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“The important thing is not to stop questioning. Curiosity has its own reason for
existing. One cannot help but be in awe when one contemplates the mysteries of
eternity, of life, of the marvellous structure of reality. It is enough if one tries to

comprehend only a little of this mystery every day.”

- Albert Einstein
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1.1 Introduction to Microbiota research

Microorganisms colonise an impressive array of niches; from the +120°C
hydrothermal vent inhabited by Methanopyrus kandleri to the -15 °C high Arctic
permafrost inhabited by Pedobacter sp'2. Thus, the colonization of multicellular
metazoans during their evolution is a seemingly inevitable evolutionary event.
Indeed, modern Homo sapiens are colonised by a vast number of microbes,
collectively referred to as the human microbiota. While the term microbiota has been
used to refer to the collection of all resident microorganisms within a niche, the term
microbiome can be used to describe the collection of genetic material from an
environment. However, these terms are often used interchangeably, and a
standardization of definitions is still under discussion®. Evolution has generated an
intimate relationship between humans and the microbiota; indeed the concept of
holobiont has been applied to the microbiota-host interaction wherein the microbiota

and the host evolve as a discreet unit*

The first description of human beings inhabited by microbes dates to 1670s-1680s,
when the Dutch scientist Antonie van Leeuwenhoek examined his own oral sample
and that of others and noted “...many very little living animalcules, very prettily a-
moving”. He noted that there were differences between the oral microbiota between
people and later noted differences between faecal samples and oral samples. An
early piece of work that further established the embryonic field of microbiota
research was ‘A Flora and Fauna within Living Animals’ published by Joseph Leidy

in 1853°,

The microbiota is composed of bacteria, archaea, fungi, protozoa, and viruses. Most

studies focus exclusively on the bacterial aspect of the microbiota, sometimes
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referred to as the Bacteriome. However, there is an increasing focus on other
components of the human microbiota such as the virome (total viral community) and
the mycobiome (total fungal microbiome) ®’. There is an approximately an equal
number of bacteria cells relative to host cells and bacteria®. An abundance of
microbial niches exist on and within humans notably the oral cavity, the stomach, the

large intestine, the skin and the nasal cavity.

1.1.1 The Intestinal microbiota

The greatest concentration of microbes in terms of density and absolute numbers
reside in the colon with a density of 10* cells/ml and a volume of 0.4L8. The colon
Is by far the most studied human microbial niche. At the phylum level the most
represented phyla (accounting for >90% abundancy) are Firmicutes, Actinobacteria,
and Bacteroidetes® . While a single individual may harbour 250-500 species the total
number of bacteria identified in the gut across all individuals studied is multiplies
higher®2, Notably, the colon itself is a multifaceted niche with spatial

organization.

The colonic microbiota varies along the colon from proximal to distal as well as
cross-sectionally from the lumen to the mucosa. Transversally along the colon,
bacterial load, pH, oxygen levels, nutrients levels and immune effectors varies'!4,
The genera Finegoldia, Murdochiella, Peptoniphilus, Porphyromonas, and
Anaerococcus are enriched in the distal colon while the taxa Enterobacteriaceae,
Bacteroides and Pseudomonas are enriched in the proximal samples®. A greater

source of variation is the difference between the lumen and the mucosa >, In the

12



50

o1

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

outer mucus, mucin degrading taxa such as Bacteroides acidifaciens, Bacteroides
fragilis and Akkermansia munciniphila are found to be enriched while oxygen-
detoxifying catalase producing taxa such as those in the Acinetobacter spp. and

Proteobacteria inhabit the inner mucosal layer'"18,

Studies of colonic microbiota primarily depend on the nature of the sample taken
which typically takes the form of one of two types, namely, stool samples or
mucosal biopsy samples. Mucosal sampling can be conducted in two major ways; a
pinch biopsy, involving the use of an instrument to takes a sample of colonic tissue,
or a mucosal brush that swabs the mucosa. The mucosal brush cover a higher surface
area and recover a higher proportion of bacterial DNA to human DNA relative to
biopsy samples®®. However, pinch biopsy would be more suitable when fine scale
analysis of the microbiome is needed. A surgical biopsy can also be taken if the
clinical setting allows. Faecal samples are used to represent the luminal microbiome.
However, transit time and stool consistency have been demonstrated to affect fecal
microbiota composition?. Rectal swabs may be used to sample the luminal

microbiome and have been decribed as a good proxy for the faecal microbiome?!-2?

Louis Pasteur hypothesized that gnotobiotic or germ-free (GF) animals would fail to
survive due to their dependence on their co-evolved microbiota. Although viable,
GF mice have a number of aberrant features including a shorten lifespan, enlarged
caeca, defective immune system and deficiency in both vitamin K and B122324,
Research during the past twenty years has established a clear relationship between
the microbiota and normal physiological function and disease?. The gut microbiota

have been linked to a myriad of diseases in a number of organ systems (Table 1).
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Table 1 | Diseases of different organ systems in which the gut microbiota has been

implicated. Neoplastic diseases excluded.

disorder(ASD)

Bacteroides
Desulfovibrio
Clostridium

Decreased?
Bifidobacterium
Blautia
Dialister
Prevotella
Veillonella
Turicibacter

Disease Microbe abundance Mechanisms
Autism Increased?® Lactobacillus improves social deficits in mice
spectrum Lactobacillus models via Oxytocin signalling through the vagus

nerve?’,

The gut microbiota of individuals with ASD has a
decrease capacity to degraded toxins. This decrease
is correlated with mitochondrial dysfunction?®.

Cardiovascular
disease

Increased?®
Escherichia coli
Klebsiella spp
Enterobacter
aerogenes
Streptococcus spp

Decreased?
Bacteroides spp
Faecalibacterium

Trimethylamine (TMA) is a metabolite produced by
the microbial metabolism of phosphatidylcholine and
L-carnitine®31, TMA is absorbed into the blood
stream and converted by the liver enzyme flavin-
containing monooxygenase 3 (FMO3) into TMA N-
oxide (TMAO) % .Studies in both human subjects and
mouse models have demonstrated a role of TMAO in
cardiovascular disease development30:31:33.34,

Fusobacterium

Decreased®
Akkermansia
Bifidobacterium
Lactobacillus

prausnitzii
Type 2 diabetes | Increased® Bifidobacterium lactis has been shown to increase
mellitus (T2D) Blautia the expression of glycogen synthetic genes while
Ruminoccus decreasing the expression of hepatic

gluconeogenesis-related genes®

Akkermansia muciniphila and Lactobacillus
plantarum have been found to reduce the expression
of fmo3 in mouse models. Note that the the knockout
of fmo3 attenuates development of hyperglycemia
and hyperlipidemia in insulin resistant mice®’

Inflammatory
bowel disease
(IBD)

Increased®
Ruminococcus gnavus
Escherichia coli
Streptococcus
parasanguinis
Blautia product

Ruminococcus gnavus produces inflammatory
glucorhamnan polysaccharide. This polysaccharide
induces the production TNFa by interacting with the
toll-like receptor 4 (TLR4) of innate immune cells
such as Dendritic Cells®.
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Decreased® Adhesive invasive E. coli (AIEC) can replicate in
Coprococcus Catus immune cells such as marcophages. Colonisation of
Alistipes finegoldii marcophages by AIEC has been shown to induce
Blautia obeum expression of TNFa*°
Faecalibacterium
prausnitzii
Gordonibacter
Pamelaeae
Eubacterium rectale
Non-alcoholic Increased* Members of the gut microbiota have the functional
fatty liver Clostridium capacity to produce ethanol and genotoxic
disease Anaerobacter, acetaldehyde which contribute to NAFLD
(NAFLD) Streptococcus development?43
Escherichia
Lactobacillus The microbiota produced the metabolite
phenylacetate which has been shown to contribute to
Decreased* hepatic steatosis 4
Oscillibacter
Flavonifaractor,
Odoribacter
Alistipes spp

1.2 Sequencing based technologies and microbiome

research

The explosion in the Microbiological sub field of microbiome research has been due
in no small part to the advancement in next generation sequencing technologies. A
significant proportion of microbiome research is based on the ability to survey the
microbial members of a niche as a collective and to make assertions and conclusions
based on this information. In particular, microbiome surveys have taken one of two
forms; 16S ribosomal RNA gene sequencing and shotgun metagenomics. These

methodologies depend on the use of high throughput DNA sequencers.
1.2.1 DNA Sequencing

Form fits function is one of the central themes of modern biological research®. The

function of DNA is to store information in a stable manner which can be interpreted

15
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and replicated with fidelity; this is enable by the double helical structure of DNA as
first describe by Watson and Crick. The information density of DNA is immense
with 455 exabytes per gram of single-stranded DNA®. DNA sequencing involves

the representation of the four fundamental base pairsas A, T, C and G.
1.2.1.1 Origins of DNA sequencing

DNA sequencing is an ever evolving endeavour and the variation in the theoretical
and mechanical basis behind DNA sequencing is reflected in the wide variety of

techniques which have been developed over time.

Wu et al published the first length of DNA to be sequenced which was, a 12 base
stretch of the overhanging cohesive ends within the Enterobacteria phage A, partially
published in 1968 with the complete sequence reported in 1971%"48  In 1973, Gilbert
and Maxam reported the sequence consisting of 24 bases of the lactose-repressor
binding site using a method known as wandering-spot analysis, a method which was

an adaptation of previous techniques used to perform RNA sequencing 40,

DNA sequencing took a significant leap forward with the development of the plus
and minus system developed by Sanger and Coulson published in 1975°L. Using this
technique, the first ever whole genome sequencing, that of bacteriophage $X174
(PhiX), a single stranded DNA genome of 5,375 nucleotides, was published in
1977%2. In 1977 Maxam and Gilbert reported a new technique of sequencing ‘DNA
sequencing by chemical degradation’>®. This methodology depended on using a
series of 4 different chemical reactions to form abasic sites at specific nucleotide
locations; One reaction cleaves at both purines (the ‘A + G’ reaction), one

preferentially at A (‘A > G’), one at pyrimidines (‘C + T”) and one at cytosines only

16
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(‘C”). These sites would be subsequently cleaved and the fragmented DNA ran out
on a polyacrylamide gel in which the length could be used to infer the base sequence.
This was more useful than the plus minus method as it could be employed to

decipher all sequences including those within homopolymer runs.

A seminal moment in biological research came with the development of Sanger's
‘chain-termination’ or dideoxy technique in 1977°4. This protocol involved the use
of Dideoxynucleotides (ddNTPs) a deoxyribonucleotides (ANTPs) lacking the 3’
hydroxyl group and which cannot form a bond with the 5’ phosphate of the next
based to be incorporated. The introduction of this dNTP into the DNA during
synthesis would thus terminate synthesis. Four polymerase chain reactions are set
up, one of each containing a small fraction of a radio labelled ddNTP analogues to
one of the 4 dNTPs. The small fraction of the ddNTPs mean that this reaction will
produce a series of amplicons of differing length. Much like the DNA sequencing by
chemical degradation method, the amplicons are ran out on a four lane gel and the

sequence inferred by the fragment length.

A number of improvements have been made to Sanger sequencing over the years,
notably the replacement of dye-labelled primers with four chain-terminating
dideoxynucleotides, each carrying a fluorescein dye with a distinct emission

spectrum, condensing the reaction from 4 to 1%,

In 1980 half of the Nobel Prize in Chemistry was awarded jointly to Walter Gilbert
and Frederick Sanger "for their contributions concerning the determination of base
sequences in nucleic acids". The other half was awarded to Paul Berg "for his
fundamental studies of the biochemistry of nucleic acids, with particular regard to

recombinant-DNA".
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In 1986 Applied Biosystems Incorporated announced the production of the first
automated, fluorescence-based Sanger sequencing machines developed by Smith et

al®®. This machine had the capacity of producing 1,000 bases per day®’.

In 1979 Staden developed the concept of shotgun sequencing, a process whereby
fragments of a genome are cloned into a cloning vector and sequenced, after which
the genome is assembled based of overlapping sequences. Messing et al developed a
single-stranded M13 phage cloning vector which was subsequently used to assemble

the genome of bacteriophage lambda de novo in 19828,

In 1995, continuing progress and costs reductions in the 90’s allowed for the
sequencing of the first complete genome of a free-living organism, Haemophilus
influenza with a genome of over 1.8 million bases®. This was followed by the
sequencing of the first eukaryotic genome of Saccharomyces cerevisiae (~12 Mb,
1996) and first multicellular organism genome of Caenorhabditis elegans (~100 Mb,
1998)%162 In 1990 the United States National Institutes of Health (NIH) launched the
Human Genome Project (HGP) with the goal of sequencing the haploid human
genome. A draft was published in 2001 and a quasi-complete genome was published
in 2004%364 Notably the private company Celera led by Craig Venter endeavoured
to sequence the human genome in parallel with the HGP using the whole-genome

shotgun strategy and published the results in 2001,
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1.2.1.2 Second generation sequencing

The 1980s and 1990s saw the development of a new range of sequencing
technologies. The first of these was Pyrosequencing. The core principle behind
Pyrosequencing, developed by Nyrén and Lundin, involves a luminescent method
for measuring pyrophosphate synthesis®®. In this method ATP sulfurylase is used to
convert pyrophosphate, produced during DNA synthesis, into ATP which is
subsequently used by luciferase producing light proportional to the amount of
pyrophosphate produced. In 1993 the first report of the utilization of pyrosequencing
was produced combining the principles of the above protocol with that of the solid
phase sequencing method which involved the affixing of DNA templates to

streptavidin coated magnetic beads®’.

Pyrosequencing was later licensed to 454 Life Sciences, a biotechnology company
founded by Jonathan Rothburg, and in 2005 they produced the first commercial SGS
instrument the GS20%. This machine was constructed with microfabricated
microarrays allowing for mass parallelisation of sequencing reactions. This system
produced reads of length 400-500 bp. The GS20 was superseded by the 454 GS

FLX, which offered a greater number of reads and quality of base calling®®.

The Solexa (Illumina) method is the mode of sequencing that currently dominates
the marketplace. Base calling is depended on fluorescent reversible-terminator
dNTPs. A fluorescent dye molecule indicates the insertion of a base as DNA
synthesis occurs. Both the terminator group and the fluorophore must be removed
before the next base is incorporated and the base called. This concept of fluorescent
reversible-terminator dNTPs was first envisioned by Bruno Canard and Simon

Sarfati at the Pasteur Institute®. Work on this concept eventually led to the
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development of photo-cleavable fluorescent nucleotide reversible terminators for
each base’®"%, This allowed a design where cleavage can be followed by a wash step
to remove unincorporated bases. Successive rounds of this allow for the sequence of
a template to be determined. Another key concept to the Solexa method is bridge
amplification. Bridge amplification enables the production of tight clustering of
template copies known as “polonies”, allowing for better base calls’?. The first
Solexa commercial sequencer, the Genome Analyzer (GA) machine, was released in
in 2006. This machine outputted 1 GB of data and the reads had a length of 35 bp.
However, this method of sequencing involves paired end sequencing in which both
ends of the amplified DNA template are sequence. This enables a merged read to be
formed from a homologues overlap between the paired reads. In 2007, Solexa was
acquired by Illumina. Currently, Illlumina currently hold ~75% of the global market
share of genetic sequencing. lllumina’s premier platform, the NovaSeq 6000
Sequencing System, can output 4800-6000 Gb of data and supports an output of

250bp x 2 read output.

1.2.1.3 Third generation sequencing

While NGS platforms produced by Illumina are continually improving especially
when it comes to throughput and cost, these technologies have fundamental
drawbacks that limit their use in biological research. One of these issues is the
relatively short read length. Illumina platforms usually have an upper limit of 300bp
with regard to read length”®. Furthermore, the Illumina sequencing method depends

on an initial polymerase chain reaction (PCR) bridge amplification which can
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produce a bias with regard to DNA of extremely high guanine-cytosine content (GC)

content as these are inefficiently amplified by PCR"3.

We are now seeing the increase usage of what can be described as third generation
sequencing (TGS) technologies. There are currently two commercially available
TGS technologies; single-molecule real-time (SMRT) sequencing by Pacific
Biosciences (PacBio) which is the first viable TGS platform released in 2011 and
nanopore sequencing by Oxford Nanopore Technologies (ONT) released in 2014.
Both these technologies can produce very long reads with SMRT producing read
length N50 values of ~20 kb while Nanopore sequencing can produce read length
N50 100 kb™. Furthermore, these technologies can be described as real time

sequencing as the data is read out continually as each base is deciphered?®,

SMRT involves ligating adapters to the DNA to be sequenced creating a
SMRTbell™ library which is a cellular template’. These templates are immobilized
in wells denoted zero-mode waveguides. A polymerase performs synthesis and
incorporation of fluorescently labelled nucleotides is detected, thus SMRT

sequencing can be called a SBS method”.

The core strategy behind ONT platforms involves a motor protein ratcheting DNA
through a nanopore in which a current is passed through’®. Bases are read via
interpreting the signal produce by the disruption of the current cause by the base as it

passes through the nanopore’®.

Both of these methods can also detect DNA modifications such as 5-methylcytosine

(5mC) and 6 methylated adenine. SMRT can do this via measuring the time between
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nucleotide incorporations is called the ‘interpulse duration’”. In essence the length
of time between incorporation is indicative of the status of the DNA modification.
ONT platforms can detect DNA modifications due to the characteristic disruption
they exert on the passing current which is distinguishable from the unmodified

base’’.

Sequencing regions of genomes which are repetitive in nature are difficult to
delineate using NGS platforms. Such features including centromeres, telomeres and
tandem repeats. TGS platforms have the potential to sequence the entirety of a
repetitive region thereby avoiding the challenges of assembling these regions using
NGS data’®. TGS have a number of other benefits over NGS such as sequencing

RNA isoforms and Haplotype phasing’®.

With respect to microbiology, it is conceptually possible to sequence an entire an
entire bacterial genome de novo. TGS is also being used in microbial marker gene

studies namely 16s rRNA gene sequencing (See section 1.2.2.1).

22



244 1.2.2 The 16S ribosomal RNA gene

245  Ribosomes are ribonucleoprotein structures with the biological function to perform
246  protein synthesis. Ultracentrifugation protocols sediment the bacterial ribosome at 70
247  Svedberg unit (S) while its constituent parts , the large and small subunit, sediment
248  at 50S and 30S respectively. The large subunit is composed of 33 proteins (Denoted
249  L1-L36) and two rRNAs, the 23S rRNA and the 5S while the small subunit is

250  composed of 21 ribosomal proteins (denoted S1-S21) and a 16S rRNA.

251  Canonically, the three ribosomal RNAS genes are organised on the Ribosomal RNA
252  Operon in the order 16S-23S-5S. However in some bacteria and archaea the rRNA
253  genes are “unlinked” whereby there is a substantial genomic distance between the
254 16S and 23S rRNA genes, a phenomenon which is much more prevalent that once
255  believed”. However, the unlinked structure does not seem to be present in the gut.
256  In the canonical set up, the three RNAs are all transcribed as one. Within the rRNA
257  Operon there also exist internal transcribed spacer (ITS) regions between 16S and
258 23S rRNA genes which also contains a DNA sequences encoding for tRNAs. The
259  number of operons in a species can vary considerably with counts from one and

260  twenty one®.

261  The median size of the 16s rRNA gene is ~1500 but varies considerably in range®..

262  The 16S rRNA gene is thought to be conserved throughout both the bacterial and
263  archaeal domains of life. Although classical dogma would indicate that this

264  conservation is indicative of the essential nature of the 16S rRNA gene, recent
265  research has supported the idea that the evolution rate of a gene is negatively

266  associated with its expression level®?83,
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16S rRNA has a number of functions. The 16s rRNA contains an anti-Shine-
Dalgarno sequence which binds to the Shine-Dalgarno sequence in the mRNA
sequence and influences translational pausing and codon choice®. 16s rRNA also

plays a structural role providing a scaffolding in the small subunit.

The sequence structure of the 16S gene can be described as containing nine
hypervariable regions (V1-V9) and nine conserved regions (C1-C9). This structural
composition is the basis for its use as a taxonomic identifier in 16S rRNA gene

sequencing studies.

1.2.2.1 16S ribosomal RNA gene sequencing

Studies which survey the microbiota utilizing sequencing methodologies usually fall
into one of two strategies, amplicon-based marker gene surveys or metagenomic

whole genome shotgun sequencing (MWGS).

The 16S rRNA gene is a putatively ubiquitous gene in the domains of Archaea and
Bacteria. Carl Woese and George E. Fox pioneered the use of the 16s rRNA gene as
a phylogenetic marker in their seminal work in which they proposed the three
domains of life—Bacteria, Archaea, and Eukarya®. Wilson and Blitchington
published the first 16S rRNA gene sequences derived from a faecal sample®. Suau et
al demonstrated that much of the gut microbes captured by the 16S rRNA gene
sequences could not be cultured®”. This work was echoed in the same year with

respect to subgingival scrapings by researched carried out by Kroes et al®. Although
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290  progress has been made with respect to culturing human associated microbes, culture
291 independent sequencing techniques still cast a wider net than culture dependent

292  techniques®®®, In 2005 Eckburg et al set a precedence for the scope of microbiome
293  research with their study in which they sequenced 13,355 sequences of the 16S

294 rRNA gene from multiple colonic mucosal sites and faeces from 3 individuals®.

295  They reported variation in the microbiome with respect to biogeography as well as
296  significant inter-individual variation. The method of mMWGS involves the untargeted
297  sequencing of the genetic contents of a niche. These two strategies have their own

298 inherent advantages and disadvantages (Table 2)

299  Table 2 | Characteristics of 16S rRNA gene sequencing versus metagenomic whole

300  genome shotgun sequencing

16S rRNA gene sequencing Pro

e Inexpensive (10x cheaper per sample
than mWGS)

e Computationally less taxing

e Less storage space need for data

e Selective for archaea and bacteria

e Depending on the primers used and
other factors, taxonomic resolution
usually only goes down to the genus
level and occasionally down to species
level

e Lacks direct functional information

e  Certain primers can amplify
mammalian DNA

Metagenomic whole genome shotgun Pro

sequencing e Complete genomic content

e Potential to inspect single nucleotide
variant across the genome of an
organism

e  Strain level resolution

e Functional information

e High read count needed to achieved
coverage need to represent through
species richness

e  Samples high in Host DNA such of
biopsies can mean the 99% map to the
host genome.

o  Relatively expensive
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1.2.2.2 Laboratory aspects of 16S ribosomal RNA gene sequencing

Current 16S experiments often require the production of thousands of 16S reads
from hundreds or thousands of samples. The most cost effective and streamlined way
of achieving this is to employ NGS namely Illumina paired end sequencing.
Amplicon sequences to be analysed are produced by merging paired reads. The
Illumina platform most frequently used for 16s is the MiSeq System which
depending on the Reagent Kit produces reads of length of 250 or 300bp in length.
Taking into consideration the need for a certain number of bases to overlap, the
merged amplicon read would be under 600bp, thus only a subsection of the 16s gene
can be sequenced. In particular one or more of the variable regions are sequenced.
Research has been carried out to determine the most informative primers to use when
amplifying a 16S subsection. These primers must best capture the taxonomic
diversity while limited to amplifying a section under 600bp. Many such primers
pairs have been designed and utilized to study the microbiota. Studies have been
conducted to identify the taxonomic diversity these primers capture. Currently, the

most prominently used being are the V1-V2 and V3-V4 primer pairs®.

The polymerase used in 16S gene sequencing experiments are preferably of high
fidelity. Taq polymerase has an error rate of 1-20 x 10~° while Phusion® High-

Fidelity DNA Polymerase has a 50X increase in fidelity®3.

In current protocols namely those within the Illumina 16S Metagenomic Sequencing
Protocol (Illumina, California, USA) sample specific DNA barcodes are added to the
sample amplicons in a second PCR known as an index PCR®4. Previous protocols
involved adding these barcodes in the same PCR as the initial amplification step.

However it was found that this produced PCR related biases®.
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1.2.2.3 Bioinformatic analysis of 16S rRNA gene sequencing data

Raw data from sequencers must undergo a series of processes before descriptive and
statistical analysis can be effectively carried out. A key aspect of this is the assembly
of representative sequences. The two premier forms of this are operational
taxonomic unit (OTUs) and amplicon sequence variants (ASVs). The generation of

OTUs and ASVs both aim to address the issue of incorrect base calling.

With regard to Illumina sequencing, data is output in a fastq format. This format is
similar to fasta contains the sequence information but also reporting the
corresponding base calling quality in the form of a Phred-like quality score
(https://www.illumina.com/science/technology/next-generation-sequencing/plan-
experiments/quality-scores.html). The quality score (Q) of a base is calculated by the
following equation: Q = -10log*(e) where e is the estimated probability of the base
call being incorrect . For example, a Q score equal to 10 would indicate there is a
1/10 chance of the base being called incorrectly. The maximum score is 40 which
equates to an average per base error rate of 1/10000. If one were to take sequencing
data unprocessed, difference in sequences due to errors could be inappropriately

interpreted as an actual biological difference representing evolutionary divergences.

The term OTUs was coined by Sokal & Sneath referring to groups of closely related
individuals being studied®. In modern microbiology terms, OTUs are representative
sequences based on a threshold of identity, typically 97%°"%. There are two
methodologies to achieve OTU clustering 1) ‘de novo clustering’ and 2) ‘Closed-
reference OTU clustering. In de novo clustering, merged reads are clustered within a
dataset based on a certain threshold. The OTUs generated from de novo clustering

are emergent features of the particular data set which is being studied. Factors such
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as relative abundances will dictate the generation of the OTUs. Thus de novo OTUs
generated from two different datasets cannot be compared. Closed reference OTU
cluster merged reads against a reference database. If the same database is shared
between two different data-sets, the generated OTUs can be more readily compared
against each other. However, biological variation that is not represented in the
reference database would lead to a reduction in the diversity detected during
assignment to closed-reference OTUs. No matter what the method used for
generating OTUs, the clustering methods will lead to the loss of some actual
biological variation in the dataset and thus OTU type leads to an under-

representation of diversity.

ASVs aim to represent the real biological sequence of the maker-gene. Thus ASVs
resolves the data-set to the single nucleotide resolution. The generation of ASVs is
dependent on the assumption that biological variants are more likely to be observed
in a dataset than those generated by erroneous base calling. In practice, an algorithm
needs to generate an error model using read data. Sample ASVs are then inferred by
a process known as denoising®®. At present there are three main software packages
utilized for ASV generation, that is, DADA2, UNOISE3, and Deblur!®®%?, DADA
has been reported to offer the best sensitivity in terms of number of ASVs detected
but perhaps at the cost of specificity'>1%, Using ASVs to define a microbial
community has the potential to overestimate diversity due to intragenomic variation

of the 16S gene 104105,
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Taxonomic assignment

An integral aspect of 16S surveys is defining the taxa that are presence in a niche.
Both ASVs and OTUs may be assigned to taxonomic rank. A myriad of
classification algorithms have been developed including BLAST, IDTAXA,
MAPSeq, QIIME, SINTAX, SPINGO, and the RDP Classifier'®. Furthermore, there
exist a number of reference databases of 16S rRNA gene sequences to which the
algorithms most popular being SILVA, the Ribosomal Database Project (RDP) and

Greengenes®’-110,
Ecological analysis

Methodologies classically used to describe niches of multicellular organisms are also
used to describe microbiological niches. In particular alpha diversity (a-diversity)
and beta diversity (B-diversity) are frequently used as metrics to describe the overall
structure of microbiomes. Alpha diversity describes the richness and evenness of
organisms within a niche. There are many indices that are used to calculate alpha

diversities each describing richness in different manners (Table 3)
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Table 3 | Explanation of alpha-diversity metrics

Alpha Description References
diversity
metric
Observed Counts the number of taxa. 111
species
Chaol Assumes that the number of observations for a 112
taxa has a Poisson distribution and corrects for
variance.
Simpson's Considers the Evenness of the data. Factors 113
Index relative abundance of each taxa into the count.

Shannon index

Much like Simpson's Index, this index considers
evenness by adjusting for relative abundances.

114

Phylogenetic
diversity

This diversity metric considers not only number
of taxa but also phylogenetic distance between
taxa.

115

Beta diversity measurers the difference (or similarity) in microbial composition

between samples. Like alpha diversity there are many beta-diversity metrics that can

be utilized to describe differences between niches (Table 4).
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Table 4 | Explanation of beta-diversity metrics

Beta diversity metric | Description

Jaccard Index Calculates similarity base on presence | ;¢
absences.
Does not factor abundance.
Bray—Curtis Calculates similarity base on presence |
dissimilarity absences.

And also factors abundance.

Unweighted Unifrac | Unifrac distance considers phylogenetic | ;5,4
distance between distances between taxa.
Unweight considers presences absences.

Weighted Unifrac This considers not only 118.119
distance presences/absences but also abundances
of taxa

Differential abundance

A central goal of many microbiome studies is to identify taxa/ASVs/OTUs that are
differentially abundant between groups to a statistically significantly degree. How
one achieves this goal is of much debate within the microbiome field. Microbiome

data is sparse, complex, and compositional in nature'?%12t,

A “classical” test for differential abundance is the Wilcoxon rank-sum test (also
called the Mann-Whitney U test) which is a nonparametric test. Microbiome
sequence data is compositional in nature'?°. This is simply due to the fact the
observation of the genetic data of the microbiome is limited by the number of reads
produced by the sequencer. The package ALDEX2 which performs a centred log-

ratio (clr) transformation on the data has been argued to be suitable for addressing
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this the compositional nature of microbiome'??. Software packages originally
developed for RNA-seq such as DESeq2, which employs negative binomial
generalized linear model, have also been applied to 16S data sets'?. Other
differential abundance methods have been developed with specific consideration for

microbiome data including metagenomeSeq, ANCOM and ANCOM-BC 124126,

Prediction of gene function

A major limitation of 16S based experiments is that they do not provide direct
information on the functional capacities of the microbial community which is being
studied. However, there are a number of bioinformatic tools which infer functional
capabilities of a community from 16S sequence data. Current softwares include,
PICRUSt (The most frequent used), Tax4Fun, Piphillin and PICRUSt2 (the
successor to PICRUSt)'?"1%°, The core methodology employed by this group of
software depends on the alignment of the 16S sequence to functionally annotated
reference genomes. Another recently developed tool, IPCO, utilizes a different
method which depends on the procedure of double co-inertia analysis involving the
RLQ method®3. Within this method a query data set (16S data set) is co-varied
against a paired taxonomic and functional dataset (16S data set and shotgun
metagenomics dataset) and the functional data of the query data set inferred from

this'3.
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1.2.2.4 Future of 16S ribosomal RNA sequencing studies

The development of third generation have led to the possibility of sequencing much
larger amplicons compared those possible on Illumina’s platforms. Indeed, with TGS
it is possible to sequence the whole 16S rRNA gene. Although cost per base
continues to declines with these technologies, the viability of their common usage is
still restricted by cost. Furthermore, the relatively high error rates of base calling of
TGS limits their use in taxonomic delineation. Nonetheless efforts have been made
to set up standard operating procedures for the use of TGS in 16S rRNA gene-based

SUrveys.

Possibly the greatest progress has been made with PacBio SMRT sequencing. A
method to address high error rate involves the formation of a Circular Consensus
Sequences (CCS). A CCS is formed by ligating hairpin adapters that circularize
linear DNA molecules and allowing the sequencing polymerase to make multiple
passes and producing multiple sub reads. These sub-reads are collapsed into the
CCS. Callahan et al used the CCS in conjugation with the denoising algorithm
DADAZ to carry out 16S analysis on the mock Zymo community (a commercially
available consortium of 8 bacteria and 2 yeasts) and Human Microbiome Project
(HMP) mock community (a consortium of 21 microbes developed by the HMP)*2,
This method produced full length (~1.5 kb) 16S rRNA gene reads at an error rate of
4.3 x 10~* per nucleotide, a comparable error rate to reads produced Illumina on
sequencing platforms. This strategy allowed for the identification of intragenomic
allelic variation and sub-species classifications. In particular they were able to

delineate the enterohemorrhagic O157:H7 clade while the same strain could not even
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resolve between the Escherichia and Shigella genera when commonly used V3V4

and V4V5 regions were sequenced.

Johnson et al showed that a range of different 16S subsections sequenced using the
Circular Consensus Sequences method underperformed verses the whole 16s rRNA
gene when it came to capturing diversity*3. The authors also suggested that
clustering at 99% maybe be used to address the issue of over-estimation of diversity

due to intragenomic variation between 16S gene copies3.

Studies utilizing Nanopore sequencing platforms have shown that using the full-
length sequence has advantages over sequencing only sub-sections. However the
error rate remains too high for appropriate use in 16S rRNA gene sequencing

experiments’,

Future studies may even utilize the whole rrn operon (16S rRNA-ITS-23S rRNA) as
this would further increase the resolution with regard to phylogenetic delineation®*,

Current techniques can feasibly address the ~3kb rrn operon'®,

1.2.3 Contamination

Advances in culture-independent next-generation sequencing techniques, namely
shotgun sequencing and marker gene PCR based methodologies, have revolutionized
our understanding of microbes in numerous niches due to their speed, sensitivity and
ever reducing cost. However, the sensitive of these techniques, especially
amplification-based methods, have come with the notable downside of detecting

DNA sequences which do not belong to the niche under study, that is to say
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contamination. The challenge of contamination is inversely proportional to the
microbial load of the niche under study; studies of high load microbial niches such
as luminal faecal matter are less proportionally affected by contamination than low
load niches such as glacier ice or brain tissue'*>**". The problem of contamination
has been brought into focus recently and with regard to the human microbiota,
reports regarding the placental microbiota have brought notable controversy. This
section will discuss the issue of contamination, its origin, its impact on the

microbiome field and how it may be addressed.

1.2.3.1 Sources of contamination

The ubiquitous nature of microbes mean that contamination has a plethora of sources
including neighbouring niches, sampling equipment, extraction kits, PCR reagents
(including polymerase mixtures), laboratory personnel, environments, and

equipment.

One of the first sources of contamination that researchers can encounter is
contamination from adjacent niches. One can mistakenly sample microbes from a
site within close proximity of the niche being investigated. This challenge is
especially amplified if the niche under study is of low biomass and the adjacent sites
have higher biomass. A seemingly convenient method to sampling the microbiota of
the bladder is urine collection. However, this sample type will contain microbes not
only from the bladder, but also distal urethra and in the case of women from the
vulva and vagina®. It is proposed that suprapubic aspiration or transurethral

catheterization is required to collect samples directly from the bladder microbiota®®,
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Sampling breast tissue microbiota is usually done via surgical resection. However,
this process has the potential of acquiring contamination from the skin. Some studies
prudently include paired samples of the skin microbiome to control for such cross
contamination*®4°, Pertinent to this thesis, the oesophageal microbiota is in close
proximity to the oral cavity and gastric microbiota; both of which are higher biomass
than the oesophagus. One should be able to successfully sample the oesophagus via

biopsies or swabs.

The methods of extracting nucleic acid for microbiome studies have primarily
employed commercially available kits. Although, not overtly non-sterile, trace
amount of microbial DNA have long been recognised as been present in the
commercial kits**1142, Salter et al were arguably the first to study the impact of the
impact of kit contamination on high-throughput culture independent
methodologies'*®. Using the above techniques, Salter et al studied the effect of serial
dilutions on Salmonella bongori, 108to 103 cells. They found that contaminating
reads were present and that this was proportional to the dilution factor of the sample
with ~90% of reads belonging to contaminant taxa in the most dilute sample.
Furthermore, they found contamination in a range of different commercial Kits and to

some extent a defined microbiome could be linked to a specific kit.

Glassing et al calculated that there was a presence of 10-15 E. coli genome
equivalents (70-105 rRNA gene copies) per pl elution buffer from the MoBio
PowerSoil Kit. Further 16S rRNA gene sequencing of blank extractions from this kit

yielded 81 bacterial genera and 108 tentative species'#.
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Marker gene-based genome microbiomes surveys, namely 16S RNA gene based
sequencing depend on polymerase chain reaction. PCR master mixes have been
identified as sources of contamination!4214>-147 For the extraction kits and master
mixes investigated, Stinson et demonstrated that the PCR master mix was a much

greater contributor to contamination that the DNA extraction Kits.

1.2.3.2 Resolution of the contamination problem

Knowing the origins of contamination, how it presents itself and when it becomes a
considerable factor, one can devise protocols to eliminate or to at least take account
the risk of contamination. Indeed, direction and guidelines have been constructed to
conduct microbiome research while accounting for contamination84°, Eisenhofer
et al proposed a minimal experimental criteria denoted the ‘RIDE’ checklist which
they argue should become a “Minimum Standards Checklist for

Performing/Reviewing Low microbial Biomass Microbiome Studies”4%,

As contamination is predominantly an issue in low biomass samples, one must
endeavour to maximise the cell density of the microbial sample. This may not of
course be possible in every study. However, one should quantify starting material
microbial load by utilizing methods such as Quantitative PCR (qPCR). For example
Salter et al suggested a biomass of over 10° to 10* cells would be needed to

overcome background contamination#,
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As noted above reagents are a major source of contamination. One can use reagents
which have an emphasis on the quality of being microbial DNA free. Qiagen
produce the ‘QlAamp UCP Pathogen Mini Kit’ which undergoes DNA
decontamination processes and is certified as free from contamination. Kirstahler et

al produced data that support the hypothesis that such kit reduces contamination®*°,

Procedures have been developed to decontaminat PCR reagents'>. Commercially
low contaminant PCR reagents are now available such as MTP Tag DNA

Polymerase(MERCK).

In silico methodologies have also been developed to remove contaminating OTUs or
ASVs. Firstly, one can simply remove the taxa from one’s data-set which appear in
a negative control*>2, Functions such as ‘remove.seqs’ within Mothur allows for such
operations. However, this method runs into 2 problems. One, contaminating taxa
may overlap with actually biological taxa. Two, the phenonema of index swapping
means that reads can be assigned to the incorrect sample whic occurs at a non-
negligible rate (0.2 to 6%) 3%, Thus, one can mistakenly remove biologically
relevant taxa that due to index hopping/swabbing shows up in the negative. Jervis-
Bardy et al demonstrated an inverse relationship between relative abundance of
contaminating taxa and sample DNA concentration®®. The open-source R package
‘decontam’ performs such an analysis and identifies contamination®®’. Finally, in the
case of well-defined sources of potential contamination, one can use SourceTracker
which employs Bayesian modelling to calculate the proportion of potential

contaminant taxa within a sample®®®,
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1.2.3.3 The placental microbiome controversy: a case study

Many anatomical features of humans have long been believed to be sterile including
the womb. At the turn of the century the French paediatrician Henry Tissier put
forward the model whereby human development occurs initial in the sterile womb
and the individual acquires microbes during birthing®®®°. In 2014 work published by
Aagaard et al provided evidence for a unique placental microbiome. According to
Bray-Curtis dissimilarity, this microbiome was most closely associated with the
HMP oral dataset. Subsequent studies have been built on these finding, identifying
associations between the placental microbiome and excess maternal gestational
weight gain, birth weight, pre-eclampsia and gestational diabetes!®%-163, An additional
importance of the discovery of a placental microbiome is that it necessarily alters
models of the initial genesis and development of an individual’s microbiome.
Collado et al formed a framework of microbiome development based on data which

included data from placenta and amniotic fluid 64,

However there has been a number of studies challenging the notion of a placental
microbiome!®>-1%, These studies were designed the experiments to appropriately
delineate background contamination from microbes that may exist in the placental
samples. These studies could not provide evidence of a placental microbiome which
wass was separate from contamination. However, Goffau et did find evidences for

the presences of Streptococcus agalactiae in ~5% of placental samples studies®’.
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1.3 Cancer and the microbiota

Cancer is an umbrella term for an array of diseases which are characterised by the
transformation of normal cells into aberrant cells which dispays the qualities of ‘The
hallmarks of Cancer'®®17°, This process occurs via somatic evolution fuelled by
somatic mutations *"*.Worldwide, in 2018, there was an estimated 18.1 million new
cancer diagnosis and 9.6 million cancer deaths’?. The total economic burden of
cancer was calculated to be 1.16 trillion USD in 201073, Further, cancer incidence
has been projected to double by 2035. An analysis of cancer deaths in the USA
between 1969 and 2013 found an age-adjusted decrease in cancer deaths of 17.9%
while another study on the US population found a decline in cancer related mortality
of 27% between 2007-20161417>, It has been argued that this comparably modest
reduction in cancer mortality is due to the lack of support in cancer prevention
research!’®. Cancer prevention is relatively under researched when compared to
therapeutic development with only 2 to 9% of research funding going towards this

areal’’.

