

Title	The microbiome and cancer
Authors	Barrett, Maurice P. J.
Publication date	2021-06-04
Original Citation	Barrett, M. P. J. 2021. The microbiome and cancer. PhD Thesis, University College Cork.
Type of publication	Doctoral thesis
Rights	© 2021, Maurice Barrett https://creativecommons.org/licenses/ by-nc-nd/4.0/
Download date	2024-04-25 02:23:50
Item downloaded from	https://hdl.handle.net/10468/11990

University College Cork, Ireland Coláiste na hOllscoile Corcaigh

University College Cork, Ireland Coláiste na hOllscoile Corcaigh

The Microbiome and Cancer

A thesis presented to the National University of Ireland for the

degree of

Doctor of Philosophy

by

Maurice Barrett

(115223349)

School of Microbiology National University of Ireland, Cork June 2021

> Supervisors Professor Paul O'Toole Professor Fergus Shanahan Doctor Collette Hand

Head of School Professor Paul O'Toole To my parents, Kieran, and Catherine Barrett

"The important thing is not to stop questioning. Curiosity has its own reason for existing. One cannot help but be in awe when one contemplates the mysteries of eternity, of life, of the marvellous structure of reality. It is enough if one tries to comprehend only a little of this mystery every day."

- Albert Einstein

Table of contents

Table of contents	iii
Declaration	ix
Chapter 1 – Literature Review	10
1.1 Introduction to Microbiota research	11
1.1.1 The Intestinal microbiota	12
1.2 Sequencing based technologies and microbiome research	15
1.2.1 DNA Sequencing	15
1.2.2 The 16S ribosomal RNA gene	23
1.2.3 Contamination	34
1.3 Cancer and the microbiota	40
1.3.1 Cancer tissue microbiome	42
1.3.2 Fusobacterium nucleatum	44
1.3.2 The microbiota and cancer therapeutics	50
1.4 Mutagenesis by microbe: The role of the microbiota in shaping the cancer genome.	53
1.4.1 Highlights	
1.4.2 Abstract	
1.4.3 Origin of the cancer genome and the role of the microbiota	55
1.4.4 Direct DNA Damage	61
1.4.5 Immune cell induced DNA damage	
1.4.6 Dietary interaction	70
1.4.7 Disruption to the DNA damage response	72
1.4.8 Mutational signatures as a tool to study the effect of microbes on the human genome	73
1.4.9 Concluding Remarks	
1.4.10 Acknowledgments	
1	

1.4.11 Outstanding Questions Box	76
1.4.12 Glossary	77
1.4.13 Colibactin continued	79
1.5 Colorectal cancer	81
1.5.1 Evolution of CRC	81
1.5.2 Anatomical subtyping of CRC	83
1.5.3 Inherited risk of CRC	84
1.5.4 Environmental risk factors	85
1.5.5 CRC and Dietary Fibre	
1.5.6 Colorectal cancer and the microbiome	89
1.6 Oesophageal cancer	94
1.6.1 Natural history of oesophageal adenocarcinoma	94
1.6.2 Environmental risk factors for developing OAC	97
1.6.3 Formation of the OAC genome	99
1.6.4 Oesophageal microbiota	102
1.7 References	106
1.7 References Chapter 2- Alterations in the oesophago-gastric mucosal microbiome in pa along the inflammation-metaplasia-dysplasia-oesophageal adenocarcinom	atients a sequence
Chapter 2- Alterations in the oesophago-gastric mucosal microbiome in pa along the inflammation-metaplasia-dysplasia-oesophageal adenocarcinom	atients a sequence 141
Chapter 2- Alterations in the oesophago-gastric mucosal microbiome in pa along the inflammation-metaplasia-dysplasia-oesophageal adenocarcinom	atients a sequence 141 142
Chapter 2- Alterations in the oesophago-gastric mucosal microbiome in pa along the inflammation-metaplasia-dysplasia-oesophageal adenocarcinom 2.1 Abstract	atients a sequence 141 142 143
Chapter 2- Alterations in the oesophago-gastric mucosal microbiome in pa along the inflammation-metaplasia-dysplasia-oesophageal adenocarcinom 2.1 Abstract 2.2 Introduction	atients a sequence 141 142 143 145
Chapter 2- Alterations in the oesophago-gastric mucosal microbiome in pa along the inflammation-metaplasia-dysplasia-oesophageal adenocarcinom 2.1 Abstract 2.2 Introduction 2.3 Methods	atients a sequence 141 142 143 145 145
Chapter 2- Alterations in the oesophago-gastric mucosal microbiome in pa along the inflammation-metaplasia-dysplasia-oesophageal adenocarcinom 2.1 Abstract 2.2 Introduction 2.3 Methods 2.3.1 Sample collection and clinical classification	atients a sequence 141 142 143 145 145 146
 Chapter 2- Alterations in the oesophago-gastric mucosal microbiome in paalong the inflammation-metaplasia-dysplasia-oesophageal adenocarcinom 2.1 Abstract	atients a sequence 141 142 143 145 145 146 146
 Chapter 2- Alterations in the oesophago-gastric mucosal microbiome in paalong the inflammation-metaplasia-dysplasia-oesophageal adenocarcinom 2.1 Abstract	atients a sequence 141 142 143 145 145 146 146 147
 Chapter 2- Alterations in the oesophago-gastric mucosal microbiome in paalong the inflammation-metaplasia-dysplasia-oesophageal adenocarcinom 2.1 Abstract	atients a sequence 141 142 143 145 145 146 146 147 149
Chapter 2- Alterations in the oesophago-gastric mucosal microbiome in pa along the inflammation-metaplasia-dysplasia-oesophageal adenocarcinom 2.1 Abstract	atients a sequence 141 142 143 145 145 146 146 147 149 149

2.4.4 Microbiome alterations with respect to biopsy location169
2.4.5 Differentially abundant ASVs, species and metabolic pathways
2.5 Discussion
2.6 Acknowledgments
2.7 References
Chapter 3 - Mapping the colorectal tumour microbiota
3.1 Abstract
3.2 Introduction
3.3 Results
3.4 Discussion
3.5 Patients and Methods/Materials and Methods
3.5.1 Patient recruitment
3.5.2 DNA extraction and 16S RNA amplicon sequencing219
3.5.3 Library preparation and sequencing219
3.5.4 Bioinformatics analyses
3.5.6 Contamination control
3.6 Acknowledgements
3.7 Reference
Chapter 4 - Association between the microbiome and treatment outcomes in patients with metastatic melanoma treated with Immunotherapy
4.1 Abstract
4.2 Background232
4.3 Methods
4.3.1 Recruitment234
4.3.2 DNA extraction from human faeces
4.3.3 Bioinformatic and biostatistical analysis
4.4 Results
4.4.1 Patient characteristics and treatment responses
4.4.2 Microbiota features associated with therapy outcomes
4.5 Discussion

4.6 Reference
Chapter 5 - Altered Skin and Gut Microbiome in Hidradenitis Suppurativa267
5.1 Abstract
5.2 Introduction
5.3 Results
5.3.1 Descriptive statistics of the study population
5.3.2 Overall structure of the fecal microbiota is altered in HS
5.3.3 Differentially abundant ASVs in the fecal microbiome
5.3.4 Machine learning identification of HS-related microbiota members284
5.3.5 Changes in predicted metabolic function of the fecal microbiota
5.3.6 Ecological structure is altered in nasal and skin microbiome
5.3.6 Differentially abundant ASVs and metabolic pathways in the nasal and skin microbiome of HS patients
5.4. Discussion
5.4.1 Gut Microbiome in HS
5.4.2 Skin Microbiome
5.4.3 Potential impact
5.5. Material and Me thods
5.5.1 Study Population
5.5.2 Sample collection
5.5.3 Microbial DNA extraction
5.5.4 Library Preparation and 16S rRNA gene sequencing
5.5.5 Bioinformatic and biostatistical analysis
5.5.6 Identification of potential microbial DNA contamination
5.5.7 Storage of sequencing data
5.6 Acknowledgement
5.7 Authors Contribution statement
5.8 References
Chapter 6- General discussion and future perspectives
6.1 The role of microbiology in cancer research in the 21 st century

6.2 Categorization of areas of cancer research	
6.2.1 The cause of cancer and the microbiota	
6.2.2 Diagnostic and prognostic potential of microbiota data	
6.2.3 The role of the microbiota in cancer therapeutics	
6.3 Concluding remarks.	
6.4 References	
Appendix 1-Comparative exome analysis of mutational processes in colorect cancers from patients harbouring two divergent gut microbiota types	
7.1 Abstract	
7.2 Introduction	
7.3 Results	
7.4 methods	
7.4.1 Recruitment and sample acquisition	
7.4.2 DNA extraction and whole exome sequencing (WES)	
7.4.3 WES pipeline: somatic SNV calling	
7.4.4 Mutational signature analysis	
7.4.5 Copy number variation	
7.5 Acknowledgments	
7.6 Disclosure of interest	
7.7 References	
Appendix 2-Non-specific amplification of human DNA is a major challenge rRNA gene sequence analysis	
8.1 Abstract	
8.2 Introduction	
7.3 Materials/Methods	
7.3.1 Sample Collection	
7.3.2 DNA Purification	
7.3.3 16S rRNA gene sequencing Library Preparation.	
7.3.4 16S rRNA sequence analysis	
7.3.5 Contamination Control	
7.3.6 Retrospective Bioinformatics based removal of human amplicons	

7.3.7 Statistical analysis and data visualisation	
7.4 Results and Discussion	
7.5 Future Perspectives	
7.6 Acknowledgements	
7.7 Declarations	
7.8 Reference	
Acknowledgements	

Declaration

This is to certify that the work I am submitting is my own and has not been submitted for another degree, either at University College Cork or elsewhere. All external references and sources are clearly acknowledged and identified within the contents. I have read and understood the regulations of University College Cork concerning plagiarism.

Signed: _____

Maurice Barrett

1 Chapter 1 – Literature Review

3 1.1 Introduction to Microbiota research

4 Microorganisms colonise an impressive array of niches; from the +120°C 5 hydrothermal vent inhabited by Methanopyrus kandleri to the -15 °C high Arctic permafrost inhabited by *Pedobacter sp*^{1,2}. Thus, the colonization of multicellular 6 7 metazoans during their evolution is a seemingly inevitable evolutionary event. 8 Indeed, modern Homo sapiens are colonised by a vast number of microbes, 9 collectively referred to as the human microbiota. While the term microbiota has been 10 used to refer to the collection of all resident microorganisms within a niche, the term 11 microbiome can be used to describe the collection of genetic material from an 12 environment. However, these terms are often used interchangeably, and a standardization of definitions is still under discussion³. Evolution has generated an 13 14 intimate relationship between humans and the microbiota; indeed the concept of 15 holobiont has been applied to the microbiota-host interaction wherein the microbiota and the host evolve as a discreet unit⁴ 16 17 The first description of human beings inhabited by microbes dates to 1670s–1680s, 18 when the Dutch scientist Antonie van Leeuwenhoek examined his own oral sample and that of others and noted "...many very little living animalcules, very prettily a-19 20 moving". He noted that there were differences between the oral microbiota between people and later noted differences between faecal samples and oral samples. An 21 22 early piece of work that further established the embryonic field of microbiota 23 research was 'A Flora and Fauna within Living Animals' published by Joseph Leidy in 1853⁵. 24

The microbiota is composed of bacteria, archaea, fungi, protozoa, and viruses. Most
studies focus exclusively on the bacterial aspect of the microbiota, sometimes

referred to as the Bacteriome. However, there is an increasing focus on other
components of the human microbiota such as the virome (total viral community) and
the mycobiome (total fungal microbiome) ^{6,7}. There is an approximately an equal
number of bacteria cells relative to host cells and bacteria⁸. An abundance of
microbial niches exist on and within humans notably the oral cavity, the stomach, the
large intestine, the skin and the nasal cavity.

33

34 **1.1.1 The Intestinal microbiota**

The greatest concentration of microbes in terms of density and absolute numbers 35 reside in the colon with a density of 10^{11} cells/ml and a volume of $0.4L^8$. The colon 36 37 is by far the most studied human microbial niche. At the phylum level the most 38 represented phyla (accounting for >90% abundancy) are Firmicutes, Actinobacteria, and Bacteroidetes⁹. While a single individual may harbour 250-500 species the total 39 40 number of bacteria identified in the gut across all individuals studied is multiplies higher¹⁰⁻¹². Notably, the colon itself is a multifaceted niche with spatial 41 42 organization.

The colonic microbiota varies along the colon from proximal to distal as well as
cross-sectionally from the lumen to the mucosa. Transversally along the colon,
bacterial load, pH, oxygen levels, nutrients levels and immune effectors varies^{13,14}.
The genera Finegoldia, Murdochiella, Peptoniphilus, Porphyromonas, and
Anaerococcus are enriched in the distal colon while the taxa Enterobacteriaceae,
Bacteroides and Pseudomonas are enriched in the proximal samples¹⁵. A greater
source of variation is the difference between the lumen and the mucosa ^{15,16}. In the

50 outer mucus, mucin degrading taxa such as *Bacteroides acidifaciens*, Bacteroides 51 *fragilis* and *Akkermansia munciniphila* are found to be enriched while oxygen-52 detoxifying catalase producing taxa such as those in the Acinetobacter spp. and 53 Proteobacteria inhabit the inner mucosal layer^{17,18}.

54 Studies of colonic microbiota primarily depend on the nature of the sample taken 55 which typically takes the form of one of two types, namely, stool samples or 56 mucosal biopsy samples. Mucosal sampling can be conducted in two major ways; a 57 pinch biopsy, involving the use of an instrument to takes a sample of colonic tissue, 58 or a mucosal brush that swabs the mucosa. The mucosal brush cover a higher surface 59 area and recover a higher proportion of bacterial DNA to human DNA relative to biopsy samples¹⁹. However, pinch biopsy would be more suitable when fine scale 60 61 analysis of the microbiome is needed. A surgical biopsy can also be taken if the 62 clinical setting allows. Faecal samples are used to represent the luminal microbiome. 63 However, transit time and stool consistency have been demonstrated to affect fecal microbiota composition²⁰. Rectal swabs may be used to sample the luminal 64 microbiome and have been decribed as a good proxy for the faecal microbiome^{21,22} 65 66 Louis Pasteur hypothesized that gnotobiotic or germ-free (GF) animals would fail to survive due to their dependence on their co-evolved microbiota. Although viable, 67 68 GF mice have a number of aberrant features including a shorten lifespan, enlarged caeca, defective immune system and deficiency in both vitamin K and $B12^{23,24}$. 69 70 Research during the past twenty years has established a clear relationship between the microbiota and normal physiological function and disease²⁵. The gut microbiota 71 have been linked to a myriad of diseases in a number of organ systems (Table 1). 72

73

- Table 1 | Diseases of different organ systems in which the gut microbiota has been
- 75 implicated. Neoplastic diseases excluded.

Disease	Microbe abundance	Mechanisms
Autism	Increased ²⁶	Lactobacillus improves social deficits in mice
spectrum	Lactobacillus	models via Oxytocin signalling through the vagus
disorder(ASD)	Bacteroides	$nerve^{27}$.
~ /	Desulfovibrio	
	Clostridium	The gut microbiota of individuals with ASD has a
		decrease capacity to degraded toxins. This decrease
	Decreased ²⁶	is correlated with mitochondrial dysfunction ²⁸ .
	Bifidobacterium	
	Blautia	
	Dialister	
	Prevotella	
	Veillonella	
	Turicibacter	
Cardiovascular	Increased ²⁹	Trimethylamine (TMA) is a metabolite produced by
disease	Escherichia coli	the microbial metabolism of phosphatidylcholine and
	Klebsiella spp	L-carnitine ^{30,31} . TMA is absorbed into the blood
	Enterobacter	stream and converted by the liver enzyme flavin-
	aerogenes	containing monooxygenase 3 (FMO3) into TMA N-
	Streptococcus spp	oxide (TMAO) ³² . Studies in both human subjects and
		mouse models have demonstrated a role of TMAO in
	Decreased ²⁹	cardiovascular disease development ^{30,31,33,34} .
	Bacteroides spp	
	Faecalibacterium	
	prausnitzii	
Trues 2 distant	Le ange e a d ³⁵	Diff dal materiano da sia hagi basa da sana ta inco
Type 2 diabetes	Increased ³⁵	<i>Bifidobacterium lactis</i> has been shown to increase
mellitus (T2D)	Blautia Ruminoccus	the expression of glycogen synthetic genes while
	Ruminoccus Fusobacterium	decreasing the expression of hepatic gluconeogenesis-related genes ³⁶
	rusobucierium	giuconcogenesis-relateu genes
	Decreased ³⁵	Akkermansia muciniphila and Lactobacillus
	Akkermansia	<i>plantarum</i> have been found to reduce the expression
	Bifidobacterium	of fmo3 in mouse models. Note that the the knockout
	Lactobacillus	of fmo3 attenuates development of hyperglycemia
		and hyperlipidemia in insulin resistant mice ³⁷
Inflammatory	Increased ³⁸	Ruminococcus gnavus produces inflammatory
bowel disease	Ruminococcus gnavus	glucorhamnan polysaccharide. This polysaccharide
(IBD)	Escherichia coli	induces the production $TNF\alpha$ by interacting with the
	Streptococcus	toll-like receptor 4 (TLR4) of innate immune cells
	parasanguinis	such as Dendritic Cells ³⁹ .
	Blautia product	

	Decreased ³⁸ Coprococcus Catus Alistipes finegoldii Blautia obeum Faecalibacterium prausnitzii Gordonibacter Pamelaeae Eubacterium rectale	Adhesive invasive E. coli (AIEC) can replicate in immune cells such as marcophages. Colonisation of marcophages by AIEC has been shown to induce expression of $TNF\alpha^{40}$
Non-alcoholic	Increased ⁴¹ Clostridium	Members of the gut microbiota have the functional
fatty liver		capacity to produce ethanol and genotoxic
disease	Anaerobacter,	acetaldehyde which contribute to NAFLD
(NAFLD)	Streptococcus	development ^{42,43}
	Escherichia	
	Lactobacillus	The microbiota produced the metabolite
		phenylacetate which has been shown to contribute to
	Decreased ⁴¹	hepatic steatosis ⁴⁴
	Oscillibacter	hepute steatosis
	Flavonifaractor,	
	Odoribacter	
	Alistipes spp	

76

77 **1.2 Sequencing based technologies and microbiome**

78 research

The explosion in the Microbiological sub field of microbiome research has been due in no small part to the advancement in next generation sequencing technologies. A significant proportion of microbiome research is based on the ability to survey the microbial members of a niche as a collective and to make assertions and conclusions based on this information. In particular, microbiome surveys have taken one of two

84 forms; 16S ribosomal RNA gene sequencing and shotgun metagenomics. These

85 methodologies depend on the use of high throughput DNA sequencers.

86 **1.2.1 DNA Sequencing**

87 *Form fits function* is one of the central themes of modern biological research⁴⁵. The

88 function of DNA is to store information in a stable manner which can be interpreted

and replicated with fidelity; this is enable by the double helical structure of DNA as
first describe by Watson and Crick. The information density of DNA is immense
with 455 exabytes per gram of single-stranded DNA⁴⁶. DNA sequencing involves
the representation of the four fundamental base pairs as A, T, C and G.

93 1.2.1.1 Origins of DNA sequencing

DNA sequencing is an ever evolving endeavour and the variation in the theoretical
and mechanical basis behind DNA sequencing is reflected in the wide variety of
techniques which have been developed over time.

Wu et al published the first length of DNA to be sequenced which was, a 12 base stretch of the overhanging cohesive ends within the Enterobacteria phage λ , partially published in 1968 with the complete sequence reported in 1971^{47,48}. In 1973, Gilbert and Maxam reported the sequence consisting of 24 bases of the lactose-repressor binding site using a method known as wandering-spot analysis, a method which was an adaptation of previous techniques used to perform RNA sequencing ^{49,50}.

103 DNA sequencing took a significant leap forward with the development of the plus

and minus system developed by Sanger and Coulson published in 1975⁵¹. Using this

105 technique, the first ever whole genome sequencing, that of bacteriophage $\phi X174$

106 (PhiX), a single stranded DNA genome of 5,375 nucleotides, was published in

107 1977⁵². In 1977 Maxam and Gilbert reported a new technique of sequencing 'DNA

108 sequencing by chemical degradation⁵³. This methodology depended on using a

- 109 series of 4 different chemical reactions to form abasic sites at specific nucleotide
- 110 locations; One reaction cleaves at both purines (the 'A + G' reaction), one
- 111 preferentially at A ('A > G'), one at pyrimidines ('C + T') and one at cytosines only

('C'). These sites would be subsequently cleaved and the fragmented DNA ran out
on a polyacrylamide gel in which the length could be used to infer the base sequence.
This was more useful than the plus minus method as it could be employed to
decipher all sequences including those within homopolymer runs.

116 A seminal moment in biological research came with the development of Sanger's 'chain-termination' or dideoxy technique in 1977⁵⁴. This protocol involved the use 117 118 of Dideoxynucleotides (ddNTPs) a deoxyribonucleotides (dNTPs) lacking the 3' 119 hydroxyl group and which cannot form a bond with the 5' phosphate of the next 120 based to be incorporated. The introduction of this dNTP into the DNA during 121 synthesis would thus terminate synthesis. Four polymerase chain reactions are set 122 up, one of each containing a small fraction of a radio labelled ddNTP analogues to 123 one of the 4 dNTPs. The small fraction of the ddNTPs mean that this reaction will 124 produce a series of amplicons of differing length. Much like the DNA sequencing by 125 chemical degradation method, the amplicons are ran out on a four lane gel and the 126 sequence inferred by the fragment length.

127 A number of improvements have been made to Sanger sequencing over the years,

128 notably the replacement of dye-labelled primers with four chain-terminating

129 dideoxynucleotides, each carrying a fluorescein dye with a distinct emission

130 spectrum, condensing the reaction from 4 to 1^{55} .

131 In 1980 half of the Nobel Prize in Chemistry was awarded jointly to Walter Gilbert

132 and Frederick Sanger "for their contributions concerning the determination of base

133 sequences in nucleic acids". The other half was awarded to Paul Berg "for his

134 fundamental studies of the biochemistry of nucleic acids, with particular regard to

135 recombinant-DNA".

In 1986 Applied Biosystems Incorporated announced the production of the first
automated, fluorescence-based Sanger sequencing machines developed by Smith et
al⁵⁶. This machine had the capacity of producing 1,000 bases per day⁵⁷.
In 1979 Staden developed the concept of shotgun sequencing, a process whereby
fragments of a genome are cloned into a cloning vector and sequenced, after which

142 the genome is assembled based of overlapping sequences. Messing et al developed a 143 single-stranded M13 phage cloning vector which was subsequently used to assemble

144 the genome of bacteriophage lambda *de novo* in $1982^{58,59}$.

145 In 1995, continuing progress and costs reductions in the 90's allowed for the

sequencing of the first complete genome of a free-living organism, *Haemophilus*

147 *influenza* with a genome of over 1.8 million bases⁶⁰. This was followed by the

148 sequencing of the first eukaryotic genome of Saccharomyces cerevisiae (~12 Mb,

149 1996) and first multicellular organism genome of *Caenorhabditis elegans* (~100 Mb,

150 1998)^{61,62}. In 1990 the United States National Institutes of Health (NIH) launched the

151 Human Genome Project (HGP) with the goal of sequencing the haploid human

152 genome. A draft was published in 2001 and a quasi-complete genome was published

153 in 2004^{63,64}. Notably the private company Celera led by Craig Venter endeavoured

to sequence the human genome in parallel with the HGP using the whole-genome

155 shotgun strategy and published the results in 2001^{65} .

156

157 **1.2.1.2 Second generation sequencing**

158 The 1980s and 1990s saw the development of a new range of sequencing 159 technologies. The first of these was Pyrosequencing. The core principle behind 160 Pyrosequencing, developed by Nyrén and Lundin, involves a luminescent method for measuring pyrophosphate synthesis⁶⁶. In this method ATP sulfurylase is used to 161 162 convert pyrophosphate, produced during DNA synthesis, into ATP which is subsequently used by luciferase producing light proportional to the amount of 163 164 pyrophosphate produced. In 1993 the first report of the utilization of pyrosequencing 165 was produced combining the principles of the above protocol with that of the solid 166 phase sequencing method which involved the affixing of DNA templates to streptavidin coated magnetic beads⁶⁷. 167

168 Pyrosequencing was later licensed to 454 Life Sciences, a biotechnology company

169 founded by Jonathan Rothburg, and in 2005 they produced the first commercial SGS

170 instrument the GS20⁶⁸. This machine was constructed with microfabricated

171 microarrays allowing for mass parallelisation of sequencing reactions. This system

172 produced reads of length 400–500 bp. The GS20 was superseded by the 454 GS

173 FLX, which offered a greater number of reads and quality of base calling 68 .

The Solexa (Illumina) method is the mode of sequencing that currently dominates
the marketplace. Base calling is depended on fluorescent reversible-terminator
dNTPs. A fluorescent dye molecule indicates the insertion of a base as DNA
synthesis occurs. Both the terminator group and the fluorophore must be removed
before the next base is incorporated and the base called. This concept of fluorescent

179 reversible-terminator dNTPs was first envisioned by Bruno Canard and Simon

180 Sarfati at the Pasteur Institute⁶⁹. Work on this concept eventually led to the

181 development of photo-cleavable fluorescent nucleotide reversible terminators for 182 each base^{70,71}. This allowed a design where cleavage can be followed by a wash step 183 to remove unincorporated bases. Successive rounds of this allow for the sequence of 184 a template to be determined. Another key concept to the Solexa method is bridge 185 amplification. Bridge amplification enables the production of tight clustering of template copies known as "polonies", allowing for better base calls⁷². The first 186 Solexa commercial sequencer, the Genome Analyzer (GA) machine, was released in 187 188 in 2006. This machine outputted 1 GB of data and the reads had a length of 35 bp. 189 However, this method of sequencing involves paired end sequencing in which both 190 ends of the amplified DNA template are sequence. This enables a merged read to be 191 formed from a homologues overlap between the paired reads. In 2007, Solexa was 192 acquired by Illumina. Currently, Illumina currently hold ~75% of the global market 193 share of genetic sequencing. Illumina's premier platform, the NovaSeq 6000 194 Sequencing System, can output 4800-6000 Gb of data and supports an output of 195 250bp x 2 read output.

196

197 **1.2.1.3 Third generation sequencing**

While NGS platforms produced by Illumina are continually improving especially when it comes to throughput and cost, these technologies have fundamental drawbacks that limit their use in biological research. One of these issues is the relatively short read length. Illumina platforms usually have an upper limit of 300bp with regard to read length⁷³. Furthermore, the Illumina sequencing method depends on an initial polymerase chain reaction (PCR) bridge amplification which can produce a bias with regard to DNA of extremely high guanine-cytosine content (GC)
content as these are inefficiently amplified by PCR⁷³.

206

207	We are now seeing the increase usage of what can be described as third generation		
208	sequencing (TGS) technologies. There are currently two commercially available		
209	TGS technologies; single-molecule real-time (SMRT) sequencing by Pacific		
210	Biosciences (PacBio) which is the first viable TGS platform released in 2011 and		
211	nanopore sequencing by Oxford Nanopore Technologies (ONT) released in 2014.		
212	Both these technologies can produce very long reads with SMRT producing read		
213	length N50 values of ~20 kb while Nanopore sequencing can produce read length		
214	N50 100 kb ⁷⁴ . Furthermore, these technologies can be described as real time		
215	sequencing as the data is read out continually as each base is deciphered ⁷³ .		
216	SMRT involves ligating adapters to the DNA to be sequenced creating a		
217	SMRTbell TM library which is a cellular template ⁷⁵ . These templates are immobilized		
218	in wells denoted zero-mode waveguides. A polymerase performs synthesis and		
219	incorporation of fluorescently labelled nucleotides is detected, thus SMRT		
220	sequencing can be called a SBS method ⁷⁵ .		
221	The core strategy behind ONT platforms involves a motor protein ratcheting DNA		
222	through a nanopore in which a current is passed through ⁷⁶ . Bases are read via		
223	interpreting the signal produce by the disruption of the current cause by the base as it		
224	passes through the nanopore 76 .		
225	Both of these methods can also detect DNA modifications such as 5-methylcytosine		

226 (5mC) and 6 methylated adenine. SMRT can do this via measuring the time between

nucleotide incorporations is called the 'interpulse duration'⁷⁵. In essence the length
of time between incorporation is indicative of the status of the DNA modification.
ONT platforms can detect DNA modifications due to the characteristic disruption
they exert on the passing current which is distinguishable from the unmodified
base⁷⁷.

232

233 Sequencing regions of genomes which are repetitive in nature are difficult to

234 delineate using NGS platforms. Such features including centromeres, telomeres and

tandem repeats. TGS platforms have the potential to sequence the entirety of a

repetitive region thereby avoiding the challenges of assembling these regions using

237 NGS data⁷⁸. TGS have a number of other benefits over NGS such as sequencing

238 RNA isoforms and Haplotype phasing⁷³.

239

With respect to microbiology, it is conceptually possible to sequence an entire an entire bacterial genome *de novo*. TGS is also being used in microbial marker gene studies namely 16s rRNA gene sequencing (See section 1.2.2.1).

244 **1.2.2 The 16S ribosomal RNA gene**

245	Ribosomes are ribonucleoprotein structures with the biological function to perform
246	protein synthesis. Ultracentrifugation protocols sediment the bacterial ribosome at 70
247	Svedberg unit (S) while its constituent parts , the large and small subunit, sediment
248	at 50S and 30S respectively. The large subunit is composed of 33 proteins (Denoted
249	L1–L36) and two rRNAs, the 23S rRNA and the 5S while the small subunit is
250	composed of 21 ribosomal proteins (denoted S1-S21) and a 16S rRNA.
051	
251	Canonically, the three ribosomal RNAs genes are organised on the Ribosomal RNA
252	Operon in the order 16S-23S-5S. However in some bacteria and archaea the rRNA
253	genes are "unlinked" whereby there is a substantial genomic distance between the
254	16S and 23S rRNA genes, a phenomenon which is much more prevalent that once
255	believed ⁷⁹ . However, the unlinked structure does not seem to be present in the gut.
256	In the canonical set up, the three RNAs are all transcribed as one. Within the rRNA
257	Operon there also exist internal transcribed spacer (ITS) regions between 16S and
258	23S rRNA genes which also contains a DNA sequences encoding for tRNAs. The
259	number of operons in a species can vary considerably with counts from one and
260	twenty one ⁸⁰ .
261	The median size of the 16s rRNA gene is ~1500 but varies considerably in range ⁸¹

261 The median size of the 16s rRNA gene is ~1500 but varies considerably in range⁸¹.

262 The 16S rRNA gene is thought to be conserved throughout both the bacterial and

archaeal domains of life. Although classical dogma would indicate that this

264 conservation is indicative of the essential nature of the 16S rRNA gene, recent

265 research has supported the idea that the evolution rate of a gene is negatively

266 associated with its expression level^{82,83}.

267 16S rRNA has a number of functions. The 16s rRNA contains an anti-Shine-

268 Dalgarno sequence which binds to the Shine-Dalgarno sequence in the mRNA

sequence and influences translational pausing and codon choice⁸⁴. 16s rRNA also

270 plays a structural role providing a scaffolding in the small subunit.

271

272 The sequence structure of the 16S gene can be described as containing nine

273 hypervariable regions (V1–V9) and nine conserved regions (C1-C9). This structural

composition is the basis for its use as a taxonomic identifier in 16S rRNA gene

- 275 sequencing studies.
- 276
- 277

278 1.2.2.1 16S ribosomal RNA gene sequencing

Studies which survey the microbiota utilizing sequencing methodologies usually fall
into one of two strategies, amplicon-based marker gene surveys or metagenomic
whole genome shotgun sequencing (mWGS).

The 16S rRNA gene is a putatively ubiquitous gene in the domains of Archaea and

283 Bacteria. Carl Woese and George E. Fox pioneered the use of the 16s rRNA gene as

a phylogenetic marker in their seminal work in which they proposed the three

285 domains of life—Bacteria, Archaea, and Eukarya⁸⁵. Wilson and Blitchington

286 published the first 16S rRNA gene sequences derived from a faecal sample⁸⁶. Suau et

- al demonstrated that much of the gut microbes captured by the 16S rRNA gene
- sequences could not be cultured⁸⁷. This work was echoed in the same year with
- 289 respect to subgingival scrapings by researched carried out by Kroes et al⁸⁸. Although

290 progress has been made with respect to culturing human associated microbes, culture 291 independent sequencing techniques still cast a wider net than culture dependent techniques^{89,90}. In 2005 Eckburg et al set a precedence for the scope of microbiome 292 293 research with their study in which they sequenced 13,355 sequences of the 16S rRNA gene from multiple colonic mucosal sites and faeces from 3 individuals⁹¹. 294 295 They reported variation in the microbiome with respect to biogeography as well as 296 significant inter-individual variation. The method of mWGS involves the untargeted 297 sequencing of the genetic contents of a niche. These two strategies have their own 298 inherent advantages and disadvantages (Table 2)

- 299 Table 2 | Characteristics of 16S rRNA gene sequencing versus metagenomic whole
- 300 genome shotgun sequencing

16S rRNA gene sequencing	Pro
	• Inexpensive (10x cheaper per sample than mWGS)
	Computationally less taxing
	• Less storage space need for data
	Selective for archaea and bacteria
	Cons
	• Depending on the primers used and other factors, taxonomic resolution
	usually only goes down to the genus
	level and occasionally down to species level
	Lacks direct functional information
	Certain primers can amplify
	mammalian DNA
Metagenomic whole genome shotgun	Pro
sequencing	Complete genomic content
	• Potential to inspect single nucleotide
	variant across the genome of an
	organismStrain level resolution
	 Strain level resolution Functional information
	Functional information Cons
	High read count needed to achieved
	coverage need to represent through
	species richness
	 Samples high in Host DNA such of
	biopsies can mean the 99% map to the
	host genome.
	Relatively expensive

301 1.2.2.2 Laboratory aspects of 16S ribosomal RNA gene sequencing

302 Current 16S experiments often require the production of thousands of 16S reads 303 from hundreds or thousands of samples. The most cost effective and streamlined way 304 of achieving this is to employ NGS namely Illumina paired end sequencing. 305 Amplicon sequences to be analysed are produced by merging paired reads. The 306 Illumina platform most frequently used for 16s is the MiSeq System which 307 depending on the Reagent Kit produces reads of length of 250 or 300bp in length. 308 Taking into consideration the need for a certain number of bases to overlap, the 309 merged amplicon read would be under 600bp, thus only a subsection of the 16s gene 310 can be sequenced. In particular one or more of the variable regions are sequenced. 311 Research has been carried out to determine the most informative primers to use when 312 amplifying a 16S subsection. These primers must best capture the taxonomic 313 diversity while limited to amplifying a section under 600bp. Many such primers 314 pairs have been designed and utilized to study the microbiota. Studies have been 315 conducted to identify the taxonomic diversity these primers capture. Currently, the most prominently used being are the V1-V2 and V3-V4 primer pairs⁹². 316 317 The polymerase used in 16S gene sequencing experiments are preferably of high fidelity. Tag polymerase has an error rate of $1-20 \times 10^{-5}$ while Phusion® High-318 Fidelity DNA Polymerase has a 50X increase in fidelity⁹³. 319 320 In current protocols namely those within the Illumina 16S Metagenomic Sequencing 321 Protocol (Illumina, California, USA) sample specific DNA barcodes are added to the sample amplicons in a second PCR known as an index PCR⁹⁴. Previous protocols 322 involved adding these barcodes in the same PCR as the initial amplification step. 323

However it was found that this produced PCR related biases⁹⁵.

325 1.2.2.3 Bioinformatic analysis of 16S rRNA gene sequencing data

326	Raw data from sequencers must undergo a series of processes before descriptive and
327	statistical analysis can be effectively carried out. A key aspect of this is the assembly
328	of representative sequences. The two premier forms of this are operational
329	taxonomic unit (OTUs) and amplicon sequence variants (ASVs). The generation of
330	OTUs and ASVs both aim to address the issue of incorrect base calling.
331	With regard to Illumina sequencing, data is output in a fastq format. This format is
332	similar to fasta contains the sequence information but also reporting the
333	corresponding base calling quality in the form of a Phred-like quality score
334	(https://www.illumina.com/science/technology/next-generation-sequencing/plan-
335	experiments/quality-scores.html). The quality score (Q) of a base is calculated by the
336	following equation: $Q = -10\log^{10}(e)$ where e is the estimated probability of the base
337	call being incorrect . For example, a Q score equal to 10 would indicate there is a
338	1/10 chance of the base being called incorrectly. The maximum score is 40 which
339	equates to an average per base error rate of 1/10000. If one were to take sequencing
340	data unprocessed, difference in sequences due to errors could be inappropriately
341	interpreted as an actual biological difference representing evolutionary divergences.
342	The term OTUs was coined by Sokal & Sneath referring to groups of closely related
343	individuals being studied ⁹⁶ . In modern microbiology terms, OTUs are representative
344	sequences based on a threshold of identity, typically 97% ^{97,98} . There are two
345	methodologies to achieve OTU clustering 1) 'de novo clustering' and 2) 'Closed-
346	reference OTU clustering. In de novo clustering, merged reads are clustered within a
347	dataset based on a certain threshold. The OTUs generated from de novo clustering
348	are emergent features of the particular data set which is being studied. Factors such

349 as relative abundances will dictate the generation of the OTUs. Thus de novo OTUs 350 generated from two different datasets cannot be compared. Closed reference OTU 351 cluster merged reads against a reference database. If the same database is shared 352 between two different data-sets, the generated OTUs can be more readily compared 353 against each other. However, biological variation that is not represented in the 354 reference database would lead to a reduction in the diversity detected during 355 assignment to closed-reference OTUs. No matter what the method used for 356 generating OTUs, the clustering methods will lead to the loss of some actual 357 biological variation in the dataset and thus OTU type leads to an under-358 representation of diversity. 359

ASVs aim to represent the real biological sequence of the maker-gene. Thus ASVs 360 resolves the data-set to the single nucleotide resolution. The generation of ASVs is 361 dependent on the assumption that biological variants are more likely to be observed 362 in a dataset than those generated by erroneous base calling. In practice, an algorithm 363 needs to generate an error model using read data. Sample ASVs are then inferred by a process known as denoising⁹⁹. At present there are three main software packages 364 utilized for ASV generation, that is, DADA2, UNOISE3, and Deblur^{100,101}. DADA 365 366 has been reported to offer the best sensitivity in terms of number of ASVs detected but perhaps at the cost of specificity^{102,103}. Using ASVs to define a microbial 367 368 community has the potential to overestimate diversity due to intragenomic variation of the 16S gene ^{104,105}. 369

370

Taxonomic assignment

- 372 An integral aspect of 16S surveys is defining the taxa that are presence in a niche.
- 373 Both ASVs and OTUs may be assigned to taxonomic rank. A myriad of
- 374 classification algorithms have been developed including BLAST, IDTAXA,
- 375 MAPSeq, QIIME, SINTAX, SPINGO, and the RDP Classifier¹⁰⁶. Furthermore, there
- 376 exist a number of reference databases of 16S rRNA gene sequences to which the
- algorithms most popular being SILVA, the Ribosomal Database Project (RDP) and
- 378 Greengenes¹⁰⁷⁻¹¹⁰.

379 Ecological analysis

- 380 Methodologies classically used to describe niches of multicellular organisms are also
- used to describe microbiological niches. In particular alpha diversity (α -diversity)
- and beta diversity (β -diversity) are frequently used as metrics to describe the overall
- 383 structure of microbiomes. Alpha diversity describes the richness and evenness of
- 384 organisms within a niche. There are many indices that are used to calculate alpha
- 385 diversities each describing richness in different manners (Table 3)
- 386
- 387

- 388
- 389
- 390
- 391
- 392
- 29

393 Table 3 | Explanation of alpha-diversity metrics

Alpha diversity metric	Description	References
Observed species	Counts the number of taxa.	111
Chao1	Assumes that the number of observations for a taxa has a Poisson distribution and corrects for variance.	112
Simpson's Index	Considers the Evenness of the data. Factors relative abundance of each taxa into the count.	113
Shannon index	Much like Simpson's Index, this index considers evenness by adjusting for relative abundances.	114
Phylogenetic diversity	This diversity metric considers not only number of taxa but also phylogenetic distance between taxa.	115

394

395 Beta diversity measurers the difference (or similarity) in microbial composition

between samples. Like alpha diversity there are many beta-diversity metrics that can

397 be utilized to describe differences between niches (Table 4).

Beta diversity metric	Description	
Jaccard Index	Calculates similarity base on presence absences. Does not factor abundance.	116
Bray–Curtis dissimilarity	Calculates similarity base on presence absences. And also factors abundance.	117
Unweighted Unifrac distance	Unifrac distance considers phylogenetic between distances between taxa. Unweight considers presences absences.	118,119
Weighted Unifrac distance	This considers not only presences/absences but also abundances of taxa	118,119

399 Table 4 | Explanation of beta-diversity metrics

400

401 **Differential abundance**

402 A central goal of many microbiome studies is to identify taxa/ASVs/OTUs that are

403 differentially abundant between groups to a statistically significantly degree. How

404 one achieves this goal is of much debate within the microbiome field. Microbiome

405 data is sparse, complex, and compositional in nature 120,121 .

406

407 A "classical" test for differential abundance is the Wilcoxon rank-sum test (also

408 called the Mann-Whitney U test) which is a nonparametric test. Microbiome

409 sequence data is compositional in nature¹²⁰. This is simply due to the fact the

- 410 observation of the genetic data of the microbiome is limited by the number of reads
- 411 produced by the sequencer. The package ALDEx2 which performs a centred log-
- 412 ratio (clr) transformation on the data has been argued to be suitable for addressing

413 this the compositional nature of microbiome¹²². Software packages originally

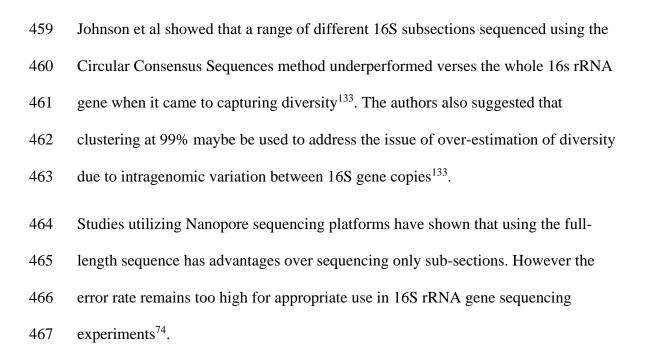
414 developed for RNA-seq such as DESeq2, which employs negative binomial

415 generalized linear model, have also been applied to 16S data sets¹²³. Other

416 differential abundance methods have been developed with specific consideration for

417 microbiome data including metagenomeSeq, ANCOM and ANCOM-BC¹²⁴⁻¹²⁶.

418


419 **Prediction of gene function**

420 A major limitation of 16S based experiments is that they do not provide direct 421 information on the functional capacities of the microbial community which is being 422 studied. However, there are a number of bioinformatic tools which infer functional 423 capabilities of a community from 16S sequence data. Current softwares include, 424 PICRUSt (The most frequent used), Tax4Fun, Piphillin and PICRUSt2 (the successor to PICRUSt)¹²⁷⁻¹³⁰. The core methodology employed by this group of 425 426 software depends on the alignment of the 16S sequence to functionally annotated 427 reference genomes. Another recently developed tool, IPCO, utilizes a different 428 method which depends on the procedure of double co-inertia analysis involving the RLQ method¹³¹. Within this method a query data set (16S data set) is co-varied 429 430 against a paired taxonomic and functional dataset (16S data set and shotgun 431 metagenomics dataset) and the functional data of the query data set inferred from this¹³¹. 432

434 1.2.2.4 Future of 16S ribosomal RNA sequencing studies

435 The development of third generation have led to the possibility of sequencing much 436 larger amplicons compared those possible on Illumina's platforms. Indeed, with TGS 437 it is possible to sequence the whole 16S rRNA gene. Although cost per base 438 continues to declines with these technologies, the viability of their common usage is 439 still restricted by cost. Furthermore, the relatively high error rates of base calling of 440 TGS limits their use in taxonomic delineation. Nonetheless efforts have been made 441 to set up standard operating procedures for the use of TGS in 16S rRNA gene-based 442 surveys.

443 Possibly the greatest progress has been made with PacBio SMRT sequencing. A 444 method to address high error rate involves the formation of a Circular Consensus 445 Sequences (CCS). A CCS is formed by ligating hairpin adapters that circularize 446 linear DNA molecules and allowing the sequencing polymerase to make multiple 447 passes and producing multiple sub reads. These sub-reads are collapsed into the 448 CCS. Callahan et al used the CCS in conjugation with the denoising algorithm 449 DADA2 to carry out 16S analysis on the mock Zymo community (a commercially 450 available consortium of 8 bacteria and 2 yeasts) and Human Microbiome Project 451 (HMP) mock community (a consortium of 21 microbes developed by the HMP)¹³². 452 This method produced full length (~ 1.5 kb) 16S rRNA gene reads at an error rate of 4.3×10^{-4} per nucleotide, a comparable error rate to reads produced Illumina on 453 454 sequencing platforms. This strategy allowed for the identification of intragenomic 455 allelic variation and sub-species classifications. In particular they were able to 456 delineate the enterohemorrhagic O157:H7 clade while the same strain could not even resolve between the Escherichia and Shigella genera when commonly used V3V4and V4V5 regions were sequenced.

468

- 469 Future studies may even utilize the whole rrn operon (16S rRNA–ITS–23S rRNA) as
- 470 this would further increase the resolution with regard to phylogenetic delineation¹³⁴.

471 Current techniques can feasibly address the \sim 3kb rrn operon¹³².

472

473 **1.2.3 Contamination**

474 Advances in culture-independent next-generation sequencing techniques, namely

475 shotgun sequencing and marker gene PCR based methodologies, have revolutionized

- 476 our understanding of microbes in numerous niches due to their speed, sensitivity and
- 477 ever reducing cost. However, the sensitive of these techniques, especially
- 478 amplification-based methods, have come with the notable downside of detecting
- 479 DNA sequences which do not belong to the niche under study, that is to say

480 contamination. The challenge of contamination is inversely proportional to the 481 microbial load of the niche under study; studies of high load microbial niches such 482 as luminal faecal matter are less proportionally affected by contamination than low load niches such as glacier ice or brain tissue¹³⁵⁻¹³⁷. The problem of contamination 483 484 has been brought into focus recently and with regard to the human microbiota, 485 reports regarding the placental microbiota have brought notable controversy. This 486 section will discuss the issue of contamination, its origin, its impact on the 487 microbiome field and how it may be addressed.

488

489 1.2.3.1 Sources of contamination

The ubiquitous nature of microbes mean that contamination has a plethora of sources
including neighbouring niches, sampling equipment, extraction kits, PCR reagents
(including polymerase mixtures), laboratory personnel, environments, and
equipment.

494 One of the first sources of contamination that researchers can encounter is 495 contamination from adjacent niches. One can mistakenly sample microbes from a 496 site within close proximity of the niche being investigated. This challenge is 497 especially amplified if the niche under study is of low biomass and the adjacent sites 498 have higher biomass. A seemingly convenient method to sampling the microbiota of 499 the bladder is urine collection. However, this sample type will contain microbes not 500 only from the bladder, but also distal urethra and in the case of women from the 501 vulva and vagina¹³⁸. It is proposed that suprapubic aspiration or transurethral catheterization is required to collect samples directly from the bladder microbiota¹³⁸. 502

Sampling breast tissue microbiota is usually done via surgical resection. However, this process has the potential of acquiring contamination from the skin. Some studies prudently include paired samples of the skin microbiome to control for such cross contamination^{139,140}. Pertinent to this thesis, the oesophageal microbiota is in close proximity to the oral cavity and gastric microbiota; both of which are higher biomass than the oesophagus. One should be able to successfully sample the oesophagus via biopsies or swabs.

510

511 The methods of extracting nucleic acid for microbiome studies have primarily 512 employed commercially available kits. Although, not overtly non-sterile, trace 513 amount of microbial DNA have long been recognised as been present in the commercial kits^{141,142}. Salter et al were arguably the first to study the impact of the 514 515 impact of kit contamination on high-throughput culture independent 516 methodologies¹⁴³. Using the above techniques, Salter et al studied the effect of serial dilutions on Salmonella bongori, 10⁸ to 10³ cells. They found that contaminating 517 reads were present and that this was proportional to the dilution factor of the sample 518 519 with ~90% of reads belonging to contaminant taxa in the most dilute sample. 520 Furthermore, they found contamination in a range of different commercial kits and to 521 some extent a defined microbiome could be linked to a specific kit. 522 Glassing et al calculated that there was a presence of 10–15 E. coli genome 523 equivalents (70–105 rRNA gene copies) per µl elution buffer from the MoBio 524 PowerSoil Kit. Further 16S rRNA gene sequencing of blank extractions from this kit yielded 81 bacterial genera and 108 tentative species¹⁴⁴. 525

Marker gene-based genome microbiomes surveys, namely 16S RNA gene based sequencing depend on polymerase chain reaction. PCR master mixes have been identified as sources of contamination^{142,145-147}. For the extraction kits and master mixes investigated, Stinson et demonstrated that the PCR master mix was a much greater contributor to contamination that the DNA extraction kits.

532

533 **1.2.3.2** Resolution of the contamination problem

534 Knowing the origins of contamination, how it presents itself and when it becomes a 535 considerable factor, one can devise protocols to eliminate or to at least take account 536 the risk of contamination. Indeed, direction and guidelines have been constructed to 537 conduct microbiome research while accounting for contamination^{148,149}. Eisenhofer 538 et al proposed a minimal experimental criteria denoted the 'RIDE' checklist which 539 they argue should become a "Minimum Standards Checklist for

540 Performing/Reviewing Low microbial Biomass Microbiome Studies"¹⁴⁸.

541

As contamination is predominantly an issue in low biomass samples, one must endeavour to maximise the cell density of the microbial sample. This may not of course be possible in every study. However, one should quantify starting material microbial load by utilizing methods such as Quantitative PCR (qPCR). For example Salter et al suggested a biomass of over 10³ to 10⁴ cells would be needed to overcome background contamination¹⁴³.

As noted above reagents are a major source of contamination. One can use reagents which have an emphasis on the quality of being microbial DNA free. Qiagen produce the 'QIAamp UCP Pathogen Mini Kit' which undergoes DNA decontamination processes and is certified as free from contamination. Kirstahler et al produced data that support the hypothesis that such kit reduces contamination¹⁵⁰.

555 Procedures have been developed to decontaminat PCR reagents¹⁵¹. Commercially
556 low contaminant PCR reagents are now available such as MTP Taq DNA
557 Polymerase(MERCK).

558

559 In silico methodologies have also been developed to remove contaminating OTUs or 560 ASVs. Firstly, one can simply remove the taxa from one's data-set which appear in a negative control¹⁵². Functions such as 'remove.seqs' within Mothur allows for such 561 562 operations. However, this method runs into 2 problems. One, contaminating taxa 563 may overlap with actually biological taxa. Two, the phenonema of index swapping means that reads can be assigned to the incorrect sample whic occurs at a non-564 negligible rate $(0.2 \text{ to } 6\%)^{153-155}$. Thus, one can mistakenly remove biologically 565 566 relevant taxa that due to index hopping/swabbing shows up in the negative. Jervis-567 Bardy et al demonstrated an inverse relationship between relative abundance of contaminating taxa and sample DNA concentration¹⁵⁶. The open-source R package 568 'decontam' performs such an analysis and identifies contamination¹⁵⁷. Finally, in the 569 570 case of well-defined sources of potential contamination, one can use SourceTracker 571 which employs Bayesian modelling to calculate the proportion of potential contaminant taxa within a sample¹⁵⁸. 572

573 **1.2.3.3** The placental microbiome controversy: a case study

574 Many anatomical features of humans have long been believed to be sterile including 575 the womb. At the turn of the century the French paediatrician Henry Tissier put 576 forward the model whereby human development occurs initial in the sterile womb and the individual acquires microbes during birthing¹⁵⁹. In 2014 work published by 577 578 Aagaard et al provided evidence for a unique placental microbiome. According to Bray-Curtis dissimilarity, this microbiome was most closely associated with the 579 580 HMP oral dataset. Subsequent studies have been built on these finding, identifying 581 associations between the placental microbiome and excess maternal gestational weight gain, birth weight, pre-eclampsia and gestational diabetes¹⁶⁰⁻¹⁶³. An additional 582 583 importance of the discovery of a placental microbiome is that it necessarily alters 584 models of the initial genesis and development of an individual's microbiome. 585 Collado et al formed a framework of microbiome development based on data which included data from placenta and amniotic fluid ¹⁶⁴. 586

However there has been a number of studies challenging the notion of a placental microbiome¹⁶⁵⁻¹⁶⁸. These studies were designed the experiments to appropriately delineate background contamination from microbes that may exist in the placental samples. These studies could not provide evidence of a placental microbiome which wass was separate from contamination. However, Goffau et did find evidences for the presences of *Streptococcus agalactiae* in ~5% of placental samples studies¹⁶⁷.

593

594 **<u>1.3 Cancer and the microbiota</u>**

595	Cancer is an umbrella term for an array of diseases which are characterised by the
596	transformation of normal cells into aberrant cells which dispays the qualities of 'The
597	hallmarks of Cancer ^{169,170} . This process occurs via somatic evolution fuelled by
598	somatic mutations ¹⁷¹ .Worldwide, in 2018, there was an estimated 18.1 million new
599	cancer diagnosis and 9.6 million cancer deaths ¹⁷² . The total economic burden of
600	cancer was calculated to be 1.16 trillion USD in 2010 ¹⁷³ . Further, cancer incidence
601	has been projected to double by 2035. An analysis of cancer deaths in the USA
602	between 1969 and 2013 found an age-adjusted decrease in cancer deaths of 17.9%
603	while another study on the US population found a decline in cancer related mortality
604	of 27% between 2007-2016 ^{174,175} . It has been argued that this comparably modest
605	reduction in cancer mortality is due to the lack of support in cancer prevention
606	research ¹⁷⁶ . Cancer prevention is relatively under researched when compared to
607	therapeutic development with only 2 to 9% of research funding going towards this
608	area ¹⁷⁷ .

609

As stated above, cancers arise due to the accumulation of somatic mutations through time. About 42% of cancer incidences in the US have been attributed to modifiable risk factors, a figure which is reflected in the UK population^{178,179}. The International Agency for Research on Cancer (IARC) compiles and evaluates data on known carcinogens. Notable group 1 carcinogens including tobacco smoke, UV light and obesity. These carcinogens promote oncogenesis through a plethora of mechanisms.

- 616 Infectious agents are also among well-established carcinogens. There is eleven
- 617 infectious agents which infect humans that are classified as group 1 carcinogenic
- agents (Table 5). In 2012, 15.4% of cancer incidence were attributable to ten of 618
- 619 eleven of these infectious agents i.e. exclusive of HIV.

620

621 622 623 Table 5 | Estimated numbers of infection-attributable cancer cases in 2018, by infectious pathogen, cancer subsite, and sex (Data derived from Martel et al, 2020)¹⁸⁰. These data exclude HIV attributable cancer incidences.

	Men		Women		Total	
	New cases	New cases attributable to infectious pathogens	New cases	New cases attributable to infectious pathogens	New cases	New cases attributable to infectious pathogens
Helicobacter pylori						
Non-cardia gastric cancer	550 000	490 000	300 00 0	270 000	850 00 0	760 000
Cardia gastric cancer	130 000	27 000	46 000	8900	180 00 0	36 000
Non-Hodgkin lymphoma of gastric location	12 000	8700	10 000	7600	22 000	16 000
Human papillomavirus						
Cervix uteri carcinoma			570 000	570 000	570 000	570 000
Oropharyngeal carcinoma	110 000	34 000	26 000	8100	140 000	42 000
Oral cavity cancer	190 000	3900	91 000	2000	280 000	5900
Larynx cancer*	150 000	3600	22 000	≤1000	180 000	4100
Anus squamous cell carcinoma	9900	9900	19 000	19 000	29 000	29 000
Penis carcinoma*	34 000	18 000			34 000	18 000
Vagina carcinoma*			18 000	14 000	18 000	14 000
Vulva carcinoma*			44 000	11 000	44 000	11 000
Hepatitis B virus						
Hepatocellular carcinoma	490 000	270 000	170 000	90 000	660 000	360 000
Hepatitis C virus						
Hepatocellular carcinoma	490 00 0	100 000	170 000	40 000	660 00 0	140 000
Other non-Hodgkin	260 00	8700	210 000	7200	480 00	16 000
lymphoma	0				0	
Epstein-Barr virus						
Nasopharynx carcinoma*	92 000	76 000	35 000	29 000	130 00 0	110 000
Hodgkin lymphoma*	46 000	24 000	33 000	17 000	80 000	40 000
Burkitt lymphoma	7800	4100	3800	2500	12 000	6600
Human herpesvirus						
type 8						

Kaposi sarcoma*	28 000	28 000	14 000	14 000	42 000	42 000
Schistosoma						
haematobium						
Bladder carcinoma	420 000	4000	120 000	1900	550 00	6000
					0	
Human T-cell						
lymphotropic virus						
Adult T-cell	1900	1900	1700	1700	3600	3600
leukaemia and						
lymphoma						
Opisthorchis						
viverrini and Clono						
rchis sinensis						
Cholangiocarcinoma	69 000	2100	56 000	1300	130 00	3500
					0	
All cancer types		1 100 000		1 100 000		2 200 000
related to infection						

624

625 In general, microbiome studies take a more global view of the microbial community.

626 It is unlikely that such studies would identify microbes which contribute a strong

odds ratio to cancer. However, these studies offer a framework where one can link

628 global community structures to cancer biology while also preserving the ability to

629 dissect the microbiome to the resolution of species and strains.

630

631 **1.3.1 Cancer tissue microbiome**

The colonic microbiome can exert a biological effect on practically all tissues in the body through a number of mechanisms including communication with the immune system. Hence, the colonic microbiome has been associated with cancers of many tissues not only colorectal cancer¹⁸¹⁻¹⁸³. Studies have also revealed the existence of microbiomes in non-GI tissue and have been implicated in the cancer biology of host tissue¹⁸⁴ (Table 6). These microbiomes are generally very low biomass in nature and therefore would be susceptible to contamination (See section 1.2.3).

