochemical deposition synthesis of amorphous PANI, PANI-

Ni(OH)2 and Ni(OH)2 electrodes was carried out. For synthesizing pristine elec-

trodes a single-step electrodeposition method was used and for NC electrodes, a

two-step electrodeposition method was applied. Due to electrochemically inactive

nature of PANI, its CV area in 1 M NaOH electrolyte and associated capacitance

was consierably smaller than those of NC and Ni(OH)2 electrodes. The SC values,

estimated from the CV areas, of four electrodes PANI (A), NC electrodes (B), (C)

and Ni(OH)2 (D) measured at 10 mV/s scan rate were 0.593, 39.06, 32.36 and

113.8 F/g respectively. A larger SC in the Ni(OH)2 electrode was due to presence
on.2018.e00801

ors. Published by Elsevier Ltd. This is an open access article under the CC BY license
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of a dominant total charge compared to other electrodes. The NC (B) electrode

deposited over a shorter time demonstrated higher SC compared to the NC (C) elec-

trode, which was unexpected.
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