As stated above, cancers arise due to the accumulation of somatic mutations through
time. About 42% of cancer incidences in the US have been attributed to modifiable
risk factors, a figure which is reflected in the UK population'’®7®, The International
Agency for Research on Cancer (IARC) compiles and evaluates data on known
carcinogens. Notable group 1 carcinogens including tobacco smoke, UV light and

obesity. These carcinogens promote oncogenesis through a plethora of mechanisms.
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Infectious agents are also among well-established carcinogens. There is eleven

infectious agents which infect humans that are classified as group 1 carcinogenic

agents (Table 5). In 2012, 15.4% of cancer incidence were attributable to ten of

eleven of these infectious agents i.e. exclusive of HIV.

Table 5 | Estimated numbers of infection-attributable cancer cases in 2018, by infectious pathogen,
cancer subsite, and sex (Data derived from Martel et al, 2020)°. These data exclude HIV attributable

cancer incidences.

Men Women Total
New New cases New New cases New New cases
cases attributable | cases attributable cases attributable
to infectious to infectious to
pathogens pathogens infectious
pathogens
Helicobacter pylori
Non-cardia gastric 550 000 | 490 000 30000 | 270 000 850 00 | 760 000
cancer 0 0
Cardia gastric cancer | 130 000 | 27 000 46 000 | 8900 180 00 | 36 000
0
Non-Hodgkin 12000 | 8700 10 000 | 7600 22 000 | 16 000
lymphoma of gastric
location
Human
papillomavirus
Cervix uteri 570 000 | 570 000 570 000 | 570 000
carcinoma
Oropharyngeal 110 000 34 000 26 000 8100 140 000 | 42 000
carcinoma
Oral cavity cancer 190 000 | 3900 91000 | 2000 280 000 | 5900
Larynx cancer* 150 000 3600 22000 | <1000 180 000 | 4100
Anus squamous cell 9900 9900 19 000 19 000 29000 | 29 000
carcinoma
Penis carcinoma* 34 000 18 000 . . 34 000 18 000
Vagina carcinoma* 18 000 14 000 18 000 14 000
Vulva carcinoma* 44 000 11 000 44 000 11 000
Hepatitis B virus
Hepatocellular 490 000 270 000 170 000 | 90 000 660 000 | 360 000
carcinoma
Hepatitis C virus
Hepatocellular 490 00 | 100 000 170 000 | 40 000 660 00 | 140 000
carcinoma 0 0
Other non-Hodgkin 260 00 | 8700 210000 | 7200 48000 | 16 000
lymphoma 0 0
Epstein-Barr virus
Nasopharynx 92000 | 76 000 35000 29 000 130 00 | 110 000
carcinoma* 0
Hodgkin lymphoma* | 46 000 | 24 000 33 000 17 000 80 000 | 40 000
Burkitt lymphoma 7800 4100 3800 2500 12 000 | 6600
Human herpesvirus
type 8
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Kaposi sarcoma* 28 000 | 28 000 14 000 14 000 42 000 | 42 000
Schistosoma
haematobium

Bladder carcinoma 420 000 | 4000 120 000 | 1900 550 00 | 6000
0

Human T-cell

lymphotropic virus

Adult T-cell 1900 1900 1700 1700 3600 3600

leukaemia and

lymphoma

Opisthorchis
viverrini and Clono
rchis sinensis

Cholangiocarcinoma | 69 000 | 2100 56 000 1300 130 00 | 3500

All cancer types . 1 100 000 . 1 100 000 . 2 200 000
related to infection

624

625  In general, microbiome studies take a more global view of the microbial community.
626 Itis unlikely that such studies would identify microbes which contribute a strong
627  odds ratio to cancer. However, these studies offer a framework where one can link
628  global community structures to cancer biology while also preserving the ability to

629  dissect the microbiome to the resolution of species and strains.

630
631 1.3.1 Cancer tissue microbiome

632  The colonic microbiome can exert a biological effect on practically all tissues in the
633  body through a number of mechanisms including communication with the immune
634  system. Hence, the colonic microbiome has been associated with cancers of many
635 tissues not only colorectal cancer!®-183, Studies have also revealed the existence of
636  microbiomes in non-Gl tissue and have been implicated in the cancer biology of host
637  tissue'® (Table 6). These microbiomes are generally very low biomass in nature and

638 therefore would be susceptible to contamination (See section 1.2.3).
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Table 6 | Examples of intratumoral microbiomes and their influences on tumour

biology
Cancer type Example of taxa identified Comments
Breast Enterobacteriaceae F. nucleatum is overrepresented in breast
Bacillus tumour samples. Colonization of breast cancer
Staphylococcus by F. nucleatum is facilitated by binding of
bacterial Fap2 to breast tissue expressed Gal-
GalNAc. Mice models breast cancer
demonstrated a role of F. nucleatum in
promoting tumour growth and metastatic
progression. Evidence suggest that F.
nucleatum does so by suppressing accumulation
of tumour infiltrating T cells!®
Pancreatic Bacteria
Adenocarcinoma | Pseudoxanthomonas Mouse models demonstrate the ability of
(PAC) Saccharopolyspora bacteria to translocate from the gut to the
Streptomyces pancreas'®,
Ablating the pancreatic microbiota via germ
free models or antibiotic treatment increased
Fungi infiltration of the tumours with CD4+ T Helper-
Ascomycota 1 and cytotoxic CD8+ T cells and reduced
Basidiomycota immunosuppressive myeloid-derived
Malassezia suppressor cells and M2-tumor-associated

macrophages

Individuals who were classified as long-term
survivors had a higher alpha-diversity of the
PAC microbiome relative to those who were
classified as short term survivors!®’. The
abundance of three taxa Pseudoxanthomonas,
Saccharopolyspora, and Streptomyces with the
species Bacilus Clausii is highly predictive of
long term survival. The PAC microbiome was
associated with long term survival was
correlated with recruitment and activation of
CD8+ T cells in PADC tissue'®’.

In mouse models, gut fungal taxa where
observed to translocate from the gut to
pancreas.

The PDA mycobiome of both humans and mice
showed are composed of similar taxa and
differed their respective gut microbiome!®,

In mouse models, Fungal ablation protected
against oncogenesis while colonisation of the
pancreas with the fungal species Malassezia
globose promoted oncogenesis*e®.

Fungal interaction with the mannose-binding
lectin may promote oncogenesis by activation
of the complement activation?®,
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651

652

653

654

655

656

657

658

Lung Granulicatella Higher alpha diversity was observed in tumour
Abiotrophia tissue and matched healthy tissue compared to
Streptococcus healthy controls

Cyanobacteria
In particular those tumours with TP53
mutations was enriched with Acidovorax.

Cyanobacteria-derived microcystin increase
expression of oly (ADP-ribose) polymerase 1
(PARP1) in Non-small cell lung cancer cell
models'®.

1.3.2 Fusobacterium nucleatum

Fusobacteria nucleatum is a Gram-negative anaerobic non-spore forming, non-
motile bacillus belonging to the genus Fusobacterium. F. nucleatum has classically
been described as an opportunistic commensal pathogen with a well-established a
role in periodontal disease!®. In recent years F. nucleatum has been identified in a
range of other human microbiotas and has been associated with an ever-increasing
number of diseases including atherosclerosis, liver abscess and most notably cancer
191-194 "In particular there is a growing literature with respect to F. nucleatum and its

relationship to colorectal cancer oncogenesis and progression.

1.3.2.1 Fusobacterium nucleatum association with colorectal cancer

There is mounting literature regarding an increase higher abundance and of F.
nucleatum in CRC relative to healthy controls. Initial studies by Castellarin et al and
Kostic were among the first to demonstrate this relationship!®%. There has since
been numerous studies utilizing a myriad of techniques that have corroborate these

findings. A recent meta-analysis carried out by Gethings-Behncke et which
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659  surveyed the prevalence and abundance of F. nucleatum in individuals with

660  colorectal cancer compared with healthy controls in both mucosal and faecal samples
661  found that the signal of the positive association between F. nucleatum and CRC was
662  maintained'®’. In particular an odds ratio of F. nucleatum DNA being detected in
663  CRC versus healthy controls was 9.01 and 10.06 for faecal and mucosal samples

664  respectively. Further, in individuals who were F. nucleatum positive a consistent

665 increase in abundance in CRC in both sample types was found. Moreover F.

666  nucleatum was seen to have prognostic value with poorer survival in patients with
667  colorectal cancer with high versus low F. nucleatum abundance (Hazard ratio =

668  1.87)1.
669

670  Another meta-analysis of faecal metagenomes identified F. nucleatum adhesion
671  protein A as being overrepresented in CRC versus healthy controls 1%, A

672  prospective analysis on a large American cohort found that prudent diets (rich in
673  whole grains and dietary fiber) were negatively associated with F. nucleatum
674  positive tumours'®. This suggests a complex relationship between diet, the

675 microbiota and CRC.

676  Fluorescent in situ hybridization using Fusobacterium-specific 16S probes has
677 identified Fusobacterium species cells localized within the crypts of colorectal
678  sections?®. Furthermore mucosal associated F. nucleatum cells have been

679  demonstrated to be viable as they can be cultured from mucosal samples??.

680  With regard to the consensus molecular subtypes (CMS) of CRC, F. nucleatum was
681  found to be increased in CMS 1, a molecular subtype defined by microsatellite
682 instability and immune cell infiltration as well as poor prognosis?®22%, There also
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705

appears to be variation in the biogeography of F. nucleatum colonization, with F.
nucleatum-high colorectal cancers gradually increasing from rectum to cecum in an

approximately linear reletionship?®.

One of the current models for why F. nucleatum is found in the gut is that it transfers
constantly from reservoirs in the mouth to the gut via the Gl tract. Oral taxa have
been found to be enriched on CRC tumour tissue relative to matched healthy
tissue?®. Strain level metagenomic analysis of paired oral-stool samples found
extensive and persistent transmission of oral strains to the gut?®®. Furthermore, these
analyses found that this transmission was higher in individuals with CRC?2®, Strain
typing of cultured F. nucleatum from matched mucosal biopsies and oral samples
using degenerate primers revealed that these strains were identical between sites
within individuals?®. Another model of how F. nucleatum may reach the gut is
through the circulatory system. Transient bacteraemia is was observed in individuals
up to 15 minutes post tooth brushing?’. One study found F. nucleatum could be
cultured from blood samples from individuals who had undergone a dental extraction
207 " In orthotopic rectal CT26 adenocarcinoma, mouse models inoculated with 5 x
10%to 1 x 10 cells of F. nucleatum ATCC 23726 via tail vein injection, F.
nucleatum could be identified in both tumour tissue and healthy control tissue within
these mice?®, In control mice without CRC F. nucleatum was not detected indicating
that disruption due to CRC development was needed for the translocation via

circulatory system.
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1.3.2.2 Possible mechanistic relationship between Fusobacterium

nucleatum and oncogenesis

The above information dose not demonstrate a direct role for F. nucleatum in CRC.
However, there are experiments which support an active role of F. nucleatum. F.
nucleatum binds to E-cadherin-expressing CRC cells causing signal transduction
cascade through B-catenin leading to the expression of Wnt genes and increased
proliferation®®®, Annexin Al is a mediator of this FadA induced signalling which
itself leads to Annexin A1 expression thus leading to a positive feedback loop?!°.

Lipopolysaccharides (LPS) produced by F. nucleatum can bind to

toll-like receptor 4 activating signalling to nuclear factor-kappab leading to the up
regulation of the expression of miR-21%'1, The microRNA miR-21 down regulates
the RAS GTPase RASA1 whose depletion can lead to the activation of MAPK

signalling pathway and proliferation?!*,

F. nucleatum can also apparently alter the tumour microenvironment of CRC.
Mucosal colonization by F. nucleatum in CRC has been shown to promote tumour-
infiltrating myeloid cells in Fusobacterium-associated colon tumour

ApcM™* mice?'2, Furthermore, F. nucleatum was seen to induce the expression of
pro-inflammatory cytokines, including TNF, IL-6, IL-8 and IL-1, via the NF-xB
pathway in the mouse models?'2. This immunophenotype is reflected in RNA-seq
data derived from Fusobacterium-associated human colon tumour samples?'?, The
adhesin Fap2 of F. nucleatum binds to a human receptor known as TIGIT that is

expressed on natural killer (NK) cells and other tumour-infiltrating lymphocytes?3,

47



729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

This Fap2- TIGIT interaction inhibits the cytotoxic activities of these immune cells

thereby protecting both F. nucleatum and CRC tumour cells?'3,

Increasing evidence suggests that F. nucleatum may play a role in metastasis.
Individuals with metastatic CRC have a higher relative abundance of F. nucleatum
in their mucosa compared to individuals with non-metastatic CRC?!*, Absolute
abundance as assessed by qPCR, showed that F. nucleatum cell numbers were higher
in faecal samples of individuals with metastatic CRC than those with non-metastatic
CRC?, F. nucleatum has been identified at metastatic sites?!4?1, F. nucleatum can
upregulate Caspase activation and recruitment domain 3 (CARD3) protein which
leads to activation of autophagy?*. This activation of autophagy via CARD3 is a
prometastatic pathway?**. F. nucleatum was show to increase trans well migration
and lung metastasis in mouse cell models?'®. This metastatic activity was show to be
in part induced by the upregulation of the long-noncoding RNA Homo sapiens
keratin 7antisense RNA (KRT7-AS) and keratin 7 (KRT7) through the NF-xB
signalling pathway?'®. FAP2 dependant colonization of HCT116 cells increased the

secretion of 1L-8 and CXCL1 and promoted migration?’.

F. nucleatum colonization also appears to promote chemoresistance. The current
model for this chemoresistance is that F. nucleatum induces the promotion of
autophagy which protects against apoptosis?*®21°, This protective autophagy is
induced via the TLR4-Myd88 signalling pathway and involves the reduction in the
levels of the microRNAs miR-18a* and miR-4802 which in turn upregulates

autophagy-related proteins including ULK1 and ATG7%18219,
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1.3.2.3 Interventions to control Fusobacterium nucleatum.

The preceding sections have detailed associative and causative relationships between
F. nucleatum in CRC and other cancers. If one is to take the sum of evidence as
sufficient to label it as a cancer promoting microbe, what steps can be taken to
prevent F. nucleatum-attributable cancer incidence and deaths? Firstly, testing for F.
nucleatum within subjects may aid in stratifying the population with regard to risk.
Including F. nucleatum quantification to complement an immunochemical test
improves diagnostic capabilities??®. Secondly, it may be desirable to eliminate F.
nucleatum from the microbiome of certain individuals. F. nucleatum has been shown
to be sensitive to a range of antibiotics??. CRC xenograft mouse models treated with
the antibiotic metronidazole led to a reduction of Fusobacterium load and was also
linked to reducing cancer cell proliferation and overall tumour growth?'®, However
using such a broad spectrum antibiotics may have unforeseen negative side effects
due to the targeting other microbes. One solution could be to use predatory bacteria
such as Bdellovibrio bacteriovorus which can kill F. nucleatum??2, The utilization of
bacteriophages to selectively eliminate F. nucleatum is also being explored?°2%, A
phage-guided biotic—abiotic hybrid nanosystem was developed which proved to be
effective in eliminating intratumoural F. nucleatum in mouse models®*®. Furthermore
this system was demonstrated to be more effective in reducing tumour growth than

with chemotherapy compare to chemotherapy on its own?%°,
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1.3.2 The microbiota and cancer therapeutics

There is a growing arsenal of therapeutic strategy to treat cancer including

immunotherapy and chemotherapy.
1.3.3.1 Immune Checkpoint Inhibitors

Immune checkpoints consists of a system of immunological pathways which
modulate self-tolerance and the duration and amplitude of the immune response.
These pathways ensure an appropriate response to foreign entities and prevent
autoimmunity. Cancer cells may evolve to take advantage of checkpoints and evade

immunosurveillance.

Clinical mmune checkpoints inhibitors are typically monoclonal antibodies which
target cytotoxic T lymphocyte—associated antigen 4 (CTLA-4) or programmed cell
death protein 1 (PD-1) or its ligand (PD-L1) thereby ablating the checkpoint. These

ICI have proven to be a breakthrough in the development in cancer therapeutics.

There exists variability with regard to different types of cancers that are susceptible
to ICI. ICI have proven effective in treating melanoma, non-small cell lung
carcinoma, renal cell carcinoma, small cell carcinoma of the head and neck and
urothelial carcinoma??4-228, Furthermore, there is variation with regard to subtypes of
cancer. For instance, ICI have proven effective for MSI high CRC. Resistance to ICI
varies inter-individually. In the case of melanoma, a 26% -52% response rates to IClI
exist depending on the ICI therapy administered??®. A number of factors have been
identified as modulators of response to immunotherapy including Tumour mutational

burden (TMB) and PD-L1 expression 230231,
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798  The microbiota is now considered a factor which influences ICI efficacy. A seminal
799  set of papers published in Science reported significant associations between

800  microbiota features and treatment efficacy in patients undergoing immunotherapy?-
801 2%, Taxa such as Akkermansia muciniphila, Bifidobacterium longum and

802  Faecalibacterium prausnitzii were found to be enriched in responders. However,
803  these studies did not show a consensus microbial signal with respect to respond.

804  Antibiotics have been reported to impair the efficiency of immune checkpoint

805 inhibitors as measured by overall survival (OS) indicating a role of the microbiome
806 in ICI efficacy?*>2%, These findings lead to the argument that antibiotic therapy

807  should be restricted prior to immunotherapy?%.

808  There is mechanistic insight into how the microbiota may interact with the immune
809  system thereby enhancing ICI efficiency. Data from both patient and mouse models
810  provide evidence that the levels of short-chain fatty acids (SCFA) namely butyrate
811  and propionate, reduces efficacy of CTLA-4 induced inhibition?*°. However with
812  regard to anti-PD-1, higher levels of faecal SCFA is associated with longer

813  progression-free survival?*'. The purine nucleoside inosine, which is produced via
814  deamination of adenosine, has been demonstrated to augment the efficacy of ICI

815  against CRC in mouse models®®. Inosine is produced by various microbes such as
816  Bifidobacterium pseudolongum and Akkermansia muciniphila. Both of these

817  microbes have been found to be more abundant in individuals who responded to ICI
818 relative to nonresponding cancer patients, with the latter found to be statistically

819  significant?*2, Inosine systemic translocation via the colon is thought to be facilitated
820 by perturbation in gut permeability caused by ICI. Inosine activates T helper 1 (TH1)
821 inan adenosine 2A receptor (A2AR)—dependent manner leading to an enhancement

822  of ICI therapeutics®*?. Faecal microbiota transfer (FMT) from ICI responder patients
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into GF mice has been reported to enhance ICI intervention?3. Currently, clinical
trials are been carried out with respect to the use of FMT as an intervention to

augment ICI therapy in humans?*,

1.3.3.2 The microbiota and chemotherapy

The microbiota can biotransform and modulate the efficacy of chemotherapeutic
compounds. Streptomyces inactivates doxorubicin by the reduction of the quinone
ring of the anthracycline by NADH dehydrogenase®**. In CRC mouse models,
Mycoplasma has been demonstrated to inactivate gemcitabine via cytidine
deaminase®®®. Mice which lack a microbiota show resistance to Cyclophosphamide?#.
Cyclophosphamide promotes the translocation of intestinal microbes including
Lactobacillus johnsonii, Lactobacillus murinus and Enterococcus hirae which
stimulate the production of type 17 T helper (TH17) cell and type 1 T helper (TH1)
cell?*’. Microbes may also increase the toxicity of chemotherapy. Irinotecan is an anti-
cancer prodrug which is converted into its active form in the liver. However, in the
gut, B-glucuronidase expressing microbes convert irinotecan into the toxic compound

SN-3828,

Given the growing body of evidence indicating that a variety of tumours contain
endogenous bacterial communities, microbiome based profiling of tumours prior to

chemotherapeutic intervention has the potential to improve patient outcomes?4%2>°,
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1.4.1 Highlights

The literature describing the differences in microbiota features between individuals
with cancer and matched controls has undergone dramatic recent expansion.
Mechanistic models for how microbes promote cancer formation and progression are

being developed and experimentally tested.

Microbes have been implicated in mutational mechanisms namely in the formation
of DNA damage. These mechanisms include the production of crosslinking
genotoxic colibactin by Escherichia coli or ectopic expression of activation-induced

cytidine caused by Helicobacter pylori infection.

Developments in bioinformatics have allowed for the elucidation of the mutational
mechanisms that act upon the cancer genome through oncogenesis, particularly by

identifying mutational signatures.

Elucidation of microbe-associated mechanisms will allow for a more complete

understanding of the forces behind the etiology of the cancer genome.
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1.4.2 Abstract

Cancers arise through the process of somatic evolution fuelled by the inception of
somatic mutations. We lack a complete understanding of the sources of these
somatic mutations. Humans host a vast repertoire of microbes collectively known as
the microbiota. The microbiota plays a role in altering the tumour microenvironment
and proliferation. In addition, microbes have been shown to elicit DNA damage
which provides the substrate for somatic mutations. An understanding of microbiota-
driven mutational mechanism would contribute to a more complete understanding of
the origins of the cancer genome. Here we review the modes by which microbes
stimulate DNA damage and the effect of these phenomena upon the cancer genomic

architecture, specifically in the form of mutational spectra and mutational signatures.
1.4.3 Origin of the cancer genome and the role of the microbiota

Oncogenesis is driven by the Darwinian selection of somatic mutations (see
Glossary) over time 1, Mutations arise through the formation of genetic aberrations
and their subsequent interactions with the DNA repair machinery and cell cycle
related pathways including DNA synthesis?>2. Mutational mechanisms alter the DNA
in distinguishing manners resulting in genetic patterns known as mutational

signatures (Box 1).
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Box1 | Mutational signatures

Specific mutational mechanisms produce characteristic patterns in the genome
known as mutational signatures. Recent advances in mathematical modelling and
bioinformatics have led to great improvements in our ability to identify mutational
signatures from cancer genomic data. There are six defined classes of base
substitutions: C>A, C>G, C>T, T>A, T>C and T>G [note: In accordance with the
Catalogue of Somatic Mutations in Cancer (COSMIC) system, all substitutions are
referred to by the pyrimidine of the mutated Watson-Crick base pair]. The
incorporation of the 5’ and 3’ bases flanking the mutated base of the six originally
defined classes gives an expanded classification system of 96 possible mutations.
Utilizing this 96-class system as the framework and applying non-negative matrix
factorization and model selection, with input from genomic data from 7042 cancer
samples from 31 different cancer types, 21 mutational signatures were initially
identified 2°3. With the inclusion of more genomes for a heterogeneity of cancers,
as well as the consideration of single base insertion/deletions and double base
substitutions, the number of mutational signatures has expanded?>. Currently, the
number and type of mutational signatures characterised are as follows: 49 single
base substitutions, 11 doublet base substitutions, four clustered base substitutions
(DBS), and 17 small insertion and deletion (indels) mutational signatures®*.
Structural variants also occur in cancer genomes and they include insertions,
deletions, inversions, balanced or unbalanced translocations, amplifications and
complex rearrangements on a scale of >50 bp in size?>®. Efforts have also been

made to define the signatures of these events 2°°. Mutational signatures provide an
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insight into the mutational mechanisms that act on a cancer genome over time.
Mutational signatures are typically displayed as histogram with the frequency of
base substations (or indels or doublet base substitutions) with respect to the
genomic context. SBS signature 1 is characterised by C>T transversions at
methylated CpG sites within an NpCpG trinucleotide context. The putative
mechanisms behind SBS signature 1 is spontaneous or enzymatic deamination of 5-
methylcytosine to thymine. This newly formed thymine maybe base-paired with
adenine during replication, provided DNA repair is not executed. Many mutational

signatures described do not have a known aetiology.

The origin of mutations allows them to be classified into three categories, which is
(i) Inherited genetic variants which lead to an increase in the risk of cancer
development. (ii) Environmental factors, exogenous factors including UV light,
tobacco smoking and diet that mutate the DNA are directly linked to cancer. (ii)
Stochastic errors associated with DNA replication. These are seemingly inevitable
random mutations which arise due to the intrinsic properties of DNA biology.
Seminal work by Tomasetti and VVogelstein showed that about two-thirds of the

mutations in the cancer genome originate from stochastic events 2°7:2%8,

Lung and cervical adenocarcinoma genomes harbour median values of 33% and 83%
stochastic mutations respectively 2°’. However, epidemiology evidence indicates that
a high portion (~90%) are attributable environmental factors of cases, i.e. tobacco
smoking and HPV infection, respectively. The manging of environmental factors is

thus crucial is cancer prevention even though stochastic/replicative mechanisms are
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the major driver (See ref 3 for a more detailed discussion). However a complete
catalogue environmental factors that contribute cancer risk is lacking. Note that a
great number of known carcinogens promote oncogenesis by causing mutagenesis

e.g. ultraviolet light, ethanol, tobacco smoke and radioactive substances.

The human microbiota is increasingly seen as an emerging environmental risk factor.
The human microbiota is home to about 3.8 x 10 bacterial cells and it is estimated
that the collective metagenome of these bacteria encompasses about 100 times more
genes than the human genome 1. Although the majority of studies focus on
bacteria, upon which this review is focussed, the human microbiota includes
members from all 5 kingdoms of life as well as viruses. A large number of studies
demonstrate that microbiota features are involved in the development and
progression of a range of cancers. The term ‘oncobiome’ has been coined to describe
the relationship between the microbiota and cancers®®. However, oncobiome
research has identified relationships that are primarily correlative rather than
causative in nature. With regard to the putative mechanistic role that the microbiota
has in cancer development, immune modulation in the form of inflammation caused
by the microbiota is an intense area of research 26°. Effort has also been made in

defining the role of the microbiota in cell proliferation 262,

The microbiota is known to be involved in a diverse assortment of mutational
mechanisms (Table 1). Known variation in cancer risk due to unknown
environmental factors could be explained in part by variations in the ability of the
microbiota of individual subjects to induce DNA-damage and thus somatic

mutations. Here we describe the current state of knowledge on microbes and their
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968  ability to compromise the stability of the human genome ultimately leading to
969  cancer.
970  Table 1. Microbe-Associated Mechanisms and Genomic Consequences

including
enteropathogenic
Escherichia coli,
Campylobacter
species, Shigella

variants such as
indels

Source Involvement of Key role in a mutational Postulated Reference
microbiota mechanism effected on
features cancer genomic
landscape
Activation- Helicobacter Cytosine deamination at Mutational 254,262
induced pylori infection specific motifs signatures
cytidine cause ectopic SBS84 and
deaminase expression of SBS85
(AID) AID
Acetaldehyde | Various N2- GG-to-TT base | 2%3
inhabitants of ethylidenedeoxyguanosine, | substitution.
produce ethanol Guanine- guanine Mutational
and are capable intrastrand crosslinks signature DBS2
metabolic act on
it to produces
acetaldehyde
Colibactin Expressed by Adenine — adenine intra- DSBs at an 264
Escherichia coli strand crosslinks, Double AAWWTT
containing a pks strand breaks, pentanucleotides
island motif.
Mutational
signatures
SBS28 and
SBS41
Cytolethal Produced by Single strand breaks and Infidelity of 254
distending various Gram- Double-strand breaks DNA repair can
toxin (CDT) negative bacteria lead to structural

microbiota can
produces
precursors to
N203 e.g.
denitrifying
bacteria

Adenine
nitrosative
deamination to
Hypoxanthine
can lead to T>A
substitution

species and

Haemophilus

ducreyi
Disruption of | Helicobacter Deletion of MMR proteins | Microsatellite 253,265,266
DNA pylori and instability,
mismatch Enteropathogenic Mutational
repair Escherichia coli signature SBS6,

can disrupt ID1 and ID2

mismatch repair
Dinitrogen Metabolic Nitrosative deamination Various base 267,268
trioxide activities of the substitutions e.g.
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Hypobromous
acid

Eosinophil’s
produce
Hypobromous
acid. The
microbiota can
influence
eosinophic
biology

8-bromoguanine

G> T primarily
but also G>C,
G> A, and delG

269

Hypochlorous
acid

HOCL is produce
by Neutrophils.
The microbiota
can influence
neutrophil
inflammatory
status

Formation of 5-
chlorocytosine (5CIC),
formation of
malondialdehyde

C>T, G >A,
G>T
substitutions

270,271

N-nitroso Microbes play a | Alkylated DNA base Various base a2
compounds role in the substitutions e.g
(NOCs) production of 06-
nitrosating agents methylguanine
and produces (06-MeG) can
biogenic amine cause a
G(C)>A(T)
transition
Reactive Various Oxidative Base Lesions GtoT a3
oxygen metabolic transversion,
species activities SBS Mutational
signatures 18
and 36
4-hydroxy-2- | Enterococcus Exocyclic HNE-DNA Chromosomal 274
nonenal faecalis induces adducts instability
the bystander
effect via
polarising
marcophages.
Polarised
marcophages
produces 4-
hydroxy-2-
nonenal

In this review we described the microbiota influences on genome integrity through

(i) direct DNA damage, (ii) immune cell induced DNA damage, (iii) dietary

interaction, and (iv) disruption to the DNA damage response.

60




977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1.4.4 Direct DNA Damage

Members of the microbiota can produce proteins, molecules and secondary
metabolites that can directly cause DNA damage. These products can interact

directly with the host DNA thereby mutating it.

1.4.4.1 Colibactin

Escherichia coli is classified into 4 phylogenetic groups, A, B1, B2, and D. About
30-50% of E. coli strains identified in stool microbiota of individuals from high-
income nations belong to group B2. Within the B2 group, 35% of isolates possess
genomic islands known as pks (for polyketide synthase) islands?’®. The 54-kb pks
island is a biosynthetic gene cluster encoding for a non-ribosomal peptide synthetase
(NRPS)—polyketide synthase (PKS) hybrid gene cluster, which encodes for
colibactin 27, Colibactin can cause Double-strand breaks (DSB) in mammalian DNA
thereby promoting genome instability and an increase in mutation rate 22’8 Note,
how colibactin is transported to from the outside all the way to the nucleus is
currently unknown. The pks+ E. coli strains are over-represented in the gut of
individuals with colorectal cancer, being detected at a rate 20% in the mucosa of
healthy individuals but 55%-67% in patients with colorectal cancer (CRC) 279280,
Furthermore, pks+ E. coli was disproportionally frequently identified in subjects
with familial adenomatous polyposis (FAP) compared to healthy controls 2L,
Monocolonization of azoxymethane (AOM)-treated IL10—/— mice with pks+ E. coli
promoted tumorigenesis, while challenge with strains lacking pks reduces the

frequency of tumorigenesis 2°.
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Colibactin crosslinks directly with DNA through an electrophilic cyclopropane
moiety ‘warhead’ 22, Liquid chromatography—mass spectrometry-based
methodologies have identified that colibactin alkylation of DNA via the
cyclopropane warhead resulted in adenine-colibactin adducts 263284, This
phenomenon was identified in both HeLa cells and in mouse models 284, Colibactin
can also induce DNA inter-strand cross-links and activation of the DNA damage
response including Fanconi anemia DNA repair 2%, Recent structural analysis
revealed that colibactin contains two conjoined warheads enabling its ability to cause
DNA crosslinks 2%, Double strands breaks are not believed to be a direct
consequence of colibactin activity but rather occur due to replication stress caused by
DNA cross-links 285, Recent sequencing analysis of sites of colibactin induces DSBs
revealed that these DSBs occurred at AT-rich regions and in particularly at the
pentanucleotides motif containing the AAWWTT?4, Single nucleotide variants at
the AAWWTT were found to be enriched in a number of cancers including CRC and
stomach cancer compared with a WWWWW motif. Two mutational signatures were
found to be link with the AAWWTT colibactin motif, SBS28 and SBS41%4,
Mutational signature SBS28 has been associated with POLE mutation while

Mutational signature SBS41 has no know etiology.

1.4.4.2 Cytolethal distending toxin (CDT)

The cytolethal distending toxin (CDT) is produced by an array of gram-negative
bacteria within the gamma and epsilon classes of the phylum Proteobacteria®®’. It is

a heat-labile exotoxin whose properties lead it to be classified as a both a
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cyclomodulin and a genotoxin. The proteobacteria that can produce CDT are sub-

dominant members of the human gut microbiota.

CDT is a heteromultimeric protein comprised of three subunits, CdtA, CdtB and
CdtC which are encoded within a bacterial single operon 2828° Subunits CdtA and
CdtC function to allow delivery and internalization of CDT into target cells?®. CdtB
shares sequence, structural and functional homology with DNase | and is highly
conserved among bacteria 2°*2%%, Furthermore, nuclear localization signals have been
identified in CdtB proteins 2°2, Studies with ApcMin/+ mice that are genetically
susceptible to small bowel cancer found that a Campylobacter jejuni strain
harbouring the CDT operon promoted colorectal tumorigenesis compared to
treatment with non-CDT bacterial controls, while mutation of the cdtB subunit
attenuated this phenomenon 2%, CdtB has been shown to promote DSB in vitro and
in vivo 220294295 However, the current model of CdtB activity holds that CdtB acts in
a dose-dependent manner and tends not to induce double strand breaks directly %,
At low to moderate doses, CdtB causes single strand breaks (SSB) which are
addressed by Single-strand break repair (SSBR)?%’. If CDT-induced SSBs are not
addressed before replication or occur during replication, they may cause a stalled
replication fork 2°:2%7 At high doses, CDT can induce DSB directly by two cuts to

the DNA backbone that are juxtaposed to each other 2%

1.4.4.3 Reactive oxygen species

Reactive oxygen species (ROS) are a chemically reactive family of molecules

containing oxygen which include the highly reactive hydroxyl radical (OH-),
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superoxide radical (O2—), and non-radical hydrogen peroxide (H202). Reactions of
ROS with DNA generates oxidative DNA base lesions. To date, more than 30

oxidative DNA base lesions have been identified(Box 2)2%.

Microbiota activity is known to produce reactive oxygen species through varied
means. For example, primary bile acids, cholic acid (CA) and chenodeoxycholic
acid; (CDCA) are synthesised by the liver and are secreted into the small intestine
from the gall bladder. A small proportion of these bile salts are transformed into
secondary bile salts by the gut microbiota. These secondary bile salts are thought to

be involved in the production of ROS 2%,

Hydrogen sulphide (H2S) is produced by the metabolic activity of colonic bacteria
including taurine desulfonation by Bilophila wadsworthia, cysteine degradation by
Fusobacterium nucleatum and sulfonate degradation by sulfate-reducing bacterium
such as Desulfovibrio desulfuricans. Increased relative abundance of such bacteria
has been linked to CRC development 3% Evidence suggests that H2S production

leads to DNA damage partly due to ROS generation 301302,

Box 2 | Oxidative DNA Base Lesions

Guanine has the lowest redox potential of the native bases and is thus the most
readily oxidised. Two common oxidative base lesions which are generated by
the oxidation of Guanine include 8-oxo0-7,8-dihydro-2’-deoxyguanosine and
2,6-diamino-4-oxo-5-formamidopyrimidine (FapyG) which occur at an
estimated rate of 1000-2000 and 1500-2500 per cell/per day in normal
tissues, respectively3®®. Furthermore, the occurrence and the mutagenicity of

these oxidative DNA base lesions vary considerable. For example, 7,8-
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dihydro-8-oxo-guanine is about four times as mutagenic and four times more
frequent in its occurrence than 7,8-dihydro-8-oxo-adening3%33%, Replication
of DNA containing 8-oxo-7,8-dihydro-2’-deoxyguanosine and 2,6-diamino-4-
oxo-5-formamidopyrimidine (FapyG) are shown to induce G:C to T:A (C >A)

and G:C to T:A (C >A) respectively3®,

The nucleobases within the cellular nucleotide pool may also undergo
oxidation. Misincorporation of these nucleoside triphosphates can induce
mutations. The two major products of nucleotide pool oxidation are 8-
hydroxy-2'-deoxyguanosine 5'-triphosphate (8-OH-dGTP) and 2-
hydroxydeoxyadenosine 5'-triphosphate (2-OH-dATP). 8-OH-dGTP has been
demonstrated to induce A:T to C:G transversions when introduced into COS-7
mammalian cells®®. In vitro analysis using HeLa cell extract showed that 2-
OH-dATP within the nucleotide pool can led to G-C to A-T (C>T) transitions

and G-C to T-A(C>A)¥",

Mutational signatures 18 and 36 have been suggested to be attributed to
reactive oxygen species. Mutational signature 36 has been specifically
attributed to ROS in the context of MUTYH-Associated Polyposis (MAP)
syndrome 273, MAP syndrome is defined by biallelic germline mutation of
MUTYH gene and is a colorectal polyposis which predisposes individuals to
CRC. MUTYH DNA glycosylase is coded by the MUTYH gene and functions

to prevent 8-Oxoguanine-related mutagenesis by scanning the newly-
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synthesized daughter strand in order locate and remove incorporated adenine

paired with 8-Oxoguanine3®,

1.4.4.4 Dinitrogen trioxide and nitrosative deamination

Nitrosative deamination is deamination mediated by dinitrogen trioxide
(N203, nitrous anhydride). In this phenomenon, dinitrogen trioxide can react
with nucleotides and induce deamination by nucleophilic aromatic
substitution. These events are mutagenic because the resulting deaminated

bases may be read incorrectly if not repaired?e,

Dinitrogen trioxide can be generated from the autooxidation of nitric oxide
(NO-) or the condensation of nitrous acid (HNO2)*®. GIT microbes can
produce endogenous nitric oxide and/or nitrous acid by 4 mechanisms, that is,
(i) The hemethiolate monooxygenase, nitric oxide synthase (NOS), oxidises
L-arginine (Arg) to produce nitric oxide. 3% (ii) Denitrification of nitrate
(NO3) to nitrogen (N2), which is an important part of the nitrogen cycle and is
carried out by denitrifying bacteria and plants. During denitrification, nitric
oxide is produced by one-electron reduction of nitrite (NO2") by heme or Cu-
containing nitrite reductases?®’. (iii) Respiratory nitrite ammonification (also

referred to as dissimilatory nitrate reduction to ammonium)?®’. (iv) Acidic
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non-enzymatic reduction of nitrite to NO which is driven by lactic acid

bacteria such as lactobacilli and bifidobacteria3°.