Table 6 | Examples of intratumoral microbiomes and their influences on tumour

640 biology

Cancer type	Example of taxa identified	Comments
Breast	Enterobacteriaceae Bacillus Staphylococcus	<i>F. nucleatum</i> is overrepresented in breast tumour samples. Colonization of breast cancer by <i>F. nucleatum</i> is facilitated by binding of bacterial Fap2 to breast tissue expressed Gal- GalNAc. Mice models breast cancer demonstrated a role of <i>F. nucleatum</i> in promoting tumour growth and metastatic progression. Evidence suggest <i>that F.</i> <i>nucleatum</i> does so by suppressing accumulation of tumour infiltrating T cells ¹⁸⁵
Pancreatic Adenocarcinoma (PAC)	Bacteria Pseudoxanthomonas Saccharopolyspora Streptomyces	Mouse models demonstrate the ability of bacteria to translocate from the gut to the pancreas ¹⁸⁶ .
	Fungi Ascomycota Basidiomycota Malassezia	Ablating the pancreatic microbiota via germ free models or antibiotic treatment increased infiltration of the tumours with CD4+ T Helper- 1 and cytotoxic CD8+ T cells and reduced immunosuppressive myeloid-derived suppressor cells and M2-tumor-associated macrophages
		Individuals who were classified as long-term survivors had a higher alpha-diversity of the PAC microbiome relative to those who were classified as short term survivors ¹⁸⁷ . The abundance of three taxa Pseudoxanthomonas, Saccharopolyspora, and Streptomyces with the species <i>Bacilus Clausii</i> is highly predictive of long term survival. The PAC microbiome was associated with long term survival was correlated with recruitment and activation of CD8+ T cells in PADC tissue ¹⁸⁷ .
		In mouse models, gut fungal taxa where observed to translocate from the gut to pancreas.
		The PDA mycobiome of both humans and mice showed are composed of similar taxa and differed their respective gut microbiome ¹⁸⁸ .
		In mouse models, Fungal ablation protected against oncogenesis while colonisation of the pancreas with the fungal species <i>Malassezia globose</i> promoted oncogenesis ¹⁸⁸ .
		Fungal interaction with the mannose-binding lectin may promote oncogenesis by activation of the complement activation ¹⁸⁸ .

Lung	Granulicatella	Higher alpha diversity was observed in tumour
20118	Abiotrophia	tissue and matched healthy tissue compared to
	Streptococcus	healthy controls
	Cyanobacteria	
		In particular those tumours with TP53
		mutations was enriched with Acidovorax.
		Cyanobacteria-derived microcystin increase
		expression of oly (ADP-ribose) polymerase 1
		(PARP1) in Non-small cell lung cancer cell
		models ¹⁸⁹ .

641

642

643 **1.3.2 Fusobacterium nucleatum**

Fusobacteria nucleatum is a Gram-negative anaerobic non-spore forming, non-644 645 motile bacillus belonging to the genus Fusobacterium. F. nucleatum has classically 646 been described as an opportunistic commensal pathogen with a well-established a role in periodontal disease¹⁹⁰. In recent years F. nucleatum has been identified in a 647 648 range of other human microbiotas and has been associated with an ever-increasing 649 number of diseases including atherosclerosis, liver abscess and most notably cancer ¹⁹¹⁻¹⁹⁴. In particular there is a growing literature with respect to F. nucleatum and its 650 651 relationship to colorectal cancer oncogenesis and progression.

652

653 **1.3.2.1** Fusobacterium nucleatum association with colorectal cancer

654 There is mounting literature regarding an increase higher abundance and of *F*.

655 *nucleatum* in CRC relative to healthy controls. Initial studies by Castellarin et al and

- 656 Kostic were among the first to demonstrate this relationship^{195,196}. There has since
- been numerous studies utilizing a myriad of techniques that have corroborate these
- 658 findings. A recent meta-analysis carried out by Gethings-Behncke et which

659 surveyed the prevalence and abundance of F. nucleatum in individuals with 660 colorectal cancer compared with healthy controls in both mucosal and faecal samples found that the signal of the positive association between F. nucleatum and CRC was 661 maintained¹⁹⁷. In particular an odds ratio of *F. nucleatum* DNA being detected in 662 663 CRC versus healthy controls was 9.01 and 10.06 for faecal and mucosal samples 664 respectively. Further, in individuals who were F. nucleatum positive a consistent 665 increase in abundance in CRC in both sample types was found. Moreover F. 666 nucleatum was seen to have prognostic value with poorer survival in patients with 667 colorectal cancer with high versus low F. nucleatum abundance (Hazard ratio = $(1.87)^{197}$. 668

669

Another meta-analysis of faecal metagenomes identified *F. nucleatum* adhesion
protein A as being overrepresented in CRC versus healthy controls ¹⁹⁸. A
prospective analysis on a large American cohort found that prudent diets (rich in
whole grains and dietary fiber) were negatively associated with *F. nucleatum*positive tumours¹⁹⁹. This suggests a complex relationship between diet, the
microbiota and CRC.

676 Fluorescent in situ hybridization using Fusobacterium-specific 16S probes has

677 identified Fusobacterium species cells localized within the crypts of colorectal

678 sections²⁰⁰. Furthermore mucosal associated *F. nucleatum* cells have been

demonstrated to be viable as they can be cultured from mucosal samples²⁰¹.

680 With regard to the consensus molecular subtypes (CMS) of CRC, F. nucleatum was

found to be increased in CMS 1, a molecular subtype defined by microsatellite

- 682 instability and immune cell infiltration as well as poor prognosis^{202,203}. There also
 - 45

appears to be variation in the biogeography of *F. nucleatum* colonization, with F. nucleatum-high colorectal cancers gradually increasing from rectum to cecum in an approximately linear reletionship²⁰⁴.

686

687 One of the current models for why F. nucleatum is found in the gut is that it transfers 688 constantly from reservoirs in the mouth to the gut via the GI tract. Oral taxa have 689 been found to be enriched on CRC tumour tissue relative to matched healthy tissue²⁰⁵. Strain level metagenomic analysis of paired oral-stool samples found 690 691 extensive and persistent transmission of oral strains to the gut²⁰⁶. Furthermore, these analyses found that this transmission was higher in individuals with CRC²⁰⁶. Strain 692 693 typing of cultured F. nucleatum from matched mucosal biopsies and oral samples 694 using degenerate primers revealed that these strains were identical between sites within individuals²⁰¹. Another model of how *F. nucleatum* may reach the gut is 695 696 through the circulatory system. Transient bacteraemia is was observed in individuals up to 15 minutes post tooth brushing²⁰⁷. One study found *F. nucleatum* could be 697 cultured from blood samples from individuals who had undergone a dental extraction 698 207 . In orthotopic rectal CT26 adenocarcinoma, mouse models inoculated with 5 \times 699 10^6 to 1×10^7 cells of F. nucleatum ATCC 23726 via tail vein injection. F. 700 701 *nucleatum* could be identified in both tumour tissue and healthy control tissue within these mice²⁰⁸. In control mice without CRC F. nucleatum was not detected indicating 702 703 that disruption due to CRC development was needed for the translocation via 704 circulatory system.

705

706 1.3.2.2 Possible mechanistic relationship between Fusobacterium

707 nucleatum and oncogenesis

- 708 The above information dose not demonstrate a direct role for *F. nucleatum* in CRC. 709 However, there are experiments which support an active role of F. nucleatum. F. 710 nucleatum binds to E-cadherin-expressing CRC cells causing signal transduction 711 cascade through β -catenin leading to the expression of Wnt genes and increased proliferation²⁰⁹. Annexin A1 is a mediator of this FadA induced signalling which 712 713 itself leads to Annexin A1 expression thus leading to a positive feedback $loop^{210}$. 714 Lipopolysaccharides (LPS) produced by F. nucleatum can bind to 715 toll-like receptor 4 activating signalling to nuclear factor-kappab leading to the up regulation of the expression of miR-21²¹¹. The microRNA miR-21 down regulates 716 717 the RAS GTPase RASA1 whose depletion can lead to the activation of MAPK signalling pathway and proliferation²¹¹. 718
- 719
- 720 *F. nucleatum* can also apparently alter the tumour microenvironment of CRC.

721 Mucosal colonization by F. nucleatum in CRC has been shown to promote tumour-

722 infiltrating myeloid cells in *Fusobacterium*-associated colon tumour

723 Apc^{Min/+} mice²¹². Furthermore, *F. nucleatum* was seen to induce the expression of

724 pro-inflammatory cytokines, including TNF, IL-6, IL-8 and IL-1 β , via the NF- κ B

- pathway in the mouse models²¹². This immunophenotype is reflected in RNA-seq
- 726 data derived from Fusobacterium-associated human colon tumour samples²¹². The

adhesin Fap2 of *F. nucleatum* binds to a human receptor known as TIGIT that is

expressed on natural killer (NK) cells and other tumour-infiltrating lymphocytes²¹³.

This Fap2- TIGIT interaction inhibits the cytotoxic activities of these immune cells thereby protecting both *F. nucleatum* and CRC tumour cells²¹³.

731 Increasing evidence suggests that *F. nucleatum* may play a role in metastasis.

732 Individuals with metastatic CRC have a higher relative abundance of *F. nucleatum*

in their mucosa compared to individuals with non-metastatic CRC²¹⁴. Absolute

abundance as assessed by qPCR, showed that *F. nucleatum* cell numbers were higher

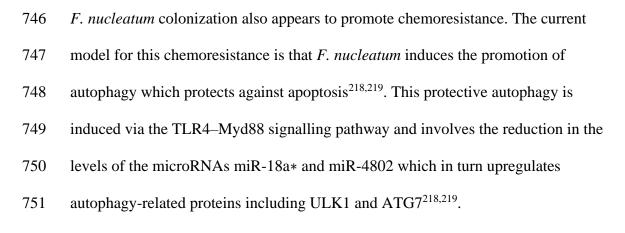
in faecal samples of individuals with metastatic CRC than those with non-metastatic

736 CRC^{215} . *F. nucleatum* has been identified at metastatic sites^{214,216}. *F. nucleatum* can

737 upregulate Caspase activation and recruitment domain 3 (CARD3) protein which

leads to activation of autophagy 214 . This activation of autophagy via CARD3 is a

prometastatic pathway²¹⁴. *F. nucleatum* was show to increase trans well migration


and lung metastasis in mouse cell models²¹⁵. This metastatic activity was show to be

in part induced by the upregulation of the long-noncoding RNA Homo sapiens

742 keratin 7antisense RNA (KRT7-AS) and keratin 7 (KRT7) through the NF-κB

signalling pathway²¹⁵. FAP2 dependant colonization of HCT116 cells increased the
secretion of IL-8 and CXCL1 and promoted migration²¹⁷.

745

754 1.3.2.3 Interventions to control Fusobacterium nucleatum.

755 The preceding sections have detailed associative and causative relationships between 756 F. nucleatum in CRC and other cancers. If one is to take the sum of evidence as 757 sufficient to label it as a cancer promoting microbe, what steps can be taken to prevent F. nucleatum-attributable cancer incidence and deaths? Firstly, testing for F. 758 759 nucleatum within subjects may aid in stratifying the population with regard to risk. 760 Including F. nucleatum quantification to complement an immunochemical test improves diagnostic capabilities²²⁰. Secondly, it may be desirable to eliminate *F*. 761 762 nucleatum from the microbiome of certain individuals. F. nucleatum has been shown to be sensitive to a range of antibiotics²²¹. CRC xenograft mouse models treated with 763 764 the antibiotic metronidazole led to a reduction of Fusobacterium load and was also linked to reducing cancer cell proliferation and overall tumour growth²¹⁶. However 765 766 using such a broad spectrum antibiotics may have unforeseen negative side effects 767 due to the targeting other microbes. One solution could be to use predatory bacteria such as *Bdellovibrio bacteriovorus* which can kill *F. nucleatum*²²². The utilization of 768 bacteriophages to selectively eliminate F. nucleatum is also being explored^{219,223}. A 769 770 phage-guided biotic-abiotic hybrid nanosystem was developed which proved to be effective in eliminating intratumoural F. nucleatum in mouse models²¹⁹. Furthermore 771 772 this system was demonstrated to be more effective in reducing tumour growth than with chemotherapy compare to chemotherapy on its own^{219} . 773

774

1.3.2 The microbiota and cancer therapeutics

There is a growing arsenal of therapeutic strategy to treat cancer includingimmunotherapy and chemotherapy.

779 1.3.3.1 Immune Checkpoint Inhibitors

780 Immune checkpoints consists of a system of immunological pathways which

781 modulate self-tolerance and the duration and amplitude of the immune response.

782 These pathways ensure an appropriate response to foreign entities and prevent

autoimmunity. Cancer cells may evolve to take advantage of checkpoints and evade

- 784 immunosurveillance.
- 785 Clinical mmune checkpoints inhibitors are typically monoclonal antibodies which

target cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) or programmed cell

death protein 1 (PD-1) or its ligand (PD-L1) thereby ablating the checkpoint. These

788 ICI have proven to be a breakthrough in the development in cancer therapeutics.

789 There exists variability with regard to different types of cancers that are susceptible

to ICI. ICI have proven effective in treating melanoma, non-small cell lung

791 carcinoma, renal cell carcinoma, small cell carcinoma of the head and neck and

rothelial carcinoma²²⁴⁻²²⁸. Furthermore, there is variation with regard to subtypes of

cancer. For instance, ICI have proven effective for MSI high CRC. Resistance to ICI

varies inter-individually. In the case of melanoma, a 26% -52% response rates to ICI

exist depending on the ICI therapy administered²²⁹. A number of factors have been

identified as modulators of response to immunotherapy including Tumour mutational

⁷⁹⁷ burden (TMB) and PD-L1 expression ^{230,231}.

798 The microbiota is now considered a factor which influences ICI efficacy. A seminal 799 set of papers published in Science reported significant associations between microbiota features and treatment efficacy in patients undergoing immunotherapy²³²⁻ 800 ²³⁴. Taxa such as Akkermansia muciniphila, Bifidobacterium longum and 801 802 Faecalibacterium prausnitzii were found to be enriched in responders. However, 803 these studies did not show a consensus microbial signal with respect to respond. 804 Antibiotics have been reported to impair the efficiency of immune checkpoint 805 inhibitors as measured by overall survival (OS) indicating a role of the microbiome in ICI efficacy²³⁵⁻²³⁸. These findings lead to the argument that antibiotic therapy 806 should be restricted prior to immunotherapy 239 . 807 808 There is mechanistic insight into how the microbiota may interact with the immune 809 system thereby enhancing ICI efficiency. Data from both patient and mouse models 810 provide evidence that the levels of short-chain fatty acids (SCFA) namely butyrate and propionate, reduces efficacy of CTLA-4 induced inhibition²⁴⁰. However with 811 812 regard to anti-PD-1, higher levels of faecal SCFA is associated with longer progression-free survival²⁴¹. The purine nucleoside inosine, which is produced via 813 814 deamination of adenosine, has been demonstrated to augment the efficacy of ICI against CRC in mouse models²⁰⁹. Inosine is produced by various microbes such as 815 816 Bifidobacterium pseudolongum and Akkermansia muciniphila. Both of these 817 microbes have been found to be more abundant in individuals who responded to ICI 818 relative to nonresponding cancer patients, with the latter found to be statistically significant²⁴². Inosine systemic translocation via the colon is thought to be facilitated 819 820 by perturbation in gut permeability caused by ICI. Inosine activates T helper 1 (TH1) 821 in an adenosine 2A receptor (A2AR)-dependent manner leading to an enhancement of ICI therapeutics²⁴². Faecal microbiota transfer (FMT) from ICI responder patients 822

into GF mice has been reported to enhance ICI intervention²³³. Currently, clinical
trials are been carried out with respect to the use of FMT as an intervention to
augment ICI therapy in humans²⁴³.

826

827 1.3.3.2 The microbiota and chemotherapy

828 The microbiota can biotransform and modulate the efficacy of chemotherapeutic 829 compounds. Streptomyces inactivates doxorubicin by the reduction of the quinone ring of the anthracycline by NADH dehydrogenase²⁴⁴. In CRC mouse models, 830 Mycoplasma has been demonstrated to inactivate gemcitabine via cytidine 831 deaminase²⁴⁵. Mice which lack a microbiota show resistance to Cyclophosphamide²⁴⁶. 832 833 Cyclophosphamide promotes the translocation of intestinal microbes including 834 Lactobacillus johnsonii, Lactobacillus murinus and Enterococcus hirae which 835 stimulate the production of type 17 T helper (TH17) cell and type 1 T helper (TH1) cell²⁴⁷. Microbes may also increase the toxicity of chemotherapy. Irinotecan is an anti-836 cancer prodrug which is converted into its active form in the liver. However, in the 837 838 gut, β -glucuronidase expressing microbes convert irinotecan into the toxic compound SN-38²⁴⁸. 839

840

Given the growing body of evidence indicating that a variety of tumours contain
endogenous bacterial communities, microbiome based profiling of tumours prior to
chemotherapeutic intervention has the potential to improve patient outcomes^{249,250}.

845 **<u>1.4 Mutagenesis by microbe: The role of the microbiota in</u></u>**

846 shaping the cancer genome.

847 This 1.4 section has been published in the journal *Trends in Cancer*.

848 Authors:

- 849 Maurice Barrett, Collette K Hand, Fergus Shanahan, Thomas Murphy, Paul W850 O'Toole
- 851

852 **Citation:**

- 853 BARRETT, M., HAND, C. K., SHANAHAN, F., MURPHY, T. & O'TOOLE, P. W.
- 854 2020. Mutagenesis by microbe: The role of the microbiota in shaping the cancer
- genome. Trends in Cancer, 6, 277-287.
- 856
- 857 Maurice Barrett contributed to this work in the following ways:
- Primary author for this review.
- 859

860 Keywords

861 microbiota; microbiome; DNA damage; mutational mechanism; mutational862 signatures

863

864 **1.4.1 Highlights**

- 865 The literature describing the differences in microbiota features between individuals
- 866 with cancer and matched controls has undergone dramatic recent expansion.
- 867 Mechanistic models for how microbes promote cancer formation and progression are
- being developed and experimentally tested.
- 869 Microbes have been implicated in mutational mechanisms namely in the formation
- 870 of DNA damage. These mechanisms include the production of crosslinking
- 871 genotoxic colibactin by Escherichia coli or ectopic expression of activation-induced
- 872 cytidine caused by Helicobacter pylori infection.
- 873 Developments in bioinformatics have allowed for the elucidation of the mutational
- 874 mechanisms that act upon the cancer genome through oncogenesis, particularly by
- 875 identifying mutational signatures.
- 876 Elucidation of microbe-associated mechanisms will allow for a more complete
- understanding of the forces behind the etiology of the cancer genome.

879 **1.4.2 Abstract**

880 Cancers arise through the process of somatic evolution fuelled by the inception of 881 somatic mutations. We lack a complete understanding of the sources of these 882 somatic mutations. Humans host a vast repertoire of microbes collectively known as 883 the microbiota. The microbiota plays a role in altering the tumour microenvironment 884 and proliferation. In addition, microbes have been shown to elicit DNA damage 885 which provides the substrate for somatic mutations. An understanding of microbiota-886 driven mutational mechanism would contribute to a more complete understanding of 887 the origins of the cancer genome. Here we review the modes by which microbes 888 stimulate DNA damage and the effect of these phenomena upon the cancer genomic 889 architecture, specifically in the form of mutational spectra and mutational signatures.

890 **1.4.3 Origin of the cancer genome and the role of the microbiota**

Oncogenesis is driven by the Darwinian selection of somatic mutations (see
Glossary) over time ²⁵¹. Mutations arise through the formation of genetic aberrations
and their subsequent interactions with the DNA repair machinery and cell cycle
related pathways including DNA synthesis²⁵². Mutational mechanisms alter the DNA
in distinguishing manners resulting in genetic patterns known as mutational
signatures (Box 1).

897

898 Box1 | Mutational signatures

899	Specific mutational mechanisms produce characteristic patterns in the genome
900	known as mutational signatures. Recent advances in mathematical modelling and
901	bioinformatics have led to great improvements in our ability to identify mutational
902	signatures from cancer genomic data. There are six defined classes of base
903	substitutions: C>A, C>G, C>T, T>A, T>C and T>G [note: In accordance with the
904	Catalogue of Somatic Mutations in Cancer (COSMIC) system, all substitutions are
905	referred to by the pyrimidine of the mutated Watson-Crick base pair]. The
906	incorporation of the 5' and 3' bases flanking the mutated base of the six originally
907	defined classes gives an expanded classification system of 96 possible mutations.
908	Utilizing this 96-class system as the framework and applying non-negative matrix
909	factorization and model selection, with input from genomic data from 7042 cancer
910	samples from 31 different cancer types, 21 mutational signatures were initially
911	identified ²⁵³ . With the inclusion of more genomes for a heterogeneity of cancers,
912	as well as the consideration of single base insertion/deletions and double base
913	substitutions, the number of mutational signatures has expanded ²⁵⁴ . Currently, the
914	number and type of mutational signatures characterised are as follows: 49 single
915	base substitutions, 11 doublet base substitutions, four clustered base substitutions
916	(DBS), and 17 small insertion and deletion (indels) mutational signatures ²⁵⁴ .
917	Structural variants also occur in cancer genomes and they include insertions,
918	deletions, inversions, balanced or unbalanced translocations, amplifications and
919	complex rearrangements on a scale of >50 bp in size ^{255} . Efforts have also been
920	made to define the signatures of these events ²⁵⁶ . Mutational signatures provide an
l	

921	insight into the mutational mechanisms that act on a cancer genome over time.
922	Mutational signatures are typically displayed as histogram with the frequency of
923	base substations (or indels or doublet base substitutions) with respect to the
924	genomic context. SBS signature 1 is characterised by C>T transversions at
925	methylated CpG sites within an NpCpG trinucleotide context. The putative
926	mechanisms behind SBS signature 1 is spontaneous or enzymatic deamination of 5-
927	methylcytosine to thymine. This newly formed thymine maybe base-paired with
928	adenine during replication, provided DNA repair is not executed. Many mutational
929	signatures described do not have a known aetiology.

- 930
- 931

932 The origin of mutations allows them to be classified into three categories, which is (i) Inherited genetic variants which lead to an increase in the risk of cancer 933 934 development. (ii) Environmental factors, exogenous factors including UV light, 935 tobacco smoking and diet that mutate the DNA are directly linked to cancer. (ii) 936 Stochastic errors associated with DNA replication. These are seemingly inevitable 937 random mutations which arise due to the intrinsic properties of DNA biology. 938 Seminal work by Tomasetti and Vogelstein showed that about two-thirds of the mutations in the cancer genome originate from stochastic events ^{257,258}. 939 940 Lung and cervical adenocarcinoma genomes harbour median values of 33% and 83% stochastic mutations respectively ²⁵⁷. However, epidemiology evidence indicates that 941 942 a high portion (~90%) are attributable environmental factors of cases, i.e. tobacco 943 smoking and HPV infection, respectively. The manging of environmental factors is 944 thus crucial is cancer prevention even though stochastic/replicative mechanisms are 57

the major driver (See ref 3 for a more detailed discussion). However a complete
catalogue environmental factors that contribute cancer risk is lacking. Note that a
great number of known carcinogens promote oncogenesis by causing mutagenesis
e.g. ultraviolet light, ethanol, tobacco smoke and radioactive substances.

949 The human microbiota is increasingly seen as an emerging environmental risk factor. The human microbiota is home to about 3.8×10^{13} bacterial cells and it is estimated 950 951 that the collective metagenome of these bacteria encompasses about 100 times more genes than the human genome 8,10 . Although the majority of studies focus on 952 953 bacteria, upon which this review is focussed, the human microbiota includes 954 members from all 5 kingdoms of life as well as viruses. A large number of studies 955 demonstrate that microbiota features are involved in the development and 956 progression of a range of cancers. The term 'oncobiome' has been coined to describe the relationship between the microbiota and cancers²⁵⁹. However, oncobiome 957 958 research has identified relationships that are primarily correlative rather than 959 causative in nature. With regard to the putative mechanistic role that the microbiota 960 has in cancer development, immune modulation in the form of inflammation caused by the microbiota is an intense area of research ²⁶⁰. Effort has also been made in 961 defining the role of the microbiota in cell proliferation ²⁶¹. 962

963 The microbiota is known to be involved in a diverse assortment of mutational

964 mechanisms (Table 1). Known variation in cancer risk due to unknown

965 environmental factors could be explained in part by variations in the ability of the

- 966 microbiota of individual subjects to induce DNA-damage and thus somatic
- 967 mutations. Here we describe the current state of knowledge on microbes and their

- ability to compromise the stability of the human genome ultimately leading to
- 969 cancer.

Source	Involvement of microbiota features	Key role in a mutational mechanism	Postulated effected on cancer genomic landscape	Reference
Activation- induced cytidine deaminase (AID)	Helicobacter pylori infection cause ectopic expression of AID	Cytosine deamination at specific motifs	Mutational signatures SBS84 and SBS85	254,262
Acetaldehyde	Various inhabitants of produce ethanol and are capable metabolic act on it to produces acetaldehyde	N2- ethylidenedeoxyguanosine, Guanine- guanine intrastrand crosslinks	GG-to-TT base substitution. Mutational signature DBS2	263
Colibactin	Expressed by Escherichia coli containing a pks island	Adenine – adenine intra- strand crosslinks, Double strand breaks,	DSBs at an AAWWTT pentanucleotides motif. Mutational signatures SBS28 and SBS41	264
Cytolethal distending toxin (CDT)	Produced by various Gram- negative bacteria including enteropathogenic <i>Escherichia coli</i> , <i>Campylobacter</i> species, <i>Shigella</i> species and <i>Haemophilus</i> <i>ducreyi</i>	Single strand breaks and Double-strand breaks	Infidelity of DNA repair can lead to structural variants such as indels	254
Disruption of DNA mismatch repair	Helicobacter pylori and Enteropathogenic Escherichia coli can disrupt mismatch repair	Deletion of MMR proteins	Microsatellite instability, Mutational signature SBS6, ID1 and ID2	253,265,266
Dinitrogen trioxide	Metabolic activities of the microbiota can produces precursors to N203 e.g. denitrifying bacteria	Nitrosative deamination	Various base substitutions e.g. Adenine nitrosative deamination to Hypoxanthine can lead to T>A substitution	267,268

970 Table 1. Microbe-Associated Mechanisms and Genomic Consequences

Hypobromous acid	Eosinophil's produce Hypobromous acid. The microbiota can influence eosinophic biology	8-bromoguanine	G > T primarily but also $G > C$, G > A, and delG	269
Hypochlorous acid	HOCL is produce by Neutrophils. The microbiota can influence neutrophil inflammatory status	Formation of 5- chlorocytosine (5ClC), formation of malondialdehyde	C>T, G >A, G>T substitutions	270,271
N-nitroso compounds (NOCs)	Microbes play a role in the production of nitrosating agents and produces biogenic amine	Alkylated DNA base	Various base substitutions e.g O6- methylguanine (O6-MeG) can cause a G(C)>A(T) transition	272
Reactive oxygen species	Various metabolic activities	Oxidative Base Lesions	G to T transversion, SBS Mutational signatures 18 and 36	273
4-hydroxy-2- nonenal	<i>Enterococcus</i> <i>faecalis</i> induces the bystander effect via polarising marcophages. Polarised marcophages produces 4- hydroxy-2- nonenal	Exocyclic HNE-DNA adducts	Chromosomal instability	274

971

972

973 In this review we described the microbiota influences on genome integrity through

974 (i) direct DNA damage, (ii) immune cell induced DNA damage, (iii) dietary

975 interaction, and (iv) disruption to the DNA damage response.

977 **1.4.4 Direct DNA Damage**

978 Members of the microbiota can produce proteins, molecules and secondary
979 metabolites that can directly cause DNA damage. These products can interact
980 directly with the host DNA thereby mutating it.

981

982 1.4.4.1 Colibactin

Escherichia coli is classified into 4 phylogenetic groups, A, B1, B2, and D. About 983 984 30-50% of E. coli strains identified in stool microbiota of individuals from high-985 income nations belong to group B2. Within the B2 group, 35% of isolates possess genomic islands known as *pks* (for polyketide synthase) islands²⁷⁵. The 54-kb *pks* 986 987 island is a biosynthetic gene cluster encoding for a non-ribosomal peptide synthetase 988 (NRPS)-polyketide synthase (PKS) hybrid gene cluster, which encodes for 989 colibactin²⁷⁶. Colibactin can cause Double-strand breaks (DSB) in mammalian DNA thereby promoting genome instability and an increase in mutation rate ^{277,278}. Note, 990 991 how colibactin is transported to from the outside all the way to the nucleus is 992 currently unknown. The pks+ E. coli strains are over-represented in the gut of 993 individuals with colorectal cancer, being detected at a rate 20% in the mucosa of healthy individuals but 55%-67% in patients with colorectal cancer (CRC) ^{279,280}. 994 995 Furthermore, pks+ E. coli was disproportionally frequently identified in subjects 996 with familial adenomatous polyposis (FAP) compared to healthy controls ²⁸¹. Monocolonization of azoxymethane (AOM)-treated IL10-/- mice with pks+ E. coli 997 998 promoted tumorigenesis, while challenge with strains lacking *pks* reduces the 999 frequency of tumorigenesis ²⁷⁹.

1000	Colibactin crosslinks directly with DNA through an electrophilic cyclopropane
1001	moiety 'warhead' 282. Liquid chromatography-mass spectrometry-based
1002	methodologies have identified that colibactin alkylation of DNA via the
1003	cyclopropane warhead resulted in adenine-colibactin adducts ^{283,284} . This
1004	phenomenon was identified in both HeLa cells and in mouse models ²⁸⁴ . Colibactin
1005	can also induce DNA inter-strand cross-links and activation of the DNA damage
1006	response including Fanconi anemia DNA repair ²⁸⁵ . Recent structural analysis
1007	revealed that colibactin contains two conjoined warheads enabling its ability to cause
1008	DNA crosslinks ²⁸⁶ . Double strands breaks are not believed to be a direct
1009	consequence of colibactin activity but rather occur due to replication stress caused by
1010	DNA cross-links ²⁸⁵ . Recent sequencing analysis of sites of colibactin induces DSBs
1011	revealed that these DSBs occurred at AT-rich regions and in particularly at the
1012	pentanucleotides motif containing the AAWWTT ²⁶⁴ . Single nucleotide variants at
1013	the AAWWTT were found to be enriched in a number of cancers including CRC and
1014	stomach cancer compared with a WWWWW motif. Two mutational signatures were
1015	found to be link with the AAWWTT colibactin motif, SBS28 and SBS41 ²⁶⁴ .
1016	Mutational signature SBS28 has been associated with POLE mutation while
1017	Mutational signature SBS41 has no know etiology.

1018

1019 1.4.4.2 Cytolethal distending toxin (CDT)

1020 The cytolethal distending toxin (CDT) is produced by an array of gram-negative

1021 bacteria within the gamma and epsilon classes of the phylum Proteobacteria²⁸⁷. It is

1022 a heat-labile exotoxin whose properties lead it to be classified as a both a

1023 cyclomodulin and a genotoxin. The proteobacteria that can produce CDT are sub-1024 dominant members of the human gut microbiota.

1025 CDT is a heteromultimeric protein comprised of three subunits, CdtA, CdtB and 1026 CdtC which are encoded within a bacterial single operon ^{288,289}. Subunits CdtA and CdtC function to allow delivery and internalization of CDT into target cells²⁸⁹. CdtB 1027 shares sequence, structural and functional homology with DNase I and is highly 1028 conserved among bacteria ^{290,291}. Furthermore, nuclear localization signals have been 1029 identified in CdtB proteins ²⁹². Studies with ApcMin/+ mice that are genetically 1030 1031 susceptible to small bowel cancer found that a Campylobacter jejuni strain 1032 harbouring the CDT operon promoted colorectal tumorigenesis compared to 1033 treatment with non-CDT bacterial controls, while mutation of the cdtB subunit attenuated this phenomenon ²⁹³. CdtB has been shown to promote DSB in vitro and 1034 in vivo ^{290,294,295}. However, the current model of CdtB activity holds that CdtB acts in 1035 1036 a dose-dependent manner and tends not to induce double strand breaks directly ²⁹⁶. 1037 At low to moderate doses, CdtB causes single strand breaks (SSB) which are addressed by Single-strand break repair (SSBR)²⁹⁷. If CDT-induced SSBs are not 1038 1039 addressed before replication or occur during replication, they may cause a stalled replication fork ^{296,297}. At high doses, CDT can induce DSB directly by two cuts to 1040 the DNA backbone that are juxtaposed to each other 296 . 1041

1042

1043 **1.4.4.3 Reactive oxygen species**

Reactive oxygen species (ROS) are a chemically reactive family of molecules
containing oxygen which include the highly reactive hydroxyl radical (OH–),

- 1046 superoxide radical (O2–), and non-radical hydrogen peroxide (H₂O₂). Reactions of
- 1047 ROS with DNA generates oxidative DNA base lesions. To date, more than 30
- 1048 oxidative DNA base lesions have been identified $(Box 2)^{298}$.
- 1049 Microbiota activity is known to produce reactive oxygen species through varied
- 1050 means. For example, primary bile acids, cholic acid (CA) and chenodeoxycholic
- 1051 acid; (CDCA) are synthesised by the liver and are secreted into the small intestine
- 1052 from the gall bladder. A small proportion of these bile salts are transformed into
- 1053 secondary bile salts by the gut microbiota. These secondary bile salts are thought to
- 1054 be involved in the production of ROS ²⁹⁹.
- 1055 Hydrogen sulphide (H₂S) is produced by the metabolic activity of colonic bacteria
- 1056 including taurine desulfonation by Bilophila wadsworthia, cysteine degradation by
- 1057 Fusobacterium nucleatum and sulfonate degradation by sulfate-reducing bacterium
- 1058 such as *Desulfovibrio desulfuricans*. Increased relative abundance of such bacteria
- 1059 has been linked to CRC development 300,301 . Evidence suggests that H₂S production
- 1060 leads to DNA damage partly due to ROS generation ^{301,302}.

1061 Box 2 | Oxidative DNA Base Lesions

1062Guanine has the lowest redox potential of the native bases and is thus the most1063readily oxidised. Two common oxidative base lesions which are generated by1064the oxidation of Guanine include 8-oxo-7,8-dihydro-2'-deoxyguanosine and10652,6-diamino-4-oxo-5-formamidopyrimidine (FapyG) which occur at an1066estimated rate of 1000–2000 and 1500–2500 per cell/per day in normal1067tissues, respectively³⁰³. Furthermore, the occurrence and the mutagenicity of1068these oxidative DNA base lesions vary considerable. For example, 7,8-

- dihydro-8-oxo-guanine is about four times as mutagenic and four times more
 frequent in its occurrence than 7,8-dihydro-8-oxo-adenine^{303,304}. Replication
 of DNA containing 8-oxo-7,8-dihydro-2'-deoxyguanosine and 2,6-diamino-4oxo-5-formamidopyrimidine (FapyG) are shown to induce G:C to T:A (C >A)
- 1073 and G:C to T:A (C >A) respectively³⁰⁵.
- 1074 The nucleobases within the cellular nucleotide pool may also undergo
- 1075 | oxidation. Misincorporation of these nucleoside triphosphates can induce
- 1076 mutations. The two major products of nucleotide pool oxidation are 8-
- 1077 hydroxy-2'-deoxyguanosine 5'-triphosphate (8-OH-dGTP) and 2-
- 1078 | hydroxydeoxyadenosine 5'-triphosphate (2-OH-dATP). 8-OH-dGTP has been
- 1079 demonstrated to induce A:T to C:G transversions when introduced into COS-7
- 1080 mammalian cells³⁰⁶. *In vitro* analysis using HeLa cell extract showed that 2-
- 1081 OH-dATP within the nucleotide pool can led to $G \cdot C$ to $A \cdot T$ (C>T) transitions
- 1082 and $\mathbf{G} \cdot \mathbf{C}$ to $\mathbf{T} \cdot \mathbf{A}(\mathbf{C} > \mathbf{A})^{307}$.
- 1083 Mutational signatures 18 and 36 have been suggested to be attributed to
- 1084 | reactive oxygen species. Mutational signature 36 has been specifically
- 1085 attributed to ROS in the context of MUTYH-Associated Polyposis (MAP)
- 1086 | syndrome ²⁷³. MAP syndrome is defined by biallelic germline mutation of
- 1087 MUTYH gene and is a colorectal polyposis which predisposes individuals to
- 1088 CRC. MUTYH DNA glycosylase is coded by the MUTYH gene and functions
- 1089 to prevent 8-Oxoguanine-related mutagenesis by scanning the newly-

1090 synthesized daughter strand in order locate and remove incorporated adenine
1091 paired with 8-Oxoguanine³⁰⁵.

1092

1093

1094 **1.4.4.4 Dinitrogen trioxide and nitrosative deamination**

1095 Nitrosative deamination is deamination mediated by dinitrogen trioxide
1096 (N₂O₃, nitrous anhydride). In this phenomenon, dinitrogen trioxide can react

1097 with nucleotides and induce deamination by nucleophilic aromatic

1098 substitution. These events are mutagenic because the resulting deaminated

1099 bases may be read incorrectly if not repaired 268 .

1100 Dinitrogen trioxide can be generated from the autooxidation of nitric oxide

1101 (NO-) or the condensation of nitrous acid $(HNO_2)^{308}$. GIT microbes can

1102 produce endogenous nitric oxide and/or nitrous acid by 4 mechanisms, that is,

(i) The hemethiolate monooxygenase, nitric oxide synthase (NOS), oxidises

1104 L-arginine (Arg) to produce nitric oxide. ³⁰⁹ (ii) Denitrification of nitrate

1105 (NO_3) to nitrogen (N_2) , which is an important part of the nitrogen cycle and is

1106 carried out by denitrifying bacteria and plants. During denitrification, nitric

1107 oxide is produced by one-electron reduction of nitrite (NO_2) by heme or Cu-

1108 containing nitrite reductases²⁶⁷. (iii) Respiratory nitrite ammonification (also

1109 referred to as dissimilatory nitrate reduction to ammonium)²⁶⁷. (iv) Acidic

1110 non-enzymatic reduction of nitrite to NO which is driven by lactic acid
1111 bacteria such as lactobacilli and bifidobacteria³¹⁰.

1112

1113 **1.4.5 Immune cell induced DNA damage**

1114 The microbiota and immune system closely interact from the early stages of 1115 human development. In this section we review mechanisms by which the 1116 microbiota can influence immune cells to behave in a genotoxic manner.

1117

1118 **1.4.5.1** Hypochlorous acid (HOCl) production

1119 Neutrophils, which are a type of polymorphonuclear leukocyte, accumulate at sites

1120 of injury with the primary function of promoting inflammation. Neutrophils produce

a potent antimicrobial known as hypochlorous acid (HOCl) which is produced by

1122 myeloperoxidase using as substrates the chloride ions and hydrogen peroxide (H₂O₂)

1123 produced by NADPH oxidase ³¹¹. HOCl is highly reactive and readily interacts with

1124 DNA. HOCl has been shown to cause a cytosine to 5-chlorocytosine (5ClC)

1125 conversion ²⁷⁰. This is in turn can cause a C to T transition during replication.

1126 In addition, HOCl can induce the peroxidation of lipids leading to the formation of

1127 malondialdehyde (MDA). Studies in both cellular and animal models found that such

a production of MDA can lead to a significant increase in the formation of 3-(2-

 $1129 \quad deoxy-\beta-D-erythro-pentofuranosyl) pyrimido [1,2-\alpha] purin-10(3H)-one~(M1dG)~,~a$

1130 damaged guanine. ²⁷¹. M1dG adducts are mutagenic causing G>T and G >A

1131 substitutions.³¹²

1132 The microbiota is now known to be a modulator of neutrophilic biology³¹³. A recent 1133 study in a mouse model demonstrated that neutrophil pro-inflammatory activity 1134 correlates positively with neutrophil ageing while in circulation³¹⁴. Furthermore the 1135 study found that the microbiota regulates neutrophil ageing by Toll-like receptor and 1136 myeloid differentiation factor 88-mediated signalling pathways³¹⁴. A depletion of the 1137 microbiota was mirrored in the number of aged neutrophils and an improvement in 1138 inflammatory disease.

1139 1.4.5.2 Hypobromous acid production

1140 Eosinophils are granular leukocytes with a multifunctional role in immune biology.

1141 Eosinophils secrete eosinophil peroxidase which catalyzes the formation of

1142 hypobromous acid (HOBO) from hydrogen peroxide and halide ions (Br-) in

solution. HOBO can also be produced by reaction of HOCl with Br- ions. Like

1144 HOCl, HOBO is an oxidant and functions to oxidize the cellular components of

1145 invading pathogens; however excess production of HOBO can also lead to host

1146 damage including DNA damage, namely the formation of 8-bromo-2'-

1147 deoxyguanosine and 5-bromo-2'-deoxycytidine. A SupF forward mutation assay in

1148 human cells found that the prominent mutation induced was G>T mutation but

1149 HOBO also induces G>C, G>A, and delG ²⁶⁹.

1150

1151 **1.4.5.3** Activation-induced cytidine deaminase

1152 Activation-induced cytidine deaminase (AID) is a member of the cytidine deaminase

1153 family of enzymes with a role in somatic hypermutation. Immunohistochemistry

1154 identified the ectopic overexpression of AID in inflamed tissue derived from patients

- 1155 with Crohn's disease and ulcerative colitis as well as colitis-associated colorectal
- 1156 cancers ³¹⁵. The expression of AID in colonic epithelial cell lines induced an increase
- 1157 in the mutation rates in these cells ³¹⁵. Knock-out of AID in IL10 null mice
- attenuated the mutation rate in their colonic cells and also inhibits CRC
- 1159 development³¹⁶. Inflammation seems to be key to this aberrant activity. *H. pylori*
- 1160 infection, which is known to induce inflammation, promotes ectopic expression of
- 1161 AID in non-tumorous epithelial tissues ²⁶²
- 1162 Whole genome analyses in chronic lymphocytic leukaemia revealed that the activity
- 1163 of AID may produces two types of substitution pattern (i) a 'canonical AID
- signature' characterised by C to T/G substitutions at WRCY motifs near active
- 1165 transcriptional start sites and (ii) a 'non-canonical AID signature' characterised by A
- 1166 to C mutations at WA (W=A or T) motifs occurring genome-wide in a non-clustered
- 1167 fashion ³¹⁷. These mutational processes have been assigned to mutational signatures
- 1168 SBS84 and SBS85²⁵⁴.
- 1169

1170 1.4.5.4 By-stander effect and Enterococcus faecalis

- 1171 Enterococcus faecalis is known to promote CRC oncogenesis in interleukin
- 1172 10 -/- mice ³¹⁸. *E. faecalis* can promote the bystander effect which leads to
- 1173 double-stranded DNA breaks, tetraploidy and chromosomal instability. In
- 1174 this model, *E. faecalis* production of extracellular superoxide induces
- 1175 polarization of macrophages to an M1 phenotype ³¹⁹⁻³²¹. In turn macrophages
- 1176 produce 4-hydroxy-2-nonenal (4-HNE), a diffusible breakdown product of ω -
- 1177 6 polyunsaturated fatty acids whose expression in this context is dependent on

Cyclooxygenase-2^{274,322}. Primary murine colon epithelial cells exposed to
 polarized macrophages or purified 4-HNE undergo transformation ³²³.

1180 **1.4.6 Dietary interaction**

The diet of the host and the gut microbiota are inextricably linked. GIT bacteria depend almost exclusively on the host diet for their nutritional substrates (a restricted number of taxa can metabolize mucins and glycoproteins) and indeed the composition of the microbiome is correlated strongly with diet. Diet is a key modulator of cancer risk. In the cases described below, microbiota-diet interactions lead to the formation of genotoxic compounds capable of mutating the host genome.

1188

1189 1.4.6.1 N-nitroso compounds (NOCs)

1190 NOCs, such as nitrosamines and nitrosamide, are known to be potent carcinogens. 1191 NOCs are formed by the nitrosation of secondary amines and amides via nitrosating agents, such as N₂O₃ and N₂O₄ ³²⁴. NOCs can be found in foods such as processed 1192 meats, smoked/cured fish and German beer³²⁵. Additional compounds such as nitrate 1193 1194 and nitrite which are precursors to nitrosating agents can be found in food including 1195 vegetables which may account for 50-70% of an individual's intake of nitrate and nitrite ³²⁶. Endogenous NOCs are also formed and in many cases, this is because of 1196 1197 the activities of microbes. Firstly, bacteria produce nitrosating agents (See 1198 Dinitrogen trioxide and nitrosative deamination). Further amines and amides are produced by bacterial decarboxylation of amino acids ³²⁶. Heme has been suggested 1199

1200 to catalyse the formation of NOCs³²⁷. Inhibitors of nitrosation are ingested as part of 1201 a diet and include vitamin C, vitamin E and polyphenols³²⁸.

1202 The activated form of NOCs induce a number of methylated DNA adducts, of which

1203 over 12 are known, via SN1-nucleophilic substitution³²⁹. These alkylated DNA

1204 bases can be mutagenic if not repaired before replication²⁷². SBS mutational

1205 signature 11 has been linked to the mutagenic activity of alkylating agents ³³⁰.

1206

1207 **1.4.6.2** Acetaldehyde

1208 Alcohol is classified as a Group 1 carcinogen (carcinogenic to humans). Worldwide,

1209 3.6% of all cancer deaths and 3.5% of all cancer cases are attributable to alcohol

1210 consumption³³¹. Ethanol (C₂H₅OH), the psychoactive ingredient in alcoholic

1211 beverages, is believed to be the major causative compound of cancer in alcoholic

1212 beverages.

1213 Ethanol is introduced into a catabolic pathway where it is broken down and the

1214 metabolites expelled via the urinary system. Ethanol is first metabolized by alcohol

1215 dehydrogenase (ADH), cytochrome P4502E1 (CYP2E1) and catalase thereby

1216 forming acetaldehyde (ethanal). Acetaldehyde is further oxidised by aldehyde

1217 dehydrogenase to produce acetate. Aldehydes cause DNA damage in the form of

1218 double strand breaks and the Fanconi anaemia pathway is responsible for the repair

1219 of this damage ³³². Aldehydes has been demonstrated to cause intrastrand crosslink

1220 between adjacent guanine bases²⁶³. This can lead to the mutagenic event of GG>TT

1221 double base substitution which is a characteristics of Mutational signature DBS2

1222 ^{254,263}.

1223 Bacteria can not only produce ethanol but also break it down into acetaldehyde. Oral taxa are known to be able to produce acetaldehyde from ethanol or glucose 333 . In 1224 addition, gut microbes can also produce acetaldehyde from sugars ³³⁴. Indeed there 1225 1226 have been reports of bacterial autobrewery syndrome (intoxication by ethanol 1227 formed by fermentation by microbes in the gut) in which a strain of *Klebsiella* pneumoniae was implicated ⁴². This strain was also strongly associated with non-1228 1229 alcoholic fatty liver disease and fatty liver disease symptoms in a mouse model. Mutational signature 16 has been link to alcohol consumption ³³⁵. 1230

1231

1232 **1.4.7 Disruption to the DNA damage response**

Human DNA experiences repeated events of DNA damage throughout the cell cycle.
The cell has a complex network of systems whose purpose is to ensure the fidelity of
DNA. Known as the DNA damage response, this cellular system is responsible for
detecting DNA damage, signalling its presence, promoting DNA repair cell cycle
checkpoint and/or apoptosis.

1238 The mismatch repair mechanism is responsible for addressing base-base mismatches

1239 and insertion/deletion mispairs generated during DNA replication and

1240 recombination³³⁶. Enteropathogenic *Escherichia coli* was found to promote the

depletion of MSH2 and MLH1 proteins, which are crucially important for mismatch

- 1242 repair in cell models²⁶⁵. This phenomenon was found to be dependent on the
- 1243 bacterial type-3 secretion effector EspF²⁶⁵. Furthermore, mitochondrial targeting of
- 1244 EspF was necessary for this activity. Colonic epithelial cells infected with

1245 Enteropathogenic *E. coli* display an increased mutation rate particularly in1246 microsatellite DNA sequences.

1247 The human gastric pathogen *Helicobacter pylori* also inhibits the expression of

1248 MMR gene expression, in part through the modulation of miRNAs ^{266,337}.

1249

1250 Mutational signature 6 is characterised by C>T transitions at an NpCpG trinucleotide context ²⁵³. This mutational signature is associated with small indels (usually 1-3bp) 1251 1252 at nucleotide repeats. This indel pattern is equivalent to phenomena known as 1253 microsatellite instability. Microsatellite instability is caused by aberrations in the 1254 DNA mismatch repair (MMR) machinery. The origin of MMR deficiencies is 1255 genetic and/or epigenetic alterations in MMR genes. Microsatellite instability occurs 1256 in 15% of CRC genomes; 3% are associated with Lynch syndrome while 12% are associated with sporadic CRC³³⁸ 1257

1258

1259 **1.4.8 Mutational signatures as a tool to study the effect of microbes**

1260 **on the human genome**

Multiomic experimental designs are supremely placed to delineate the relationship between the microbiota and the architecture of the cancer genome. Population studies in which both cancer genomic and the adjacent microbiome are studied can provide information on the relation between the cancer genetic architecture and its microbiota. However, therein lies a fundamental issue with this type of design. Cancer can take several years to form and mutational mechanisms act at different time spans of the natural history. Furthermore, composition of the microbiota is 1268 somewhat dynamic. Thus, a snap shot of the microbiota may not be wholly related to 1269 the mutational signatures identified. A prospective study where individual's 1270 microbiota are taken at a per-transformation may allow for more direct comparisons 1271 between the microbiota and pre-transformation mutational mechanisms. 1272 Additionally, individuals with pre-cancer legions such as Barrett's oesophagus may 1273 be prime candidates to study due to their increase propensity develop cancer. 1274 Studying cancer heterogeneity and evolutionary dynamics can allow for the 1275 identification of the timing of mutational mechanisms. Additional recent 1276 advancements have allowed for mutational signature extraction from non-cancerous 1277 tissue thus allowing elucidation of microbial associated mechanisms prior to 1278 transformation ³³⁹. Experiments in which a microbe or a community of microbes are 1279 grown in the context of a model such as a cell line or organoids would allow to 1280 eliminate confounders and make more direct correlations. Dziubańska-Kusibab et al 1281 used model cell lines exposed to colibactin and to identify DNA sequence targets of 1282 colibactin. Furthermore this target was cross-referenced with mutational signatures 1283 derived in population cancer genomic data to find asssiocateded mutational 1284 signatures (See colibactin section)

1285

1286 **1.4.9 Concluding Remarks**

Cancer prevention is relatively under-researched when compared to therapeutic
development, with only 2 to 9% of funding put towards this area ¹⁷⁷. A high
proportion of cancer cases and cancer deaths could be avoided through modification
of environmental risk factors. About 42% of cancer incidences in the US are
estimated as being attributable to modifiable risk factors - this figure is also reflected

1292 in the UK population ¹⁷⁸. Evidence is building in favour of the microbiota as an

1293 environmental modulator of cancer risk. We outlined the multitude of ways that the

1294 metabolic activities of members of the human microbiota can lead to mutations.

1295 Our ability to modulate the microbiota is improving steadily, featuring diet,

1296 antibiotics, phage therapy, faecal microbiota transplantation (FMT), prebiotics,

1297 probiotics and Live Biotherapeutics³⁴⁰. Thus one could plausibly develop strategies

to alter the structure of an individual's microbiota in order to reduce its mutagenic

1299 potential (see Outstanding Questions).

1300 In order to make informed decisions on therapeutic interventions, a complete

1301 catalogue of microbial-associated mutational mechanisms is required. Furthermore,

1302 the relative impact of each mutational mechanisms on the cancer genome need to be

1303 delineated. Microbial-associated mutational mechanisms which have both been

1304 found in a wide range of cancers as well as contributing to a great number of

1305 mutations will take priority when deciding what mechanisms need to be addressed

1306 first.

1307 We propose to leverage advancements in cancer genomics, namely in the form of

1308 mutational signatures, to associate microbes to mutational mechanisms. These can

1309 provide qualitative and quantitative information on the mutagenic effect that

1310 microbes undoubtedly have.

1311 It is possible that certain aspects of the microbiota activity protect against

1312 mutagenesis and cancer. These potential mechanism need to be elucidated to enable

1313 the harnessing the microbiota as prophylactic agents.

1314

1315 **1.4.10 Acknowledgments**

- 1316 This work was supported by The Health Research Board of Ireland under Grant ILP-
- 1317 POR-2017-034, and by Science Foundation Ireland (APC/SFI/12/RC/2273) in the
- 1318 form of a research centre, the APC Microbiome Institute.

1319 **1.4.11 Outstanding Questions Box**

- What is the complete repertoire of modes by which the microbiota promotes
- 1321 DNA damage or compromises DNA integrity?
- What is the exact mutational mechanism by which microbes elicit mutations?
- What are the mutational signatures which result in a microbiota-associated
- 1324 mutational mechanism?
- How does the mutagenic potential of the microbiota vary within the
- 1326 population? This would need to take into consideration epidemiological factors such
- 1327 as age, diet, genetics and other modifiers/risk factors.
- How does this variation in the mutagenic capacity of the microbiota
- 1329 contribute to cancer risk?
- What proportion of cancer genomes have microbial influence in their
- 1331 formation? Further, in cancer genomes with microbial influences, what is the
- 1332 quantitative impact it has (frequency per Mbp/ overall abundance)?
- How might the microbiota protect genome stability and prevent cancer?
- What are the necessary interventions that would be required in order to
- 1335 address these microbiota associated mutational mechanisms?

1336

1337 **1.4.12 Glossary**

- Base substitutions: A type of mutation in which one base is replaced byanother in DNA.
- 1340 Chromosomal instability: A phenomena which leads to alterations in1341 chromosome number and/or structure.
- 1342 **DNA adduct:** Formed via the addition of a chemical moiety to a DNA base
- 1343 **DNA alkylation:** The addition of an alkyl group (C_nH2_{n+1}) to a DNA base
- 1344 **DNA crosslinking:** Formation of covalent bonds between two nucleotides.
- 1345 This bond can be formed between nucleotides on the same DNA stand
- 1346 (intrastrand crosslinks) or different strands (interstrand crosslinks)
- 1347 **DNA deamination:** The removal of an amino group from a DNA base.
- 1348 **DNA repair**: A diverse collection of pathways with the purpose of addressing
- 1349 DNA damage and maintaining genome stability.
- 1350 **Double-strand breaks:** This is where both strands of DNA which are
- 1351 juxtaposed to each other
- 1352 Environmental risk factor: A thing or process which is not inherited that
- 1353 increases the risk for a particular disease.
- 1354 Microbes: Microorganisms including bacteria, fungi, protists and virus.
- 1355 Usually exist as a single cell organism.

- 1356 Microbiome: The combined genetic material of the microorganisms in a
- 1357 particular niche.
- 1358 **Microbiota**: The collection of organisms in a niche.
- 1359 **Mutational mechanism**: Biological phenomena which lead to the generation
- 1360 of mutations. Usually involving DNA damage, DNA repair and DNA
- 1361 replication.
- 1362 **Mutational signature**: The characteristic DNA pattern of mutations produced
- 1363 by a mutational mechanism.
- 1364 **Oncogenesis**: The transformation of a normal cell into a cancer cell.
- 1365 **Oxidative Base Lesions:** DNA Bases that occur due to a reaction with
- 1366 Reactive oxygen species
- 1367 **Somatic mutation**: A mutation which occurs in a somatic cell and is thus not
- 1368 heritable.

1370 **1.4.13 Colibactin continued**

1371 A number of informative papers were released after the publication of *Mutagenesis* 1372 by Microbe: the Role of the Microbiota in Shaping the Cancer Genome. The aim of 1373 this section is to update and complete the discussion on colibactin for this thesis. In 1374 the study by Pleguezuelos-Manzano et al, human intestinal organoids were co-1375 cultured with pks+ E. coli and a clbQ knockout strain of pks+ E. coli (thus unable to produce colibactin), which was used as a negative control³⁴¹. After a 5-month period 1376 1377 whole genome sequence was performed on clones from each arm of the study. 1378 Organoids which were exposed to colibactin contained higher numbers of single 1379 base substitutions. The genomes of these organoids featured two mutational 1380 signatures, a single-base substitution signature and a small indel signature denoted 1381 SBS-pks and ID-pks respectively. SBS-pks was characterised by T > N substitution 1382 within an ATA, ATT and TTT context (whereby the middle base is the one 1383 undergoing substitution). It was found that A was highly represented 3 bp upstream 1384 from the mutated SBS-pks T > N site. Moreover this SBS-pks displayed a 1385 transcriptional strand bias indicating that the transcription-coupled nucleotide 1386 excision repair maybe involved with the repair of colibactin lesions. The ID-pks 1387 was characterised by single T deletions at T homopolymers with an enrichment of 1388 adenines immediately upstream of the indel containing poly-T stretch. The length of 1389 the A polymer was inversely proportional to the T polymer length. Larger indels 1390 were also described within the same sequence context of the ID-pks. 1391 Both SBS-pks and ID-pks signatures were found enriched in the cancer genomes of 1392 CRC. Indeed, these identified signatures found to occur in recognised CRC driver genes including APC³⁴¹. Other work by Lee-Six et al described a mutational 1393

1394	signature appearing in healthy crypts genomes including signatures which correlated
1395	with each other denoted SBS-A and ID-A signatures ³³⁹ . These signatures were
1396	inferred to occur early in life of an individual ³³⁹ . SBS-A and ID have also been
1397	identified in non-neoplastic IBD-Affected crypts ³⁴² . Note that pks+ <i>E.coli</i> occur
1398	more frequently in IBD than healthy individuals, 40% versus 20% respectively ²⁷⁹ .
1399	SBS-pks and ID-pks show high levels of similarity with SBS-A and ID-A. SBS-pks
1400	and ID-pks seem be present early in the evolution of the CRC genome. Yang et al
1401	demonstrated that pk+ E.coli promoted colorectal carcinogenesis in two mouse
1402	models harbouring a complex microbiota ³⁴³ . Treatment of mice colonised with pks+
1403	E.coli with anti-TNF therapy lead to a decrease in the transcription of the clb island
1404	genes and attenuated carcinogenesis ³⁴³ . However, mice treated with anti-TNF
1405	therapy co-housed with untreated mice no longer displayed protection from CRC
1406	development. Due to the coprophagic activity of mice, the ability of anti-TNF
1407	therapy to attenuate CRC oncogenesis was inferred to be via the microbiota. Further
1408	supporting this was that the findings transplantation of cecum microbiota from anti-
1409	TNF treated mice to germ-free Apc min/+ mice protected them from CRC
1410	development ³⁴³ .

<u>1.5 Colorectal cancer</u>

1413	Globally, colorectal cancer (CRC) is the second most common cause of cancer and
1414	the second highest cause of cancer mortality ¹⁷² . In 2018 there were ~1.8 million new
1415	diagnosis of colorectal cancer and 881,000 deaths worldwide ¹⁷² . CRC is thus the
1416	most impactful cancer covered in this thesis in terms of the above metrics.
1417	Furthermore, the relationship between CRC and the gut microbiota is the most
1418	explored cancer-microbiome interaction. Histologically, more than 95% of CRCs are
1419	carcinomas (derived from epithelial cells) while colorectal lymphomas, sarcomas,
1420	carcinoids, melanomas and squamous cell carcinomas occur much less frequently ³⁴⁴⁻
1421	348.
1422	The aetiology of colorectal cancer is multifactorial involving, environmental,
1423	heritable and stochastics factors. Approximately 60-65% of CRC cases arise
1424	sporadically i.e. no known family history, inherited cancer syndrome gene or other
1425	inherited genetic mutations.

1.5.1 Evolution of CRC

The development of cancer can occur through 3 described pathways; (1) the
conventional adenoma-carcinoma sequence (2) the serrated pathway and (3)
inflammatory pathway³⁴⁹

1432 The Adenoma-carcinoma sequence is seen as the conventional mode of CRC

1433 oncogenesis because 85–90% develop from adenomas³⁴⁹. Somatic mutation in the

adenomatous polyposis coli (APC) tumour suppressor leading to its inactivation is 1434 1435 generally regarded to be the earliest mutation and initiates the adenoma-carcinoma sequence³⁵⁰. Inactivation of the APC gene leads to over activation of the Wnt/β-1436 catenin signalling pathway which in turn promotes cellular proliferation³⁵¹. 1437 1438 Common somatic mutations acquired subsequently include KRAS, SMAD4 and $TP53^{350}$. The development of chromosomal instability (CIN) occurs frequently 1439 1440 along the Adenoma-carcinoma lineage with ~70% occurrence in all sporadic CRC³⁵². 1441

Approximately 10-15% of CRC arises from serrated polyps³⁵³. Serrated polys can 1442 1443 themselves be furthered histologically classified into traditional serrated Adenoma, sessile serrated adenomas, hyperplastic polyps and mixed polyp³⁵³. Somatic mutation 1444 in BRAF is considered a crucial early initiator of serrated polys³⁵⁴. This BRAF 1445 1446 mutation leads to constitutive activation of the MAPK signaling cascade and thus aberrant cellular proliferation³⁵⁵. The epigenetic molecular phenotype 'CpG island 1447 1448 methylation phenotype' (CIMP-H) frequently develops in serrated polys³⁵³. CIMP-H 1449 leads to the silencing of a number of tumour suppressor genes including CDKN2A and the mismatch repair (MMR) gene MLH1. Silencing of MLH1 leads to 1450 1451 deficiency in the mismatch repair machinery causing microsatellite instability (MSI). 1452 The Inflammatory pathway of colorectal cancer involves chronic inflammation in the 1453 colon of individuals with inflammatory bowel disease (IBD), in particular ulcerative 1454 colitis (UC). In a recent population-based cohort study, a hazard ratio of 1.66 (95% CI 1.57-1.76) was calculated³⁵⁶. This type of CRC is referred to as colitis-1455 1456 associated CRC (CA-CRC). Polyp formation is not described in this mode of 1457 carcinogenesis. Instead the pathogenesis proceeds through to indefinite dysplasia,

low-grade dysplasia, high-grade dysplasia and eventually CA-CRC. CA-CRC 1458 accounts for less than 2% of all cases of CRC³⁴⁹. CA-CRC occurs on average earlier 1459 (younger age) in individuals compared with sporadic CRC, 50-60 years versus 65-1460 75 years³⁵⁷. CA-CRC is more commonly 'synchronous', that is, two primary cancers 1461 appearing in the same tissue within 6 months³⁵⁷. Mutations in TP53 occur early in 1462 1463 the CA-CRC process evident from its clonal ratio and due to the fact it is identified 1464 in precancerous neoplasms and non-neoplastic mucosa^{342,358-361}. CA-CRC has a higher mutational burden relative to sporadic CRC^{361} . 1465

1466

1467 **1.5.2 Anatomical subtyping of CRC**

1468 Albeit originating from the one organ, that is the colon, CRC can be subdivided into 1469 two or three types based on anatomical site. In the three-way split, the sections are 1470 defined as; proximal colon (caecum, ascending colon, hepatic flexure and transverse 1471 colon), distal colon (splenic flexure, descending colon and sigmoid colon) and 1472 rectum. Embryologically speaking, the proximal colon develops from the midgut while the distal colon and rectum develop from the hindgut³⁶². There is demographic 1473 1474 variation in the distribution of CRC along the colon. Proximal cancer is the most 1475 frequent subtype observed in the western population, with proximal, distal, rectal 1476 having a proportional prevalence of 40%, 22% and 29% respectively (according to US figures)³⁶³. However, this trend is not globally consistent. In Korea, rectal cancer 1477 1478 is the most prevalent, with proximal, distal, rectal having proportional prevalence of 1479 22%, 26% and 52% respectively. There are higher incidences of proximal cancer seen women versus men, 34% versus 25% respectively, in European cohorts³⁴⁹. 1480 1481 Smoking is associated with increased risk of proximal CRC and rectal CRC but not

an increase in distal CRC³⁶⁴. Serrated polyps and colitis-associated CRC appear
more frequently in the proximal colon.

1484 CRC has been classified based on its molecular characteristics. From this, form consensus molecular subtypes (CMS) have been described²⁰³. These CMS vary by 1485 1486 anatomical prevalence with, CMS1 and CMS3 more prevalent in the proximal colon, while CMS2 and CMS4 are more prevalent in distal and rectal CRC³⁶⁵. With regard 1487 1488 to therapeutics, proximal CRC is linked to a poorer prognosis in the context of metastasis and these cases more resistant to anti-EGFR therapy^{366,367}. However, 1489 because that MSI is more inprevalent proximal CRC mean that immune checkpoint 1490 inhibitors are more effective in proximal CRC³⁶⁸. 1491

1492

1493 **1.5.3 Inherited risk of CRC**

1494 Inherited alterations (genetic or epigenetic in nature) contribute significantly to CRC, risk with calculations for the heritability of CRC ranging from 12% to 40%^{369,370}. 1495 1496 Indeed 25% of colorectal cancer cases show a family history of CRC which points to 1497 the influence of heritabe factors. Furthermore 3–5% of colorectal cancer cases are due to cancer-prone syndromes known as hereditary colorectal cancer syndromes³⁷¹. 1498 1499 These cancer syndromes are caused by highly penetrant germline variants which 1500 increases dramatically susceptibility to CRC. For example, Lynch syndrome is 1501 caused by mutations in mismatch repair genes MLH1, MSH2, MSH6 and PMS2. 1502 The life-time risk of developing CRC individuals with Lynch syndrome varies up to 46%³⁷². GWAS have also identified a number of less penetrant genes affecting the 1503 risk of CRC development³⁷³. 1504

1.5.4 Environmental risk factors

1506	Environmental factors play a significant role in the risk of developing CRC. Wu et al
1507	estimated that the risk attributable to extrinsic factors with respect to Colon
1508	adenocarcinoma (COAD) was 97.2-97.9% ³⁷⁴ . Developed countries typically have
1509	much higher CRC rates than developing countries. The developed world accounts for
1510	~1.2 billion of the world's population but CRC incidence in these regions account
1511	for 55% of overall incidences ³⁷⁵ . Strikingly in some case age standardised rate
1512	incidence (ASRi) can vary by up to 10 fold such as in the case of Australia and New
1513	Zealand (ASRi: 44.8 and 32.2 per 100,000 for men and women respectively) versus
1514	western Africa (ASRi: 4.5 and 3.8 per 100,000 for men and women respectively) ³⁵⁰ .
1515	One could speculate that this observation might be due to genetic differences
1516	between these populations for example people of Europe ancestry might have an
1517	increased inherited susceptibility to CRC development. However, two lines of
1518	evidence support a model where the environment is the variable which explains this
1519	difference. Firstly, it has been recorded that within a particular ethnic population,
1520	CRC rates have increase in parallel with economic development and the resulting
1521	environmental changes. For instance, in Shanghai, China the ASRi of CRC has
1522	increase by ~100% has between the periods of 1972–1977 and 1990–1994 ³⁷⁶ .
1523	Secondly emigrants who come from low risk countries and live in high risk countries
1524	such as people from India moving to the UK are found to have an increased
1525	incidence of CRC ³⁷⁷ . CRC incidence rates increase in parallel with economic
1526	development. Countries in South America, Asia and Eastern European are predicted
1527	to undergo major economic development in the 21st century. Such facts pose a great
1528	problem for health systems around the world with respect to CRC. Extrapolating

1529	from epidemiological data and taking into account demographic dynamics and
1530	economics, the global burden of CRC burden is expected to increase by 60% to more
1531	than 2.2 million new cases and 1.1 million cancer deaths by 2030 ³⁷⁸ . Notably
1532	however, there has been a decrease in CRC rate in The United States of America
1533	(USA) with an average decrease of 3.4% per year in the past decade (2001 to
1534	$2010)^{379}$. It is unknown what is causing this decrease, but it has been proposed that
1535	public health services in the form of awareness campaigns underline this reduction.
1536	It is notable however that there is worrying rise in CRC incidence in individuals
1537	under 50 years of age ³⁸⁰ .
1538	A myriad of environmental factors that modulate CRC risk have been noted (Table
1539	7). Different subtypes within the colon are differentially affected by risk factors.

1540

Table 7 | summary of the associations between risk or protective factors and colorectal cancer risk by
anatomical subsites. ↑↑, convincing risk factor; ↑, probable risk factor; ↓↓, convincing protective
factor; ↓, probable protective factor; BMI, body mass index; CI, confidence interval; CRC, colorectal
cancer; MET, metabolic equivalent of task; RR, relative risk; WC, waist circumference. A Level of
evidence as indicated by WCRF–AICR summary report for CRC9, except for smoking and aspirin
(based on evidence from observational studies and randomized controlled trials).b Long latency was
required to observe an effect on CRC. These data was derived from Keum and Giovannucci., 2019³⁸¹

Aetiological factors	level of evidence	Unit increase	Colorectal cancer RR (95% CI)	Colon cancer RR (95% CI)	rectal cancer RR (95% CI)
Obesity	$\uparrow \uparrow$	5 kg/m ² in BMI	1.05 (1.03– 1.07)	1.07 (1.05– 1.09)	1.01 (1.01– 1.04)
	† †	10 cm in WC	1.02 (1.01– 1.03)	1.04 (1.02– 1.06	1.02 (1.00– 1.03)
Total physical activity	↓↓	5 MET-hours per week	0.97 (0.94– 0.99)	0.92 (0.86– 0.99)	1.02 (0.95–1.10
Western dietary pattern	$\uparrow \uparrow$	Highest versus lowest	1.12 (1.01– 1.24)	1.30 (1.04– 1.63)	1.09 (0.91– 1.29)
Prudent dietary pattern	$\downarrow\downarrow$	Highest versus lowest	0.89 (0.84– 0.95)	0.89 (0.80– 0.99)	0.96 (0.83– 1.10)
Processed meat intake	↑ ↑	50 g per day	1.16 (1.08– 1.26)	1.23 (1.11– 1.35)	1.08 (1.00– 1.18)
Red meat intake	↑	100 g per day	1.12 (1.00– 1.25)	1.22 (1.06– 1.39)	1.13 (0.96– 1.34)
Total fibre intake	Ļ	10 g per day	0.93 (0.87– 1.00)	0.91 (0.84– 1.00)	0.93 (0.85– 1.01)
Whole grain intake	Ļ	90 g per day	0.83 (0.79– 0.89)	0.82 (0.73– 0.92)	0.82 (0.57– 1.16)
Alcohol (as ethanol)	↑ ↑	10 g per day	1.07 (1.05– 1.09)	1.07 (1.05– 1.09)	1.08 (1.07– 1.10)
Smoking ^b	↑	Current versus never smokers	1.15 (1.00– 1.32)	1.10 (0.89– 1.36)	1.19 (0.94– 1.54)
Aspirin intake	† †	75–1200 mg per day versus control	0.76 (0.63– 0.94)	0.76 (0.60– 0.96)	0.90 (0.63– 1.30)
Total calcium ^b	Ļ	300 mg per day	0.92 (0.89– 0.95)	0.91 (0.87– 0.96)	0.95 (0.83– 1.08)

1549 **1.5.5 CRC and Dietary Fibre**

1550 According to the CODEX Alimentarius Commission (CAC), dietary fibre is defined

1551 by carbohydrate polymers³⁸² 1) with 10 or more monomeric units 2) which are not

1552 hydrolysed by the endogenous enzymes in the small intestine of humans and which

1553 belong to the following categories:

1554 1. Edible carbohydrate polymers naturally occurring in the food as consumed.

1555 2. Carbohydrate polymers which have been obtained from food raw material by

1556 physical, enzymatic or chemical means and which have been shown to have a

1557 physiological effect of benefit to health as demonstrated by generally accepted

1558 scientific evidence to competent authorities,

3. Synthetic carbohydrate polymers, which have been shown to have a physiological
effect of benefit to health as demonstrated by generally accepted scientific evidence
to competent authorities.

1562

1563 Total fibre intake shows a protective effect regarding colorectal cancer; a recent

1564 meta-analysis found a relative risk of 0.84 between high consumption and low

1565 consumption³⁸³. This finding is in large agreement with other meta-analysis^{384,385}.

1566 The protective effect of fibre has shown to exhibit a dose relative effect 383 .

1567 Moreover, the protective value of fibre seems to extend after cancer diagnosis with

the multivariable Hazard ratio per each 5-g increase in intake per day was 0.78 for

1569 CRC-specific mortality³⁸⁶.

1570

Although the human genetic repertoire dose not encode the ability to break down
fibre, the gut microbiota utilizes fibre as a major source of energy. A key metabolite
of dietary fibre fermentation by anaerobic gut microbes are short-chain fatty acids
(SCFAs). SCFA produced by the microbiome mainly consist of acetate, propionate,
and butyrate. The proportions of these produces depend the composition of the
microbiota and the type of fibre consumed³⁸⁷. SCFAs have been shown to be
protective against CRC development³⁸⁸.

1579

1580 **1.5.6 Colorectal cancer and the microbiome**

1581 The relationship between the relationships between the microbiome and colorectal

1582 cancer has been extensively studied. A number of microbes have been described to

1583 be associated with CRC (Table 8)

- 1585 Table 8 Top 20 Enriched Bacterial Genera and Species in Colorectal Adenoma and
- 1586 CRC Patients. Genera are ordered by rank. Rank is based on the number of studies
- 1587 reporting the association, denoted as hits. These data was derived from Ternes et al,
- 1588 2020³⁸⁹

Genus	Species	Number of hits
Fusobacterium		31
	nucleatum	~~
	gonidiaformans	
	mortiferum	
	necrophorum	
	peridonticum	
Bontostrontogogus	pendonticum	18
Peptostreptococcus	stomatis	10
	anaerobius	
D	endodontalis	17
Porphyromonas	1 1	16
	asaccharolytica	
	uenonis	
	somerae	
Bacteroides		14
	fragilis	
	ovatus	
	caccae	
	dorei	
	eggerthii	
	massiliensis	
	salyersiae	
	splanchnicus	
	vulgatus	
	xylanisolvens	
Parvimonas	J	13
	micra	
Prevotella		13
	intermedia	
	nigrescens	
Gemella	ingreseens	12
Gemena	morbillorum	12
Streptococcus	moromorum	11
Siteptococcus	anginosus	11
	anginosus dysgalactiae	
	constellatus	
	gallolyticus	
	thermophilus	
	tigurinus	0
Clostridium		9
	symbiosum	
	hylemonae	
Escherichia		9
	coli	
Bilophila		8
	wadsworthia	

Campylobacter		8
	gracilis	
	rectus	
	showae	
	ureolyticus	
Phascolarctobacterium		8
	succinatutens	
Selenomonas		8
	sputigena	
Ruminococcus		7
	torques	
Shigella		7
Akkermansia		6
	muciniphila	
Desulfovibrio		6
	desulfuricans	
	longreachensis	
	vietnamensis	
Eubacterium		6
	infirmum	
	limosum	
Leptotrichia		6
	hofstadii	
	buccalis	

1591 Many studies report changes in microbial taxa and pathways associated with 1592 diseases, including CRC, in a manner one might interpreted that they exert a 1593 biological effect in isolation. However, it is important to view these changes in the 1594 context of an ecosystem. A number of models have been developed to describe the 1595 ecological role these microbes have in CRC oncogenesis. The 'alpha-bug 1596 hypothesis' developed by Sears and Pardoll postulates that a key microbe within the 1597 microbiota possesses specific virulence factors which enable it to promote 1598 oncogenesis while also remodelling the microbial community towards an oncogenic phenotype³⁹⁰. Sears and Pardoll use *Enterotoxigenic B. fragilis* (ETBF) as a potential 1599 1600 example of such a microbe due to its ability to induce DNA damage and to modify the immune microenvironment³⁹¹. A variant on this model is the driver-passenger 1601 model proposed by Tjalsma et al³⁹². Like the alpha-bug model, a driver microbe 1602 1603 promotes oncogenesis at the early stage. However the changes to a tumour 1604 microenvironment allows opportunistic microbes to proliferate in the new niche and ultimately outcompete the driver microbes³⁹². These passenger microbes may or may 1605 not promote oncogenesis. An example of a putative passenger microbe is 1606 1607 Fusobacterium nucleatum which has been consistently found enriched on CRC 1608 tumours and has also been shown to drive tumour progression. Indeed, the 1609 microbiome has been shown to vary between stages within the Adenoma-carcinoma 1610 sequence^{393,394}. Keystone microbial taxa have been defined as "microbial keystone 1611 taxa are highly connected taxa that individually or in a guild exert a considerable 1612 influence on microbiome structure and functioning irrespective of their abundance across space and time"³⁹⁵. The concept of the keystones species was first proposed 1613 1614 by ecologist Robert T. Paine in 1969 and applied to human microbial niches by Hajishengallis et al 396 . An example of a keystone taxon regarding the gut 1615

1616 microbiome is Bacteroides thetaiotaomicron which has also been shown to be important to the recovery of the microbiome after antibiotic therapy^{397,398}. In the 1617 1618 context of CRC, a taxon may establish and maintain a pro-oncogenic enviroment. 1619 Finally, the hit and run model describes a dynamic whereby a specific microbe 1620 induces an insult to the tissue in a manner that promote cancer. The bacterium may 1621 not drive further oncogenesis and its presence may be transient. For example 1622 colibactin producing pk+ *E.coli* may colonize the colon in an individual causing 1623 DNA damage to colonic cells. However, once CRC develops the microbe may no 1624 longer be present.

1626 **<u>1.6 Oesophageal cancer</u>**

1627 Globally, oesophageal cancer is the eleventh most common cancer in terms of 1628 incidence (572,000 new cases) and sixth in cancer mortality (509,000 deaths) according to 2018 figures¹⁷². Histologically, there are two main subtypes of 1629 1630 oesophageal cancer; oesophageal adenocarcinoma (OAC) and oesophageal 1631 squamous-cell carcinoma (OSCC). Worldwide, OSCC is by far the most prevalent subtype with $\sim 90\%$ of cases¹⁷². However, there is a dramatic variation in 1632 1633 geographical distribution with respect to these two subtypes^{399,400}. OSCC shows 1634 highest prevalence in developing geographical regions such as China, central Asia 1635 and Sub-Saharan Africa, while OAC is the predominant type in developed regions 1636 such as Australia, Europe and North America. Indeed, the incidence rate of OAC has 1637 seen a dramatic rise in the Western world in the last 30 years, an increase of 600%. 1638 In contrast OSCC has seen a decrease in incidence in the past 30 years of over 50%^{399,400}. 1639 1640 This thesis focuses on OAC, as with other western countries, this is the majority

1641 histological presentation within the Irish population. The prognosis for OAC is

1642 relatively poor with an overall 5-year survival of <20% for all stages of cancer⁴⁰¹.

1643 The survival rate drops to 5% for the distant disease versus 43% for the localized
1644 disease⁴⁰¹.

1645 **1.6.1 Natural history of oesophageal adenocarcinoma**

The putative natural history of OAC has been well described wherein normal tissue
evolves through the gastroesophageal reflux disease – Barrett's oesophagus –
oesophageal adenocarcinoma sequence^{399,402}. GERD is "a condition that develops

1649	when the reflux of stomach contents into the oesophagus causes troublesome
1650	symptoms and/or complications" - this causes normal stratified squamous
1651	epithelium of the oesophagus to be exposed to acid, bile, and other stomach contents.
1652	As a reaction to this chronic exposure the normal epithelium is replaced by
1653	metaplastic columnar epithelium which can be described a specialized intestinal
1654	metaplasia ^{399,402,403} . Barrett's oesophagus progresses through low to high grade
1655	dysplasia to local OAC and finally metastatic OAC. GERDs is associated with an
1656	odds ratio of 12.0 and 4.64 for Barrett's oesophagus and OAC respectively ³⁹⁹ .
1657	However, many epidemiological observations have challenged this straight forward
1658	series of events. For one, 95% of individuals diagnosed with OAC have no prior
1659	diagnosis of Barrett's oesophagus ⁴⁰² . Individual with Barrett's oesophagus have a
1660	risk of developing OAC that is 10-fold to 55-fold higher than that of the general
1661	population, however the absolute risk is calculated to be 0.5% , or $1/200$ person-
1662	years ^{402,404} . These observation suggest two scenarios; 1) GERDs/Barrett's
1663	oesophagus appears in individuals unobserved and/or without symptoms who
1664	subsequently develop OAC 2) OAC can develop by mechanisms independent of the
1665	described inflammatory-metaplasia-dysplasia-oesophageal adenocarcinoma
1666	sequence. However a recent computational model suggests that the most OAC cases
1667	arise from Barrett's oesophagus 405

1669 **1.6.1.1 Pathogenesis of Barrett's oesophagus**

1670 The tissue of Barrett's oesophagus has a glandular structure comprising of crypts,

similar to that of gastric and intestinal tissue. This metaplastic tissue comprises many

1672 different types of differentiated cells. These cell types included columnar cells,

1673 mucin-secreting gastric foveolar-type cells and goblet cells⁴⁰⁶. The precise cellular

1674 origin of Barrett oesophagus is unknown but models have been developed to explain

1675 the pathogenesis of Barrett's oesophagus.

1676

In one model oesophageal squamous cells undergo transdifferentiation into
metaplastic columnar epithelium⁴⁰⁷. Transdifferentiation is a process where a
differentiated cell changes into another differentiated cell⁴⁰⁸. This can occur a
response to injury tissue injury but also can be induced artificially in a laboratory
setting. This transdifferentiation may occur and directly were squamous cells
transdifferentiate directly to columnar epithelium, or indirectly where the conversion
occurs through an intermediate.

1684 Transcommitment is a phenomena where immature progenitor cells are reprogramed 1685 to alter their differentiation. Where these progenitor cells are derived from are also a 1686 matter of research. There is four suspected origins of these progenitors including 1) 1687 progenitor oesophageal cells including basal cells of the squamous epithelium or 1688 cells of oesophageal submucosal glands and their ducts 2) migrating proximal gastric 1689 cardia cells 3) Specialized populations of cells at the Gastro oesophageal junction 1690 (GOJ) including residual embryonic cell and transitional basal cell 4)bone marrow progenitor cells.406 1691

1692 **1.6.2 Environmental risk factors for developing OAC**

- 1693 Because OAC is a disease with a multifactorial pathoetiology, environmental factors
- 1694 have been implicated as risk modifiers (Table 9). In terms of risk factors, GORDS,
- 1695 obesity and tobacco smoking have bern calculated as explaining 80% of OAC
- 1696 cases⁴⁰⁹. GORDs is the strongest factor and is believed to be necessary for the
- 1697 occurrence of Barrett's oesophagus.

1698 Table 9 | Risk factors associated with the development of Oesophageal

1699 **adenocarcinoma**^{399,410,411}

Risk factor	Association with
	OAC - Odds ratio (95% CI)
GORD	4.64 (3.28–6.57)
Obesity	2.69 (1.62–4.46)
Tobacco smoking	1.96(1.64-2.34
Helicobacter pylori infection	0.5 (0.4–0.7)
Male Sex	2.2 (1.8–2.5)
High red meat intake	1.91 (1.07-3.38)
NSAID use	0.68(0.56-0.83)
Fruit intake	0.86 (0.80–0.93)

1700

1702 **1.6.2.1** Obesity

1703 Obesity is one of the strongest risk factors for developing BO and OAC with a >2increase in risk in obese individuals versus those of healthy weight⁴¹¹. This 1704 1705 relationship between BMI and OAC/BE is a linear exposure-response pattern. In 1706 particular the distribution of body fat seems to be a particularly important metric 1707 regarding risk for BO and OAC. When truncal obesity (excessive abdominal or 1708 visceral fat) is controlled for in the form of waist circumference measurements, the 1709 relationship between obesity and BO/OAC almost disappears⁴¹². Obesity during 1710 adolescence has also been noted as a particular risk^{413,414}. This is a worrying trend as obesity is rising in the teenage population and may give rise to cancer later in life. 1711 1712 Obesity increases the risk of cancer in a wide range of cancers⁴¹⁵. Obesity seems to exert systemic inflammatory and metabolic alterations⁴¹⁶. Increased serum levels of 1713 insulin and leptin are associated with BO development⁴¹⁷. In one prospective study, 1714 1715 increased levels of leptin and insulin in individuals with BO was positively associated with the development of OAC^{418} . In the same study the levels of 1716 1717 adipokine adiponectin was inversely associated with OAC devolvement in a non-1718 linear manner⁴¹⁹. 1719 Abdominal fat may act to increase intra-abdominal pressure thereby leading to a 1720 relaxation of the lower oesophageal sphincter. This relaxation of the lower oesophageal sphincter may lead to an increased susceptibility in GORDs^{420,421}. 1721

1722

1723 **1.6.3 Formation of the OAC genome**

OAC has a very high mutational load relative to other cancers^{254,422}. Non-neoplastic 1724 1725 BO tissue samples adjacent to OAC samples have a high mutational load with a 1726 somatic mutation frequency of 1.3-5.4 mutations per Mb cancers⁴²³. This level 1727 exceeds that found in some cancers such as prostate and breast. The mutational 1728 signatures present in OAC has been delineated and OAC tumours may be classified via these signatures⁴²⁴. To this end, 3 subgroups of OAC have been defined which 1729 1730 include a C>A/T dominant group (comprising Signature 1 and a 18-like mutational 1731 signature), DNA Damage Repair (DDR) impaired (BRCA group), and a mutagenic 1732 (predominantly Signature 17A or signature S17B) group. The mutagenic group was 1733 named due to its statistically highest mutational load. The DDR impaired group 1734 exhibit a 4.3-fold enrichment in dysregulation of in homologous recombination (HR) 1735 pathways relative to the other groups. 1736 This classification may also inform therapeutic strategies. Tumour mutational 1737 burden (TMB) is predictive of clinical response to Immune checkpoint inhibitor⁴²⁵. 1738 Tumours with a higher TMB have a better response which is putatively due to higher 1739 number of tumour neoantigens⁴²⁶. Indeed, the mutagenic group had the highest 1740 presentation of neoantigens. Treatment of a MFD cell line, with the genetic 1741 characteristics of the mutagenic group, with pharmacological inhibitors to the G2/M-1742 phase checkpoint regulators Wee1 and Chk1/2, yielded a 25-fold and 10-fold

1743 increased sensitivity relativity to the CAM02 cells which have C>A/T dominant

1744 group characteristics. OES127 cells lines, representing the DDR impaired group,

1745 experienced cell death when exposed to a combination of Olaparib (Topoisomerase

1746 I inhibitor) and Topotecan (a DNA damaging agent) while the other cell lines did1747 not.

1749	Note that recent analysis has allowed for the separation of Mutational signature 17
1750	into two signatures, that is SBS Signatures 17 A and B. SBS Signatures 17 A is
1751	substitutions defined by T>C while SBS Signatures 17 B is defined by T>G
1752	substitutions ²⁵⁴ .
1753	SBS Signatures 17 A and B are present in a high proportion in both OAC and gastric
1754	adenocarcinoma tumours ⁴²⁷ . This may indicate that a common physiological feature
1755	such as gastric acid may be a common cause/modifier leading to the signature ²⁵⁴ .
1756	The aetiology of SBS Signatures 17 A and B is not known. However, one hypothesis
1757	with supporting data involved the stimulation of the production of ROS in
1758	Oesophageal cells exposed to acidic bile reflux. ROS has been demonstrated to be
1759	generated by both mitochondria and NADPH oxidases ⁴²⁸ . NOX5-S, a truncated
1760	variant of NOX5, has been found to produce ROS and to promote DNA damage in a
1761	bile acid dependent manner ^{429,430} . PPIs were found to reduce mRNA levels of
1762	NOX5-S in BE mucosa biopsies ⁴³¹ . Furthermore, NOX1 and NOX2 can also
1763	generate ROS in acidic bile salt treated cells ⁴²⁸ .
1764	In particular, one explanation for SBS Signatures 17, specifically SBS Signatures 17
1765	B, is the oxidation the nucleotide pool thereby forming 8-hydroxy-2'-
1766	deoxyguanosine 5'-triphosphate (8-OH-dGTP) ^{432,433} . The presence of 8-OH-dGTP
1767	in the nucleotide pool has been shown induce A:T to C:G (T>G) base
1768	substitutions ⁴³⁴ . These base substitutions are indicative of SBS Signatures 17 B in

particular. However mutational signature 18, which has been linked to ROS, doesnot seem to have a direct link with SBS Signatures 17 B.

Another mechanism by which reflux of bile acid and/or gastric acid promotes DNA damage is thought to be the production of reactive nitrogen species (RNS). Inducible nitric oxide synthase was found to be upregulated in BO and OAC^{431,435,436}. Proton pump inhibitors were found to reduce inducible nitric oxide synthase levels in BO tissue but not normal oesophageal tissue⁴³¹. Dinitrogen trioxide can induce adenine nitrosative deamination to hypoxanthine which in turn can lead to T>C substitution during systhesis⁴³¹. This substitution is central to SBS Signatures 17 A.

1778

1779 An early mutation that occurs in OAC oncogenesis is a mutation in the TP53 gene as 1780 is evident from the fact it is found in healthy cell populations as well as non-

1781 neoplastic BO. However many of the mutations found in non-neoplastic BO are not

1782 shared with adjacent tissue.

The transformation BO into OAC can occur via 3 pathways^{411,437}. In the traditional
pathway a stepwise loss of tumour suppressor genes including CDKN2A and

1785 SMAD4 occurs. This is followed by oncogene amplification and MMR deficiency.

1786 What is regarded to be a much more frequent mode of evolution is via whole

1787 genome duplication⁴³⁸. A third mode of genome evolution is through catastrophic

1788 genome events including chromothripsis, kataegis and breakage–fusion–bridge⁴³⁹.

1789

1790

1791 **1.6.4 Oesophageal microbiota**

1792 Efforts to define the oesophageal microbiota have been made using NGS (Table 10).

1793 The oesophageal microbiome is similar to that of other niches of the upper digestive

1794 tract such as the oral cavity and the stomach, with the genus Streptococcus being the

- 1795 most dominant taxa, and with other genera such as Haemophilus, Neisseria and
- 1796 *Prevotella* also being dominant taxa.

Table 10 | Studies using NGS technologies to delineate the oesophageal microbiome and its relationship to the cancer development.

Author	Laboratory	cohort	Sample Type	Methods	Findings
Elliott et al., 2017 (The Lancet Gastroenterology & Hepatology) ¹⁵²	Rebecca C Fitzgerald (University of Cambridge)	Normal=20 BO=24 HGD=23 OAC=19	Cytosponge, Brush, biopsy	V1-V2 2 × 250 bp	Decreased microbial diversity in OAC tissue compared with controls. Enrichment of acid-tolerant bacteria such as <i>Lactobacillus</i> <i>fermentum</i> in OAC samples
Nobel et al., 2018 (Clinical and Translational Gastroenterology)	Julian A. Abrams (University Irving)	GERD=5 BO= 31 Other=11	Two brushings were taken from the following sites: squamous esophagus (3 cm proximal to the squamo-columnar junction), gastric cardia (within 1 cm of the top of the gastric folds), and mid-BE segment in patients with BE. Brush tips were cut using sterile wire cutters and samples	V4 MiSeq 2 × 250 bp Differential abundance: linear discriminant analysis effect size	Subjects were divided into quartiles based on fibre intake. Low fibre intake was associated with increase in the taxa Aggregatibacter, cardiobacterium, Lautropia, Paludibacter, Prevotella, Neisseria and unclassified Tissierellaceae High fibre intake was associated with an increased relative abundance of an unclassified genus in family Pasteurellaceae
Deshpande et al.,2018 (microbiome) ⁴⁴⁰	Nadeem Omar Kaakoush (University of New South Wales)	Normal=59 GERD=29 GM=7 BO=5 EAC=1	Bursh (Biopsies were taken but not analysed)	16S rRNA V4 Shotgun sequencing (Both lumina MiSeq	The esophageal microbiome was found to cluster into functionally distinct community types (esotypes) defined by <i>Streptococcus</i> and <i>Prevotella</i>

		EoE=1		2 × 250 bp chemistry)	
Okereke et al., 2019 (Scientific Reports) ⁴⁴¹		BO=17	Biopsies of esophageal mucosa were taken from the (1) proximal esophagus, (2) mid- esophagus, (3) distal esophagus, and (4) Barrett's esophagus. Swabs were also taken from the uvula and the endoscope.	Ion Torrent long reads V1-V8	Biopsies samples differed in composition the that of swab samples
Snider et al., 2019 (Cancer Epidemiology, Biomarkers & Prevention) ⁴⁴²	Julian A. Abrams(Unive rsity Irving)	16 controls; 14 Barrett's oesophagus without dysplasia (NDBO); 6 low-	See Nobel et al	V4 MiSeq 2 × 250 bp	Patients with NDBE/LGD had significantly increased Veillonella. Paateints with HGD /
		grade dysplasia (LGD); 5 high- grade dysplasia (HGD); and 4 oesophageal adenocarcinoma (OAC)		Differential abundance: linear discriminant analysis effect size	esophageal had significantly increased Akkermansia muciniphila, Enterobacteriaceae, Moraxella, Oscillospira and Proteus
					OAC had reduced alpha diversity as calculated by Simpson Index

1801 The findings summarised in the above table shows numerous studies have tried to 1802 find a relationship between the microbiota and oesophageal diseases. However, no 1803 consistent microbial signatures have been identified with relationship to the 1804 microbiome and oesophageal cancer development. These studies difference in there 1805 methodological implementation including primer pairs and sampling procedure. 1806 Pinch biopsies as a method of sample collection maybe thought as superior to swabs 1807 as they may more effective at collecting mucosal adherent bacteria. From a 1808 statistical/bioinformatic perspective, differential abundance analysis is a key aspect 1809 of all these microbiome studies. Many of these studies use Linear Discriminant 1810 Analysis Effect Size (LEfSe) which has been described by more of a discriminant 1811 analysis method than a differential abundance analysis method. Some studies 1812 described in the above table have respectable sample size per clinical group study 1813 including Elliott et al. However many of these studies included clinical groups 1814 composed of cohorts less than 5. Finally few of these studies examine inter-1815 individuals microbiome variation within the oesophagus.

1816

1817 **<u>1.7 Aims of this thesis</u>**

1818 The research in this thesis worked under the hypothesis that the human microbiome

1819 is associated with and plays a role in cancer biology. This thesis contains four

1820 projects which, to varying extents, contribute to key areas of cancer research.

1821 In chapter 2, we investigate the microbiome of mucosal biopsies derived from

1822 patients along the inflammation-metaplasia-dysplasia-oesophageal adenocarcinoma

1823 sequence in an Irish cohort. Furthermore, we collected and analysed multiple biopsy

1824 per individuals to examine the intra-individual microbiome variation. Identification 1825 of differences in microbiome features between clinical categories would lead to the 1826 hypothesis that the oesophageal and/or gastric microbiome modulates the 1827 development of oesophageal adenocarcinoma. Moreover, these data would provide 1828 information regarding whether these changes expand to the either upper GI tract. 1829 CRC screening programs have been associated with a decrease in CRC incidence and deaths⁴⁴³. The microbiome is being explored for its potential to inform the 1830 development of new diagnostic tools^{444,445}. Previous work has indicated that 1831 1832 colorectal cancer is associated with changes in the microbiome throughout the colon and is not restricted to the cancer³⁹⁴. In Chapter 3we investigate the spatial 1833 1834 organisation of the mucosal colon microbiome in the context of CRC. We sought to 1835 identify intra-individual difference in colonic mucosal biopsies in individuals with 1836 CRC. To this end, Chapter 2 and Chapter 3 share a core similarity whereby in 1837 Chapter 2 inter-individual variation in the oesophageal/gastric microbiome in the 1838 context of OAC is being delineated while in Chapter 3 inter-individual variation in 1839 the colonic microbiome in the context of CRC is being delineated. This research 1840 would add to the discussion on the diagnostic power of non-disease colonic tissue 1841 versus diseased tissue.

Even in the context of a robust understanding of cancer risk factors and wide spread screening programs, cancer will occur in society. Immune checkpoint inhibitors (ICI) represent a significant addition to cancer therapeutics. However, a large proportion of individuals do not response to ICI. An increasingly appreciated modulator of response to ICI is the gut microbiota. In chapter 4 we examined the association between the microbiome and clinical responses (response and side effects) to ICI in the context of melanoma. This study was conducted in a geographically different
location i.e. Ireland relative to previous studies⁴⁴⁶. These data would allow the
examination between consistencies/inconsistencies in microbiome features
associated with clinical outcomes to ICI in geographically distinct populations.

1852

1853 Inflammation is known to be a major contributor to oncogenesis⁴⁴⁷. Many

1854 inflammatory diseases are known to be risk factors to the development of cancer e.g.

1855 ulcerative colitis (UC) is a risk factor for CRC³⁵⁶. A major area of microbiome

1856 research involves investigating the role of the microbiome in modulating

1857 inflammation⁴⁴⁸. One would argue the need to explore the potential of an

1858 inflammation-microbiome-cancer axis. Hidradenitis Suppurativa (HS) is a chronic

1859 inflammatory skin disease which affects the intertriginous skin⁴⁴⁹. HS is known to

1860 increase risk to the development of a range of caners⁴⁵⁰. In Chapter 5 we investigated

alterations in the skin and faecal microbiome in individuals with HS. Microbiome

1862 features which drive inflammation have the potential to drive oncogenesis. It is thus

1863 pertinent to identify microbiome features associated with inflammatory diseases such

1864 as HS.

1865

1866 **<u>1.8 References</u>**

1867 1 Takai, K. *et al.* Cell proliferation at 122 degrees C and isotopically heavy
1868 CH4 production by a hyperthermophilic methanogen under high-pressure
1869 cultivation. *P Natl Acad Sci USA* 105, 10949-10954,
1870 doi:10.1073/pnas.0712334105 (2008).

18712Goordial, J. et al. In Situ Field Sequencing and Life Detection in Remote1872(79°26'N) Canadian High Arctic Permafrost Ice Wedge Microbial

1873 1874		Communities. <i>Frontiers in Microbiology</i> 8 , doi:10.3389/fmicb.2017.02594 (2017).
1875 1876	3	Berg, G. <i>et al.</i> Microbiome definition re-visited: old concepts and new challenges. <i>Microbiome</i> 8 , 103, doi:10.1186/s40168-020-00875-0 (2020).
1877 1878 1879	4	van Vliet, S. & Doebeli, M. The role of multilevel selection in host microbiome evolution. <i>Proceedings of the National Academy of Sciences</i> 116 , 20591, doi:10.1073/pnas.1909790116 (2019).
1880 1881 1882	5	Cebra, J. J. Influences of microbiota on intestinal immune system development. <i>The American Journal of Clinical Nutrition</i> 69 , 1046s-1051s, doi:10.1093/ajcn/69.5.1046s (1999).
1883 1884 1885	6	Keen, E. C. & Dantas, G. Close Encounters of Three Kinds: Bacteriophages, Commensal Bacteria, and Host Immunity. <i>Trends Microbiol</i> 26 , 943-954, doi:10.1016/j.tim.2018.05.009 (2018).
1886 1887 1888	7	Nilsson, R. H. <i>et al.</i> Mycobiome diversity: high-throughput sequencing and identification of fungi. <i>Nat Rev Microbiol</i> 17 , 95-109, doi:10.1038/s41579-018-0116-y (2019).
1889 1890 1891	8	Sender, R., Fuchs, S. & Milo, R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. <i>PLoS Biol</i> 14 , e1002533, doi:10.1371/journal.pbio.1002533 (2016).
1892 1893 1894	9	Zhernakova, A. <i>et al.</i> Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. <i>Science</i> 352 , 565-569, doi:10.1126/science.aad3369 (2016).
1895 1896	10	Gilbert, J. A. <i>et al.</i> Current understanding of the human microbiome. <i>Nat Med</i> 24 , 392-400, doi:10.1038/nm.4517 (2018).
1897 1898 1899	11	Nayfach, S., Shi, Z. J., Seshadri, R., Pollard, K. S. & Kyrpides, N. C. New insights from uncultivated genomes of the global human gut microbiome. <i>Nature</i> 568 , 505-510, doi:10.1038/s41586-019-1058-x (2019).
1900 1901 1902	12	Almeida, A. <i>et al.</i> A unified catalog of 204,938 reference genomes from the human gut microbiome. <i>Nature Biotechnology</i> , doi:10.1038/s41587-020-0603-3 (2020).
1903 1904 1905	13	Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. <i>Nat Rev Microbiol</i> 14 , 20-32, doi:10.1038/nrmicro3552 (2016).
1906 1907 1908	14	Tropini, C., Earle, K. A., Huang, K. C. & Sonnenburg, J. L. The Gut Microbiome: Connecting Spatial Organization to Function. <i>Cell Host</i> <i>Microbe</i> 21 , 433-442, doi:10.1016/j.chom.2017.03.010 (2017).
1909 1910 1911	15	Flynn, K. J., Ruffin, M. T., Turgeon, D. K. & Schloss, P. D. Spatial Variation of the Native Colon Microbiota in Healthy Adults. <i>Cancer Prevention Research</i> 11 , 393, doi:10.1158/1940-6207.CAPR-17-0370 (2018).

1912 1913 1914	16	Lavelle, A. <i>et al.</i> Spatial variation of the colonic microbiota in patients with ulcerative colitis and control volunteers. <i>Gut</i> 64 , 1553-1561, doi:10.1136/gutjnl-2014-307873 (2015).
1915 1916	17	Pédron, T. <i>et al.</i> A crypt-specific core microbiota resides in the mouse colon. <i>mBio</i> 3 , doi:10.1128/mBio.00116-12 (2012).
1917 1918 1919	18	Albenberg, L. <i>et al.</i> Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. <i>Gastroenterology</i> 147 , 1055-1063.e1058, doi:10.1053/j.gastro.2014.07.020 (2014).
1920 1921 1922	19	Huse, S. M. <i>et al.</i> Comparison of brush and biopsy sampling methods of the ileal pouch for assessment of mucosa-associated microbiota of human subjects. <i>Microbiome</i> 2 , 5, doi:10.1186/2049-2618-2-5 (2014).
1923 1924 1925	20	Vandeputte, D. <i>et al.</i> Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. <i>Gut</i> 65 , 57, doi:10.1136/gutjnl-2015-309618 (2016).
1926 1927 1928	21	Bassis, C. M. <i>et al.</i> Comparison of stool versus rectal swab samples and storage conditions on bacterial community profiles. <i>BMC Microbiology</i> 17 , 78, doi:10.1186/s12866-017-0983-9 (2017).
1929 1930 1931 1932	22	Reyman, M., van Houten, M. A., Arp, K., Sanders, E. A. M. & Bogaert, D. Rectal swabs are a reliable proxy for faecal samples in infant gut microbiota research based on 16S-rRNA sequencing. <i>Scientific Reports</i> 9 , 16072, doi:10.1038/s41598-019-52549-z (2019).
1933 1934 1935	23	Pleasants, J. R. Rearing germfree cesarean-born rats, mice, and rabbits through weaning. <i>Ann N Y Acad Sci</i> 78 , 116-126, doi:10.1111/j.1749-6632.1959.tb53099.x (1959).
1936 1937 1938	24	Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. <i>Cell Res</i> 30 , 492-506, doi:10.1038/s41422-020-0332-7 (2020).
1939 1940 1941	25	Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. <i>Nature Reviews Microbiology</i> , doi:10.1038/s41579-020-0433-9 (2020).
1942 1943 1944	26	Liu, F. <i>et al.</i> Altered composition and function of intestinal microbiota in autism spectrum disorders: a systematic review. <i>Translational Psychiatry</i> 9 , 43, doi:10.1038/s41398-019-0389-6 (2019).
1945 1946 1947	27	Sgritta, M. <i>et al.</i> Mechanisms Underlying Microbial-Mediated Changes in Social Behavior in Mouse Models of Autism Spectrum Disorder. <i>Neuron</i> 101 , 246-259.e246, doi:10.1016/j.neuron.2018.11.018 (2019).
1948 1949 1950	28	Zhang, M. <i>et al.</i> A quasi-paired cohort strategy reveals the impaired detoxifying function of microbes in the gut of autistic children. <i>Sci Adv</i> 6 , doi:10.1126/sciadv.aba3760 (2020).
1951 1952	29	Jie, Z. <i>et al.</i> The gut microbiome in atherosclerotic cardiovascular disease. <i>Nature Communications</i> 8 , 845, doi:10.1038/s41467-017-00900-1 (2017).

1953 1954	30	Wang, Z. <i>et al.</i> Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. <i>Nature</i> 472 , 57-63, doi:10.1038/nature09922 (2011).
1955 1956 1957	31	Koeth, R. A. <i>et al.</i> Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. <i>Nature medicine</i> 19 , 576-585, doi:10.1038/nm.3145 (2013).
1958 1959 1960	32	Bennett, B. J. <i>et al.</i> Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. <i>Cell Metab</i> 17 , 49-60, doi:10.1016/j.cmet.2012.12.011 (2013).
1961 1962 1963	33	Tang, W. H. <i>et al.</i> Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. <i>N Engl J Med</i> 368 , 1575-1584, doi:10.1056/NEJMoa1109400 (2013).
1964 1965 1966	34	Zhu, W. <i>et al.</i> Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. <i>Cell</i> 165 , 111-124, doi:10.1016/j.cell.2016.02.011 (2016).
1967 1968	35	Gurung, M. <i>et al.</i> Role of gut microbiota in type 2 diabetes pathophysiology. <i>EBioMedicine</i> 51 , 102590, doi:10.1016/j.ebiom.2019.11.051 (2020).
1969 1970 1971	36	Kim, S. H. <i>et al.</i> The anti-diabetic activity of Bifidobacterium lactis HY8101 in vitro and in vivo. <i>J Appl Microbiol</i> 117 , 834-845, doi:10.1111/jam.12573 (2014).
1972 1973 1974	37	Plovier, H. <i>et al.</i> A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. <i>Nature Medicine</i> 23 , 107-113, doi:10.1038/nm.4236 (2017).
1975 1976 1977	38	Schirmer, M., Garner, A., Vlamakis, H. & Xavier, R. J. Microbial genes and pathways in inflammatory bowel disease. <i>Nature Reviews Microbiology</i> 17 , 497-511, doi:10.1038/s41579-019-0213-6 (2019).
1978 1979 1980 1981	39	Henke, M. T. <i>et al.</i> Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn's disease, produces an inflammatory polysaccharide. <i>Proceedings of the National Academy of Sciences</i> 116 , 12672, doi:10.1073/pnas.1904099116 (2019).
1982 1983 1984 1985	40	Mirsepasi-Lauridsen, H. C., Vallance, B. A., Krogfelt, K. A. & Petersen, A. M. Escherichia coli Pathobionts Associated with Inflammatory Bowel Disease. <i>Clinical Microbiology Reviews</i> 32 , e00060-00018, doi:10.1128/CMR.00060-18 (2019).
1986 1987 1988	41	Jiang, W. <i>et al.</i> Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. <i>Sci Rep</i> 5 , 8096, doi:10.1038/srep08096 (2015).
1989 1990 1991	42	Yuan, J. <i>et al.</i> Fatty Liver Disease Caused by High-Alcohol-Producing Klebsiella pneumoniae. <i>Cell Metab</i> 30 , 675-688 e677, doi:10.1016/j.cmet.2019.08.018 (2019).
1992 1993 1994	43	Le Roy, T. <i>et al.</i> Intestinal microbiota determines development of non- alcoholic fatty liver disease in mice. <i>Gut</i> 62 , 1787, doi:10.1136/gutjnl-2012- 303816 (2013).

1995 1996 1997	44	Hoyles, L. <i>et al.</i> Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. <i>Nature medicine</i> 24 , 1070-1080, doi:10.1038/s41591-018-0061-3 (2018).
1998 1999	45	Wainwright, S. A. Form and function in organisms. <i>American Zoologist</i> 28 , 671-680 (1988).
2000 2001 2002	46	Church, G. M., Gao, Y. & Kosuri, S. Next-Generation Digital Information Storage in DNA. <i>Science</i> 337 , 1628-1628, doi:10.1126/science.1226355 (2012).
2003 2004 2005	47	Wu, R. & Kaiser, A. D. Structure and base sequence in the cohesive ends of bacteriophage lambda DNA. <i>Journal of Molecular Biology</i> 35 , 523-537, doi: <u>https://doi.org/10.1016/S0022-2836(68)80012-9</u> (1968).
2006 2007 2008	48	Wu, R. & Taylor, E. Nucleotide sequence analysis of DNA. II. Complete nucleotide sequence of the cohesive ends of bacteriophage lambda DNA. <i>J Mol Biol</i> 57 , 491-511, doi:10.1016/0022-2836(71)90105-7 (1971).
2009 2010	49	Gilbert, W. & Maxam, A. The nucleotide sequence of the lac operator. <i>P Natl Acad Sci USA</i> 70 , 3581-3584, doi:10.1073/pnas.70.12.3581 (1973).
2011 2012	50	Sanger, F. Sequences, sequences, and sequences. <i>Annu Rev Biochem</i> 57, 1-28, doi:10.1146/annurev.bi.57.070188.000245 (1988).
2013 2014 2015	51	Sanger, F. & Coulson, A. R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. <i>J Mol Biol</i> 94 , 441-448, doi:10.1016/0022-2836(75)90213-2 (1975).
2016 2017	52	Sanger, F. <i>et al.</i> Nucleotide sequence of bacteriophage φX174 DNA. <i>Nature</i> 265 , 687-695, doi:10.1038/265687a0 (1977).
2018 2019	53	Maxam, A. M. & Gilbert, W. A new method for sequencing DNA. <i>P Natl Acad Sci USA</i> 74 , 560-564, doi:10.1073/pnas.74.2.560 (1977).
2020 2021 2022	54	Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain- terminating inhibitors. <i>P Natl Acad Sci USA</i> 74 , 5463-5467, doi:10.1073/pnas.74.12.5463 (1977).
2023 2024 2025	55	Prober, J. M. <i>et al.</i> A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. <i>Science</i> 238 , 336-341, doi:10.1126/science.2443975 (1987).
2026 2027	56	Smith, L. M. <i>et al.</i> Fluorescence detection in automated DNA sequence analysis. <i>Nature</i> 321 , 674-679, doi:10.1038/321674a0 (1986).
2028 2029	57	Shendure, J. <i>et al.</i> DNA sequencing at 40: past, present and future. <i>Nature</i> 550 , 345-353, doi:10.1038/nature24286 (2017).
2030 2031 2032	58	Messing, J., Crea, R. & Seeburg, P. H. A system for shotgun DNA sequencing. <i>Nucleic Acids Research</i> 9 , 309-321, doi:10.1093/nar/9.2.309 (1981).

2033 2034 2035	59	Sanger, F., Coulson, A. R., Hong, G. F., Hill, D. F. & Petersen, G. B. Nucleotide sequence of bacteriophage lambda DNA. <i>J Mol Biol</i> 162 , 729- 773, doi:10.1016/0022-2836(82)90546-0 (1982).
2036 2037 2038	60	Fleischmann, R. D. <i>et al.</i> Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. <i>Science</i> 269 , 496-512, doi:10.1126/science.7542800 (1995).
2039 2040	61	Goffeau, A. <i>et al.</i> Life with 6000 genes. <i>Science</i> 274 , 546, 563-547, doi:10.1126/science.274.5287.546 (1996).
2041 2042	62	Genome sequence of the nematode C. elegans: a platform for investigating biology. <i>Science</i> 282 , 2012-2018, doi:10.1126/science.282.5396.2012 (1998).
2043 2044	63	Lander, E. S. <i>et al.</i> Initial sequencing and analysis of the human genome. <i>Nature</i> 409 , 860-921, doi:10.1038/35057062 (2001).
2045 2046	64	Finishing the euchromatic sequence of the human genome. <i>Nature</i> 431 , 931-945, doi:10.1038/nature03001 (2004).
2047 2048	65	Venter, J. C. <i>et al.</i> The sequence of the human genome. <i>Science</i> 291 , 1304-1351, doi:10.1126/science.1058040 (2001).
2049 2050 2051	66	Nyrén, P. Enzymatic method for continuous monitoring of DNA polymerase activity. <i>Anal Biochem</i> 167 , 235-238, doi:10.1016/0003-2697(87)90158-8 (1987).
2052 2053 2054	67	Nyrén, P., Pettersson, B. & Uhlén, M. Solid phase DNA minisequencing by an enzymatic luminometric inorganic pyrophosphate detection assay. <i>Anal Biochem</i> 208 , 171-175, doi:10.1006/abio.1993.1024 (1993).
2055 2056 2057	68	Heather, J. M. & Chain, B. The sequence of sequencers: The history of sequencing DNA. <i>Genomics</i> 107 , 1-8, doi:10.1016/j.ygeno.2015.11.003 (2016).
2058 2059	69	Canard, B. & Sarfati, R. S. DNA polymerase fluorescent substrates with reversible 3'-tags. <i>Gene</i> 148 , 1-6, doi:10.1016/0378-1119(94)90226-7 (1994).
2060 2061 2062	70	Ju, J. <i>et al.</i> Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators. <i>Proceedings of the National Academy of Sciences</i> 103 , 19635, doi:10.1073/pnas.0609513103 (2006).
2063 2064 2065 2066	71	Turcatti, G., Romieu, A., Fedurco, M. & Tairi, A. P. A new class of cleavable fluorescent nucleotides: synthesis and optimization as reversible terminators for DNA sequencing by synthesis. <i>Nucleic Acids Res</i> 36 , e25, doi:10.1093/nar/gkn021 (2008).
2067 2068 2069	72	Mitra, R. D. & Church, G. M. In situ localized amplification and contact replication of many individual DNA molecules. <i>Nucleic Acids Res</i> 27 , e34, doi:10.1093/nar/27.24.e34 (1999).
2070 2071 2072	73	van Dijk, E. L., Jaszczyszyn, Y., Naquin, D. & Thermes, C. The Third Revolution in Sequencing Technology. <i>Trends Genet</i> 34 , 666-681, doi:10.1016/j.tig.2018.05.008 (2018).

2073 2074 2075 2076	74	Santos, A., van Aerle, R., Barrientos, L. & Martinez-Urtaza, J. Computational methods for 16S metabarcoding studies using Nanopore sequencing data. <i>Computational and Structural Biotechnology Journal</i> 18 , 296-305, doi: <u>https://doi.org/10.1016/j.csbj.2020.01.005</u> (2020).
2077 2078 2079 2080	75	Ardui, S., Ameur, A., Vermeesch, J. R. & Hestand, M. S. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. <i>Nucleic Acids Research</i> 46 , 2159-2168, doi:10.1093/nar/gky066 (2018).
2081 2082 2083	76	Jain, M., Olsen, H. E., Paten, B. & Akeson, M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. <i>Genome Biol</i> 17 , 239, doi:10.1186/s13059-016-1103-0 (2016).
2084 2085 2086	77	Liu, Q. <i>et al.</i> Detection of DNA base modifications by deep recurrent neural network on Oxford Nanopore sequencing data. <i>Nature Communications</i> 10 , 2449, doi:10.1038/s41467-019-10168-2 (2019).
2087 2088	78	Miga, K. H. <i>et al.</i> Telomere-to-telomere assembly of a complete human X chromosome. <i>Nature</i> 585 , 79-84, doi:10.1038/s41586-020-2547-7 (2020).
2089 2090 2091	79	Brewer, T. E. <i>et al.</i> Unlinked rRNA genes are widespread among bacteria and archaea. <i>The ISME Journal</i> 14 , 597-608, doi:10.1038/s41396-019-0552-3 (2020).
2092 2093 2094 2095	80	Lavrinienko, A., Jernfors, T., Koskimäki, J. J., Pirttilä, A. M. & Watts, P. C. Does Intraspecific Variation in rDNA Copy Number Affect Analysis of Microbial Communities? <i>Trends Microbiol</i> , doi:10.1016/j.tim.2020.05.019 (2020).
2096 2097 2098 2099	81	Clarridge, J. E., 3rd. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. <i>Clinical microbiology reviews</i> 17 , 840-862, doi:10.1128/CMR.17.4.840-862.2004 (2004).
2100 2101 2102	82	Shen, Y. <i>et al.</i> Testing hypotheses on the rate of molecular evolution in relation to gene expression using microRNAs. <i>Proceedings of the National Academy of Sciences</i> 108 , 15942-15947 (2011).
2103 2104 2105 2106	83	Managadze, D., Rogozin, I. B., Chernikova, D., Shabalina, S. A. & Koonin, E. V. Negative correlation between expression level and evolutionary rate of long intergenic noncoding RNAs. <i>Genome biology and evolution</i> 3 , 1390-1404 (2011).
2107 2108 2109	84	Li, GW., Oh, E. & Weissman, J. S. The anti-Shine–Dalgarno sequence drives translational pausing and codon choice in bacteria. <i>Nature</i> 484 , 538-541, doi:10.1038/nature10965 (2012).
2110 2111 2112	85	Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. <i>P Natl Acad Sci USA</i> 74 , 5088-5090, doi:10.1073/pnas.74.11.5088 (1977).

2113 2114 2115	86	Wilson, K. H. & Blitchington, R. B. Human colonic biota studied by ribosomal DNA sequence analysis. <i>Appl Environ Microbiol</i> 62 , 2273-2278 (1996).
2116 2117 2118 2119	87	Suau, A. <i>et al.</i> Direct Analysis of Genes Encoding 16S rRNA from Complex Communities Reveals Many Novel Molecular Species within the Human Gut. <i>Applied and Environmental Microbiology</i> 65 , 4799-4807, doi:10.1128/aem.65.11.4799-4807.1999 (1999).
2120 2121 2122	88	Kroes, I., Lepp, P. W. & Relman, D. A. Bacterial diversity within the human subgingival crevice. <i>Proceedings of the National Academy of Sciences</i> 96 , 14547, doi:10.1073/pnas.96.25.14547 (1999).
2123 2124 2125	89	Browne, H. P. <i>et al.</i> Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation. <i>Nature</i> 533 , 543-546, doi:10.1038/nature17645 (2016).
2126 2127 2128	90	Lewis, W. H., Tahon, G., Geesink, P., Sousa, D. Z. & Ettema, T. J. G. Innovations to culturing the uncultured microbial majority. <i>Nature Reviews</i> <i>Microbiology</i> , doi:10.1038/s41579-020-00458-8 (2020).
2129 2130	91	Eckburg, P. B. <i>et al.</i> Diversity of the human intestinal microbial flora. <i>Science</i> 308 , 1635-1638, doi:10.1126/science.1110591 (2005).
2131 2132 2133	92	Rausch, P. <i>et al.</i> Comparative analysis of amplicon and metagenomic sequencing methods reveals key features in the evolution of animal metaorganisms. <i>Microbiome</i> 7 , 1-19 (2019).
2134 2135 2136	93	McInerney, P., Adams, P. & Hadi, M. Z. Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase. <i>Molecular Biology</i> <i>International</i> 2014 , 287430, doi:10.1155/2014/287430 (2014).
2137	94	Amplicon, P., Clean-Up, P. & Index, P. (2013).
2138 2139 2140 2141	95	Berry, D., Ben Mahfoudh, K., Wagner, M. & Loy, A. Barcoded Primers Used in Multiplex Amplicon Pyrosequencing Bias Amplification. <i>Applied</i> <i>and Environmental Microbiology</i> 77 , 7846, doi:10.1128/AEM.05220-11 (2011).
2142 2143	96	Sneath, P. H. & Sokal, R. R. Numerical taxonomy. The principles and practice of numerical classification. (1973).
2144 2145 2146	97	Westcott, S. L. & Schloss, P. D. De novo clustering methods outperform reference-based methods for assigning 16S rRNA gene sequences to operational taxonomic units. <i>PeerJ</i> 3 , e1487, doi:10.7717/peerj.1487 (2015).
2147 2148	98	Kopylova, E. <i>et al.</i> Open-Source Sequence Clustering Methods Improve the State Of the Art. <i>mSystems</i> 1 , doi:10.1128/mSystems.00003-15 (2016).
2149 2150 2151	99	Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. <i>The ISME Journal</i> 11 , 2639-2643, doi:10.1038/ismej.2017.119 (2017).