1.4.5 Immune cell induced DNA damage

The microbiota and immune system closely interact from the early stages of
human development. In this section we review mechanisms by which the

microbiota can influence immune cells to behave in a genotoxic manner.

1.4.5.1 Hypochlorous acid (HOCI) production

Neutrophils, which are a type of polymorphonuclear leukocyte, accumulate at sites
of injury with the primary function of promoting inflammation. Neutrophils produce
a potent antimicrobial known as hypochlorous acid (HOCI) which is produced by
myeloperoxidase using as substrates the chloride ions and hydrogen peroxide (H202)
produced by NADPH oxidase 3'*. HOCI is highly reactive and readily interacts with
DNA. HOCI has been shown to cause a cytosine to 5-chlorocytosine (5CIC)

conversion 2%, This is in turn can cause a C to T transition during replication.

In addition, HOCI can induce the peroxidation of lipids leading to the formation of
malondialdehyde (MDA). Studies in both cellular and animal models found that such
a production of MDA can lead to a significant increase in the formation of 3-(2-
deoxy-B-D-erythro-pentofuranosyl)pyrimido[1,2-a]purin-10(3H)-one (M1dG) , a
damaged guanine. 2’1, M1dG adducts are mutagenic causing G>T and G >A

substitutions.32
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The microbiota is now known to be a modulator of neutrophilic biology®'. A recent
study in a mouse model demonstrated that neutrophil pro-inflammatory activity
correlates positively with neutrophil ageing while in circulation®*. Furthermore the
study found that the microbiota regulates neutrophil ageing by Toll-like receptor and
myeloid differentiation factor 88-mediated signalling pathways>'*. A depletion of the
microbiota was mirrored in the number of aged neutrophils and an improvement in

inflammatory disease.
1.4.5.2 Hypobromous acid production

Eosinophils are granular leukocytes with a multifunctional role in immune biology.
Eosinophils secrete eosinophil peroxidase which catalyzes the formation of
hypobromous acid (HOBO) from hydrogen peroxide and halide ions (Br—) in
solution. HOBO can also be produced by reaction of HOCI with Br- ions. Like
HOCI, HOBO is an oxidant and functions to oxidize the cellular components of
invading pathogens; however excess production of HOBO can also lead to host
damage including DNA damage, namely the formation of 8-bromo-2'-
deoxyguanosine and 5-bromo-2’'-deoxycytidine. A SupF forward mutation assay in
human cells found that the prominent mutation induced was G >T mutation but

HOBO also induces G>C, G>A, and delG 2%,

1.4.5.3 Activation-induced cytidine deaminase

Activation-induced cytidine deaminase (AID) is a member of the cytidine deaminase
family of enzymes with a role in somatic hypermutation. Immunohistochemistry

identified the ectopic overexpression of AID in inflamed tissue derived from patients
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with Crohn’s disease and ulcerative colitis as well as colitis-associated colorectal
cancers 31, The expression of AID in colonic epithelial cell lines induced an increase
in the mutation rates in these cells 3°. Knock-out of AID in I1L10 null mice
attenuated the mutation rate in their colonic cells and also inhibits CRC
development3!8, Inflammation seems to be key to this aberrant activity. H. pylori
infection, which is known to induce inflammation, promotes ectopic expression of

AID in non-tumorous epithelial tissues 262

Whole genome analyses in chronic lymphocytic leukaemia revealed that the activity
of AID may produces two types of substitution pattern (i) a ‘canonical AID
signature’ characterised by C to T/G substitutions at WRCY motifs near active
transcriptional start sites and (i1) a ‘non-canonical AID signature’ characterised by A
to C mutations at WA (W=A or T) motifs occurring genome-wide in a non-clustered
fashion Y7, These mutational processes have been assigned to mutational signatures

SBS84 and SBS85%“,

1.4.5.4 By-stander effect and Enterococcus faecalis

Enterococcus faecalis is known to promote CRC oncogenesis in interleukin
10 -/- mice 38, E. faecalis can promote the bystander effect which leads to
double-stranded DNA breaks, tetraploidy and chromosomal instability. In
this model, E. faecalis production of extracellular superoxide induces
polarization of macrophages to an M1 phenotype 31°-321, In turn macrophages
produce 4-hydroxy-2-nonenal (4-HNE), a diffusible breakdown product of -

6 polyunsaturated fatty acids whose expression in this context is dependent on
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Cyclooxygenase-2274%22, Primary murine colon epithelial cells exposed to

polarized macrophages or purified 4-HNE undergo transformation 323,
1.4.6 Dietary interaction

The diet of the host and the gut microbiota are inextricably linked. GIT
bacteria depend almost exclusively on the host diet for their nutritional
substrates (a restricted number of taxa can metabolize mucins and
glycoproteins) and indeed the composition of the microbiome is correlated
strongly with diet. Diet is a key modulator of cancer risk. In the cases
described below, microbiota-diet interactions lead to the formation of

genotoxic compounds capable of mutating the host genome.

1.4.6.1 N-nitroso compounds (NOCs)

NOCs, such as nitrosamines and nitrosamide, are known to be potent carcinogens.
NOCs are formed by the nitrosation of secondary amines and amides via nitrosating
agents, such as N203 and N204 32, NOCs can be found in foods such as processed
meats, smoked/cured fish and German beer®?®, Additional compounds such as nitrate
and nitrite which are precursors to nitrosating agents can be found in food including
vegetables which may account for 50-70% of an individual’s intake of nitrate and
nitrite 326, Endogenous NOCs are also formed and in many cases, this is because of
the activities of microbes. Firstly, bacteria produce nitrosating agents (See
Dinitrogen trioxide and nitrosative deamination). Further amines and amides are

produced by bacterial decarboxylation of amino acids 2. Heme has been suggested
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to catalyse the formation of NOCs®?’. Inhibitors of nitrosation are ingested as part of

a diet and include vitamin C, vitamin E and polyphenols®%,

The activated form of NOCs induce a number of methylated DNA adducts, of which
over 12 are known, via SN1-nucleophilic substitution®?°. These alkylated DNA
bases can be mutagenic if not repaired before replication?’2. SBS mutational

signature 11 has been linked to the mutagenic activity of alkylating agents 3%°.

1.4.6.2 Acetaldehyde

Alcohol is classified as a Group 1 carcinogen (carcinogenic to humans). Worldwide,
3.6% of all cancer deaths and 3.5% of all cancer cases are attributable to alcohol
consumption®3, Ethanol (C2HsOH), the psychoactive ingredient in alcoholic
beverages, is believed to be the major causative compound of cancer in alcoholic

beverages.

Ethanol is introduced into a catabolic pathway where it is broken down and the
metabolites expelled via the urinary system. Ethanol is first metabolized by alcohol
dehydrogenase (ADH), cytochrome P4502E1 (CYP2E1) and catalase thereby
forming acetaldehyde (ethanal). Acetaldehyde is further oxidised by aldehyde
dehydrogenase to produce acetate. Aldehydes cause DNA damage in the form of
double strand breaks and the Fanconi anaemia pathway is responsible for the repair
of this damage 3%2. Aldehydes has been demonstrated to cause intrastrand crosslink
between adjacent guanine bases?®. This can lead to the mutagenic event of GG>TT

double base substitution which is a characteristics of Mutational signature DBS2

254,263
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Bacteria can not only produce ethanol but also break it down into acetaldehyde. Oral
taxa are known to be able to produce acetaldehyde from ethanol or glucose 3. In
addition, gut microbes can also produce acetaldehyde from sugars 3. Indeed there
have been reports of bacterial autobrewery syndrome (intoxication by ethanol
formed by fermentation by microbes in the gut) in which a strain of Klebsiella
pneumoniae was implicated #2. This strain was also strongly associated with non-
alcoholic fatty liver disease and fatty liver disease symptoms in a mouse model.

Mutational signature 16 has been link to alcohol consumption 3%,

1.4.7 Disruption to the DNA damage response

Human DNA experiences repeated events of DNA damage throughout the cell cycle.
The cell has a complex network of systems whose purpose is to ensure the fidelity of
DNA. Known as the DNA damage response, this cellular system is responsible for
detecting DNA damage, signalling its presence, promoting DNA repair cell cycle

checkpoint and/or apoptosis.

The mismatch repair mechanism is responsible for addressing base-base mismatches
and insertion/deletion mispairs generated during DNA replication and
recombination*®. Enteropathogenic Escherichia coli was found to promote the
depletion of MSH2 and MLH1 proteins, which are crucially important for mismatch
repair in cell models®®. This phenomenon was found to be dependent on the
bacterial type-3 secretion effector EspF?%. Furthermore, mitochondrial targeting of

EspF was necessary for this activity. Colonic epithelial cells infected with
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Enteropathogenic E. coli display an increased mutation rate particularly in

microsatellite DNA sequences.

The human gastric pathogen Helicobacter pylori also inhibits the expression of

MMR gene expression, in part through the modulation of miRNAs 266337,

Mutational signature 6 is characterised by C>T transitions at an NpCpG trinucleotide
context 253, This mutational signature is associated with small indels (usually 1-3bp)
at nucleotide repeats. This indel pattern is equivalent to phenomena known as
microsatellite instability. Microsatellite instability is caused by aberrations in the
DNA mismatch repair (MMR) machinery. The origin of MMR deficiencies is
genetic and/or epigenetic alterations in MMR genes. Microsatellite instability occurs
in 15% of CRC genomes; 3% are associated with Lynch syndrome while 12% are

associated with sporadic CRC338

1.4.8 Mutational signatures as a tool to study the effect of microbes

on the human genome

Multiomic experimental designs are supremely placed to delineate the relationship
between the microbiota and the architecture of the cancer genome. Population
studies in which both cancer genomic and the adjacent microbiome are studied can
provide information on the relation between the cancer genetic architecture and its
microbiota. However, therein lies a fundamental issue with this type of design.
Cancer can take several years to form and mutational mechanisms act at different
time spans of the natural history. Furthermore, composition of the microbiota is
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somewhat dynamic. Thus, a snap shot of the microbiota may not be wholly related to
the mutational signatures identified. A prospective study where individual’s
microbiota are taken at a per-transformation may allow for more direct comparisons
between the microbiota and pre-transformation mutational mechanisms.
Additionally, individuals with pre-cancer legions such as Barrett’s oesophagus may
be prime candidates to study due to their increase propensity develop cancer.
Studying cancer heterogeneity and evolutionary dynamics can allow for the
identification of the timing of mutational mechanisms. Additional recent
advancements have allowed for mutational signature extraction from non-cancerous
tissue thus allowing elucidation of microbial associated mechanisms prior to
transformation 3%°. Experiments in which a microbe or a community of microbes are
grown in the context of a model such as a cell line or organoids would allow to
eliminate confounders and make more direct correlations. Dziubanska-Kusibab et al
used model cell lines exposed to colibactin and to identify DNA sequence targets of
colibactin. Furthermore this target was cross-referenced with mutational signatures
derived in population cancer genomic data to find asssiocateded mutational

signatures (See colibactin section)

1.4.9 Concluding Remarks

Cancer prevention is relatively under-researched when compared to therapeutic
development, with only 2 to 9% of funding put towards this area . A high
proportion of cancer cases and cancer deaths could be avoided through modification
of environmental risk factors. About 42% of cancer incidences in the US are
estimated as being attributable to modifiable risk factors - this figure is also reflected
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in the UK population "8, Evidence is building in favour of the microbiota as an
environmental modulator of cancer risk. We outlined the multitude of ways that the

metabolic activities of members of the human microbiota can lead to mutations.

Our ability to modulate the microbiota is improving steadily, featuring diet,
antibiotics, phage therapy, faecal microbiota transplantation (FMT), prebiotics,
probiotics and Live Biotherapeutics®°. Thus one could plausibly develop strategies
to alter the structure of an individual’s microbiota in order to reduce its mutagenic

potential (see Outstanding Questions).

In order to make informed decisions on therapeutic interventions, a complete
catalogue of microbial-associated mutational mechanisms is required. Furthermore,
the relative impact of each mutational mechanisms on the cancer genome need to be
delineated. Microbial-associated mutational mechanisms which have both been
found in a wide range of cancers as well as contributing to a great number of
mutations will take priority when deciding what mechanisms need to be addressed

first.

We propose to leverage advancements in cancer genomics, namely in the form of
mutational signatures, to associate microbes to mutational mechanisms. These can
provide qualitative and quantitative information on the mutagenic effect that

microbes undoubtedly have.

It is possible that certain aspects of the microbiota activity protect against
mutagenesis and cancer. These potential mechanism need to be elucidated to enable

the harnessing the microbiota as prophylactic agents.
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1.4.11 Outstanding Questions Box

. What is the complete repertoire of modes by which the microbiota promotes

DNA damage or compromises DNA integrity?
. What is the exact mutational mechanism by which microbes elicit mutations?

. What are the mutational signatures which result in a microbiota-associated

mutational mechanism?

. How does the mutagenic potential of the microbiota vary within the
population? This would need to take into consideration epidemiological factors such

as age, diet, genetics and other modifiers/risk factors.

. How does this variation in the mutagenic capacity of the microbiota

contribute to cancer risk?

. What proportion of cancer genomes have microbial influence in their
formation? Further, in cancer genomes with microbial influences, what is the

guantitative impact it has (frequency per Mbp/ overall abundance)?
. How might the microbiota protect genome stability and prevent cancer?

. What are the necessary interventions that would be required in order to

address these microbiota associated mutational mechanisms?
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1.4.12 Glossary

Base substitutions: A type of mutation in which one base is replaced by

another in DNA.

Chromosomal instability: A phenomena which leads to alterations in

chromosome number and/or structure.
DNA adduct: Formed via the addition of a chemical moiety to a DNA base
DNA alkylation: The addition of an alkyl group (CnH2n+1) to a DNA base

DNA crosslinking: Formation of covalent bonds between two nucleotides.
This bond can be formed between nucleotides on the same DNA stand

(intrastrand crosslinks) or different strands (interstrand crosslinks)
DNA deamination: The removal of an amino group from a DNA base.

DNA repair: A diverse collection of pathways with the purpose of addressing

DNA damage and maintaining genome stability.

Double-strand breaks: This is where both strands of DNA which are

juxtaposed to each other

Environmental risk factor: A thing or process which is not inherited that

increases the risk for a particular disease.

Microbes: Microorganisms including bacteria, fungi, protists and virus.

Usually exist as a single cell organism.
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Microbiome: The combined genetic material of the microorganisms in a

particular niche.

Microbiota: The collection of organisms in a niche.

Mutational mechanism: Biological phenomena which lead to the generation
of mutations. Usually involving DNA damage, DNA repair and DNA

replication.

Mutational signature: The characteristic DNA pattern of mutations produced

by a mutational mechanism.

Oncogenesis: The transformation of a normal cell into a cancer cell.

Oxidative Base Lesions: DNA Bases that occur due to a reaction with

Reactive oxygen species

Somatic mutation: A mutation which occurs in a somatic cell and is thus not

heritable.
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1.4.13 Colibactin continued

A number of informative papers were released after the publication of Mutagenesis
by Microbe: the Role of the Microbiota in Shaping the Cancer Genome. The aim of
this section is to update and complete the discussion on colibactin for this thesis. In
the study by Pleguezuelos-Manzano et al, human intestinal organoids were co-
cultured with pks+ E. coli and a clbQ knockout strain of pks+ E. coli (thus unable to
produce colibactin), which was used as a negative control®*. After a 5-month period
whole genome sequence was performed on clones from each arm of the study.
Organoids which were exposed to colibactin contained higher numbers of single
base substitutions. The genomes of these organoids featured two mutational
signatures, a single-base substitution signature and a small indel signature denoted
SBS-pks and ID-pks respectively. SBS-pks was characterised by T > N substitution
within an ATA, ATT and TTT context (whereby the middle base is the one
undergoing substitution). It was found that A was highly represented 3 bp upstream
from the mutated SBS-pks T > N site. Moreover this SBS-pks displayed a
transcriptional strand bias indicating that the transcription-coupled nucleotide
excision repair maybe involved with the repair of colibactin lesions. The ID-pks
was characterised by single T deletions at T homopolymers with an enrichment of
adenines immediately upstream of the indel containing poly-T stretch. The length of
the A polymer was inversely proportional to the T polymer length. Larger indels

were also described within the same sequence context of the ID-pks.

Both SBS-pks and ID-pks signatures were found enriched in the cancer genomes of
CRC. Indeed, these identified signatures found to occur in recognised CRC driver

genes including APC3*, Other work by Lee-Six et al described a mutational
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signature appearing in healthy crypts genomes including signatures which correlated
with each other denoted SBS-A and ID-A signatures®*°. These signatures were
inferred to occur early in life of an individual®*®°. SBS-A and ID have also been
identified in non-neoplastic IBD-Affected crypts#2. Note that pks+ E.coli occur
more frequently in IBD than healthy individuals, 40% versus 20% respectively?’®.
SBS-pks and ID-pks show high levels of similarity with SBS-A and ID-A. SBS-pks
and 1D-pks seem be present early in the evolution of the CRC genome. Yang et al
demonstrated that pk+ E.coli promoted colorectal carcinogenesis in two mouse
models harbouring a complex microbiota3*®. Treatment of mice colonised with pks+
E.coli with anti-TNF therapy lead to a decrease in the transcription of the clb island
genes and attenuated carcinogenesis®*®. However, mice treated with anti-TNF
therapy co-housed with untreated mice no longer displayed protection from CRC
development. Due to the coprophagic activity of mice, the ability of anti-TNF
therapy to attenuate CRC oncogenesis was inferred to be via the microbiota. Further
supporting this was that the findings transplantation of cecum microbiota from anti-
TNF treated mice to germ-free Apc min/+ mice protected them from CRC

development3#,
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1.5 Colorectal cancer

Globally, colorectal cancer (CRC) is the second most common cause of cancer and
the second highest cause of cancer mortality'’2.In 2018 there were ~1.8 million new
diagnosis of colorectal cancer and 881,000 deaths worldwide!’?. CRC is thus the
most impactful cancer covered in this thesis in terms of the above metrics.
Furthermore, the relationship between CRC and the gut microbiota is the most
explored cancer-microbiome interaction. Histologically, more than 95% of CRCs are
carcinomas (derived from epithelial cells) while colorectal lymphomas, sarcomas,

carcinoids, melanomas and squamous cell carcinomas occur much less frequently34*

348

The aetiology of colorectal cancer is multifactorial involving, environmental,
heritable and stochastics factors. Approximately 60—65% of CRC cases arise
sporadically i.e. no known family history, inherited cancer syndrome gene or other

inherited genetic mutations.

1.5.1 Evolution of CRC

The development of cancer can occur through 3 described pathways; (1) the
conventional adenoma-carcinoma sequence (2) the serrated pathway and (3)

inflammatory pathway3*°

The Adenoma-carcinoma sequence is seen as the conventional mode of CRC

oncogenesis because 85-90% develop from adenomas*°. Somatic mutation in the
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adenomatous polyposis coli (APC) tumour suppressor leading to its inactivation is
generally regarded to be the earliest mutation and initiates the adenoma-carcinoma
sequenceP. Inactivation of the APC gene leads to over activation of the Wnt/B-
catenin signalling pathway which in turn promotes cellular proliferation®?,
Common somatic mutations acquired subsequently include KRAS, SMAD4 and
TP53%0, The development of chromosomal instability (CIN) occurs frequently
along the Adenoma-carcinoma lineage with ~70% occurrence in all sporadic

CRC3**?,

Approximately 10-15% of CRC arises from serrated polyps®2. Serrated polys can
themselves be furthered histologically classified into traditional serrated Adenoma,
sessile serrated adenomas, hyperplastic polyps and mixed polyp32. Somatic mutation
in BRAF is considered a crucial early initiator of serrated polys®*. This BRAF
mutation leads to constitutive activation of the MAPK signaling cascade and thus
aberrant cellular proliferation®®. The epigenetic molecular phenotype ‘CpG island
methylation phenotype’ (CIMP-H) frequently develops in serrated polys®3. CIMP-H
leads to the silencing of a number of tumour suppressor genes including CDKN2A
and the mismatch repair (MMR) gene MLH1. Silencing of MLH1 leads to

deficiency in the mismatch repair machinery causing microsatellite instability (MSI).

The Inflammatory pathway of colorectal cancer involves chronic inflammation in the
colon of individuals with inflammatory bowel disease (IBD), in particular ulcerative
colitis (UC). In a recent population-based cohort study, a hazard ratio of 1-66 (95%
ClI 1-57-1-76) was calculated®. This type of CRC is referred to as colitis-
associated CRC (CA-CRC). Polyp formation is not described in this mode of

carcinogenesis. Instead the pathogenesis proceeds through to indefinite dysplasia,
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low-grade dysplasia, high-grade dysplasia and eventually CA-CRC. CA-CRC
accounts for less than 2% of all cases of CRC3%°. CA-CRC occurs on average earlier
(younger age) in individuals compared with sporadic CRC, 50-60 years versus 65—
75 years®’. CA-CRC is more commonly ‘synchronous’, that is, two primary cancers
appearing in the same tissue within 6 months®’. Mutations in TP53 occur early in
the CA-CRC process evident from its clonal ratio and due to the fact it is identified
in precancerous neoplasms and non-neoplastic mucosa®¥23%8-361 CA-CRC has a

higher mutational burden relative to sporadic CRC3?,

1.5.2 Anatomical subtyping of CRC

Albeit originating from the one organ, that is the colon, CRC can be subdivided into
two or three types based on anatomical site. In the three-way split, the sections are
defined as; proximal colon (caecum, ascending colon, hepatic flexure and transverse
colon), distal colon (splenic flexure, descending colon and sigmoid colon) and
rectum. Embryologically speaking, the proximal colon develops from the midgut
while the distal colon and rectum develop from the hindgut®?. There is demographic
variation in the distribution of CRC along the colon. Proximal cancer is the most
frequent subtype observed in the western population, with proximal, distal, rectal
having a proportional prevalence of 40%, 22% and 29% respectively (according to
US figures)®5. However, this trend is not globally consistent. In Korea, rectal cancer
is the most prevalent, with proximal, distal, rectal having proportional prevalence of
22%, 26% and 52% respectively. There are higher incidences of proximal cancer
seen women versus men, 34% versus 25% respectively, in European cohorts®#°,

Smoking is associated with increased risk of proximal CRC and rectal CRC but not
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an increase in distal CRC*®*. Serrated polyps and colitis-associated CRC appear

more frequently in the proximal colon.

CRC has been classified based on its molecular characteristics. From this, form
consensus molecular subtypes (CMS) have been described?®®, These CMS vary by
anatomical prevalence with, CMS1 and CMS3 more prevalent in the proximal colon,
while CMS2 and CMS4 are more prevalent in distal and rectal CRC*®, With regard
to therapeutics, proximal CRC is linked to a poorer prognosis in the context of
metastasis and these cases more resistant to anti-EGFR therapy®%®3¢’. However,
because that MSI is more inprevalent proximal CRC mean that immune checkpoint

inhibitors are more effective in proximal CRC36,

1.5.3 Inherited risk of CRC

Inherited alterations (genetic or epigenetic in nature) contribute significantly to CRC,
risk with calculations for the heritability of CRC ranging from 12% to 40%3¢%370,
Indeed 25% of colorectal cancer cases show a family history of CRC which points to
the influence of heritabe factors. Furthermore 3-5% of colorectal cancer cases are
due to cancer-prone syndromes known as hereditary colorectal cancer syndromes®'?.
These cancer syndromes are caused by highly penetrant germline variants which
increases dramatically susceptibility to CRC. For example, Lynch syndrome is
caused by mutations in mismatch repair genes MLH1, MSH2, MSH6 and PMS2.
The life-time risk of developing CRC individuals with Lynch syndrome varies up to
46%°72. GWAS have also identified a number of less penetrant genes affecting the

risk of CRC development®”3,
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1505 1.5.4 Environmental risk factors

1506  Environmental factors play a significant role in the risk of developing CRC. Wu et al
1507  estimated that the risk attributable to extrinsic factors with respect to Colon

1508  adenocarcinoma (COAD) was 97.2-97.9%%"*. Developed countries typically have
1509  much higher CRC rates than developing countries. The developed world accounts for
1510  ~1.2 billion of the world’s population but CRC incidence in these regions account
1511  for 55% of overall incidences®’. Strikingly in some case age standardised rate

1512 incidence (ASRi) can vary by up to 10 fold such as in the case of Australia and New
1513  Zealand (ASRIi: 44.8 and 32.2 per 100,000 for men and women respectively) versus
1514  western Africa (ASRi: 4.5 and 3.8 per 100,000 for men and women respectively)>®.
1515  One could speculate that this observation might be due to genetic differences

1516  between these populations for example people of Europe ancestry might have an
1517  increased inherited susceptibility to CRC development. However, two lines of

1518 evidence support a model where the environment is the variable which explains this
1519  difference. Firstly, it has been recorded that within a particular ethnic population,
1520  CRC rates have increase in parallel with economic development and the resulting
1521  environmental changes. For instance, in Shanghai, China the ASRi of CRC has

1522  increase by ~100% has between the periods of 1972-1977 and 1990-199436,

1523  Secondly emigrants who come from low risk countries and live in high risk countries
1524  such as people from India moving to the UK are found to have an increased

1525 incidence of CRC®*"’. CRC incidence rates increase in parallel with economic

1526  development. Countries in South America, Asia and Eastern European are predicted
1527  to undergo major economic development in the 21% century. Such facts pose a great

1528  problem for health systems around the world with respect to CRC. Extrapolating

85



1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

from epidemiological data and taking into account demographic dynamics and
economics, the global burden of CRC burden is expected to increase by 60% to more
than 2.2 million new cases and 1.1 million cancer deaths by 2030°78. Notably
however, there has been a decrease in CRC rate in The United States of America
(USA) with an average decrease of 3.4% per year in the past decade (2001 to
2010)%". It is unknown what is causing this decrease, but it has been proposed that
public health services in the form of awareness campaigns underline this reduction.
It is notable however that there is worrying rise in CRC incidence in individuals

under 50 years of age®°.

A myriad of environmental factors that modulate CRC risk have been noted (Table

7). Different subtypes within the colon are differentially affected by risk factors.
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1541  Table 7 | summary of the associations between risk or protective factors and colorectal cancer risk by
1542 anatomical subsites. 11, convincing risk factor; 1, probable risk factor; | |, convincing protective
1543  factor; |, probable protective factor; BMI, body mass index; Cl, confidence interval; CRC, colorectal
1544  cancer; MET, metabolic equivalent of task; RR, relative risk; WC, waist circumference. A Level of
1545  evidence as indicated by WCRF—AICR summary report for CRC9, except for smoking and aspirin
1546  (based on evidence from observational studies and randomized controlled trials).b Long latency was
1547  required to observe an effect on CRC. These data was derived from Keum and Giovannucci., 201938!

Aetiological level of  Unit increase Colorectal Colon rectal
factors evidence cancer cancer RR  cancer
RR (95% Cl) (95% ClI) RR (95%
Cl)
Obesity ™M 5 kg/m? 1.05 (1.03- 1.07 (1.05- 1.01
in BMI 1.07) 1.09) (1.01-
1.04)
" 10 cmin WC 1.02 (1.01- 1.04 (1.02- 1.02
1.03) 1.06 (1.00-
1.03)
Total physical 1 5 MET-hours per 0.97 (0.94- 0.92 (0.86— 1.02
activity week 0.99) 0.99) (0.95-1.10
Western dietary 11 Highest versus 1.12 (1.01- 1.30 (1.04- 1.09
pattern lowest 1.24) 1.63) (0.91-
1.29)
Prudent dietary || Highest versus 0.89 (0.84- 0.89 (0.80—- 0.96
pattern lowest 0.95) 0.99) (0.83-
1.10)
Processed meat ™" 50 g per day 1.16 (1.08— 1.23(1.11- 1.08
intake 1.26) 1.35) (1.00-
1.18)
Red meat intake 1 100 g per day 1.12 (1.00- 1.22 (1.06- 1.13
1.25) 1.39) (0.96-
1.34)
Total fibre l 10 g per day 0.93 (0.87- 0.91(0.84- 0.93
intake 1.00) 1.00) (0.85-
1.01)
Whole grain l 90 g per day 0.83 (0.79- 0.82 (0.73- 0.82
intake 0.89) 0.92) (0.57-
1.16)
Alcohol (as " 10 g per day 1.07 (1.05- 1.07 (1.05- 1.08
ethanol) 1.09) 1.09) (1.07-
1.10)
Smoking® 1 Current versus 1.15 (1.00- 1.10(0.89- 1.19
never smokers 1.32) 1.36) (0.94-
1.54)
Aspirin intake ™" 75-1200 mg per 0.76 (0.63— 0.76 (0.60— 0.90
day versus control 0.94) 0.96) (0.63-
1.30)
Total calcium® l 300 mg per day 0.92 (0.89- 0.91 (0.87— 0.95
0.95) 0.96) (0.83-
1.08)

1548
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1.5.5 CRC and Dietary Fibre

According to the CODEX Alimentarius Commission (CAC), dietary fibre is defined
by carbohydrate polymers3?2 1) with 10 or more monomeric units 2) which are not
hydrolysed by the endogenous enzymes in the small intestine of humans and which

belong to the following categories:
1. Edible carbohydrate polymers naturally occurring in the food as consumed.

2. Carbohydrate polymers which have been obtained from food raw material by
physical, enzymatic or chemical means and which have been shown to have a
physiological effect of benefit to health as demonstrated by generally accepted

scientific evidence to competent authorities,

3. Synthetic carbohydrate polymers, which have been shown to have a physiological
effect of benefit to health as demonstrated by generally accepted scientific evidence

to competent authorities.

Total fibre intake shows a protective effect regarding colorectal cancer; a recent
meta-analysis found a relative risk of 0-84 between high consumption and low
consumption®®, This finding is in large agreement with other meta-analysis®%4385,
The protective effect of fibre has shown to exhibit a dose relative effect3,
Moreover, the protective value of fibre seems to extend after cancer diagnosis with
the multivariable Hazard ratio per each 5-g increase in intake per day was 0.78 for

CRC-specific mortality3e®,

88



1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

Although the human genetic repertoire dose not encode the ability to break down
fibre, the gut microbiota utilizes fibre as a major source of energy. A key metabolite
of dietary fibre fermentation by anaerobic gut microbes are short-chain fatty acids
(SCFAs). SCFA produced by the microbiome mainly consist of acetate, propionate,
and butyrate. The proportions of these produces depend the composition of the
microbiota and the type of fibre consumed®’. SCFAs have been shown to be

protective against CRC development388,

1.5.6 Colorectal cancer and the microbiome

The relationship between the relationships between the microbiome and colorectal
cancer has been extensively studied. A number of microbes have been described to

be associated with CRC (Table 8)
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Table 8 Top 20 Enriched Bacterial Genera and Species in Colorectal Adenoma and
CRC Patients. Genera are ordered by rank. Rank is based on the number of studies
reporting the association, denoted as hits. These data was derived from Ternes et al,

20203

Genus Species Number of hits

Fusobacterium 31

nucleatum

gonidiaformans

mortiferum

necrophorum

peridonticum

Peptostreptococcus 18

stomatis

anaerobius

endodontalis

Porphyromonas 16

asaccharolytica

uenonis

SOmerae

Bacteroides 14

fragilis

ovatus

caccae

dorei

eggerthii

massiliensis

salyersiae

splanchnicus

vulgatus

xylanisolvens

Parvimonas 13

micra

Prevotella 13

intermedia

nigrescens

Gemella 12

morbillorum

Streptococcus 11

anginosus

dysgalactiae

constellatus

gallolyticus

thermophilus

tigurinus

Clostridium 9

symbiosum

hylemonae

Escherichia 9

coli

Bilophila 8

wadsworthia
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Campylobacter

gracilis

rectus

showae

ureolyticus

Phascolarctobacterium

succinatutens

Selenomonas

sputigena
Ruminococcus

torques
Shigella
Akkermansia

muciniphila

Desulfovibrio

desulfuricans

longreachensis

vietnamensis

Eubacterium

infirmum
limosum
Leptotrichia
hofstadii
buccalis
1589
1590
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Many studies report changes in microbial taxa and pathways associated with
diseases, including CRC, in a manner one might interpreted that they exert a
biological effect in isolation. However, it is important to view these changes in the
context of an ecosystem. A number of models have been developed to describe the
ecological role these microbes have in CRC oncogenesis. The ‘alpha-bug
hypothesis’ developed by Sears and Pardoll postulates that a key microbe within the
microbiota possesses specific virulence factors which enable it to promote
oncogenesis while also remodelling the microbial community towards an oncogenic
phenotype®®. Sears and Pardoll use Enterotoxigenic B. fragilis (ETBF) as a potential
example of such a microbe due to its ability to induce DNA damage and to modify
the immune microenvironment®®. A variant on this model is the driver—passenger
model proposed by Tjalsma et al®®, Like the alpha-bug model, a driver microbe
promotes oncogenesis at the early stage. However the changes to a tumour
microenvironment allows opportunistic microbes to proliferate in the new niche and
ultimately outcompete the driver microbes®®?. These passenger microbes may or may
not promote oncogenesis. An example of a putative passenger microbe is
Fusobacterium nucleatum which has been consistently found enriched on CRC
tumours and has also been shown to drive tumour progression. Indeed, the
microbiome has been shown to vary between stages within the Adenoma-carcinoma
sequence3%3%_ Keystone microbial taxa have been defined as “microbial keystone
taxa are highly connected taxa that individually or in a guild exert a considerable
influence on microbiome structure and functioning irrespective of their abundance
across space and time*®®. The concept of the keystones species was first proposed
by ecologist Robert T. Paine in 1969 and applied to human microbial niches by

Hajishengallis et al**®. An example of a keystone taxon regarding the gut
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1616  microbiome is Bacteroides thetaiotaomicron which has also been shown to be
1617  important to the recovery of the microbiome after antibiotic therapy®’3%. In the
1618  context of CRC, a taxon may establish and maintain a pro-oncogenic enviroment.
1619  Finally, the hit and run model describes a dynamic whereby a specific microbe
1620  induces an insult to the tissue in a manner that promote cancer. The bacterium may
1621  not drive further oncogenesis and its presence may be transient. For example

1622  colibactin producing pk+ E.coli may colonize the colon in an individual causing
1623  DNA damage to colonic cells. However, once CRC develops the microbe may no

1624  longer be present.

1625
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1.6 Oesophageal cancer

Globally, oesophageal cancer is the eleventh most common cancer in terms of
incidence (572,000 new cases) and sixth in cancer mortality (509,000 deaths)
according to 2018 figures'’2. Histologically, there are two main subtypes of
oesophageal cancer; oesophageal adenocarcinoma (OAC) and oesophageal
squamous-cell carcinoma (OSCC). Worldwide, OSCC is by far the most prevalent
subtype with ~90% of cases!’?. However, there is a dramatic variation in
geographical distribution with respect to these two subtypes®*%4%° OSCC shows
highest prevalence in developing geographical regions such as China, central Asia
and Sub-Saharan Africa, while OAC is the predominant type in developed regions
such as Australia, Europe and North America. Indeed, the incidence rate of OAC has
seen a dramatic rise in the Western world in the last 30 years, an increase of 600%.
In contrast OSCC has seen a decrease in incidence in the past 30 years of over

50%399,400.

This thesis focuses on OAC, as with other western countries, this is the majority
histological presentation within the Irish population. The prognosis for OAC is
relatively poor with an overall 5-year survival of <20% for all stages of cancer’:.
The survival rate drops to 5% for the distant disease versus 43% for the localized

disease??.
1.6.1 Natural history of oesophageal adenocarcinoma

The putative natural history of OAC has been well described wherein normal tissue
evolves through the gastroesophageal reflux disease — Barrett’s oesophagus —

oesophageal adenocarcinoma sequence®®4%2, GERD is “a condition that develops
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1649  when the reflux of stomach contents into the oesophagus causes troublesome

1650  symptoms and/or complications” — this causes normal stratified squamous

1651  epithelium of the oesophagus to be exposed to acid, bile, and other stomach contents.
1652  Asareaction to this chronic exposure the normal epithelium is replaced by

1653  metaplastic columnar epithelium which can be described a specialized intestinal
1654  metaplasia®®402493 Barrett’s oesophagus progresses through low to high grade
1655  dysplasia to local OAC and finally metastatic OAC. GERDs is associated with an
1656  odds ratio of 12.0 and 4.64 for Barrett’s oesophagus and OAC respectively>*°.

1657  However, many epidemiological observations have challenged this straight forward
1658  series of events. For one, 95% of individuals diagnosed with OAC have no prior
1659  diagnosis of Barrett’s oesophagus®®. Individual with Barrett’s oesophagus have a
1660  risk of developing OAC that is 10-fold to 55-fold higher than that of the general
1661  population, however the absolute risk is calculated to be 0.5%, or 1/200 person-
1662  years*92404 These observation suggest two scenarios; 1) GERDs/Barrett’s

1663  oesophagus appears in individuals unobserved and/or without symptoms who

1664  subsequently develop OAC 2) OAC can develop by mechanisms independent of the
1665  described inflammatory-metaplasia-dysplasia-oesophageal adenocarcinoma

1666  sequence. However a recent computational model suggests that the most OAC cases

1667  arise from Barrett’s oesophagus %

1668
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1.6.1.1 Pathogenesis of Barrett’s oesophagus

The tissue of Barrett’s oesophagus has a glandular structure comprising of crypts,
similar to that of gastric and intestinal tissue. This metaplastic tissue comprises many
different types of differentiated cells. These cell types included columnar cells,
mucin-secreting gastric foveolar-type cells and goblet cells*®. The precise cellular
origin of Barrett oesophagus is unknown but models have been developed to explain

the pathogenesis of Barrett’s oesophagus.

In one model oesophageal squamous cells undergo transdifferentiation into
metaplastic columnar epithelium*®’. Transdifferentiation is a process where a
differentiated cell changes into another differentiated cell*®, This can occur a
response to injury tissue injury but also can be induced artificially in a laboratory
setting. This transdifferentiation may occur and directly were squamous cells
transdifferentiate directly to columnar epithelium, or indirectly where the conversion

occurs through an intermediate.

Transcommitment is a phenomena where immature progenitor cells are reprogramed
to alter their differentiation. Where these progenitor cells are derived from are also a
matter of research. There is four suspected origins of these progenitors including 1)
progenitor oesophageal cells including basal cells of the squamous epithelium or
cells of oesophageal submucosal glands and their ducts 2) migrating proximal gastric
cardia cells 3) Specialized populations of cells at the Gastro oesophageal junction
(GOJ) including residual embryonic cell and transitional basal cell 4)bone marrow

progenitor cells.*%
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1.6.2 Environmental risk factors for developing OAC

Because OAC is a disease with a multifactorial pathoetiology, environmental factors
have been implicated as risk modifiers (Table 9). In terms of risk factors, GORDS,
obesity and tobacco smoking have bern calculated as explaining 80% of OAC
cases*®®. GORDs is the strongest factor and is believed to be necessary for the

occurrence of Barrett’s oesophagus.