2152 2153 2154	100	Callahan, B. J. <i>et al.</i> DADA2: High-resolution sample inference from Illumina amplicon data. <i>Nat Methods</i> 13 , 581-583, doi:10.1038/nmeth.3869 (2016).
2155 2156 2157	101	Amir, A. <i>et al.</i> Deblur Rapidly Resolves Single-Nucleotide Community Sequence Patterns. <i>mSystems</i> 2 , e00191-00116, doi:10.1128/mSystems.00191-16 (2017).
2158 2159 2160	102	Nearing, J. T., Douglas, G. M., Comeau, A. M. & Langille, M. G. I. Denoising the Denoisers: an independent evaluation of microbiome sequence error-correction approaches. <i>PeerJ</i> 6 , e5364, doi:10.7717/peerj.5364 (2018).
2161 2162 2163	103	Prodan, A. <i>et al.</i> Comparing bioinformatic pipelines for microbial 16S rRNA amplicon sequencing. <i>PLoS One</i> 15 , e0227434, doi:10.1371/journal.pone.0227434 (2020).
2164 2165 2166 2167	104	Sun, DL., Jiang, X., Wu, Q. L. & Zhou, NY. Intragenomic Heterogeneity of 16S rRNA Genes Causes Overestimation of Prokaryotic Diversity. <i>Applied and Environmental Microbiology</i> 79 , 5962, doi:10.1128/AEM.01282-13 (2013).
2168 2169 2170 2171	105	Earl, J. P. <i>et al.</i> Species-level bacterial community profiling of the healthy sinonasal microbiome using Pacific Biosciences sequencing of full-length 16S rRNA genes. <i>Microbiome</i> 6 , 190, doi:10.1186/s40168-018-0569-2 (2018).
2172 2173 2174	106	Murali, A., Bhargava, A. & Wright, E. S. IDTAXA: a novel approach for accurate taxonomic classification of microbiome sequences. <i>Microbiome</i> 6 , 140, doi:10.1186/s40168-018-0521-5 (2018).
2175 2176 2177	107	Quast, C. <i>et al.</i> The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. <i>Nucleic Acids Res</i> 41 , D590-596, doi:10.1093/nar/gks1219 (2013).
2178 2179 2180	108	Cole, J. R. <i>et al.</i> Ribosomal Database Project: data and tools for high throughput rRNA analysis. <i>Nucleic Acids Res</i> 42 , D633-642, doi:10.1093/nar/gkt1244 (2014).
2181 2182 2183	109	McDonald, D. <i>et al.</i> An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. <i>The ISME journal</i> 6 , 610-618 (2012).
2184 2185	110	Balvočiūtė, M. & Huson, D. H. SILVA, RDP, Greengenes, NCBI and OTT—how do these taxonomies compare? <i>BMC genomics</i> 18 , 1-8 (2017).
2186 2187 2188	111	Fisher, R. A., Corbet, A. S. & Williams, C. B. The relation between the number of species and the number of individuals in a random sample of an animal population. <i>The Journal of Animal Ecology</i> , 42-58 (1943).
2189 2190	112	Chao, A. & Bunge, J. Estimating the number of species in a stochastic abundance model. <i>Biometrics</i> 58 , 531-539 (2002).
2191	113	Simpson, E. H. Measurement of diversity. nature 163, 688-688 (1949).

2192 2193	114	Shannon, C. E. A mathematical theory of communication. <i>The Bell system technical journal</i> 27 , 379-423 (1948).
2194 2195	115	Swenson, N. G. <i>et al.</i> Phylogenetic and functional alpha and beta diversity in temperate and tropical tree communities. <i>Ecology</i> 93 , S112-S125 (2012).
2196 2197	116	Jaccard, P. The distribution of the flora in the alpine zone. 1. <i>New phytologist</i> 11 , 37-50 (1912).
2198 2199 2200	117	Bray, J. R. & Curtis, J. T. An Ordination of the Upland Forest Communities of Southern Wisconsin. <i>Ecological Monographs</i> 27 , 325-349, doi:10.2307/1942268 (1957).
2201 2202 2203	118	Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: an effective distance metric for microbial community comparison. <i>The ISME journal</i> 5 , 169-172, doi:10.1038/ismej.2010.133 (2011).
2204 2205 2206	119	Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. <i>Appl Environ Microbiol</i> 71 , 8228-8235, doi:10.1128/AEM.71.12.8228-8235.2005 (2005).
2207 2208 2209	120	Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome Datasets Are Compositional: And This Is Not Optional. <i>Front</i> <i>Microbiol</i> 8 , 2224, doi:10.3389/fmicb.2017.02224 (2017).
2210 2211	121	Martino, C. <i>et al.</i> A novel sparse compositional technique reveals microbial perturbations. <i>MSystems</i> 4 (2019).
2212 2213 2214 2215	122	Fernandes, A. D. <i>et al.</i> Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. <i>Microbiome</i> 2 , 15-15, doi:10.1186/2049-2618-2-15 (2014).
2216 2217 2218	123	Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. <i>Genome Biology</i> 15 , 550, doi:10.1186/s13059-014-0550-8 (2014).
2219 2220 2221	124	Paulson, J. N., Stine, O. C., Bravo, H. C. & Pop, M. Differential abundance analysis for microbial marker-gene surveys. <i>Nat Methods</i> 10 , 1200-1202, doi:10.1038/nmeth.2658 (2013).
2222 2223 2224	125	Mandal, S. <i>et al.</i> Analysis of composition of microbiomes: a novel method for studying microbial composition. <i>Microb Ecol Health Dis</i> 26 , 27663, doi:10.3402/mehd.v26.27663 (2015).
2225 2226 2227	126	Lin, H. & Peddada, S. D. Analysis of compositions of microbiomes with bias correction. <i>Nature Communications</i> 11 , 3514, doi:10.1038/s41467-020-17041-7 (2020).
2228 2229 2230	127	Langille, M. G. I. <i>et al.</i> Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. <i>Nature Biotechnology</i> 31 , 814-821, doi:10.1038/nbt.2676 (2013).

2231 2232 2233	128	Asshauer, K. P., Wemheuer, B., Daniel, R. & Meinicke, P. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. <i>Bioinformatics</i> 31 , 2882-2884, doi:10.1093/bioinformatics/btv287 (2015).
2234 2235	129	Douglas, G. M. <i>et al.</i> PICRUSt2 for prediction of metagenome functions. <i>Nature Biotechnology</i> 38 , 685-688, doi:10.1038/s41587-020-0548-6 (2020).
2236 2237 2238	130	Narayan, N. R. <i>et al.</i> Piphillin predicts metagenomic composition and dynamics from DADA2-corrected 16S rDNA sequences. <i>BMC Genomics</i> 21 , 56, doi:10.1186/s12864-019-6427-1 (2020).
2239 2240 2241	131	Das, M., Ghosh, T. S. & Jeffery, I. B. IPCO: Inference of Pathways from Co- variance analysis. <i>BMC Bioinformatics</i> 21 , 62, doi:10.1186/s12859-020- 3404-2 (2020).
2242 2243 2244	132	Callahan, B. J. <i>et al.</i> High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. <i>Nucleic Acids Research</i> 47 , e103-e103, doi:10.1093/nar/gkz569 (2019).
2245 2246 2247	133	Johnson, J. S. <i>et al.</i> Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. <i>Nature Communications</i> 10 , 5029, doi:10.1038/s41467-019-13036-1 (2019).
2248 2249 2250 2251	134	Cusco, A., Catozzi, C., Vines, J., Sanchez, A. & Francino, O. Microbiota profiling with long amplicons using Nanopore sequencing: full-length 16S rRNA gene and the 16S-ITS-23S of the rrn operon. <i>F1000Res</i> 7 , 1755, doi:10.12688/f1000research.16817.2 (2018).
2252 2253 2254 2255	135	Velasquez-Mejia, E. P., de la Cuesta-Zuluaga, J. & Escobar, J. S. Impact of DNA extraction, sample dilution, and reagent contamination on 16S rRNA gene sequencing of human feces. <i>Appl Microbiol Biotechnol</i> 102 , 403-411, doi:10.1007/s00253-017-8583-z (2018).
2256 2257 2258	136	Zhong, Z. P. <i>et al.</i> Clean Low-Biomass Procedures and Their Application to Ancient Ice Core Microorganisms. <i>Front Microbiol</i> 9 , 1094, doi:10.3389/fmicb.2018.01094 (2018).
2259 2260 2261	137	Branton, W. G. <i>et al.</i> Brain microbiota disruption within inflammatory demyelinating lesions in multiple sclerosis. <i>Sci Rep</i> 6 , 37344, doi:10.1038/srep37344 (2016).
2262 2263 2264	138	Karstens, L. <i>et al.</i> Community profiling of the urinary microbiota: considerations for low-biomass samples. <i>Nat Rev Urol</i> 15 , 735-749, doi:10.1038/s41585-018-0104-z (2018).
2265 2266 2267	139	Hieken, T. J. <i>et al.</i> The Microbiome of Aseptically Collected Human Breast Tissue in Benign and Malignant Disease. <i>Sci Rep</i> 6 , 30751, doi:10.1038/srep30751 (2016).
2268 2269 2270	140	Urbaniak, C. <i>et al.</i> The Microbiota of Breast Tissue and Its Association with Breast Cancer. <i>Appl Environ Microbiol</i> 82 , 5039-5048, doi:10.1128/AEM.01235-16 (2016).
2271 2272	141	Mohammadi, T., Reesink, H. W., Vandenbroucke-Grauls, C. M. & Savelkoul, P. H. Removal of contaminating DNA from commercial nucleic

2273 2274		acid extraction kit reagents. <i>J Microbiol Methods</i> 61 , 285-288, doi:10.1016/j.mimet.2004.11.018 (2005).
2275 2276	142	Corless, C. E. <i>et al.</i> Contamination and sensitivity issues with a real-time universal 16S rRNA PCR. <i>J Clin Microbiol</i> 38 , 1747-1752 (2000).
2277 2278 2279	143	Salter, S. J. <i>et al.</i> Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. <i>BMC Biol</i> 12 , 87, doi:10.1186/s12915-014-0087-z (2014).
2280 2281 2282 2283	144	Glassing, A., Dowd, S. E., Galandiuk, S., Davis, B. & Chiodini, R. J. Inherent bacterial DNA contamination of extraction and sequencing reagents may affect interpretation of microbiota in low bacterial biomass samples. <i>Gut</i> <i>Pathog</i> 8 , 24, doi:10.1186/s13099-016-0103-7 (2016).
2284 2285	145	Rand, K. H. & Houck, H. Taq polymerase contains bacterial DNA of unknown origin. <i>Mol Cell Probes</i> 4 , 445-450 (1990).
2286 2287 2288 2289	146	McAlister, M. B., Kulakov, L. A., O'Hanlon, J. F., Larkin, M. J. & Ogden, K. L. Survival and nutritional requirements of three bacteria isolated from ultrapure water. <i>J Ind Microbiol Biotechnol</i> 29 , 75-82, doi:10.1038/sj.jim.7000273 (2002).
2290 2291 2292	147	Shen, H., Rogelj, S. & Kieft, T. L. Sensitive, real-time PCR detects low- levels of contamination by Legionella pneumophila in commercial reagents. <i>Mol Cell Probes</i> 20 , 147-153, doi:10.1016/j.mcp.2005.09.007 (2006).
2293 2294 2295	148	Eisenhofer, R. <i>et al.</i> Contamination in Low Microbial Biomass Microbiome Studies: Issues and Recommendations. <i>Trends Microbiol</i> 27 , 105-117, doi:10.1016/j.tim.2018.11.003 (2019).
2296 2297	149	Kim, D. <i>et al.</i> Optimizing methods and dodging pitfalls in microbiome research. <i>Microbiome</i> 5 , 52, doi:10.1186/s40168-017-0267-5 (2017).
2298 2299 2300	150	Kirstahler, P. <i>et al.</i> Genomics-Based Identification of Microorganisms in Human Ocular Body Fluid. <i>Sci Rep</i> 8 , 4126, doi:10.1038/s41598-018-22416- 4 (2018).
2301 2302 2303	151	Champlot, S. <i>et al.</i> An efficient multistrategy DNA decontamination procedure of PCR reagents for hypersensitive PCR applications. <i>PloS one</i> 5 , e13042, doi:10.1371/journal.pone.0013042 (2010).
2304 2305 2306 2307	152	Elliott, D. R. F., Walker, A. W., O'Donovan, M., Parkhill, J. & Fitzgerald, R. C. A non-endoscopic device to sample the oesophageal microbiota: a case- control study. <i>Lancet Gastroenterol Hepatol</i> 2 , 32-42, doi:10.1016/S2468- 1253(16)30086-3 (2017).
2308 2309 2310	153	Costello, M. <i>et al.</i> Characterization and remediation of sample index swaps by non-redundant dual indexing on massively parallel sequencing platforms. <i>BMC Genomics</i> 19 , 332, doi:10.1186/s12864-018-4703-0 (2018).
2311 2312 2313	154	Larsson, A. J. M., Stanley, G., Sinha, R., Weissman, I. L. & Sandberg, R. Computational correction of index switching in multiplexed sequencing libraries. <i>Nat Methods</i> 15 , 305-307, doi:10.1038/nmeth.4666 (2018).

2314 2315 2316	155	Wright, E. S. & Vetsigian, K. H. Quality filtering of Illumina index reads mitigates sample cross-talk. <i>BMC Genomics</i> 17 , 876, doi:10.1186/s12864-016-3217-x (2016).
2317 2318 2319 2320	156	Jervis-Bardy, J. <i>et al.</i> Deriving accurate microbiota profiles from human samples with low bacterial content through post-sequencing processing of Illumina MiSeq data. <i>Microbiome</i> 3 , 19, doi:10.1186/s40168-015-0083-8 (2015).
2321 2322 2323 2324	157	Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. <i>Microbiome</i> 6 , 226, doi:10.1186/s40168-018-0605-2 (2018).
2325 2326	158	Knights, D. <i>et al.</i> Bayesian community-wide culture-independent microbial source tracking. <i>Nat Methods</i> 8 , 761-763, doi:10.1038/nmeth.1650 (2011).
2327 2328 2329	159	Funkhouser, L. J. & Bordenstein, S. R. Mom knows best: the universality of maternal microbial transmission. <i>PLoS Biol</i> 11 , e1001631, doi:10.1371/journal.pbio.1001631 (2013).
2330 2331 2332 2333	160	Amarasekara, R., Jayasekara, R. W., Senanayake, H. & Dissanayake, V. H. Microbiome of the placenta in pre-eclampsia supports the role of bacteria in the multifactorial cause of pre-eclampsia. <i>J Obstet Gynaecol Res</i> 41 , 662-669, doi:10.1111/jog.12619 (2015).
2334 2335 2336	161	Antony, K. M. <i>et al.</i> The preterm placental microbiome varies in association with excess maternal gestational weight gain. <i>Am J Obstet Gynecol</i> 212 , 653 e651-616, doi:10.1016/j.ajog.2014.12.041 (2015).
2337 2338 2339	162	Zheng, J. <i>et al.</i> The Placental Microbiome Varies in Association with Low Birth Weight in Full-Term Neonates. <i>Nutrients</i> 7 , 6924-6937, doi:10.3390/nu7085315 (2015).
2340 2341 2342	163	Bassols, J. <i>et al.</i> Gestational diabetes is associated with changes in placental microbiota and microbiome. <i>Pediatr Res</i> 80 , 777-784, doi:10.1038/pr.2016.155 (2016).
2343 2344 2345 2346	164	Collado, M. C., Rautava, S., Aakko, J., Isolauri, E. & Salminen, S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. <i>Sci Rep</i> 6 , 23129, doi:10.1038/srep23129 (2016).
2347 2348 2349	165	Leiby, J. S. <i>et al.</i> Lack of detection of a human placenta microbiome in samples from preterm and term deliveries. <i>Microbiome</i> 6 , 196, doi:10.1186/s40168-018-0575-4 (2018).
2350 2351 2352	166	Lauder, A. P. <i>et al.</i> Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. <i>Microbiome</i> 4 , 29, doi:10.1186/s40168-016-0172-3 (2016).
2353 2354	167	de Goffau, M. C. <i>et al.</i> Human placenta has no microbiome but can contain potential pathogens. <i>Nature</i> , doi:10.1038/s41586-019-1451-5 (2019).

2355 2356 2357 2358	168	Theis, K. R. <i>et al.</i> Does the human placenta delivered at term have a microbiota? Results of cultivation, quantitative real-time PCR, 16S rRNA gene sequencing, and metagenomics. <i>Am J Obstet Gynecol</i> 220 , 267 e261-267 e239, doi:10.1016/j.ajog.2018.10.018 (2019).
2359 2360	169	Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. <i>Cell</i> 144 , 646-674, doi:10.1016/j.cell.2011.02.013 (2011).
2361 2362	170	Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. <i>Cell</i> 100 , 57-70 (2000).
2363 2364	171	Jolly, C. & Van Loo, P. Timing somatic events in the evolution of cancer. <i>Genome Biol</i> 19 , 95, doi:10.1186/s13059-018-1476-3 (2018).
2365 2366 2367	172	Bray, F. <i>et al.</i> Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. <i>CA Cancer J Clin</i> 68 , 394-424, doi:10.3322/caac.21492 (2018).
2368 2369 2370	173	McGuire, S. World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. <i>Adv Nutr</i> 7 , 418-419, doi:10.3945/an.116.012211 (2016).
2371 2372 2373	174	Ma, J., Ward, E. M., Siegel, R. L. & Jemal, A. Temporal Trends in Mortality in the United States, 1969-2013. <i>Jama</i> 314 , 1731-1739, doi:10.1001/jama.2015.12319 (2015).
2374 2375	175	Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2019. <i>CA Cancer J Clin</i> 69 , 7-34, doi:10.3322/caac.21551 (2019).
2376 2377 2378	176	Song, M., Vogelstein, B., Giovannucci, E. L., Willett, W. C. & Tomasetti, C. Cancer prevention: Molecular and epidemiologic consensus. <i>Science</i> 361 , 1317-1318, doi:10.1126/science.aau3830 (2018).
2379 2380 2381	177	Eckhouse, S., Lewison, G. & Sullivan, R. Trends in the global funding and activity of cancer research. <i>Mol Oncol</i> 2 , 20-32, doi:10.1016/j.molonc.2008.03.007 (2008).
2382 2383 2384	178	Islami, F. <i>et al.</i> Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. <i>CA Cancer J Clin</i> 68 , 31-54, doi:10.3322/caac.21440 (2018).
2385 2386	179	Alexandrov, L. B. <i>et al.</i> Clock-like mutational processes in human somatic cells. <i>Nat Genet</i> 47 , 1402-1407, doi:10.1038/ng.3441 (2015).
2387 2388 2389 2390	180	de Martel, C., Georges, D., Bray, F., Ferlay, J. & Clifford, G. M. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. <i>Lancet Glob Health</i> 8 , e180-e190, doi:10.1016/s2214- 109x(19)30488-7 (2020).
2391 2392 2393	181	Eslami-S, Z., Majidzadeh-A, K., Halvaei, S., Babapirali, F. & Esmaeili, R. Microbiome and Breast Cancer: New Role for an Ancient Population. <i>Front Oncol</i> 10 , 120-120, doi:10.3389/fonc.2020.00120 (2020).

2394 2395 2396	182	Yu, LX. & Schwabe, R. F. The gut microbiome and liver cancer: mechanisms and clinical translation. <i>Nature Reviews Gastroenterology & Hepatology</i> 14 , 527-539, doi:10.1038/nrgastro.2017.72 (2017).
2397 2398	183	Half, E. <i>et al.</i> Fecal microbiome signatures of pancreatic cancer patients. <i>Scientific Reports</i> 9 , 16801, doi:10.1038/s41598-019-53041-4 (2019).
2399 2400 2401	184	Nejman, D. <i>et al.</i> The human tumor microbiome is composed of tumor type–specific intracellular bacteria. <i>Science</i> 368 , 973, doi:10.1126/science.aay9189 (2020).
2402 2403 2404	185	Parhi, L. <i>et al.</i> Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression. <i>Nature Communications</i> 11 , 3259, doi:10.1038/s41467-020-16967-2 (2020).
2405 2406 2407	186	Pushalkar, S. <i>et al.</i> The Pancreatic Cancer Microbiome Promotes Oncogenesis by Induction of Innate and Adaptive Immune Suppression. <i>Cancer Discov</i> 8 , 403-416, doi:10.1158/2159-8290.CD-17-1134 (2018).
2408 2409 2410	187	Riquelme, E. <i>et al.</i> Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes. <i>Cell</i> 178 , 795-806.e712, doi:10.1016/j.cell.2019.07.008 (2019).
2411 2412 2413	188	Aykut, B. <i>et al.</i> The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. <i>Nature</i> 574 , 264-267, doi:10.1038/s41586-019-1608-2 (2019).
2414 2415 2416	189	Apopa, P. L. <i>et al.</i> PARP1 Is Up-Regulated in Non-small Cell Lung Cancer Tissues in the Presence of the Cyanobacterial Toxin Microcystin. <i>Frontiers in microbiology</i> 9 , 1757-1757, doi:10.3389/fmicb.2018.01757 (2018).
2417 2418	190	Signat, B., Roques, C., Poulet, P. & Duffaut, D. Fusobacterium nucleatum in periodontal health and disease. <i>Curr Issues Mol Biol</i> 13 , 25-36 (2011).
2419 2420 2421 2422	191	Velsko, I. M. <i>et al.</i> Fusobacterium nucleatum Alters Atherosclerosis Risk Factors and Enhances Inflammatory Markers with an Atheroprotective Immune Response in ApoE(null) Mice. <i>PLoS One</i> 10 , e0129795, doi:10.1371/journal.pone.0129795 (2015).
2423 2424 2425	192	Strauss, J. <i>et al.</i> Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. <i>Inflamm Bowel Dis</i> 17 , 1971-1978, doi:10.1002/ibd.21606 (2011).
2426 2427 2428	193	Gohar, A., Jamous, F. & Abdallah, M. Concurrent fusobacterial pyogenic liver abscess and empyema. <i>BMJ Case Rep</i> 12 , doi:10.1136/bcr-2019-231994 (2019).
2429 2430 2431 2432	194	Vander Haar, E. L., So, J., Gyamfi-Bannerman, C. & Han, Y. W. Fusobacterium nucleatum and adverse pregnancy outcomes: Epidemiological and mechanistic evidence. <i>Anaerobe</i> 50 , 55-59, doi:10.1016/j.anaerobe.2018.01.008 (2018).
2433 2434 2435	195	Castellarin, M. <i>et al.</i> Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. <i>Genome Res</i> 22 , 299-306, doi:10.1101/gr.126516.111 (2012).

2436 2437 2438	196	Kostic, A. D. <i>et al.</i> Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. <i>Genome Res</i> 22 , 292-298, doi:10.1101/gr.126573.111 (2012).
2439 2440 2441 2442	197	Gethings-Behncke, C. <i>et al.</i> Fusobacterium nucleatum in the Colorectum and Its Association with Cancer Risk and Survival: A Systematic Review and Meta-analysis. <i>Cancer Epidemiology Biomarkers & Cancer Prevention</i> 29 , 539-548, doi:10.1158/1055-9965.Epi-18-1295 (2020).
2443 2444 2445	198	Wirbel, J. <i>et al.</i> Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. <i>Nat Med</i> 25 , 679-689, doi:10.1038/s41591-019-0406-6 (2019).
2446 2447 2448	199	Mehta, R. S. <i>et al.</i> Association of Dietary Patterns With Risk of Colorectal Cancer Subtypes Classified by Fusobacterium nucleatum in Tumor Tissue. <i>JAMA Oncol</i> 3 , 921-927, doi:10.1001/jamaoncol.2016.6374 (2017).
2449 2450	200	McCoy, A. N. <i>et al.</i> Fusobacterium is associated with colorectal adenomas. <i>PLoS One</i> 8 , e53653, doi:10.1371/journal.pone.0053653 (2013).
2451 2452 2453	201	Komiya, Y. <i>et al.</i> Patients with colorectal cancer have identical strains of Fusobacterium nucleatum in their colorectal cancer and oral cavity. <i>Gut</i> 68 , 1335-1337, doi:10.1136/gutjnl-2018-316661 (2019).
2454 2455 2456 2457	202	Purcell, R. V., Visnovska, M., Biggs, P. J., Schmeier, S. & Frizelle, F. A. Distinct gut microbiome patterns associate with consensus molecular subtypes of colorectal cancer. <i>Scientific reports</i> 7 , 11590-11590, doi:10.1038/s41598-017-11237-6 (2017).
2458 2459	203	Guinney, J. <i>et al.</i> The consensus molecular subtypes of colorectal cancer. <i>Nature Medicine</i> 21 , 1350-1356, doi:10.1038/nm.3967 (2015).
2460 2461 2462	204	Mima, K. <i>et al.</i> Fusobacterium nucleatum in Colorectal Carcinoma Tissue According to Tumor Location. <i>Clinical and translational gastroenterology</i> 7 , e200-e200, doi:10.1038/ctg.2016.53 (2016).
2463 2464	205	Flemer, B. <i>et al.</i> The oral microbiota in colorectal cancer is distinctive and predictive. <i>Gut</i> 67 , 1454-1463, doi:10.1136/gutjnl-2017-314814 (2018).
2465 2466	206	Schmidt, T. S. <i>et al.</i> Extensive transmission of microbes along the gastrointestinal tract. <i>Elife</i> 8 , doi:10.7554/eLife.42693 (2019).
2467 2468 2469	207	Lockhart, P. B. <i>et al.</i> Bacteremia associated with toothbrushing and dental extraction. <i>Circulation</i> 117 , 3118-3125, doi:10.1161/CIRCULATIONAHA.107.758524 (2008).
2470 2471 2472	208	Abed, J. <i>et al.</i> Fap2 Mediates Fusobacterium nucleatum Colorectal Adenocarcinoma Enrichment by Binding to Tumor-Expressed Gal-GalNAc. <i>Cell Host Microbe</i> 20 , 215-225, doi:10.1016/j.chom.2016.07.006 (2016).
2473 2474 2475	209	Rubinstein, M. R. <i>et al.</i> Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/ β -catenin signaling via its FadA adhesin. <i>Cell host & microbe</i> 14 , 195-206 (2013).

2476 2477 2478	210	Rubinstein, M. R. <i>et al.</i> Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β-catenin modulator Annexin A1. <i>EMBO Rep</i> 20 , doi:10.15252/embr.201847638 (2019).
2479 2480 2481 2482 2483	211	Yang, Y. <i>et al.</i> Fusobacterium nucleatum Increases Proliferation of Colorectal Cancer Cells and Tumor Development in Mice by Activating Toll- Like Receptor 4 Signaling to Nuclear Factor- κ B, and Up-regulating Expression of MicroRNA-21. <i>Gastroenterology</i> 152 , 851-866.e824, doi:10.1053/j.gastro.2016.11.018 (2017).
2484 2485 2486	212	Kostic, A. D. <i>et al.</i> Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. <i>Cell Host Microbe</i> 14 , 207-215, doi:10.1016/j.chom.2013.07.007 (2013).
2487 2488 2489	213	Gur, C. <i>et al.</i> Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. <i>Immunity</i> 42 , 344-355, doi:10.1016/j.immuni.2015.01.010 (2015).
2490 2491 2492	214	Chen, Y. <i>et al.</i> Fusobacterium nucleatum Promotes Metastasis in Colorectal Cancer by Activating Autophagy Signaling via the Upregulation of CARD3 Expression. <i>Theranostics</i> 10 , 323-339, doi:10.7150/thno.38870 (2020).
2493 2494 2495	215	Chen, S. <i>et al.</i> Fusobacterium nucleatum promotes colorectal cancer metastasis by modulating KRT7-AS/KRT7. <i>Gut Microbes</i> , 1-15, doi:10.1080/19490976.2019.1695494 (2020).
2496 2497 2498	216	Bullman, S. <i>et al.</i> Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. <i>Science</i> 358 , 1443, doi:10.1126/science.aal5240 (2017).
2499 2500 2501 2502	217	Casasanta, M. A. <i>et al.</i> Fusobacterium nucleatum host-cell binding and invasion induces IL-8 and CXCL1 secretion that drives colorectal cancer cell migration. <i>Science Signaling</i> 13 , eaba9157, doi:10.1126/scisignal.aba9157 (2020).
2503 2504 2505	218	Yu, T. <i>et al.</i> Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy. <i>Cell</i> 170 , 548-563.e516, doi:10.1016/j.cell.2017.07.008 (2017).
2506 2507 2508 2509	219	Zheng, DW. <i>et al.</i> Phage-guided modulation of the gut microbiota of mouse models of colorectal cancer augments their responses to chemotherapy. <i>Nature Biomedical Engineering</i> 3 , 717-728, doi:10.1038/s41551-019-0423-2 (2019).
2510 2511 2512 2513	220	Wong, S. H. <i>et al.</i> Quantitation of faecal Fusobacterium improves faecal immunochemical test in detecting advanced colorectal neoplasia. <i>Gut</i> 66 , 1441, doi:10.1136/gutjnl-2016-312766 (2017).
2514 2515 2516 2517 2518	221	Mosca, A., Miragliotta, L., Iodice, M. A., Abbinante, A. & Miragliotta, G. Antimicrobial profiles of Prevotella spp. and Fusobacterium nucleatum isolated from periodontal infections in a selected area of southern Italy. <i>Int J Antimicrob Agents</i> 30 , 521-524, doi:10.1016/j.ijantimicag.2007.07.022 (2007).

2519 2520 2521	222	Loozen, G. <i>et al.</i> Effect of Bdellovibrio bacteriovorus HD100 on multispecies oral communities. <i>Anaerobe</i> 35 , 45-53, doi:10.1016/j.anaerobe.2014.09.011 (2015).
2522 2523 2524 2525	223	Kabwe, M. <i>et al.</i> Genomic, morphological and functional characterisation of novel bacteriophage FNU1 capable of disrupting Fusobacterium nucleatum biofilms. <i>Scientific Reports</i> 9 , 9107, doi:10.1038/s41598-019-45549-6 (2019).
2526 2527 2528	224	Larkin, J. <i>et al.</i> Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. <i>The New England journal of medicine</i> 373 , 23-34, doi:10.1056/NEJMoa1504030 (2015).
2529 2530 2531	225	Borghaei, H. <i>et al.</i> Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. <i>N Engl J Med</i> 373 , 1627-1639, doi:10.1056/NEJMoa1507643 (2015).
2532 2533 2534	226	Rini, B. I. <i>et al.</i> Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. <i>N Engl J Med</i> 380 , 1116-1127, doi:10.1056/NEJMoa1816714 (2019).
2535 2536 2537 2538	227	Seiwert, T. Y. <i>et al.</i> Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. <i>Lancet Oncol</i> 17 , 956-965, doi:10.1016/s1470-2045(16)30066-3 (2016).
2539 2540 2541	228	Bellmunt, J. <i>et al.</i> Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. <i>N Engl J Med</i> 376 , 1015-1026, doi:10.1056/NEJMoa1613683 (2017).
2542 2543 2544	229	Larkin, J. <i>et al.</i> Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. <i>N Engl J Med</i> 381 , 1535-1546, doi:10.1056/NEJMoa1910836 (2019).
2545 2546 2547 2548 2549	230	Marabelle, A. <i>et al.</i> Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. <i>Lancet Oncol</i> 21 , 1353-1365, doi:10.1016/s1470- 2045(20)30445-9 (2020).
2550 2551 2552	231	Nowicki, T. S., Hu-Lieskovan, S. & Ribas, A. Mechanisms of Resistance to PD-1 and PD-L1 Blockade. <i>Cancer J</i> 24 , 47-53, doi:10.1097/PPO.000000000000303 (2018).
2553 2554 2555	232	Routy, B. <i>et al.</i> Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. <i>Science</i> 359 , 91-97, doi:10.1126/science.aan3706 (2018).
2556 2557 2558	233	Gopalakrishnan, V. <i>et al.</i> Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. <i>Science</i> 359 , 97-103, doi:10.1126/science.aan4236 (2018).

2559 2560 2561	234	Matson, V. <i>et al.</i> The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. <i>Science</i> 359 , 104-108, doi:10.1126/science.aao3290 (2018).
2562 2563 2564 2565	235	Derosa, L. <i>et al.</i> Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. <i>Ann Oncol</i> 29 , 1437-1444, doi:10.1093/annonc/mdy103 (2018).
2566 2567 2568 2569	236	Pinato, D. J. <i>et al.</i> Association of Prior Antibiotic Treatment With Survival and Response to Immune Checkpoint Inhibitor Therapy in Patients With Cancer. <i>JAMA Oncol</i> 5 , 1774-1778, doi:10.1001/jamaoncol.2019.2785 (2019).
2570 2571 2572 2573	237	Hopkins, A. M., Kichenadasse, G., Karapetis, C. S., Rowland, A. & Sorich, M. J. Concomitant Antibiotic Use and Survival in Urothelial Carcinoma Treated with Atezolizumab. <i>Eur Urol</i> 78 , 540-543, doi:10.1016/j.eururo.2020.06.061 (2020).
2574 2575 2576 2577	238	Elkrief, A., Derosa, L., Kroemer, G., Zitvogel, L. & Routy, B. The negative impact of antibiotics on outcomes in cancer patients treated with immunotherapy: a new independent prognostic factor? <i>Ann Oncol</i> 30 , 1572-1579, doi:10.1093/annonc/mdz206 (2019).
2578 2579 2580	239	Derosa, L. & Zitvogel, L. Antibiotics impair immunotherapy for urothelial cancer. <i>Nature Reviews Urology</i> 17 , 605-606, doi:10.1038/s41585-020-0373-1 (2020).
2581 2582 2583	240	Coutzac, C. <i>et al.</i> Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. <i>Nature Communications</i> 11 , 2168, doi:10.1038/s41467-020-16079-x (2020).
2584 2585 2586 2587	241	Nomura, M. <i>et al.</i> Association of Short-Chain Fatty Acids in the Gut Microbiome With Clinical Response to Treatment With Nivolumab or Pembrolizumab in Patients With Solid Cancer Tumors. <i>JAMA Network Open</i> 3 , e202895-e202895, doi:10.1001/jamanetworkopen.2020.2895 (2020).
2588 2589	242	Mager, L. F. <i>et al.</i> Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. <i>Science</i> 369 , 1481-1489 (2020).
2590 2591 2592 2593	243	McQuade, J. L., Ologun, G. O., Arora, R. & Wargo, J. A. Gut Microbiome Modulation Via Fecal Microbiota Transplant to Augment Immunotherapy in Patients with Melanoma or Other Cancers. <i>Current Oncology Reports</i> 22 , 74, doi:10.1007/s11912-020-00913-y (2020).
2594 2595 2596	244	Westman, E. L. <i>et al.</i> Bacterial inactivation of the anticancer drug doxorubicin. <i>Chem Biol</i> 19 , 1255-1264, doi:10.1016/j.chembiol.2012.08.011 (2012).
2597 2598 2599	245	Geller, L. T. <i>et al.</i> Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. <i>Science</i> 357 , 1156-1160, doi:10.1126/science.aah5043 (2017).

2600 2601 2602	246	Viaud, S. <i>et al.</i> The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. <i>Science</i> 342 , 971-976, doi:10.1126/science.1240537 (2013).
2603 2604 2605	247	Viaud, S. <i>et al.</i> Cyclophosphamide induces differentiation of Th17 cells in cancer patients. <i>Cancer Res</i> 71 , 661-665, doi:10.1158/0008-5472.Can-10-1259 (2011).
2606 2607	248	Wallace, B. D. <i>et al.</i> Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. <i>Science</i> 330 , 831-835, doi:10.1126/science.1191175 (2010).
2608 2609	249	Nejman, D. <i>et al.</i> The human tumor microbiome is composed of tumor type–specific intracellular bacteria. <i>Science</i> 368 , 973-980 (2020).
2610 2611	250	Kalaora, S. <i>et al.</i> Identification of bacteria-derived HLA-bound peptides in melanoma. <i>Nature</i> , 1-6 (2021).
2612 2613 2614	251	Williams, M. J., Sottoriva, A. & Graham, T. A. Measuring Clonal Evolution in Cancer with Genomics. <i>Annu Rev Genom Hum G</i> 20 , 309-329, doi:10.1146/annurev-genom-083117-021712 (2019).
2615 2616 2617	252	Helleday, T., Eshtad, S. & Nik-Zainal, S. Mechanisms underlying mutational signatures in human cancers. <i>Nat Rev Genet</i> 15 , 585-598, doi:10.1038/nrg3729 (2014).
2618 2619	253	Alexandrov, L. B. <i>et al.</i> Signatures of mutational processes in human cancer. <i>Nature</i> 500 , 415-421, doi:10.1038/nature12477 (2013).
2620 2621	254	Alexandrov, L. B. <i>et al.</i> The Repertoire of Mutational Signatures in Human Cancer. <i>bioRxiv</i> , 322859, doi:10.1101/322859 (2019).
2622 2623	255	Baker, M. Structural variation: the genome's hidden architecture. <i>Nat Methods</i> 9 , 133-137, doi:10.1038/nmeth.1858 (2012).
2624 2625 2626	256	Nik-Zainal, S. <i>et al.</i> Landscape of somatic mutations in 560 breast cancer whole-genome sequences. <i>Nature</i> 534 , 47-54, doi:10.1038/nature17676 (2016).
2627 2628 2629	257	Tomasetti, C., Li, L. & Vogelstein, B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. <i>Science</i> 355 , 1330-1334, doi:10.1126/science.aaf9011 (2017).
2630 2631 2632	258	Tomasetti, C. & Vogelstein, B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. <i>Science</i> 347 , 78-81, doi:10.1126/science.1260825 (2015).
2633 2634 2635	259	Thomas, R. M. & Jobin, C. The Microbiome and Cancer: Is the 'Oncobiome' Mirage Real? <i>Trends Cancer</i> 1 , 24-35, doi:10.1016/j.trecan.2015.07.005 (2015).
2636 2637	260	Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. <i>Cell</i> 157 , 121-141, doi:10.1016/j.cell.2014.03.011 (2014).

2638 2639 2640	261	Thomas, J. P., Parker, A., Divekar, D., Pin, C. & Watson, A. The Gut Microbiota Influences Intestinal Epithelial Proliferative Potential. <i>Gut</i> 67 , A204-A204, doi:10.1136/gutjnl-2018-BSGAbstracts.407 (2018).
2641 2642 2643	262	Matsumoto, Y. <i>et al.</i> Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium. <i>Nat Med</i> 13 , 470-476, doi:10.1038/nm1566 (2007).
2644 2645	263	Sonohara, Y. <i>et al.</i> Acetaldehyde forms covalent GG intrastrand crosslinks in DNA. <i>Sci Rep</i> 9 , 660, doi:10.1038/s41598-018-37239-6 (2019).
2646 2647 2648	264	Dziubańska-Kusibab, P. J. <i>et al.</i> Colibactin DNA damage signature indicates causative role in colorectal cancer. <i>bioRxiv</i> , 819854, doi:10.1101/819854 (2019).
2649 2650 2651	265	Maddocks, O. D., Scanlon, K. M. & Donnenberg, M. S. An Escherichia coli effector protein promotes host mutation via depletion of DNA mismatch repair proteins. <i>MBio</i> 4 , e00152-00113, doi:10.1128/mBio.00152-13 (2013).
2652 2653 2654	266	Kim, J. J. <i>et al.</i> Helicobacter pylori impairs DNA mismatch repair in gastric epithelial cells. <i>Gastroenterology</i> 123 , 542-553, doi:10.1053/gast.2002.34751 (2002).
2655 2656 2657	267	Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen- cycling network. <i>Nat Rev Microbiol</i> 16 , 263-276, doi:10.1038/nrmicro.2018.9 (2018).
2658 2659 2660	268	Cao, W. Endonuclease V: an unusual enzyme for repair of DNA deamination. <i>Cell Mol Life Sci</i> 70 , 3145-3156, doi:10.1007/s00018-012-1222-z (2013).
2661 2662 2663	269	Shinmura, K. <i>et al.</i> Mutation Spectrum Induced by 8-Bromoguanine, a Base Damaged by Reactive Brominating Species, in Human Cells. <i>Oxid Med Cell Longev</i> 2017 , 7308501, doi:10.1155/2017/7308501 (2017).
2664 2665 2666	270	Fedeles, B. I. <i>et al.</i> Intrinsic mutagenic properties of 5-chlorocytosine: A mechanistic connection between chronic inflammation and cancer. <i>P Natl Acad Sci USA</i> 112 , E4571-E4580, doi:10.1073/pnas.1507709112 (2015).
2667 2668	271	Gungor, N. <i>et al.</i> Genotoxic effects of neutrophils and hypochlorous acid. <i>Mutagenesis</i> 25 , 149-154, doi:10.1093/mutage/gep053 (2010).
2669 2670 2671	272	Shrivastav, N., Li, D. & Essigmann, J. M. Chemical biology of mutagenesis and DNA repair: cellular responses to DNA alkylation. <i>Carcinogenesis</i> 31 , 59-70, doi:10.1093/carcin/bgp262 (2010).
2672 2673 2674	273	Viel, A. <i>et al.</i> A Specific Mutational Signature Associated with DNA 8- Oxoguanine Persistence in MUTYH-defective Colorectal Cancer. <i>EBioMedicine</i> 20 , 39-49, doi:10.1016/j.ebiom.2017.04.022 (2017).
2675 2676 2677 2678	274	Wang, X. <i>et al.</i> 4-hydroxy-2-nonenal mediates genotoxicity and bystander effects caused by Enterococcus faecalis-infected macrophages. <i>Gastroenterology</i> 142 , 543-551 e547, doi:10.1053/j.gastro.2011.11.020 (2012).

2679 2680 2681	275	Tenaillon, O., Skurnik, D., Picard, B. & Denamur, E. The population genetics of commensal Escherichia coli. <i>Nat Rev Microbiol</i> 8 , 207-217, doi:10.1038/nrmicro2298 (2010).
2682 2683 2684	276	Putze, J. <i>et al.</i> Genetic Structure and Distribution of the Colibactin Genomic Island among Members of the Family Enterobacteriaceae. <i>Infect Immun</i> 77 , 4696-4703, doi:10.1128/Iai.00522-09 (2009).
2685 2686 2687	277	Cuevas-Ramos, G. <i>et al.</i> Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. <i>Proc Natl Acad Sci U S A</i> 107 , 11537-11542, doi:10.1073/pnas.1001261107 (2010).
2688 2689 2690	278	Nougayrede, J. P. <i>et al.</i> Escherichia coli induces DNA double-strand breaks in eukaryotic cells. <i>Science</i> 313 , 848-851, doi:10.1126/science.1127059 (2006).
2691 2692	279	Arthur, J. C. <i>et al.</i> Intestinal inflammation targets cancer-inducing activity of the microbiota. <i>Science</i> 338 , 120-123, doi:10.1126/science.1224820 (2012).
2693 2694 2695	280	Buc, E. <i>et al.</i> High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. <i>PLoS One</i> 8 , e56964, doi:10.1371/journal.pone.0056964 (2013).
2696 2697 2698	281	Dejea, C. M. <i>et al.</i> Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. <i>Science</i> 359 , 592-597, doi:10.1126/science.aah3648 (2018).
2699 2700	282	Vizcaino, M. I. & Crawford, J. M. The colibactin warhead crosslinks DNA. <i>Nat Chem</i> 7 , 411-417, doi:10.1038/nchem.2221 (2015).
2701 2702 2703 2704 2705	283	Xue, M., Shine, E., Wang, W., Crawford, J. M. & Herzon, S. B. Characterization of Natural Colibactin-Nucleobase Adducts by Tandem Mass Spectrometry and Isotopic Labeling. Support for DNA Alkylation by Cyclopropane Ring Opening. <i>Biochemistry</i> 57 , 6391-6394, doi:10.1021/acs.biochem.8b01023 (2018).
2706 2707	284	Wilson, M. R. <i>et al.</i> The human gut bacterial genotoxin colibactin alkylates DNA. <i>Science</i> 363 , doi:10.1126/science.aar7785 (2019).
2708 2709	285	Bossuet-Greif, N. <i>et al.</i> The Colibactin Genotoxin Generates DNA Interstrand Cross-Links in Infected Cells. <i>Mbio</i> 9, doi:ARTN e02393-17
2710	10.112	28/mBio.02393-17 (2018).
2711 2712	286	Xue, M. <i>et al.</i> Structure elucidation of colibactin and its DNA cross-links. <i>Science</i> 365 , doi:10.1126/science.aax2685 (2019).
2713 2714 2715 2716 2717	287	Jinadasa, R. N., Bloom, S. E., Weiss, R. S. & Duhamel, G. E. Cytolethal distending toxin: a conserved bacterial genotoxin that blocks cell cycle progression, leading to apoptosis of a broad range of mammalian cell lineages. <i>Microbiol-Sgm</i> 157 , 1851-1875, doi:10.1099/mic.0.049536-0 (2011).

2718 2719 2720	288	Scott, D. A. & Kaper, J. B. Cloning and sequencing of the genes encoding Escherichia coli cytolethal distending toxin. <i>Infect Immun</i> 62 , 244-251 (1994).
2721 2722 2723	289	Lara-Tejero, M. & Galan, J. E. CdtA, CdtB, and CdtC form a tripartite complex that is required for cytolethal distending toxin activity. <i>Infect Immun</i> 69 , 4358-4365, doi:Doi 10.1128/Iai.69.7.4358-4365.2001 (2001).
2724 2725 2726	290	Lara-Tejero, M. & Galan, J. E. A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. <i>Science</i> 290 , 354-357, doi:DOI 10.1126/science.290.5490.354 (2000).
2727 2728	291	Nesic, D., Hsu, Y. & Stebbins, C. E. Assembly and function of a bacterial genotoxin. <i>Nature</i> 429 , 429-433, doi:10.1038/nature02532 (2004).
2729 2730 2731	292	Boesze-Battaglia, K., Alexander, D., Dlakic, M. & Shenker, B. J. A Journey of Cytolethal Distending Toxins through Cell Membranes. <i>Front Cell Infect Microbiol</i> 6 , 81, doi:10.3389/fcimb.2016.00081 (2016).
2732 2733 2734	293	He, Z. <i>et al.</i> Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. <i>Gut</i> 68 , 289-300, doi:10.1136/gutjnl-2018-317200 (2019).
2735 2736 2737	294	Elwell, C. A. & Dreyfus, L. A. DNase I homologous residues in CdtB are critical for cytolethal distending toxin-mediated cell cycle arrest. <i>Mol Microbiol</i> 37 , 952-963 (2000).
2738 2739 2740 2741	295	Frisan, T., Cortes-Bratti, X., Chaves-Olarte, E., Stenerlow, B. & Thelestam, M. The Haemophilus ducreyi cytolethal distending toxin induces DNA double-strand breaks and promotes ATM-dependent activation of RhoA. <i>Cell Microbiol</i> 5 , 695-707 (2003).
2742 2743 2744	296	Fedor, Y. <i>et al.</i> From single-strand breaks to double-strand breaks during S- phase: a new mode of action of the Escherichia coli Cytolethal Distending Toxin. <i>Cellular Microbiology</i> 15 , 1-15, doi:10.1111/cmi.12028 (2013).
2745 2746 2747	297	Bezine, E. <i>et al.</i> Cell resistance to the Cytolethal Distending Toxin involves an association of DNA repair mechanisms. <i>Sci Rep</i> 6 , 36022, doi:10.1038/srep36022 (2016).
2748 2749 2750	298	Dizdaroglu, M. Oxidatively induced DNA damage and its repair in cancer. <i>Mutat Res Rev Mutat Res</i> 763 , 212-245, doi:10.1016/j.mrrev.2014.11.002 (2015).
2751 2752 2753	299	Bernstein, H., Bernstein, C., Payne, C. M. & Dvorak, K. Bile acids as endogenous etiologic agents in gastrointestinal cancer. <i>World J Gastroentero</i> 15 , 3329-3340, doi:10.3748/wjg.15.3329 (2009).
2754 2755 2756	300	Yazici, C. <i>et al.</i> Race-dependent association of sulfidogenic bacteria with colorectal cancer. <i>Gut</i> 66 , 1983-1994, doi:10.1136/gutjnl-2016-313321 (2017).
2757 2758 2759	301	Ridlon, J. M., Wolf, P. G. & Gaskins, H. R. Taurocholic acid metabolism by gut microbes and colon cancer. <i>Gut Microbes</i> 7 , 201-215, doi:10.1080/19490976.2016.1150414 (2016).

2760 2761 2762	302	Attene-Ramos, M. S. <i>et al.</i> DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells. <i>Environ Mol Mutagen</i> 51 , 304-314, doi:10.1002/em.20546 (2010).
2763 2764 2765	303	van Loon, B., Markkanen, E. & Hubscher, U. Oxygen as a friend and enemy: How to combat the mutational potential of 8-oxo-guanine. <i>DNA Repair</i> 9 , 604-616, doi:10.1016/j.dnarep.2010.03.004 (2010).
2766 2767 2768 2769	304	Tan, X., Grollman, A. P. & Shibutani, S. Comparison of the mutagenic properties of 8-oxo-7,8-dihydro-2'-deoxyadenosine and 8-oxo-7,8-dihydro-2'-deoxyguanosine DNA lesions in mammalian cells. <i>Carcinogenesis</i> 20 , 2287-2292 (1999).
2770 2771 2772 2773	305	Whitaker, A. M., Schaich, M. A., Smith, M. R., Flynn, T. S. & Freudenthal, B. D. Base excision repair of oxidative DNA damage: from mechanism to disease. <i>Front Biosci (Landmark Ed)</i> 22 , 1493-1522, doi:10.2741/4555 (2017).
2774 2775 2776	306	Satou, K., Kawai, K., Kasai, H., Harashima, H. & Kamiya, H. Mutagenic effects of 8-hydroxy-dGTP in live mammalian cells. <i>Free Radic Biol Med</i> 42 , 1552-1560, doi:10.1016/j.freeradbiomed.2007.02.024 (2007).
2777 2778 2779	307	Satou, K., Harashima, H. & Kamiya, H. Mutagenic effects of 2-hydroxy- dATP on replication in a HeLa extract: induction of substitution and deletion mutations. <i>Nucleic Acids Res</i> 31 , 2570-2575 (2003).
2780 2781 2782	308	Weiss, B. Evidence for mutagenesis by nitric oxide during nitrate metabolism in Escherichia coli. <i>J Bacteriol</i> 188 , 829-833, doi:10.1128/JB.188.3.829-833.2006 (2006).
2783 2784 2785	309	Crane, B. R., Sudhamsu, J. & Patel, B. A. Bacterial nitric oxide synthases. <i>Annu Rev Biochem</i> 79 , 445-470, doi:10.1146/annurev-biochem-062608-103436 (2010).
2786 2787 2788	310	Tiso, M. & Schechter, A. N. Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions. <i>PLoS One</i> 10 , e0119712, doi:10.1371/journal.pone.0119712 (2015).
2789 2790 2791 2792	311	Klebanoff, S. J., Kettle, A. J., Rosen, H., Winterbourn, C. C. & Nauseef, W. M. Myeloperoxidase: a front-line defender against phagocytosed microorganisms. <i>J Leukocyte Biol</i> 93 , 185-198, doi:10.1189/jlb.0712349 (2013).
2793 2794 2795 2796	312	VanderVeen, L. A., Hashim, M. F., Shyr, Y. & Marnett, L. J. Induction of frameshift and base pair substitution mutations by the major DNA adduct of the endogenous carcinogen malondialdehyde. <i>P Natl Acad Sci USA</i> 100 , 14247-14252, doi:10.1073/pnas.2332176100 (2003).
2797 2798 2799	313	Zhang, D. & Frenette, P. S. Cross talk between neutrophils and the microbiota. <i>Blood</i> 133 , 2168-2177, doi:10.1182/blood-2018-11-844555 (2019).
2800 2801	314	Zhang, D. C. <i>et al.</i> Neutrophil ageing is regulated by the microbiome. <i>Nature</i> 525 , 528-+, doi:10.1038/nature15367 (2015).

2802 2803 2804	315	Endo, Y. <i>et al.</i> Activation-induced cytidine deaminase links between inflammation and the development of colitis-associated colorectal cancers. <i>Gastroenterology</i> 135 , 889-898, doi:10.1053/j.gastro.2008.06.091 (2008).
2805 2806 2807	316	Takai, A. <i>et al.</i> Targeting activation-induced cytidine deaminase prevents colon cancer development despite persistent colonic inflammation. <i>Oncogene</i> 31 , 1733-1742, doi:10.1038/onc.2011.352 (2012).
2808 2809 2810 2811	317	Kasar, S. <i>et al.</i> Whole-genome sequencing reveals activation-induced cytidine deaminase signatures during indolent chronic lymphocytic leukaemia evolution. <i>Nat Commun</i> 6 , 8866, doi:10.1038/ncomms9866 (2015).
2812 2813 2814	318	Kim, S. C. <i>et al.</i> Variable phenotypes of enterocolitis in interleukin 10- deficient mice monoassociated with two different commensal bacteria. <i>Gastroenterology</i> 128 , 891-906, doi:10.1053/j.gastro.2005.02.009 (2005).
2815 2816 2817	319	Wang, X. & Huycke, M. M. Extracellular superoxide production by Enterococcus faecalis promotes chromosomal instability in mammalian cells. <i>Gastroenterology</i> 132 , 551-561, doi:10.1053/j.gastro.2006.11.040 (2007).
2818 2819 2820	320	Wang, X. M. <i>et al.</i> Enterococcus faecalis Induces Aneuploidy and Tetraploidy in Colonic Epithelial Cells through a Bystander Effect. <i>Cancer Res</i> 68 , 9909-9917, doi:10.1158/0008-5472.Can-08-1551 (2008).
2821 2822 2823	321	Yang, Y. H. <i>et al.</i> Colon Macrophages Polarized by Commensal Bacteria Cause Colitis and Cancer through the Bystander Effect. <i>Transl Oncol</i> 6 , 596- +, doi:10.1593/tlo.13412 (2013).
2824 2825 2826 2827	322	Wang, X., Allen, T. D., Yang, Y., Moore, D. R. & Huycke, M. M. Cyclooxygenase-2 generates the endogenous mutagen trans-4-hydroxy-2- nonenal in Enterococcus faecalis-infected macrophages. <i>Cancer Prev Res</i> <i>(Phila)</i> 6 , 206-216, doi:10.1158/1940-6207.CAPR-12-0350 (2013).
2828 2829 2830	323	Wang, X., Yang, Y. & Huycke, M. M. Commensal bacteria drive endogenous transformation and tumour stem cell marker expression through a bystander effect. <i>Gut</i> 64 , 459-468, doi:10.1136/gutjnl-2014-307213 (2015).
2831 2832 2833	324	Lundberg, J. O., Weitzberg, E., Cole, J. A. & Benjamin, N. Nitrate, bacteria and human health. <i>Nat Rev Microbiol</i> 2 , 593-602, doi:10.1038/nrmicro929 (2004).
2834 2835	325	Lijinsky, W. N-Nitroso compounds in the diet. <i>Mutat Res</i> 443 , 129-138, doi:10.1016/s1383-5742(99)00015-0 (1999).
2836 2837 2838	326	Habermeyer, M. <i>et al.</i> Nitrate and nitrite in the diet: How to assess their benefit and risk for human health. <i>Mol Nutr Food Res</i> 59 , 106-128, doi:10.1002/mnfr.201400286 (2015).
2839 2840 2841 2842	327	Bastide, N. M., Pierre, F. H. & Corpet, D. E. Heme iron from meat and risk of colorectal cancer: a meta-analysis and a review of the mechanisms involved. <i>Cancer Prev Res (Phila)</i> 4 , 177-184, doi:10.1158/1940-6207.CAPR-10-0113 (2011).

2843 2844 2845	328	Bartsch, H., Pignatelli, B., Calmels, S. & Ohshima, H. Inhibition of nitrosation. <i>Basic Life Sci</i> 61 , 27-44, doi:10.1007/978-1-4615-2984-2_3 (1993).
2846 2847 2848	329	Fahrer, J. & Kaina, B. O6-methylguanine-DNA methyltransferase in the defense against N-nitroso compounds and colorectal cancer. <i>Carcinogenesis</i> 34 , 2435-2442, doi:10.1093/carcin/bgt275 (2013).
2849 2850 2851	330	Kucab, J. E. <i>et al.</i> A Compendium of Mutational Signatures of Environmental Agents. <i>Cell</i> 177 , 821-836 e816, doi:10.1016/j.cell.2019.03.001 (2019).
2852 2853 2854	331	Boffetta, P., Hashibe, M., La Vecchia, C., Zatonski, W. & Rehm, J. The burden of cancer attributable to alcohol drinking. <i>Int J Cancer</i> 119 , 884-887, doi:10.1002/ijc.21903 (2006).
2855 2856 2857	332	Garaycoechea, J. I. <i>et al.</i> Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells. <i>Nature</i> 553 , 171-177, doi:10.1038/nature25154 (2018).
2858 2859	333	Moritani, K. <i>et al.</i> Acetaldehyde production by major oral microbes. <i>Oral Dis</i> 21 , 748-754, doi:10.1111/odi.12341 (2015).
2860 2861 2862 2863	334	Elshaghabee, F. M. <i>et al.</i> Ethanol Production by Selected Intestinal Microorganisms and Lactic Acid Bacteria Growing under Different Nutritional Conditions. <i>Front Microbiol</i> 7 , 47, doi:10.3389/fmicb.2016.00047 (2016).
2864 2865 2866	335	Letouze, E. <i>et al.</i> Mutational signatures reveal the dynamic interplay of risk factors and cellular processes during liver tumorigenesis. <i>Nat Commun</i> 8 , 1315, doi:10.1038/s41467-017-01358-x (2017).
2867 2868	336	Li, G. M. Mechanisms and functions of DNA mismatch repair. <i>Cell Res</i> 18, 85-98, doi:10.1038/cr.2007.115 (2008).
2869 2870 2871	337	Santos, J. C. <i>et al.</i> Helicobacter pylori infection modulates the expression of miRNAs associated with DNA mismatch repair pathway. <i>Mol Carcinog</i> 56 , 1372-1379, doi:10.1002/mc.22590 (2017).
2872 2873 2874	338	Boland, C. R. & Goel, A. Microsatellite instability in colorectal cancer. <i>Gastroenterology</i> 138 , 2073-2087 e2073, doi:10.1053/j.gastro.2009.12.064 (2010).
2875 2876 2877	339	Lee-Six, H. <i>et al.</i> The landscape of somatic mutation in normal colorectal epithelial cells. <i>Nature</i> 574 , 532-537, doi:10.1038/s41586-019-1672-7 (2019).
2878 2879 2880	340	O'Toole, P. W., Marchesi, J. R. & Hill, C. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. <i>Nat Microbiol</i> 2 , 17057, doi:10.1038/nmicrobiol.2017.57 (2017).
2881 2882 2883	341	Pleguezuelos-Manzano, C. <i>et al.</i> Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. <i>Nature</i> 580 , 269-273, doi:10.1038/s41586-020-2080-8 (2020).

2884 2885	342	Olafsson, S. <i>et al.</i> Somatic Evolution in Non-neoplastic IBD-Affected Colon. <i>Cell</i> 182 , 672-684.e611, doi:10.1016/j.cell.2020.06.036 (2020).
2886 2887 2888 2889	343	Yang, Y., Gharaibeh, R. Z., Newsome, R. C. & Jobin, C. Amending microbiota by targeting intestinal inflammation with TNF blockade attenuates development of colorectal cancer. <i>Nature Cancer</i> 1 , 723-734, doi:10.1038/s43018-020-0078-7 (2020).
2890 2891	344	Times, M. Colorectal lymphoma. <i>Clin Colon Rectal Surg</i> 24 , 135-141, doi:10.1055/s-0031-1285997 (2011).
2892 2893	345	Luna-Perez, P. <i>et al.</i> Colorectal sarcoma: analysis of failure patterns. <i>J Surg Oncol</i> 69 , 36-40 (1998).
2894 2895 2896	346	Chung, T. P. & Hunt, S. R. Carcinoid and neuroendocrine tumors of the colon and rectum. <i>Clin Colon Rectal Surg</i> 19 , 45-48, doi:10.1055/s-2006-942343 (2006).
2897 2898	347	Singer, M. & Mutch, M. G. Anal melanoma. <i>Clin Colon Rectal Surg</i> 19 , 78-87, doi:10.1055/s-2006-942348 (2006).
2899 2900	348	Dyson, T. & Draganov, P. V. Squamous cell cancer of the rectum. <i>World J Gastroenterol</i> 15 , 4380-4386 (2009).
2901 2902 2903	349	Keum, N. & Giovannucci, E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. <i>Nat Rev Gastroenterol Hepatol</i> 16 , 713-732, doi:10.1038/s41575-019-0189-8 (2019).
2904 2905	350	Kuipers, E. J. et al. Colorectal cancer. Nature Reviews Disease Primers, 15065, doi:10.1038/nrdp.2015.65 (2015).
2906 2907	351	Zhan, T., Rindtorff, N. & Boutros, M. Wnt signaling in cancer. <i>Oncogene</i> 36 , 1461-1473, doi:10.1038/onc.2016.304 (2017).
2908 2909 2910	352	Pino, M. S. & Chung, D. C. The chromosomal instability pathway in colon cancer. <i>Gastroenterology</i> 138 , 2059-2072, doi:10.1053/j.gastro.2009.12.065 (2010).
2911 2912 2913	353	Nakanishi, Y., Diaz-Meco, M. T. & Moscat, J. Serrated Colorectal Cancer: The Road Less Travelled? <i>Trends Cancer</i> 5 , 742-754, doi:10.1016/j.trecan.2019.09.004 (2019).
2914 2915 2916	354	Leggett, B. & Whitehall, V. Role of the serrated pathway in colorectal cancer pathogenesis. <i>Gastroenterology</i> 138 , 2088-2100, doi:10.1053/j.gastro.2009.12.066 (2010).
2917 2918 2919	355	Sanz-Garcia, E., Argiles, G., Elez, E. & Tabernero, J. BRAF mutant colorectal cancer: prognosis, treatment, and new perspectives. <i>Ann Oncol</i> 28 , 2648-2657, doi:10.1093/annonc/mdx401 (2017).
2920 2921 2922	356	Olén, O. <i>et al.</i> Colorectal cancer in ulcerative colitis: a Scandinavian population-based cohort study. <i>Lancet</i> 395 , 123-131, doi:10.1016/s0140-6736(19)32545-0 (2020).

2923 2924 2925	357	Choi, C. R., Bakir, I. A., Hart, A. L. & Graham, T. A. Clonal evolution of colorectal cancer in IBD. <i>Nat Rev Gastroenterol Hepatol</i> 14 , 218-229, doi:10.1038/nrgastro.2017.1 (2017).
2926 2927 2928	358	Yin, J. <i>et al.</i> p53 point mutations in dysplastic and cancerous ulcerative colitis lesions. <i>Gastroenterology</i> 104 , 1633-1639, doi:10.1016/0016-5085(93)90639-t (1993).
2929 2930 2931	359	Galandiuk, S. <i>et al.</i> Field cancerization in the intestinal epithelium of patients with Crohn's ileocolitis. <i>Gastroenterology</i> 142 , 855-864.e858, doi:10.1053/j.gastro.2011.12.004 (2012).
2932 2933 2934	360	Brentnall, T. A. <i>et al.</i> Mutations in the p53 gene: an early marker of neoplastic progression in ulcerative colitis. <i>Gastroenterology</i> 107 , 369-378, doi:10.1016/0016-5085(94)90161-9 (1994).
2935 2936	361	Baker, A. M. <i>et al.</i> Evolutionary history of human colitis-associated colorectal cancer. <i>Gut</i> 68 , 985-995, doi:10.1136/gutjnl-2018-316191 (2019).
2937 2938 2939	362	Baran, B. <i>et al.</i> Difference Between Left-Sided and Right-Sided Colorectal Cancer: A Focused Review of Literature. <i>Gastroenterology Res</i> 11 , 264-273, doi:10.14740/gr1062w (2018).
2940 2941	363	Siegel, R. L. <i>et al.</i> Colorectal cancer statistics, 2020. <i>CA Cancer J Clin</i> 70 , 145-164, doi:10.3322/caac.21601 (2020).
2942 2943 2944 2945	364	Murphy, N. <i>et al.</i> Heterogeneity of Colorectal Cancer Risk Factors by Anatomical Subsite in 10 European Countries: A Multinational Cohort Study. <i>Clin Gastroenterol Hepatol</i> 17 , 1323-1331.e1326, doi:10.1016/j.cgh.2018.07.030 (2019).
2946 2947 2948	365	Dekker, E., Tanis, P. J., Vleugels, J. L. A., Kasi, P. M. & Wallace, M. B. Colorectal cancer. <i>Lancet</i> 394 , 1467-1480, doi:10.1016/s0140-6736(19)32319-0 (2019).
2949 2950 2951 2952 2953	366	Venook, A. P. <i>et al.</i> Impact of primary (1°) tumor location on overall survival (OS) and progression-free survival (PFS) in patients (pts) with metastatic colorectal cancer (mCRC): Analysis of CALGB/SWOG 80405 (Alliance). <i>Journal of Clinical Oncology</i> 34 , 3504-3504, doi:10.1200/JCO.2016.34.15_suppl.3504 (2016).
2954 2955 2956 2957	367	Loree, J. M. <i>et al.</i> Classifying Colorectal Cancer by Tumor Location Rather than Sidedness Highlights a Continuum in Mutation Profiles and Consensus Molecular Subtypes. <i>Clin Cancer Res</i> 24 , 1062-1072, doi:10.1158/1078-0432.Ccr-17-2484 (2018).
2958 2959 2960	368	Ganesh, K. <i>et al.</i> Immunotherapy in colorectal cancer: rationale, challenges and potential. <i>Nat Rev Gastroenterol Hepatol</i> 16 , 361-375, doi:10.1038/s41575-019-0126-x (2019).
2961 2962 2963	369	Czene, K., Lichtenstein, P. & Hemminki, K. Environmental and heritable causes of cancer among 9.6 million individuals in the Swedish Family-Cancer Database. <i>Int J Cancer</i> 99 , 260-266, doi:10.1002/ijc.10332 (2002).

2964 2965 2966	370	Lichtenstein, P. <i>et al.</i> Environmental and heritable factors in the causation of canceranalyses of cohorts of twins from Sweden, Denmark, and Finland. <i>N Engl J Med</i> 343 , 78-85, doi:10.1056/NEJM200007133430201 (2000).
2967 2968	371	Peters, U., Bien, S. & Zubair, N. Genetic architecture of colorectal cancer. <i>Gut</i> 64 , 1623-1636, doi:10.1136/gutjnl-2013-306705 (2015).
2969 2970 2971 2972	372	Moller, P. <i>et al.</i> Cancer incidence and survival in Lynch syndrome patients receiving colonoscopic and gynaecological surveillance: first report from the prospective Lynch syndrome database. <i>Gut</i> 66 , 464-472, doi:10.1136/gutjnl-2015-309675 (2017).
2973 2974 2975	373	Law, P. J. <i>et al.</i> Association analyses identify 31 new risk loci for colorectal cancer susceptibility. <i>Nature Communications</i> 10 , 2154, doi:10.1038/s41467-019-09775-w (2019).
2976 2977 2978	374	Wu, S., Powers, S., Zhu, W. & Hannun, Y. A. Substantial contribution of extrinsic risk factors to cancer development. <i>Nature</i> , doi:10.1038/nature16166 (2015).
2979 2980 2981	375	Ferlay, J. <i>et al.</i> Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. <i>Int J Cancer</i> 136 , E359-386, doi:10.1002/ijc.29210 (2015).
2982 2983 2984	376	Ji, B. T., Devesa, S. S., Chow, W. H., Jin, F. & Gao, Y. T. Colorectal cancer incidence trends by subsite in urban Shanghai, 1972-1994. <i>Cancer Epidemiol Biomarkers Prev</i> 7 , 661-666 (1998).
2985 2986 2987	377	Mohandas, K. M. Colorectal cancer in India: controversies, enigmas and primary prevention. <i>Indian J Gastroenterol</i> 30 , 3-6, doi:10.1007/s12664-010-0076-2 (2011).
2988 2989	378	Arnold, M. <i>et al.</i> Global patterns and trends in colorectal cancer incidence and mortality. <i>Gut</i> 66 , 683-691, doi:10.1136/gutjnl-2015-310912 (2017).
2990 2991	379	Siegel, R., Desantis, C. & Jemal, A. Colorectal cancer statistics, 2014. <i>CA Cancer J Clin</i> 64 , 104-117, doi:10.3322/caac.21220 (2014).
2992 2993	380	Akimoto, N. <i>et al.</i> Rising incidence of early-onset colorectal cancer—a call to action. <i>Nature Reviews Clinical Oncology</i> , 1-14 (2020).
2994 2995 2996	381	Keum, N. & Giovannucci, E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. <i>Nature reviews Gastroenterology & hepatology</i> 16 , 713-732 (2019).
2997 2998	382	Jones, J. M. CODEX-aligned dietary fiber definitions help to bridge the 'fiber gap'. <i>Nutr J</i> 13 , 34, doi:10.1186/1475-2891-13-34 (2014).
2999 3000 3001	383	Reynolds, A. <i>et al.</i> Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. <i>Lancet</i> 393 , 434-445, doi:10.1016/S0140-6736(18)31809-9 (2019).
3002 3003	384	Theodoratou, E., Timofeeva, M., Li, X., Meng, X. & Ioannidis, J. P. A. Nature, Nurture, and Cancer Risks: Genetic and Nutritional Contributions to

3004 3005		Cancer. Annu Rev Nutr 37 , 293-320, doi:10.1146/annurev-nutr-071715-051004 (2017).
3006 3007 3008 3009	385	Aune, D. <i>et al.</i> Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. <i>BMJ</i> 353 , i2716, doi:10.1136/bmj.i2716 (2016).
3010 3011	386	Song, M. <i>et al.</i> Fiber Intake and Survival After Colorectal Cancer Diagnosis. <i>JAMA Oncol</i> 4 , 71-79, doi:10.1001/jamaoncol.2017.3684 (2018).
3012 3013 3014 3015	387	Yang, J., Martínez, I., Walter, J., Keshavarzian, A. & Rose, D. J. In vitro characterization of the impact of selected dietary fibers on fecal microbiota composition and short chain fatty acid production. <i>Anaerobe</i> 23 , 74-81, doi:10.1016/j.anaerobe.2013.06.012 (2013).
3016 3017 3018 3019	388	Tian, Y., Xu, Q., Sun, L., Ye, Y. & Ji, G. Short-chain fatty acids administration is protective in colitis-associated colorectal cancer development. <i>J Nutr Biochem</i> 57 , 103-109, doi:10.1016/j.jnutbio.2018.03.007 (2018).
3020 3021 3022	389	Ternes, D. <i>et al.</i> Microbiome in Colorectal Cancer: How to Get from Meta- omics to Mechanism? <i>Trends Microbiol</i> 28 , 401-423, doi:10.1016/j.tim.2020.01.001 (2020).
3023 3024 3025	390	Sears, C. L. & Pardoll, D. M. Perspective: alpha-bugs, their microbial partners, and the link to colon cancer. <i>J Infect Dis</i> 203 , 306-311, doi:10.1093/jinfdis/jiq061 (2011).
3026 3027 3028	391	Thiele Orberg, E. <i>et al.</i> The myeloid immune signature of enterotoxigenic Bacteroides fragilis-induced murine colon tumorigenesis. <i>Mucosal Immunology</i> 10 , 421-433, doi:10.1038/mi.2016.53 (2017).
3029 3030 3031	392	Tjalsma, H., Boleij, A., Marchesi, J. R. & Dutilh, B. E. A bacterial driver– passenger model for colorectal cancer: beyond the usual suspects. <i>Nature</i> <i>Reviews Microbiology</i> 10 , 575-582, doi:10.1038/nrmicro2819 (2012).
3032 3033 3034	393	Feng, Q. <i>et al.</i> Gut microbiome development along the colorectal adenoma- carcinoma sequence. <i>Nature Communications</i> 6 , 6528, doi:10.1038/ncomms7528 (2015).
3035 3036	394	Flemer, B. <i>et al.</i> Tumour-associated and non-tumour-associated microbiota in colorectal cancer. <i>Gut</i> 66 , 633-643, doi:10.1136/gutjnl-2015-309595 (2017).
3037 3038 3039	395	Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Keystone taxa as drivers of microbiome structure and functioning. <i>Nature Reviews Microbiology</i> 16 , 567-576, doi:10.1038/s41579-018-0024-1 (2018).
3040 3041 3042	396	Hajishengallis, G., Darveau, R. P. & Curtis, M. A. The keystone-pathogen hypothesis. <i>Nat Rev Microbiol</i> 10 , 717-725, doi:10.1038/nrmicro2873 (2012).
3043 3044	397	Curtis, M. M. <i>et al.</i> The gut commensal Bacteroides thetaiotaomicron exacerbates enteric infection through modification of the metabolic

3045 3046		landscape. <i>Cell Host Microbe</i> 16 , 759-769, doi:10.1016/j.chom.2014.11.005 (2014).
3047 3048 3049	398	Chng, K. R. <i>et al.</i> Metagenome-wide association analysis identifies microbial determinants of post-antibiotic ecological recovery in the gut. <i>Nature Ecology & Evolution</i> 4 , 1256-1267, doi:10.1038/s41559-020-1236-0 (2020).
3050 3051	399	Smyth, E. C. <i>et al.</i> Oesophageal cancer. <i>Nat Rev Dis Primers</i> 3 , 17048, doi:10.1038/nrdp.2017.48 (2017).
3052 3053	400	Thrift, A. P. The epidemic of oesophageal carcinoma: Where are we now? <i>Cancer Epidemiol</i> 41 , 88-95, doi:10.1016/j.canep.2016.01.013 (2016).
3054 3055	401	Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2018. <i>CA Cancer J Clin</i> 68 , 7-30, doi:10.3322/caac.21442 (2018).
3056 3057 3058	402	Reid, B. J., Li, X., Galipeau, P. C. & Vaughan, T. L. Barrett's oesophagus and oesophageal adenocarcinoma: time for a new synthesis. <i>Nat Rev Cancer</i> 10 , 87-101, doi:10.1038/nrc2773 (2010).
3059 3060 3061 3062	403	Hungin, A. P. S., Molloy-Bland, M. & Scarpignato, C. Revisiting Montreal: New Insights into Symptoms and Their Causes, and Implications for the Future of GERD. <i>Am J Gastroenterol</i> , doi:10.1038/s41395-018-0287-1 (2018).
3063 3064 3065	404	Cook, M. B. <i>et al.</i> Cancer incidence and mortality risks in a large US Barrett's oesophagus cohort. <i>Gut</i> 67 , 418-529, doi:10.1136/gutjnl-2016-312223 (2018).
3066 3067 3068 3069	405	Curtius, K., Rubenstein, J. H., Chak, A. & Inadomi, J. M. Computational modelling suggests that Barrett's oesophagus may be the precursor of all oesophageal adenocarcinomas. <i>Gut</i> , gutjnl-2020-321598, doi:10.1136/gutjnl-2020-321598 (2020).
3070 3071 3072	406	Que, J., Garman, K. S., Souza, R. F. & Spechler, S. J. Pathogenesis and Cells of Origin of Barrett's Esophagus. <i>Gastroenterology</i> 157 , 349-364.e341, doi:10.1053/j.gastro.2019.03.072 (2019).
3073 3074 3075	407	Slack, J. M. W. Metaplasia and transdifferentiation: from pure biology to the clinic. <i>Nature Reviews Molecular Cell Biology</i> 8 , 369-378, doi:10.1038/nrm2146 (2007).
3076 3077 3078	408	Jopling, C., Boue, S. & Izpisua Belmonte, J. C. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. <i>Nat Rev Mol Cell Biol</i> 12 , 79-89, doi:10.1038/nrm3043 (2011).
3079 3080 3081 3082	409	Olsen, C. M., Pandeya, N., Green, A. C., Webb, P. M. & Whiteman, D. C. Population attributable fractions of adenocarcinoma of the esophagus and gastroesophageal junction. <i>Am J Epidemiol</i> 174 , 582-590, doi:10.1093/aje/kwr117 (2011).
3083 3084 3085	410	Coleman, H. G., Xie, SH. & Lagergren, J. The Epidemiology of Esophageal Adenocarcinoma. <i>Gastroenterology</i> 154 , 390-405, doi: <u>https://doi.org/10.1053/j.gastro.2017.07.046</u> (2018).

3086 3087	411	Peters, Y. et al. Barrett oesophagus. Nature Reviews Disease Primers 5, 35, doi:10.1038/s41572-019-0086-z (2019).
3088 3089 3090 3091	412	Kubo, A. <i>et al.</i> Sex-specific associations between body mass index, waist circumference and the risk of Barrett's oesophagus: a pooled analysis from the international BEACON consortium. <i>Gut</i> 62 , 1684, doi:10.1136/gutjnl-2012-303753 (2013).
3092 3093 3094 3095	413	Cook, M. B., Freedman, N. D., Gamborg, M., Sørensen, T. I. A. & Baker, J. L. Childhood body mass index in relation to future risk of oesophageal adenocarcinoma. <i>British Journal of Cancer</i> 112 , 601-607, doi:10.1038/bjc.2014.646 (2015).
3096 3097 3098	414	Furer, A. <i>et al.</i> Adolescent obesity and midlife cancer risk: a population- based cohort study of 2·3 million adolescents in Israel. <i>Lancet Diabetes</i> <i>Endocrinol</i> 8 , 216-225, doi:10.1016/s2213-8587(20)30019-x (2020).
3099 3100 3101	415	Lauby-Secretan, B. <i>et al.</i> Body Fatness and CancerViewpoint of the IARC Working Group. <i>N Engl J Med</i> 375 , 794-798, doi:10.1056/NEJMsr1606602 (2016).
3102 3103 3104	416	Stone, T. W., McPherson, M. & Gail Darlington, L. Obesity and Cancer: Existing and New Hypotheses for a Causal Connection. <i>EBioMedicine</i> 30 , 14-28, doi:10.1016/j.ebiom.2018.02.022 (2018).
3105 3106 3107 3108 3109	417	Chandar, A. K. <i>et al.</i> Association of Serum Levels of Adipokines and Insulin With Risk of Barrett's Esophagus: A Systematic Review and Meta-Analysis. <i>Clinical gastroenterology and hepatology : the official clinical practice</i> <i>journal of the American Gastroenterological Association</i> 13 , 2241-e2179, doi:10.1016/j.cgh.2015.06.041 (2015).
3110 3111 3112 3113 3114	418	Duggan, C. <i>et al.</i> Association between markers of obesity and progression from Barrett's esophagus to esophageal adenocarcinoma. <i>Clinical</i> <i>gastroenterology and hepatology : the official clinical practice journal of the</i> <i>American Gastroenterological Association</i> 11 , 934-943, doi:10.1016/j.cgh.2013.02.017 (2013).
3115 3116 3117	419	Duggan, C. <i>et al.</i> Association between markers of obesity and progression from Barrett's esophagus to esophageal adenocarcinoma. <i>Clin Gastroenterol Hepatol</i> 11 , 934-943, doi:10.1016/j.cgh.2013.02.017 (2013).
3118 3119 3120 3121	420	Ayazi, S. <i>et al.</i> Obesity and gastroesophageal reflux: quantifying the association between body mass index, esophageal acid exposure, and lower esophageal sphincter status in a large series of patients with reflux symptoms. <i>J Gastrointest Surg</i> 13 , 1440-1447, doi:10.1007/s11605-009-0930-7 (2009).
3122 3123 3124	421	Wu, J. C., Mui, L. M., Cheung, C. M., Chan, Y. & Sung, J. J. Obesity is associated with increased transient lower esophageal sphincter relaxation. <i>Gastroenterology</i> 132 , 883-889, doi:10.1053/j.gastro.2006.12.032 (2007).
3125 3126	422	Martínez-Jiménez, F. <i>et al.</i> A compendium of mutational cancer driver genes. <i>Nat Rev Cancer</i> 20 , 555-572, doi:10.1038/s41568-020-0290-x (2020).

3127 3128 3129	423	Ross-Innes, C. S. <i>et al.</i> Whole-genome sequencing provides new insights into the clonal architecture of Barrett's esophagus and esophageal adenocarcinoma. <i>Nat Genet</i> 47 , 1038-1046, doi:10.1038/ng.3357 (2015).
3130 3131 3132	424	Secrier, M. <i>et al.</i> Mutational signatures in esophageal adenocarcinoma define etiologically distinct subgroups with therapeutic relevance. <i>Nat Genet</i> 48 , 1131-1141, doi:10.1038/ng.3659 (2016).
3133 3134 3135	425	Samstein, R. M. <i>et al.</i> Tumor mutational load predicts survival after immunotherapy across multiple cancer types. <i>Nat Genet</i> 51 , 202-206, doi:10.1038/s41588-018-0312-8 (2019).
3136 3137	426	Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. <i>Science</i> 348 , 69, doi:10.1126/science.aaa4971 (2015).
3138 3139	427	Alexandrov, L. B. <i>et al.</i> The repertoire of mutational signatures in human cancer. <i>Nature</i> 578 , 94-101, doi:10.1038/s41586-020-1943-3 (2020).
3140 3141 3142	428	Bhardwaj, V. <i>et al.</i> Activation of NADPH oxidases leads to DNA damage in esophageal cells. <i>Scientific Reports</i> 7 , 9956, doi:10.1038/s41598-017-09620-4 (2017).
3143 3144 3145 3146	429	Li, D. & Cao, W. Role of intracellular calcium and NADPH oxidase NOX5- S in acid-induced DNA damage in Barrett's cells and Barrett's esophageal adenocarcinoma cells. <i>Am J Physiol Gastrointest Liver Physiol</i> 306 , G863- G872, doi:10.1152/ajpgi.00321.2013 (2014).
3147 3148 3149	430	Li, D. & Cao, W. Bile acid receptor TGR5, NADPH Oxidase NOX5-S and CREB Mediate Bile Acid-Induced DNA Damage In Barrett's Esophageal Adenocarcinoma Cells. <i>Sci Rep</i> 6 , 31538, doi:10.1038/srep31538 (2016).
3150 3151 3152 3153	431	Li, D., Deconda, D., Li, A., Habr, F. & Cao, W. Effect of Proton Pump Inhibitor Therapy on NOX5, mPGES1 and iNOS expression in Barrett's Esophagus. <i>Scientific Reports</i> 9 , 16242, doi:10.1038/s41598-019-52800-7 (2019).
3154 3155 3156 3157	432	Tomkova, M., Tomek, J., Kriaucionis, S. & Schuster-Böckler, B. Mutational signature distribution varies with DNA replication timing and strand asymmetry. <i>Genome Biology</i> 19 , 129, doi:10.1186/s13059-018-1509-y (2018).
3158 3159 3160	433	Christensen, S. <i>et al.</i> 5-Fluorouracil treatment induces characteristic T>G mutations in human cancer. <i>Nature Communications</i> 10 , 4571, doi:10.1038/s41467-019-12594-8 (2019).
3161 3162 3163	434	Suzuki, T. & Kamiya, H. Mutations induced by 8-hydroxyguanine (8-oxo-7,8-dihydroguanine), a representative oxidized base, in mammalian cells. <i>Genes Environ</i> 39 , 2-2, doi:10.1186/s41021-016-0051-y (2016).
3164 3165 3166	435	Clemons, N. J. <i>et al.</i> Nitric oxide-mediated invasion in Barrett's high-grade dysplasia and adenocarcinoma. <i>Carcinogenesis</i> 31 , 1669-1675, doi:10.1093/carcin/bgq130 (2010).
3167 3168	436	Wilson, K. T., Fu, S., Ramanujam, K. S. & Meltzer, S. J. Increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in
	120	

3169 3170		Barrett's esophagus and associated adenocarcinomas. <i>Cancer Res</i> 58, 2929-2934 (1998).
3171 3172 3173 3174	437	Contino, G., Vaughan, T. L., Whiteman, D. & Fitzgerald, R. C. The Evolving Genomic Landscape of Barrett's Esophagus and Esophageal Adenocarcinoma. <i>Gastroenterology</i> 153 , 657-673.e651, doi:10.1053/j.gastro.2017.07.007 (2017).
3175 3176	438	Stachler, M. D. <i>et al.</i> Paired exome analysis of Barrett's esophagus and adenocarcinoma. <i>Nat Genet</i> 47 , 1047-1055, doi:10.1038/ng.3343 (2015).
3177 3178 3179	439	Nones, K. <i>et al.</i> Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. <i>Nature Communications</i> 5 , 5224, doi:10.1038/ncomms6224 (2014).
3180 3181 3182 3183	440	Deshpande, N. P., Riordan, S. M., Castano-Rodriguez, N., Wilkins, M. R. & Kaakoush, N. O. Signatures within the esophageal microbiome are associated with host genetics, age, and disease. <i>Microbiome</i> 6 , 227, doi:10.1186/s40168-018-0611-4 (2018).
3184 3185 3186	441	Okereke, I. C. <i>et al.</i> Microbiota of the Oropharynx and Endoscope Compared to the Esophagus. <i>Sci Rep</i> 9 , 10201, doi:10.1038/s41598-019-46747-y (2019).
3187 3188 3189 3190	442	Snider, E. J. <i>et al.</i> Alterations to the Esophageal Microbiome Associated with Progression from Barrett's Esophagus to Esophageal Adenocarcinoma. <i>Cancer Epidemiology Biomarkers & Camp; Prevention</i> , doi:10.1158/1055- 9965.Epi-19-0008 (2019).
3191 3192 3193	443	Cardoso, R. <i>et al.</i> Colorectal cancer incidence, mortality, and stage distribution in European countries in the colorectal cancer screening era: an international population-based study. <i>The Lancet Oncology</i> (2021).
3194 3195	444	Yu, J. <i>et al.</i> Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. <i>Gut</i> 66 , 70-78 (2017).
3196 3197	445	Flemer, B. <i>et al.</i> The oral microbiota in colorectal cancer is distinctive and predictive. <i>Gut</i> , doi:10.1136/gutjnl-2017-314814 (2017).
3198 3199	446	Gharaibeh, R. Z. & Jobin, C. Microbiota and cancer immunotherapy: in search of microbial signals. <i>Gut</i> , doi:10.1136/gutjnl-2018-317220 (2018).
3200 3201	447	Coussens, L. M. & Werb, Z. Inflammation and cancer. <i>Nature</i> 420 , 860-867 (2002).
3202 3203	448	Clemente, J. C., Manasson, J. & Scher, J. U. The role of the gut microbiome in systemic inflammatory disease. <i>Bmj</i> 360 (2018).
3204 3205	449	Sabat, R. <i>et al.</i> Hidradenitis suppurativa. <i>Nature Reviews Disease Primers</i> 6 , 1-20 (2020).
3206 3207 3208	450	Jung, J. M. <i>et al.</i> Assessment of Overall and Specific Cancer Risks in Patients With Hidradenitis Suppurativa. <i>JAMA Dermatol</i> 156 , 844-853, doi:10.1001/jamadermatol.2020.1422 (2020).

3211	Chapter 2- Alterations in the oesophago-gastric mucosal		
3212	microbiome in patients along the inflammation-metaplasia-		
3213	dysplasia-oesophageal adenocarcinoma sequence		
3214	Draft manuscript		
3215			
3216	Authors:		
3217 3218	Maurice Barrett, Collette K Hand, Fergus Shanahan, Thomas Murphy, Paul W O'Toole		
3219			
3220	Maurice Barrett contributed to this work as follows:		
3221	• Nucleic acid extraction from samples.		
3222	• Design of methodologies pertaining to sample processing.		
3223	• 16S rRNA gene PCR.		
3224	• Next generation sequencing library preparation.		
3225	• All bioinformatic analysis including sequence processing, compositional data		
3226	analysis and statistical analysis.		
3227	• Data visualization, i.e., construction of manuscript figures.		
3228	• Writing of the manuscript.		
3229			

3230 **<u>2.1 Abstract</u>**

3231 The incidence of oesophageal adenocarcinoma (OAC) has risen dramatically in 3232 developed countries in the past 40 years, for not completely established reasons. 3233 Major modulators of risk for OAC have been identified including obesity and gastro-3234 oesophageal reflux disease. The microbiota has been increasingly recognised as 3235 playing a role in cancer biology including gastric and colon cancer, and a role has 3236 been proposed in oesophageal cancer. In this study we therefore defined the 3237 microbiome in multiple (per patient) gastric and oesophageal biopsies derived from a 3238 cohort of individuals with clinical presentations along the OAC transformation 3239 sequence. Furthermore, we delineated microbiome differences spatially along the 3240 upper digestive tract with respect to these clinical classifications. We identified an 3241 ASV assigned to *Fusobacterium nucleatum* that was enriched in oesophageal 3242 samples from individuals with or at increased risk of OAC. Further, we identified an 3243 ASV assigned to Fusobacterium necrophorum that was enriched in gastro-3244 oesophageal junction biopsies derived from individuals who had dysplastic and 3245 neoplastic tissue relative to those that did not. These findings provide insight into 3246 differences in the oesophago-gastric mucosal microbiome features along the 3247 oesophageal adenocarcinoma sequence and may inform diagnostic strategies while 3248 also providing information on the pathoaetiology of OAC.

3249

3250 **2.2 Introduction**

3251 In 2020, oesophageal cancer was the seventh leading cause of cancer (604,000 new cases) and the 6th leading cause of cancer mortality (544,000 deaths) worldwide¹. As 3252 for other cancers, prognosis is dependent on stage of diagnosis². The overall 5-year 3253 3254 survival rate for oesophageal cancer is less than 20% in western populations³. Two 3255 major histological subtypes exist, that is, oesophageal squamous cell carcinoma 3256 (OSCC) and oesophageal adenocarcinoma (OAC). There is a distinct geographical 3257 distribution in these subtypes, with OAC being the predominant presentation in 3258 western countries⁴. With regard to western countries, OAC has registered the greatest 3259 rise in incidences of all cancers and this trend has continued to increase⁵. 3260 OAC is thought to evolve through a defined sequence of histological changes, that is, 3261 normal squamous cells -> metaplastic columnar epithelium (Barrett's oesophagus) -> 3262 increasing grades of dysplasia -> adenocarcinoma of increasing stages⁴. We refer to 3263 this series of events as the OAC sequence. An intestinal metaplastic tissue known as 3264 Barrett's oesophagus (BO) develops in the oesophagus, usually near the 3265 gastroesophageal junction, as a result of injury due to reflux of gastric and bile acids 3266 into the oesophagus. Such reflux is indicative of Gastro-oesophageal Reflux Disease 3267 (GORD)⁶. BO is thought to be a precursor to at least a subset of OAC cases, with ~12% of OAC cases having a prior diagnosis of BO⁷. However, recent 3268 3269 computational models suggest that nearly all OAC cases evolve through BE⁸. 3270 Acquisition of somatic mutations such as those in p53 enable the progression of BO to dysplasia and OAC ⁹. 3271 3272 A number of environmental risk factors have been identified in the development of

3273 OAC with obesity, GORDS and smoking accounting for 70% of cases in western143

3274 populations¹⁰. Notably, *Helicobacter pylori* which is known to play a causative role 3275 in gastric cancer, is thought to play a protective role against the development of BO 3276 and $OAC^{11,12}$.

3277 An accumulating body of evidence supports the hypothesis that the microbiota is a modulator of risk for various cancers^{13,14}. The colon and its resident microbiota have 3278 been extensively studied to identify how this interaction pertains to CRC 3279 development and progression^{13,15}. Many microbiota features have been linked to 3280 3281 CRC oncogenesis in both a correlative and mechanistic manner. Colibactin 3282 producing pks+ Escherichia coli can induce mutations with a particular nucleotide 3283 mutational signature, while Fusobacterium nucleatum has been demonstrated to modulate the tumour microenvironment 16,17 . 3284

3285 We hypothesise that the microbiome plays a role in the progression of the OAC

3286 sequence. Microbes capable of immunomodulation, promoting inflammation or

3287 causing DNA damage present in the oesophagus may drive OAC oncogenesis. Even

3288 if the microbiome does not play a direct role in OAC oncogenesis, one would expect

3289 histological and environmental changes in the oesophagus to be associated with

3290 changes in the oesophageal mucosal microbiome. Considering this, we expected

3291 differences in microbiome features between different clinical groups along the OAC

3292 sequence.

3293 In this study we sought to identify association between features of the microbiota

and various stages along the OAC sequence. We also investigated differences in the
microbiome between sites within the upper digestive tract with respect to the various
stages within the oesophageal adenocarcinoma sequence.

3297

3298 **2.3 Methods**

3299 **2.3.1 Sample collection and clinical classification**

3300 The cohort was derived from patients at Mercy University Hospital, Cork 3301 undergoing an upper gastrointestinal endoscopy and biopsy examination for the 3302 treatment of oesophagitis, Barrett's oesophagus and oesophageal cancer Healthy 3303 controls were recruited from patients undergoing upper GI endoscopy for assessment 3304 of benign gastroduodenal disorders. Patients who have taken a course of antibiotics 3305 in the preceding month were excluded from recruitment. The recruitment period was 3306 between the period of April 2016 and January 2020. This study was conducted in 3307 accordance with the ethical principles set forth in the current version of the 3308 Declaration of Helsinki, the International Conference on Harmonization E6 Good 3309 Clinical Practice (ICH-GCP). Ethical approval was granted by The Clinical Research 3310 Ethics Committee of the Cork Teaching Hospitals (Cork, Ireland). For each study 3311 participant five biopsies were obtained using disposable endoscopic biopsy forceps. 3312 One biopsy was taken from the epicentre of the cancer, Barrett's segment or focus of 3313 oesophagitis, one on 2-5cm either side of the pathology and one 10-20 cm away 3314 from either side of the pathology. Samples were placed in cryotubes and stored in a -3315 80°C freezer. The oesophageal histological presentation of each individual was 3316 classified by a consultant pathologist. Patients were classified based on the histology 3317 they presented with which represented the latest stage of the OAC sequence e.g. 3318 those with metaplastic tissue and dysplastic tissue were classified into the dysplasia 3319 clinical group. Adenocarcinomas were located at the distal oesophagus and gastro-3320 oesophageal junction and squamous cell carcinomas were excluded. Demographic

variables of general and dental health, physical activity, smoking and alcohol

3322 consumption and proton pump inhibitor usage were collected by questionnaire.

3323

3324 2.3.2 Microbial DNA extraction

3325 DNA was extracted from biopsy samples using the AllPrep DNA/RNA Mini Kit

3326 (Qiagen, Hilden, Germany) with modifications to include a bead beating step that

3327 ensured optimal lysis of microbial cell¹⁸.

3328 **2.3.3 16S rRNA gene PCR amplification and sequencing**

3329 Amplification was performed using primers for the V3–V4 region (Table 1) of the

bacterial 16S rRNA gene with added adapter overhang sequences in accordance with

the Illumina 16S Metagenomic Sequencing Protocol (Illumina, California, USA)¹⁹.

Region	Name	F/R	Sequence
V3-V4 ²⁰	S-D- Bact- 0341-b- S-17	F	5' <u>TCG TCG GCA GCG TCA GAT GTG TAT AAG</u> <u>AGA CAG</u> CCT ACG GGN GGC WGC AG
	S-D- Bact- 0785-a- A-21	R	5' <u>GTC TCG TGG GCT CGG AGA TGT GTA TAA</u> <u>GAG ACA G</u> GAC TAC HVG GGT ATC TAA TCC

Table 1. Primers used for 16S rRNA gene amplification.

3333 The initial PCR amplification was performed using the MTP Taq DNA Polymerase

3334 (Merck KGaA, Darmstadt, Germany) with the PCR thermocycler protocol as

follows: Initiation step of 94 °C for 1 min followed by 35 cycles of 94 °C for 60 s,

3336 55 °C for 45 s, and 72 °C for 30 s, and a final extension step of 72 °C for 5 min. An

index PCR was performed to attach dual indices (barcodes) and Illumina sequencing

adapters as per Illumina 16S Metagenomic Sequencing Protocol (Illumina,

3339 California, USA). DNA concentration was determined using a Qubit fluorometer

3340 (Invitrogen) using the 'High Sensitivity' assay and samples were pooled at a

3341 standardised concentration. The pooled library was sequenced on the Illumina MiSeq

3342 platform (Illumina, California, USA) utilising 2 × 300 bp chemistry. Samples were

3343 sequenced over 4 batches.

3344

3345 **2.3.4 Bioinformatic and biostatistical analysis**

Raw nucleotide sequence data was imported into R (v3.6.0). Error model generation, 3346 3347 denoising and the generation of an ASV table was performed using the R package 3348 DADA2 $(v1.12.1)^{21}$. ASV taxonomy assignment, from phylum to genus level, was performed using mothur²². Species level taxonomy assignment was performed using 3349 SPINGO²³. Alpha diversity was calculated using the alpha_diversity.py command 3350 3351 within QIIME $(v 1.9.1)^{24}$. Unifrac distance and Bray-Curtis dissimilarity was calculates using the beta_diversity.py within QIIME (v 1.9.1)²⁴. The Jaccard index 3352 3353 was calculated using the vegdist command within R package (v 2.5.7). Robust 3354 Aitchison was calculated using the gemelli auto-rpca command within QIIME2 $(version 2020.11.1)^{25}$.. Differential abundance analysis between anatomical sites was 3355 3356 performed using the paired wilcoxon test. Differential abundance analysis between 3357 clinical classifications was performed using DESeq2. Functional genes and pathways were inferred using the picrust2 pipeline.py command within $PICRUSt2^{26}$. 3358 3359

3360 **2.3.5 Contamination control**

3361 As gastric and oesophageal mucosal biopsies may be considered low biomass, 3362 protocols were tailored to address the potential of contamination. Firstly, we used 3363 reagents manufactured to be microbial DNA free namely MTP Tag DNA 3364 Polymerase and microbial DNA free water (QAIGEN). We performed mock/blank 3365 extractions to detect contamination associated with reagents. Further, we also carried 3366 out PCR controls i.e. the amplification of microbial DNA free water, to detect 3367 contamination specific to the polymerase. With respect to mock extractions, we 3368 detected taxa indicative contamination including Sphingomonas and Halobacillus. 3369 However, we did not obtain usable reads with regard to the PCR control. We 3370 performed extraction positive controls using the Zymo mock community (Zymo, 3371 D6300) at various numbers of cells per extraction. Furthermore we positive 3372 amplification control using the ZymoBIOMICS mock community DNA standard 3373 (Zymo, D6305) at various DNA amounts. Both these positive controls allowed for 3374 the identification of the limit whereby contamination would become detectable in the 3375 sequencing data. With respect to extraction positive controls we detected 3376 contamination being introduced to the data at 2.8×10^3 cells per extraction. With 3377 respect to positive amplification control we detected contamination being introduced 3378 to the data at concentration of 0.0002ng per reaction. Taking these figures, we were 3379 reassured that we had sufficient bacterial mass within our gastric and oesophageal 3380 mucosal biopsies to employ our protocols 3381

3382 **2.4 Results**

3383 **2.4.1 Patient demographics and oesophageal samples**

In this study, we aimed to define the microbiome composition of mucosal biopsies

- from 5 positions along the upper digestive tract derived from an Irish population
- 3386 cohort (Table 2). These individuals represented defined stages along the OAC
- 3387 sequence including healthy controls, gastro-oesophageal reflux disease (GORD),
- 3388 Barrett's Oesophagus (BO), dysplasia, oesophageal adenocarcinoma (OAC), and
- 3389 metastatic oesophageal adenocarcinoma (metastatic OAC). Individuals were age and
- 3390 sex matched; however, there was a male sex bias. Male sex is a strong risk factor for
- 3391 OAC development⁴.

	Controls	GORD	BO	Dysplasia	OAC	Metastatic OAC	p value
Patients (N)	12	30	38	19	36	9	
Age	57.9 (31-	57.4 (29-	56.8 (35-	64.4 (37-	61.1	62.2 (53-	0.226
(mean,range)	78)	83)	78)	87)	(33-	73)	
					80)		
Sex (f/m)	8/4	13/17	10/28	2/17	13/23	0/9	0.004
BMI	27.3	27.5	30.1	27.6 (21.0	28.1	26.0 (22.0-	0.628
	(19.5-	(20.2-	(15.9-	-37.0)	(13.3-	34.6)	
	33.6)	40.5)	58.8)		39.0)		
Waist	90.3 (67-	96.8 (75-	102.8	98.5 (73-	100.5	93.8 (86-	0.306
Circumference	118)	126)	(67-146)	127)	(53-	111)	
					171)		

Table 2. Descriptive statistics of the study cohort. Kruskal–Wallis test or χ^2 statistic was used to determine significance of difference between clinical groups.

The 5 biopsies were labelled 1 to 5 and represent the following anatomical sites:

Biopsy location 3 represent the epicentre of diseased tissue. For example, in the

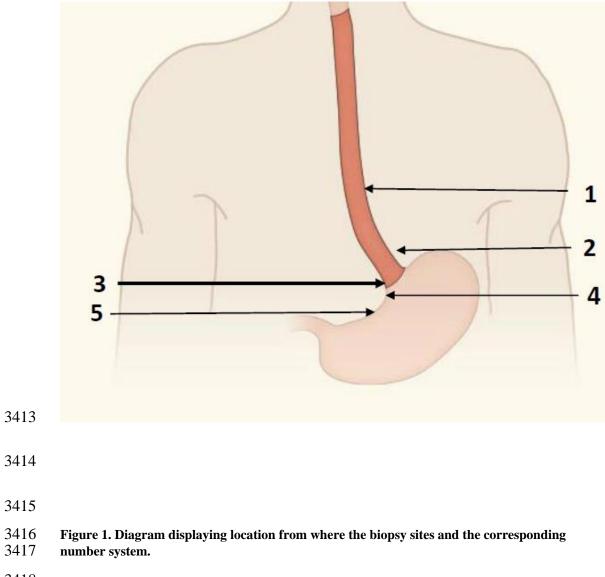
3396 context of Barrett's oesophagus, biopsy location 3 represents metaplastic tissue. For

3397 oesophageal adenocarcinoma, biopsy location 3 represents neoplastic tissue. Due the

3398 presentation of diseases along the OAC sequences, biopsy location 3 samples were

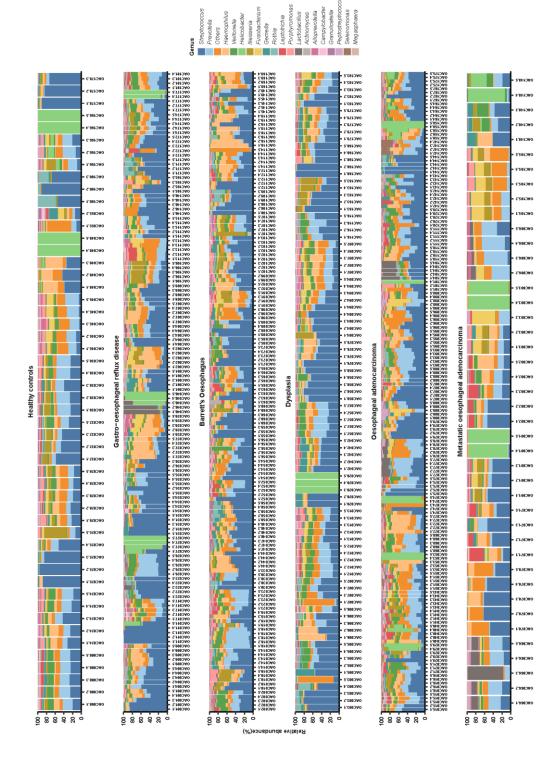
3399 usually derived from the gastro-oesophageal junction. Biopsy location 1 and 2 were

- taken approximately 2-5cm and 10-20 cm proximally from the disease epicentre
- 3401 (Biopsy location 3) respectively. Biopsy locations 4 and 5 were taken approximately
- 3402 2-5cm and 10-20 cm distally from the disease epicentre (Biopsy location 3)
- 3403 respectively. Biopsy locations 4 and 5 were primally gastric in character.
- 3404 After the quality checks and filtering associated with the bioinformatic pipeline
- 3405 (DADA2) we analysed 649 oesophageal and gastric biopsies from 144 individuals
- 3406 (Table 3).


Biopsy location	Controls	GORD	BE	Dysplasia	OAC	Metastatic OAC	Total
1	12	30	36	19	33	8	138
2	12	28	36	17	36	9	138
3	11	30	34	19	35	9	138
4	8	26	23	18	33	8	116
5	9	28	23	18	32	9	119
Total	52	142	152	91	169	43	649

Clinical classification

3407 **Table 3.** Biopsy sample distribution with respect to biopsy location and clinical3408 classification.


3409 In terms of sequencing depth, the mean read number was 12,142 reads per sample

3410 with a minimum read depth of 2,077 reads and a maximum of 55,043 reads.

3421 **2.4.2** Microbiome alterations with respect to clinical classifications

- 3422 At the genus level, the microbiome composition of biopsy samples was
- 3423 predominantly composed of *Streptococcus*, *Prevotella* and *Haemophilus*, in line with
- 3424 previous reports describing the gastric and oesophageal microbiome (Supplementary
- 3425 figure 1) ²⁷⁻²⁹. This indicated that the measures implemented to deal with potential
- 3426 contamination of low biomass samples were effective.

3429 3430 Supplementary Figure 1. Relative abundance of genera in oesophago-gastric biopsy

microbiome. Bar plots of relative abundance of genera in oesophago-gastric biopsies. Samples are 3431 3432 organised by clinical classification. Genera with a relative abundance of less 1% across all samples

are grouped into 'others' with sequences not classified at the genus level.

3433 We did not detect any major difference in beta-diversity (as measured by Bray-3434 Curtis dissimilarity) between clinical classification groups in biopsies derived from 3435 the oesophagus, that is, biopsy location 1 and 2 (Figure 1A and B). However, we did 3436 identify a significant shift in beta-diversity as measured by Bray–Curtis dissimilarity 3437 with respect to clinical classification in biopsies derived from the gastroesophageal 3438 junction (biopsy location 3) and the stomach (biopsy location 4 and 5) (Figure 1C, D 3439 and E). With respect to biopsy location 3, the anatomical focus of the disease in the 3440 respective clinical groups, the microbiome of individuals with OAC and metastatic 3441 OAC were seen to cluster while those of healthy controls, individuals with GORD 3442 and BO formed a separate cluster and individuals with dysplasia were somewhat 3443 intermediate to these two clusters (Figure 1C). Using 4 other microbiome beta-3444 diversity metrics we did not identify any statistically significant differences in 3445 clinical groups (Supplementary table 1). 3446 With respect to each biopsy location (1-5), we did not identify any statistically 3447 significant difference in alpha diversity with respect to clinical classification

3448 (Kruskal Wallis test; data not shown).

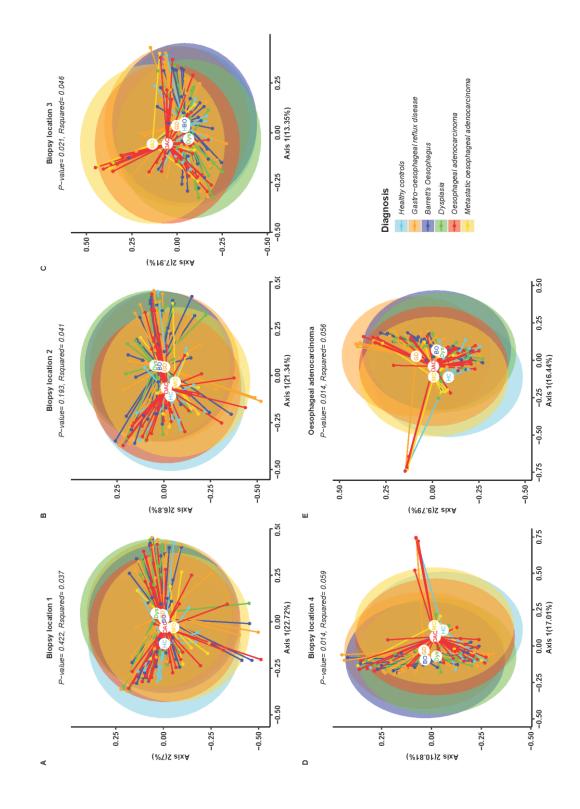


Figure 2. Beta-diversity analysis with respect to clinical classifications. Principal Coordinates
Analysis (PCoA) plot representing Bray–Curtis dissimilarity. (A) Biopsy location 1, (B) Biopsy
location 2. (C) Biopsy location 3 (D) Biopsy location 4 (E) Biopsy location 5. Statistical testing
performed using Permutational Multivariate Analysis of Variance.

		Difference in E	Beta-diversity	metrics betwe	en clinical cl	assification per	biopsy locati	on
	weighted	UniFrac	unweighte	d UniFrac	Jaccard In	dex	Robust Ait	chison
Biopsy location	P-value	R-squared	P-value	R-squared	P-value	R-squared	P-value	R-squared
1	0.255	0.045	0.328	0.038	0.37	0.037	0.765	0.025
2	0.106	0.056	0.678	0.034	0.183	0.038	0.827	0.022
3	0.2	0.046	0.211	0.04	0.246	0.037	0.611	0.031
4	0.038	0.072	0.333	0.046	0.164	0.045	0.377	0.046
5	0.165	0.054	0.527	0.041	0.33	0.043	0.252	0.053

3456 Supplementary table 1. Analysis of significance between biopsy microbiome beta-diversity
 3457 metrics with respect to clinical classifications at each of the 5-biopsy location. P-value and R 3458 squared calculated using Permutational multivariate analysis of variance (PERMANOVA).

3459

3460 **2.4.3 Differentially abundant ASVs, species and metabolic pathways**

3461 with respect to clinical classifications

- 3462 Grouping microbiome data across all biopsy locations with a subject, we performed
- 3463 differential abundance analysis to identifying species and ASVs that are
- 3464 differentially abundant between clinical classifications.
- 3465 The species *Prevotella denticola* was enriched in the diseased groups (GORD, BO,
- 3466 dysplasia, OAC and metastatic OAC) relative to healthy controls in samples derived
- from biopsy location 2 and biopsy location 3 (Figure 2 B, C). The species
- 3468 Bifidobacterium dentium was enriched in all the disease groups except metastatic
- relative to healthy controls in samples derived from biopsy location 1,2 and 4
- 3470 (Figure 2 A, B, D).
- 3471 In samples derived from the oesophagus, that is, biopsy location 1 and 2, we
- 3472 observed that an ASV, Seq 130, assigned to *Fusobacterium nucleatum* was enriched

in biopsies derived from the disease clinical groups relative to healthy controls
(Supplementary Figure 2 A, B). However, when all ASVs were binned to the
species level, *F. nucleatum* was no longer detected as enriched in the disease groups.
(Figure 2A, B)

3477 In samples derived from the gastroesophageal junction, that is, biopsy location 3, we 3478 identified an ASV, Seq 52, assigned to Fusobacterium necrophorum which was 3479 generally enriched in samples derived from clinical groups which are later along the 3480 OAC sequence including dysplasia, OAC and metastatic OAC compared to clinical 3481 groups which are earlier along the sequence including healthy controls, GORD and 3482 BO. (Supplementary figure 2C). This observation was retained when ASVs were 3483 binned to the species level (Figure 2C). In samples derived from the stomach (biopsy 3484 location 4 and 5) this ASV assigned to F. necrophorum was observed to be enriched 3485 in BO, dysplasia, OAC and metastatic OAC relative to healthy controls and GORD 3486 (Supplementary figure 2D, E). Again, this observation was reflected at the species 3487 level (Figure 2D, E). 3488 Using the algorithm DESeq2, a number of microbiome-encoded metabolic pathways

were found to be differentially abundant between the clinical groups with respect to

each of the biopsy locations. Particular microbiome metabolic pathways were

3491 depleted in the metastatic biopsy microbiome with respect to biopsy locations

3492 (Supplementary figure 3). In particular the microbial coding capacity for a metabolic

3493 pathway involved in Vitamin B12 production (also known as adenosylcobalamin)

3494 synthesis was depleted in the microbiome of the metastatic OAC group relative to all

3495 other clinical groups, and with respect to all biopsy locations.

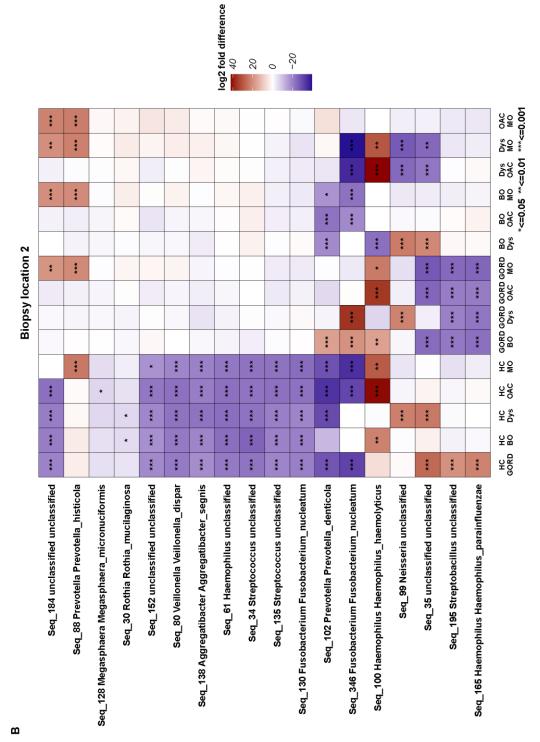


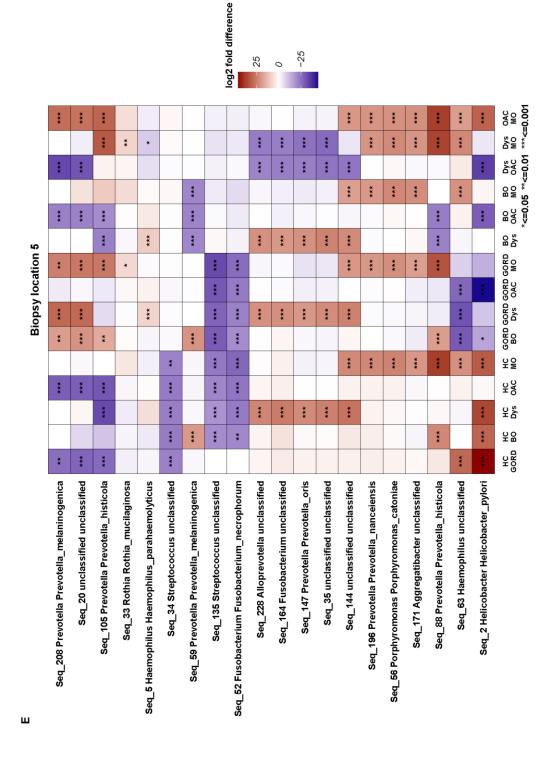
Figure 3. Differentially abundant species in the microbiome of subjects in the studied clinical classifications (A) Biopsy location 1, (B) Biopsy location 2. (C) Biopsy location 3 (D) Biopsy location 4 (E) Biopsy location 5. Statistical testing was performed using DESeq2 *<=0.05 **<=0.01
***<=0.001. HC=Healthy controls, GORD= gastro-oesophageal reflux disease, BO= Barrett's oesophagus, Dys=Dysplasia, OAC= Oesophageal adenocarcinoma, MO= metastatic Oesophageal adenocarcinoma.