Table 9 | Risk factors associated with the development of Oesophageal

adenocarcinoma®%410411

Risk factor Association with
OAC - Odds ratio (95% CI)
GORD 4.64 (3.28-6.57)
Obesity 2.69 (1.62-4.46)
Tobacco smoking 1.96(1.64-2.34
Helicobacter pylori infection 0.5 (0.4-0.7)
Male Sex 2.2 (1.8-2.5)
High red meat intake 1.91 (1.07-3.38)
NSAID use 0.68(0.56-0.83)
Fruit intake 0.86 (0.80-0.93)
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1.6.2.1 Obesity

Obesity is one of the strongest risk factors for developing BO and OAC with a >2
increase in risk in obese individuals versus those of healthy weight*!*. This
relationship between BMI and OAC/BE is a linear exposure—response pattern. In
particular the distribution of body fat seems to be a particularly important metric
regarding risk for BO and OAC. When truncal obesity (excessive abdominal or
visceral fat) is controlled for in the form of waist circumference measurements, the
relationship between obesity and BO/OAC almost disappears*'?. Obesity during
adolescence has also been noted as a particular risk**44, This is a worrying trend as

obesity is rising in the teenage population and may give rise to cancer later in life.

Obesity increases the risk of cancer in a wide range of cancers**°. Obesity seems to
exert systemic inflammatory and metabolic alterations*'®. Increased serum levels of
insulin and leptin are associated with BO development**’. In one prospective study,
increased levels of leptin and insulin in individuals with BO was positively
associated with the development of OAC*'8, In the same study the levels of
adipokine adiponectin was inversely associated with OAC devolvement in a non-

linear manner**°,

Abdominal fat may act to increase intra-abdominal pressure thereby leading to a
relaxation of the lower oesophageal sphincter. This relaxation of the lower

oesophageal sphincter may lead to an increased susceptibility in GORDs*20421,
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1.6.3 Formation of the OAC genome

OAC has a very high mutational load relative to other cancers?®*#?2, Non-neoplastic
BO tissue samples adjacent to OAC samples have a high mutational load with a
somatic mutation frequency of 1.3-5.4 mutations per Mb cancers*?3, This level
exceeds that found in some cancers such as prostate and breast. The mutational
signatures present in OAC has been delineated and OAC tumours may be classified
via these signatures*?*. To this end, 3 subgroups of OAC have been defined which
include a C>A/T dominant group (comprising Signature 1 and a 18-like mutational
signature), DNA Damage Repair (DDR) impaired (BRCA group), and a mutagenic
(predominantly Signature 17A or signature S17B) group. The mutagenic group was
named due to its statistically highest mutational load. The DDR impaired group
exhibit a 4.3-fold enrichment in dysregulation of in homologous recombination (HR)

pathways relative to the other groups.

This classification may also inform therapeutic strategies. Tumour mutational
burden (TMB) is predictive of clinical response to Immune checkpoint inhibitor#2®.
Tumours with a higher TMB have a better response which is putatively due to higher
number of tumour neoantigens*?®. Indeed, the mutagenic group had the highest
presentation of neoantigens. Treatment of a MFD cell line, with the genetic
characteristics of the mutagenic group, with pharmacological inhibitors to the G2/M-
phase checkpoint regulators Weel and Chk1/2, yielded a 25-fold and 10-fold
increased sensitivity relativity to the CAMO2 cells which have C>A/T dominant
group characteristics. OES127 cells lines, representing the DDR impaired group,

experienced cell death when exposed to a combination of Olaparib (Topoisomerase
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I inhibitor) and Topotecan (a DNA damaging agent) while the other cell lines did

not.

Note that recent analysis has allowed for the separation of Mutational signature 17
into two signatures, that is SBS Signatures 17 A and B. SBS Signatures 17 A is
substitutions defined by T>C while SBS Signatures 17 B is defined by T>G

substitutions®*.

SBS Signatures 17 A and B are present in a high proportion in both OAC and gastric
adenocarcinoma tumours*?’. This may indicate that a common physiological feature

such as gastric acid may be a common cause/modifier leading to the signature®>.

The aetiology of SBS Signatures 17 A and B is not known. However, one hypothesis
with supporting data involved the stimulation of the production of ROS in
Oesophageal cells exposed to acidic bile reflux. ROS has been demonstrated to be
generated by both mitochondria and NADPH oxidases*?®. NOX5-S, a truncated
variant of NOX5, has been found to produce ROS and to promote DNA damage in a
bile acid dependent manner*?®4%°, PPIs were found to reduce mRNA levels of
NOX5-S in BE mucosa biopsies*®!. Furthermore, NOX1 and NOX2 can also

generate ROS in acidic bile salt treated cells*?2,

In particular, one explanation for SBS Signatures 17, specifically SBS Signatures 17
B, is the oxidation the nucleotide pool thereby forming 8-hydroxy-2'-
deoxyguanosine 5'-triphosphate (8-OH-dGTP) #3243, The presence of 8-OH-dGTP
in the nucleotide pool has been shown induce A:T to C:G (T>G) base

substitutions***. These base substitutions are indicative of SBS Signatures 17 B in
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particular. However mutational signature 18, which has been linked to ROS, does

not seem to have a direct link with SBS Signatures 17 B.

Another mechanism by which reflux of bile acid and/or gastric acid promotes DNA
damage is thought to be the production of reactive nitrogen species (RNS). Inducible
nitric oxide synthase was found to be upregulated in BO and OAC*31:435436 Proton
pump inhibitors were found to reduce inducible nitric oxide synthase levels in BO
tissue but not normal oesophageal tissue*®!. Dinitrogen trioxide can induce adenine
nitrosative deamination to hypoxanthine which in turn can lead to T>C substitution

during systhesis*! . This substitution is central to SBS Signatures 17 A.

An early mutation that occurs in OAC oncogenesis is a mutation in the TP53 gene as
is evident from the fact it is found in healthy cell populations as well as non-
neoplastic BO. However many of the mutations found in non-neoplastic BO are not

shared with adjacent tissue.

The transformation BO into OAC can occur via 3 pathways*'*#3’, In the traditional

pathway a stepwise loss of tumour suppressor genes including CDKN2A and

SMAD4 occurs. This is followed by oncogene amplification and MMR deficiency.
What is regarded to be a much more frequent mode of evolution is via whole
genome duplication®®. A third mode of genome evolution is through catastrophic

genome events including chromothripsis, kataegis and breakage—fusion—bridge*°.
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1.6.4 Oesophageal microbiota

Efforts to define the oesophageal microbiota have been made using NGS (Table 10).

The oesophageal microbiome is similar to that of other niches of the upper digestive

tract such as the oral cavity and the stomach, with the genus Streptococcus being the

most dominant taxa, and with other genera such as Haemophilus, Neisseria and

Prevotella also being dominant taxa.

Table 10 | Studies using NGS technologies to delineate the oesophageal
microbiome and its relationship to the cancer development.

Author Laboratory cohort Sample Type Methods Findings
Elliott et al., 2017 Rebecca C Normal=20 Cytosponge, Brush, V1-V2 Decreased microbial
(The Lancet Fitzgerald biopsy diversity in OAC
Gastroenterology &  (University of ~ BO=24 2 x 250 bp tissue compared with
Hepatology)*®? Cambridge) controls. Enrichment

HGD=23 of acid-tolerant
bacteria such as
OAC=19 Lactobacillus
fermentum in OAC
samples
Nobel et al., 2018 Julian A. GERD=5 Two brushings V4 Subjects were
Abrams were taken from the divided into quartiles
(Clinical and (University BO=31 following sites: MiSeq based on fibre intake.
Translational Irving) sguamous 2 x250 bp
GaStroenterOIOgy) Other=11 esophagus (3 cm . .
proximal to the Differential o
squamo-columnar abundance: Low fibre intake was
junction), gastric Ii_nea_r _ gssociate_d with
cardia (within 1 cm discriminant increase in the taxa
of the top of the analysis Aggregatibacter,
gastric folds), and effect size cardiobacterium,
mid-BE segment in Lautropia,
patients with BE. Paludibacter,
Brush tips were cut Prevotella, Neisseria
using sterile wire and unclassified
cutters and samples Tissierellaceae
High fibre intake was
associated with an
increased relative
abundance of an
unclassified genus in
family
Pasteurellaceae
Deshpande et Nadeem Omar ~ Normal=59 Bursh 16S rRNA The esophageal
al.,2018 Kaakoush microbiome was
(University of ~ GERD=29 (Biopsies were V4 found to cluster into
(microbiome)**° New South taken but not functionally distinct
Wales) GM=7 analysed) Shotgun community types
sequencing (esotypes) defined by
BO=5 Streptococcus and
(Both lumina Prevotella
EAC=1 MiSeq
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1800

EoE=1 2 %250 bp
chemistry)
Okereke et al., BO=17 Biopsies of lon Torrent Biopsies samples
2019 (Scientific esophageal mucosa  long reads differed in
Reports)*! were taken from the composition the that
(1) proximal V1-v8 of swab samples
esophagus, (2) mid-
esophagus, (3)
distal esophagus,
and (4) Barrett’s
esophagus. Swabs
were also taken
from the uvula and
the endoscope.
Snider et al., 2019 Julian A. 16 controls; 14 See Nobel et al V4 Patients with
(Cancer Abrams(Unive  Barrett's NDBE/LGD had
Epidemiology, rsity Irving) oesophagus MiSeq significantly
Biomarkers & without 2x250 bp increased Veillonella.
Prevention)*2 dysplasia
(NDBO); 6 low- Paateints with HGD /
rade dysplasia . . esophageal had
?LGD);yS Fr)ligh— leferentlall significantly
grade dysplasia abundance: increased
(HGD); and 4 linear Akkermansia
oesophageal dlscrlmlnant muciniphila,
adenocarcinoma analysis Enterobacteriaceae,
effect size Moraxella,

(OAC)

Oscillospira and
Proteus

OAC had reduced
alpha diversity as
calculated by
Simpson Index
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The findings summarised in the above table shows numerous studies have tried to
find a relationship between the microbiota and oesophageal diseases. However, no
consistent microbial signatures have been identified with relationship to the
microbiome and oesophageal cancer development. These studies difference in there
methodological implementation including primer pairs and sampling procedure.
Pinch biopsies as a method of sample collection maybe thought as superior to swabs
as they may more effective at collecting mucosal adherent bacteria. From a
statistical/bioinformatic perspective, differential abundance analysis is a key aspect
of all these microbiome studies. Many of these studies use Linear Discriminant
Analysis Effect Size (LEfSe) which has been described by more of a discriminant
analysis method than a differential abundance analysis method. Some studies
described in the above table have respectable sample size per clinical group study
including Elliott et al. However many of these studies included clinical groups
composed of cohorts less than 5. Finally few of these studies examine inter-

individuals microbiome variation within the oesophagus.

1.7 Aims of this thesis

The research in this thesis worked under the hypothesis that the human microbiome
is associated with and plays a role in cancer biology. This thesis contains four

projects which, to varying extents, contribute to key areas of cancer research.

In chapter 2, we investigate the microbiome of mucosal biopsies derived from
patients along the inflammation-metaplasia-dysplasia-oesophageal adenocarcinoma

sequence in an Irish cohort. Furthermore, we collected and analysed multiple biopsy
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per individuals to examine the intra-individual microbiome variation. Identification
of differences in microbiome features between clinical categories would lead to the
hypothesis that the oesophageal and/or gastric microbiome modulates the
development of oesophageal adenocarcinoma. Moreover, these data would provide

information regarding whether these changes expand to the either upper Gl tract.

CRC screening programs have been associated with a decrease in CRC incidence
and deaths**, The microbiome is being explored for its potential to inform the
development of new diagnostic tools*444, Previous work has indicated that
colorectal cancer is associated with changes in the microbiome throughout the colon
and is not restricted to the cancer®®. In Chapter 3we investigate the spatial
organisation of the mucosal colon microbiome in the context of CRC. We sought to
identify intra-individual difference in colonic mucosal biopsies in individuals with
CRC. To this end, Chapter 2 and Chapter 3 share a core similarity whereby in
Chapter 2 inter-individual variation in the oesophageal/gastric microbiome in the
context of OAC is being delineated while in Chapter 3 inter-individual variation in
the colonic microbiome in the context of CRC is being delineated. This research
would add to the discussion on the diagnostic power of non-disease colonic tissue

versus diseased tissue.

Even in the context of a robust understanding of cancer risk factors and wide spread
screening programs, cancer will occur in society. Immune checkpoint inhibitors (ICI)
represent a significant addition to cancer therapeutics. However, a large proportion
of individuals do not response to ICI. An increasingly appreciated modulator of
response to ICI is the gut microbiota. In chapter 4 we examined the association

between the microbiome and clinical responses (response and side effects) to ICl in
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the context of melanoma. This study was conducted in a geographically different
location i.e. Ireland relative to previous studies**. These data would allow the
examination between consistencies/inconsistencies in microbiome features

associated with clinical outcomes to ICI in geographically distinct populations.

Inflammation is known to be a major contributor to oncogenesis**’. Many
inflammatory diseases are known to be risk factors to the development of cancer e.g.
ulcerative colitis (UC) is a risk factor for CRC3®. A major area of microbiome
research involves investigating the role of the microbiome in modulating
inflammation**®. One would argue the need to explore the potential of an
inflammation-microbiome-cancer axis. Hidradenitis Suppurativa (HS) is a chronic
inflammatory skin disease which affects the intertriginous skin®4. HS is known to
increase risk to the development of a range of caners**. In Chapter 5 we investigated
alterations in the skin and faecal microbiome in individuals with HS. Microbiome
features which drive inflammation have the potential to drive oncogenesis. It is thus
pertinent to identify microbiome features associated with inflammatory diseases such

as HS.
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2.1 Abstract

The incidence of oesophageal adenocarcinoma (OAC) has risen dramatically in
developed countries in the past 40 years, for not completely established reasons.
Major modulators of risk for OAC have been identified including obesity and gastro-
oesophageal reflux disease. The microbiota has been increasingly recognised as
playing a role in cancer biology including gastric and colon cancer, and a role has
been proposed in oesophageal cancer. In this study we therefore defined the
microbiome in multiple (per patient) gastric and oesophageal biopsies derived from a
cohort of individuals with clinical presentations along the OAC transformation
sequence. Furthermore, we delineated microbiome differences spatially along the
upper digestive tract with respect to these clinical classifications. We identified an
ASV assigned to Fusobacterium nucleatum that was enriched in oesophageal
samples from individuals with or at increased risk of OAC. Further, we identified an
ASV assigned to Fusobacterium necrophorum that was enriched in gastro-
oesophageal junction biopsies derived from individuals who had dysplastic and
neoplastic tissue relative to those that did not. These findings provide insight into
differences in the oesophago-gastric mucosal microbiome features along the
oesophageal adenocarcinoma sequence and may inform diagnostic strategies while

also providing information on the pathoaetiology of OAC.
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2.2 Introduction

In 2020, oesophageal cancer was the seventh leading cause of cancer (604,000 new
cases) and the 6 leading cause of cancer mortality (544,000 deaths) worldwide!. As
for other cancers, prognosis is dependent on stage of diagnosis®. The overall 5-year
survival rate for oesophageal cancer is less than 20% in western populations®. Two
major histological subtypes exist, that is, oesophageal squamous cell carcinoma
(OSCC) and oesophageal adenocarcinoma (OAC). There is a distinct geographical
distribution in these subtypes, with OAC being the predominant presentation in
western countries*.With regard to western countries, OAC has registered the greatest

rise in incidences of all cancers and this trend has continued to increase®.

OAC is thought to evolve through a defined sequence of histological changes, that is,
normal squamous cells -> metaplastic columnar epithelium (Barrett’s oesophagus) ->
increasing grades of dysplasia -> adenocarcinoma of increasing stages*. We refer to
this series of events as the OAC sequence. An intestinal metaplastic tissue known as
Barrett’s oesophagus (BO) develops in the oesophagus, usually near the
gastroesophageal junction, as a result of injury due to reflux of gastric and bile acids
into the oesophagus. Such reflux is indicative of Gastro-oesophageal Reflux Disease
(GORD)®. BO is thought to be a precursor to at least a subset of OAC cases, with
~12% of OAC cases having a prior diagnosis of BO’. However, recent
computational models suggest that nearly all OAC cases evolve through BE?,
Acquisition of somatic mutations such as those in p53 enable the progression of BO

to dysplasia and OAC °.

A number of environmental risk factors have been identified in the development of

OAC with obesity, GORDS and smoking accounting for 70% of cases in western
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populations'®. Notably, Helicobacter pylori which is known to play a causative role
in gastric cancer, is thought to play a protective role against the development of BO

and OAC!12,

An accumulating body of evidence supports the hypothesis that the microbiota is a
modulator of risk for various cancerst®!*. The colon and its resident microbiota have
been extensively studied to identify how this interaction pertains to CRC
development and progression'*!°. Many microbiota features have been linked to
CRC oncogenesis in both a correlative and mechanistic manner. Colibactin
producing pks+ Escherichia coli can induce mutations with a particular nucleotide
mutational signature, while Fusobacterium nucleatum has been demonstrated to

modulate the tumour microenvironment617,

We hypothesise that the microbiome plays a role in the progression of the OAC
sequence. Microbes capable of immunomodulation, promoting inflammation or
causing DNA damage present in the oesophagus may drive OAC oncogenesis. Even
if the microbiome does not play a direct role in OAC oncogenesis, one would expect
histological and environmental changes in the oesophagus to be associated with
changes in the oesophageal mucosal microbiome. Considering this, we expected
differences in microbiome features between different clinical groups along the OAC

sequence.

In this study we sought to identify association between features of the microbiota
and various stages along the OAC sequence. We also investigated differences in the
microbiome between sites within the upper digestive tract with respect to the various

stages within the oesophageal adenocarcinoma sequence.
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2.3 Methods

2.3.1 Sample collection and clinical classification

The cohort was derived from patients at Mercy University Hospital, Cork
undergoing an upper gastrointestinal endoscopy and biopsy examination for the
treatment of oesophagitis, Barrett’s oesophagus and oesophageal cancer Healthy
controls were recruited from patients undergoing upper GI endoscopy for assessment
of benign gastroduodenal disorders. Patients who have taken a course of antibiotics
in the preceding month were excluded from recruitment. The recruitment period was
between the period of April 2016 and January 2020. This study was conducted in
accordance with the ethical principles set forth in the current version of the
Declaration of Helsinki, the International Conference on Harmonization E6 Good
Clinical Practice (ICH-GCP). Ethical approval was granted by The Clinical Research
Ethics Committee of the Cork Teaching Hospitals (Cork, Ireland). For each study
participant five biopsies were obtained using disposable endoscopic biopsy forceps.
One biopsy was taken from the epicentre of the cancer, Barrett’s segment or focus of
oesophagitis, one on 2-5cm either side of the pathology and one 10-20 cm away
from either side of the pathology. Samples were placed in cryotubes and stored in a -
80°C freezer. The oesophageal histological presentation of each individual was
classified by a consultant pathologist. Patients were classified based on the histology
they presented with which represented the latest stage of the OAC sequence e.g.
those with metaplastic tissue and dysplastic tissue were classified into the dysplasia
clinical group. Adenocarcinomas were located at the distal oesophagus and gastro-

oesophageal junction and squamous cell carcinomas were excluded. Demographic
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variables of general and dental health, physical activity, smoking and alcohol

consumption and proton pump inhibitor usage were collected by questionnaire.

2.3.2 Microbial DNA extraction

DNA was extracted from biopsy samples using the AllPrep DNA/RNA Mini Kit
(Qiagen, Hilden, Germany) with modifications to include a bead beating step that

ensured optimal lysis of microbial cell®®,
2.3.3 16S rRNA gene PCR amplification and sequencing

Amplification was performed using primers for the V3-V4 region (Table 1) of the
bacterial 16S rRNA gene with added adapter overhang sequences in accordance with

the lllumina 16S Metagenomic Sequencing Protocol (Illumina, California, USA) *°.

Region Name F/R Sequence

V3-v4*® | S-D- F 5'TCG TCG GCA GCG TCA GAT GTG TAT AAG
Bact- AGA CAG CCT ACG GGN GGC WGC AG
0341-b-
S-17
S-D- R 5' GTC TCG TGG GCT CGG AGA TGT GTA TAA
Bact- GAG ACA G GAC TAC HVG GGT ATC TAATCC
0785-a-
A-21

Table 1. Primers used for 16S rRNA gene amplification.

The initial PCR amplification was performed using the MTP Tag DNA Polymerase
(Merck KGaA, Darmstadt, Germany) with the PCR thermocycler protocol as
follows: Initiation step of 94 °C for 1 min followed by 35 cycles of 94 °C for 60 s,
55 °C for 45 s, and 72 °C for 30 s, and a final extension step of 72 °C for 5 min. An

index PCR was performed to attach dual indices (barcodes) and Illumina sequencing
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adapters as per lllumina 16S Metagenomic Sequencing Protocol (Illumina,
California, USA). DNA concentration was determined using a Qubit fluorometer
(Invitrogen) using the ‘High Sensitivity’ assay and samples were pooled at a
standardised concentration. The pooled library was sequenced on the Illumina MiSeq
platform (Illumina, California, USA) utilising 2 x 300 bp chemistry. Samples were

sequenced over 4 batches.

2.3.4 Bioinformatic and biostatistical analysis

Raw nucleotide sequence data was imported into R (v3.6.0). Error model generation,
denoising and the generation of an ASV table was performed using the R package
DADA2 (v1.12.1)%. ASV taxonomy assignment, from phylum to genus level, was
performed using mothur?2. Species level taxonomy assignment was performed using
SPINGO 2%, Alpha diversity was calculated using the alpha_diversity.py command
within QIIME (v 1.9.1)%. Unifrac distance and Bray-Curtis dissimilarity was
calculates using the beta_diversity.py within QIIME (v 1.9.1)%. The Jaccard index
was calculated using the vegdist command within R package (v 2.5.7). Robust
Aitchison was calculated using the gemelli auto-rpca command within QIIME2
(version 2020.11.1)%.. Differential abundance analysis between anatomical sites was
performed using the paired wilcoxon test. Differential abundance analysis between
clinical classifications was performed using DESeq2. Functional genes and pathways

were inferred using the picrust2_pipeline.py command within PICRUSt2%.
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2.3.5 Contamination control

As gastric and oesophageal mucosal biopsies may be considered low biomass,
protocols were tailored to address the potential of contamination. Firstly, we used
reagents manufactured to be microbial DNA free namely MTP Taq DNA
Polymerase and microbial DNA free water (QAIGEN). We performed mock/blank
extractions to detect contamination associated with reagents. Further, we also carried
out PCR controls i.e. the amplification of microbial DNA free water, to detect
contamination specific to the polymerase. With respect to mock extractions, we
detected taxa indicative contamination including Sphingomonas and Halobacillus.
However, we did not obtain usable reads with regard to the PCR control. We
performed extraction positive controls using the Zymo mock community (Zymo,
D6300) at various numbers of cells per extraction. Furthermore we positive
amplification control using the ZymoBIOMICS mock community DNA standard
(Zymo, D6305) at various DNA amounts. Both these positive controls allowed for
the identification of the limit whereby contamination would become detectable in the
sequencing data. With respect to extraction positive controls we detected
contamination being introduced to the data at 2.8x10° cells per extraction. With
respect to positive amplification control we detected contamination being introduced
to the data at concentration of 0.0002ng per reaction. Taking these figures, we were
reassured that we had sufficient bacterial mass within our gastric and oesophageal

mucosal biopsies to employ our protocols
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2.4 Results

2.4.1 Patient demographics and oesophageal samples

In this study, we aimed to define the microbiome composition of mucosal biopsies
from 5 positions along the upper digestive tract derived from an Irish population
cohort (Table 2). These individuals represented defined stages along the OAC
sequence including healthy controls, gastro-oesophageal reflux disease (GORD),
Barrett's Oesophagus (BO), dysplasia, oesophageal adenocarcinoma (OAC), and
metastatic oesophageal adenocarcinoma (metastatic OAC). Individuals were age and
sex matched; however, there was a male sex bias. Male sex is a strong risk factor for

OAC development®.

Controls | GORD BO Dysplasia | OAC Metastatic | p
OAC value
Patients (N) 12 30 38 19 36 9
Age 57.9 (31- | 57.4(29- | 56.8 (35- K 64.4(37- | 61.1 62.2 (53- 0.226
(mean,range) | 78) 83) 78) 87) (33- 73)
80)
Sex (f/m) 8/4 13/17 10/28 2/17 13/23 | 0/9 0.004
BMI 27.3 27.5 30.1 27.6(21.0 | 28.1 26.0 (22.0- | 0.628
(19.5- (20.2- (15.9- -37.0) (13.3- | 34.6)
33.6) 40.5) 58.8) 39.0)
Waist 90.3(67- | 96.8(75- | 102.8 98.5(73- | 100.5 | 93.8 (86- 0.306
Circumference | 118) 126) (67-146) | 127) (53- 111)
171)

Table 2. Descriptive statistics of the study cohort. Kruskal-Wallis test or y2 statistic

was used to determine significance of difference between clinical groups.

The 5 biopsies were labelled 1 to 5 and represent the following anatomical sites:
Biopsy location 3 represent the epicentre of diseased tissue. For example, in the
context of Barrett’s oesophagus, biopsy location 3 represents metaplastic tissue. For
oesophageal adenocarcinoma, biopsy location 3 represents neoplastic tissue. Due the

presentation of diseases along the OAC sequences, biopsy location 3 samples were
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usually derived from the gastro-oesophageal junction. Biopsy location 1 and 2 were
taken approximately 2-5cm and 10-20 cm proximally from the disease epicentre
(Biopsy location 3) respectively. Biopsy locations 4 and 5 were taken approximately
2-5cm and 10-20 cm distally from the disease epicentre (Biopsy location 3)

respectively. Biopsy locations 4 and 5 were primally gastric in character.

After the quality checks and filtering associated with the bioinformatic pipeline

(DADAZ2) we analysed 649 oesophageal and gastric biopsies from 144 individuals

(Table 3).

Clinical classification

Controls GORD BE Dysplasia OAC Metastatic Total
Biopsy OAC
location
1 12 30 36 19 33 8 138
2 12 28 36 17 36 9 138
3 11 30 34 19 35 9 138
4 8 26 23 18 33 8 116
5 9 28 23 18 32 9 119
Total 52 142 152 91 169 43 649

Table 3. Biopsy sample distribution with respect to biopsy location and clinical

classification.

In terms of sequencing depth, the mean read number was 12,142 reads per sample

with a minimum read depth of 2,077 reads and a maximum of 55,043 reads.
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Figure 1. Diagram displaying location from where the biopsy sites and the corresponding
number system.
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2.4.2 Microbiome alterations with respect to clinical classifications

At the genus level, the microbiome composition of biopsy samples was
predominantly composed of Streptococcus, Prevotella and Haemophilus, in line with
previous reports describing the gastric and oesophageal microbiome (Supplementary
figure 1) 2-2°, This indicated that the measures implemented to deal with potential

contamination of low biomass samples were effective.
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Supplementary Figure 1. Relative abundance of genera in oesophago-gastric biopsy
microbiome. Bar plots of relative abundance of genera in oesophago-gastric biopsies. Samples are
organised by clinical classification. Genera with a relative abundance of less 1% across all samples
are grouped into ‘others’ with sequences not classified at the genus level.
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We did not detect any major difference in beta-diversity (as measured by Bray—
Curtis dissimilarity) between clinical classification groups in biopsies derived from
the oesophagus, that is, biopsy location 1 and 2 (FigurelA and B). However, we did
identify a significant shift in beta-diversity as measured by Bray—Curtis dissimilarity
with respect to clinical classification in biopsies derived from the gastroesophageal
junction (biopsy location 3) and the stomach (biopsy location 4 and 5) (Figure 1C, D
and E). With respect to biopsy location 3, the anatomical focus of the disease in the
respective clinical groups, the microbiome of individuals with OAC and metastatic
OAC were seen to cluster while those of healthy controls, individuals with GORD
and BO formed a separate cluster and individuals with dysplasia were somewhat
intermediate to these two clusters (Figure 1C). Using 4 other microbiome beta-
diversity metrics we did not identify any statistically significant differences in

clinical groups (Supplementary table 1).

With respect to each biopsy location (1-5), we did not identify any statistically
significant difference in alpha diversity with respect to clinical classification

(Kruskal Wallis test; data not shown).
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location 2. (C) Biopsy location 3 (D) Biopsy location 4 (E) Biopsy location 5. Statistical testing

Analysis (PCoA) plot representing Bray—Curtis dissimilarity. (A) Biopsy location 1, (B) Biopsy
performed using Permutational Multivariate Analysis of Variance.

Figure 2. Beta-diversity analysis with respect to clinical classifications. Principal Coordinates
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Difference in Beta-diversity metrics between clinical classification per biopsy location

weighted UniFrac unweighted UniFrac Jaccard Index Robust Aitchison
Biopsy
location P-value R-squared P-value R-squared P-value R-squared P-value R-squared
1 0.255 0.045 0.328 0.038 0.37 0.037 0.765 0.025
2 0.106 0.056 0.678 0.034 0.183 0.038 0.827 0.022
3 0.2 0.046 0.211 0.04 0.246 0.037 0.611 0.031
4 0.038 0.072 0.333 0.046 0.164 0.045 0.377 0.046
5 0.165 0.054 0.527 0.041 0.33 0.043 0.252 0.053

Supplementary table 1. Analysis of significance between biopsy microbiome beta-diversity
metrics with respect to clinical classifications at each of the 5-biopsy location. P-value and R-
squared calculated using Permutational multivariate analysis of variance (PERMANOVA).

2.4.3 Differentially abundant ASVs, species and metabolic pathways

with respect to clinical classifications

Grouping microbiome data across all biopsy locations with a subject, we performed
differential abundance analysis to identifying species and ASVs that are

differentially abundant between clinical classifications.

The species Prevotella denticola was enriched in the diseased groups (GORD, BO,
dysplasia, OAC and metastatic OAC) relative to healthy controls in samples derived
from biopsy location 2 and biopsy location 3 (Figure 2 B, C). The species
Bifidobacterium dentium was enriched in all the disease groups except metastatic
relative to healthy controls in samples derived from biopsy location 1,2 and 4

(Figure 2 A, B, D).

In samples derived from the oesophagus, that is, biopsy location 1 and 2, we

observed that an ASV, Seq 130, assigned to Fusobacterium nucleatum was enriched
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in biopsies derived from the disease clinical groups relative to healthy controls
(Supplementary Figure 2 A, B). However, when all ASVs were binned to the
species level, F. nucleatum was no longer detected as enriched in the disease groups.

(Figure 2A, B)

In samples derived from the gastroesophageal junction, that is, biopsy location 3, we
identified an ASV, Seq 52, assigned to Fusobacterium necrophorum which was
generally enriched in samples derived from clinical groups which are later along the
OAC sequence including dysplasia, OAC and metastatic OAC compared to clinical
groups which are earlier along the sequence including healthy controls, GORD and
BO. (Supplementary figure 2C). This observation was retained when ASVs were
binned to the species level (Figure 2C). In samples derived from the stomach (biopsy
location 4 and 5) this ASV assigned to F. necrophorum was observed to be enriched
in BO, dysplasia, OAC and metastatic OAC relative to healthy controls and GORD
(Supplementary figure 2D, E). Again, this observation was reflected at the species

level (Figure 2D, E).

Using the algorithm DESeq2, a number of microbiome-encoded metabolic pathways
were found to be differentially abundant between the clinical groups with respect to
each of the biopsy locations. Particular microbiome metabolic pathways were
depleted in the metastatic biopsy microbiome with respect to biopsy locations
(Supplementary figure 3). In particular the microbial coding capacity for a metabolic
pathway involved in Vitamin B12 production (also known as adenosylcobalamin)
synthesis was depleted in the microbiome of the metastatic OAC group relative to all

other clinical groups, and with respect to all biopsy locations.
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Figure 3. Differentially abundant species in the microbiome of subjects in the studied clinical
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Biopsy location 1, (B) Biopsy location 2. (C) Biopsy location 3 (D) Biopsy location 4 (E) Biopsy
Healthy controls, GORD= gastro-oesophageal reflux disease, BO

Supplementary figure 2. Differentially abundant ASVs between clinical classifications (A)
location 5. Statistical testing was performed using DESeq2 *<
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=0.05

metastatic

gastro-oesophageal reflux disease, BO

Oesophageal adenocarcinoma, MO

Healthy controls, GORD

=0.001. HC=

0.01 ***<
Barrett’s oesophagus, Dys=Dysplasia , OAC

Oesophageal adenocarcinoma.

Supplementary figure 3. Differentially abundant microbiome metabolic pathways between

clinical classifications (A) Biopsy location 1, (B) Biopsy location 2. (C) Biopsy location 3 (D)
Biopsy location 4 (E) Biopsy location 5. Statistical testing was performed using DESeq?2 *<

*kg

M <IF LW~ 0
AN AN AN AN AN
LO LO LO LO LO) LO
OMMMOMM™M

168



3529

3530

3531

3532

3533

3534

3535

3536

3537

3538

3539

3540

3541

3542

3543

3544

3545

3546

3547

2.4.4 Microbiome alterations with respect to biopsy location

Separating samples by each of the defined clinical classifications, we sought to
identify differences in global ecological measures including alpha-diversity and beta-
diversity between biopsy locations. Samples derived from individuals with BO
showed the most significant difference in alpha-diversity with respect to biopsy site
(Figure 3C). In particular, metaplastic tissue derived from the GOJ (biopsy location
3) had a higher alpha diversity than oesophageal (biopsy location 1 and 2) and
gastric biopsies (biopsy location 4 and 5). Differences were observed in various
alpha diversity indices between samples sites within the other clinical classifications,
but a particular trend was not apparent (Figure 3). With respect to samples derived
from individuals with dysplasia, gastric sample microbiomes (biopsy location 4 and
5) had higher alpha-diversity, as measured by Shannon diversity and Simpson's

diversity, relative to oesophageal samples (biopsy location 1 and 3) (Figure 3D).

Aggregating samples across all stages of the of the oesophageal adenocarcinoma
sequence, alpha diversity was statistically significantly higher in GOJ and gastric
biopsies relative to oesophageal biopsies as measured by Simpson and Shannon

diversity (paired Wilcoxon) (Supplementary figure 4)
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biopsy location. Statistical testing performed using paired Wilcoxon. (A) Data derived from Healthy
controls. (B) Data derived from individuals with GORD. (C) Data derived from individuals with BO.
(D) Data derived from individuals with Dysplasia. (E) Data derived from individuals with OAC. (F)

classification. Heat-plot representing differences in alpha diversity indices between each pair of
Data derived from individuals with metastatic OAC.

Figure 4. Differences in Alpha-diversity between biopsy location with respect to clinical
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Differences in alpha-diversity between biopsy locations
All clinical classifications

simpson

PD_whole_tree

percentage difference

s

observed_species

chao1

shannon

1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5

*<=0.05 **<=0.01 ***<=0.001

Supplementary figure 4. Differences in Alpha-diversity with respect to biopsy location. Heat-plot
representing differences in various alpha-diversity measurements. Data was derived from biopsies
from all clinical classifications. Statistical testing performed using paired Wilcoxon.
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A significant difference in beta-diversity was observed between biopsy location in
the context of each group on the oesophageal adenocarcinoma sequence (Figure 4,
Supplementary data 2). The microbiomes of biopsies which were anatomically closer

together tended to cluster closer together.

Beta-diversity metrics with respect to biopsy location

Bray—Curtis unweighted UniFrac Jaccard Index Robust Aitchison
Clinical
classification P-value R-squared P-value R-squared P-value R-squared P-value R-squared
Healthy 0.002 0.049 0.243 0.054 0.327 0.047 0.105 0.035
Controls
GORD 0.002 0.015 0.226 0.014 0.049 0.016 0.001 0.021
BO 0.001 0.025 0.008 0.02 0.069 0.014 0.003 0.015
Dysplasia 0.001 0.051 0.077 0.029 0.181 0.026 0.001 0.052
OAC 0.001 0.02 0.062 0.015 0.062 0.011 0.073 0.009
Metastatic 0.116 0.049 0.665 0.03 0.283 0.039 0.453 0.016
OAC

Supplementary table 2. Analysis of difference in beta-diversity metrics with respect to biopsies
location in the context of each clinical classification. P-value and R-squared calculated using

Permutational multivariate analysis of variance (PERMANOVA).

172



3571

3572
3573
3574
3575
3576
3577

0.50

o
Lo
o
©
=
~ 0
o -h! E "\—) Fd
3 s £ L
0w © e o =
R £
c O _— 3 —_
= xR o -3
'§_ s < S & &
s = ® 3 ©
@ S o [ v
2 o o= o O ™
3 s o« o
- - & = R
£8 2 &9 2
RS < g <
5 - 8§
o3 Lo <3 Py
3 7 57 o
o 8%
@
=
K .
o il
1 o
T T T T '
w =3 ' =3
& 8 8 3 3 & 3 & 2
o (%EL'ET)T SIXY G (%8Z'VZ)T Sixy
o o
w b O
o )
w
o )
w0
S s EB ks @
8 9 s 2 < <
M £33 :
53 o 5 3 - [5]
Es 5 ss g -
35 S 58 = m
8 S o 2 9 o
» @ 22 Z« =R ~
2z °T == S%
L g 5 k3 8 % .
(S < E’ (S} < =
n n
a
D S o g 3 =]
s 8 0 - Q
] =] o 1 Lo c
5 ' LS < -]
(V] ' g
o
o
>
o a
2 =]
p b A pa 5 : : .
o o o g = = =) ¢
(%1L°81)Z SIxy (%G€02)Z SIXY
o w
o
9 o
o Lo
o
i ["e) bl
3 N b 0
S . S ]
o P o
ot %
o E = o 3
£ s & o8 :
s & 85 &% 2§
9 07 =i 2 S 2
2 = g o e
= o » )
RS E 8 -]
£S < s <
n
3 & 3 9
3 g £ &
o d T
|2 8
T K
) Q ) 9 ] P 3 g )
o S o H ] =] S g ]
< (%650°22)Z sixy a (%LZ'81)Z sixy

Figure 5. Difference in beta-diversity with respect to biopsy location. Principal Coordinates
Analysis (PCoA) plot representing weighted UniFrac distance. Data was derived from biopsies from
all clinical classifications. Statistical testing performed using Permutational Multivariate Analysis of
Variance. (A) Data derived from Healthy controls. (B) Data derived from individuals with GORD.
(C) Data derived from individuals with BO. (D) Data derived from individuals with Dysplasia. (E)
Data derived from individuals with OAC. (F) Data derived from individuals with metastatic OAC.

173



3578

3579

3580

3581

3582

3583

3584

3585

3586

3587

3588

3589

3590

3591

3592

3593

3594

3595

3596

2.4.5 Differentially abundant ASVs, species and metabolic pathways

Differential abundance analysis on paired samples was performed to identify
differential species and ASVs between biopsy location within clinical classification

groups.

Samples derived from individuals with BO had the highest number of differentially
abundant species and ASVs (Figure 5C, Supplementary figure 5C). In people with
BO, Fusobacterium nucleatum, a putative oncobacterium, was enriched on
metaplastic tissue (biopsy location 3) relative to an adjacent oesophageal tissue
(biopsy location 2). Similarly, in individuals with dysplasia, F. nucleatum was found
to be enriched on dysplastic tissue relative to adjacent oesophageal tissue (Figure
5D). With respect to individuals with OAC, only one species, Veillonella atypica,
differed in abundance between neoplastic tissue and at only one site, biopsy location
5 (Figure 5E). At the ASV level, an ASV, Seq 62, assigned to F. nucleatum was
enriched in biopsy location 3 relative to biopsy location 4 (Supplementary figure

5E).

Generally, sample sites which were physically closer together (e.g., 1 versus 2 and 4
versus 5) had fewer differentially abundant taxa. Notably, at the species level, no

differentially abundant taxa were observed between sites for the metastatic group.

174



o
0
‘'

eauelayid

g0- | ]

oo

§0
ot -

sauelalld

L00 0=>4xx LO'0=>4x G0°0=>4

S-v 5-€ v-€ 6T v-Z €T S-} ¥} £}

[

xx

eise|dsAg

S-¥ G-t v-t G- ¥-Z €& G-} ¥-I €~} -}

*

* *

*

xx

mEnc

9seas|p XnyaJ |eabeydosao—ossen

lepem™eiyoujoide
spewo}s snaosoosojdasjsoydad
snsjauoa Jajaeqojidwen
wnjesjonu” wnuejoeqosng
Ieds|pTe|jauo|jlep
suesfjoweey e|ewen
snapAjowaey”snjydowaeH
wnib|d”wnjnuesbisojoq
wnjone) ewse|doaAp
suefieja”e|jeiR01INURID
paijissejaun

ejoa)juap ewauodall
1uasuiAewauodal)

wnibid " wnjnuesbisojoq
eejuewnid snpiydoweey
s|leaanq ejyapjoydan
suesAjoweey e||awesy
payissepun
BID|WTSEUOWIA TR
euabpnds~seuowouajag
wnouopoused wnyejoRgosnyg
elYjAsio) ejjelauue]

eael e|jejoaaldo|y
sezuanjjujesed snjjydoweey

§0- _.

oe

g0
oL _

aaualayiq

-

o

‘i

saueleyid

o

_.-
Z

aaualayig

&-¥ G-€ v-¢£ G6-Z ¥v-Z €-Z G- t-1 £-L Z-L

suesAjoweery e||eLen
pay|sseaun

wnjeajPNu Wnajeqosny
esoulBejlanweiyjoy

ewouldiesouape |eabeydosagp

§¥ §-€ ¥-€ 5-C ¥-C €T G-} v-} £} Z-|

x*x

®

*x

*x

* azl*«:*l CRES I AT PR R

*x

*

snbeydosaQ s yalleg

S=¥ =€ ¥-¢€ G-Z ¥-C £-T G-} v-| €L Z-L

sjoJjued AyjjesH

eaydAjee|jauo)aA

sijealbuib ebeydojhaouden
suejnw”snasoaoydens
wninp~wnpajaeqeuiio)
snupqos~snasodojdeng
aejuewyd snjydowaey
eubew e|pjobauly
Susjo3jjusp_elAOpIRISEIRY
ee|sbbm elaopIedg
SUBPOIIDI Bfjeuay|g
sij1aei6 1810 qo|Adwes
eso|nueli_ebeydojhaoude)
lyeyse|j@joAalg
pauissepun

sueBaja e|jajea||nuels
esoanwelessieN
wnjjydojjew ewsuodail
snjeujwabsngo|Boseruy
1e66any~ seuowousjes
asusealun”wnindegoleeueouyIe
siwioy||1oeq elIessieN
X[|aju| Seuowoua|ag
suesfjoweaey ejjawea
snapkloweeysnjjydoweey
SUBISAAR| BlIaSSION
siuojionuoldjweseeydseboly
seA|ese||ajonsld
wnjeaaNu” Wnpejoeqosny
ledsipTe|jeuo|iap

8susealLN” WN|NdeqoIsRUROUYIET

paylissepun

3597

Figure 6. Differentially abundant species between biopsy location within clinical classification
groups. Heat-map of differential species between each pair of biopsy location per clinical
classification. (A) Data derived from Healthy controls. (B) Data derived from individuals with

GORD. (C) Data derived from individuals with BO. (D) Data derived from individuals with
Dysplasia. (E) Data derived from individuals with OAC. Statistical testing was using paired
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Supplementary figure 5. Differentially abundant ASVs between biopsy location. Heat-map of
differential ASVs between each pair of biopsy location per clinical classification. Statistical testing
was using paired Wilcoxon. (A) Data derived from Healthy controls. (B) Data derived from
individuals with GORD. (C) Data derived from individuals with BO. (D) Data derived from
individuals with Dysplasia. (E) Data derived from individuals with OAC. (F) Data derived from
individuals with metastatic OAC.
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Using the algorithm PICRUSt2, we inferred metabolic pathways from ASV data. A
number of pathways were found to be differential abundant between biopsy sites
derived from all clinical classifications (Supplementary figure 6). In line with
differential species and ASVs, the number of metabolic pathways that were
statistically different increases the further the sites were physically distant from each

other.
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Metastatic oesophageal adenocarcinoma
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Supplementary figure 6. Differentially abundant microbiome-encoded metabolic pathways
between biopsy locations. Heat-map of differential species between each pair of biopsy location
per clinical classification. (A) Data derived from Healthy controls. (B) Data derived from individuals
with GORD. (C) Data derived from individuals with BO. (D) Data derived from individuals with
Dysplasia. (E) Data derived from individuals with OAC. (F) Data derived from individuals with
metastatic OAC. Statistical testing was using paired Wilcoxon.
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2.5 Discussion

In this study we identified a number of microbiome features which differed between
clinical classifications along the oesophageal adenocarcinoma sequence. We also
identified microbiome differences within the upper digestive tract of the individuals

along the OAC sequence.

Although the microbiome did not dramatically differ with respect to biopsy location,
a shift in the microbiome was detected as measured by beta-diversity. We observed
that the microbiome of metaplastic tissue derived from individuals with BO had a
higher alpha diversity relative to that of the adjacent tissue. Metaplastic tissue has a
crypt structure similar to that of the intestine. This structure could possibly allow for
growth of a more diverse range of bacterial taxa. We did not observe a significant
difference in alpha diversity between clinical groups. This is in contrast to previous
reports by Elliott et al who identified a lower alpha diversity in cancer samples
relative to BO samples and healthy control samples?’. Differences in sample depth
may explain this disparity as the current study has more than a 3X greater minimum

sequencing depth relative to the Elliott et al study.

Previous studies have identified an enrichment of F. nucleatum on tumour samples
relative to matched normal tissue in the context of colorectal cancer and breast
cancer®®3!, We did not find any conclusive evidence for the enrichment of F.
nucleatum on OAC tissue relative to matched healthy controls. However, we did find
a particular ASV to be enriched on adenocarcinoma samples relative to adjacent

gastric samples.
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At a macroecological level, the microbiome associated with the various stages along
the oesophageal adenocarcinoma sequence did not differ dramatically as measured
by alpha and beta-diversity. We did see a difference in beta-diversity in samples
derived from the GOJ (Biopsy location 3) as well as gastric biopsies (Biopsy

location 4 and 5).

A history of periodontal disease has been associated with OAC, with a 43% and 52%
increased risk®2. P. denticola and Bifidobacterium dentium have been implicated in
the development of dental caries®*34, We observed these taxa to be enriched in
disease groups relative to healthy controls in a number of biopsy sites. Previous
work by Elliott et al identified Lactobacillus fermentum, also a caries-associated
taxon, as being enriched in the oesophageal microbiome of individuals with OAC®,
The acid resistant nature of these taxa may provide a selective advantage to grow in

an oesophagus with abnormally low pH due to acid reflux.

We identified an ASV assigned to F. nucleatum to be enriched in the disease groups
relative to healthy controls in oesophageal-derived samples. A growing body of work
has linked F. nucleatum to CRC oncogenesis both by association, but also and
mechanistically®®. An enrichment of F. nucleatum in oesophageal samples has been
previously reported to be associated with a poorer prognosis as it relates to

oesophageal squamous cell carcinoma3’-,

At the GOJ, F. necrophorum was observed to be enriched in subjects/biopsies with
dysplastic and neoplastic presentations versus those without®. In a recent meta-
analysis, an enrichment of F. necrophorum in the colon microbiome was associated
with colorectal cancer. F. necrophorum can be described as an opportunistic

pathogen which is a canonical resident of the human alimentary canal. F.
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necrophorum is a causative agent of Lemierre's syndrome which is characterised by
a septic thrombophlebitis of the internal jugular vein®. Furthermore, Fusobacterium
necrophorum is known to cause other infections of the head and neck including non-
streptococcal tonsillitis and peritonsillar abscess**2. What drives the progression of
the oesophageal adenocarcinoma sequence remains an area of intense research. An
inflammatory response to chronic colonization by F. necrophorum may promote
oncogenesis. However, one could not rule out a model where F. necrophorum

opportunistically grows in the setting of diseased tissue.

We found microbiome-encoded pathways relating to B12 synthesis to be depleted in
the metastatic OAC cohort. Increased levels of serum B12 has been previously
associated with increased mortality in the context of cancer*®. One might speculate
that an increasing level of B12 in the environment of a microbe would lead to the
down regulation of B12 synthetic pathways as the need for microbes to synthesise

their own B12 would be attenuated.

A number of limitations within this study should be noted. Some of the clinical
groups within this study, particular the healthy control group and metastatic OAC
group, have low numbers of individuals. As noted, there is a bias in terms of sex in
the clinical groups with those of the male sex being more frequent in the later stages
of the OAC sequence. As sex is known to associate with differences in gut
microbiome this sex driven variation may be also found in the oesophagus*. No
quantitative microbiome data was gathered during this study. One might expect
significant variation in microbial load between clinical groups. As mentioned the
crypt like structure of BO may provide a niche which allows a higher alpha diversity

but may also allow a greater bacterial load. Furthermore, one would expect the
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gastric microbiota to have a higher biomass than oesophageal microbiota. It has been
previously reported that the use of different primer pairs led to different levels of off
target amplification of human DNA®. In this study we used the V3 V4 primer pair

which has been observed to amplify Human DNA more than the V1 V3 primer pair.

Characterising the upper digestive tract microbiome in the context of oesophageal
adenocarcinoma may provide information pertaining to OAC oncogenesis, detection,
and therapeutic development. Bacterial taxa which promote inflammation including
those associated with periodontal disease may provide a tumorigenic
microenvironment which promotes cancer development. Even if these taxa do not
directly drive oncogenesis, their abundance may be directly associated with the
oncogenesis process. Thus, taxa associated with adenocarcinoma process may
provide diagnostic or prognostic information. A microbe such as F. necrophorum
may provide prognostic data with respect to delineating which individuals with BO
will go on to develop OAC. Recently, adjuvant immune checkpoint inhibitor
treatment was demonstrated to increase disease-free survival in patients with OAC*®.
The gut microbiome has been associated with the efficacy of immune checkpoint
inhibitors*”48, 1t is possible that the local microbiome of the oesophagus may
modulate the immune microenvironment of OAC and thus the efficiency of immune

checkpoint inhibitors.

Further research such as longitudinal studies and mechanistic assays will be needed

to further validate the findings of this study and the accompanying inferences.
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3.1 Abstract

The gut microbiome in patients with colorectal cancer (CRC) is different than that of
healthy controls. Previous studies have profiled the CRC tumor microbiome using a
single biopsy. However, since the morphology and cellular subtype vary
significantly within an individual tumor, the possibility of sampling error arises for
the microbiome within an individual tumor. To test this hypothesis, seven biopsies
were taken from representative areas on and off the tumor in five patients with CRC.
The microbiome composition was strikingly similar across all samples from an
individual. The variation in microbiome alpha-diversity was significantly greater
between individuals’ samples then within individuals. This is the first study, to our
knowledge, that shows that the microbiome of an individual tumor is spatially
homogeneous. Our finding strengthens the assumption that a single biopsy is
representative of the entire tumor, and that microbiota changes are not limited to a

specific area of the neoplasm.

Keywords: colorectal, cancer, microbiome, tumor, gut
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3.2 Introduction

Colorectal cancer (CRC) is the second largest cause of cancer death in the United
States'. Sporadic CRC arises after a series of cumulative genetic mutations?, with a
ten year progression from adenoma to CRC?. The microbiome is distinctly different in
biopsies of CRC and adenomatous polyps* °, leading to an updated hypothesis that
microbial changes® and secondary consequences for immunological cell signalling’
may play a role in tumor progression. Bacteria are an established risk factor for cancer,
such as H. pylori-related MALT lymphoma and gastric carcinoma®®. In particular,
several individual microbes such as Fusobacterium nucleatum!® and Escherichia
coli'! have been implicated in the pathogenesis of colorectal cancer, but a cause-effect
relationship has not been established; rather, microbes and their metabolome
represent complex collections of gene networks that interact bidirectionally with

cancer cells®?.

CRC-associated microbiota is characterized by a reduced alpha diversity
compared with healthy controls'®. Patients with CRC*'* or adenomatous polyps**®
show also distinct qualitative differences in both the microbiome and metabolome in
fecal'®!" and biopsy samples*** compared with healthy controls. In these studies, the
microbiota associated with cancerous and non-cancerous tissues within the same
individual did not differ significantly** which suggests that in CRC, a global
microbial ecosystem change occurs throughout the colon*!8, However, the microbial
alterations differ between proximal and distal cancers®. These compositional changes
often represent a relative over-abundance of oral bacteria, which are hypothesized to

organize into biofilm-like structures'® on the tumor and on the right side of the
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colon*?, We have previously described that CRC patients can be stratified into four
groups based on bacterial co-abundance groups (CAGs) that link distinct mucosal
gene-expression profiles* with similar networks of oral-based bacteria found on the

gut mucosa and oral mucosa'820:2,

Distinct morphological and phenotypical differences exist within and between
colorectal tumours??. Classification systems such as NICE?3, Paris®* and Kudo? use
macroscopically visible differences in lesions to stratify malignant potential?* or stage
neoplastic tumors? detected at the time of endoscopy. Similarly, the World Health
Organization (WHO) has classified the appearances of colorectal tumors at surgery
into four groups: exophytic, endophytic, diffusely infiltrative and annular, with the
recognition that significant overlap occurs between these categories?’. Macroscopic
phenotypes may also be an overall predictor of genetic alterations and DNA
methylation in a colorectal tumor?. Intra-tumoral heterogeneity for both genetic and

epigenetic factors in CRC are also evident?,

Untargeted colonoscopy biopsies or untargeted segments of resected tumors
has been used in most studies of CRC microbiota*'43°3, Given the histologic and
genetic intra-tumoral heterogeneity®? of CRC, topographic variance in the microbiota
of a single tumor may be a confounding factor. Therefore, we undertook the first study
aims to investigate the intra-tumoral microbial heterogeneity and its comparison with

adjacent proximal and distal non-cancerous tissue.
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3.3 Results

Five patients were recruited to the study, four males and one female, with a mean
age of 72 = 6.7 years as shown in Table 1. All patients had a diagnosis of colonic
adenocarcinoma within the previous 1-2 months. Seven samples were obtained from
each individual comprising normal tissue proximal to the tumor (biopsy 6), normal
tissue distal to the tumor (biopsy 5), a central tumoral biopsy (biopsy 5) and four
peripheral tumor biopsies (biopsies 1-4). The tissue microbiome was profiled by 16S

rRNA gene amplicon sequencing.
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Patient

GT 001

GT 007

GT 009

GT 010

GT 011

metformin

Type of Adenocarcinoma Adenocarcinoma Adenocarcinoma Adenocarcinoma Adenocarcinoma

neoplasm

Tumor rectum transverse colon sigmoid colon caecum ascending colon

location

Stage of T3NOMO T3NOMO T3N1MO T3N1MO T3NOMO

neoplasm

Time since 1 1 1 1 2

diagnosis

(months)

Type of Anterior Right hemi- Anterior resection Right hemi- Right hemi-

surgery resection colectomy colectomy colectomy

Bowel Prep Moviprep Moviprep Moviprep Moviprep Moviprep

Alcohol 10 units none 3 units none none

intake per

weeks

Smoking Current (2/day) Ex-smoker Ex-smoker Non smoker Ex-Smoker

status (10/day (20/day (10/day x35

x20years) x40years) years)

Probiotic No No No No No

use

Antibiotic No Yes Yes Yes Yes

exposure

Antibiotic N/A IV co-amoxiclav Oral metonidazole Oral metonidazole IV co-amoxiclav

regime used and and neomycin and neomycin and

at surgery metronidazole metronidazole

Diverticulae no no no no no

Medical none Hypertension, NIDDM, Hypertension, Epilepsy, NIDDM,

comorbidite NIDDM obstructive anemia hypertension,

s uropathy hyperlipidemia

Medications nil aspirin, ramipril, atorvastatin ramipril, bisoprolol,
esomprazole, lercanidipine, ezetimibe,
atorvastatin, ferrous fumerate rosuvastatin,
empaglifiozin, hyoscine

butylbromide,
esomprazole,
lercanidipine,
carbamazepinesit
agliptin,
metformin

Table 1. Patient characteristics. Footnote: n = 4 males, 1 female, with a mean age of

72 £ 6.7 years
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The microbiome composition was highly similar among samples within a particular
individual (Figure 1A). The genus level composition differed significantly between
patients (Figure 1A) but was remarkably similar within a single subject, both on
(biopsy 1-5) and off the tumor site (biopsy 6 and 7). This was reflected in beta
diversity distance metrics wherein samples clustered by individual rather that biopsy

site as represented in Principal Co-ordinate Analysis (PCoA) plots (Figure 1B).
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Figure 1. Microbiome relatedness of biopsies within Individuals. (A) Taxonomic bar plot of the
proportional relative abundance of genera. “Others” is a grouping of genera with less than 1%
abundancy across the samples as well as unclassified genera (B) PCoA plot representing weighted
Unifrac distances. Biopsy location is represented by shapes while colours represent individual
patients. Utilising the R package ggforce v0.3.1, ellipses were estimated using the Khachiyan
algorithm. R-squared (R?) and p-values were calculated using Permutational Multivariate Analysis of
Variance (PERMANOVA) via the R package vegan v2.4-2. (C) Dendrogram representing Kendall
correlation with ward d2 clustering. Samples are coloured by individual.
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The identity of the patient from whom the biopsy was taken was associated with the
top four PCoA axes which collectively explained >90% of variance (see
Supplementary figure 1, Supplementary table 1). However, there was no association
between any of the top ten PCoA axes, which collectively explained ~99% of the
variance, and sample site (Supplementary table 2). We employed Permutational
multivariate analysis of variance (PERMANOVA) to calculate the association
between sample meta-data factors and the global microbiome structure as defined by
the beta-diversity distance matrixes. A strong association between the biopsy patient
origin and the microbiome was identified (Figure 1B, Supplementary table 3).
However, we did not detect any statistically significant association between global
microbiome structure and sample site (Supplementary table 4). We next performed a
patient-specific rank sum normalization on all samples to reduce the impact of
patient bias. We performed a PERMANOVA on this transformed data to test for a
significant association between location and the beta diversity metrics. However, we

did not find a significant association (Supplementary table 5).

The beta diversity clustering data were supported by hierarchical clustering in which
the topology of the dendrogram was clearly dictated by the subject identity rather
than biopsy site (Figure 1C). Within subjects, there was no reproducible pattern of
microbiota relatedness by anatomical origin that was replicated across subjects

(Figure 1C).
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PCoA axis P-value

0.0000017603

0.0000023873

0.0000266130

0.0000196660

0.1453059839

0.2208569369

0.9189331198

0.8767527693

OO |INOD NN WIN|-

0.7447672631

10 0.9402627020

Supplementary table 1. Association between PCoA axes and Patient ID. P value calculated
using Kruskal-Wallis test

PCoA axis P-value

0.9997487

0.9977087

0.9787245

0.9781814

0.2440231

0.1786758

0.5677194

0.4210597

OO |IN(O|N[AR|IW[IN|F-

0.3520217

10 0.1317221

Supplementary table 2. Association between PCoA axes and sample site. P value calculated
using Kruskal-Wallis test

Beta-diversity metric P-value R squared
Weighted unifrac 0.001 0.868
Unweighted unifrac 0.001 0.715
Bray Curtis dissimilarity 0.001 0.852
Jaccard similarity 0.001 0.721

Supplementary table 3. Association between beta diversity metrics and Patient ID. P-value
and R squared calculated using PERMANOVA.

Beta-diversity metric P-value R squared
Weighted unifrac 1 0.033
Unweighted unifrac 1 0.047
Bray Curtis dissimilarity 1 0.032
Jaccard similarity 1 0.058

Supplementary table 4. Association between beta diversity metrics and Patient ID. P-value
and R squared calculated using PERMANOVA.

206



Beta-diversity metric P-value R squared

Bray Curtis dissimilarity 1 0.03151

Jaccard similarity 1 0.05768

Supplementary table 5. Association between beta diversity metrics and Patient ID with
rank-sum normalization. P-value and R squared calculated using PERMANOVA.

Variance explained by top ten PCoA axes

Variance explained(%)

8.32
6.08
3.37
1.8
I N s m—
2 3 4 5 6 7 8 9 10

PCoA axis

Supplementary figure 1. Variance explained by first 10 PCoA axes. Bar plot displaying level of
variance of variance explained by each access with regard to unweighted Unifrac distance.
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Samples were pooled based on biopsy site and pairwise analysis was performed for
each sample pair within the biopsy site. Differential ASV abundance was not
detected with respect to anatomical site when we applied paired sample Wilcoxon
test with Benjamini-Hochberg adjustment for multiple comparisons (Supplementary
table 6). We next utilized DESeq2 which has been demonstrated to be sensitive when
applied to small sample sizes****. We identified a number of differentially abundant
ASVs between sample-sites while controlling for which patient the biopsy originated
from (Figure 2). Notably, a number of ASVs assigned to the oral species
Fusobacterium nucleatum, were observed to be enriched on tumor samples relative
to undiseased disease (distal normal and proximal normal). In particular Seq 31 was
identified to be enriched in 5/5 proximal tumor biopsies relative to the healthy distal

biopsy and 4/5 tumor biopsies relative to the healthy distal biopsy.
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Previous studies have indicated that oral microbes can translocate from the oral
cavity to the gut®®. Furthermore, CRC tumor microbiota is enriched with oral taxa®.
For these reasons, the buccal swab microbiota composition was analyzed and
compared to that of the respective subjects’ biopsy sites as a function of beta
diversity distance (Figure 3A, 3B, Supplementary Figure 2). This analysis revealed
that the microbiota of all the biopsies were equally distance from the oral microbiota

in all the subjects.
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Figure 3. (A)Bar plot of the difference in Beta-diversity distance between the microbiota of indicated
biopsy sites and paired buccal swab microbiota from the same subject. Kruskal-Wallis test was used
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Supplementary figure 2. Bar plot of the difference in Beta-diversity distance between the
microbiota of indicated biopsy sites and paired buccal swab microbiota from the same subject.

(A) Unifrac distance (B) Bray—Curtis (C) Jaccard. Kruskal-Wallis test was used to calculate p-values
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The sequencing depth of the samples allowed for a thorough investigation of alpha
diversity, that is microbial richness and evenness (Supplementary table 7,
Supplementary Figure 3). Considering all biopsies from each sample sites examined,
the difference in alpha diversity of the biopsy microbiota datasets as measured by 5
different indices was significantly greater between any two individuals then it was

within individuals (Figure 3C, Supplementary figure 4).
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3.4 Discussion

Many studies have profiled the microbiome in CRC using cancer tissue*!43%3! from a
single biopsy assuming that the microbiome profiled on this single specimen was
representative of the tumor as a whole. This study confirms that this is a valid

assumption.

Given the macroscopic and microscopic heterogeneity of CRC tumors, it may
seem surprising that the microbiome of an individual tumor is very similar throughout
the entire tumor tissue, as shown in this study. In contrast, significant differences were
noted in the genus level abundance of particular taxa in the microbiota sequenced from
biopsy samples from five individuals in the study. These variations are probably due
to the differences of tumor location (Figure 1) as has been previously reported*®, as
well as to other factors such as antibiotic exposure® and diet®”, which are known to

alter the baseline microbiome.

Interestingly, as we showed in a previous study*, paired samples of un-diseased
tissue proximal and distal to the tumor harbored the same microbiota with respect to
dominant taxa and their relative abundance. Previous work has demonstrated the
presence of anaerobic oral bacteria on the colorectal tumor mucosa?®3! consistent with
the notion of a biofilm of pathologic bacteria forming3® and seeding on the tumor. In
the current study, various distance metrics did not show that any particular site was
closer to the oral microbiome. However, we did detect specific oral-associated taxa
such as Fusobacterium nucleatum and Streptococcus sanguinis overrepresented on
tumor sample sites. Indeed, from the growing catalogue of microbes associated with
CRC many of these microbes belong to oral-associated taxa including Fusobacterium,

Porphyromonas, Gemella, Streptococcus and Leptotrichia®®. Two routes of
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translocation of oral microbes to the colon have been proposed: 1) though the
gastrointestinal tract and 2) through circulatory system®4° Both Fusobacterium
nucleatum and Streptococcus sanguinis have been observed to cause endocarditis
demonstrating the potential to travel through the circulatory system*.42,
Fusobacterium nucleatum is of particular note due to the growing body of evidence of

its mechanistic role in the oncogenesis of CRC*2.

There are some limitations to this study. The sample size of five patients is
small, but tumor tissue within each individual was extensively biopsied to capture
macroscopically morphologically different areas such as ulcerated and non-ulcerated
tissue. Four individuals were treated with antibiotics prior to or during the procedure
as per hospital protocol. Similarly, all patients took a bowel preparation on the day
prior to their surgery which is known to alter the microbiome*3. However, in this study
each individual was taken as a separate entity therefore acting as an internal control
and comparator and it is assumed that these modifiers of the microbiome affected the

microbiome as a whole.

The global burden of CRC is increasing and this disease is a significant
contributor to cancer deaths!. Prospective trials are ongoing that incorporate
microbiota analysis with other factors as part of the investigative assessment and
staging of cancer* and to predict CRC outcomes®. Through demonstration of
microbial homogeneity within an individual tumor and in the adjacent normal tissue,
this study helps validate the methodology of sampling tissue going forward for these

and other indications.
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3.5 Patients and Methods/Materials and Methods

3.5.1 Patient recruitment

A total of five patients who were scheduled for colonic resection for colorectal cancer
as part of their standard of care at Cork University Hospital and Mercy University
Hospital, Cork were recruited to the study. Patients were labelled as GT (Geography
of Tumor) 001,007,009,010 and 011. Recruitment to the study took place from
February 2019 to June 2019. Ethical approval was granted by The Clinical Research
Ethics Committee of the Cork Teaching Hospitals (Cork, Ireland). The study was
conducted in accordance with the ethical principles set forth in the current version of
the Declaration of Helsinki, the International Conference on Harmonization E6 Good
Clinical Practice (ICH-GCP). Exclusion criteria included a history of inflammatory
bowel disease or irritable bowel syndrome, a significant acute or chronic coexisting
illness and neoadjuvant chemotherapy or radiotherapy. All patients received a
macrogol preparation pre-operatively. A single dose of oral metronidazole and
neomycin were administered to two patients pre-operatively and two other patients
received intraoperative intravenous co-amoxiclav and metronidazole as per hospital
protocol. The fifth patient took no antibiotics. None of the patients had probiotic

exposure pre-operatively.

A mouth swab was taken from patients in the pre-operative room prior to anesthetic
and snap frozen. Immediately after removal from the patient, the ex-vivo specimen
was anatomically orientated, was dissected and the tumor was exposed. A

representative tissue biopsy from each of the four quadrants of the tumor was taken in
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a clockwise manor starting at 12 o’clock. Tissue from a central area of tumor plus two
biopsies of adjacent macroscopically normal tissue 10 cm proximal and distal to the
tumor were taken. A different set of sterile instruments was used for every biopsy
taken and for each individual. This ensured there was no transfer of bacterial material
from sample to sample within or between individuals. Samples were snap frozen in

cryotubes and transferred immediately for storage at -80° C.
3.5.2 DNA extraction and 16S RNA amplicon sequencing

Genomic DNA from biopsies was extracted using the AllPrep DNA kit from Qiagen.
When preparing each sample, approximately 20mg in total of tissue was dissected in
small fragments from around the biopsy and pooled. These pooled fragments were
then added to a bead beating tube containing sterile beads and 600 ul of buffer RLT
plus was added. Samples were then homogenized for two 15 sec at full speed pulses
in a MagnaLyzer (Roche, Penzberg, Germany) with rests on ice between pulses. The
rest of the DNA extraction was carried out according to the Qiagen AllPrep
DNA/RNA extraction kit. Oral genomic DNA was extracted using Qiagen DNeasy

PowerSoil Kit following the manufacturer’s instruction.
3.5.3 Library preparation and sequencing

The 16S rRNA gene was amplified using primers for the V3-V4 region; forward,
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCA
G-3' and reverse, 5'-
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATC

TAATCC-3'. DNA was normalized to a concentration of 10ng/ul and 10 pl DNA was

added per 30 pl PCR reaction. The PCR thermocycler protocol was as follows:
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Initiation step of 98 °C for 3 min followed by 30 cycles of 98 °C for 30 s, 55 °C for
60 s, and 72 °C for 20 s, and a final extension step of 72 °C for 5 min. Indexes were
subsequently added to the purified amplicons according to Illumina 16S Metagenomic
Sequencing Protocol (Illumina, CA, USA). Libraries DNA concentration was
quantified using a Qubit fluorometer (Invitrogen) using the ‘High Sensitivity’ assay
and samples were pooled at a standardized concentration (80 ng of each sample). The
pooled library was sequenced at Eurofins Genomics/GATC Biotech (Konstanz,
Germany) on the Illumina MiSeq platform using 2x300 bp chemistry. All samples in

this study were prepared in the same library and sequenced together.
3.5.4 Bioinformatics analyses

Raw data was imported into R v3.5.3 for processing and analysis. Paired reads were
quality filtered, trimmed, merged and Amplicon Sequence Variants (ASV) inferred
using the R package dada2 v1.12.1. The following parameters were used for the
filterAndTrim function; filtRs,trimLeft=c(19,21) ,maxEE=c(2,2),
truncLen=c(260,230). Taxonomic classification was performed using the RDP naive
Bayesian Classifier within the dada2 against the Silva v132 database. Alpha
diversity was calculated from the ASV table using QIIME v1.9.1 as previously
described in Kuczynski et al*¢. Samples were rarefied to 7000 reads in order to
calculate alpha-diversity. QIIME v1.9.1 and the R package vegan v2.5.6 were used
to infer B-diversity metrics*’. B-diversity was visualized via principal coordinates
analysis (PCoA) plots whose coordinates were identified using with the Ape package
v5.1. The adonis() function within the R package vegan (v2.4-2) was used to perform
Permutational multivariate analysis of variance (PERMANOVA) Difference in

paired biopsy-buccal distance was assessed using paired Wilcoxon test. DESeq2
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(v1.28.1) was used to identify differentially abundant taxa from the microbiota
dataset.®® Differences between inter and intra alpha-diversity was tested using

Wilcoxon signed-rank test.
3.5.6 Contamination control

We first carried out mock extractions to detect reagent-associated contamination
from the two Kits used in this study (Supplementary figure 5). Further, we also
carried out PCR controls i.e. water, to detect contamination specific to the
polymerase (Supplementary figure 5). These negative controls underwent 5-10
additional PCR cycles relative to biological specimens to capture low levels of
bacterial template. We utilized both the Frequency and Prevalence method within the
R package decontam (v 1.8.0) to identify contaminating ASVs*. Using the
“frequency” method, isContaminant(phyloseq_object, method="frequency",
conc="qubit",threshold = 0.05), two ASVs were identified (Supplementary figure 6).
However, these ASVs were present at a very low abundance and only present in 2
samples. Furthermore, these ASVs were assigned to Clostridiales and
Burkholderiales which are known gut taxa and not indicative of contamination
(Supplementary table 8). Using the “prevalence” method,
isContaminant(phyloseq_object, method="prevalence",

neg="is.neg" ,threshold=0.05), we identified 7 contaminating ASVs (Supplementary
table 9). However, these ASVs were only identified in three of our samples and only

contributed between 2-6 reads to the samples. Thus, we treated them as negligibly.

221



Alfoprevotella
Fusobacterium

“‘ ‘|‘ III -

og 1od

‘I :

0e oy

Turicelfa

. Anaerococeus . Forphyromonas

[ veilonelia

Gemella
Haemaophilus

. Staphylococcus
|

Shewanella

. Streptococcus

. Achromobacter . Others

Controls — genus representation

Ralstonia
Halomonas

. Psevidomonas - Corynebacterium - Sediminibacterium . Enterobacter . Tepidimonas

Genus

= =
@ -

(%)aosuepunqge aane|ay

100
80
20+
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ASV Order Genus Species
Seq 908 Burkholderiales Sutterella Sutterella stercoricanis
Seq 1091 Clostridiales unclassified unclassified

Supplementary table 8. ASV identified as contamination using the “frequency”

method within decontam.

ASV Genus Species

Seq 4 Ralstonia Ralstonia insidiosa

Seq 6 Pseudomonas unclassified

Seq 8 Pseudomonas unclassified

Seq 30 Achromobacter unclassified

Seq 243 Tepidimonas unclassified

Seq 311 Pseudomonas unclassified

Seq_626 Propionibacterium Propionibacterium acnes

Supplementary table 9 ASV identified as contamination using the “prevalence”
method within decontam.

3.6 Acknowledgements

Work in PWQOTSs laboratory is supported by Science Foundation Ireland through a
Centre award (APC/SFI/12/RC/2273 _P2) to APC Microbiome Ireland, and by The
Health Research Board of Ireland under Grant ILP-POR-2017-034. We thank the
patients who consented to participate in this study, and the support staff of relevant
departments in Cork University Hospital and the Mercy University Hospital Cork.

224




3.7 Reference

10

11

12

13

14

15

225

Bibbins-Domingo, K. et al. Screening for Colorectal Cancer: US Preventive
Services Task Force Recommendation Statement. JAMA 315, 2564-2575,
d0i:10.1001/jama.2016.5989 (2016).

Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis.
Cell 61, 759-767 (1990).

Stryker, S. J. et al. Natural history of untreated colonic polyps.
Gastroenterology 93, 1009-1013 (1987).

Flemer, B. et al. Tumour-associated and non-tumour-associated microbiota in
colorectal cancer. Gut 66, 633-643, doi:10.1136/gutjnl-2015-309595 (2017).

Thomas, A. M. et al. Metagenomic analysis of colorectal cancer datasets
identifies cross-cohort microbial diagnostic signatures and a link with choline
degradation. Nat Med 25, 667-678, doi:10.1038/s41591-019-0405-7 (2019).

Raskov, H., Burcharth, J. & Pommergaard, H. C. Linking Gut Microbiota to
Colorectal Cancer. J Cancer 8, 3378-3395, doi:10.7150/jca.20497 (2017).

Sommer, F. & Béackhed, F. The gut microbiota--masters of host development
and physiology. Nat Rev Microbiol 11, 227-238, doi:10.1038/nrmicro2974
(2013).

Marshall, B. J. & Warren, J. R. Unidentified curved bacilli in the stomach of
patients with gastritis and peptic ulceration. Lancet 1, 1311-1315 (1984).

Wang, F., Meng, W., Wang, B. & Qiao, L. Helicobacter pylori-induced
gastric inflammation and gastric cancer. Cancer Lett 345, 196-202,
d0i:10.1016/j.canlet.2013.08.016 (2014).

Bullman, S. et al. Analysis of. Science 358, 1443-1448,
doi:10.1126/science.aal5240 (2017).

Pleguezuelos-Manzano, C. et al. Mutational signature in colorectal cancer
caused by genotoxic pks. Nature, doi:10.1038/s41586-020-2080-8 (2020).

Louis, P., Hold, G. L. & Flint, H. J. The gut microbiota, bacterial metabolites
and colorectal cancer. Nat Rev Microbiol 12, 661-672,
doi:10.1038/nrmicro3344 (2014).

Peters, B. A. et al. The gut microbiota in conventional and serrated
precursors of colorectal cancer. Microbiome 4, 69, doi:10.1186/s40168-016-
0218-6 (2016).

Hibberd, A. A. et al. Intestinal microbiota is altered in patients with colon
cancer and modified by probiotic intervention. BMJ Open Gastroenterol 4,
€000145, doi:10.1136/bmjgast-2017-000145 (2017).

Lu, Y. et al. Mucosal adherent bacterial dysbiosis in patients with colorectal
adenomas. Sci Rep 6, 26337, doi:10.1038/srep26337 (2016).



16 Weir, T. L. et al. Stool microbiome and metabolome differences between
colorectal cancer patients and healthy adults. PLoS One 8, e70803,
doi:10.1371/journal.pone.0070803 (2013).

17 Ahn, J. et al. Human gut microbiome and risk for colorectal cancer. J Natl
Cancer Inst 105, 1907-1911, doi:10.1093/jnci/djt300 (2013).

18 Nakatsu, G. et al. Gut mucosal microbiome across stages of colorectal
carcinogenesis. Nat Commun 6, 8727, doi:10.1038/ncomms9727 (2015).

19 Drewes, J. L. et al. High-resolution bacterial 16S rRNA gene profile meta-
analysis and biofilm status reveal common colorectal cancer consortia. NPJ
Biofilms Microbiomes 3, 34, doi:10.1038/s41522-017-0040-3 (2017).

20 Flemer, B. et al. The oral microbiota in colorectal cancer is distinctive and
predictive. Gut, doi:10.1136/gutjnl-2017-314814 (2017).

21 Yang, Y. et al. Prospective Study of Oral Microbiome and Colorectal Cancer
Risk in Low-income and African American Populations. Int J Cancer,
doi:10.1002/ijc.31941 (2018).

22 Punt, C. J., Koopman, M. & Vermeulen, L. From tumour heterogeneity to
advances in precision treatment of colorectal cancer. Nat Rev Clin Oncol 14,
235-246, doi:10.1038/nrclinonc.2016.171 (2017).

23 Hewett, D. G. et al. Validation of a simple classification system for
endoscopic diagnosis of small colorectal polyps using narrow-band imaging.
Gastroenterology 143, 599-607.e591, doi:10.1053/j.gastro.2012.05.006
(2012).

24 The Paris endoscopic classification of superficial neoplastic lesions:
esophagus, stomach, and colon: November 30 to December 1, 2002.
Gastrointest Endosc 58, S3-43 (2003).

25 Kudo, S. et al. Diagnosis of colorectal tumorous lesions by magnifying
endoscopy. Gastrointest Endosc 44, 8-14 (1996).

26 Kudo, S. et al. Colorectal tumours and pit pattern. J Clin Pathol 47, 880-885
(1994).

27 S.R.,, H. & L.A., A. World Health Organization Classification of Tumours.
Pathology and Genetics of Tumours of the Digestive System. . 108 (IARC
Press, 2000).

28 Konda, K. et al. Distinct molecular features of different macroscopic
subtypes of colorectal neoplasms. PLoS One 9, 103822,
doi:10.1371/journal.pone.0103822 (2014).

29 Jones, H. G. et al. Genetic and Epigenetic Intra-tumour Heterogeneity in
Colorectal Cancer. World J Surg 41, 1375-1383, d0i:10.1007/s00268-016-
3860-z (2017).

30 Wu, Y. et al. Microbiota Diversity in Human Colorectal Cancer Tissues Is
Associated with Clinicopathological Features. Nutr Cancer 71, 214-222,
d0i:10.1080/01635581.2019.1578394 (2019).

226



31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

227

Warren, R. L. et al. Co-occurrence of anaerobic bacteria in colorectal
carcinomas. Microbiome 1, 16, doi:10.1186/2049-2618-1-16 (2013).

Harada, T. et al. Surface microstructures are associated with mutational
intratumoral heterogeneity in colorectal tumors. J Gastroenterol,
doi:10.1007/s00535-018-1481-z (2018).