Iterprococcus unclassified Image: second secon							B	Biopsy location 1	/ loc	ation	Ξ					
111 111 <td>Seq_135 Streptococcus unclassified</td> <td>***</td> <td>***</td> <td>***</td> <td>***</td> <td>***</td> <td></td>	Seq_135 Streptococcus unclassified	***	***	***	***	***										
*** *** <td>Seq_130 Fusobacterium Fusobacterium_nucleatum</td> <td>***</td> <td>***</td> <td>***</td> <td>***</td> <td>***</td> <td></td>	Seq_130 Fusobacterium Fusobacterium_nucleatum	***	***	***	***	***										
*** *** <td>Seq_164 Fusobacterium unclassified</td> <td>***</td> <td>***</td> <td>***</td> <td>***</td> <td>***</td> <td></td>	Seq_164 Fusobacterium unclassified	***	***	***	***	***										
**** **** **** **** **** ***** ************************************	Seq_129 Haemophilus Haemophilus_parainfluenzae	***	***	***	***	***										
No. No. <td>Seq_173 Leptotrichia unclassified</td> <td>***</td> <td>***</td> <td>***</td> <td>***</td> <td></td> <td></td> <td></td> <td></td> <td>**</td> <td></td> <td></td> <td>***</td> <td></td> <td>*</td> <td>**</td>	Seq_173 Leptotrichia unclassified	***	***	***	***					**			***		*	**
1 1	Seq_95 Rothia Rothia_dentocariosa															*
** ** * ** *	Seq_5 Haemophilus Haemophilus_parahaemolyticus							*			***			**		
1 1	Seq_122 Streptococcus unclassified	*	*		*											
*** *** <td>Seq_61 Haemophilus unclassified</td> <td></td> <td>*</td> <td>*</td> <td></td>	Seq_61 Haemophilus unclassified		*	*												
**** **** **** **** **** **** ***** ***** ***** ***** ***** ****** ****** ****** ****** ******* ******** ************ ************************************	Seq_41 Peptostreptococcus Peptostreptococcus_stomatis											*				
1 ***	Seq_91 Fusobacterium Fusobacterium_nucleatum	***			***		***	***		*		***		***		**
1 1	Seq_188 Haemophilus Haemophilus_parainfluenzae			***	***		*	***	***		***	***			*	*
Image: line Matrix Matri Mat	Seq_105 Prevotella Prevotella_histicola			***	***			***	***		***	***			*	*
1 1	Seq_54 Streptococcus unclassified			***	***	*		***	***	***	***	***				
**** *** *** ** *** <td>Seq_86 Neisseria unclassified</td> <td></td> <td>*</td> <td></td> <td>***</td> <td>*</td> <td>**</td> <td></td> <td>***</td> <td>**</td> <td>***</td> <td>***</td> <td></td> <td>**</td> <td>*</td> <td>*</td>	Seq_86 Neisseria unclassified		*		***	*	**		***	**	***	***		**	*	*
**** *** <td>Seq_230 Alloprevotella Alloprevotella_tannerae</td> <td>***</td> <td>***</td> <td>***</td> <td></td> <td>*</td> <td>*</td> <td></td> <td>***</td> <td></td> <td></td> <td>***</td> <td></td> <td>***</td> <td></td> <td>*</td>	Seq_230 Alloprevotella Alloprevotella_tannerae	***	***	***		*	*		***			***		***		*
I **** I	Seq_90 unclassified unclassified	***	*	***		*			***			***		***		**
Hold	Seq_96 Prevotella unclassified			***				***			***			***	***	
Image: Section 1 *** Image: Section 2 *** Image: Section 2 *** Image: Section 2 *** Image: Section 2 I	Seq_84 Haemophilus unclassified			***				***			***			***	***	
Image: Normal and Section 1 **** Image: Normal and Section 1 Image: Normal and Section 1 <the< td=""><td>Seq_35 unclassified unclassified</td><td></td><td></td><td>***</td><td></td><td></td><td></td><td>***</td><td></td><td></td><td>***</td><td></td><td></td><td>***</td><td>**</td><td></td></the<>	Seq_35 unclassified unclassified			***				***			***			***	**	
Horizon **** *** *** **	Seq_165 Haemophilus Haemophilus_parainfluenzae			***				***			***			***	***	
HC HC HC HC GORDGORDGORD BO BO BO Dys GORD BO Dys OAC MO BO Dys OAC MO Dys OAC MO OAC *<=0.01	Seq_75 Prevotella Prevotella_pallens			***				***			***			***	***	
HC HC HC HC GORDGORDGORDGORD BO BO BO Dys BO Dys OAC MO BO Dys OAC MO Dys OAC MO OAC *<=0.01	Seq_99 Neisseria unclassified			***				***			***			***	***	
		GORD	알 B	Dys Dys			GORI BO	GORD Dys	GORD	GORD MO	80 Svo v	BO OAC =0.05	≣ ¥ ₩0		Dys Mo	0AC M0 001

log2 fold difference

-25

									loa? fold difference		70	5	07-	-40									
			**												**	***	***	***	***	**	***		Dys OAC MO MO *** <=0.001
					***	***	***	**								***	***	***	***	**	***	***	
			***		***	***	***	***							***							***	Dys 0AC =0.01
		***		*											*	***	***	***	***	**	***	*	BO BO Dys OAC MO OAC *<=0.05 **<=0.01
		***	***	***																		***	BO 0AC *< =0.0
n 3		***		*	***	***	***	***							***								o so So
Biopsy location 3	***														*	***	***	***	***	***	***	***	GORD GORD GORD GORD BO Dys OAC MO
sy lo	***		***	***																		***	D GOR 0AG
Biop	***	*		***	***	***	***	***							***								KD GOR
_	***	***		*** *					*		*	*	*			*	*	*	*		*	*	
			*	***					*** *	*	*** *	*** *	***	*		***	***	***	***	*	***	***	NO NO
			*	***	*	*	*	*	*** *	***	*** *	*** *	***	*** *	**						**	***	s oAC
		*	***	***	***	***	***	***	*** *	***	*** *	***	*** *	***	*								Dys Dys
	*	***	**						*** ***	*** ***	*** ***	*** ***	*** ***	*** ***	*								HC GORD BO
	a ***	a a	ri ***	۶	a)	a	σ	σ								s	σ	۶	σ	a	5	s	тĝ
	Seq_105 Prevotella Prevotella_histicola	Seq_88 Prevotella Prevotella_histicola	Seq_2 Helicobacter Helicobacter_pylori	Seq_52 Fusobacterium Fusobacterium_necrophorum	Seq_217 Alloprevotella Alloprevotella_tannerae	Seq_180 Veillonella Veillonella_rogosae	Seq_35 unclassified unclassified	Seq_285 unclassified unclassified	Seq_164 Fusobacterium unclassified	Seq_83 Haemophilus Haemophilus_parainfluenzae	Seq_186 Prevotella Prevotella_oris	Seq_135 Streptococcus unclassified	Seq_129 Haemophilus Haemophilus _parainfluenzae	Seq_102 Prevotella Prevotella_denticola	Seq_20 unclassified unclassified	Seq_75 Prevotella Prevotella_pallens	Seq_63 Haemophilus unclassified	Seq_111 Fusobacterium Fusobacterium_periodonticum	Seq_34 Streptococcus unclassified	Seq_270 Tannerella Tannerella_forsythia	Seq_80 Veillonella Veillonella_dispar	Seq_100 Haemophilus Haemophilus_haemolyticus	

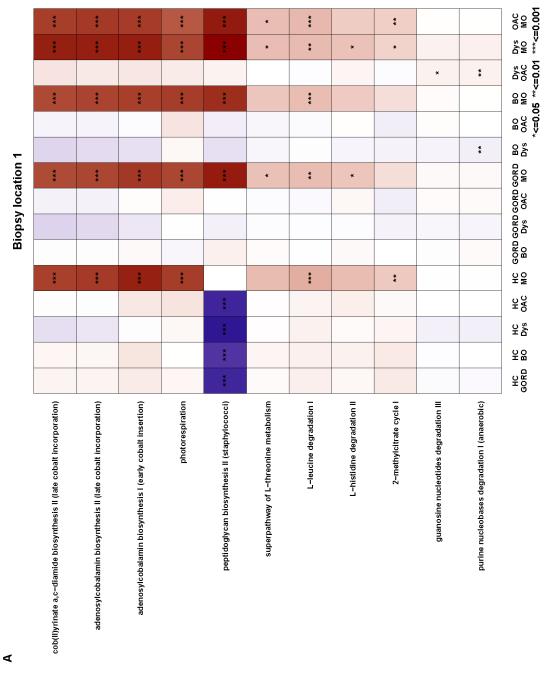

Biopsv location 3

υ

a						8	iops	y loci	Biopsy location 4	4					
Seq_154 Gemella Gemella_haemolysans	***	***	***	***	**										
Seq_52 Fusobacterium Fusobacterium_necrophorum	*	**	*	***	*										
Seq_129 Haemophilus Haemophilus_parainfluenzae	***	***	***	***					***			***		***	***
Seg_34 Streptococcus unclassified	***	***	*	***					**			***		**	***
Seq_80 Veillonella Veillonella_dispar	***	***	***	***					***			***		***	***
Seq_147 Prevotella Prevotella_oris	***	***		***	***		***			***			***	***	
Seq_99 Neisseria unclassified	*	***		***	*		***			***			***	***	
Seq_247 Alloprevotella Alloprevotella_tannerae	***	***		*	**		***			***			***	***	
Seq_35 unclassified unclassified			***				***			***			***	***	
Seq_70 Rothia Rothia_mucilaginosa	***					***	***	***	***						
Seq_63 Haemophilus unclassified	*					*	***	***						*	*
Seq_105 Prevotella Prevotella_histicola			*	***		*	***	***		***	***			***	***
Seq_2 Helicobacter Helicobacter_pylori	***	***	***		*			***			***		***		***
Seq_102 Prevotella Prevotella_denticola					*				*			*		**	***
Seq_75 Prevotella Prevotella_pallens					***				***			***		***	***
Seq_119 Veillonella Veillonella_rogosae					***				***			***		***	***
Seq_56 Porphyromonas Porphyromonas_catoniae					***				***			***		***	***
Seq_245 Prevotella Prevotella_shahii					***				***			***		***	***
Seq_88 Prevotella Prevotella_histicola		***			***	* *			***	***	***			***	***
Seq_164 Fusobacterium unclassified		***				***				***	***	***			
	HC GORD	윤 명	D _{ys} H	HC OAC	ЧЧЧ	GORD BO	GORD Dys	GORD OAC	GORD GORD GORD GORD BO Dys OAC MO	BO Dys	B0 Å= 0.0	v ≊e≊og	Dys OAC E0.01	NO NO S	040 MO

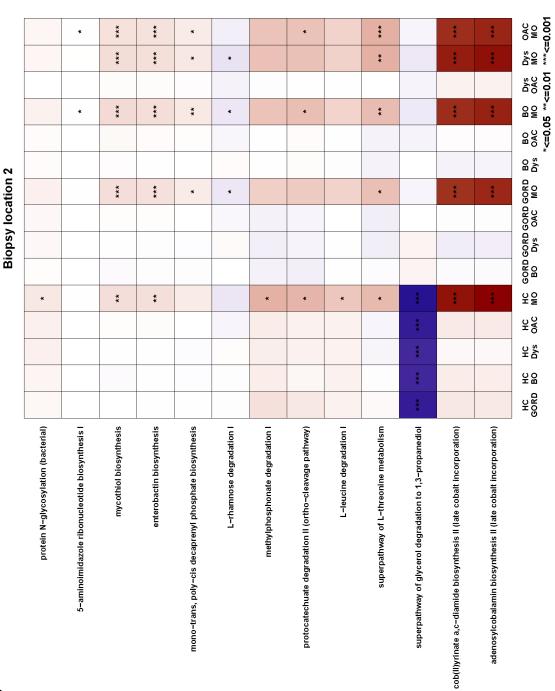
log2 fold difference

 -20


Supplementary figure 2. Differentially abundant ASVs between clinical classifications (A)
 Biopsy location 1, (B) Biopsy location 2. (C) Biopsy location 3 (D) Biopsy location 4 (E) Biopsy

3511 location 5. Statistical testing was performed using DESeq2 *<=0.05 **<=0.01 ***<=0.001.

3512 HC=Healthy controls, GORD= gastro-oesophageal reflux disease, BO= Barrett's oesophagus,


³⁵¹³ Dys=Dysplasia, OAC= Oesophageal adenocarcinoma, MO= metastatic Oesophageal

³⁵¹⁴ adenocarcinoma.

log2 fold difference

10 0 -20

log2 fold difference

10

-10 -20

	log2 fold difference 20 15 10 5 0
*	
** * * * * * * * * * * * * * * * * * *	** * * * * * * * * * * * * * * * * * * *
***	**************************************
* * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
protocatechuate degradation II (AST pathway) superpathway of L-threonine metabolism numcentine degradation II (AST pathway) mono-trans, poly-cis decaprent) phosphate biosynthesis protein N-glycosynthesis protein N-glycosynthesis myo-, chiro- and scilo-inostiol degradation superpathway of demethylmenaquinol-biosynthesis 1,4-dlihydroxy-G-maphthoate biosynthesis superpathway of L-threonine biosynthesis superpathway of adenosine nucleotides de novo biosynthesis superpathwes of adenosine to biosynthesis i superpathway of adenosine nucleotides de novo biosynthesis i superpathway of adenosine nucleotides de novo biosynthesis i superpathway of adenosine nucleotides de novo biosynthesis i copercited adenosine biosynthesis i	 CDPMarcelylmuramoyl of phospholipid biosynthesis I (bacteria) adenosine riborucide diosynthesis I (bacteria) adenosine riborucide biosynthesis I (bacteria) adenosine riborucia pedide biosynthesis I (bacteria) UMP biosynthesis UDP-N-acetylmuramoyl-pentapepide biosynthesis I (phosphate) phosphate/glycerol biosynthesis I (phosphate) glycolysis II (from procesamine cycle) phosphate/glycerol biosynthesis I (bacteria) glycolysis II (from fructose 6-phosphate) glycolysis II (from fructorate 6 dgradation 11 (Leloir pathway) flactose 6 dgradation 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12

Biopsy location 3

ပ

3518

3519

adenosylcobalamin biosynthesis II (late cobalt incorporation)		***		***	***	
	* * *					
	* *			***	***	***
	*	***		***	***	***
		***		***	* * *	***
	*	***		***	***	***
	*	***		***	***	***
	*	***		***	***	***
	*	***		***	***	***
***	*	***		***	***	***
	*	***		***	***	***
*					*	
*				*	*	
*			*	*		
			***	**		
1.4-dihvdroxv-6-naphthoate biosvnthesis II *			***	***		
mucothiol biosvnthesis *		*		*	***	*
enterobactin biosynthesis					**	
divoxvlate cvcle					*	
2-methylcitrate cvcle l *						
L-tvrosine degradation I				*	***	
L-leucine degradation l					*	
octane oxidation		**		**	***	**
mycolyl-arabinogalactan-peptidoglycan complex biosynthesis					*	
adenosine nucleotides degradation II					*	
purine nucleotides degradation II (aerobic)					*	
mono-trans, poly-cis decaprenyl phosphate biosynthesis					*	
guanosine nucleotides degradation III					***	
purine nucleobases degradation I (anaerobic)					**	
methylphosphonate degradation I		*		**	*	*
protocatechuate degradation II (ortho-cleavage pathway)		**		***	***	***
phenylacetate degradation I (aerobic)					*	
catechol degradation to β-ketoadipate				*	**	
toluene degradation II (aerobic) (via 4-methylcatechol)					*	
toluene degradation I (aerobic) (via o-cresol)					*	
superpathway of L-arginine and L-ornithine degradation					*	
superpathway of L-arginine, putrescine, and 4-aminobutanoate degradation					*	
superpathway of ornithine degradation					*	
superpathwav of methylolvoxal degradation * *					*	
aromatic compounds degradation via & beta:-ketoadipate					**	
catechol derived attom III (ortho-cleavare nathwav)					*	
readation II (A ST nathurau)					*	
			_			

Biopsy location 4

															log2 fold difference	- 20		0	č	-20	04-															
							*	*																						***	***	***	***			0AC M0 0.001
	*	*	**	*	*	*	**	**	**	*	*	**	***		***	***	**	***												***	***	***	***			0 B0 B0 Dys Dys OAC /s OAC M0 OAC M0 M0 *<=0.05 **<=0.01 ***<=0.00
												*	*		*	*			*			*	*													Dys OAC 0.01
							*	*	*																	***	**	***	***	***	***	***	***	***	**	GORDGORDGORD BO BO BO BO Dys OAC MO Dys OAC MO *<=0.05 **<=
																										***	**	***	***					***	***	BO OAC =0.05
n 5					**					**	**	***	***	*	***	***	***	***	*	*	*	**	***	*		*		***	***					***	***	B S S S S S
atio			*				**	**	**																					***	***	***	***			GORD MO
Biopsy location 5																																				GORD
(sdo																																				GORD Dys
B																										***	**	***	***					***	***	GORD BO
																														***	***	***	***	***	***	ЧС
																																		***	***	HC HC Dys OAC
										*	*	*	*		***	***	**	**			*		*		*										***	Dys Dys
																										**	*	***	***							BGH
																																		***	***	HC HC GORD BO
ш	mycolyl-arabinogalactan-peptidoglycan complex biosynthesis	catechol degradation to β-ketoadipate	methylphosphonate degradation I	aromatic biogenic amine degradation (bacteria)	superpathway of ornithine degradation	myo-, chiro- and scillo-inositol degradation	mono-trans, poly-cis decaprenyl phosphate biosynthesis	mycothiol biosynthesis	enterobactin biosynthesis	superpathway of L-arginine and L-ornithine degradation	superpathway of L-arginine, putrescine, and 4-aminobutanoate degradation	4-hydroxyphenylacetate degradation	polymyxin resistance	superpathway of phenylethylamine degradation	superpathway of D-glucarate and D-galactarate degradation	D-galactarate degradation I	enterobacterial common antigen biosynthesis	D-glucarate degradation I	adenosine nucleotides degradation II	superpathway of chorismate metabolism	dTDP-N-acetylthomosamine biosynthesis	superpathway of glyoxylate bypass and TCA	glyoxylate cycle	catechol degradation I (meta-cleavage pathway)	3-phenylpropanoate degradation	superpathway of demethylmenaquinol-6 biosynthesis II	1,4-dlhydroxy-6-naphthoate blosynthesis II	toluene degradation II (aerobic) (via 4-methylcatechol)	toluene degradation I (aerobic) (via o-cresol)	photorespiration	adenosylcobalamin biosynthesis II (late cobalt incorporation)	cob(II)yrinate a,c-diamide biosynthesis II (late cobalt incorporation)	adenosylcobalamin biosynthesis I (early cobalt insertion)	superpathway of L-tryptophan biosynthesis	superpathway of lipopolysaccharide biosynthesis	0

3521

3523 3524 Supplementary figure 3. Differentially abundant microbiome metabolic pathways between clinical classifications (A) Biopsy location 1, (B) Biopsy location 2. (C) Biopsy location 3 (D) 3525 Biopsy location 4 (E) Biopsy location 5. Statistical testing was performed using DESeq2 *<=0.05 3526 3527 **<=0.01 ***<=0.001. HC=Healthy controls, GORD= gastro-oesophageal reflux disease, BO= Barrett's oesophagus, Dys=Dysplasia, OAC= Oesophageal adenocarcinoma, MO= metastatic

3529 **2.4.4 Microbiome alterations with respect to biopsy location**

3530 Separating samples by each of the defined clinical classifications, we sought to 3531 identify differences in global ecological measures including alpha-diversity and beta-3532 diversity between biopsy locations. Samples derived from individuals with BO 3533 showed the most significant difference in alpha-diversity with respect to biopsy site 3534 (Figure 3C). In particular, metaplastic tissue derived from the GOJ (biopsy location 3535 3) had a higher alpha diversity than oesophageal (biopsy location 1 and 2) and 3536 gastric biopsies (biopsy location 4 and 5). Differences were observed in various 3537 alpha diversity indices between samples sites within the other clinical classifications, 3538 but a particular trend was not apparent (Figure 3). With respect to samples derived 3539 from individuals with dysplasia, gastric sample microbiomes (biopsy location 4 and 3540 5) had higher alpha-diversity, as measured by Shannon diversity and Simpson's 3541 diversity, relative to oesophageal samples (biopsy location 1 and 3) (Figure 3D). 3542 Aggregating samples across all stages of the of the oesophageal adenocarcinoma 3543 sequence, alpha diversity was statistically significantly higher in GOJ and gastric 3544 biopsies relative to oesophageal biopsies as measured by Simpson and Shannon 3545 diversity (paired Wilcoxon) (Supplementary figure 4) 3546

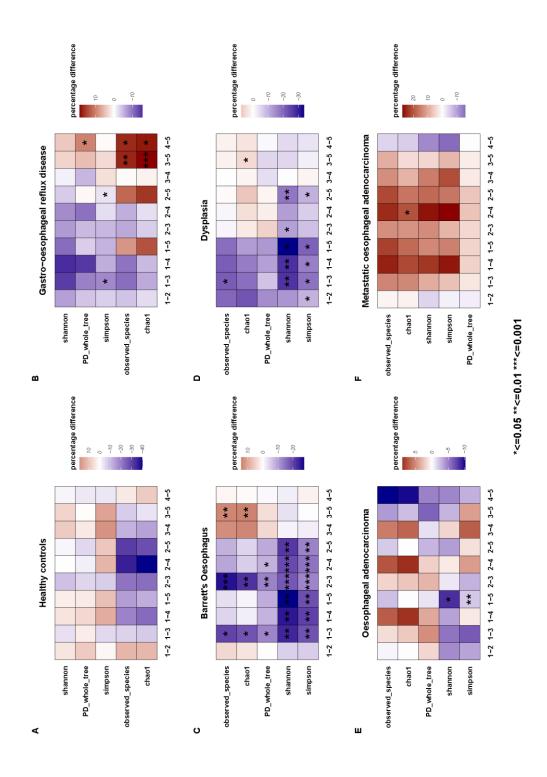
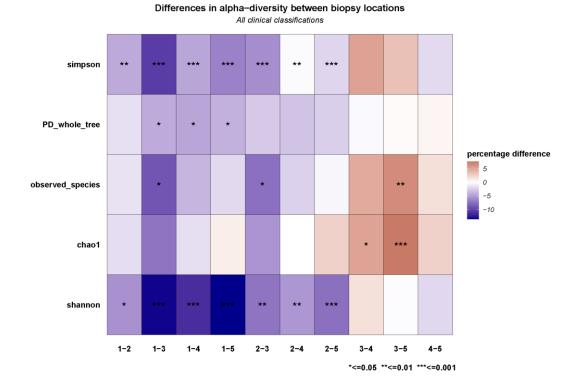



Figure 4. Differences in Alpha-diversity between biopsy location with respect to clinical
classification. Heat-plot representing differences in alpha diversity indices between each pair of
biopsy location. Statistical testing performed using paired Wilcoxon. (A) Data derived from Healthy
controls. (B) Data derived from individuals with GORD. (C) Data derived from individuals with BO.
(D) Data derived from individuals with Dysplasia. (E) Data derived from individuals with OAC. (F)
Data derived from individuals with metastatic OAC.

3557 Supplementary figure 4. Differences in Alpha-diversity with respect to biopsy location. Heat-plot

3558 representing differences in various alpha-diversity measurements. Data was derived from biopsies

3559 from all clinical classifications. Statistical testing performed using paired Wilcoxon.

A significant difference in beta-diversity was observed between biopsy location in the context of each group on the oesophageal adenocarcinoma sequence (Figure 4, Supplementary data 2). The microbiomes of biopsies which were anatomically closer together tended to cluster closer together.

3566

			Beta-diver	sity metrics wi	th respect to	biopsy locatio	n	
	Bray–Curt	is	unweighte	ed UniFrac	Jaccard In	dex	Robust Ait	chison
Clinical classification	P-value	R-squared	P-value	R-squared	P-value	R-squared	P-value	R-squared
Healthy Controls	0.002	0.049	0.243	0.054	0.327	0.047	0.105	0.035
GORD	0.002	0.015	0.226	0.014	0.049	0.016	0.001	0.021
во	0.001	0.025	0.008	0.02	0.069	0.014	0.003	0.015
Dysplasia	0.001	0.051	0.077	0.029	0.181	0.026	0.001	0.052
OAC	0.001	0.02	0.062	0.015	0.062	0.011	0.073	0.009
Metastatic OAC	0.116	0.049	0.665	0.03	0.283	0.039	0.453	0.016

3567 Supplementary table 2. Analysis of difference in beta-diversity metrics with respect to biopsies

3568 location in the context of each clinical classification. P-value and R-squared calculated using

3569 Permutational multivariate analysis of variance (PERMANOVA).

3570

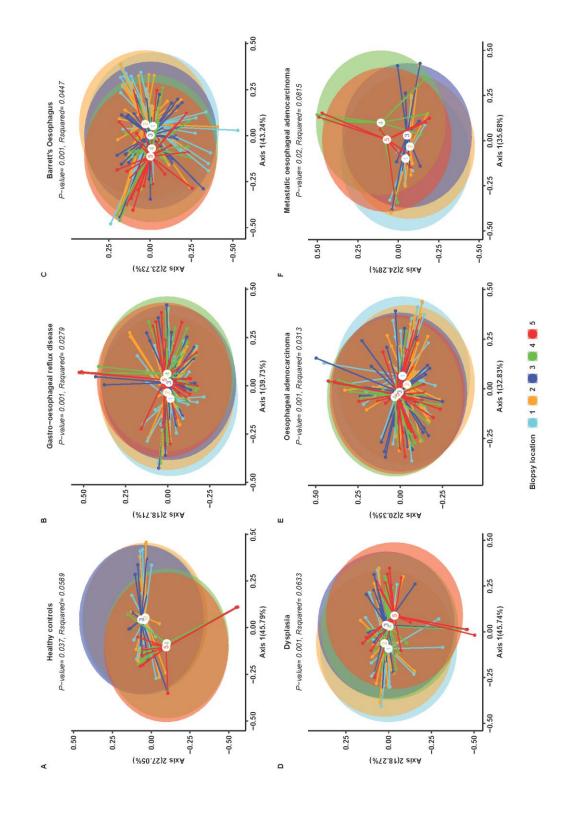


Figure 5. Difference in beta-diversity with respect to biopsy location. Principal Coordinates
Analysis (PCoA) plot representing weighted UniFrac distance. Data was derived from biopsies from
all clinical classifications. Statistical testing performed using Permutational Multivariate Analysis of
Variance. (A) Data derived from Healthy controls. (B) Data derived from individuals with GORD.
(C) Data derived from individuals with BO. (D) Data derived from individuals with Dysplasia. (E)
Data derived from individuals with OAC. (F) Data derived from individuals with metastatic OAC.

3578 **2.4.5 Differentially abundant ASVs, species and metabolic pathways**

3579 Differential abundance analysis on paired samples was performed to identify

differential species and ASVs between biopsy location within clinical classificationgroups.

3582 Samples derived from individuals with BO had the highest number of differentially

abundant species and ASVs (Figure 5C, Supplementary figure 5C). In people with

BO, *Fusobacterium nucleatum*, a putative oncobacterium, was enriched on

- 3585 metaplastic tissue (biopsy location 3) relative to an adjacent oesophageal tissue
- 3586 (biopsy location 2). Similarly, in individuals with dysplasia, *F. nucleatum* was found

to be enriched on dysplastic tissue relative to adjacent oesophageal tissue (Figure

3588 5D). With respect to individuals with OAC, only one species, *Veillonella atypica*,

differed in abundance between neoplastic tissue and at only one site, biopsy location

3590 5 (Figure 5E). At the ASV level, an ASV, Seq 62, assigned to *F. nucleatum* was

assessment and a sense of the s

3592 5E).

3593 Generally, sample sites which were physically closer together (e.g., 1 versus 2 and 4

versus 5) had fewer differentially abundant taxa. Notably, at the species level, no

differentially abundant taxa were observed between sites for the metastatic group.

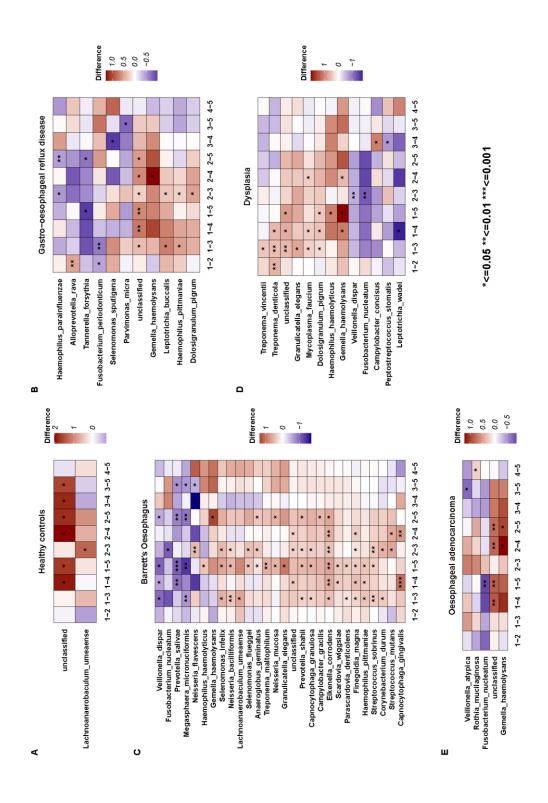
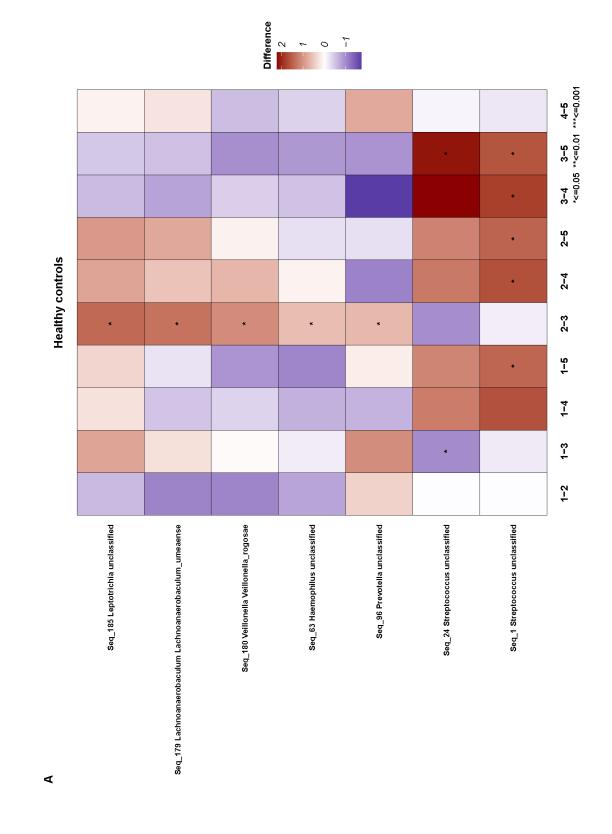
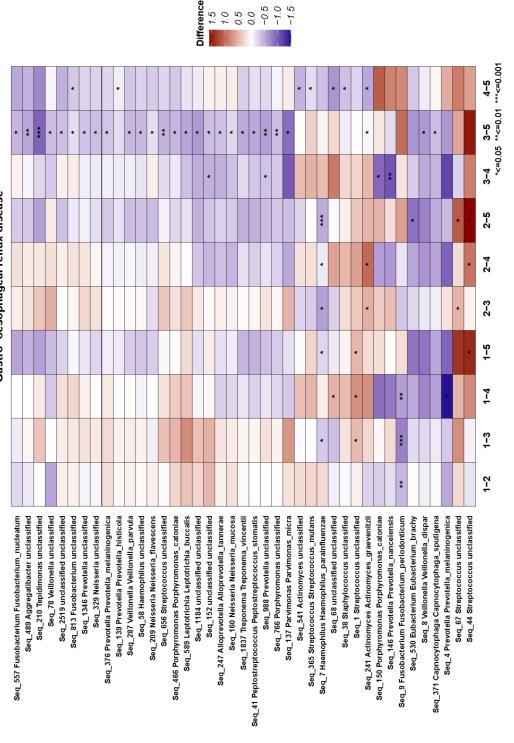
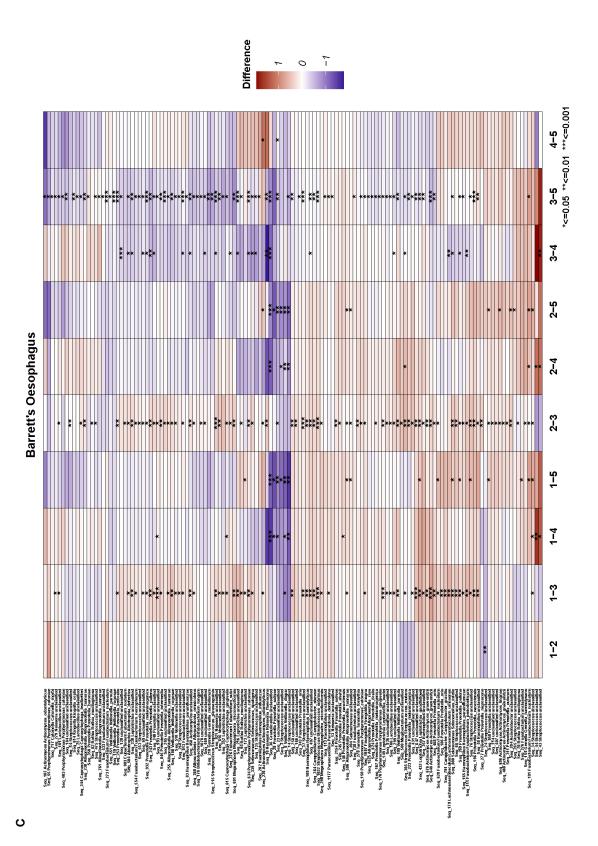
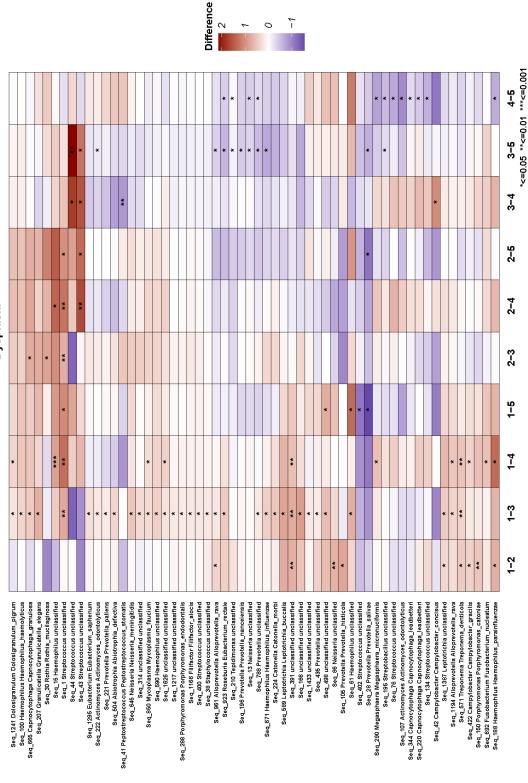




Figure 6. Differentially abundant species between biopsy location within clinical classification
groups. Heat-map of differential species between each pair of biopsy location per clinical
classification. (A) Data derived from Healthy controls. (B) Data derived from individuals with
GORD. (C) Data derived from individuals with BO. (D) Data derived from individuals with
Dysplasia. (E) Data derived from individuals with OAC. Statistical testing was using paired
Wilcoxon.

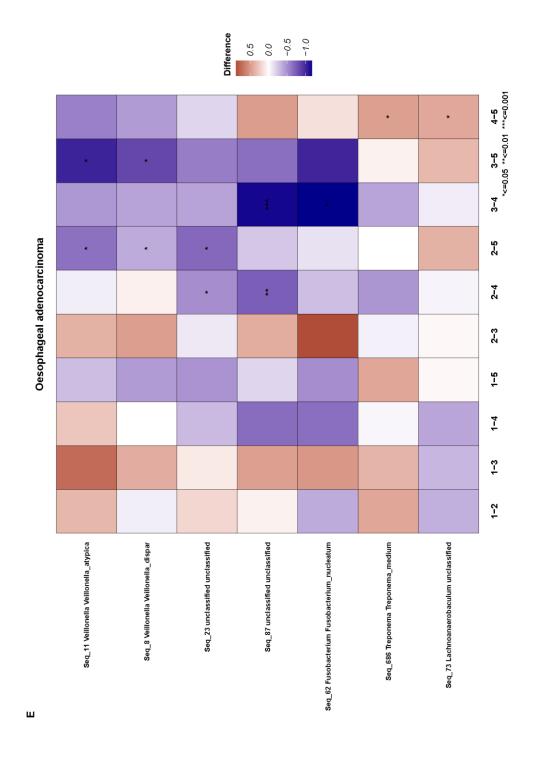


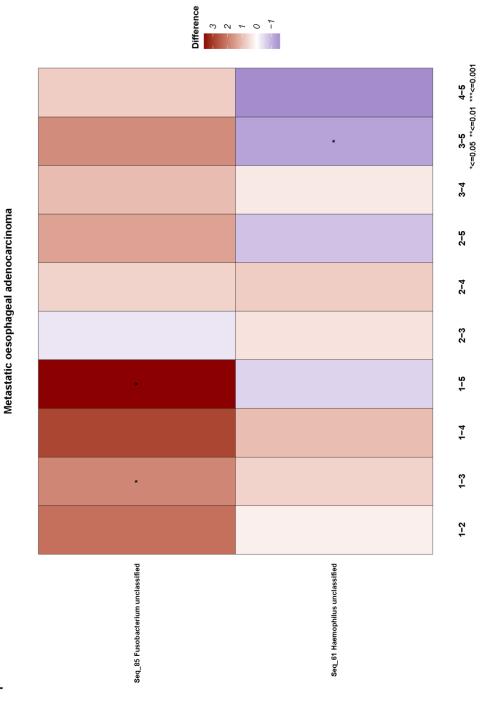

1.5 1.0 0.5 1.0.5 1.0.5

-1.0

Gastro-oesophageal reflux disease

m


Ļ.


2 ~ 0

Dysplasia

3607

Δ

3610 Supplementary figure 5. Differentially abundant ASVs between biopsy location. Heat-map of 3611 differential ASVs between each pair of biopsy location per clinical classification. Statistical testing 3612 was using paired Wilcoxon. (A) Data derived from Healthy controls. (B) Data derived from 3613 individuals with GORD. (C) Data derived from individuals with BO. (D) Data derived from 3614 individuals with Dysplasia. (E) Data derived from individuals with OAC. (F) Data derived from 3615 individuals with metastatic OAC.

3616

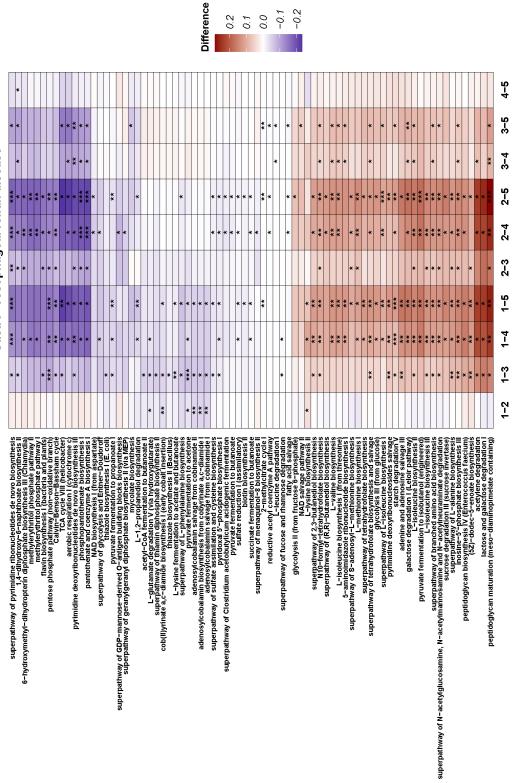
щ

3618	Using the algorithm PICRUSt2, we inferred metabolic pathways from ASV data. A
3619	number of pathways were found to be differential abundant between biopsy sites
3620	derived from all clinical classifications (Supplementary figure 6). In line with
3621	differential species and ASVs, the number of metabolic pathways that were
3622	statistically different increases the further the sites were physically distant from each
3623	other.

4-5 * * * * * * * * * * * * 3-4 × * * * * * 2-2 7 * * * × * * * * * × * 2-4 * * * * * * * * * * 1-5 * * * * * * * * 1-4 * * * * * * * * * * * * * * 1-30 1-30 * * * * * * * 1-12 * * pyruvate fermentation to isobutanol (engineered) sucrose degradation III (sucrose invertase) L-lysine biosynthesis II biotin biosynthesis II methylerythritol phosphate pathway II thiamin salvage II superpathway of (R,R)-butanediol biosynthesis O-antigen building blocks biosynthesis (E. coli) superpathway of N-acetylglucosamine, N-acetylmannosamine and N-acetylneuraminate degradation glycogen biosynthesis I (from ADP-D-Glucose) superpathway of purine deoxyribonucleosides degradation superpathway of L-alanine biosynthesis inosine-5'-phosphate biosynthesis III superpathway of L-methionine biosynthesis (transsulfuration) acetylene degradation hexitol fermentation to lactate, formate, ethanol and acetate superpathway of GDP-mannose-derived O-antigen building blocks biosynthesis flavin biosynthesis I (bacteria and plants) 6-hydroxymethyl-dihydropterin diphosphate biosynthesis III (Chlamydia) superpathway of L-aspartate and L-asparagine biosynthesis phosphopantothenate biosynthesis I CMP-3-deoxy-D-manno-octulosonate biosynthesis I lipid IVA biosynthesis Kdo transfer to lipid IVA III (Chlamydia) superpathway of pyrimidine nucleobases salvage pentose phosphate pathway (non-oxidative branch) Calvin-Benson-Bassham cycle superpathway of 2,3-butanediol biosynthesis L-methionine biosynthesis I peptidoglycan biosynthesis IV (Enterococcus faecium) peptidoglycan maturation (meso-diaminopimelate containing) formaldehyde oxidation I formaldehyde assimilation II (RuMP Cycle) superpathway of polyamine biosynthesis I reductive TCA cycle I L-histidine degradation I pantothenate and coenzyme A biosynthesis I aspartate superpathway lactose and galactose degradation I methylerythritol phosphate pathway I

Difference

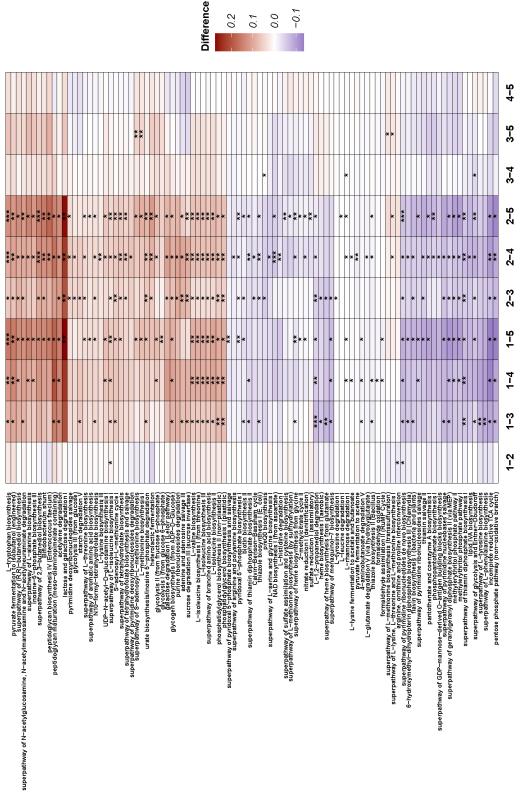
0.4 0.2 0.0 -0.2


ы Ч-Б 2-3

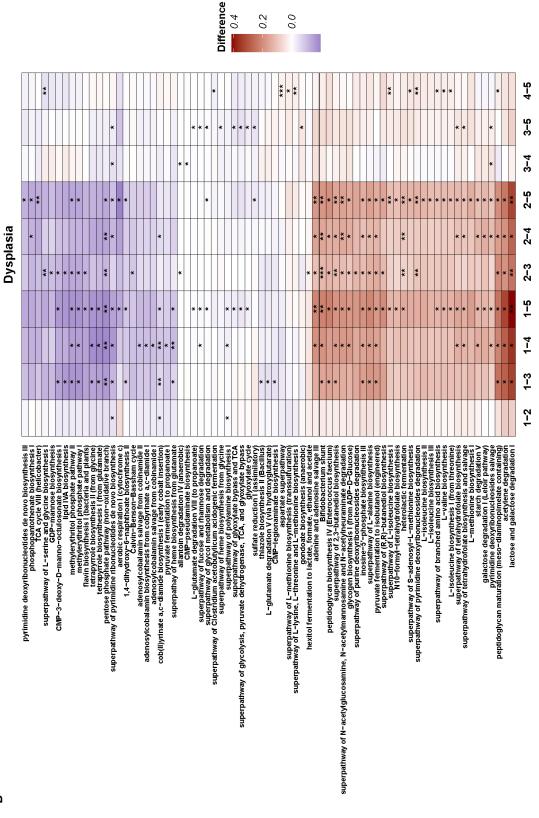
۷

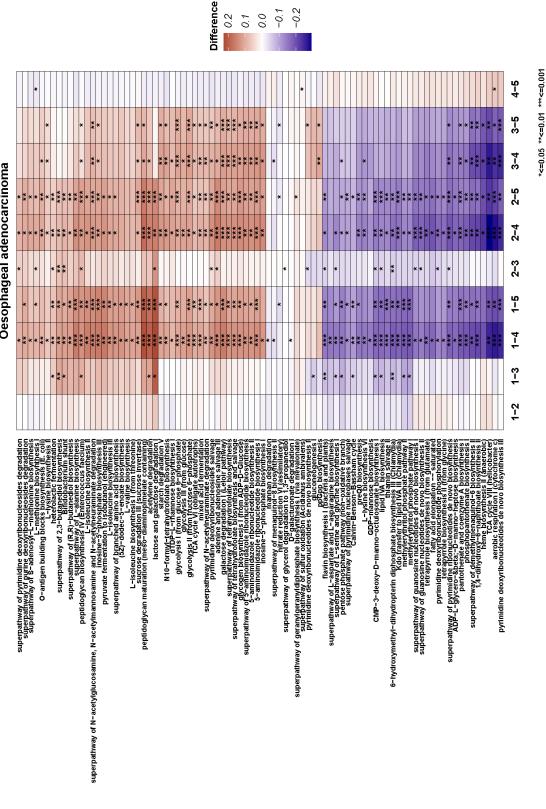
Healthy controls

3626

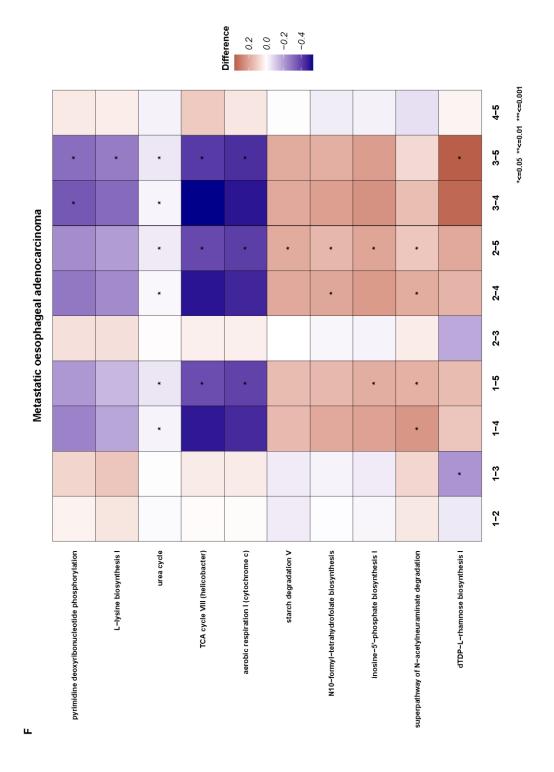

3627

Gastro-oesophageal reflux disease


ш


3628

Barrett's Oesophagus


υ

Oesophageal adenocarcinoma

ш

Supplementary figure 6. Differentially abundant microbiome-encoded metabolic pathways
between biopsy locations. Heat-map of differential species between each pair of biopsy location
per clinical classification. (A) Data derived from Healthy controls. (B) Data derived from individuals
with GORD. (C) Data derived from individuals with BO. (D) Data derived from individuals with
Dysplasia. (E) Data derived from individuals with OAC. (F) Data derived from individuals with
metastatic OAC. Statistical testing was using paired Wilcoxon.

3642 **2.5 Discussion**

In this study we identified a number of microbiome features which differed between
clinical classifications along the oesophageal adenocarcinoma sequence. We also
identified microbiome differences within the upper digestive tract of the individuals
along the OAC sequence.

3647 Although the microbiome did not dramatically differ with respect to biopsy location, 3648 a shift in the microbiome was detected as measured by beta-diversity. We observed 3649 that the microbiome of metaplastic tissue derived from individuals with BO had a 3650 higher alpha diversity relative to that of the adjacent tissue. Metaplastic tissue has a 3651 crypt structure similar to that of the intestine. This structure could possibly allow for 3652 growth of a more diverse range of bacterial taxa. We did not observe a significant 3653 difference in alpha diversity between clinical groups. This is in contrast to previous 3654 reports by Elliott et al who identified a lower alpha diversity in cancer samples relative to BO samples and healthy control samples²⁷. Differences in sample depth 3655 3656 may explain this disparity as the current study has more than a 3X greater minimum 3657 sequencing depth relative to the Elliott et al study.

3658 Previous studies have identified an enrichment of *F. nucleatum* on tumour samples

3659 relative to matched normal tissue in the context of colorectal cancer and breast

3660 cancer^{30,31}. We did not find any conclusive evidence for the enrichment of F.

3661 *nucleatum* on OAC tissue relative to matched healthy controls. However, we did find

a particular ASV to be enriched on adenocarcinoma samples relative to adjacent

3663 gastric samples.

At a macroecological level, the microbiome associated with the various stages along the oesophageal adenocarcinoma sequence did not differ dramatically as measured by alpha and beta-diversity. We did see a difference in beta-diversity in samples derived from the GOJ (Biopsy location 3) as well as gastric biopsies (Biopsy location 4 and 5).

A history of periodontal disease has been associated with OAC, with a 43% and 52%

3670 increased risk³². *P. denticola and Bifidobacterium dentium* have been implicated in

- 3671 the development of dental caries 33,34 . We observed these taxa to be enriched in
- 3672 disease groups relative to healthy controls in a number of biopsy sites. Previous
- 3673 work by Elliott et al identified *Lactobacillus fermentum*, also a caries-associated
- 3674 taxon, as being enriched in the oesophageal microbiome of individuals with OAC³⁵.
- 3675 The acid resistant nature of these taxa may provide a selective advantage to grow in
- an oesophagus with abnormally low pH due to acid reflux.
- 3677 We identified an ASV assigned to *F. nucleatum* to be enriched in the disease groups
- 3678 relative to healthy controls in oesophageal-derived samples. A growing body of work
- has linked *F. nucleatum* to CRC oncogenesis both by association, but also and
- 3680 mechanistically³⁶. An enrichment of *F. nucleatum* in oesophageal samples has been
- 3681 previously reported to be associated with a poorer prognosis as it relates to
- 3682 oesophageal squamous cell carcinoma^{37,38}.
- 3683 At the GOJ, F. necrophorum was observed to be enriched in subjects/biopsies with
- 3684 dysplastic and neoplastic presentations versus those without³⁹. In a recent meta-
- 3685 analysis, an enrichment of *F. necrophorum* in the colon microbiome was associated
- 3686 with colorectal cancer. F. necrophorum can be described as an opportunistic
- 3687 pathogen which is a canonical resident of the human alimentary canal. F.
 - 190

3688 *necrophorum* is a causative agent of Lemierre's syndrome which is characterised by a septic thrombophlebitis of the internal jugular vein⁴⁰. Furthermore, *Fusobacterium* 3689 necrophorum is known to cause other infections of the head and neck including non-3690 streptococcal tonsillitis and peritonsillar abscess^{41,42}. What drives the progression of 3691 3692 the oesophageal adenocarcinoma sequence remains an area of intense research. An 3693 inflammatory response to chronic colonization by F. necrophorum may promote 3694 oncogenesis. However, one could not rule out a model where F. necrophorum 3695 opportunistically grows in the setting of diseased tissue.

3696 We found microbiome-encoded pathways relating to B12 synthesis to be depleted in

the metastatic OAC cohort. Increased levels of serum B12 has been previously

3698 associated with increased mortality in the context of cancer⁴³. One might speculate

that an increasing level of B12 in the environment of a microbe would lead to the

down regulation of B12 synthetic pathways as the need for microbes to synthesise

their own B12 would be attenuated.

3702 A number of limitations within this study should be noted. Some of the clinical 3703 groups within this study, particular the healthy control group and metastatic OAC 3704 group, have low numbers of individuals. As noted, there is a bias in terms of sex in 3705 the clinical groups with those of the male sex being more frequent in the later stages 3706 of the OAC sequence. As sex is known to associate with differences in gut microbiome this sex driven variation may be also found in the oesophagus⁴⁴. No 3707 3708 quantitative microbiome data was gathered during this study. One might expect 3709 significant variation in microbial load between clinical groups. As mentioned the 3710 crypt like structure of BO may provide a niche which allows a higher alpha diversity 3711 but may also allow a greater bacterial load. Furthermore, one would expect the

3712 gastric microbiota to have a higher biomass than oesophageal microbiota. It has been 3713 previously reported that the use of different primer pairs led to different levels of off target amplification of human DNA⁴⁵. In this study we used the V3 V4 primer pair 3714 3715 which has been observed to amplify Human DNA more than the V1 V3 primer pair. 3716 Characterising the upper digestive tract microbiome in the context of oesophageal 3717 adenocarcinoma may provide information pertaining to OAC oncogenesis, detection, 3718 and therapeutic development. Bacterial taxa which promote inflammation including 3719 those associated with periodontal disease may provide a tumorigenic 3720 microenvironment which promotes cancer development. Even if these taxa do not 3721 directly drive oncogenesis, their abundance may be directly associated with the 3722 oncogenesis process. Thus, taxa associated with adenocarcinoma process may 3723 provide diagnostic or prognostic information. A microbe such as F. necrophorum 3724 may provide prognostic data with respect to delineating which individuals with BO 3725 will go on to develop OAC. Recently, adjuvant immune checkpoint inhibitor treatment was demonstrated to increase disease-free survival in patients with OAC⁴⁶. 3726 3727 The gut microbiome has been associated with the efficacy of immune checkpoint inhibitors^{47,48}. It is possible that the local microbiome of the oesophagus may 3728 3729 modulate the immune microenvironment of OAC and thus the efficiency of immune 3730 checkpoint inhibitors. 3731 Further research such as longitudinal studies and mechanistic assays will be needed to further validate the findings of this study and the accompanying inferences. 3732

3733

3734 **2.6 Acknowledgments**

- 3735 This work was supported by The Health Research Board of Ireland under
- 3736 Grant ILP-POR-2017-034, and by Science Foundation Ireland
- 3737 (APC/SFI/12/RC/2273_P2) in the form of a research centre, APC Microbiome
- 3738 Ireland.
- 3739

3740 **2.7 References**

Sung, H. <i>et al.</i> Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. <i>CA Cancer J Clin</i> , doi:10.3322/caac.21660 (2021).
Neal, R. D. <i>et al.</i> Is increased time to diagnosis and treatment in symptomatic cancer associated with poorer outcomes? Systematic review. <i>British journal of cancer</i> 112 Suppl 1 , S92-S107, doi:10.1038/bjc.2015.48 (2015).
Anderson, L. A. <i>et al.</i> Survival for oesophageal, stomach and small intestine cancers in Europe 1999-2007: Results from EUROCARE-5. <i>Eur J Cancer</i> 51 , 2144-2157, doi:10.1016/j.ejca.2015.07.026 (2015).
Smyth, E. C. <i>et al.</i> Oesophageal cancer. <i>Nat Rev Dis Primers</i> 3 , 17048, doi:10.1038/nrdp.2017.48 (2017).
Thrift, A. P. Global burden and epidemiology of Barrett oesophagus and oesophageal cancer. <i>Nature Reviews Gastroenterology & Hepatology</i> , doi:10.1038/s41575-021-00419-3 (2021).
Richter, J. E. & Rubenstein, J. H. Presentation and Epidemiology of Gastroesophageal Reflux Disease. <i>Gastroenterology</i> 154 , 267-276, doi: <u>https://doi.org/10.1053/j.gastro.2017.07.045</u> (2018).
Tan, M. C. <i>et al.</i> Systematic review with meta-analysis: prevalence of prior and concurrent Barrett's oesophagus in oesophageal adenocarcinoma patients. <i>Aliment Pharmacol Ther</i> 52 , 20-36, doi:10.1111/apt.15760 (2020).
Curtius, K., Rubenstein, J. H., Chak, A. & Inadomi, J. M. Computational modelling suggests that Barrett's oesophagus may be the precursor of all oesophageal adenocarcinomas. <i>Gut</i> , gutjnl-2020-321598, doi:10.1136/gutjnl-2020-321598 (2020).

3765 3766 3767	9	Stachler, M. D. <i>et al.</i> Detection of Mutations in Barrett's Esophagus Before Progression to High-Grade Dysplasia or Adenocarcinoma. <i>Gastroenterology</i> 155 , 156-167, doi:10.1053/j.gastro.2018.03.047 (2018).		
3768 3769 3770	10	Thrift, A. P. Global burden and epidemiology of Barrett oesophagus and oesophageal cancer. <i>Nature Reviews Gastroenterology & Hepatology</i> , 1-12 (2021).		
3771 3772 3773	11	Erőss, B. <i>et al.</i> Helicobacter pylori infection reduces the risk of Barrett's esophagus: A meta-analysis and systematic review. <i>Helicobacter</i> 23 , e12504, doi:10.1111/hel.12504 (2018).		
3774 3775 3776 3777	12	Wang, Z. <i>et al.</i> Helicobacter pylori Infection Is Associated With Reduced Risk of Barrett's Esophagus: An Analysis of the Barrett's and Esophageal Adenocarcinoma Consortium. <i>Am J Gastroenterol</i> 113 , 1148-1155, doi:10.1038/s41395-018-0070-3 (2018).		
3778 3779 3780	13	Barrett, M., Hand, C. K., Shanahan, F., Murphy, T. & O'Toole, P. W. Mutagenesis by microbe: The role of the microbiota in shaping the cancer genome. <i>Trends in cancer</i> 6 , 277-287 (2020).		
3781 3782	14	Sepich-Poore, G. D. <i>et al.</i> The microbiome and human cancer. <i>Science</i> 371 (2021).		
3783 3784	15	Ternes, D. <i>et al.</i> Microbiome in colorectal cancer: how to get from meta- omics to mechanism? <i>Trends in microbiology</i> 28 , 401-423 (2020).		
3785 3786 3787	16	Kostic, A. D. <i>et al.</i> Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. <i>Cell Host Microbe</i> 14 , 207-215, doi:10.1016/j.chom.2013.07.007 (2013).		
3788 3789 3790	17	Pleguezuelos-Manzano, C. <i>et al.</i> Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. <i>Nature</i> 580 , 269-273, doi:10.1038/s41586-020-2080-8 (2020).		
3791 3792	18	Flemer, B. <i>et al.</i> Tumour-associated and non-tumour-associated microbiota in colorectal cancer. <i>Gut</i> 66 , 633-643, doi:10.1136/gutjnl-2015-309595 (2017).		
3793	19	Amplicon, P., Clean-Up, P. & Index, P. (2013).		
3794 3795 3796	20	Klindworth, A. <i>et al.</i> Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. <i>Nucleic Acids Res</i> 41 , e1, doi:10.1093/nar/gks808 (2013).		
3797 3798 3799	21	Callahan, B. J. <i>et al.</i> DADA2: High-resolution sample inference from Illumina amplicon data. <i>Nat Methods</i> 13 , 581-583, doi:10.1038/nmeth.3869 (2016).		
3800 3801 3802 3803	22	Schloss, P. D. <i>et al.</i> Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. <i>Appl Environ Microbiol</i> 75 , 7537-7541, doi:10.1128/AEM.01541-09 (2009).		