Love, M. L., Huber, W. & Anders, S. Moderated estimation of fold change
and dispersion for RNA-seq data with DESeq2. Genome Biology 15, 550,
doi:10.1186/s13059-014-0550-8 (2014).

Weiss, S. et al. Normalization and microbial differential abundance strategies
depend upon data characteristics. Microbiome 5, 27, doi:10.1186/s40168-
017-0237-y (2017).

Schmidt, T. S. et al. Extensive transmission of microbes along the
gastrointestinal tract. Elife 8, doi:10.7554/eLife.42693 (2019).

Modi, S. R., Collins, J. J. & Relman, D. A. Antibiotics and the gut
microbiota. J Clin Invest 124, 4212-4218, doi:10.1172/JC172333 (2014).

Ghosh, T. S. et al. Mediterranean diet intervention alters the gut microbiome
in older people reducing frailty and improving health status: the NU-AGE 1-
year dietary intervention across five European countries. Gut,
d0i:10.1136/gutjnl-2019-319654 (2020).

Tomkovich, S. et al. Human colon mucosal biofilms from healthy or colon
cancer hosts are carcinogenic. J Clin Invest 130, 1699-1712,
doi:10.1172/JC1124196 (2019).

Ternes, D. et al. Microbiome in Colorectal Cancer: How to Get from Meta-
omics to Mechanism? Trends Microbiol 28, 401-423,
doi:10.1016/j.tim.2020.01.001 (2020).

Abed, J. et al. Fap2 Mediates Fusobacterium nucleatum Colorectal
Adenocarcinoma Enrichment by Binding to Tumor-Expressed Gal-GalNAc.
Cell Host Microbe 20, 215-225, doi:10.1016/j.chom.2016.07.006 (2016).

Di Filippo, S. et al. Current patterns of infective endocarditis in congenital
heart disease. Heart 92, 1490-1495, doi:10.1136/hrt.2005.085332 (2006).

Brennan, C. A. & Garrett, W. S. Fusobacterium nucleatum - symbiont,
opportunist and oncobacterium. Nature reviews. Microbiology 17, 156-166,
do0i:10.1038/s41579-018-0129-6 (2019).

Jalanka, J. et al. Effects of bowel cleansing on the intestinal microbiota. Gut
64, 1562-1568, doi:10.1136/gutjnl-2014-307240 (2015).

Murphy, C. L., O’Toole, P. W. & Shanahan, F. The Gut Microbiota in
Causation, Detection, and Treatment of Cancer. Am J Gastroenterol,
doi:10.14309/ajg.0000000000000075 (2019).

Veziant, J. et al. Prognostic value of a combination of innovative factors (gut
microbiota, sarcopenia, obesity, metabolic syndrome) to predict
surgical/oncologic outcomes following surgery for sporadic colorectal



46

47

48

228

cancer: a prospective cohort study protocol (METABIOTE). BMJ Open 10,
e031472, doi:10.1136/bmjopen-2019-031472 (2020).

Kuczynski, J. et al. Using QIIME to analyze 16S rRNA gene sequences from
microbial communities. Curr Protoc Microbiol Chapter 1, Unit 1E.5.,
do0i:10.1002/9780471729259.mc01e05s27 (2012).

Caporaso, J. G. et al. QIIME allows analysis of high-throughput community
sequencing data. Nat Methods 7, 335-336, doi:10.1038/nmeth.f.303 (2010).

Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J.
Simple statistical identification and removal of contaminant sequences in
marker-gene and metagenomics data. Microbiome 6, 226,
d0i:10.1186/s40168-018-0605-2 (2018).



© oOo~N O

10
11
12
13

14
15
16

17

18
19
20
21

22
23

Chapter 4 - Association between the microbiome and
treatment outcomes in patients with metastatic melanoma

treated with Immunotherapy

This chapter is currently under review in the journal British Journal of Cancer

Authors:

Clodagh L Murphy*, Maurice Barrett*, Paola Pellanda, Fergus Shanahan, Derek G
Power, Paul W O’Toole

*Joint first authorship: These authors contributed equally to this work.

Maurice Barrett contributed to this work as follows:

¢ All bioinformatic analysis including sequence processing,
compositional data analysis and statistical analysis.

e Data visualization, that is, the construction of manuscript figures.

e Writing of half of the manuscript.

229



24

25

26
27
28
29
30
31
32
33
34

35

36
37
38
39

40

41
42
43
44
45
46
47
48
49
50
o1
52
53

4.1 Abstract

Background

The development of immune checkpoint inhibitors has contributed significantly to
cancer therapeutics. However, treatment efficacy is limited by both non-
responsiveness and side effects in certain patients. Mounting evidence indicates that
the gut microbiome modulates both treatment response and immune-mediated side
effects, but no single microbiome feature or universal signature has been linked to
these clinical outcomes. Since ethnic and geographic factors influence microbiome
variance, we studied treatment outcomes as a function of microbiome composition in
a cohort of caucasian Irish patients with melanoma undergoing treatment with

checkpoint inhibitors.
Methods

We recruited 37 patients with metastatic melanoma, 21 commencing on
immunotherapy de novo and 16 who were already established on treatment.
Furthermore, we recruited 30 healthy controls to provide a reference microbiome.

We profiled their faecal microbiome by 16S rRNA gene amplicon sequencing.
Results

We did not observe any significant difference in alpha or beta diversity with respect
to response or side effects. We identified 15 sequence-based bacterial taxa that were
differentially abundant between responders and non-responders. Consistent with
previous work, the taxa showing higher relative abundance in responders included
Akkermansia muciniphila and Bifidobacterium longum. Further, we identified
previously unreported taxa associated with response including Barnesiella
intestinihominis and Clostridium disporicum. Faecalibacterium prausnitzii was
found to be associated with non-response, contradicting previous findings. We
identified nine differentially abundant sequence-based bacterial taxa pertaining to
side-effects including Oscillibacter which is negatively associated with
inflammation. Using bioinformatic prediction of bacterial pathways, we identified a
number of differentially abundant proteins (in the form of KEGG Orthologues)
between response groups and side effect groups. These included proteins involved in
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exopolysaccharide biogenesis that were enriched in both responders and individuals
with no side effects.

Conclusions

Significant differences in microbial features were associated with both treatment
response and protection against moderate and severe side effects in patients with
stage four metastatic melanoma. Identification of these microbiome features can
point to biomarkers to stratify cancer patients, inform microbial based therapeutics

and provide insight into the basic biology of immune checkpoint inhibitors.
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4.2 Background

Harnessing the immune system to destroy cancer cells has revolutionized cancer
treatment . Certain cancers develop immune resistance by upregulating immune
checkpoint molecules such as PD-1 ligand (PD-L1) on the cancer cell, and its
ligation to PD-1 on antigen-specific CD8(+) T cells?. Prolonged antigen exposure
from cancer tissue can also cause exhaustion of T cells leading to decreased
proliferation and release of cytokines®. These mechanisms inhibit apoptosis of the
tumour cell and promote peripheral T effector cell ineffectiveness®. CTLA-4
(Cytotoxic T lymphocyte-associated molecule-4) is a cell surface molecule
expressed on CD4" and CD8" T cells® which halts potentially autoreactive T cell
activation at the naive stage®. Checkpoint Inhibitors are monoclonal antibodies that
inhibit these pathways to reactivate T cells, enhancing adaptive immune cell function
allowing response to tumor antigens’. Ipilimumab is representative of a growing
panel of such antibodies, and is directed against human CTLA-48. Pembrolizumab
and nivolumab are PD-1-blocking monoclonal antibodies used in metastatic
melanoma and other malignancies®. Atezolizumab and avelumab are PD-L1-targeted
immunotherapies for lung cancer, hepatocellular carcinoma, urothelial cancer, and

merkel cell carcinoma®.

Unprecedented overall survivals (OS) have been reported with immunotherapy in
historically ‘difficult to treat’ cancers, e.g., 52% 5-years OS in metastatic
melanoma'®,34% 3-year OS in advanced non-small cell lung cancer*!. While much
research is focused on biomarkers for treatment efficacy and methods to increase
drug potency?, the microbiome has emerged as an important modifier of the efficacy
of immunotherapy*?. No uniformly diagnostic species correlating with treatment
success has been reported to date®®. In murine models, the germ-free state
significantly decreases the efficacy of certain immunotherapy in cancer models 14 °,
Similarly, antibiotics not only interfere with immunotherapy efficacy'® but also
decrease overall and progression-free survival'’. Gut microbiome abundance of
Ruminococcus and Alistipes was found to enhance response to CpG-oligonucleotide

treated mice, with a Lactobacillus predominant microbiota impairing response®. In
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murine studies, the efficacy of CTLA-4 blockade was linked to T cell responses
specific for Bacteroides (B. thetaiotaomicron or B. fragilis)®. In patients treated with
anti-PD-1 or PDL-1 immunotherapy, higher abundance of certain microbes was
associated with treatment success. Faecalibacterium prausnitzii'®, Akkermansia
muciniphilial’ and Bifidobacterium longum? were associated with treatment
responders in three separate studies. When microbiome composition data were
reanalyzed using the same methodology there was a statistically significant

difference in beta diversity in responders in two out of the three cohorts??,

Immune system stimulation can lead to inflammatory side effects in patients
receiving immunotherapy??. The exact mechanism for this immune toxicity is
emerging. Macrophage-mediated toxicity, baseline low-level self-reactive T cells
production of antibodies by activated B cells 2, and cytotoxic T cells®* are
postulated to be involved. As with many autoimmune disorders, some patients may
have a genetic predisposition to development of drug-related side effects?®. Whether
the development of immune-mediated side effects with use of immune checkpoint
inhibitors correlates with improved antitumor immunity due to greater immunologic

activation is unclear 2.

Serious or life threatening adverse side effects (CTCAE grade I1-1VV, Common
terminology Criteria for Adverse Events v5.0 [31])have been reported to occur in up
to 30% of patients on CTLA-4 and 16% of patients on PD-1 immunotherapy, and in
up to 55% of patients receiving combined treatment with ipilimumab and nivolumab
26 Common toxicities affect the endocrine?’, dermatologic, gastrointestinal,
musculoskeletal, dermatological and neurological systems 2. Many side effects are
self-limiting but fatalities attributable specifically to drug toxicity rather than the
underlying malignancy have been reported?. Early diagnosis of immune checkpoint
inhibitor toxicity with investigations such as endoscopy and CT scan and subsequent
early treatment appear to be beneficial?®. Immunosuppression with glucocorticoids or
other agents is occasionally required*’. Immune-mediated side effects may occur at
any time during treatment. However, cumulative exposure to immunotherapy does
not appear to increase risk of development of side effects®.. Long term

immunological consequences are unknown??,
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Colitis is one of the most common immune-mediated side effect leading to
discontinuation of treatment in 3-25% of patients®. A combination of lack of
regulatory T cell depletion and accumulation of cytotoxic and proliferative CD8 T
cells contribute to immune-mediated colitis 2. The microbiome may also be
involved because a microbiome-dependent subclinical colitis can be induced in
specific pathogen free mice or germfree mice treated with CTLA-4 Ab 8, Similarly,
histopathological signs of colitis-induced by CTLA-4 blockade could also be
reduced by introduction of B. fragilis and Burkholderia cepacia in antibiotic treated

mice 8,

The present study profiles the gut microbiome of a cohort of patients from a single
large tertiary referral cancer centre with stage 4 melanoma that were treated with
immune checkpoint inhibitor therapy. The results show that the abundance of
specific microbial species is linked with response to treatment and development of

side effects.

4.3 Methods

4.3.1 Recruitment

Patients with metastatic melanoma, aged over 18 years, commencing (n=21) or
established (n=16) on immune checkpoint inhibitor treatment in Cork University
Hospital Cancer Centre, Cork, Ireland were recruited to this study. The study was
conducted in accordance with the ethical principles set forth in the current version of
the Declaration of Helsinki, the International Conference on Harmonization E6 Good
Clinical Practice (ICH-GCP). Ethical approval was granted by The Clinical Research
Ethics Committee of the Cork Teaching Hospitals (Cork, Ireland). The study was
conducted from October 2017 to January 2019.

Forty one patients with metastatic melanoma receiving immune checkpoint
inhibitors were identified at weekly multidisciplinary team meetings (MDT) and

subsequently recruited through the oncology outpatient clinics. After giving

234



156
157
158
159
160
161
162
163
164
165
166
167

168
169
170
171

172
173
174
175
176

177
178
179
180
181
182
183
184

informed consent, patients were given a sealed, sterile pack for faecal collection as
well as a detailed patient-adapted standard operating procedure for safe collection of
samples. A baseline pre-treatment faecal sample was collected from each patient
commencing on therapy. Patients who were already on immune checkpoint inhibitor
therapy at the time of study commencement were also asked to provide a faecal
sample. The patients brought the faecal sample to the hospital during a routine
planned appointment as part of their standard of care. Samples were passed in the
morning and kept in cool bags for transfer to the hospital. Patients were met at the
hospital appointment by a co-investigator. Samples were coded and stored
immediately at -80 degrees Celsius for future processing. There were no changes in
the conduct of the study or planned analyses or no adverse and serious adverse

events throughout the study.

Demographic, clinical data and, medication history were obtained by direct
questioning. Data collection of standard clinicopathologic parameters, clinical
outcomes including treatment response, toxicity, duration of response, progression

free survival and overall survival were collected sequentially for each patient.

Patients were stratified into two groups, the treatment response (R) group versus
treatment non-response (NR) group. Treatment response was defined as radiological
stability or decrease of disease burden or disease resolution at six months as defined
by the standardized iIRECIST (Immune Response Evaluation Criteria in Solid

Tumours) criteria®,

Patients were also stratified into groups based on documented immune checkpoint
inhibitor related side effects. Toxicity was graded by oncology clinicians at the time
of occurrence using the standardized National Cancer Institute CTCAE (Common
Terminology Criteria for Adverse Events) v.5 system33, Patients were stratified into
two groups, mild or no side effects (NSE) versus side effects (SE). Patients were
included in the SE group if they met the criteria of having CTCAE grade 3 (severe
adverse event), grade 4 (life threatening or disabling adverse event) or grade 5 (death

related to adverse event) side effects.
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Healthy controls were also obtained from the population to offer a reference
microbiome. These control group were aged between 18-64 with no chronic disease,

on no regular medication and had no antibiotics in the preceding month.

4.3.2 DNA extraction from human faeces

Extraction of total microbial DNA was achieved using the repeat bead beating

technique with modifications as previously described.

16S rRNA gene library preparation and sequencing

Genomic DNA underwent 16s rRNA gene PCR. The 16S rRNA gene was amplified
using primers for the VV3-V4 region; forward,
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCA
G-3' and reverse, 5'-
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATC
TAATCC-3'. The PCR thermocycler protocol was as follows: Initiation step of 98 °C
for 3 min followed by 30 cycles of 98 °C for 30 s, 55 °C for 60 s, and 72 °C for 20 s,
and a final extension step of 72 °C for 5 min. Indexes were subsequently added to
amplicons according to Illumina 16S Metagenomic Sequencing Protocol (Illumina,
CA, USA). Libraries DNA concertation was quantified using a Qubit fluorometer
(Invitrogen) using the ‘High Sensitivity’ assay and samples were pooled at a
standardised concentration. The pooled library was sequenced at Eurofins
Genomics/GATC Biotech (Konstanz, Germany) on the Illumina MiSeq platform
utilising 2x300 bp chemistry.

4.3.3 Bioinformatic and biostatistical analysis

Raw data was imported into R (v3.6.0) for processing and analysis. Paired reads
were quality filtered, trimmed, merged and Amplicon Sequence Variants (ASV)

inferred using the R package dada2 (v1.12.1)%*. Taxonomic classification was
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performed using the RDP Classifier within Mothur in conjugation with SPINGO, a
species-level classifier*®. A confidence cut of 80% was used for taxonomic
assignment. QIIME v1.9.1 and the R package vegan v2.5.6 were used to calculate 3-
diversity metrics®’. B-diversity was visualized via principal coordinates analysis
(PCoA) plots whose coordinates were identified using with the Ape package v5.1.
R-squared (R?) and p-value were calculated using Permutational Multivariate
Analysis of Variance (PERMANOVA) via the R package vegan (v2.4.2).
Differential abundance analysis was carried out using DEseq2 (v1.22.2)%. Genomic
functionality was inferred using PICRUSt2 with the command picrust2_pipeline.py
with default parameters®. Differential abundance of KOs was performed using
DESeq2.

4.4 Results

4.4.1 Patient characteristics and treatment responses

All patients from Cork University Hospital Cancer Centre with malignant metastatic
melanoma established or commencing on immunotherapy during the study period
were considered eligible for recruitment. Forty one patients were enrolled but four
patients were excluded due to frailty or inability to provide samples. Therefore 37
patient samples were analysed. Twenty one patients were commencing on
immunotherapy therapy de novo and 16 patients were established on treatment. All

patients had stage four metastatic melanoma.

By iRECIST criteria®?, 21 patients were classified as immune checkpoint inhibitor
responders (R) (7 de novo and 14 established treatment patients) and 16 as non-
responders (NR) (14 de novo patients and 2 established treatment patients). (Table 1)
The two groups were comparable in terms of median age and included patients on
differing immunotherapy drugs including combination therapy. Seventeen of the
responder group either remained on treatment or had successfully completed their
treatment protocol at time of analysis. The remaining 4 patients in the responder

group developed side effects and had therapy discontinued however still had
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treatment response at 6 months. None of the non-responder patients remained on
therapy at the time of analysis. Ten of the non-responder group had treatment
discontinued due to disease progression (n=9) or protocol (n=1) and a further 5

patients had treatment discontinued due to side effects.

Using the CTCAE v. 5 criteria 33, 11 patients had one or more severe side effects
(SE) (9 de novo patients, 2 established patients) and 26 patients had mild or no side
effects (NSE) (12 de novo patients and 14 established patients). (Table 2). The
median age of patients who developed mild or no side effects was 7.8 years older
than those who suffered severe side effects. There were seven different immune-
mediated conditions recorded in the patient cohort, with three patients experiencing
several side effects concurrently (Table 3).None of the 11 patients who had side
effects remained on immunotherapy but 14 of the 26 patients in the no side effect
category continued treatment at the time of analysis.

Table 1. Demographics of Treatment Responders Versus Non- Responders

Demographics Treatment responders | Treatment non-
(n=21) responders
(n=16)
Mean Age (st deviation) 54(14.5) 57 (10.5)
Sex
Male 9 10
Female 12 6

Type of melanoma

Cutaneous 19 14
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Choroidal 1 1
Unknown 1 0
primary
Gastric 0 1
Median time since 66 months 29 months
diagnosis
Treatment Type
Pembrolizumab | 13 6
Nivolumab 6 6
Pembrolizumab/ | 2 1
Ipilimumab
Nivolimumab/ 0 3
ipilimumab
Treatment ongoing
Yes 15 0
Stopped dueto |5 5
side effect
Stopped dueto |1 0
protocol
Stopped dueto | O 11

disease

progression
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Previous radiotherapy

Yes 4 6
No 17 10
Prior treatment
No 11 9
Short course 6 1
Ipilimumab
Short course 1 0
Ipilimumab/
nivolumab
Dabrafenib/ 1 4
trametinib
Carboplatin 1 0
/gemcitabine
Electro- 1 2
chemotherapy
Antibiotic treatment in
last 6 weeks
No 16 14
Oral cephalexin |1 0
Oral Co- 2 0
amoxiclav

240




Oral Penicillin 1 0
IV Vancomycin | 0 1
Unknown 1 1
antibiotic

Alcohol intake
None 17 9
1-5 units per 2 6
week
5-10 units per 1 1
week
10-15 unitsper |1 0
week

Smoking status
Current smoker |1 2
Ex-smoker 4 4
Non-smoker 16 10

Deaths
Yes 1 13
No 20 1

256
257
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Table 3. Side effects of ICI therapy with attributable medications

Side Effect (CTCAE grade | Number of Attributable medication
3/4) patients
Hypophysitis 3 Pembrolizumab n=2

Pembolizumab/ipilimumab

n=1

Hepatitis 2 Nivolumab/ipilimumab n=1

Ipilimumab/pembrolizumab

n=1
Rash 1 Pembrolizumab
Colitis 4 Nivolumab/ipilimumab n=1

Pembrolizumab n=2

Nivolumab n=1

Neurotoxicity 1 Nivolumab
Cellulitis 1 Pembrolizumab
Diabetic ketoacidosis 1 Pembrolizumab
258
259
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260 4.4.2 Microbiota features associated with therapy outcomes

261  Global microbiome structure as measured by beta diversity differed slightly between
262  melanoma patients and healthy controls (Supplementary figure 1). There was no
263  significant difference in Alpha diversity (a measure of species richness) as measured
264 by observed species, chaol and phylogenetic diversity indices between melanoma
265  patients and healthy controls (Supplementary figure 2 A, B, C). A significant

266  reduction in alpha diversity as measured by Simpson's and Shannon index (a

267  measure of diversity evenness) was observed in melanoma patients relative to

268 healthy controls (Supplementary figure 2 D, E).

269
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Supplementary Figure 1. Principal Coordinates Analysis representation of beta diversity
comparing patients with melanoma versus healthy controls. (A) Weighted Unifrac (B)
Unweighted Unifrac (C) Bray—Curtis dissimilarity (D) Jaccard index. R-Squared and P-value
calculated using Permutational Multivariate Analysis of Variance (PERMANOVA).
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279  Supplementary Figure 2. Bar plots showing the difference in alpha diversity metrics between
280 individuals with melanoma and healthy controls. (A) Observed species index (B) Chaol (C)
281  Phylogenetic diversity (D) Simpson's Diversity Index (E) Shannon index. Statistical testing was
282  performed using Wilcoxon signed-rank test
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Pairwise comparison of beta diversity with respect to response demonstrated that
both the responder group and non-responder group had a significantly different beta-
diversity compared to healthy controls (Figure 1A, Supplementary table 1).
However, there was no significant difference in beta diversity between responders
and non-responders. With respect to side effects, individuals with no side effects
differed significantly compared to healthy controls; however no other pairwise
comparison differed significantly including the observation that individuals with no
side effects did not differ significantly from individuals with side effects. (Figure 1B,

Supplementary table 2)

Alpha diversity did not differ significantly between responders versus non
responders nor between individuals with non-side do effects versus individuals with

side effects (figure 1C, D, Supplementary figure 3, Supplementary figure 4).
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Figure 1. Comparisons of microbiome ecological metrics between immunotherapy outcome
groups. (A) Principal Coordinates Analysis representation of Beta diversity (Bray—Curtis
dissimilarity) between controls, responders and non-responders. (B) Principal Coordinates Analysis
representation of Beta diversity (Bray—Curtis dissimilarity) between controls, no side effects and side
effects. (C) Boxplot comparing alpha diversity (Shannon index) between controls, responders and
non-responders. (D) Boxplot comparing alpha diversity (Shannon index) between controls,
individuals with no side effects and individuals with side effects. Statistical testing of alpha-diversity
was performed using Wilcoxon signed-rank test
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Pairwise PERMANOVA with respect to responds

Weighted unifrac

p-value R squared Adjusted p-value
Controls versus 0.017982 0.043342 0.034466
Responders
Controls versus 0.022977 0.048418 0.034466
non responders
Responders versus | 0.509491 0.025559 0.509491

Non_responder

Unweighted unifrac

p-values R squared Adjusted p-value
Controls versus 0.063936 0.029749 0.095904
Responders
Controls versus 0.041958 0.036071 0.095904
non responder
Responders versus | 0.293706 0.031309 0.293706

non responder

Bray—Curtis dissimilarity

p-values R-squared Adjusted p-value
Controls versus 0.001998 0.035139 0.004496
Responders
Controls versus 0.002997 0.038529 0.004496
non responders
Responders versus | 0.123876 0.03438 0.123876
non responder

Jaccard index

P-values rsquared Adjusted p-value
Controls versus 0.000999 0.031047 0.001499
Responders
Controls versus 0.000999 0.033836 0.001499
non responders
Responders versus | 0.17982 0.031066 0.17982

non responders

307 Supplementary table 1. Pairwise comparisons with respect to response. P-value calculated using
308 Permutational multivariate analysis of variance (PERMANOVA). Multiple correction performed

309  using Benjamini—-Hochberg procedure.
310
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311
312
313

314

Pairwise PERMANOVA with respect to side effects

versus Side effects

p-values R squared Adjusted p-value
Controls versus no | 0.008991 0.047504 0.026973
side effects
Controls versus 0.453546 0.024113 0.68032
side effects
No side effects 0.896104 0.014881 0.896104
versus side effects

Unweighted unifrac

p-values R squared Adjusted p-value
Controls versus no | 0.037962 0.027729 0.113886
side effects
Controls versus 0.235764 0.030116 0.353646
side effects
No side effects 0.896104 0.020161 0.896104
versus side effects

Bray—Curtis dissimilarity

p-values R squared Adjusted p-value
Controls versus no | 0.000999 0.034634 0.002997
side effects
Controls versus 0.367632 0.0263 0.551449
side effects
No side effects 0.967033 0.020871 0.967033
versus side effects

Jaccard index

p-values R squared Adjusted p-value
Controls versus 0.000999 0.030479 0.002997
no side effects
Controls versus 0.133866 0.028443 0.200799
side effects
No side effects 0.935065 0.024676 0.935065

Supplementary table 2. Pairwise comparisons with respect to side effects. P-value calculated
using Permutational multivariate analysis of variance (PERMANOVA). Multiple correction
performed using Benjamini—Hochberg procedure.
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316  Supplementary Figure 3 Bar plots showing the difference in alpha diversity metrics between
317 controls, responders and non-responders. (A) Observed species index (B) Chaol (C) Phylogenetic
318  diversity (D) Simpson's Diversity Index. Statistical testing was performed using Wilcoxon signed-
319  rank test
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Supplementary Figure 4. Bar plots showing the alpha diversity metrics of controls, individuals
with no side effects and individuals with side effects. (A) Observed species index (B) Chaol (C)
Phylogenetic diversity (D) Simpson's Diversity Index. Statistical testing was performed using
Wilcoxon signed-rank test
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In this study we used the denoising DADAZ algorithm to rationalise microbial
sequence data to the single nucleotide resolution in the form of amplicon sequence
variants (ASVs) %. Differential abundance analysis of ASVs was performed using
DESeqg2. We identified 15 ASVs that were significantly differentially abundant
between responders and non-responders while 9 ASVs were significantly
differentially abundant between individuals with no-side effects versus individuals
with side effects (Figure 2). ASVs assigned to the species Ruminococcus bromii,
Bifidobacterium longum, Akkermansia muciniphila, Gemmiger formicilis and
Prevotella copri were found to be enriched in responders relative to non-responders
which is consistent with previous findings 24%-2, In a recent meta-analysis A.
muciniphila and R. bromii were found to be consistently over-represented in
responders?. ASVs assigned to responder associated species including R.bromii and
B.longum significantly more enriched in responders versus healthy controls
(Supplementary figure 5A).However, healthy controls were observed to be enriched
in ASVs assigned to responder associated species versus non-responders, that is, A.

muciniphila, G. formicilis and P. copri (Supplementary figure 5B).

A number of ASVs found to be enriched in individuals with no side effects relative
to healthy controls over-lapped with those enriched in responders including ASVs
assigned to the species A. muciniphila and B. intestinihominis (Figure 2). Of note, an
ASV assigned to the genus Oscillibacter was uniquely enriched in individuals with
no side effects. Further, a number of ASVs were differentially abundant between
individuals with and without side effects and both of these versus healthy controls
(Supplementary Figure 6).
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352

differentially abundant ASVs with respect to side effects. ASVs over-represented in individuals with
no side effects in green. ASVs over-represented in individuals with side effects in red. Statistical

represented in responders in green. ASVs over-represented in non-responders in red (B) Significantly
testing was performed using DESeq2, p-value < 0.05.

Figure 2. Differentially abundant ASVs associated with immunotherapy response and side
effects. (A) Significantly differentially abundant ASVs with respect to response. ASVs over-
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Supplementary Figure 5. Differentially abundant ASVs between controls and responder groups.
(A) Significantly differentially abundant ASVs between controls and responders. (B) Significantly

differentially abundant ASVs between controls and non-responders. ASVs over-represented in
controls in green. ASVs over-represented in non-responders in red. Statistical testing was performed

using DESeq?2, p-value < 0.05.
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Supplementary Figure 6. Differentially abundant ASVs between controls and side effect groups.
(A) Significantly differentially abundant ASVs between controls and individuals with no side effects.
ASVs over-represented in controls in green. ASVs over-represented in individuals with no side effects
in red (B) Significantly differentially abundant ASVs between controls and individuals with side
effects. ASVs over-represented in controls in green. ASVs over-represented in individuals with side
effects in red. Statistical testing was performed using DESeq2, p-value < 0.05.
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Previous studies have identified that the abundance of particular gut microbiota
proteins, represented by gene counts of KEGG orthologues, to be differentially
abundant in responders and non-responders?*. We inferred functional genomic
capabilities of the microbiome composition datasets with the software PICRUSt2 3,
and then DESeq2 was used to identify differential abundant KEGG orthologues
(KOs). A number of KOs were thus found to be differentially abundant between
responders and non-responders as well as between individuals with no side effects
versus individuals with side effects (Figure 3). A galactosyltransferase and
glycosyltransferase were overrepresented in the microbiome of responders relative to
non-responders. These enzymes are involved in the production of
Exopolysaccharides (EPS), a bacterial polymer which in some bacteria has
immunomodulatory properties 3. A number of membrane associated proteins
including methyl—accepting chemotaxis protein IV, type III secretion protein, sensor
histidine kinase EvgS and proteins relating to EPS production were also found to be

enriched in individuals with no side effects.
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individuals with no side effects in green. KOs over-represented in in individuals with side effects in

Figure 3. Differentially abundant KEGG Orthologs (KOs) associated with immunotherapy
red Statistical testing was performed using DESeq?2, p-value < 0.05.

response and side effects. (A) Significantly differentially abundant KOs with respect to response.
KOs over-represented in responders in green. KO s over-represented in non-responders in red (B)

Significantly differentially abundant KOs with respect to side effects. KOs over-represented in
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4.5 Discussion

We identify significant differences in gut microbiota species abundance associated
with both treatment response, and protection against moderate and severe side effects
in patients with stage four metastatic melanoma. There was no major difference in
global ecological structure as measured by alpha and beta-diversity. Consistent with
previous reports, we found a number of taxa which were over-represented in
treatment responders including A. muciniphila. One mechanism by which A.
muciniphila may modulate response is through the production of the purine
nucleoside inosine which can activates T helper 1 (TH1) in an adenosine 2A receptor
(A2AR)—dependent manner*. A. muciniphila has been previously identified to be
negatively correlated with overweight/obese individuals*#¢. However, although not
conclusive, the current data indicates that there is an association between
Progression-free survival and overweight/obese individuals*’-*°, We also identified
ASVs assigned to species which have not been previously reported as over-
represented in treatment responders including Clostridium disporicum,
Ruminococcus torques, Eubacterium desmolans and Barnesiella intestinihominis.
Notably, B. intestinihominis has been demonstrated in mice models to augment the
chemo-immunotherapeutic drug Cyclophosphamide via promoting recruitment of
Type 1 CD8+ T cells and type 1 CD4+ T helper cells to the colon and the restoration
of intratumoral interferon-y (IFN-y) producing gamma delta (y5) T cells °. It was
shown that a consortium of 11 microbes promote the anti-cancer effect of immune
checkpoint inhibitors by promoting the production of CD8+ IFN-y+ T cells®t. Thus
B. intestinihominis may modulate ICI response via a mechanism involving IFN-y

production.

Curiously, in contrast to previous reports, an ASV assigned to Faecalibacterium
prausnitzii, a bacterium usually associated with putative health-promoting properties
52 was elevated in non-responders. However certain strains of Faecalibacterium
prausnitzii cause distinct effects on immune cells when compared to other strains %,
and so the ASV identified may represent strain differences compared to previous

findings.
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Discontinuation of immunotherapy as a result of side effects 2® despite treatment
efficacy is an unfortunate reality for many patients on immune checkpoint inhibitors.
Few studies have examined differences in microbiome composition in patients with
and without side effects. We report, for the first time, to our knowledge, a number of
ASVs as associated with mild or no side effects relative to patients who developed
side effects. Further, while these reports focused on immune checkpoint inhibitor
colitis, our study addressed all side effects associated with immunotherapy. It is
uncertain whether the mechanism of colitis and that for other side effects differs.
Individuals with no side effects were observed to have an increased relative
abundance of an ASV assigned to the Oscillibacter, a genus known to produce anti-
inflammatory compounds and reduce intestinal TH17 cell expansion in mice
models[41]. A recent study reported an enrichment of Oscillibacter in inactive
Crohn’s disease relative to active Crohn’s disease °*. Together this might suggest

that Oscillibacter has a role in preventing immune related side effects.

We identified a number of proteins which were differential abundant between
responders and non-responders as well between side effect groups. We identified
proteins involved in Exopolysaccharides (EPS) biogenesis enriched in both
responders and individuals with no side effects. EPS are polymers produced by lactic
acid bacteria including Lactobacillus and Bifidobacterium. Some EPS types has been
demonstrated to have immune-stimulatory, immune-modulating and anti-
inflammatory qualities “>°°. Furthermore, EPS has been shown to have cytotoxic
affects against cancer cells®. It is possible that EPS molecules can help augment the
actions of ICI while preventing an excessive/aberrant immune response. The other
surface proteins which were found to be enriched in individuals with no side-effects
may also offer mechanistic insight to modulating the immune system in the context

of immunotherapy.

A limitation of the present study is a relatively small cohort size but this is offset by
the inclusion of subjects of the same ethnicity and geographic region. While we used

the validated IRESIST criteria to assess disease state and treatment response at Six
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months®? long-term longitudinal data will be required to identify microbiota

composition linked with overall progression-free survival.

Identification of microbes associated with treatment response and protection against
side effects in patients receiving immunotherapy raises questions about methods of
microbiome manipulation to induce a favourable microbial state. Faecal microbiota
transplant (FMT) is an effective treatment of recurrent and refractory C.difficile
infection® which has led to the investigation of FMT to change the gut microbiome
in mice treated with immunotherapy, with promising preliminary results®’19.20.58,
Recent reports have highlighted the potential of FMT in overcoming resistance in
patients with melanoma receiving immunotherapy®>® However, FMT poses the risk
of transmissible infection ® and the possibility of transfer of inflammatory,
metabolic or behavioural phenotypes 2. FMT using defined microbial consortia, so-
called artificial stool, may represent a safer method of replacing the “missing
microbe”. % Therefore robust, adequately powered trials are also required in patients

receiving immunotherapy to evaluate the best methods of microbiome manipulation
13
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715 5.1 Abstract

716  Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease characterized
717 by the formation of nodules, abscesses, and fistula at intertriginous sites. The skin-
718  gutaxis is an area of emerging research in inflammatory skin disease and is a

719  potential contributory factor to the pathogenesis of HS. 59 patients with HS provided
720  fecal samples, nasal and skin swabs of affected sites for analysis. 30 healthy controls
721  provided fecal samples and 20 healthy controls provided nasal and skin swabs. We
722  performed bacterial 16S rRNA gene amplicon sequencing on total DNA derived

723  from the samples. Microbiome alpha diversity was significantly lower in the fecal,
724 skin and nasal samples of individuals with HS which may be secondary to disease
725  biology or related to antibiotic usage. Ruminococcus gnavus was more abundant in
726  the fecal microbiome of individuals with HS, which is also reported in Crohn’s

727  disease (CD), suggesting comorbidity due to shared gut microbiota alterations.

728  Finegoldia magna was over-abundant in HS skin samples relative to healthy

729  controls. It is possible local inflammation is driven by F. magna through promoting
730  the formation of neutrophil extracellular traps (NET). These alterations in both the
731 gut and skin microbiome in HS warrant further exploration, and therapeutic

732  strategies including fecal microbiota transplant (FMT) or bacteriotherapy could be of

733  benefit.

734
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5.2 Introduction

Hidradenitis suppurativa (HS) is a chronic, debilitating, follicular skin disease
presenting with deep-seated, painful, inflammatory nodules of the axillary,
inframammary, inguinal, and anogenital regions®. These lesions can spontaneously
rupture or coalesce to form painful deep dermal abscesses which often heal with scar
formation. A population prevalence of up to 4% has been reported in the literature!=.
There is a female predominance, with onset often around puberty®*®. Smoking,
obesity are recognised associations, and a genetic predisposition has been
reported*®7. A broad range of comorbidities have been identified in patients with HS
including spondyloarthropathy, metabolic syndrome and inflammatory bowel
disease (IBD), particularly Crohn’s disease®®°. As well as significant morbidity, HS
is associated with increased mortality, in particular due to cardiovascular events,
with increased cancer risk also recorded®!, Depression, anxiety and substance

misuse is also common among its suffererst?13,

The cause of HS is incompletely understood, with follicular occlusion, dysregulated
inflammatory response of cytokines such as tumour necrosis factor (TNF)-a,

interleukin(IL)-1B8 and 1L-17, and an altered microbiota all thought to play a role”*-

18

HS and IBD share common manifestations characterised by sterile abscesses,
scarring and sinus tract formation?®. Similar inflammatory pathways are activated in
Crohn’s disease and HS, with elevated production of the innate immune mediators
IL-1, IL-6, IL-17, IL-23 and TNF-alpha?®-?2, Smoking and obesity are common

associations, and HS and IBD respond to TNF-alpha inhibitor therapy”#-2>,
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Extensive research supports the role of the gut microbiota in IBD and other
inflammatory conditions including rheumatoid arthritis, psoriasis and psoriatic
arthritis®-3L, Although the skin microbiota in HS is an area of expanding research,
the gut microbiota or the ‘gut-skin axis’ in HS deserves greater consideration'#32%,
One study investigated Faecalibacterium prausnitzii and Escherichia coli levels in
patients with psoriasis, concomitant psoriasis and IBD, HS, and concomitant HS and
IBD*. Increased levels of E. coli and decreased levels of F. prausnitzii was noted in
patients with psoriasis. A significant difference in abundance of E. coli or F.
prausnitzii was not noted in patients with HS®, Since an altered gut microbiota has

been associated with various pathophysiologies involving immune dysregulation, it

may play a role in the development of HS.

In this study we tested for an association between microbiota alteration in the skin,
nasal mucosa, and feces and HS. The microbiota across the various niches was

compared to that of healthy controls.
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5.3 Results

5.3.1 Descriptive statistics of the study population

We collected 322 samples including fresh fecal samples, nasal swabs and skin swabs
from 4 different locations including the axilla, inframammary area, buttock and groin
(Table 1). 59 patients with HS were recruited providing fecal samples, skin swabs
and nasal swabs. 30 healthy controls provided fecal samples (Planned 2:1 ratio) and
20 healthy controls provided skin and nasal swabs (Planned 3:1 ratio). Mean body
mass index (BMI) in the HS group was 31.5, and 28.2 in the fecal control group and
28.06 in the skin control group. 4 (6.8%) patients in the HS group had a history of
Crohn’s disease. Of the 59 patients with HS, 18 (30.5%) were Hurley Stage 1
(abscess formation without sinus tracts and cicatrisation), 32 (54.2%) were Hurley
Stage 2 (recurrent abscesses with tract formation and scars) and 9 (15.3%) were
Hurley Stage 3 (multiple interconnected tracts and abscesses throughout an entire

area).

271



788
789
790

791

Fecal
N (patients)

Gender (Female/Male)

Age (mean, range)

BMI (mean, range)

Crohn’s Disease (yes/no)
TNF-a inhibitor therapy
Nasal

N (patients)

Gender (Female/Male)
Age (mean, range)
BMI (mean, range)
Axilla

N (patients)

Gender (Female/Male)
Age (mean, range)
BMI (mean, range)
Groin

N (patients)

Gender (Female/Male)
Age (mean, range)
BMI (mean, range)
Breast

N (patients)

Gender (Female/Male)
Age (mean, range)
BMI (mean, range)
Buttock

N (patients)

Gender (Female/Male)
Age (mean, range)
BMI (mean, range)

HS

59
45/14

37, 21-62

31.5, 19.6-45.0

4/59
9/59

25

22/3

41, 24-54

33, 20.4-45.0

19

16/3

39, 24-54

31, 19.6-45.0

15

12/3

35, 24-52

30, 20.4-44.9

5

5/0

39, 25-52
30.5, 19.6-38.0

4
2/2

36, 28-39
31 30.0-31.6

Controls

30 (fecal)

20 (skin)
20/10 (fecal)
15/5 (skin)
38, 19-62
(fecal)

41, 24-68
(skin)
28.2,18.7-46.3
(fecal)

28.06 20.3-40
(skin)

0/30 (fecal)
0/30 (fecal)

17

12/5

36, 24-68
29

6

2/4

37, 29-52

29, 22.5-39.2

17

12 /5

40, 24-68

29, 20.9-40.0

13

13/0

39, 24-54

28.3, 23.6-40.0

19

14/5

40, 24-68

28, 20.9-40.0

Significance
n/a
NS

NS

0.023

NS

n/a
NS
NS
NS

n/a
NS
NS
NS

n/a
NS
NS
NS

n/a
NS
NS
NS

n/a
NS
NS
NS

Table 1. Subject characteristics: HS subjects and healthy controls. Comparison
of variables between HS cohort and healthy controls. Wilcoxon signed-rank test or
¥2 statistic was used to determine significance.
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5.3.2 Overall structure of the fecal microbiota is altered in HS

We examined the microbiome composition of 59 and 30 fecal specimens from
individuals with HS and healthy controls respectively (eFigure 1). Ecological metrics
showed a difference between the microbiome of individuals with HS and healthy
controls (Figure 1). Alpha-diversity, a marker of microbial species richness or
variation within a sample, was significantly lower in individuals with HS (Figure
1A). This reduction was also observed for four other metrics of alpha-diversity
including Shannon and phylogenetic diversity (eFigure 2). A microbiome separation
in beta-diversity, (a comparison of global microbial composition in all the samples),
between the HS and healthy controls was observed across all metrics tested (Figure
1B) (eFigure 3), noting also less clustering within the HS samples. Hierarchical
clustering replicated and reinforced this separation as seen by the presence of a

cluster composed exclusively of patients with HS (Figure 1C).
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eFigure 1: Taxonomic representation within faecal specimens. Bar plots displaying the relative
abundance of genera within faecal samples. Genera with a relative abundance of less 1% across all
samples grouped into ‘others’ with sequences not classified at the genus level
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Figure 1: Ecological overview of fecal microbiome data. (A) Alpha-diversity. Boxplot comparing
alpha diversity (observed species index) between individuals with HS versus healthy controls.
Wilcoxon signed-rank test was used to calculate p-values (B) Beta diversity. Respective distance
between samples based on their microbiome composition was calculated using unweighted Unifrac
distance. Principal Coordinates Analysis (PCoA) was performed to obtain the coordinates of the first
two PCoA and were plotted. Statistical testing was performed using Permutational Multivariate
Analysis of Variance (PERMANOVA). (C) Hierarchical clustering.The closeness between subjects
based of microbiome composition was calculated using Spearman's rank correlation coefficient.
Hierarchical clustering was performed using the Ward2 method and the results plotted as a
dendrogram. . Statistical testing was performed using Permutational Multivariate Analysis of
Variance (PERMANOVA).
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eFigure 2: Bar plots of alpha diversity metrics regarding faecal samples. (A) Chaol. (B) Phylogenetic
diversity. (C) Simpson's Diversity Index. (D) Shannon index. Wilcoxon signed-rank test was used to
calculate p-values.
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eFigure 3: PCoA representing Beta diversity metrics regarding faecal samples. (A) Weighted
Unifrac. (B) Bray—Curtis Dissimilarity. (C) Jaccard index. Statistical testing was performed using
Permutational Multivariate Analysis of Variance (PERMANOVA).
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We further investigated this cohort by grouping the individuals informed by the
hierarchical clustering that is, control group (control samples, cyan branch, branch
No.1), disease group 1 (cyan branch, branched No.1) and disease group 2 (orange
branch, branched No.2). We found that disease group 2 was composed of
significantly younger subjects than disease group 1 but not the controls (eFigure 4A).
Alpha diversity was lower in disease group 2 compared to the disease group 1 and
the control group (eFigure 4B). There was greater within-group microbiome
variation, evidenced by higher levels of Unifrac distance between samples, within

disease group 2 compared to the other two groups (eFigure 4C).
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eFigure 4: Difference in groups informed by clustering. (A) Bar plot of age differences (B) Bar plots

of observed species. (C) Differences in the Variation in Unifrac distance within groups. Wilcoxon

signed-rank test was used to calculate p-values.
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5.3.3 Differentially abundant ASVs in the fecal microbiome

Microbial amplicon sequencing data can be rationalised in terms of amplicon
sequence variants (ASVs) which allows the data to be resolved down to single-
nucleotide difference34. A number of ASVs were found to be differentially abundant
between the fecal microbiome of patients with HS and healthy controls (Figure 2A).
With regard to log2 fold differences, the ASVs assigned to the taxa Ruminococcus
callidus and Eubacterium rectale were the most enriched in individuals with HS
relative to healthy controls. However, with respect to proportional abundance, the
greatest difference was detected in ASVs assigned to the taxa Streptococcus spp. (an
average relative abundance of 0.19% in the control cohort versus 0.95% in the HS
cohort) and Ruminococcus gnavus (average relative abundance values of 0.01% in

the control cohort versus 0.7% in the HS cohort).
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overrepresented in controls. Positive values indicates overrepresented in individuals with HS (B)
Receiver operating characteristic curves (ROC) (C,D) Top discriminatory ASVs with regard to
discriminating the HS subjects from healthy controls. (C) Mean Decrease Accuracy. (D) Mean

Figure 2: Differentially abundant ASVs and machine learning classification. (A) Bar plot of
Decrease Gini.
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As BMI was significantly different between the groups, the DESeq2 model was re-
run to adjust for BMI (eFigure 5). The differential over-abundance of Ruminococcus
gnavus remained statistically significant in the HS cohort. However, an ASV
assigned to Ruminococcus obeum was revealed to be depleted in individuals with
HS. ASVs were also collapsed to the species level and differential abundance of
species determined with and without BMI as a confounder (eFigure 5). R. ghavus

was retained as being significantly over-abundant in the HS cohort in both analyses.
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eFigure 5: Bar plots of differential abundant ASVs and species in fecal samples. (A) Significantly
differentially abundant ASVs with BMI integrated into the model. (B) Significantly differentially
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abundant species. (C) Significantly differentially abundant species with BMI integrated into the
model. DESeq?2 used to for statistical analysis. ASVs/species enriched in HS samples in red.

ASVs/species enriched in control samples in green.
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Antibiotic usage for the previous year was recorded in the HS cohort. There were no
significant ASVs that were differently abundant between those who had received

antibiotic therapy in the last year and those who did not.

5.3.4 Machine learning identification of HS-related microbiota

members

The machine learning classifier random forest (RF) was employed to test if ASVs
could discriminate the HS patients from the healthy control cohort. The RF classifier
performed reasonably with an area under the curve (AUC) of 0.8458 (Figure 2B). A
number of ASVs identified as discriminatory (i.e. as contributing to the RF model)
were taxonomically assignable to butyrate-producing bacterial species including
Faecalibacterium prausnitzii, Coprococcus eutactus, Coprococcus catus and
Anaerostipes hadrus (Figure 2C). A number of ASVs that we had identified using
the DESeq2 model as being differentially abundant were also identified including

Ruminococcus gnavus and Ruminococcus obeum.

5.3.5 Changes in predicted metabolic function of the fecal
microbiota

Metagenomic functionality was inferred using the algorithm PICRUSt2, which is
based on the metabolic pathways of reference microbiota data to which a test-set of

16S data is compared. Several metabolic pathways were thus predicted to be

differentially abundant between HS and control metagenomes (Figure 3A).
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Metabolic pathways for D-glucarate degradation and D-galactarate degradation,
which are associated with a poor prognosis in CD, were overrepresented in

individuals with HS relative to healthy controls®.
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differential abundant MetaCyc as expressed by difference in mean proportional abundance. MetaCyc
pathways enriched in HS samples in red. MetaCyc pathways enriched in control samples in green.

Figure 3: Differentially abundant metabolic pathways and KEGG orthologs. (A) Bar plot of
(B) Bar plot of differential abundant KOs as expressed by difference in mean proportional

abundance. . KOs enriched in HS samples in red. KOs enriched in control samples in green.

Wilcoxon signed-rank test was used to calculate p-values.
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5.3.6 Ecological structure is altered in nasal and skin microbiome

The overall microbiome composition of nasal and skin samples was typical of what
has been previously described, that is, mainly composed of the genera
Staphylococcus and Corynebacterium (efigure 6). Both nasal and skins swabs
showed a reduction in alpha-diversity in the HS cohort (Figure 4)*¢. However, only
nasal swabs reached statistical significant decrease. This was also true for other
alpha-diversity metrics including Observed species and Chaol but not for Simpson
or Shannon indices (eFigure 7). The number of subjects that contributed samples to
some sites was low, with a low control number, thus the statistical power was
reduced and significance difficult to capture. There was a statistically significant
separation in beta-diversity with respect to axilla, groin, and nasal microbiota
datasets (eFigure 8), showing that different microbiome communities are present at

these body sites.
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eFigure 6: Taxonomic representation within nasal and skin specimens. Bar plots
displaying the relative abundance of genera within nasal and skin samples. Genera

with a relative abundance of less than 0.5% across all samples grouped into ‘others’

with sequences not classified at the genus level.
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Figure 4: Alpha-diversity comparisons across nasal and skin. Bar plots of alpha-diversity
(Phylogenetic diversity) comparing healthy controls versus individuals with HS. Wilcoxon signed-
rank test was used to calculate p-values.
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eFigure 7: Bar plots of alpha diversity metrics regarding nasal samples. (A) Chaol. (B) Phylogenetic
diversity. (C) Simpson's Diversity Index. (D) Shannon index. Wilcoxon signed-rank test was used to
calculate p-values.
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eFigure 8: Beta-diversity comparisons of nasal and skin microbiome. Principal Coordinates Analysis
representation of Beta diversity (Unweighted Unifrac) between individuals with HS versus healthy
controls. Statistical testing was performed using Permutational Multivariate Analysis of Variance.
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5.3.6 Differentially abundant ASVs and metabolic pathways in the

nasal and skin microbiome of HS patients

We identified differentially abundant ASVs in the nasal microbiome and all skin
sites studied (eFigure 9). ASVs were collapsed to the species level and differential
species abundance delineated (eFigure 9). An ASV assigned to Finegoldia magna
had a significantly higher abundance at the groin site in individuals with HS relative
to healthy controls. Furthermore, at the species level, F. magna was more abundant
in HS relative to healthy controls in groin and axilla samples (eFigure 10).
Significantly differentially abundant pathways were found in relation to the nasal

microbiome and one pathway in the groin microbiome (eFigure 11).
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5.4. Discussion

We identified a number of differences in microbiome configuration in fecal and
swab samples from across a number of body sites in individuals with HS compared
to healthy controls. Alpha diversity was lower in subjects with HS across most of
these sites suggesting a reduction in the richness of the gut and skin microbiota
compared to controls. Decreases in alpha diversity in skin, and nasal microbiota have
been previously reported in atopic dermatitis, with conflicting results for the gut
microbiota®”%°, Alpha-diversity has also been observed to be lower in skin samples

from individuals with psoriasis, with even more variable results in the gut*3,

5.4.1 Gut Microbiome in HS

Elevated levels of Ruminococcus gnavus and Clostridium ramosum were among the
greatest differences in relative abundance between patients with HS and healthy
control microbiomes in this study. R. gnavus has been consistently found to be
overrepresented in subjects with Crohn’s Disease and has also been associated with
spondyloarthritis, and irritable bowel syndrome?44+4° R, gnavus has also been
linked to development of eczema and other allergic diseases in infants, thought to be
due to its effect on the host immune system development®’#%, A mechanistic role of
R. gnavus in Crohn’s disease has been experimentally supported namely the
production of a potent proinflammatory polysaccharide which induces the
production TNF-a via interacting with the toll-like receptor 4 (TLR4) of innate
immune cells such as dendritic cells®®. The production of this polysaccharide could

be a contributor to the pathogenesis of HS. It is possible that the diseases that are
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comorbid with HS have a common aetiology, due, in part, to the activity of R.
gnavus. The abundance of C. ramosum has also been reported to be increased in
Crohn's disease and obese individuals?®°L, In a previous study, R. obeum was

strongly enriched in controls relative to individuals with IBD, as seen in this study®2.

We found that pathways related to galactarate and glucarate degradation were more
abundant in the fecal microbiome from individuals with HS. These metabolic
pathways have also been implicated in Crohn’s disease clinical outcome and could
be linked to systemic inflammation. In a recent paired whole exome shotgun
metagenomics study comparing individuals with IBD and healthy controls, immune-
related gene CABIN1 was associated with an increase of D-glucarate degradation®,
Both D-glucarate degradation and D-galactarate degradation were overrepresented in
individuals with Crohn’s Disease with a poor prognosis relative to those with a good
prognosis®. Antibiotics are known to induce a host-mediated elevation in the levels
of galactarate and glucarate in the gut and increased expression of microbial genes
responsible for galactarate and glucarate degradation may be a response to this®.
Mouse model studies demonstrated that antibiotic treatment leads to an increase in
galactarate and glucarate through increased expression of inducible nitric oxide

synthase (iNOS)>.
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5.4.2 Skin Microbiome

In a previous study, Ring et al examined the difference in the skin microbiome
between subjects with hidradenitis suppurativa and healthy controls using skin
biopsies®®. Our analysis corroborates and extends the number of taxa found to
differentially abundant. In particular there is agreement that Peptoniphilus
lacrimalis, Finegoldia magna, Peptoniphilus coxii, Anaerococcus murdochii, and
Anaerococcus obesiensis are more abundant in HS, with a higher abundance of
Cutibacterium acnes in healthy controls. Colonisation and proliferation of certain
strains of C. acnes are thought to play an important role in the pathogenesis of acne
vulgaris®®®’. The depletion of C. acnes in individuals with HS suggests that it does
not play a similar mechanistic role in HS as it does in acne. However, a decrease in
C. acnes may alter the microbial ecological of skin in a manner that promotes HS
pathogenesis. Alpha diversity was reduced in nasal and groin samples. This is also
reflected in findings for atopic dermatitis; however, the corresponding increase in
Staphylococcus aureus typically seen in atopic dermatitis was not detected in these
patients with HS3*%8, Similarly, in psoriasis a reduction in alpha diversity is seen
compared to healthy controls, featuring elevated Streptococcus and reduction in
Propionibacterium that was not seen in this cohort with HS*3. Higher numbers of
bacteria with pathogenic capability namely F. magna was noted in the current study.
F. magna has been shown to have immune modulating activities; in particular it can
promote the formation of neutrophil extracellular traps (NET). These NETS feature
prominently in HS lesions and their abundance is correlated with disease severity, as
measured by Hurley staging®. Thus F. magna may contribute to HS disease biology

by stimulating NET formation. F. magna has also been shown to activate mast cells
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and basophils which in turn produce proinflammatory histamine and cytokines®%6L,
In a recent study F. magna was demonstrated to activate proinflammatory
neutrophils mediated by virulence factors protein L and FAF (F. magna adhesion

factor)®2,

5.4.3 Potential impact

There is a lack of high-quality evidence for the best treatment options in HS®. A
multidisciplinary approach with a combination of medical and surgical treatment is
often needed, combined with lifestyle measures: smoking cessation and weight
loss™®. Antibiotics remain the initial treatment for most patients, with TNF-alpha
inhibitors in those who fail to respond*®. The use of antibiotics in HS, for their anti-
inflammatory rather than anti-microbial effect, may play a role in the reduction in
alpha-diversity seen in this study; however we detected no significant difference in
ASVs in those who received antibiotics in the preceding year compared to those who
did not. Microbiota based therapies may have potential benefits in HS, in particular
targeted microbial supplementation to increase diversity and richness. Furthermore,
the selective depletion of certain microbes such as F. magna and R. gnavus, which

may play a pathogenic role, may prove another target for evolving therapies.

We have characterised the gut and skin microbiota in patients with HS compared to
healthy controls. We have provided evidence for a possible microbial link between

IBD and HS, with R. gnavus abundant in both conditions. The identification of
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particular taxa that may contribute to HS pathogenesis, such as R. gnavus and F.

magna, could inform future microbiota-based therapeutic strategies.

5.5. Material and Me thods

5.5.1 Study Population

Adult patients with a confirmed clinical diagnosis of hidradenitis suppurativa made
by a consultant dermatologist in two tertiary referral centres in Ireland were invited
to participate in the study. Ethical approval was obtained (Cork Research Ethics
Committee and Tallaght University Hospital Ethics Committee). Exclusion criteria
included topical or oral antibiotic usage in the preceding four weeks. Data including
age, gender, smoking status, weight, height, body mass index, presence of co-
morbidities and severity of disease (Hurley Score) were recorded®. Healthy adult
controls were recruited from the general population, and were age and gender

matched.

5.5.2 Sample collection

Fresh (<24 hours) fecal samples were provided by patients and controls and stored at
-80°C prior to microbial DNA extraction. In patients with HS, skin swabs (DNA-
free) were taken from affected sites (axilla, inframammary, inguinal and
perineal/buttocks) using a buffer solution with firm swabbing for 30-60 seconds.
Affected sites varied by number and location in HS patients. Participants did not

bathe for at least 24-48 hours prior to taking swabs and were asked to not apply anti-
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perspirants or emollients on the skin in that time. Skin swabs were taken from
corresponding sites in controls (axilla, inframammary, inguinal and
perineal/buttocks) using the same technique. Nasal swabs were also taken from both

groups.

5.5.3 Microbial DNA extraction

Microbial DNA was extracted from stool samples using the repeated bead beating
method as previously described, with some modifications.(Ghosh et al., 2020) Nasal
and skin swabs were extracted using QlAamp UCP Pathogen Mini Kit (Qiagen,

Hilden, Germany) as per manufacturer’s instructions.

5.5.4 Library Preparation and 16S rRNA gene sequencing

Total community DNA extracted from clinical samples underwent 16S rRNA gene
PCR. The 16S rRNA gene was amplified using primers for the VV3-V4 region;
forward,
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCA
G-3' and reverse, 5'-
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATC

TAATCC-3'.(Klindworth et al., 2013)

Fecal microbial genomic DNA was amplified using Phusion High-Fidelity DNA
Polymerase (Thermo Scientific, Massachusetts, USA) with the PCR thermocycler

protocol as follows: Initiation step of 98 °C for 3 min followed by 25 cycles of 98 °C
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for 30 s, 55 °C for 60 s, and 72 °C for 20 s, and a final extension step of 72 °C for 5

min.

Microbial genomic DNA extracted from skin swab samples was amplified using
MTP Tag DNA Polymerase (Merck KGaA, Darmstadt, Germany) with the PCR
thermocycler protocol as follows: Initiation step of 94°C for 1 min followed by 35
cycles of 94°C for 60 s, 55 °C for 45 s, and 72 °C for 30 s, and a final extension step

of 72 °C for 5 min.

A subsequent indexing PCR was carried out to add unique sample-specific DNA
barcodes to the generated amplicons in accordance with the Illumina 16S
Metagenomic Sequencing Protocol (Illumina, California, USA).(Illumina, n.d.)
Libraries DNA concentration was quantified using a Qubit fluorimeter (Invitrogen)
using the ‘High Sensitivity’ assay and samples were pooled at a standardised
concentration.(lllumina, n.d.) The pooled library was sequenced on the Illumina

MiSeq platform (Illumina, California, USA) utilising 2x300 bp chemistry.

5.5.5 Bioinformatic and biostatistical analysis

The majority of the analysis was performed in R (v3.6.0). Paired reads were quality
filtered, trimmed, merged and Amplicon Sequence Variants (ASV) inferred using the
R package dada2 (v1.12.1)%*. Taxonomic classification was performed using the
RDP Classifier within Mothur in conjugation with SPINGO, a species-level
classifier®. A confidence cut of 80% was used for taxonomic assignment. QIIME
v1.9.1 and the R package vegan v2.5.6 were used to calculate B-diversity metrics®.

B-diversity was visualized via principal coordinates analysis (PCoA) plots whose
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coordinates were identified using with the Ape package v5.1. R-squared (R?) and p-
value were calculated using Permutational Multivariate Analysis of Variance
(PERMANOVA) via the R package vegan (v2.4.2). Differential abundance analysis
was carried out using DEseq?2 (v1.22.2)%. Random forest was performed in R using
the package randomForest (v4.6.14) Genomic functionality was inferred using

PICRUSt2 with the command picrust2_pipeline.py with default®’.

5.5.6 Identification of potential microbial DNA contamination

Because skin samples are considered low biomass with respect to bacterial load, we
included protocols to mitigate the potential impact of contamination. Reagents used
were selected based on their quality of being putatively microbial DNA free
including the QIAamp Ultraclean production Pathogen Mini Kit (Qiagen, Hilden,
Germany) and MTP Taq DNA Polymerase (Merck). A negative control was run
within the same sequencing batch to detect potential contamination from reagents.
This negative control was dominated by taxa typical of contamination including
Sphingobacterium and Hydrogenophilus(eFigure12)®. Furthermore the negative
sample had atypically low DNA concentration (0.521ng/ul) relative to extracted
clinical samples as measured by the qubit (eTable 1). Other non-contaminant taxa
were found in the kit control but we posit that this is due to index swapping®. We
further utilized the R package decontam to detect contaminating ASVs’. Using the
‘frequency method’ we identified 15 ASVs that reached the threshold (eTable 2).
These ASVs contributed only modestly to the samples, median=0,
mean=0.01881(eFigure 13). Filtering these ASVs from the ASV table had no effect

on differential abundance analysis.

303



Kit control — genus representation
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1160  eFigure 12: Taxonomic representation within mock extraction. Bar plots displaying

1161 the relative abundance of genera within the kit control.
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Etable 1| DNA concentrations of samples post library preparation.
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Phylum Class Order Family Genus Species
Seq_990 Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia Blautia luti
Seq_1261 Cyanobacteria Chloroplast Chloroplast Streptophyta unclassified unclassified
/Chloroplast
Seq_1280 Actinobacteri Actinobacteri Actinomycetales Micrococcaceae Kocuria unclassified
a a
Seq_1380 Proteobacteria Alphaproteob Sphingomonadales Sphingomonadaceae Sphingomonas unclassified
acteria
Seq_1535 Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus Lactobacillus
delbrueckii
Seq_1749 Proteobacteria Gammaproteo Pseudomonadales Pseudomonadaceae Pseudomonas Pseudomonas
bacteria rhizosphaerae
Seq_1870 Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Wautersiella Wautersiella falsenii
Seq_1880 Proteobacteria | Alphaproteob Rhizobiales Xanthobacteraceae Xanthobacter unclassified
acteria
Seq_2214 Candidatus_S unclassified unclassified unclassified unclassified unclassified
accharibacteri
a
Seq_2897 Proteobacteria | Alphaproteob Rhizobiales Methylobacteriaceae Methylobacteri Methylobacterium
acteria um aquaticum
Seq_2924 Firmicutes Erysipelotrich Erysipelotrichales Erysipelotrichaceae unclassified unclassified
ia
Seq_3029 Firmicutes Bacilli Bacillales Bacillaceae_1 Bacillus unclassified
Seq_3470 Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Tannerella Tannerella forsythia
Seq_4315 Acidobacteria Acidobacteria Blastocatella unclassified unclassified unclassified
_Gp4
Seq_4461 Proteobacteria Epsilonproteo Campylobacterales Campylobacteraceae Campylobacter Campylobacte
bacteria ureolyticus
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Etable 2| Taxonomic assignment of ASVs identified as contamination.
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1170  eFigure 13: Decontam frequency graph. X axis equals concentration of sample before normalization.
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5.5.7 Storage of sequencing data

Datasets related to this article can be found at
https://www.ebi.ac.uk/ena/browser/home, hosted at European Nucleotide Archive,
accession number

PRJEB43835. (https://www.ebi.ac.uk/ena/browser/view/PRJEB43835, Accessed

03/26/2021.)
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6.1 The role of microbiology in cancer research in the 215t

century

For much of human history, infections by microbes were the leading causes of death.
Microbes such as Mycobacterium tuberculosis (Tuberculosis), influenza (flu) and
Plasmodium falciparum (malaria) have killed innumerable individuals throughout
human existence. However, research into microbes in the 20" century allowed us to
combat infectious diseases through medical innovations including antibiotics and
vaccines. This is particularly the case in developed countries, with developing
countries still suffering considerably from infectious agents®. In the second half of
the 20" century and during the 21% century, non-communicable diseases including
cancer and heart disease have become the leading cause of mortality. Cancer is now
the leading cause of death in high-income countries?. This shift is due to many
factors including lifestyle changes such as diet and a longer lifespan. Cancer research
is obviously a major effort within the overall field of biomedical research, with

billions of US dollars being spent a year worldwide®.

Research into the relationship between human biology and the resident human
microbiota has experienced a renaissance over the past 15 years. As an aspect of this
endeavour, a complex model describing the interaction between cancer and the
microbiota is currently being formed. Knowledge of this interaction has informed
practically all areas of cancer research including oncogenesis, diagnostics,
prognostics and therapeutics. Thus, research into microbes may be integral to
combating and hopefully eliminating cancer in the 21% century, saving even greater

millions of lives above those saved in the 20" century.

319



1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

6.2 Cateqgorization of areas of cancer research

One might divide cancer research areas into three categories.

320

1)

2)

3)

The cause of cancer: Key to combatting cancer is understanding the
underlying mechanisms by which normal healthy cells transform into cancer
cells. This includes knowledge of all factors modulating the risk of this
phenomenon, predominantly environmental and genetic risks. A high
proportion of cancers are believed to be avoidable through risk aversion
measures. Bearing in mind the wisdom of the Dutch philosopher Desiderius
Erasmus - 'prevention is better than cure', comprehensive models of the
origin of cancer would enable strategies to reduce cancer incidences.
Diagnostics and prognostics: Quick, cheap, sensitive and specific tests are
needed to identified individuals with cancer and to determine the likely
course of disease progression. Early detection of certain cancers such as
colon, liver and lung cancer can improve survival rates*. Furthermore, many
cancers have identified pre-cancer lesions from which the develop including
Barrett’s Oesophagus and colonic polyps which are the precursors of
oesophageal adenocarcinoma and colorectal cancer, respectively.
Stratification of individuals with precancerous lesions into those who are
likely and are not likely to develop cancer is needed to save lives.
Therapeutics: The presence of cancer in a population is all but inevitable.
Although a significant proportion of cancer related deaths are avoidable
through the modification of risk factors, cancer will arise in population.
Furthermore, the elimination of environmental risk factors for cancer such as

smoking, or obesity does not seem likely in the near future. Even with our
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current arsenal of cancer therapeutics, the survival rate of many cancers
remains poor. The overall 5-year survival rate for pancreatic cancer and
oesophageal cancer is <7% and <20% respectively®>®. This is particularly the
case if cancer has metastasised, known as distant disease or distant

metastasis.

I contend that the contents of this thesis provide arguments and evidence for the

contributory role of microbiota research into all three areas.

6.2.1 The cause of cancer and the microbiota

The question “What is the cause of cancer?” is a captivating question for researchers
and non-researchers alike. In modern molecular biology, oncogenesis involves the
Darwinian natural selection of somatic mutations within somatic cells’. Mutated
cells may evolve to acquire the phenotypes known as the Hallmarks of Cancer®®. It
Is important to recognise that the fitness associated with a mutation, somatic or
otherwise, is dependent on the environment in which it occurs’®!!, Cells in a healthy
tissue environment are under purifying selection'?. It is therefore integral to consider
the changes to the tissue environment in which these mutations occur, because
change to a tissue environment may itself be a major driver of cancer'®,
Accumulation of mutations with age, as well as age related changes to the tissue
microenvironment, explain why old age is the strongest risk factor for cancer
development. What are the other factors which modulate the generations of somatic
mutations and changes to tissue microenvironment? In this thesis, the microbiota is
considered as such a factor. It may be important to distinguish two microbiotas
which influence cancer biology: the gut microbiota and the intratumoral bacteria
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specific to the cancer tissue. The gut microbiota contains approximately 97% of the
bacterial cells found in the human body*3. Due to its metabolic range and size, it can
exert an influence all tissues in the body through communication with the immune
system and release of metabolites into the bloodstream. Increasing number of reports
describe the existence of an intratumoral microbiome!#6. Theses microbiomes may

act locally to modulate the tumour microenvironment.

In chapter one of this thesis, | provided a comprehensive discussion of the role of
microbes in mutational mechanisms. The mechanism by which colibactin producing
E. coli generates mutational signatures is supported by the most robust evidence.
However, future studies will need to investigate the global structure of the
microbiota and how it relates to the mutational portrait of cancers rather than
individual microbes and their related mutational mechanism. Such research would
hopefully allow researchers discover microbially driven mutational mechanisms in a
more systematic manner rather than one microbe, one metabolite, one mutational

signature at the time.

Beyond initiation of cancer evolution though mutational mechanisms, the microbiota
can drive tumorigenesis through mechanisms that alter the tissue microenvironment.
Another way of looking at this question is, how might the microbiota influence the

purifying selection that somatic cells are under?

Shanahan & O'Toole hypothesize that a difference in microbial load and content may
in part explain the differences in the rates of cancers between the proximal gut (small
intestine) and distal gut (large intestine)’. This hypothesis has been recently
supported by work by Kadosh et al*®. The phenotype expressed by mutations in

Trp53 (the gene that encodes p53 in mice) varied from tumour-suppressive to
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oncogenic depending on the tissue environment. In particular Kadosh et al
demonstrated that, in the context of WNT-driven intestinal cancer mouse models,
p53 had a pro-oncogenic effect in the distal gut while it exerted a tumour suppressive
effect in the foregut Such a switching between genetic functionality was found to be

dictated by microbiota-derived gallic acid*®

Chronic inflammation increases the risk of cancer ,with 30% of cancers incidences
being linked to chronic inflation!®. Environmental factors such as tobacco smoking
promote cancer in part by promoting chronic inflammation. Microbial causes of
inflammation included Helicobacter pylori and hepatitis B virus (HBV) or C (HCV)
which promote the development of gastric cancer and hepatocellular carcinoma,
respectively?®2L. Inflamtion can be regarded as a pro-carcinogenic environment for
cancer development. Many diseases characterised by chronic inflammation are
associated with an increased risk of cancer. Ulcerative colitis, pelvic inflammatory
disease and celiac disease are linked to increases in colorectal cancer, ovarian cancer,
and intestinal lymphoma respectively??24, Current models of the pathogenesis of
these inflammatory diseases include, to varying degrees, the microbiota playing a

role2®>?7,

In chapter 5 of this thesis, | describe changes in the skin and faecal microbiota that
are linked to hidradenitis suppurativa. Individuals with hidradenitis suppurativa have
an increased risk for a variety of cancers. Relevant to this thesis, individuals with
hidradenitis suppurativa have a reported increased risk of colorectal cancer of
~45%728, Individuals with HS have a higher rate of IBD and in particular Crohn’s
Disease relative to the general population. The prevalence of IBD in the general

population is 0.3% and 0.5% for Crohn’s disease and ulcerative colitis, respectively,
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1525  while in the HS population the rates are 0.8-2.5% and 0.8—1.3% for Crohn’s disease
1526  and ulcerative colitis, respectively. Individuals with Crohn’s disease have an

1527  increased risk of colorectal cancer (~40% increase) and small bowel cancer (~1000%
1528 increase)?®3°. Microbiome features associated with HS and Crohn’s, both shared and
1529  otherwise, may at least in part explain this increase in cancer risk. We found

1530  Ruminococcus gnavus, a microbe commonly found to be enriched in individuals
1531  with Crohn’s disease, to be enriched in individuals with HS. Ruminococcus gnavus
1532  has been demonstrated to have pro-inflammatory activities. Thus, particular

1533 incidences of colorectal cancer could be explained using a model involving

1534  microbially-induced inflammation. Such models have been experimentally

1535  supported. Lung adenocarcinoma development was found to be promoted by lung
1536  microbiota driven inflammation through the activation of interleukin-17 and

1537  interleukin-23 producing y& T cells®. Such findings will have to be replicated in
1538  other geographical settings and with larger cohorts. Furthermore, methodologies
1539  which offer a more in depth interrogation of the gut microbiome namely shotgun
1540  metagenomic sequencing should be employed. There is a growing selection of

1541  methods which enable the engineering of microbiome features including faecal
1542  microbiota transplant, phage therapy, bacteriocins and dietary medication®>34. Such
1543  strategies are being developed to treat inflammatory bowel diseases®. One could
1544  envisage the opportunity to take advantage of such efforts in order to treat HS. For
1545  example the development of a phage based therapeutic strategy to target

1546  Ruminococcus gnavus with the purpose of treating IBD may be repurposed to treat

1547 HS.

1548
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6.2.2 Diagnostic and prognostic potential of microbiota data

Certain microbial signatures that are correlated with specific cancers hold the
potential to be exploited for diagnostic and prognostic purposes. Currently available
methods to detect colorectal cancer include the faecal occult blood test which allows
non-evasive detection. Colonoscopy in conjunction with biopsy collection are used
as more comprehensive yet more invasive forms of CRC detection. A microbiome-
based test could replace or, more likely, complement such procedures. Flemer et al
identified an enrichment of taxa that typically colonize the oral cavity in individuals
with polyps and CRC?®. These results were supported by work by Thomas et al who
found an increase in the abundance of oral species in individuals with CRC relative
to healthy controls®’. Using machine learning classifiers on oral and/or stool
microbiome data, a number of studies have demonstrated that individuals with CRC

can be distinguished from control cohorts®6-3°,

In our study described in Chapter 3 we established that mucosal biopsies derived
from different areas of a single excised tumour harboured largely the same
microbiota and were similar to undisease tissue from the same individual. This might
suggest that samples taken during colonoscopy from the colon for microbiome
analysis would be equally informative regardless of the location from which the
sample was taken. However, we did find certain microbes enriched on tumour
samples relative to non-diseased tissue. In particular Fusobacterium nucleatum was
found to be enriched. F.nucleatum has been identified as predictive within these
models. Thus, it is possible that the predictive power of samples derived from non-

tumour samples may be reduced.
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The identification of individuals that will develop cancer is a key strategy in early
detection and prevention. As discussed in preceding chapters, individuals with
Barrett’s Oesophagus have a 10-fold to 55-fold higher risk of developing
oesophageal adenocarcinoma. However only about 0.1%-1% of individuals with
Barrett’s Oesophagus go on to develop OAC. Thus the question arises, what are the
biological mechanisms that determine progression of Barrett’s oesophageal to
oesophageal adenocarcinoma? Furthermore, can we predict those individuals with
Barrett’s oesophageal disease that will go on to develop oesophageal
adenocarcinoma? Biomarkers in the form of genomic and epigenetic including p53
expression, DNA-methylation changes, copy number instability and clonal

diversity*-43,

Changes in the oesophageal tract may predict defined histological progression along

the oesophageal adenocarcinoma sequence.

In Chapter 2, we defined a number of differences in microbial features between
clinical groups within the oesophageal adenocarcinoma sequence. Pertinent to the
above discussion we found that, with respect to biopsy samples derived from the
gastro-oesophageal junction, an enrichment occurred of Fusobacterium
necrophorum in dysplastic and neoplastic tissue relative to normal stratified
epithelium and metaplastic tissue. The relative/absolute abundance of Fusobacterium
necrophorum may thus be predictive of the transformation of metaplastic tissue to
dysplastic and neoplastic tissue. However, the cross-sectional nature of the study
design in chapter 2 limits what one can infer with regard to the microbiome
dynamics during the oesophageal adenocarcinoma sequence. For example, the

abundance of Fusobacterium necrophorum may simply increase in parallel with
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histological transformation. Longitudinal studies are required to provide greater
predictive power using microbiome data when it comes to transformation of

metaplastic tissue.
6.2.3 The role of the microbiota in cancer therapeutics

The use of microbes in the treatment of cancer is an ancient endeavour. A treatment
attributed to the Egyptian physician Imhotep (~2600 BCE) involved causing an
infection to reduce tumours (swellings)**. In 1891, William B. Coley injected heat-
killed streptococcal organism [sic] and Serratia marcescens (Coley's Toxin) into
individuals with cancer with the hope of eliciting an anti-tumorigenic immune
response®. This treatment demonstrated some level of success with a >10-year
disease-free survival in ~30%%. Thus, this not only the first demonstration of
immunotherapy but also the first (recorded) example of microbially directed

immunotherapy

The microbiota is now considered an important modulator of immune checkpoint
inhibitor (1CI)-based therapeutics. In chapter 4 of this thesis, we described the
difference between the faecal microbiota of responders versus non-responders and
individuals with no-side effects versus individuals with side effects, with regards to
ICI, in an Irish cohort. With respect to responders, there was notably an overlap in
taxa found to be associated with responders between our study and previous studies.
Inter-individual variation in gut microbiome composition is strongly influenced by
geography*®-#8, Thus, the reproducibility of response associated taxa is strengthened
by the fact the data come from geographically distinct locations. Functional genomic
features have failed to reveal a similar consistency. In the study described in chapter

4, microbiome functional features associated with response included those involved
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in exopolysaccharide synthesis. Exopolysaccharides have been reported to have
immunomodulatory activity. In chapter 4 | also explored the relationships between

the faecal microbiome and ICI induced side-effects.

Data derived from microbiome studies can be used to inform and enhance ICI
therapeutics. In a broad sense one can change the microbiota of an individual to that
corresponding of those of patients who responded to ICIs. Early-stage clinical trials
regarding the use of FMTs in ICls therapy has shown preliminary promise*®. The
use of single microbes in the form of probiotics such as Bifidobacterium to
complement ICI therapy is being explored®->2, The introduction of living bacteria
may not be even necessary. In chapter 4 we reported that Akkermansia muciniphila
was associated with individuals who did not exhibit side effects when treated with
ICI. In mouse models, the introduction of pasteurized A. muciniphila or Amuc_1100
(Type 1V pili protein and agonist to Toll-like receptor 2) attenuated azoxymethane
induced colitis and colon carcinogenesis®***. This anti-inflammatory effect was
reported to be achieved though effecting a reduction in infiltrating macrophages and
CD8+ cytotoxic T lymphocytes in the colon® . Flagellin derived from E. gallinarum
was shown to be an immunostimulant by interacting the toll like receptor 5°°.These
studies demonstrate that abiotic microbial derived materials may augment ICI

therapy.
6.2.3.1 Cancer vaccines

No fields of productive scientific research happen in isolation from society at large.
Currently, there is a global pandemic caused by Severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). Vaccines can be argued to be the single greatest

innovation in medical history as measured by lives saved. Vaccines are being
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employed to tackle the current pandemic and are seen as the most promising avenue
to exit this pandemic. These vaccines have been developed as a result of great
scientific effort backed by appropriate funding. Such an endeavour would hopefully
have spinoffs to other biomedical fields including cancer research in the same
manner that space exploration has lent itself to society-changing spinoff

technologies.