3804 3805 3806	23	Allard, G., Ryan, F. J., Jeffery, I. B. & Claesson, M. J. SPINGO: a rapid species-classifier for microbial amplicon sequences. <i>BMC Bioinformatics</i> 16 , 324, doi:10.1186/s12859-015-0747-1 (2015).	
3807 3808	24	Caporaso, J. G. <i>et al.</i> QIIME allows analysis of high-throughput community sequencing data. <i>Nat Methods</i> 7 , 335-336, doi:10.1038/nmeth.f.303 (2010).	
3809 3810 3811	25	Martino, C. <i>et al.</i> A Novel Sparse Compositional Technique Reveals Microbial Perturbations. <i>mSystems</i> 4 , e00016-00019, doi:10.1128/mSystems.00016-19 (2019).	
3812 3813	26	Douglas, G. M. <i>et al.</i> PICRUSt2 for prediction of metagenome functions. <i>Nature Biotechnology</i> 38 , 685-688, doi:10.1038/s41587-020-0548-6 (2020).	
3814 3815 3816 3817	27	Elliott, D. R. F., Walker, A. W., O'Donovan, M., Parkhill, J. & Fitzgerald, R. C. A non-endoscopic device to sample the oesophageal microbiota: a case- control study. <i>Lancet Gastroenterol Hepatol</i> 2 , 32-42, doi:10.1016/S2468- 1253(16)30086-3 (2017).	
3818 3819 3820 3821	28	Deshpande, N. P., Riordan, S. M., Castano-Rodriguez, N., Wilkins, M. R. & Kaakoush, N. O. Signatures within the esophageal microbiome are associated with host genetics, age, and disease. <i>Microbiome</i> 6 , 227, doi:10.1186/s40168-018-0611-4 (2018).	
3822 3823 3824	29	Nardone, G., Compare, D. & Rocco, A. A microbiota-centric view of diseases of the upper gastrointestinal tract. <i>The Lancet Gastroenterology & Hepatology</i> 2 , 298-312 (2017).	
3825 3826 3827	30	Castellarin, M. <i>et al.</i> Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. <i>Genome Res</i> 22 , 299-306, doi:10.1101/gr.126516.111 (2012).	
3828 3829 3830	31	Parhi, L. <i>et al.</i> Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression. <i>Nature Communications</i> 11 , 3259, doi:10.1038/s41467-020-16967-2 (2020).	
3831 3832	32	Lo, CH. <i>et al.</i> Periodontal disease, tooth loss, and risk of oesophageal and gastric adenocarcinoma: a prospective study. <i>Gut</i> 70 , 620-621 (2021).	
3833 3834 3835	33	Zhang, L. <i>et al.</i> Quantitative analysis of salivary oral bacteria associated with severe early childhood caries and construction of caries assessment model. <i>Scientific reports</i> 10 , 1-8 (2020).	
3836 3837 3838	34	Nakajo, K., Takahashi, N. & Beighton, D. Resistance to acidic environments of caries-associated bacteria: Bifidobacterium dentium and Bifidobacterium longum. <i>Caries research</i> 44 , 431-437 (2010).	
3839 3840 3841	35	Elliott, D. R. F., Walker, A. W., O'Donovan, M., Parkhill, J. & Fitzgerald, R. C. A non-endoscopic device to sample the oesophageal microbiota: a case- control study. <i>The lancet Gastroenterology & hepatology</i> 2 , 32-42 (2017).	
3842 3843 3844	36	Brennan, C. A. & Garrett, W. S. Fusobacterium nucleatum - symbiont, opportunist and oncobacterium. <i>Nature reviews. Microbiology</i> 17 , 156-166, doi:10.1038/s41579-018-0129-6 (2019).	

3845 3846 3847	37	Yamamura, K. <i>et al.</i> Human microbiome Fusobacterium nucleatum in esophageal cancer tissue is associated with prognosis. <i>Clinical Cancer Research</i> 22 , 5574-5581 (2016).
3848 3849 3850	38	Yamamura, K. <i>et al.</i> Intratumoral Fusobacterium nucleatum levels predict therapeutic response to neoadjuvant chemotherapy in esophageal squamous cell carcinoma. <i>Clinical Cancer Research</i> 25 , 6170-6179 (2019).
3851 3852 3853	39	Thomas, A. M. <i>et al.</i> Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. <i>Nature medicine</i> 25 , 667-678 (2019).
3854 3855 3856	40	Kuppalli, K., Livorsi, D., Talati, N. J. & Osborn, M. Lemierre's syndrome due to Fusobacterium necrophorum. <i>The Lancet infectious diseases</i> 12 , 808-815 (2012).
3857 3858 3859	41	Atkinson, T. P. <i>et al.</i> Analysis of the tonsillar microbiome in young adults with sore throat reveals a high relative abundance of Fusobacterium necrophorum with low diversity. <i>PloS one</i> 13 , e0189423 (2018).
3860 3861 3862	42	Ehlers Klug, T., Rusan, M., Fuursted, K. & Ovesen, T. Fusobacterium necrophorum: most prevalent pathogen in peritonsillar abscess in Denmark. <i>Clinical Infectious Diseases</i> 49 , 1467-1472 (2009).
3863 3864 3865	43	Arendt, J. F. H., Farkas, D. K., Pedersen, L., Nexo, E. & Sørensen, H. T. Elevated plasma vitamin B12 levels and cancer prognosis: A population-based cohort study. <i>Cancer epidemiology</i> 40 , 158-165 (2016).
3866 3867 3868	44	Zhang, X. <i>et al.</i> Sex-and age-related trajectories of the adult human gut microbiota shared across populations of different ethnicities. <i>Nature Aging</i> 1 , 87-100 (2021).
3869 3870 3871	45	Walker, S. P. <i>et al.</i> Non-specific amplification of human DNA is a major challenge for 16S rRNA gene sequence analysis. <i>Scientific Reports</i> 10 , 16356, doi:10.1038/s41598-020-73403-7 (2020).
3872 3873 3874	46	Kelly, R. J. <i>et al.</i> Adjuvant nivolumab in resected esophageal or gastroesophageal junction cancer. <i>New England Journal of Medicine</i> 384 , 1191-1203 (2021).
3875 3876	47	Baruch, E. N. <i>et al.</i> Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. <i>Science</i> 371 , 602-609 (2021).
3877 3878	48	Davar, D. <i>et al.</i> Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients. <i>Science</i> 371 , 595-602 (2021).
3879		

Chapter 3 - Mapping the colorectal tumour microbiota.

This work has been accepted for publication in the journal Gut Microbes.

Authors:

Clodagh L Murphy*, Maurice Barrett*, Paola Pellanda, Shane Kileen, Morgan McCourt, Micheal O'Riordain, Fergus Shanahan, Paul W O'Toole

*Joint first authorship: These authors contributed equally to this work.

Citation:

MURPHY, C., BARRETT, M., PELLANDA, P., KILLEEN, S., MCCOURT, M., ANDREWS, E., O'RIORDAIN, M., SHANAHAN, F. & O'TOOLE, P. 2021. Mapping the colorectal tumor microbiota. *Gut Microbes*, 13, 1-10.

Maurice Barrett contributed to this work as follows:

- All bioinformatic analysis including sequence processing, compositional data analysis and statistical analysis.
- Data visualization i.e., construction of publication figures.
- Writing over half of the manuscript.

3.1 Abstract

The gut microbiome in patients with colorectal cancer (CRC) is different than that of healthy controls. Previous studies have profiled the CRC tumor microbiome using a single biopsy. However, since the morphology and cellular subtype vary significantly within an individual tumor, the possibility of sampling error arises for the microbiome within an individual tumor. To test this hypothesis, seven biopsies were taken from representative areas on and off the tumor in five patients with CRC. The microbiome composition was strikingly similar across all samples from an individual. The variation in microbiome alpha-diversity was significantly greater between individuals' samples then within individuals. This is the first study, to our knowledge, that shows that the microbiome of an individual tumor is spatially homogeneous. Our finding strengthens the assumption that a single biopsy is representative of the entire tumor, and that microbiota changes are not limited to a specific area of the neoplasm.

Keywords: colorectal, cancer, microbiome, tumor, gut

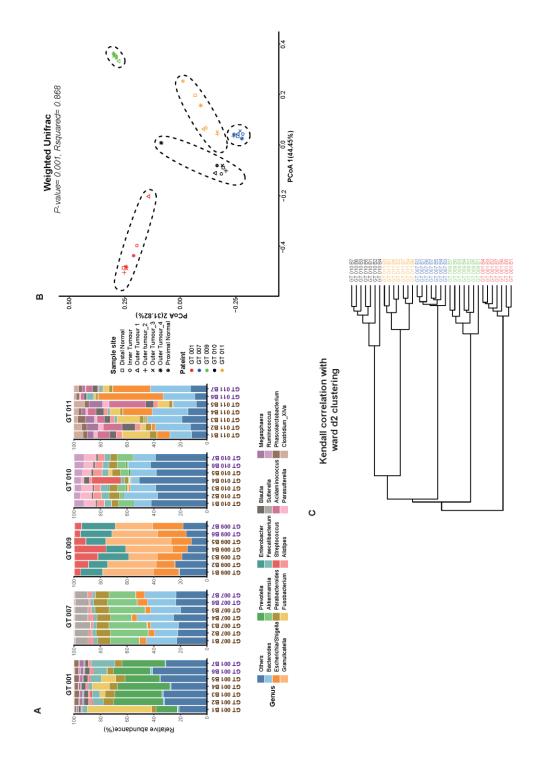
3.2 Introduction

Colorectal cancer (CRC) is the second largest cause of cancer death in the United States¹. Sporadic CRC arises after a series of cumulative genetic mutations², with a ten year progression from adenoma to CRC³. The microbiome is distinctly different in biopsies of CRC and adenomatous polyps⁴ ⁵, leading to an updated hypothesis that microbial changes⁶ and secondary consequences for immunological cell signalling⁷ may play a role in tumor progression. Bacteria are an established risk factor for cancer, such as *H. pylori*-related MALT lymphoma and gastric carcinoma^{8,9}. In particular, several individual microbes such as *Fusobacterium nucleatum¹⁰ and Escherichia coli¹¹ have been implicated in the pathogenesis of colorectal cancer, but a cause-effect relationship has not been established; rather, microbes and their metabolome represent complex collections of gene networks that interact bidirectionally with cancer cells¹².*

CRC-associated microbiota is characterized by a reduced alpha diversity compared with healthy controls¹³. Patients with CRC^{4,14} or adenomatous polyps^{4,15} show also distinct qualitative differences in both the microbiome and metabolome in fecal^{16,17} and biopsy samples^{4,14} compared with healthy controls. In these studies, the microbiota associated with cancerous and non-cancerous tissues within the same individual did not differ significantly^{4,14} which suggests that in CRC, a global microbial ecosystem change occurs throughout the colon^{4,18}. However, the microbial alterations differ between proximal and distal cancers⁴. These compositional changes often represent a relative over-abundance of oral bacteria, which are hypothesized to organize into biofilm-like structures¹⁹ on the tumor and on the right side of the 199 colon^{4,20}. We have previously described that CRC patients can be stratified into four groups based on bacterial co-abundance groups (CAGs) that link distinct mucosal gene-expression profiles⁴ with similar networks of oral-based bacteria found on the gut mucosa and oral mucosa^{18,20,21}.

Distinct morphological and phenotypical differences exist within and between colorectal tumours²². Classification systems such as NICE²³, Paris²⁴ and Kudo²⁵ use macroscopically visible differences in lesions to stratify malignant potential²⁴ or stage neoplastic tumors²⁶ detected at the time of endoscopy. Similarly, the World Health Organization (WHO) has classified the appearances of colorectal tumors at surgery into four groups: exophytic, endophytic, diffusely infiltrative and annular, with the recognition that significant overlap occurs between these categories²⁷. Macroscopic phenotypes may also be an overall predictor of genetic alterations and DNA methylation in a colorectal tumor²⁸. Intra-tumoral heterogeneity for both genetic and epigenetic factors in CRC are also evident²⁹.

Untargeted colonoscopy biopsies or untargeted segments of resected tumors has been used in most studies of CRC microbiota^{4,14,30,31}. Given the histologic and genetic intra-tumoral heterogeneity³² of CRC, topographic variance in the microbiota of a single tumor may be a confounding factor. Therefore, we undertook the first study aims to investigate the intra-tumoral microbial heterogeneity and its comparison with adjacent proximal and distal non-cancerous tissue.


3.3 Results

Five patients were recruited to the study, four males and one female, with a mean age of 72 ± 6.7 years as shown in Table 1. All patients had a diagnosis of colonic adenocarcinoma within the previous 1-2 months. Seven samples were obtained from each individual comprising normal tissue proximal to the tumor (biopsy 6), normal tissue distal to the tumor (biopsy 5), a central tumoral biopsy (biopsy 5) and four peripheral tumor biopsies (biopsies 1-4). The tissue microbiome was profiled by 16S rRNA gene amplicon sequencing.

Patient	GT 001	GT 007	GT 009	GT 010	GT 011
Type of neoplasm	Adenocarcinoma	Adenocarcinoma	Adenocarcinoma	Adenocarcinoma	Adenocarcinoma
Tumor location	rectum	transverse colon	sigmoid colon	caecum	ascending colon
Stage of neoplasm	T3N0M0	T3N0M0	T3N1M0	T3N1M0	T3N0M0
Time since diagnosis (months)	1	1	1	1	2
Type of surgery	Anterior resection	Right hemi- colectomy	Anterior resection	Right hemi- colectomy	Right hemi- colectomy
Bowel Prep	Moviprep	Moviprep	Moviprep	Moviprep	Moviprep
Alcohol intake per weeks	10 units	none	3 units	none	none
Smoking status	Current (2/day)	Ex-smoker (10/day x20years)	Ex-smoker (20/day x40years)	Non smoker	Ex-Smoker (10/day x35 years)
Probiotic use	No	No	No	No	No
Antibiotic exposure	No	Yes	Yes	Yes	Yes
Antibiotic regime used at surgery	N/A	IV co-amoxiclav and metronidazole	Oral metonidazole and neomycin	Oral metonidazole and neomycin	IV co-amoxiclav and metronidazole
Diverticulae	no	no	no	no	no
Medical comorbidite s	none	Hypertension, NIDDM	NIDDM, obstructive uropathy	Hypertension, anemia	Epilepsy, NIDDM, hypertension, hyperlipidemia
Medications	nil	aspirin, ramipril, esomprazole, atorvastatin, empagliflozin, metformin	atorvastatin	ramipril, lercanidipine, ferrous fumerate	bisoprolol, ezetimibe, rosuvastatin, hyoscine butylbromide, esomprazole, lercanidipine, carbamazepinesit agliptin, metformin

Table 1. Patient characteristics. Footnote: n = 4 males, 1 female, with a mean age of 72 ± 6.7 years

The microbiome composition was highly similar among samples within a particular individual (Figure 1A). The genus level composition differed significantly between patients (Figure 1A) but was remarkably similar within a single subject, both on (biopsy 1-5) and off the tumor site (biopsy 6 and 7). This was reflected in beta diversity distance metrics wherein samples clustered by individual rather that biopsy site as represented in Principal Co-ordinate Analysis (PCoA) plots (Figure 1B).

Figure 1. Microbiome relatedness of biopsies within Individuals. (A) Taxonomic bar plot of the proportional relative abundance of genera. "Others" is a grouping of genera with less than 1% abundancy across the samples as well as unclassified genera (B) PCoA plot representing weighted Unifrac distances. Biopsy location is represented by shapes while colours represent individual patients. Utilising the R package ggforce v0.3.1, ellipses were estimated using the Khachiyan algorithm. R-squared (R²) and p-values were calculated using Permutational Multivariate Analysis of Variance (PERMANOVA) via the R package vegan v2.4-2. (C) Dendrogram representing Kendall correlation with ward d2 clustering. Samples are coloured by individual.

The identity of the patient from whom the biopsy was taken was associated with the top four PCoA axes which collectively explained >90% of variance (see Supplementary figure 1, Supplementary table 1). However, there was no association between any of the top ten PCoA axes, which collectively explained ~99% of the variance, and sample site (Supplementary table 2). We employed Permutational multivariate analysis of variance (PERMANOVA) to calculate the association between sample meta-data factors and the global microbiome structure as defined by the beta-diversity distance matrixes. A strong association between the biopsy patient origin and the microbiome was identified (Figure 1B, Supplementary table 3). However, we did not detect any statistically significant association between global microbiome structure and sample site (Supplementary table 4). We next performed a patient-specific rank sum normalization on all samples to reduce the impact of patient bias. We performed a PERMANOVA on this transformed data to test for a significant association between location and the beta diversity metrics. However, we did not find a significant association (Supplementary table 5).

The beta diversity clustering data were supported by hierarchical clustering in which the topology of the dendrogram was clearly dictated by the subject identity rather than biopsy site (Figure 1C). Within subjects, there was no reproducible pattern of microbiota relatedness by anatomical origin that was replicated across subjects (Figure 1C).

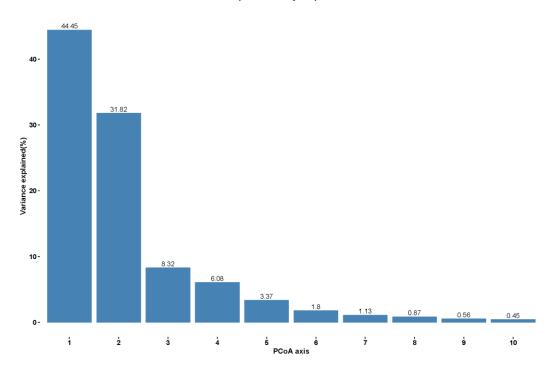
PCoA axis	P-value
1	0.0000017603
2	0.0000023873
3	0.0000266130
4	0.0000196660
5	0.1453059839
6	0.2208569369
7	0.9189331198
8	0.8767527693
9	0.7447672631
10	0.9402627020

Supplementary table 1. Association between PCoA axes and Patient ID. P value calculated using Kruskal–Wallis test

PCoA axis	P-value
1	0.9997487
2	0.9977087
3	0.9787245
4	0.9781814
5	0.2440231
6	0.1786758
7	0.5677194
8	0.4210597
9	0.3520217
10	0.1317221

Supplementary table 2. Association between PCoA axes and sample site. P value calculated using Kruskal–Wallis test

Beta-diversity metric	P-value	R squared
Weighted unifrac	0.001	0.868
Unweighted unifrac	0.001	0.715
Bray Curtis dissimilarity	0.001	0.852
Jaccard similarity	0.001	0.721

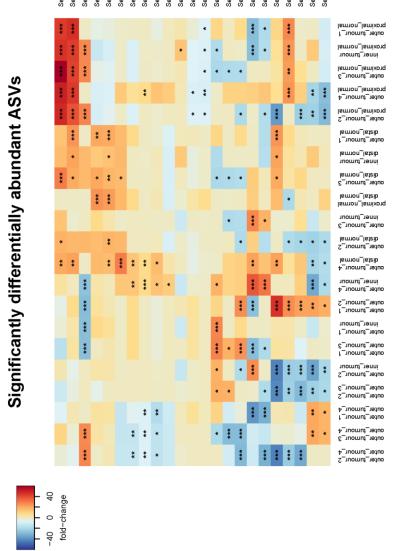

Supplementary table 3. Association between beta diversity metrics and Patient ID. P-value and R squared calculated using PERMANOVA.

Beta-diversity metric	P-value	R squared
Weighted unifrac	1	0.033
Unweighted unifrac	1	0.047
Bray Curtis dissimilarity	1	0.032
Jaccard similarity	1	0.058

Supplementary table 4. Association between beta diversity metrics and Patient ID. P-value and R squared calculated using PERMANOVA.

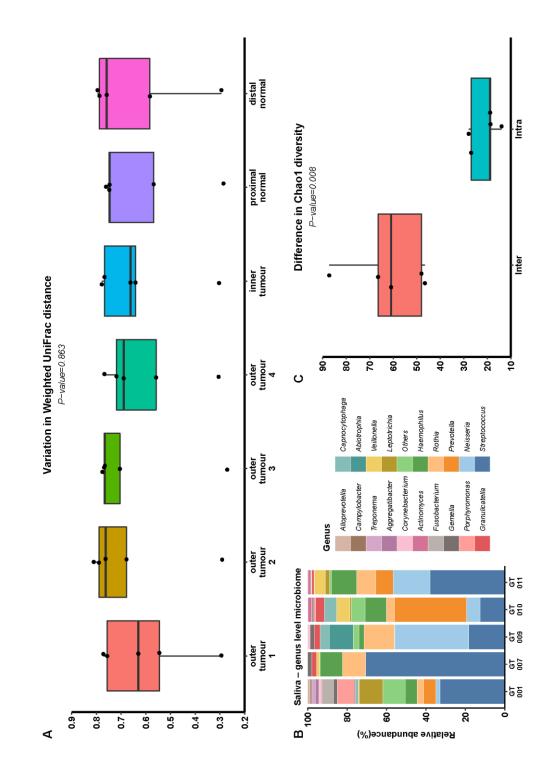
Beta-diversity metric	P-value	R squared
Bray Curtis dissimilarity	1	0.03151
Jaccard similarity	1	0.05768

Supplementary table 5. Association between beta diversity metrics and Patient ID with rank-sum normalization. P-value and R squared calculated using PERMANOVA.



Variance explained by top ten PCoA axes

Supplementary figure 1. Variance explained by first 10 PCoA axes. Bar plot displaying level of variance of variance explained by each access with regard to unweighted Unifrac distance.


Samples were pooled based on biopsy site and pairwise analysis was performed for each sample pair within the biopsy site. Differential ASV abundance was not detected with respect to anatomical site when we applied paired sample Wilcoxon test with Benjamini-Hochberg adjustment for multiple comparisons (Supplementary table 6). We next utilized DESeq2 which has been demonstrated to be sensitive when applied to small sample sizes^{33,34}. We identified a number of differentially abundant ASVs between sample-sites while controlling for which patient the biopsy originated from (Figure 2). Notably, a number of ASVs assigned to the oral species *Fusobacterium nucleatum*, were observed to be enriched on tumor samples relative to undiseased disease (distal normal and proximal normal). In particular Seq 31 was identified to be enriched in 5/5 proximal tumor biopsies relative to the healthy distal biopsy and 4/5 tumor biopsies relative to the healthy distal biopsy.

Seq 146 Parasutterella excrementihominis Seq 55 Faecalibacterium prausnitzi Seq 654 Bacteroides xylanisolvens Seq 31 Fusobacterium nucleatum Seq 34 Fusobacterium nucleatum Seq 84 Fusobacterium nucleatur Seq 43 Streptococcus sanguinis Seq 452 Barnesiella intestinihon Seq 96 Bifidobacterium longun Seq 496 Eubacterium desmola Seq 83 Ruminococcus bromi Seq 67 Fusobacterium nucle Seq 46 Gemmiger formicilis Seq 475 Clostridium rumin Seq 313 Ruminococcus Seq 302 Bradyrhizobium Seq 344 Ruminococcus Seq 178 Streptococcus Seq 473 Flavonifractor Seq 104 Streptococcus Seq 19 Streptococcus Seq 307 Dyella Seq 506 Dorea

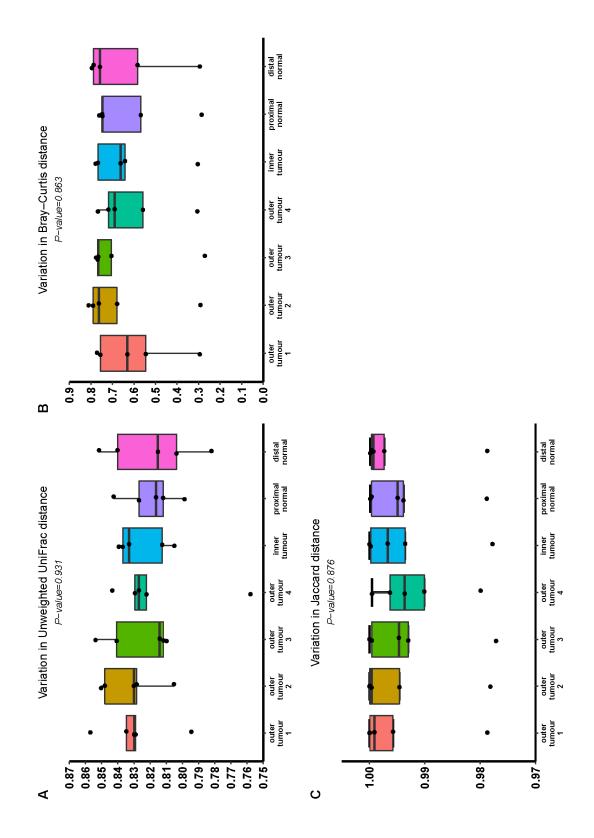


Figure 2. Differentially abundant ASVs. Heat plot displaying differentially ASVs between each pairwise comparison of every sample sit. Column names indicate which pairwise comparison. Row names display ASVs with which taxa it was assigned too. Only ASVs which could be assigned to the Genus level displayed. Stars indicate P-value. *<0.05, **<0.01 and ***<0.001

Previous studies have indicated that oral microbes can translocate from the oral cavity to the gut³⁵. Furthermore, CRC tumor microbiota is enriched with oral taxa²⁰. For these reasons, the buccal swab microbiota composition was analyzed and compared to that of the respective subjects' biopsy sites as a function of beta diversity distance (Figure 3A, 3B, Supplementary Figure 2). This analysis revealed that the microbiota of all the biopsies were equally distance from the oral microbiota in all the subjects.

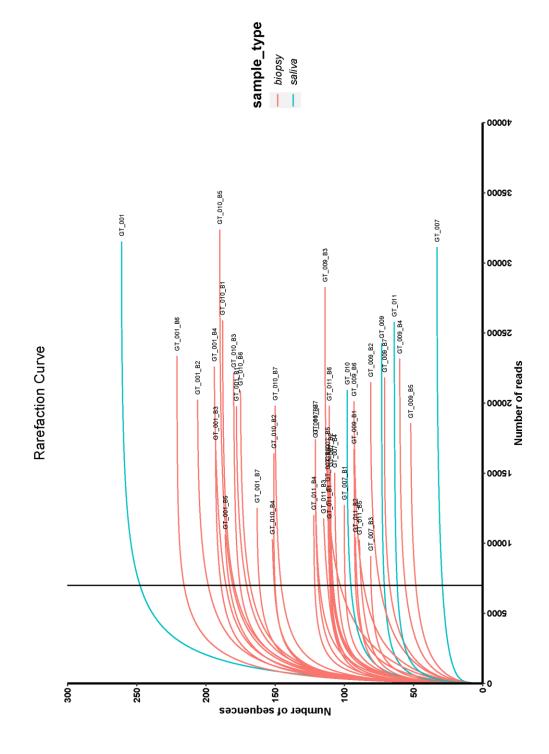
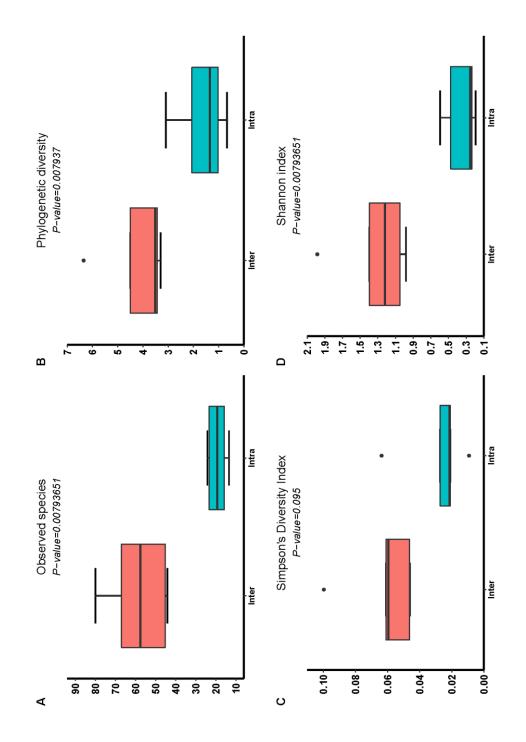


Figure 3. (A)Bar plot of the difference in Beta-diversity distance between the microbiota of indicated biopsy sites and paired buccal swab microbiota from the same subject. Kruskal–Wallis test was used to calculate p-values. (B) Taxonomic bar plot of the proportional relative abundance of genera of oral samples. "Others" is a grouping of genera with less than 0.25% abundancy across the samples as well as unclassified genera (C) Bar plot displaying the difference between Inter-individuals versus Intra-individual variation in alpha-diversity (Chao1).



Supplementary figure 2. Bar plot of the difference in Beta-diversity distance between the microbiota of indicated biopsy sites and paired buccal swab microbiota from the same subject. (A) Unifrac distance (B) Bray–Curtis (C) Jaccard. Kruskal–Wallis test was used to calculate p-values

The sequencing depth of the samples allowed for a thorough investigation of alpha diversity, that is microbial richness and evenness (Supplementary table 7, Supplementary Figure 3). Considering all biopsies from each sample sites examined, the difference in alpha diversity of the biopsy microbiota datasets as measured by 5 different indices was significantly greater between any two individuals then it was within individuals (Figure 3C, Supplementary figure 4).

Supplementary figure 3. Rarefaction Curve. Number of reads on x-axis. Number of unique ASV sequences. Blue lines indicate saliva samples. Red lines indicate colonic biopsy samples.

Supplementary figure 4. Bar plot displaying the difference between Inter-individuals versus Intraindividual variation in alpha-diversity (A) Observed species (B) Phylogenetic diversity (C) Simpson's Diversity Index (D) Shannon index

3.4 Discussion

Many studies have profiled the microbiome in CRC using cancer tissue^{4,14,30,31} from a single biopsy assuming that the microbiome profiled on this single specimen was representative of the tumor as a whole. This study confirms that this is a valid assumption.

Given the macroscopic and microscopic heterogeneity of CRC tumors, it may seem surprising that the microbiome of an individual tumor is very similar throughout the entire tumor tissue, as shown in this study. In contrast, significant differences were noted in the genus level abundance of particular taxa in the microbiota sequenced from biopsy samples from five individuals in the study. These variations are probably due to the differences of tumor location (Figure 1) as has been previously reported^{4,30}, as well as to other factors such as antibiotic exposure³⁶ and diet³⁷, which are known to alter the baseline microbiome.

Interestingly, as we showed in a previous study⁴, paired samples of un-diseased tissue proximal and distal to the tumor harbored the same microbiota with respect to dominant taxa and their relative abundance. Previous work has demonstrated the presence of anaerobic oral bacteria on the colorectal tumor mucosa^{20,31} consistent with the notion of a biofilm of pathologic bacteria forming³⁸ and seeding on the tumor. In the current study, various distance metrics did not show that any particular site was closer to the oral microbiome. However, we did detect specific oral-associated taxa such as *Fusobacterium nucleatum* and *Streptococcus sanguinis* overrepresented on tumor sample sites. Indeed, from the growing catalogue of microbes associated with CRC many of these microbes belong to oral-associated taxa including *Fusobacterium, Porphyromonas, Gemella, Streptococcus* and *Leptotrichia*³⁹. Two routes of 216

translocation of oral microbes to the colon have been proposed: 1) though the gastrointestinal tract and 2) through circulatory system^{35,40}. Both *Fusobacterium nucleatum* and *Streptococcus sanguinis* have been observed to cause endocarditis demonstrating the potential to travel through the circulatory system^{41,42}. *Fusobacterium nucleatum* is of particular note due to the growing body of evidence of its mechanistic role in the oncogenesis of CRC⁴².

There are some limitations to this study. The sample size of five patients is small, but tumor tissue within each individual was extensively biopsied to capture macroscopically morphologically different areas such as ulcerated and non-ulcerated tissue. Four individuals were treated with antibiotics prior to or during the procedure as per hospital protocol. Similarly, all patients took a bowel preparation on the day prior to their surgery which is known to alter the microbiome⁴³. However, in this study each individual was taken as a separate entity therefore acting as an internal control and comparator and it is assumed that these modifiers of the microbiome affected the microbiome as a whole.

The global burden of CRC is increasing and this disease is a significant contributor to cancer deaths¹. Prospective trials are ongoing that incorporate microbiota analysis with other factors as part of the investigative assessment and staging of cancer⁴⁴ and to predict CRC outcomes⁴⁵. Through demonstration of microbial homogeneity within an individual tumor and in the adjacent normal tissue, this study helps validate the methodology of sampling tissue going forward for these and other indications.

3.5 Patients and Methods/Materials and Methods

3.5.1 Patient recruitment

A total of five patients who were scheduled for colonic resection for colorectal cancer as part of their standard of care at Cork University Hospital and Mercy University Hospital, Cork were recruited to the study. Patients were labelled as GT (Geography of Tumor) 001,007,009,010 and 011. Recruitment to the study took place from February 2019 to June 2019. Ethical approval was granted by The Clinical Research Ethics Committee of the Cork Teaching Hospitals (Cork, Ireland). The study was conducted in accordance with the ethical principles set forth in the current version of the Declaration of Helsinki, the International Conference on Harmonization E6 Good Clinical Practice (ICH-GCP). Exclusion criteria included a history of inflammatory bowel disease or irritable bowel syndrome, a significant acute or chronic coexisting illness and neoadjuvant chemotherapy or radiotherapy. All patients received a macrogol preparation pre-operatively. A single dose of oral metronidazole and neomycin were administered to two patients pre-operatively and two other patients received intraoperative intravenous co-amoxiclav and metronidazole as per hospital protocol. The fifth patient took no antibiotics. None of the patients had probiotic exposure pre-operatively.

A mouth swab was taken from patients in the pre-operative room prior to anesthetic and snap frozen. Immediately after removal from the patient, the ex-vivo specimen was anatomically orientated, was dissected and the tumor was exposed. A representative tissue biopsy from each of the four quadrants of the tumor was taken in a clockwise manor starting at 12 o'clock. Tissue from a central area of tumor plus two biopsies of adjacent macroscopically normal tissue 10 cm proximal and distal to the tumor were taken. A different set of sterile instruments was used for every biopsy taken and for each individual. This ensured there was no transfer of bacterial material from sample to sample within or between individuals. Samples were snap frozen in cryotubes and transferred immediately for storage at -80° C.

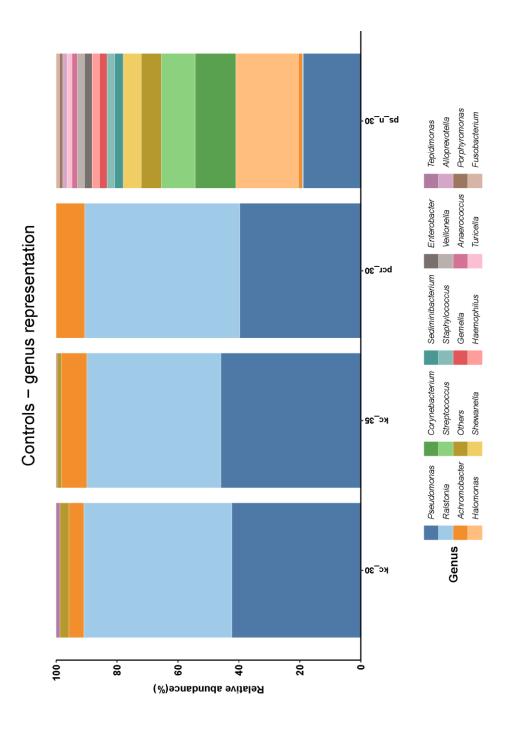
3.5.2 DNA extraction and 16S RNA amplicon sequencing

Genomic DNA from biopsies was extracted using the AllPrep DNA kit from Qiagen. When preparing each sample, approximately 20mg in total of tissue was dissected in small fragments from around the biopsy and pooled. These pooled fragments were then added to a bead beating tube containing sterile beads and 600 μ l of buffer RLT plus was added. Samples were then homogenized for two 15 sec at full speed pulses in a MagnaLyzer (Roche, Penzberg, Germany) with rests on ice between pulses. The rest of the DNA extraction was carried out according to the Qiagen AllPrep DNA/RNA extraction kit. Oral genomic DNA was extracted using Qiagen DNeasy PowerSoil Kit following the manufacturer's instruction.

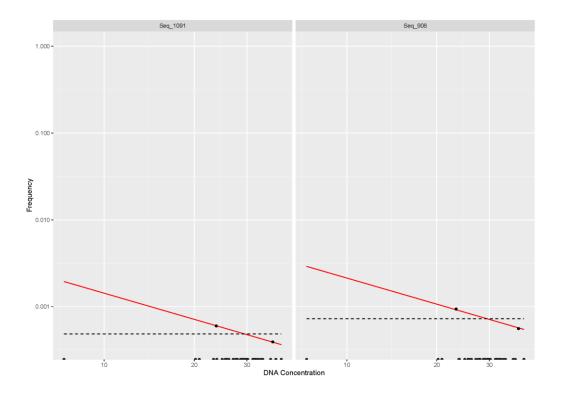
3.5.3 Library preparation and sequencing

The 16S rRNA gene was amplified using primers for the V3-V4 region; forward, TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCA G-3' and reverse, 5'-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATC TAATCC-3'. DNA was normalized to a concentration of 10ng/µl and 10 µl DNA was added per 30 µl PCR reaction. The PCR thermocycler protocol was as follows: Initiation step of 98 °C for 3 min followed by 30 cycles of 98 °C for 30 s, 55 °C for 60 s, and 72 °C for 20 s, and a final extension step of 72 °C for 5 min. Indexes were subsequently added to the purified amplicons according to Illumina 16S Metagenomic Sequencing Protocol (Illumina, CA, USA). Libraries DNA concentration was quantified using a Qubit fluorometer (Invitrogen) using the 'High Sensitivity' assay and samples were pooled at a standardized concentration (80 ng of each sample). The pooled library was sequenced at Eurofins Genomics/GATC Biotech (Konstanz, Germany) on the Illumina MiSeq platform using 2×300 bp chemistry. All samples in this study were prepared in the same library and sequenced together.

3.5.4 Bioinformatics analyses


Raw data was imported into R v3.5.3 for processing and analysis. Paired reads were quality filtered, trimmed, merged and Amplicon Sequence Variants (ASV) inferred using the R package dada2 v1.12.1. The following parameters were used for the filterAndTrim function; filtRs,trimLeft=c(19,21),maxEE=c(2,2),

truncLen=c(260,230). Taxonomic classification was performed using the RDP naive Bayesian Classifier within the dada2 against the Silva v132 database. Alpha diversity was calculated from the ASV table using QIIME v1.9.1 as previously described in Kuczynski et al⁴⁶. Samples were rarefied to 7000 reads in order to calculate alpha-diversity. QIIME v1.9.1 and the R package vegan v2.5.6 were used to infer β -diversity metrics⁴⁷. β -diversity was visualized via principal coordinates analysis (PCoA) plots whose coordinates were identified using with the Ape package v5.1. The adonis() function within the R package vegan (v2.4-2) was used to perform Permutational multivariate analysis of variance (PERMANOVA) Difference in paired biopsy-buccal distance was assessed using paired Wilcoxon test. DESeq2 (v1.28.1) was used to identify differentially abundant taxa from the microbiota dataset.³³ Differences between inter and intra alpha-diversity was tested using Wilcoxon signed-rank test.


3.5.6 Contamination control

We first carried out mock extractions to detect reagent-associated contamination from the two kits used in this study (Supplementary figure 5). Further, we also carried out PCR controls i.e. water, to detect contamination specific to the polymerase (Supplementary figure 5). These negative controls underwent 5-10 additional PCR cycles relative to biological specimens to capture low levels of bacterial template. We utilized both the Frequency and Prevalence method within the R package decontam (v 1.8.0) to identify contaminating $ASVs^{48}$. Using the "frequency" method, isContaminant(phyloseq_object, method="frequency", conc="qubit", threshold = 0.05), two ASVs were identified (Supplementary figure 6). However, these ASVs were present at a very low abundance and only present in 2 samples. Furthermore, these ASVs were assigned to Clostridiales and Burkholderiales which are known gut taxa and not indicative of contamination (Supplementary table 8). Using the "prevalence" method, isContaminant(phyloseq_object, method="prevalence", neg="is.neg", threshold=0.05), we identified 7 contaminating ASVs (Supplementary table 9). However, these ASVs were only identified in three of our samples and only

contributed between 2-6 reads to the samples. Thus, we treated them as negligibly.

Supplementary figure 5. Taxonomic bar plot of the proportional relative abundance of genera within controls samples. KC-30 denotes AllPrep DNA kit mock extraction followed by 30 cycle 16s gene PCR amplification. KC-35 denotes AllPrep DNA kit mock extraction followed by 35 cycle 16s gene PCR amplification. pcr-30 denotes mock amplfcation (just water) of the 16s gene. ps-n-30 denotes DNeasy PowerSoil Kit mock extraction followed by 30 cycle 16s gene PCR amplification.

Supplementary figure 6. Decontam frequency graph. X axis equals concentration of sample before normalization. Y-axis equals frequency of ASV. Each dot represents a sample.

ASV	Order	Genus	Species
Seq 908	Burkholderiales	Sutterella	Sutterella stercoricanis
Seq 1091	Clostridiales	unclassified	unclassified

Supplementary table 8. ASV identified as contamination using the "frequency"

method within decontam.

ASV	Genus	Species
Seq_4	Ralstonia	Ralstonia insidiosa
Seq_6	Pseudomonas	unclassified
Seq_8	Pseudomonas	unclassified
Seq_30	Achromobacter	unclassified
Seq_243	Tepidimonas	unclassified
Seq_311	Pseudomonas	unclassified
 Seq_626	Propionibacterium	Propionibacterium acnes

Supplementary table 9 ASV identified as contamination using the "prevalence" method within decontam.

3.6 Acknowledgements

Work in PWOTs laboratory is supported by Science Foundation Ireland through a Centre award (APC/SFI/12/RC/2273_P2) to APC Microbiome Ireland, and by The Health Research Board of Ireland under Grant ILP-POR-2017-034. We thank the patients who consented to participate in this study, and the support staff of relevant departments in Cork University Hospital and the Mercy University Hospital Cork.

3.7 Reference

- 1 Bibbins-Domingo, K. *et al.* Screening for Colorectal Cancer: US Preventive Services Task Force Recommendation Statement. *JAMA* **315**, 2564-2575, doi:10.1001/jama.2016.5989 (2016).
- 2 Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. *Cell* **61**, 759-767 (1990).
- 3 Stryker, S. J. *et al.* Natural history of untreated colonic polyps. *Gastroenterology* **93**, 1009-1013 (1987).
- 4 Flemer, B. *et al.* Tumour-associated and non-tumour-associated microbiota in colorectal cancer. *Gut* **66**, 633-643, doi:10.1136/gutjnl-2015-309595 (2017).
- 5 Thomas, A. M. *et al.* Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. *Nat Med* **25**, 667-678, doi:10.1038/s41591-019-0405-7 (2019).
- 6 Raskov, H., Burcharth, J. & Pommergaard, H. C. Linking Gut Microbiota to Colorectal Cancer. *J Cancer* **8**, 3378-3395, doi:10.7150/jca.20497 (2017).
- 7 Sommer, F. & Bäckhed, F. The gut microbiota--masters of host development and physiology. *Nat Rev Microbiol* **11**, 227-238, doi:10.1038/nrmicro2974 (2013).
- 8 Marshall, B. J. & Warren, J. R. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. *Lancet* **1**, 1311-1315 (1984).
- 9 Wang, F., Meng, W., Wang, B. & Qiao, L. Helicobacter pylori-induced gastric inflammation and gastric cancer. *Cancer Lett* **345**, 196-202, doi:10.1016/j.canlet.2013.08.016 (2014).
- 10 Bullman, S. *et al.* Analysis of. *Science* **358**, 1443-1448, doi:10.1126/science.aal5240 (2017).
- 11 Pleguezuelos-Manzano, C. *et al.* Mutational signature in colorectal cancer caused by genotoxic pks. *Nature*, doi:10.1038/s41586-020-2080-8 (2020).
- 12 Louis, P., Hold, G. L. & Flint, H. J. The gut microbiota, bacterial metabolites and colorectal cancer. *Nat Rev Microbiol* **12**, 661-672, doi:10.1038/nrmicro3344 (2014).
- 13 Peters, B. A. *et al.* The gut microbiota in conventional and serrated precursors of colorectal cancer. *Microbiome* **4**, 69, doi:10.1186/s40168-016-0218-6 (2016).
- 14 Hibberd, A. A. *et al.* Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention. *BMJ Open Gastroenterol* **4**, e000145, doi:10.1136/bmjgast-2017-000145 (2017).
- Lu, Y. *et al.* Mucosal adherent bacterial dysbiosis in patients with colorectal adenomas. *Sci Rep* **6**, 26337, doi:10.1038/srep26337 (2016).

- 16 Weir, T. L. *et al.* Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. *PLoS One* **8**, e70803, doi:10.1371/journal.pone.0070803 (2013).
- 17 Ahn, J. *et al.* Human gut microbiome and risk for colorectal cancer. *J Natl Cancer Inst* **105**, 1907-1911, doi:10.1093/jnci/djt300 (2013).
- 18 Nakatsu, G. *et al.* Gut mucosal microbiome across stages of colorectal carcinogenesis. *Nat Commun* **6**, 8727, doi:10.1038/ncomms9727 (2015).
- 19 Drewes, J. L. *et al.* High-resolution bacterial 16S rRNA gene profile metaanalysis and biofilm status reveal common colorectal cancer consortia. *NPJ Biofilms Microbiomes* **3**, 34, doi:10.1038/s41522-017-0040-3 (2017).
- 20 Flemer, B. *et al.* The oral microbiota in colorectal cancer is distinctive and predictive. *Gut*, doi:10.1136/gutjnl-2017-314814 (2017).
- 21 Yang, Y. *et al.* Prospective Study of Oral Microbiome and Colorectal Cancer Risk in Low-income and African American Populations. *Int J Cancer*, doi:10.1002/ijc.31941 (2018).
- 22 Punt, C. J., Koopman, M. & Vermeulen, L. From tumour heterogeneity to advances in precision treatment of colorectal cancer. *Nat Rev Clin Oncol* **14**, 235-246, doi:10.1038/nrclinonc.2016.171 (2017).
- Hewett, D. G. *et al.* Validation of a simple classification system for endoscopic diagnosis of small colorectal polyps using narrow-band imaging. *Gastroenterology* 143, 599-607.e591, doi:10.1053/j.gastro.2012.05.006 (2012).
- 24 The Paris endoscopic classification of superficial neoplastic lesions: esophagus, stomach, and colon: November 30 to December 1, 2002. *Gastrointest Endosc* 58, S3-43 (2003).
- 25 Kudo, S. *et al.* Diagnosis of colorectal tumorous lesions by magnifying endoscopy. *Gastrointest Endosc* **44**, 8-14 (1996).
- 26 Kudo, S. *et al.* Colorectal tumours and pit pattern. *J Clin Pathol* **47**, 880-885 (1994).
- 27 S.R., H. & L.A., A. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of the Digestive System. 108 (IARC Press, 2000).
- 28 Konda, K. *et al.* Distinct molecular features of different macroscopic subtypes of colorectal neoplasms. *PLoS One* 9, e103822, doi:10.1371/journal.pone.0103822 (2014).
- 29 Jones, H. G. *et al.* Genetic and Epigenetic Intra-tumour Heterogeneity in Colorectal Cancer. *World J Surg* **41**, 1375-1383, doi:10.1007/s00268-016-3860-z (2017).
- 30 Wu, Y. *et al.* Microbiota Diversity in Human Colorectal Cancer Tissues Is Associated with Clinicopathological Features. *Nutr Cancer* **71**, 214-222, doi:10.1080/01635581.2019.1578394 (2019).

- 31 Warren, R. L. *et al.* Co-occurrence of anaerobic bacteria in colorectal carcinomas. *Microbiome* **1**, 16, doi:10.1186/2049-2618-1-16 (2013).
- 32 Harada, T. *et al.* Surface microstructures are associated with mutational intratumoral heterogeneity in colorectal tumors. *J Gastroenterol*, doi:10.1007/s00535-018-1481-z (2018).
- 33 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biology* 15, 550, doi:10.1186/s13059-014-0550-8 (2014).
- 34 Weiss, S. *et al.* Normalization and microbial differential abundance strategies depend upon data characteristics. *Microbiome* **5**, 27, doi:10.1186/s40168-017-0237-y (2017).
- 35 Schmidt, T. S. *et al.* Extensive transmission of microbes along the gastrointestinal tract. *Elife* **8**, doi:10.7554/eLife.42693 (2019).
- 36 Modi, S. R., Collins, J. J. & Relman, D. A. Antibiotics and the gut microbiota. *J Clin Invest* **124**, 4212-4218, doi:10.1172/JCI72333 (2014).
- 37 Ghosh, T. S. *et al.* Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1year dietary intervention across five European countries. *Gut*, doi:10.1136/gutjnl-2019-319654 (2020).
- 38 Tomkovich, S. *et al.* Human colon mucosal biofilms from healthy or colon cancer hosts are carcinogenic. *J Clin Invest* **130**, 1699-1712, doi:10.1172/JCI124196 (2019).
- 39 Ternes, D. *et al.* Microbiome in Colorectal Cancer: How to Get from Metaomics to Mechanism? *Trends Microbiol* 28, 401-423, doi:10.1016/j.tim.2020.01.001 (2020).
- 40 Abed, J. *et al.* Fap2 Mediates Fusobacterium nucleatum Colorectal Adenocarcinoma Enrichment by Binding to Tumor-Expressed Gal-GalNAc. *Cell Host Microbe* **20**, 215-225, doi:10.1016/j.chom.2016.07.006 (2016).
- 41 Di Filippo, S. *et al.* Current patterns of infective endocarditis in congenital heart disease. *Heart* **92**, 1490-1495, doi:10.1136/hrt.2005.085332 (2006).
- 42 Brennan, C. A. & Garrett, W. S. Fusobacterium nucleatum symbiont, opportunist and oncobacterium. *Nature reviews. Microbiology* **17**, 156-166, doi:10.1038/s41579-018-0129-6 (2019).
- Jalanka, J. *et al.* Effects of bowel cleansing on the intestinal microbiota. *Gut*64, 1562-1568, doi:10.1136/gutjnl-2014-307240 (2015).
- 44 Murphy, C. L., O'Toole, P. W. & Shanahan, F. The Gut Microbiota in Causation, Detection, and Treatment of Cancer. *Am J Gastroenterol*, doi:10.14309/ajg.000000000000075 (2019).
- 45 Veziant, J. *et al.* Prognostic value of a combination of innovative factors (gut microbiota, sarcopenia, obesity, metabolic syndrome) to predict surgical/oncologic outcomes following surgery for sporadic colorectal

cancer: a prospective cohort study protocol (METABIOTE). *BMJ Open* **10**, e031472, doi:10.1136/bmjopen-2019-031472 (2020).

- 46 Kuczynski, J. *et al.* Using QIIME to analyze 16S rRNA gene sequences from microbial communities. *Curr Protoc Microbiol* **Chapter 1**, Unit 1E.5., doi:10.1002/9780471729259.mc01e05s27 (2012).
- 47 Caporaso, J. G. *et al.* QIIME allows analysis of high-throughput community sequencing data. *Nat Methods* **7**, 335-336, doi:10.1038/nmeth.f.303 (2010).
- 48 Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. *Microbiome* 6, 226, doi:10.1186/s40168-018-0605-2 (2018).

1 Chapter 4 - Association between the microbiome and

2 treatment outcomes in patients with metastatic melanoma

3 treated with Immunotherapy

- 4 This chapter is currently under review in the journal *British Journal of Cancer*
- 5

6 Authors: 7 Clodagh L Murphy*, Maurice Barrett*, Paola Pellanda, Fergus Shanahan, Derek G Power, Paul W O'Toole 8 9 *Joint first authorship: These authors contributed equally to this work. 10 11 12 13 Maurice Barrett contributed to this work as follows: 14 All bioinformatic analysis including sequence processing, • 15 compositional data analysis and statistical analysis. 16 • Data visualization, that is, the construction of manuscript figures. • Writing of half of the manuscript. 17 18 19 20 21 22 23

24 **4.1 Abstract**

25 Background

The development of immune checkpoint inhibitors has contributed significantly to 26 27 cancer therapeutics. However, treatment efficacy is limited by both non-28 responsiveness and side effects in certain patients. Mounting evidence indicates that 29 the gut microbiome modulates both treatment response and immune-mediated side 30 effects, but no single microbiome feature or universal signature has been linked to 31 these clinical outcomes. Since ethnic and geographic factors influence microbiome 32 variance, we studied treatment outcomes as a function of microbiome composition in 33 a cohort of caucasian Irish patients with melanoma undergoing treatment with 34 checkpoint inhibitors.

35 Methods

- 36 We recruited 37 patients with metastatic melanoma, 21 commencing on
- 37 immunotherapy *de novo* and 16 who were already established on treatment.
- 38 Furthermore, we recruited 30 healthy controls to provide a reference microbiome.
- 39 We profiled their faecal microbiome by 16S rRNA gene amplicon sequencing.

40 Results

41 We did not observe any significant difference in alpha or beta diversity with respect 42 to response or side effects. We identified 15 sequence-based bacterial taxa that were 43 differentially abundant between responders and non-responders. Consistent with 44 previous work, the taxa showing higher relative abundance in responders included 45 Akkermansia muciniphila and Bifidobacterium longum. Further, we identified 46 previously unreported taxa associated with response including Barnesiella 47 intestinihominis and Clostridium disporicum. Faecalibacterium prausnitzii was 48 found to be associated with non-response, contradicting previous findings. We 49 identified nine differentially abundant sequence-based bacterial taxa pertaining to 50 side-effects including Oscillibacter which is negatively associated with 51 inflammation. Using bioinformatic prediction of bacterial pathways, we identified a 52 number of differentially abundant proteins (in the form of KEGG Orthologues) 53 between response groups and side effect groups. These included proteins involved in 54 exopolysaccharide biogenesis that were enriched in both responders and individuals55 with no side effects.

56

57 Conclusions

- 58 Significant differences in microbial features were associated with both treatment
- 59 response and protection against moderate and severe side effects in patients with
- 60 stage four metastatic melanoma. Identification of these microbiome features can
- 61 point to biomarkers to stratify cancer patients, inform microbial based therapeutics
- 62 and provide insight into the basic biology of immune checkpoint inhibitors.

63

65 4.2 Background

66 Harnessing the immune system to destroy cancer cells has revolutionized cancer treatment¹. Certain cancers develop immune resistance by upregulating immune 67 68 checkpoint molecules such as PD-1 ligand (PD-L1) on the cancer cell, and its ligation to PD-1 on antigen-specific CD8(+) T cells². Prolonged antigen exposure 69 from cancer tissue can also cause exhaustion of T cells leading to decreased 70 proliferation and release of cytokines³. These mechanisms inhibit apoptosis of the 71 tumour cell and promote peripheral T effector cell ineffectiveness⁴. CTLA-4 72 73 (Cytotoxic T lymphocyte-associated molecule-4) is a cell surface molecule expressed on CD4⁺ and CD8⁺ T cells⁵ which halts potentially autoreactive T cell 74 activation at the naïve stage⁶. Checkpoint Inhibitors are monoclonal antibodies that 75 76 inhibit these pathways to reactivate T cells, enhancing adaptive immune cell function 77 allowing response to tumor antigens⁷. Ipilimumab is representative of a growing 78 panel of such antibodies, and is directed against human CTLA-4⁸. Pembrolizumab 79 and nivolumab are PD-1-blocking monoclonal antibodies used in metastatic 80 melanoma and other malignancies⁹. Atezolizumab and avelumab are PD-L1-targeted 81 immunotherapies for lung cancer, hepatocellular carcinoma, urothelial cancer, and 82 merkel cell carcinoma⁹.

83

84 Unprecedented overall survivals (OS) have been reported with immunotherapy in 85 historically 'difficult to treat' cancers, e.g., 52% 5-years OS in metastatic melanoma¹⁰,34% 3-year OS in advanced non-small cell lung cancer¹¹. While much 86 87 research is focused on biomarkers for treatment efficacy and methods to increase drug potency¹, the microbiome has emerged as an important modifier of the efficacy 88 of immunotherapy¹². No uniformly diagnostic species correlating with treatment 89 success has been reported to date¹³. In murine models, the germ-free state 90 91 significantly decreases the efficacy of certain immunotherapy in cancer models ^{14 15}. Similarly, antibiotics not only interfere with immunotherapy efficacy¹⁶ but also 92 decrease overall and progression-free survival¹⁷. Gut microbiome abundance of 93 94 Ruminococcus and Alistipes was found to enhance response to CpG-oligonucleotide 95 treated mice, with a Lactobacillus predominant microbiota impairing response¹⁵. In

96 murine studies, the efficacy of CTLA-4 blockade was linked to T cell responses specific for Bacteroides (*B. thetaiotaomicron* or *B. fragilis*)¹⁸. In patients treated with 97 98 anti-PD-1 or PDL-1 immunotherapy, higher abundance of certain microbes was associated with treatment success. Faecalibacterium prausnitzii¹⁹, Akkermansia 99 *muciniphilia*¹⁷ and *Bifidobacterium longum*²⁰ were associated with treatment 100 responders in three separate studies. When microbiome composition data were 101 102 reanalyzed using the same methodology there was a statistically significant 103 difference in beta diversity in responders in two out of the three cohorts²¹. 104 Immune system stimulation can lead to inflammatory side effects in patients receiving immunotherapy 22 . The exact mechanism for this immune toxicity is 105 emerging. Macrophage-mediated toxicity, baseline low-level self-reactive T cells 106 production of antibodies by activated B cells ²³, and cytotoxic T cells²⁴ are 107 postulated to be involved. As with many autoimmune disorders, some patients may 108 109 have a genetic predisposition to development of drug-related side effects²⁵. Whether 110 the development of immune-mediated side effects with use of immune checkpoint 111 inhibitors correlates with improved antitumor immunity due to greater immunologic activation is unclear ²². 112 113 Serious or life threatening adverse side effects (CTCAE grade II-IV, Common

terminology Criteria for Adverse Events v5.0 [31])have been reported to occur in up 114 115 to 30% of patients on CTLA-4 and 16% of patients on PD-1 immunotherapy, and in up to 55% of patients receiving combined treatment with ipilimumab and nivolumab 116 ²⁶. Common toxicities affect the endocrine²⁷, dermatologic, gastrointestinal, 117 musculoskeletal, dermatological and neurological systems ²⁶. Many side effects are 118 119 self-limiting but fatalities attributable specifically to drug toxicity rather than the underlying malignancy have been reported²⁸. Early diagnosis of immune checkpoint 120 inhibitor toxicity with investigations such as endoscopy and CT scan and subsequent 121 early treatment appear to be beneficial²⁹. Immunosuppression with glucocorticoids or 122 other agents is occasionally required³⁰. Immune-mediated side effects may occur at 123 any time during treatment. However, cumulative exposure to immunotherapy does 124 not appear to increase risk of development of side effects³¹.. Long term 125 126 immunological consequences are unknown²².

127 Colitis is one of the most common immune-mediated side effect leading to discontinuation of treatment in 3-25% of patients²⁶. A combination of lack of 128 129 regulatory T cell depletion and accumulation of cytotoxic and proliferative CD8 T cells contribute to immune-mediated colitis²⁴. The microbiome may also be 130 131 involved because a microbiome-dependent subclinical colitis can be induced in specific pathogen free mice or germfree mice treated with CTLA-4 Ab¹⁸. Similarly, 132 histopathological signs of colitis-induced by CTLA-4 blockade could also be 133 134 reduced by introduction of B. fragilis and Burkholderia cepacia in antibiotic treated 135 mice 18 .

136

137 The present study profiles the gut microbiome of a cohort of patients from a single 138 large tertiary referral cancer centre with stage 4 melanoma that were treated with 139 immune checkpoint inhibitor therapy. The results show that the abundance of 140 specific microbial species is linked with response to treatment and development of 141 side effects.

142

143 **4.3 Methods**

144 **4.3.1 Recruitment**

- 145 Patients with metastatic melanoma, aged over 18 years, commencing (n=21) or 146 established (n=16) on immune checkpoint inhibitor treatment in Cork University 147 Hospital Cancer Centre, Cork, Ireland were recruited to this study. The study was 148 conducted in accordance with the ethical principles set forth in the current version of 149 the Declaration of Helsinki, the International Conference on Harmonization E6 Good 150 Clinical Practice (ICH-GCP). Ethical approval was granted by The Clinical Research 151 Ethics Committee of the Cork Teaching Hospitals (Cork, Ireland). The study was 152 conducted from October 2017 to January 2019. 153 Forty one patients with metastatic melanoma receiving immune checkpoint
- 154 inhibitors were identified at weekly multidisciplinary team meetings (MDT) and
- subsequently recruited through the oncology outpatient clinics. After giving

156 informed consent, patients were given a sealed, sterile pack for faecal collection as 157 well as a detailed patient-adapted standard operating procedure for safe collection of 158 samples. A baseline pre-treatment faecal sample was collected from each patient 159 commencing on therapy. Patients who were already on immune checkpoint inhibitor 160 therapy at the time of study commencement were also asked to provide a faecal 161 sample. The patients brought the faecal sample to the hospital during a routine 162 planned appointment as part of their standard of care. Samples were passed in the 163 morning and kept in cool bags for transfer to the hospital. Patients were met at the 164 hospital appointment by a co-investigator. Samples were coded and stored 165 immediately at -80 degrees Celsius for future processing. There were no changes in 166 the conduct of the study or planned analyses or no adverse and serious adverse 167 events throughout the study.