Therapeutic cancer vaccines are currently under development. These are distinct
from prophylactic cancer vaccines such as those directed against hepatitis B virus
and human papillomavirus, which are the causes of hepatocellular carcinoma and
cervical cancer, respectively®®. Therapeutic cancer vaccines are designed to target
antigens of two general classes: tumour-associated antigens and tumour-specific
antigen®’. Tumour-associated antigens are self-antigens that are either preferentially
or abnormally expressed in tumour cells. Tumour-associated antigens are expressed
to some extent on normal healthy cells; thus, vaccines developed against these
antigens encounter the problems of low immunologically reactivity and (in the cases
where they do work) autoimmune reactions®’. Vaccines developed against tumour-
specific antigen, antigens expressed exclusively by tumours, hold the potential to

train the immune system to selectively destroy tumour cells.

A mutated variant of isocitrate dehydrogenase is commonly identified in
astrocytomas, a type of brain cancer and is presented on the major histocompatibility
complex (MHC) class 11°8. Such an antigen can be defined as a ‘shared neoantigen’
as it is a tumour-specific antigen which is shared across tumours from many
individuals®. Recent vaccines against this antigen have proven safe and preliminary

effective in phase | clinical trials®®. Therapeutic cancer vaccines could work in
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conjunction with other therapeutics, namely ICls. Indeed, several studies have
explored the possibility of this synergistic interaction and their results have shown

promise®0-62,

Intratumoral bacteria may provide tumour-specific antigens which vaccines could be
developed against. In recent work by Kalaora et al, melanoma cells were found to
present bacterially- derived peptides on human leukocyte antigens (HLAS)%. As
there is growing evidence for a resident tumour microbiome, a range of cancers may

be targeted by developing vaccines for tumour specific bacteria.

Using bacterially derived tumour-specific antigen as targets for vaccines faces a
number of obstacles. First, one must ensure that such bacterial antigens are truly
tumour specific. Previous studies regarding intratumoral bacteria reported taxa such
as Fusobacterium and Staphylococcus that are readily found elsewhere in the
body#3, Thus, a vaccine targeting these taxa are likely to have off-target effects. In
the context of situations where vaccines are used to augment IClI, the unintended

targeting of responder-associated taxa could possibly have detrimental outcomes.

Furthermore, why does the immune system attack this non-self-entity without
therapeutic intervention? Like cancer cells, bacterial cells are under evolutionary
pressure to evade the immune system. Fusobacterium nucleatum has been
demonstrated to supress immune surveillance by the binding of its surface protein
Fap2 to the TIGIT receptor of tumour-infiltrating lymphocytes®4. Thus, attenuating
the immune suppressive activity of the intratumoral microbiota may be crucial to

harnessing the full potential of cancer vaccines.

Finally, the issue of contamination comes into focus when dealing with the

intratumoral microbiota. In chapter 2, 3 and 5 I carefully applied methodologies to
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mitigate the effect of contamination on the microbiome data under study. The
intratumoral microbiome of almost all cancers surveyed would necessarily be
derived from samples with a lower biomass than oesophageal biopsies, colonic
biopsies, and skin swabs. Studies reporting taxa which compose the intratumoral
microbiome report taxa indicative of contamination such as Pseudomonas,
Sphingomonas, Shewanella, and Photobacterium, even though these studies seek to
address contamination*52, Still other studies do not give sufficient care to the issue
of contamination. A number of recent reports have published data that one would
regard as clear indications of contamination. Thyagarajan et al reported that, in terms
of relative abundance, Ralstonia was the dominant bacterial genus in biopsies in
derived from breast tumours and healthy breast tissue®. In another study which
aimed to define the microbiome of three adipose tissue deposits as well as the liver
and plasma of morbidly obese individuals, the authors went so far to propose “...
environmental bacteria—and/or their fragments—that are present in food and water
can accumulate in the MAT[mesenteric adipose tissue] and may affect blood glucose
regulation"®. A more in-depth critical analysis to rule out contamination is needed
before one can start discussing the potential mechanistic implications of the presence

of microbes in certain tissues.

Further methodological improvements need to be developed and implemented to
address the issue of contamination. Negative controls in the form of mock
extractions may not be suitable to detect reagent related contamination. DNA
extraction protocols using the silica-based method, such as those included in
commercially available QIAGEN Kits, can be limited in their efficacy by very low
quantise of starting template DNA. Although a biopsy sample might contain

relatively small microbiota levels, this would usually have an abundance of human
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1718 DNA. Thus, a clinical sample used in a DNA extraction may be more prone to

1719  suffering from contamination. The use of carrier DNA has been shown to increase
1720  DNA extraction efficacy and has been utilized to address contamination in relation to
1721  ancient DNA analysis®’. Thus, carrier DNA may enhance the ability of negative kit

1722  controls to detect contamination.
1723

1724

1725 6.3 Concluding remarks.

1726  The research undertaken in this thesis hopefully contributes to our understanding of
1727  the relationship between the microbiome and cancer. Chapter 2 offers one of the
1728  most in-depth studies describing the oesophago-gastric mucosal microbiome in the
1729  context of the oesophageal adenocarcinoma sequence. Information gleaned may
1730  provide avenues to develop diagnostic tools but also to provide the associations
1731  needed to inform mechanistic studies. In chapter 3, we further strengthen the

1732  hypothesis that colorectal cancer is associated with a change along the whole colon,
1733  and it is not restricted to the tumour. However, taxa such as F. nucleatum can be
1734  observed to be differentially abundant between tumour and matched healthy tissue.
1735 In chapter 3 we identified a number of taxa associated with response to ICI. While
1736  this thesis presented multiple novel findings, the global thesis findings also

1737  corroborate other studies which were carried out in other geographical settings.
1738  Taken together this suggests a level of robustness in the microbiome alterations
1739 identified. In chapter 5 we identified microbiome changes which may explain, in

1740  part, the inflammatory phenotype observed in HS while also providing a
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1741

1742

1743

1744

1745

1746

microbiome-based explanation for the comorbidity between HS and Crohn's disease.
Further, due to the link between inflammation and cancer, the difference alteration in
the microbiome of individuals with HS may explain the increase relative risk of
cancer. As is with the nature of science, these chapters open more questions which

will need to be answered by future studies.
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Appendix 1-Comparative exome analysis of mutational
processes in colorectal cancers from patients harbouring

two divergent gut microbiota types.
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7.1 Abstract

Like other cancers, colorectal cancers (CRC) develop through a process that involves
Darwinian selection acting upon somatic mutations in cancer cells. There is
mounting evidence of a significant role for the colonic microbiota in the
development, progression and treatment of CRC. Previously we defined six
microbiota subtypes whose abundance was differentially associated with CRC or
healthy controls. To explore the microbiota as an environmental driver of mutation,
CRC exome sequence data was generated from six subjects, three from each of two
distinct colonic microbiota subtypes dominated by either phylum Firmicutes or
genus Prevotella. No significant differences in the somatic exonic mutational
landscape were identified between the microbiota-defined groups. However, there
was a non-significantly higher mutational burden and greater representation of
mutational signature 5 in the Prevotella microbiota subtype tissue samples, which

may reflect an underlying biological mechanism.
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7.2 Introduction

Colorectal cancer kills almost 700,000 people a year worldwide, making it the 4™
leading cause of cancer morbidity.! As for all cancers, the development of CRC is an
evolutionary process enabled by somatic mutation.? Tomasetti and Vogelstein
showed that a major source of mutations (~66%) is stochastic DNA replication
errors, 3# and indeed hydrolytic deamination of 5-methylcytosine, tautomeric
mispairs and anionic mispairs are seemingly inevitable aspects of DNA biology.>8
Nonetheless, dietary and lifestyle variables including wholegrain consumption,
alcohol, calcium intake, smoking and consumption of processed meat and red meat
are other plausible sources of mutagens, either directly or as a consequence of gut

bacterial processing.*®-11

The human microbiota is increasingly recognised as playing a role in human health
and disease.*? The greatest density of microbiota resides in the colon with an
estimated 9x10%° bacteria per gram of wet stool.*® A growing body of evidence
implicates the colonic microbiota in CRC development.!* Using hierarchical
clustering techniques, we previously identified six mucosal-associated bacterial co-
abundance groups (CAGs) that are differentially represented in CRC patients
compared to controls.*>!® These CAGs resemble previously described
enterotypes.1”18 Categorization of the gut microbiome into subtypes as described by
CAGs or enterotypes allows for the separation/stratification of cohorts into defined
groups. These groupings enable study design to interrogate the microbiota

configuration as a whole rather than focusing on individual elements such as taxa.

The mutagenic influence of the microbiota occurs through multiple mechanisms. It
is reasonable to hypothesize that microbiota subtypes may contribute varying
degrees of risk/protection by varying the extent to which they promote or protect
against somatic mutation. Gastrointestinal microbe-derived genotoxins such as
cytolethal distending toxin (produced by an array of gram-negative bacteria within
the gamma and epsilon classes of the phylum Proteobacteria) and colibactin
(produced by pks+ strains of Escherichia coli) induce double stand breaks.?*?* The
immune system may be stimulated by microbes in a manner that leads to DNA

damage. Enterococcus faecalis-generated superoxide radicals can activate
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macrophage cyclooxygenase-2 expression leading to the production of genotoxic
trans-4-hydroxy-2-nonenal, which in turns causes chromosomal instability (CIN). %
Finally, intestinal microbes have been shown to influence DNA damage repair.?
Helicobacter pylori and enteropathogenic E. coli both down-regulate the expression
of mismatch repair proteins including MSH2 and MLH1, thus compromising host
genome integrity.'®?7-2® The gut microbiota may modulate stochastically generated

DNA aberrations by influencing their repair.

The characteristics of the mutations in a cancer genome are indicative of the
mutational mechanisms which caused those mutations. For example, C>T
transversions at CpG dinucleotides are indicative of spontaneous deamination of 5-
methylcytosine.®® Thus, interrogation of the cancer genome can yield information on
the different mutational mechanisms which acted upon the cancer genome during its
evolution. Recent developments in methods, namely those designed to extract so-
called mutational signatures, allow an in-depth interrogation of the cancer genome

regarding mutational mechanism.3!

In this pilot study, we performed whole exome sequencing on paired cancer/ normal
colorectal biopsy samples. Samples were derived from 6 individuals, 3 individuals
from each of the two well categorized microbiota configurations, Firmicutes subtype
and Prevotella subtype.'>® We investigated the genomic architecture of these two
groups in terms of somatic nucleotide variants (SNVs) and copy number alterations
(CNA). The data-sets are a preliminary resource for studying the relationship
between the gut microbiome and host genome stability while providing supportive
impetus for further investigations of the microbiota-host genome interaction in

cancer.
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7.3 Results

We previously identified consortia of gut microbial taxa whose abundances co-vary,
labelled co-abundance groups (CAGs). ¢ Such definition of the structure of the
colonic microbiota allows reduction of dimensionality in microbiota research. We

have thus used this methodology to categorise individuals into microbiota subtypes.

The relative abundance of these CAGs within the colonic mucosal microbiota
distinguished colorectal cancer cases from those of controls.’® With explicit
relevance to this study, ‘Firmicutes 1° CAG was over-represented in healthy
individuals while the ‘Prevotella’ CAG was over-represented in individuals with
colorectal cancer. We sought to determine if subjects with cancer belonging to these
two microbiota subtypes had relevant mutational difference in their genomes. We
identified 3 individuals whose colonic mucosal microbiota was dominated by either
‘Firmicutes 1’ CAG and 3 dominated by CAG ‘Prevotella’ CAG (Figure 1). These
individuals were chosen to represent the most typical bacterial taxonomic profiles for
the respective CAGs. Such a selection likely compensates for the limiting effect of

small numbers through minimises within group variance.
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Figure 1| Mucosal microbiota composition in CRC patients of divergent microbiota subtype.
Data shown are proportional abundance of the indicated bacterial taxa in the colonic mucosal
microbiota averaged across the 3 subjects per microbiota subtype. Bar plot of the relative proportions
of indicated taxa at the phylum (panel A) and genus level (panel B) in each microbiota subtype group.
Box plot summing the contribution of members of the genera of Prevotella (panel C) and Firmicutes
(panel D).
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Mutational burden in tumours from different microbiota subtypes

Tumour mutational burden (TMB), the total number of mutations per coding
megabase of a tumour genome, is recognised as an indicator of cancer history as well
as a prognostic marker, particularly in relationship to immunotherapy.®?-3® Recent
studies have identified the gut microbiota as a modulator of immunotherapy.36-3°
Given these links, we sought to examine the relationship between defined microbiota
subtypes and TMB. We analysed whole exome sequence data from paired
tumour/normal tissue. Somatic mutations were called, filtered and quantified per
exome. We performed a bivariate analysis on TMB versus microbiota subtypes
taking into account sequencing depth. Although this analysis revealed a higher TMB
in subjects from the Prevotella group relative to the Firmicutes 1 group, the
difference did not reach statistical significance due to low sample number and

within-subtype variation (Figure 2.A).
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Base—pair substitutions
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Figure 2| Tumour mutational burden and proportional representation of base substitutions
between microbiota subtypes. A| Box plots of the abundance and distribution of the TMB with in
each microbiota subtype. Y- axis shows absolute count of somatic base substitutions within the
exome. B| Bar plots indicate the relative abundance of each base substitution type [note: In
accordance with the Catalogue of Somatic Mutations in Cancer (COSMIC) system all substitutions
are referred to by the pyrimidine of the mutated Watson-Crick base pair].*°
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Microbiota associations of mutational spectra and signatures

To generate an overview of the genomic dynamics of the tumours, we identified and
compared the mutation spectra of the samples in this study (Figure 2.B). Overall the
mutational spectra obtained were typical of previously described spectra for CRC.%
C>T transitions were slightly more represented in the Firmicutes 1 subtype tumours
while T>G transversions were more common in the Prevotella group.With respect to
the six classes of base pair substitutions, and the microbiota subtypes, we identified

no gross difference in mutation spectra.

We fitted the mutational matrices of the samples to previously defined COSMIC
mutational signatures (Figure 3.A) limiting them to signatures previously described
in CRC which are known to act in a clock-like manner (signature 1 and 5).314
Further, we identified the fit of the model of contributions and the residuals (Figure
3.B). The relative contributions of the mutational signatures were somewhat typical
of previous reports.®4! We did not detect any statistically significant difference
between the association of the microbiota subtypes and the fitted COSMIC
mutational signatures. Mutational signature 5 showed a non-statically significant

increased relative frequency in the Prevotella group.
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Figure 3: Proportional representation of Mutational signatures and cosine similarity between
original and reconstructed mutational profiles. A| Bar plots of relative contribution of fitted
COSMIC mutational signatures. B| Bar plots showing the level in which the samples’ mutational
matrices can be recreated with fitted signatures.
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We sought to cluster samples based on the contributions of the defined COSMIC
mutational signatures to the mutational profile of the samples. In brief, we measured
the ability of COSMIC Mutational Signatures to explain the 96 trinucleotide
mutation matrix of the tumour genomes by calculating cosine similarity. Cosine
similarity was used to perform complete clustering and the results are visualized on a
heat-map (Figure 4). This clustering provides an easy method to visualize the
similarities between samples with regard to their mutational portrait. Samples
clustered based on the number of somatic variants present. Clustering based on
mutational signature did not co-segregate with clustering based on microbiota

subtype.
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Figure 4| Heat map of pairwise cosine similarity between mutational profiles. The degree to
which the 96 trinucleotide mutation count was attributed to the COSMIC mutational was obtained
through calculating Cosine similarity. Hierarchical clustering of the cosine similarity was performed
using complete linkage clustering. Colour bars to left of figure indicate Firmicutes 1 (yellow) and
Prevotella (green).
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Copy number variation is independent of microbiota subtype

Aneuploidy is a feature of the majority of CRC genomes and has been identified as a
prognostic marker.*? The R package Sequenza was used to infer copy-number
alteration from the exome sequencing data. CNV did not statistically vary with

respect to microbiota subtype (Supplmenetary Figure 1).
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Genome-wide view copy number alterations

1 2 3 4 5 6 7 8 9 10 n 12 13 14 15 16 17 18 19202122

| : : : : : : : : : : : : : R B
1 1 : I : [ : : ol I | N - I : : HL I : P
2 1 [ ] I 1 — (] B Il IR B T :
1 - ______I : - I
o-m 1l | 1 110 I 1 H O O EE R [ | : O )| —

EM516

EM537

N R N T : : T
o 1 : |l : [ ] 1 I [ | S | i | [ i : 0l I i [N IFrm:

EM552

2] —— 5 f | —— | e
1 e e S s [ S S R —— e ——— | - .
a1 : : = : : : P 1 I T N1 TR HE |

EM564

] | T Y A 0 T R R
2 [ - : o — o— H i o |-| Do —
1 m— “—-l -_.-—

o—| [ B . - 1 [ B | S 1 1 [ B I-I LRI dnEcraE -

EM565

| i : [ i RN 1 IR I 5| i oiniin i ||||55--

EM585

Supplementary figure 1 | Genome-wide view of CNA
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Discussion

This analysis set out to test for interaction between the genetic architecture of
colorectal cancer and the neighbouring colonic mucosal microbiota. We investigated
the relationship between various features of the cancer genome including TMB,
mutational signatures and copy number alterations. Although none of these features
separate to an extent that reached significance, we did observe suggestive trends for
of microbiota-host-genome interaction. Most notably was the trend towards higher

TMB in the Firmicutes subtype.

Recent studies have clearly identified the intestinal microbiota as modifying the
efficacy of cancer immunotherapy. %63 The increased abundance of certain taxa
(Ruminococcaceae , Faecalibacterium, Bifidobacteria, Alistipes, Enterococci,
Collinsella) and higher microbiota diversity have been linked with positive response
to immune checkpoint blockade treatment. Neoplasms develop through the
accumulations of somatic variants, particularly in driver genes, which stimulate the
evolution of healthy cells to cancer cells. It is possible that individuals that have a
dominance of the Prevotella CAG in their gut microbiota experience increased
mutagenic stress on their colonic cells and a correspondingly increased level of
TMB. Thus the Prevotella CAG would be overrepresented in individuals with CRC.
Somewhat paradoxically, provided a sufficient mutational effect, these individuals
may have a better response rate to cancer immunotherapy because of higher level

production of neoantigens.

None of the COSMIC signatures we identified exhibited a bias of representation
with regard to microbiota defined groups. An increased contribution of signature 5 to

the mutational portrait was observed (though was not significant) in patients whose
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tumour microbiota was dominated by the Prevotella CAG. The most prominent
feature of mutational signature 5 is a transcriptional strand bias for T>C substitutions
at the ApTpN context. A current model for the origin of mutational signature 5
involves deletion of the FHIT gene which leads to the down regulation of Thymidine
Kinase 1 (TK1) expression and a reduction in thymidine triphosphate pool levels.*?
Such a decrease in of dTTP levels would lead to an increased ratio of dUTP:TTP
thereby increasing the likelihood of dUTP misincorporation (U:A) in place of TTP.
An abasic site may then arise during the base excision repair (BER) pathway. Certain
translesion polymerase activity could incorporate guanine or a cytosine across from
an abasic site, ultimately leading to T>C or a T>G base substitution during
subsequent S phase. Notably, the intestinal microbiota is known to influence the
activity of various host enzymes and proteins. In one mouse study examining the
differential activity of various enzymes between germ free and normal mice, it was
found that the presence of a microbiota reduced the activity of thymidine kinase by
50%.% Thus, it is reasonable to postulate that the metabolic activity of the intestinal
microbiota influences genome instability such as that induced by FHIT deletion. In
terms of candidate mechanisms, it is also possible that certain microbiota
compositions have specific or greater magnitude of influence upon the regulation of
expression of particular colonic cell proteins. Individuals in the current study whose
microbiota was dominated by Prevotella may have experienced greater dysregulation
of genome integrity leading to an increased prevalence of COSMIC mutational

signature 5.

This study provides suggestive evidence for the interaction between the gut
microbiota and host genome stability. The gut microbiota is readily accessible to

observation as well as intervention. The interrogation of the gut microbiota has been
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shown as a credible method for diagnosing CRC.*>645 |t could also be possible to
derive added information from the microbiota with regard to the genomic
architecture of a tumour. This data would inform the choice of further testing as well
as therapeutics such as immunotherapy. Moreover, provided there is a direct
causative effect of the microbiome in shaping the cancer genome and thus
oncogenesis, one could devise strategies to intervene and alter the microbiota in a
prophylactic manner. Finally, cancer therapeutics strategies have been devised that
target DNA damage response (DDR).*6-*8 Gastrointestinal microbes are known to
localise to CRC tumours as well as to interact with host DDR.1%4951 |t is

conceptually possible to use microbes as a DDR centric therapeutic.

7.4 methods

7.4.1 Recruitment and sample acquisition

Biological samples were obtained as described in previous studies.*>*® In brief,
individuals were recruited from a cohort scheduled to undergo colonic resection at
Mercy University Hospital, Cork, Ireland. Exclusion criteria included no personal
history of Irritable Bowel Syndrome or Inflammatory Bowel Disease and no
treatment with antibiotics in the past month. Neoplasms and healthy samples were
dissected from surgical restricted colon. Samples were placed in 3 mL RNAlater,

stored at 4°C for 12 h and then stored at —20°C post-surgery.

7.4.2 DNA extraction and whole exome sequencing (WES)
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Genomic DNA was extracted from biopsies using the AllPrep DNA/RNA kit from
Qiagen as previously described®®. DNA concentration was quantified by measuring
the 260/280 nm and 260/230 nm ratios with an ND1000 spectrophotometer
(Nanodrop Technologies, ThermoFisher). Exome capture was performed using
Sureselect Human All Exon V5. Pair-end reads of length 101bp were produced on

the Illumina HiSeg4000 platform (mean/median 100X raw data coverage).

7.4.3 WES pipeline: somatic SNV calling

WES reads were aligned to the reference human genome GRCh37 using BWA
MEM-mem.>? Using the Picard tools (v.2.6.0), BAM files were sorted and duplicates
marked thereby producing analysis-ready files (Supplementary figure 2). The
somatic variant caller Mutect2, within the Genome Analysis Toolkit (GATK, v3.7)
suite of tools, was used to call somatic variants by comparing BAM files from
tumour and matched normal samples.® The confidence of somatic variants was
weighted within the calling, using the Single Nucleotide Polymorphism Database
(dbSNP, v138) and the Catalogue of Somatic Mutations in Cancer (COSMIC,
v54).54% SNVs were further filtered on the criteria that at least 3 reads supported the
variant in the tumour sample and at least 10 reads covered the variant in in both

tumour and normal samples.
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Variant Allelic Frequency distributions
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EM516_TN EM537_TN EM542_TN

60 60 80

50 50 50

40 40 40

30 30 30

20 20 20

10 10 10
2 j
2
T o -l = 0 - ol = | -
<
E 0.0 0.2 04 0.6 0.8 0.0 0.2 04 0.6 08 0.0 0.2 04 0.6 0.8
>
s EM564_TN EM565_TN EM585_TN
o 60 60 60
4

50 50 50

40 40 40

30 30 30

20 20 20

10 10 10

0 -l e 0 1— al 0 | I

0.0 02 0.4 0.6 038 0.0 0.2 0.4 0.6 038 0.0 02 0.4 0.6 0.8

Somatic Variant Frequency
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7.4.4 Mutational signature analysis

Mutational signature analysis was performed using the R package
MutationalPatterns (version 1.6.1).°® Known COSMIC mutational signatures which
occur in CRC were fitted to the mutational profile of the samples. Trinucleotide
counts within COSMIC mutational signatures were normalized by the number of
times each trinucleotide context was observed in the exome region relative to the

whole genome.
7.4.5 Copy number variation

Copy number variation was derived from the exome sequence data using Sequenza.®’
Further, tumour purities and ploidies were calculated using Sequenza with default

parameters.
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8.1 Abstract

The targeted sequencing of the 16S rRNA gene is one of the most frequently
employed techniques in the field of microbial ecology, with the bacterial
communities of a wide variety of niches in the human body have been characterised
in this way. This is performed by targeting one or more hypervariable (V) regions
within the 16S rRNA gene in order to produce an amplicon suitable in size for next
generation sequencing. To date, all technical research has focused on the ability of

different V regions to accurately resolve the composition of bacterial communities.

We present here an underreported artefact associated with 16S rRNA gene
sequencing, namely the off-target amplification of human DNA. By analysing 16S
rRNA gene sequencing data from a selection of human sites we highlighted samples
susceptible to this off-target amplification when using the popular primer pair
targeting the VV3-V4 region of the gene. The most severely affected sample type
identified (breast tumour samples) were then re-analysed using the V1-V2 primer

set, showing considerable reduction in off target amplification.

Our data indicate that human biopsy samples should preferably be amplified using
primers targeting the VV1-V2 region. It is shown here that these primers result in on
average 80% less human genome aligning reads, allowing for more statistically

significant analysis of the bacterial communities residing in these samples.
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8.2 Introduction

This communication highlights off-target amplification of human DNA in 16S rRNA
gene sequencing, detailing the circumstances necessary for this to occur, and the
effects on ensuing research. Such artefacts are not a universal problem, and only
occur in samples containing an overwhelming ratio of human to bacterial DNA. This
leaves stool samples and skin samples which contain less than 10% and 90% human
DNA respectively, unaffected, but can critically impact on analysis of human biopsy
samples, where over 97% of the DNA present is of human origin *. Given the
increased use of human biopsies from a number of body sites in microbiome
research 2, this communication serves as a timely and, to our knowledge, unique
methodological warning and remedy, particularly as only one mention of this issue

can currently be found in the literature ®.

Currently, comparisons of primer pairs and the hypervariable regions they target in
the 16S rRNA gene have focused exclusively on differing levels of taxonomic
resolution and specificity "8, The degree to which bacterial resolution is lost to the
production human-derived amplicons has, so far, received no attention. This is
because workflows for the analysis of 16S rRNA gene sequencing data typically
remove reads falling too far from the mean or median sequence length, or if they are
not classified taxonomically as originating from bacterial DNA. This is effective in
ensuring that the presence of amplified human DNA does not have any impact on
downstream analysis. Unaddressed is the fact that in a sequencing experiment
yielding a finite amount of data (~13.5 Gb on a typical Miseq run °), a significant
proportion of these can be wasted due to this off target amplification. This affects

sequencing studies in two ways:
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e Prospectively: If this loss of data is anticipated, fewer samples can be
sequenced on a given sequencing run, adding to the expense which is

already prohibitive for smaller labs.

e Retrospectively: If this loss if data is not anticipated, insufficient
bacterial reads may be yielded to accurately characterise the samples
being sequenced, particularly if attempting to identify the prevalence

of rare taxa between different treatment groups.

Here, we show that the most commonly-used primer set for 16S rRNA sequencing,
targeting the V3-V4 hypervariable regions, is particularly susceptible to this off-
target amplification, while another commonly used primer set, targeting the V1-V2
primer region, shows almost no off-target amplification, as outlined in Figure 1
below. While this off-target amplification does not appear to affect research using
stool or skin swab samples, we would urge all groups carrying out metataxonomic
analysis of low microbial biomass human biopsy samples using high throughput

sequencing to use the V1-V2 primer set in future.
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Figure 1| Proposed mechanism for off target amplification of mammalian DNA by V3-V4

primers, as opposed to V1-V2. (A) DNA extracted from human biopsies is known to contain large
proportions of human DNA. In these circumstances V3-V4 degenerate primers, which also align to
region in human mitochondrial DNA as shown can bind and amplify human DNA. There is no such
alignment for V1-V2 degenerate primers. (B) Off target amplification significantly

alters the 16S rRNA gene sequencing profile of a sample.
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7.3 Materials/Methods

7.3.1 Sample Collection

Breast tissue was collected from women undergoing breast surgery at Cork
University Hospital, Cork, Ireland. Breast tumour core-biopsies were aseptically
resected using an Achieve 14G Breast Biopsy System (Iskus Health, UT, USA). The
specimens were transported in sterile PBS to the lab, where they were flash-frozen
and kept at -80°C until further processing. DNA from the specimens was purified
following the protocol and reagents provided in the Ultra Deep Microbiome Prep

(Molzym, GmbH & Co. KG., Bremen, Germany) and eluted in 100 pl of Tris-HCI.

7.3.2 DNA Purification

Samples were processed and DNA purified following the procedures specified in
protocols listed in Table 1. In all cases, DNA was eluted in Tris-HCI buffer and

stored at -20°C until further analysis.

Sample DNA extraction strategy

Breast: Tumour and Normal Molzym Ultradeep Microbiome (Molzym,

Bremen, Germany)

Oesophageal biopsies AllPrep DNA/RNA Mini Kit (Qiagen, Hilden,

Germany) with modifications °.

Skin Swab samples QIAamp UCP Pathogen Mini Kit (Qiagen,

Hilden, Germany)
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Stool samples

Repeated bead beating method as previously

described, with modificationst?

Table 1. Samples and corresponding DNA extraction strategy.

7.3.3 16S rRNA gene sequencing Library Preparation.

Genomic DNA was amplified by PCR with primers targeting the hypervariable V1-

V2 region or the V3-V4 region of the 16S rRNA gene. Table 2 details the primers

sequences (underlined) included for compatibility with the lllumina 16S

Metagenomic Sequencing Protocol (Illumina, CA, USA).

Region | Name F/R Sequence
S-D-Bact-
5'-TCG TCG GCA GCG TCA GAT GTG TAT AAG
0027-b-S- | F
AGA CAG AGM GTTYGATYM TGG CTC AG
vi-v2 |20
1 S-D-Bact-
5’-GTC TCG TGG GCT CGG AGA TGT GTA TAA
0338-a-A- | R
GAG ACA G GCT GCC TCC CGT AGG AGT
18
S-D-Bact-
V3-V4 5" TCG TCG GCA GCG TCA GAT GTG TAT AAG
0341-b-S- | F
15 AGA CAG CCT ACG GGN GGC WGC AG
17
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S-D-Bact-
5'GTCTCGTGG GCT CGG AGATGT GTATAA

0785-a-A- | R
GAG ACA G GAC TACHVG GGT ATCTAATCC
21

Table 2. Primers used for 16S rRNA gene sequencing analysis.

For Breast Tumour and Normal Adjacent samples, amplification was performed in
50 pl reactions, containing 1X NEBNext High Fidelity 2X PCR Master Mix (NEB,
USA), 0.5 uM of each primer, 8 pl template (5-15 ng/ul) and 12 ul nuclease free
water. The thermal profile included an initial 98 °C x 30 sec denaturation, followed
by 25 cycles of denaturation at 98 °C x 10 sec, annealing at 55 °C x 30 sec for V3-V4
or 62°C x 30 sec for V1-V2 and extension at 72 °C x 30 sec. Plus a final extension at
72 °C x 5 min. Amplification was confirmed by running 5 ul of PCR product on a

2 % agarose gel, by visualisation of a ~310 bp band for V1-V2 and ~460 bp band for

V3-V4

Faecal microbial genomic DNA was amplified using Phusion High-Fidelity DNA
Polymerases (Thermo Scientific, Massachusetts, USA) with the PCR thermocycler
protocol as follows: Initiation step of 98 °C for 3 min followed by 25 cycles of 98 °C
for 30's, 55 °C for 60 s, and 72 °C for 20 s, and a final extension step of 72 °C for 5

min.

Oesophageal biopsies and skin swab samples microbial genomic DNA was
amplified using MTP Taq DNA Polymerase (Merck KGaA, Darmstadt, Germany)

with the PCR thermocycler protocol as follows: Initiation step of 94°C for 1 min
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followed by 35 cycles of 94°C for 60 s, 55 °C for 45 s, and 72 °C for 30 s, and a

final extension step of 72 °C for 5 min.

An index PCR was performed to add sample specific DNA barcodes to sample
amplicons in accordance with the Illumina 16S Metagenomic Sequencing Protocol
(Illumina, California, USA)®. Libraries DNA concertation was quantified using a
Qubit fluorometer (Invitrogen) using the ‘High Sensitivity’ assay and samples were
pooled at a standardised concentration'®. The pooled library was sequenced on the

[llumina MiSeq platform (Illumina, California, USA) utilising 2x300 bp chemistry.

7.3.4 16S rRNA sequence analysis

The quality of the paired-end sequencing data was visualised using FastQC
v(0.11.9), and trimmed using Trimmomatic v(0.39) ensuring a minimum average
quality of 25. Reads were then imported into R environment v(3.6.3)!’ to be resolved

into Amplicon Sequence Variants by the DADA2 package v(1.12).

7.3.5 Contamination Control

In all samples a contamination control strategy was implemented in keeping with the
RIDE checklist as proposed by Eisenhofer et al'®, incorporating aseptic techniques
and a variety of negative controls from different stages of the sample-to-sequence
data process. Retrospective contamination assessment and removal based on
sequencing data from negative controls was also performed following published

guidelines®®.
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7.3.6 Retrospective Bioinformatics based removal of human

amplicons

Sequencing reads aligning to the human genome (GRCh38) within the fasta file
generated by DADA2 were identified using bowtie2?°. To confirm reads mapped to
the human genome were not erroneously aligned bacterial reads, all human aligning

reads were classified with Mothur?, using the RDP database v(11.4) as a reference.

7.3.7 Statistical analysis and data visualisation

All statistical analysis was carried out in the R environment, using the following

libraries: Phyloseq v(1.30), Vegan v(2.5.6), ggplot2 v(3.3.0), reshape2 v(1.4.3).

7.4 Results and Discussion

All three sampled biopsy sites where an overwhelming ratio of host DNA was
expected (breast, breast tumour and oesophageal) showed significant off target

amplification of human DNA when amplified using the V3-V4 primer set (Figure 2).
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Figure 2| The scale of the problem of off-target amplification. % of sequencing reads produced by
Miseq 2 x 300 bp sequencing of amplicons produced by primers targeting the V3—V4 regions shown
to align to the human genome.
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This was not seen when sequencing samples with lower levels of human DNA, such
as skin swabs and stool samples. An average of 34.1% of all Amplicon Sequence
Variants (ASV) detected in normal breast tissue samples were shown to align to the
human genome GRCh38 using bowtie2. This included the most prevalent ASV,
which was identified further using BLAST as Homo sapiens haplogroup H8
mitochondrion, complete genome (Accession no. MN986463.1) with an E-value of
7e-138 and 100% identity. In the breast tumour samples, 77.2% of all ASV’s
detected aligned to the human genome, with the most prevalent ASV again being
identified as Homo sapiens haplogroup H8 mitochondrion, complete genome
(Accession no. MIN986463.1) with an E-value of 7e-138 and 100% identity. This
situation was identical in Oesophageal biopsies, with a 55.6% of ASVs aligning to
the human genome (Homo sapiens haplogroup H8 mitochondrion, complete genome
(Accession no. MN986463.1) with an E-value of 7e-138 and 100% identity) . The
skin swab samples showed a much lower level of amplification of human DNA, but
these reads aligned to chromosomal DNA, most frequently Homo sapiens
chromosome 17, clone RP11-646F1, complete sequence and were present in very

low levels.

While human contamination is a very common problem in amplification-free
shotgun metagenomic sequencing strategies 22, it is under reported as an issue for
16S rRNA gene sequencing, due to the use of bacteria/archaea specific primers.
However, degenerate primers are routinely used for 16S rRNA sequencing 23. This
increases coverage, in terms of the number of 16S rRNA sequences matched by at

least one primer, but also allows for off target amplification of non-bacterial DNA.
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Figure 1A shows that the VV3-V4 primers align to a region within the human

mitochondrial DNA. We show here that when the ratio of host:bacterial DNA is

overwhelming, human mitochondrial DNA can be amplified by primers targeting the

16S rRNA gene region. To ensure the validity of the results, reads identified as

aligning to the human genome using Bowtie2 were classified using the Mothur %

classifier trained on the RDP database. In all cases the reads identified as aligning to

the human genome could not be classified when screened against the RDP database

as shown in Table 3 below.

Sample % reads unclassified at % reads unclassified at
Kingdom Level Phylum level

Oesophageal 99.5373235 0.4626765

samples

Normal adjacent 98.867576 1.132424

samples

Tumour samples 98.710027 1.289973

Skin samples 99.8588468 0.1411532

Table 3. Summary of Mothur output when classifying reads identified as aligning to

the human genome by Bowtie2.
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The most heavily affected sample type in our study (breast tumour tissue) was
reanalysed by performing a pairwise comparison of samples amplified with the V3-

V4 and V1-V2 primer sets (Figure 3).

Looking initially at the rarefaction curves produced by the sequencing data
corresponding to the previously mentioned paired V1-V2 and V3-V4 primer pair
amplified breast tumour sample there is a clear difference between the two groups.
This is done by plotting new species against number of reads per sample. Figure 3A
below shows that the distribution of samples in this 2D plane appears to be
stochastic prior to the removal of human reads. Figure 3B, following removal of
human reads, shows clearly that samples amplified with the VV1-V2 primer pair
consistently yield more observable species, a greater number of reads per sample,
and a plateauing of the rarefaction curve which suggests sufficient sampling depth is

available for accurate characterisation.
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Figure 3| Rarefaction curve generated by plotting observed species vs read depth on a per
sample basis. (A) Rarefaction curve prior to removal of human genome aligning reads. (B)

Rarefaction curve following removal of human genome aligning reads.
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The community structure in samples amplified with V1-VV2 primers was visually
similar to those amplified with VV3-V4 primers(Figure 4A) and no bacterial family
was found to be significantly elevated using one primer set over the other as per
Wilcoxon signed-rank test, once p-values had been corrected for multiple testing
using the FDR method (Supplementary table 1). There was also no significant
difference in terms of Shannon diversity (Figure 4B), indicating choice of primers
did not have any adverse effect on the downstream results. Of considerable interest
to any groups carrying out low biomass research in the future, is the huge
discrepancy in the number of reads yielded once human contamination had been
filtered out. As can be seen in Figure 4C, samples amplified with primers targeting
the V1-V2 region have a consistently and significantly higher number of ASVs per

sample following the removal of ASV’s aligning to the human genome.
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Figure 4| Pairwise comparison of matched samples using primers targeting the V1-V2 and V3-
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samples. (B) Average Shannon Diversity comparison between samples amplified using V1-V2
primers (red) and V3-V4 primers (blue). (C) Percentage of total sequencing reads aligning to human
genome. In both (B) and (C) statistical testing is performed using Wilcoxon signed-rank test.
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7.5 Future Perspectives

Third generation sequencing technologies, such as those produced by Oxford
Nanopore Technologies and Pacific BioSiences are now being utilised in 16S rRNA
gene sequencing experiments. The Pacific BioSciences SMRT platform has seen the
greatest promise in this regard with the implementation of “Circular Consensus
Sequencing” in conjunction with denoising algorithms, allowing for the production
of long reads of high quality?*. Earl et al showed that this new method using
degenerate primers targeting the entire 16S rRNA gene, still resulted in off target
amplification of the human genome?®. This study also noted that this off target
amplification was related to the ratio of human to bacterial DNA. The human
genome must be considered when designing or choosing primers now and in the

future.
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