168 Demographic, clinical data and, medication history were obtained by direct

169 questioning. Data collection of standard clinicopathologic parameters, clinical

170 outcomes including treatment response, toxicity, duration of response, progression

171 free survival and overall survival were collected sequentially for each patient.

Patients were stratified into two groups, the treatment response (R) group versus
treatment non-response (NR) group. Treatment response was defined as radiological
stability or decrease of disease burden or disease resolution at six months as defined
by the standardized iRECIST (Immune Response Evaluation Criteria in Solid
Tumours) criteria³².

Patients were also stratified into groups based on documented immune checkpoint
inhibitor related side effects. Toxicity was graded by oncology clinicians at the time

179 of occurrence using the standardized National Cancer Institute CTCAE (Common

180 Terminology Criteria for Adverse Events) v.5 system³³. Patients were stratified into

181 two groups, mild or no side effects (NSE) versus side effects (SE). Patients were

182 included in the SE group if they met the criteria of having CTCAE grade 3 (severe

adverse event), grade 4 (life threatening or disabling adverse event) or grade 5 (death

184 related to adverse event) side effects.

- 185 Healthy controls were also obtained from the population to offer a reference
- 186 microbiome. These control group were aged between 18-64 with no chronic disease,
- 187 on no regular medication and had no antibiotics in the preceding month.
- 188

189 **4.3.2 DNA extraction from human faeces**

- 190 Extraction of total microbial DNA was achieved using the repeat bead beating
- 191 technique with modifications as previously described³⁴.
- 192
- 193 16S rRNA gene library preparation and sequencing
- 194 Genomic DNA underwent 16s rRNA gene PCR. The 16S rRNA gene was amplified
- using primers for the V3-V4 region; forward,
- 196 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCA
- 197 G-3' and reverse, 5'-
- 198 GTCTCGTGGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATC
- 199 TAATCC-3'. The PCR thermocycler protocol was as follows: Initiation step of 98 °C
- for 3 min followed by 30 cycles of 98 °C for 30 s, 55 °C for 60 s, and 72 °C for 20 s,
- and a final extension step of 72 °C for 5 min. Indexes were subsequently added to
- 202 amplicons according to Illumina 16S Metagenomic Sequencing Protocol (Illumina,
- 203 CA, USA). Libraries DNA concertation was quantified using a Qubit fluorometer
- 204 (Invitrogen) using the 'High Sensitivity' assay and samples were pooled at a
- standardised concentration. The pooled library was sequenced at Eurofins
- 206 Genomics/GATC Biotech (Konstanz, Germany) on the Illumina MiSeq platform
- 207 utilising 2×300 bp chemistry.
- 208

209 **4.3.3 Bioinformatic and biostatistical analysis**

- 210 Raw data was imported into R (v3.6.0) for processing and analysis. Paired reads
- 211 were quality filtered, trimmed, merged and Amplicon Sequence Variants (ASV)
- 212 inferred using the R package dada2 (v1.12.1)³⁵. Taxonomic classification was

213 performed using the RDP Classifier within Mothur in conjugation with SPINGO, a species-level classifier³⁶. A confidence cut of 80% was used for taxonomic 214 215 assignment. QIIME v1.9.1 and the R package vegan v2.5.6 were used to calculate β -216 diversity metrics³⁷. β-diversity was visualized via principal coordinates analysis (PCoA) plots whose coordinates were identified using with the Ape package v5.1. 217 218 R-squared (R²) and p-value were calculated using Permutational Multivariate 219 Analysis of Variance (PERMANOVA) via the R package vegan (v2.4.2). 220 Differential abundance analysis was carried out using DEseq2 (v1.22.2)³⁸. Genomic 221 functionality was inferred using PICRUSt2 with the command picrust2_pipeline.py with default parameters³⁹. Differential abundance of KOs was performed using 222 223 DESeq2.

224

225 **4.4 Results**

226 **4.4.1 Patient characteristics and treatment responses**

227 All patients from Cork University Hospital Cancer Centre with malignant metastatic 228 melanoma established or commencing on immunotherapy during the study period 229 were considered eligible for recruitment. Forty one patients were enrolled but four 230 patients were excluded due to frailty or inability to provide samples. Therefore 37 231 patient samples were analysed. Twenty one patients were commencing on 232 immunotherapy therapy de novo and 16 patients were established on treatment. All 233 patients had stage four metastatic melanoma. By iRECIST criteria³², 21 patients were classified as immune checkpoint inhibitor 234 235 responders (R) (7 de novo and 14 established treatment patients) and 16 as non-236 responders (NR) (14 de novo patients and 2 established treatment patients). (Table 1) 237 The two groups were comparable in terms of median age and included patients on 238 differing immunotherapy drugs including combination therapy. Seventeen of the 239 responder group either remained on treatment or had successfully completed their 240 treatment protocol at time of analysis. The remaining 4 patients in the responder 241 group developed side effects and had therapy discontinued however still had

treatment response at 6 months. None of the non-responder patients remained on

- therapy at the time of analysis. Ten of the non-responder group had treatment
- discontinued due to disease progression (n=9) or protocol (n=1) and a further 5
- 245 patients had treatment discontinued due to side effects.
- 246 Using the CTCAE v. 5 criteria ³³, 11 patients had one or more severe side effects
- 247 (SE) (9 de novo patients, 2 established patients) and 26 patients had mild or no side
- 248 effects (NSE) (12 de novo patients and 14 established patients). (Table 2). The
- 249 median age of patients who developed mild or no side effects was 7.8 years older
- than those who suffered severe side effects. There were seven different immune-
- 251 mediated conditions recorded in the patient cohort, with three patients experiencing
- several side effects concurrently (Table 3).None of the 11 patients who had side
- effects remained on immunotherapy but 14 of the 26 patients in the no side effect
- 254 category continued treatment at the time of analysis.

Table 1. Demographics of Treatment Responders Versus Non- Responders			
Demographics		Treatment responders (n=21)	Treatment non- responders (n=16)
Mean Age (st deviation)		54(14.5)	57 (10.5)
Sex			
	Male	9	10
	Female	12	6
Type of melanoma			
	Cutaneous	19	14

	Choroidal	1	1
	Unknown primary	1	0
	Gastric	0	1
Median time since diagnosis		66 months	29 months
Treatment Type			
	Pembrolizumab	13	6
	Nivolumab	6	6
	Pembrolizumab/ Ipilimumab	2	1
	Nivolimumab/ ipilimumab	0	3
Treatment ongoing			
	Yes	15	0
	Stopped due to side effect	5	5
	Stopped due to protocol	1	0
	Stopped due to disease progression	0	11

Previous radiotherapy			
	Yes	4	6
	No	17	10
Prior treatment			
	No	11	9
	Short course Ipilimumab	6	1
	Short course Ipilimumab/ nivolumab	1	0
	Dabrafenib/ trametinib	1	4
	Carboplatin /gemcitabine	1	0
	Electro- chemotherapy	1	2
Antibiotic treatment in last 6 weeks			
	No	16	14
	Oral cephalexin	1	0
	Oral Co- amoxiclav	2	0

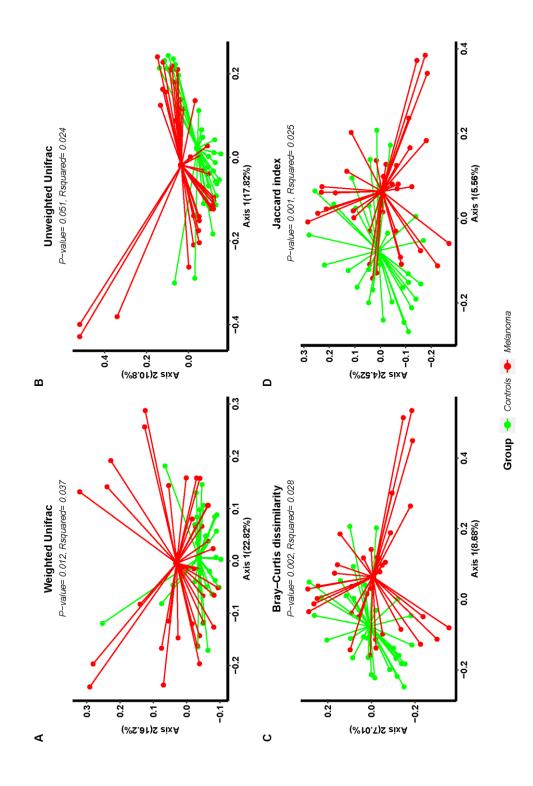
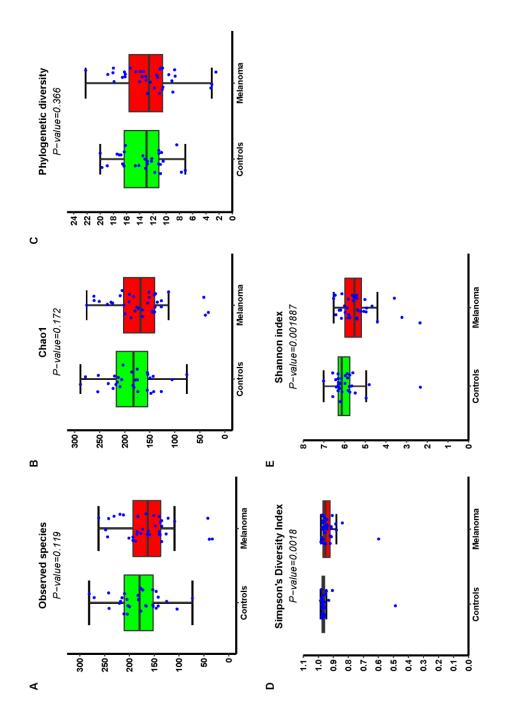
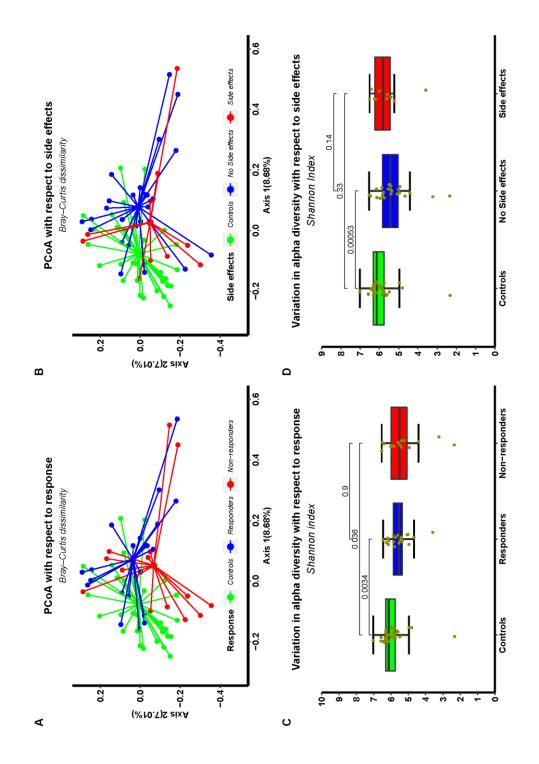

	Oral Penicillin	1	0
	IV Vancomycin	0	1
	Unknown antibiotic	1	1
Alcohol intake			
	None	17	9
	1-5 units per week	2	6
	5-10 units per week	1	1
	10-15 units per week	1	0
Smoking status			
	Current smoker	1	2
	Ex-smoker	4	4
	Non-smoker	16	10
Deaths			
	Yes	1	13
	No	20	1

Table 3. Side effects of ICI therapy with attributable medications			
Side Effect (CTCAE grade 3/4)	Number of patients	Attributable medication	
Hypophysitis	3	Pembrolizumab n=2 Pembolizumab/ipilimumab n=1	
Hepatitis	2	Nivolumab/ipilimumab n=1 Ipilimumab/pembrolizumab n=1	
Rash	1	Pembrolizumab	
Colitis	4	Nivolumab/ipilimumab n=1 Pembrolizumab n=2 Nivolumab n=1	
Neurotoxicity	1	Nivolumab	
Cellulitis	1	Pembrolizumab	
Diabetic ketoacidosis	1	Pembrolizumab	


260 **4.4.2 Microbiota features associated with therapy outcomes**

261 Global microbiome structure as measured by beta diversity differed slightly between 262 melanoma patients and healthy controls (Supplementary figure 1). There was no 263 significant difference in Alpha diversity (a measure of species richness) as measured 264 by observed species, chao1 and phylogenetic diversity indices between melanoma 265 patients and healthy controls (Supplementary figure 2 A, B, C). A significant reduction in alpha diversity as measured by Simpson's and Shannon index (a 266 267 measure of diversity evenness) was observed in melanoma patients relative to 268 healthy controls (Supplementary figure 2 D, E).

269



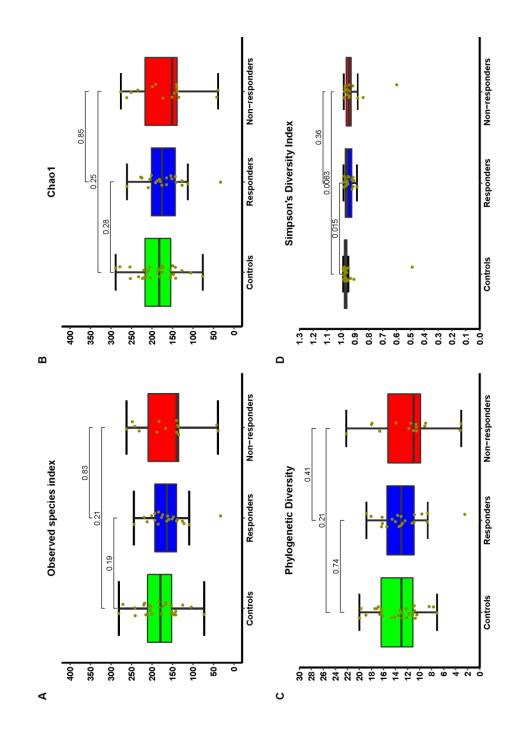
Supplementary Figure 1. Principal Coordinates Analysis representation of beta diversity
comparing patients with melanoma versus healthy controls. (A) Weighted Unifrac (B)
Unweighted Unifrac (C) Bray–Curtis dissimilarity (D) Jaccard index. R-Squared and P-value
calculated using Permutational Multivariate Analysis of Variance (PERMANOVA).

Supplementary Figure 2. Bar plots showing the difference in alpha diversity metrics between
individuals with melanoma and healthy controls. (A) Observed species index (B) Chao1 (C)
Phylogenetic diversity (D) Simpson's Diversity Index (E) Shannon index. Statistical testing was
performed using Wilcoxon signed-rank test

- 284 Pairwise comparison of beta diversity with respect to response demonstrated that both the responder group and non-responder group had a significantly different beta-285 286 diversity compared to healthy controls (Figure 1A, Supplementary table 1). 287 However, there was no significant difference in beta diversity between responders 288 and non-responders. With respect to side effects, individuals with no side effects 289 differed significantly compared to healthy controls; however no other pairwise 290 comparison differed significantly including the observation that individuals with no 291 side effects did not differ significantly from individuals with side effects. (Figure 1B, 292 Supplementary table 2) 293 Alpha diversity did not differ significantly between responders versus non
- responders nor between individuals with non-side do effects versus individuals with
- side effects (figure 1C, D, Supplementary figure 3, Supplementary figure 4).

298 Figure 1. Comparisons of microbiome ecological metrics between immunotherapy outcome 299 groups. (A) Principal Coordinates Analysis representation of Beta diversity (Bray–Curtis 300 dissimilarity) between controls, responders and non-responders. (B) Principal Coordinates Analysis 301 representation of Beta diversity (Bray-Curtis dissimilarity) between controls, no side effects and side 302 effects. (C) Boxplot comparing alpha diversity (Shannon index) between controls, responders and 303 non-responders. (D) Boxplot comparing alpha diversity (Shannon index) between controls, 304 individuals with no side effects and individuals with side effects. Statistical testing of alpha-diversity 305 was performed using Wilcoxon signed-rank test

Pairv		A with respect to re	esponds
	Weig	ted unifrac	
	p-value	R squared	Adjusted p-value
Controls versus Responders	0.017982	0.043342	0.034466
Controls versus non responders	0.022977	0.048418	0.034466
Responders versus Non_responder	0.509491	0.025559	0.509491
	Unwe	ighted unifrac	
		-	
	p-values	R squared	Adjusted p-value
Controls versus Responders	0.063936	0.029749	0.095904
Controls versus non responder	0.041958	0.036071	0.095904
Responders versus non responder	0.293706	0.031309	0.293706
	Bray–Cu	rtis dissimilarity	
	p-values	R-squared	Adjusted p-value
Controls versus Responders	0.001998	0.035139	0.004496
Controls versus non responders	0.002997	0.038529	0.004496
Responders versus non responder	0.123876	0.03438	0.123876
		card index	
	Jac		
	P-values	rsquared	Adjusted p-value
Controls versus Responders	0.000999	0.031047	0.001499
Controls versus non responders	0.000999	0.033836	0.001499
Responders versus non responders	0.17982	0.031066	0.17982

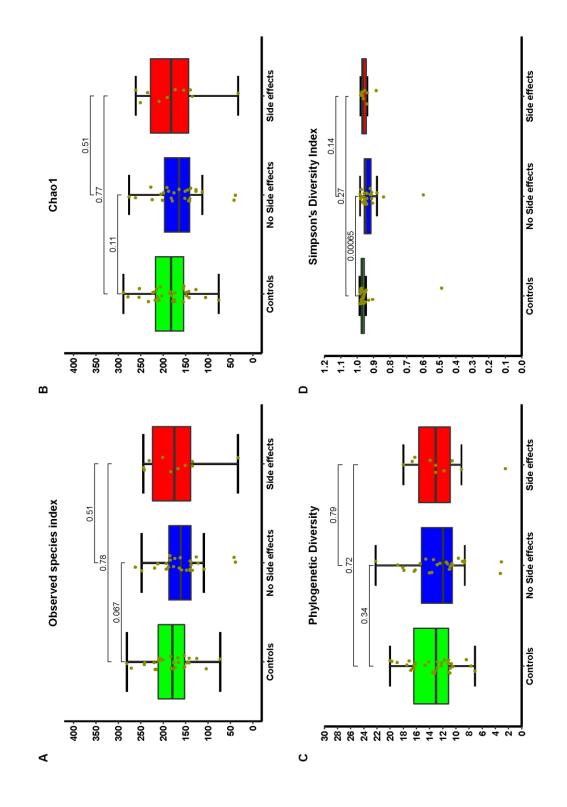

308 **Supplementary table 1. Pairwise comparisons with respect to response**. P-value calculated using Permutational multivariate analysis of variance (PERMANOVA). Multiple correction performed

using Benjamini-Hochberg procedure.

Pairw	vise PERMANOV	A with respect to si	de effects
		•	
	p-values	R squared	Adjusted p-value
Controls versus no	0.008991	0.047504	0.026973
side effects			
Controls versus	0.453546	0.024113	0.68032
side effects			
No side effects	0.896104	0.014881	0.896104
versus side effects			
	Unwo	eighted unifrac	
	p-values	R squared	Adjusted p-value
Controls versus no side effects	0.037962	0.027729	0.113886
Controls versus side effects	0.235764	0.030116	0.353646
No side effects	0.896104	0.020161	0.896104
versus side effects			
	Bray–C	urtis dissimilarity	
		Dequarad	A divisted in value
<u></u>	p-values	R squared	Adjusted p-value
Controls versus no side effects	0.000999	0.034634	0.002997
Controls versus side effects	0.367632	0.0263	0.551449
No side effects	0.967033	0.020871	0.967033
versus side effects			
	Ja	ccard index	
	p-values	R squared	Adjusted p-value
Controls versus	0.000999	0.030479	0.002997
no side effects			
Controls versus	0.133866	0.028443	0.200799
side effects			
No side effects	0.935065	0.024676	0.935065
versus Side effects			

312 **Supplementary table 2. Pairwise comparisons with respect to side effects**. P-value calculated using Permutational multivariate analysis of variance (PERMANOVA). Multiple correction

performed using Benjamini-Hochberg procedure.

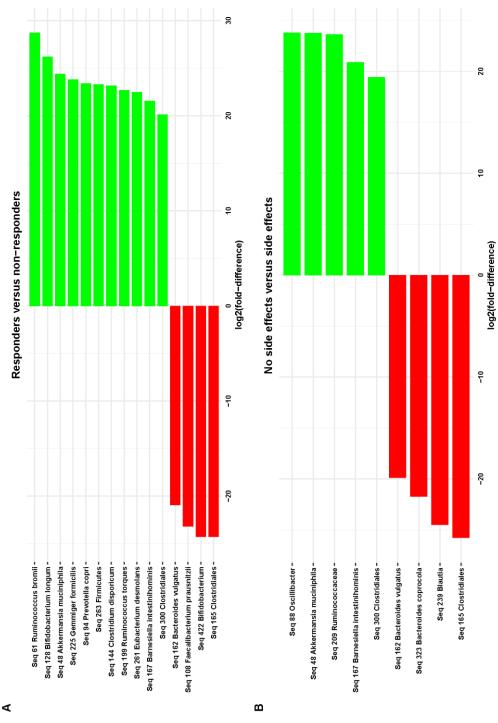


316 Supplementary Figure 3 Bar plots showing the difference in alpha diversity metrics between

317 controls, responders and non-responders. (A) Observed species index (B) Chao1 (C) Phylogenetic

318 diversity (**D**) Simpson's Diversity Index. Statistical testing was performed using Wilcoxon signed-

319 rank test

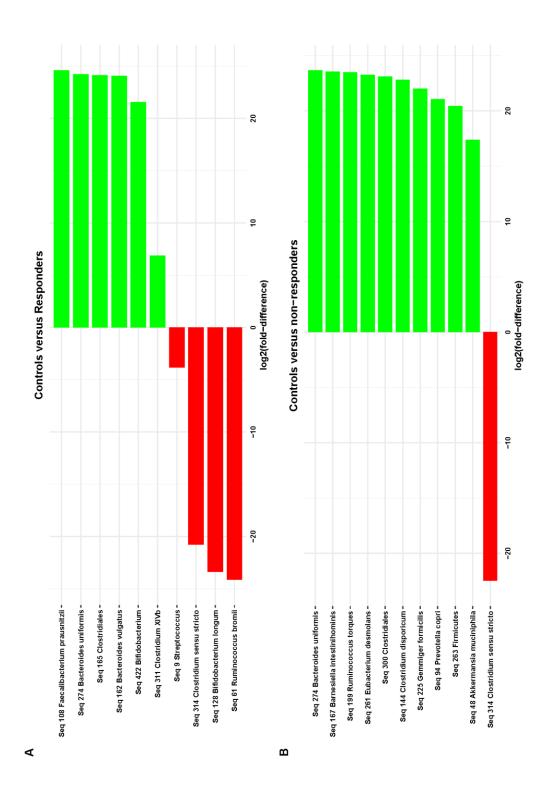

Supplementary Figure 4. Bar plots showing the alpha diversity metrics of controls, individuals
 with no side effects and individuals with side effects. (A) Observed species index (B) Chao1 (C)
 Phylogenetic diversity (D) Simpson's Diversity Index. Statistical testing was performed using
 Wilcoxon signed-rank test

327 In this study we used the denoising DADA2 algorithm to rationalise microbial 328 sequence data to the single nucleotide resolution in the form of amplicon sequence variants (ASVs)³⁵. Differential abundance analysis of ASVs was performed using 329 330 DESeq2. We identified 15 ASVs that were significantly differentially abundant between responders and non-responders while 9 ASVs were significantly 331 332 differentially abundant between individuals with no-side effects versus individuals 333 with side effects (Figure 2). ASVs assigned to the species Ruminococcus bromii, 334 Bifidobacterium longum, Akkermansia muciniphila, Gemmiger formicilis and Prevotella copri were found to be enriched in responders relative to non-responders 335 which is consistent with previous findings $^{20,40-42}$. In a recent meta-analysis A. 336 337 *muciniphila* and *R. bromii* were found to be consistently over-represented in responders²¹. ASVs assigned to responder associated species including *R.bromii* and 338 339 B.longum significantly more enriched in responders versus healthy controls 340 (Supplementary figure 5A). However, healthy controls were observed to be enriched 341 in ASVs assigned to responder associated species versus non-responders, that is, A. 342 muciniphila, G. formicilis and P. copri (Supplementary figure 5B).

343

A number of ASVs found to be enriched in individuals with no side effects relative to healthy controls over-lapped with those enriched in responders including ASVs assigned to the species *A. muciniphila* and *B. intestinihominis* (Figure 2). Of note, an ASV assigned to the genus Oscillibacter was uniquely enriched in individuals with no side effects. Further, a number of ASVs were differentially abundant between individuals with and without side effects and both of these versus healthy controls (Supplementary Figure 6).

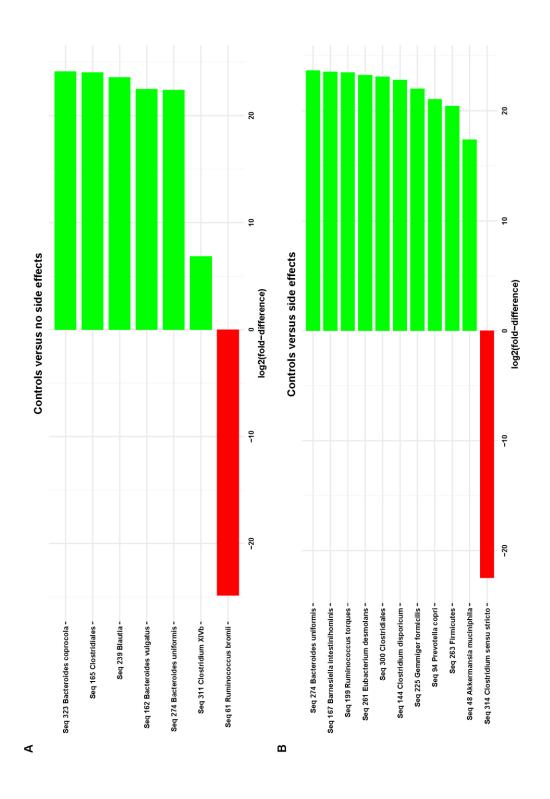
351



353 Figure 2. Differentially abundant ASVs associated with immunotherapy response and side

354 effects. (A) Significantly differentially abundant ASVs with respect to response. ASVs over-355 represented in responders in green. ASVs over-represented in non-responders in red (B) Significantly 356 357 differentially abundant ASVs with respect to side effects. ASVs over-represented in individuals with no side effects in green. ASVs over-represented in individuals with side effects in red. Statistical

358 testing was performed using DESeq2, p-value < 0.05.


361 362 363 Supplementary Figure 5. Differentially abundant ASVs between controls and responder groups.

(A) Significantly differentially abundant ASVs between controls and responders. (B) Significantly

differentially abundant ASVs between controls and non-responders. ASVs over-represented in

using DESeq2, p-value < 0.05.

³⁶⁴ 365 controls in green. ASVs over-represented in non-responders in red. Statistical testing was performed

Supplementary Figure 6. Differentially abundant ASVs between controls and side effect groups.
 (A) Significantly differentially abundant ASVs between controls and individuals with no side effects.
 ASVs over-represented in controls in green. ASVs over-represented in individuals with no side effects
 in red (B) Significantly differentially abundant ASVs between controls and individuals with side
 effects. ASVs over-represented in controls in green. ASVs over-represented in individuals with side
 effects in red. Statistical testing was performed using DESeq2, p-value < 0.05.

376	Previous studies have identified that the abundance of particular gut microbiota
377	proteins, represented by gene counts of KEGG orthologues, to be differentially
378	abundant in responders and non-responders ²¹ . We inferred functional genomic
379	capabilities of the microbiome composition datasets with the software PICRUSt2 39 ,
380	and then DESeq2 was used to identify differential abundant KEGG orthologues
381	(KOs). A number of KOs were thus found to be differentially abundant between
382	responders and non-responders as well as between individuals with no side effects
383	versus individuals with side effects (Figure 3). A galactosyltransferase and
384	glycosyltransferase were overrepresented in the microbiome of responders relative to
385	non-responders. These enzymes are involved in the production of
386	Exopolysaccharides (EPS), a bacterial polymer which in some bacteria has
387	immunomodulatory properties ⁴³ . A number of membrane associated proteins
388	including methyl-accepting chemotaxis protein IV, type III secretion protein, sensor
389	histidine kinase EvgS and proteins relating to EPS production were also found to be
390	enriched in individuals with no side effects.

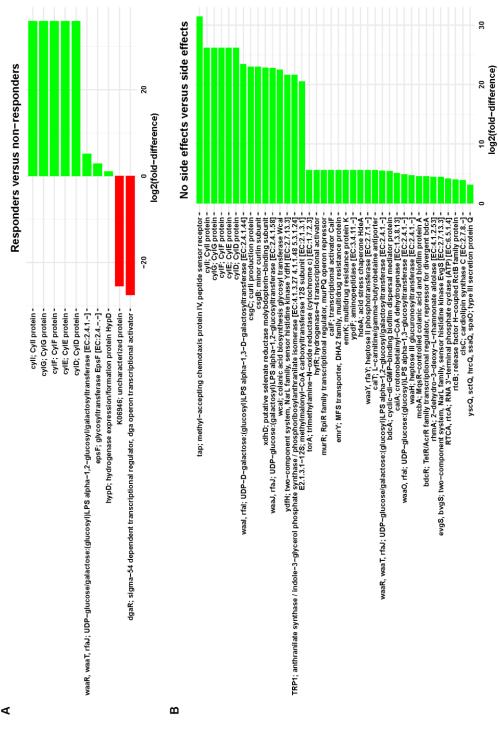


Figure 3. Differentially abundant KEGG Orthologs (KOs) associated with immunotherapy
 response and side effects. (A) Significantly differentially abundant KOs with respect to response.
 KOs over-represented in responders in green. KO s over-represented in non-responders in red (B)
 Significantly differentially abundant KOs with respect to side effects. KOs over-represented in
 individuals with no side effects in green. KOs over-represented in in individuals with side effects in

red Statistical testing was performed using DESeq2, p-value < 0.05.

401 **4.5 Discussion**

402 We identify significant differences in gut microbiota species abundance associated 403 with both treatment response, and protection against moderate and severe side effects 404 in patients with stage four metastatic melanoma. There was no major difference in 405 global ecological structure as measured by alpha and beta-diversity. Consistent with 406 previous reports, we found a number of taxa which were over-represented in 407 treatment responders including A. muciniphila. One mechanism by which A. 408 *muciniphila* may modulate response is through the production of the purine 409 nucleoside inosine which can activates T helper 1 (TH1) in an adenosine 2A receptor 410 (A2AR)-dependent manner⁴⁴. A. muciniphila has been previously identified to be negatively correlated with overweight/obese individuals^{45,46}. However, although not 411 412 conclusive, the current data indicates that there is an association between Progression-free survival and overweight/obese individuals⁴⁷⁻⁴⁹. We also identified 413 414 ASVs assigned to species which have not been previously reported as over-415 represented in treatment responders including *Clostridium disporicum*, 416 Ruminococcus torques, Eubacterium desmolans and Barnesiella intestinihominis. 417 Notably, B. intestinihominis has been demonstrated in mice models to augment the 418 chemo-immunotherapeutic drug Cyclophosphamide via promoting recruitment of 419 Type 1 CD8+ T cells and type 1 CD4+ T helper cells to the colon and the restoration of intratumoral interferon- γ (IFN- γ) producing gamma delta ($\gamma\delta$) T cells ⁵⁰. It was 420 shown that a consortium of 11 microbes promote the anti-cancer effect of immune 421 422 checkpoint inhibitors by promoting the production of CD8+ IFN- γ + T cells⁵¹. Thus 423 B. intestinihominis may modulate ICI response via a mechanism involving IFN- γ 424 production. 425 Curiously, in contrast to previous reports, an ASV assigned to Faecalibacterium 426 *prausnitzii*, a bacterium usually associated with putative health-promoting properties 427 ⁵², was elevated in non-responders. However certain strains of *Faecalibacterium*

428 *prausnitzii* cause distinct effects on immune cells when compared to other strains ⁵³,

- and so the ASV identified may represent strain differences compared to previous
- 430 findings.

Discontinuation of immunotherapy as a result of side effects ²⁶ despite treatment 431 432 efficacy is an unfortunate reality for many patients on immune checkpoint inhibitors. 433 Few studies have examined differences in microbiome composition in patients with 434 and without side effects. We report, for the first time, to our knowledge, a number of 435 ASVs as associated with mild or no side effects relative to patients who developed 436 side effects. Further, while these reports focused on immune checkpoint inhibitor 437 colitis, our study addressed all side effects associated with immunotherapy. It is 438 uncertain whether the mechanism of colitis and that for other side effects differs. 439 Individuals with no side effects were observed to have an increased relative 440 abundance of an ASV assigned to the Oscillibacter, a genus known to produce anti-441 inflammatory compounds and reduce intestinal TH17 cell expansion in mice 442 models[41]. A recent study reported an enrichment of Oscillibacter in inactive 443 Crohn's disease relative to active Crohn's disease ⁵⁴. Together this might suggest 444 that Oscillibacter has a role in preventing immune related side effects.

445

446 We identified a number of proteins which were differential abundant between 447 responders and non-responders as well between side effect groups. We identified 448 proteins involved in Exopolysaccharides (EPS) biogenesis enriched in both 449 responders and individuals with no side effects. EPS are polymers produced by lactic 450 acid bacteria including Lactobacillus and Bifidobacterium. Some EPS types has been 451 demonstrated to have immune-stimulatory, immune-modulating and antiinflammatory qualities ^{43,55}. Furthermore, EPS has been shown to have cytotoxic 452 affects against cancer cells⁵⁶. It is possible that EPS molecules can help augment the 453 454 actions of ICI while preventing an excessive/aberrant immune response. The other 455 surface proteins which were found to be enriched in individuals with no side-effects 456 may also offer mechanistic insight to modulating the immune system in the context 457 of immunotherapy.

458

A limitation of the present study is a relatively small cohort size but this is offset by
the inclusion of subjects of the same ethnicity and geographic region. While we used
the validated iRESIST criteria to assess disease state and treatment response at six

462 months³² long-term longitudinal data will be required to identify microbiota
463 composition linked with overall progression-free survival.

464 Identification of microbes associated with treatment response and protection against side effects in patients receiving immunotherapy raises questions about methods of 465 466 microbiome manipulation to induce a favourable microbial state. Faecal microbiota 467 transplant (FMT) is an effective treatment of recurrent and refractory *C.difficile* infection⁵⁷ which has led to the investigation of FMT to change the gut microbiome 468 in mice treated with immunotherapy, with promising preliminary results^{17,19,20,58}. 469 470 Recent reports have highlighted the potential of FMT in overcoming resistance in patients with melanoma receiving immunotherapy^{59,60} However, FMT poses the risk 471 of transmissible infection ⁶¹ and the possibility of transfer of inflammatory, 472 metabolic or behavioural phenotypes ⁶². FMT using defined microbial consortia, so-473 called artificial stool, may represent a safer method of replacing the "missing 474 microbe".⁶³ Therefore robust, adequately powered trials are also required in patients 475 476 receiving immunotherapy to evaluate the best methods of microbiome manipulation 13 477

478 Acknowledgements: We thank the patients who consented to participate in this
479 study, and the support staff of relevant departments in Cork University Hospital and
480 the Mercy University Hospital Cork. We would like to thank Dr. Dearbhaile Collins
481 for her assistance with sample collection

482 Authors' contributions: CLM, MB, PP, DGP, FS, PWOT contributed equally to
483 this paper. All authors conceived the work that led to the submission and played an
484 important role in its completion, drafted and revised the paper, approved the final
485 version and agreed to be accountable for all aspects of the work.

Ethics approval and consent to participate: Ethical approval was granted by The
Clinical Research Ethics Committee of the Cork Teaching Hospitals (Cork, Ireland)
October 2017 under the study reference APC081. The study was conducted in
accordance with the ethical principles set forth in the current version of the
Declaration of Helsinki, the International Conference on Harmonization E6 Good
Clinical Practice (ICH-GCP)

493 Consent for publication: Consent for publication was obtained from all study494 participants.

Data availability: Datasets available on request

Competing Interests: The authors declare no conflict of interest

497 Funding information: Work in PWOTs laboratory is supported by Science
498 Foundation Ireland through a Centre award (APC/SFI/12/RC/2273_P2) to APC
499 Microbiome Ireland, and by The Health Research Board of Ireland under Grant ILP500 POR-2017-034.

<u>4.6 Reference</u>

503 504	1	Couzin-Frankel, J. Breakthrough of the year 2013. Cancer immunotherapy. <i>Science</i> 342 , 1432-1433, doi:10.1126/science.342.6165.1432 (2013).
505 506	2	Tumeh, P. C. <i>et al.</i> PD-1 blockade induces responses by inhibiting adaptive immune resistance. <i>Nature</i> 515 , 568-571, doi:10.1038/nature13954 (2014).
507 508 509	3	Botticelli, A. <i>et al.</i> Cross-talk between microbiota and immune fitness to steer and control response to anti PD-1/PDL-1 treatment. <i>Oncotarget</i> 8 , 8890-8899, doi:10.18632/oncotarget.12985 (2017).
510 511 512	4	Francisco, L. M. <i>et al.</i> PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. <i>J Exp Med</i> 206 , 3015-3029, doi:10.1084/jem.20090847 (2009).
513 514 515	5	McCoy, K. D. & Le Gros, G. The role of CTLA-4 in the regulation of T cell immune responses. <i>Immunol Cell Biol</i> 77 , 1-10, doi:10.1046/j.1440-1711.1999.00795.x (1999).
516 517 518	6	Buchbinder, E. I. & Desai, A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. <i>Am J Clin Oncol</i> 39 , 98-106, doi:10.1097/COC.00000000000239 (2016).
519 520	7	Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. <i>Science</i> 348 , 56-61, doi:10.1126/science.aaa8172 (2015).

521 522	8	Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. <i>Science</i> 271 , 1734-1736 (1996).
523 524 525	9	Pitt, J. M. <i>et al.</i> Resistance Mechanisms to Immune-Checkpoint Blockade in Cancer: Tumor-Intrinsic and -Extrinsic Factors. <i>Immunity</i> 44 , 1255-1269, doi:10.1016/j.immuni.2016.06.001 (2016).
526 527 528	10	Larkin, J. <i>et al.</i> Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. <i>N Engl J Med</i> 381 , 1535-1546, doi:10.1056/NEJMoa1910836 (2019).
529 530 531 532	11	Herbst, R. S. <i>et al.</i> Long-Term Outcomes and Retreatment Among Patients With Previously Treated, Programmed Death-Ligand 1–Positive, Advanced Non–Small-Cell Lung Cancer in the KEYNOTE-010 Study. <i>J Clin Oncol</i> 38 , 1580-1590, doi:10.1200/JCO.19.02446 (2020).
533 534 535	12	Pitt, J. M. <i>et al.</i> Fine-Tuning Cancer Immunotherapy: Optimizing the Gut Microbiome. <i>Cancer Res</i> 76 , 4602-4607, doi:10.1158/0008-5472.CAN-16-0448 (2016).
536 537 538	13	Murphy, C. L., O'Toole, P. W. & Shanahan, F. The Gut Microbiota in Causation, Detection, and Treatment of Cancer. <i>Am J Gastroenterol</i> , doi:10.14309/ajg.0000000000000075 (2019).
539 540 541	14	Paulos, C. M. <i>et al.</i> Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. <i>J Clin Invest</i> 117 , 2197-2204, doi:10.1172/JCI32205 (2007).
542 543 544	15	Iida, N. <i>et al.</i> Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. <i>Science</i> 342 , 967-970, doi:10.1126/science.1240527 (2013).
545 546 547 548	16	Iglesias-Santamaría, A. Impact of antibiotic use and other concomitant medications on the efficacy of immune checkpoint inhibitors in patients with advanced cancer. <i>Clin Transl Oncol</i> , doi:10.1007/s12094-019-02282-w (2020).
549 550 551	17	Routy, B. <i>et al.</i> Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. <i>Science</i> , doi:10.1126/science.aan3706 (2017).
552 553 554	18	Vétizou, M. <i>et al.</i> Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. <i>Science</i> 350 , 1079-1084, doi:10.1126/science.aad1329 (2015).
555 556 557	19	Gopalakrishnan, V. <i>et al.</i> Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. <i>Science</i> 359 , 97-103, doi:10.1126/science.aan4236 (2018).
558 559 560	20	Matson, V. <i>et al.</i> The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. <i>Science</i> 359 , 104-108, doi:10.1126/science.aao3290 (2018).
561 562	21	Gharaibeh, R. Z. & Jobin, C. Microbiota and cancer immunotherapy: in search of microbial signals. <i>Gut</i> , doi:10.1136/gutjnl-2018-317220 (2018).
	262	

563 564 565	22	Postow, M. A., Sidlow, R. & Hellmann, M. D. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. <i>N Engl J Med</i> 378 , 158-168, doi:10.1056/NEJMra1703481 (2018).
566 567 568	23	Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer- immunity cycle. <i>Immunity</i> 39 , 1-10, doi:10.1016/j.immuni.2013.07.012 (2013).
569 570 571	24	Luoma, A. M. <i>et al.</i> Molecular Pathways of Colon Inflammation Induced by Cancer Immunotherapy. <i>Cell</i> 182 , 655-671.e622, doi:10.1016/j.cell.2020.06.001 (2020).
572 573 574	25	Seldin, M. F. The genetics of human autoimmune disease: A perspective on progress in the field and future directions. <i>J Autoimmun</i> 64 , 1-12, doi:10.1016/j.jaut.2015.08.015 (2015).
575 576 577 578	26	Khoja, L., Day, D., Wei-Wu Chen, T., Siu, L. L. & Hansen, A. R. Tumour- and class-specific patterns of immune-related adverse events of immune checkpoint inhibitors: a systematic review. <i>Ann Oncol</i> 28 , 2377-2385, doi:10.1093/annonc/mdx286 (2017).
579 580 581 582	27	Zhai, Y. <i>et al.</i> Endocrine toxicity of immune checkpoint inhibitors: a real- world study leveraging US Food and Drug Administration adverse events reporting system. <i>J Immunother Cancer</i> 7 , 286, doi:10.1186/s40425-019- 0754-2 (2019).
583 584 585	28	Wang, D. Y. <i>et al.</i> Fatal Toxic Effects Associated With Immune Checkpoint Inhibitors: A Systematic Review and Meta-analysis. <i>JAMA Oncol</i> 4 , 1721- 1728, doi:10.1001/jamaoncol.2018.3923 (2018).
586 587 588	29	Shivaji, U. N. <i>et al.</i> Immune checkpoint inhibitor-associated gastrointestinal and hepatic adverse events and their management. <i>Therap Adv Gastroenterol</i> 12 , 1756284819884196, doi:10.1177/1756284819884196 (2019).
589 590 591	30	Michot, J. M. <i>et al.</i> Immune-related adverse events with immune checkpoint blockade: a comprehensive review. <i>Eur J Cancer</i> 54 , 139-148, doi:10.1016/j.ejca.2015.11.016 (2016).
592 593 594	31	Topalian, S. L. <i>et al.</i> Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. <i>J Clin Oncol</i> 32 , 1020-1030, doi:10.1200/JCO.2013.53.0105 (2014).
595 596 597	32	Seymour, L. <i>et al.</i> iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. <i>Lancet Oncol</i> 18 , e143-e152, doi:10.1016/S1470-2045(17)30074-8 (2017).
598 599 600 601	33	Institute, N. C. <i>Common Terminology Criteria for Adverse Events (CTCAE)</i> V5.0, < <u>https://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.ht</u> <u>m</u> > (2020).
602 603	34	Ghosh, T. S. <i>et al.</i> Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-

604 605		year dietary intervention across five European countries. <i>Gut</i> 69 , 1218, doi:10.1136/gutjnl-2019-319654 (2020).
606 607 608	35	Callahan, B. J. <i>et al.</i> DADA2: High-resolution sample inference from Illumina amplicon data. <i>Nat Methods</i> 13 , 581-583, doi:10.1038/nmeth.3869 (2016).
609 610 611	36	Allard, G., Ryan, F. J., Jeffery, I. B. & Claesson, M. J. SPINGO: a rapid species-classifier for microbial amplicon sequences. <i>BMC Bioinformatics</i> 16 , 324, doi:10.1186/s12859-015-0747-1 (2015).
612 613	37	Caporaso, J. G. <i>et al.</i> QIIME allows analysis of high-throughput community sequencing data. <i>Nat Methods</i> 7 , 335-336, doi:10.1038/nmeth.f.303 (2010).
614 615 616	38	Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. <i>Genome Biology</i> 15 , 550, doi:10.1186/s13059-014-0550-8 (2014).
617 618	39	Douglas, G. M. <i>et al.</i> PICRUSt2: An improved and extensible approach for metagenome inference. <i>bioRxiv</i> , 672295, doi:10.1101/672295 (2019).
619 620 621	40	Gopalakrishnan, V. <i>et al.</i> Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. <i>Science</i> 359 , 97-103, doi:10.1126/science.aan4236 (2018).
622 623 624	41	Routy, B. <i>et al.</i> Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. <i>Science</i> 359 , 91-97, doi:10.1126/science.aan3706 (2018).
625 626 627	42	Chaput, N. <i>et al.</i> Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. <i>Ann Oncol</i> 28 , 1368-1379, doi:10.1093/annonc/mdx108 (2017).
628 629 630 631	43	Fanning, S. <i>et al.</i> Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. <i>Proc Natl Acad Sci U S A</i> 109 , 2108-2113, doi:10.1073/pnas.1115621109 (2012).
632 633 634	44	Mager, L. F. <i>et al.</i> Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. <i>Science</i> 369 , 1481, doi:10.1126/science.abc3421 (2020).
635 636	45	Liu, R. <i>et al.</i> Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. <i>Nature medicine</i> 23 , 859-868 (2017).
637 638	46	Cani, P. D. & de Vos, W. M. Next-generation beneficial microbes: the case of Akkermansia muciniphila. <i>Frontiers in microbiology</i> 8 , 1765 (2017).
639 640 641 642	47	Cortellini, A. <i>et al.</i> A multicenter study of body mass index in cancer patients treated with anti-PD-1/PD-L1 immune checkpoint inhibitors: when overweight becomes favorable. <i>Journal for immunotherapy of cancer</i> 7 , 1-11 (2019).
643 644	48	Cortellini, A. <i>et al.</i> Baseline BMI and BMI variation during first line pembrolizumab in NSCLC patients with a PD-L1 expression≥ 50%: a

645 646		multicenter study with external validation. <i>Journal for immunotherapy of cancer</i> 8 (2020).
647 648 649	49	Indini, A. <i>et al.</i> Impact of BMI on Survival Outcomes of Immunotherapy in Solid Tumors: A Systematic Review. <i>International journal of molecular sciences</i> 22 , 2628 (2021).
650 651 652	50	Daillère, R. <i>et al.</i> Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects. <i>Immunity</i> 45 , 931-943, doi:10.1016/j.immuni.2016.09.009 (2016).
653 654 655	51	Tanoue, T. <i>et al.</i> A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. <i>Nature</i> 565 , 600-605, doi:10.1038/s41586-019-0878-z (2019).
656 657 658	52	Lopez-Siles, M., Duncan, S. H., Garcia-Gil, L. J. & Martinez-Medina, M. Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. <i>ISME J</i> 11 , 841-852, doi:10.1038/ismej.2016.176 (2017).
659 660 661	53	Rossi, O. <i>et al.</i> Faecalibacterium prausnitzii A2-165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses. <i>Sci Rep</i> 6 , 18507, doi:10.1038/srep18507 (2016).
662 663 664	54	Metwaly, A. <i>et al.</i> Integrated microbiota and metabolite profiles link Crohn's disease to sulfur metabolism. <i>Nat Commun</i> 11 , 4322, doi:10.1038/s41467-020-17956-1 (2020).
665 666 667 668	55	Strisciuglio, C. <i>et al.</i> Bifidobacteria Enhance Antigen Sampling and Processing by Dendritic Cells in Pediatric Inflammatory Bowel Disease. <i>Inflamm Bowel Dis</i> 21 , 1491-1498, doi:10.1097/mib.000000000000389 (2015).
669 670 671 672	56	Tukenmez, U., Aktas, B., Aslim, B. & Yavuz, S. The relationship between the structural characteristics of lactobacilli-EPS and its ability to induce apoptosis in colon cancer cells in vitro. <i>Scientific Reports</i> 9 , 8268, doi:10.1038/s41598-019-44753-8 (2019).
673 674 675 676	57	Lai, C. Y. <i>et al.</i> Systematic review with meta-analysis: review of donor features, procedures and outcomes in 168 clinical studies of faecal microbiota transplantation. <i>Aliment Pharmacol Ther</i> 49 , 354-363, doi:10.1111/apt.15116 (2019).
677 678 679	58	Sivan, A. <i>et al.</i> Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. <i>Science</i> 350 , 1084-1089, doi:10.1126/science.aac4255 (2015).
680 681 682	59	Davar, D. <i>et al.</i> Fecal microbiota transplant overcomes resistance to anti-PD- 1 therapy in melanoma patients. <i>Science</i> 371 , 595-602, doi:10.1126/science.abf3363 (2021).
683 684 685	60	Baruch, E. N. <i>et al.</i> Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. <i>Science</i> 371 , 602-609, doi:10.1126/science.abb5920 (2021).

- 68661Cammarota, G. *et al.* European consensus conference on faecal microbiota687transplantation in clinical practice. *Gut* 66, 569-580, doi:10.1136/gutjnl-6882016-313017 (2017).
- 689 62 Collins, S. M., Kassam, Z. & Bercik, P. The adoptive transfer of behavioral
 690 phenotype via the intestinal microbiota: experimental evidence and clinical
 691 implications. *Curr Opin Microbiol* 16, 240-245,
- 692 doi:10.1016/j.mib.2013.06.004 (2013).
- 63 Murphy, C. L., Zulquernain, S. A. & Shanahan, F. Faecal Microbiota
 694 Transplantation (FMT) classical bedside-to-bench clinical research. *QJM*,
 695 doi:10.1093/qjmed/hcz181 (2019).

697	Chapter 5 -	Altered	Skin and	Gut Micro	obiome in
-----	-------------	---------	----------	------------------	-----------

698 Hidradenitis Suppurativa

699	The following	chanter has	heen accente	d for public	ration in the	journal Journal	of
099	The following	chapter has	been accepte	tu ioi puone	auon in the	Journal Journal	UJ

700 Investigative Dermatology

701

702 Authors:

703 704	Siobhan McCarthy*, Maurice Barrett*, Shivashini Kirthi, Paola Pellanda, Klara Vlckova, Anne-Marie Tobin, Michelle Murphy, Fergus Shanahan, Paul W O'Toole
705	
706	*Joint first authorship: These authors contributed equally to this work.
707	
708	Maurice Barrett contributed to this work in the following ways:
709	• Design of methodologies to collect and process samples.
710	• All bioinformatic analysis including sequence processing, compositional data
711	analysis and statistical analysis.
712	• Data visualization i.e., construction of publication figures.
713	• Writing of over half of the manuscript.

715 **5.1 Abstract**

716 Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease characterized 717 by the formation of nodules, abscesses, and fistula at intertriginous sites. The skin-718 gut axis is an area of emerging research in inflammatory skin disease and is a 719 potential contributory factor to the pathogenesis of HS. 59 patients with HS provided 720 fecal samples, nasal and skin swabs of affected sites for analysis. 30 healthy controls 721 provided fecal samples and 20 healthy controls provided nasal and skin swabs. We 722 performed bacterial 16S rRNA gene amplicon sequencing on total DNA derived 723 from the samples. Microbiome alpha diversity was significantly lower in the fecal, 724 skin and nasal samples of individuals with HS which may be secondary to disease 725 biology or related to antibiotic usage. Ruminococcus gnavus was more abundant in the fecal microbiome of individuals with HS, which is also reported in Crohn's 726 727 disease (CD), suggesting comorbidity due to shared gut microbiota alterations. 728 Finegoldia magna was over-abundant in HS skin samples relative to healthy 729 controls. It is possible local inflammation is driven by F. magna through promoting 730 the formation of neutrophil extracellular traps (NET). These alterations in both the 731 gut and skin microbiome in HS warrant further exploration, and therapeutic 732 strategies including fecal microbiota transplant (FMT) or bacteriotherapy could be of 733 benefit.

735 **<u>5.2 Introduction</u>**

736	Hidradenitis suppurativa (HS) is a chronic, debilitating, follicular skin disease
737	presenting with deep-seated, painful, inflammatory nodules of the axillary,
738	inframammary, inguinal, and anogenital regions ¹ . These lesions can spontaneously
739	rupture or coalesce to form painful deep dermal abscesses which often heal with scar
740	formation. A population prevalence of up to 4% has been reported in the literature ¹⁻³ .
741	There is a female predominance, with onset often around puberty ^{1,4,5} . Smoking,
742	obesity are recognised associations, and a genetic predisposition has been
743	reported ^{4,6,7} . A broad range of comorbidities have been identified in patients with HS
744	including spondyloarthropathy, metabolic syndrome and inflammatory bowel
745	disease (IBD), particularly Crohn's disease ^{5,8,9} . As well as significant morbidity, HS
746	is associated with increased mortality, in particular due to cardiovascular events,
747	with increased cancer risk also recorded ^{10,11} . Depression, anxiety and substance
748	misuse is also common among its sufferers ^{12,13} .
749	The cause of HS is incompletely understood, with follicular occlusion, dysregulated
750	inflammatory response of cytokines such as tumour necrosis factor (TNF)-a,
751	interleukin(IL)-1ß and IL-17, and an altered microbiota all thought to play a role ^{7,14-}
752	18.
753	HS and IBD share common manifestations characterised by sterile abscesses,
754	scarring and sinus tract formation ¹⁹ Similar inflammatory pathways are activated in

scarring and sinus tract formation¹⁹. Similar inflammatory pathways are activated in

755 Crohn's disease and HS, with elevated production of the innate immune mediators

756 IL-1, IL-6, IL-17, IL-23 and TNF-alpha²⁰⁻²². Smoking and obesity are common

associations, and HS and IBD respond to TNF-alpha inhibitor therapy^{7,23-25}.

758 Extensive research supports the role of the gut microbiota in IBD and other 759 inflammatory conditions including rheumatoid arthritis, psoriasis and psoriatic arthritis²⁶⁻³¹. Although the skin microbiota in HS is an area of expanding research, 760 the gut microbiota or the 'gut-skin axis' in HS deserves greater consideration^{14,32,33}. 761 One study investigated Faecalibacterium prausnitzii and Escherichia coli levels in 762 763 patients with psoriasis, concomitant psoriasis and IBD, HS, and concomitant HS and IBD³². Increased levels of *E. coli* and decreased levels of *F. prausnitzii* was noted in 764 765 patients with psoriasis. A significant difference in abundance of E. coli or F. prausnitzii was not noted in patients with HS³². Since an altered gut microbiota has 766 767 been associated with various pathophysiologies involving immune dysregulation, it 768 may play a role in the development of HS. 769 In this study we tested for an association between microbiota alteration in the skin, 770 nasal mucosa, and feces and HS. The microbiota across the various niches was

compared to that of healthy controls.

773 **<u>5.3 Results</u>**

774 **5.3.1 Descriptive statistics of the study population**

775 We collected 322 samples including fresh fecal samples, nasal swabs and skin swabs 776 from 4 different locations including the axilla, inframammary area, buttock and groin 777 (Table 1). 59 patients with HS were recruited providing fecal samples, skin swabs 778 and nasal swabs. 30 healthy controls provided fecal samples (Planned 2:1 ratio) and 779 20 healthy controls provided skin and nasal swabs (Planned 3:1 ratio). Mean body 780 mass index (BMI) in the HS group was 31.5, and 28.2 in the fecal control group and 781 28.06 in the skin control group. 4 (6.8%) patients in the HS group had a history of 782 Crohn's disease. Of the 59 patients with HS, 18 (30.5%) were Hurley Stage 1 783 (abscess formation without sinus tracts and cicatrisation), 32 (54.2%) were Hurley 784 Stage 2 (recurrent abscesses with tract formation and scars) and 9 (15.3%) were 785 Hurley Stage 3 (multiple interconnected tracts and abscesses throughout an entire 786 area).

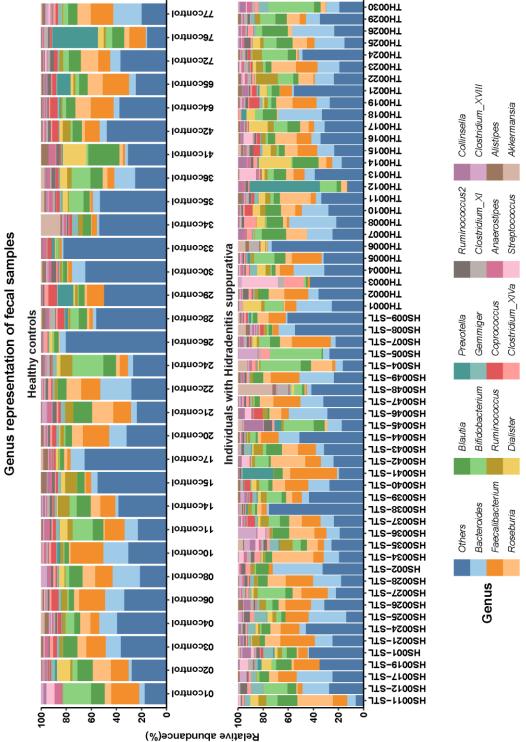
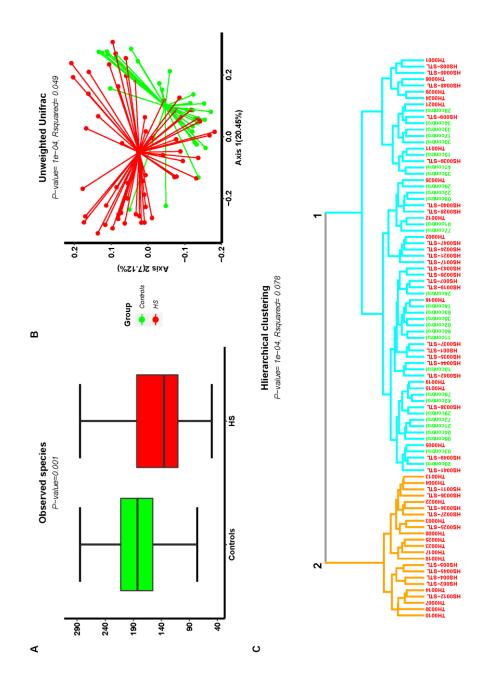
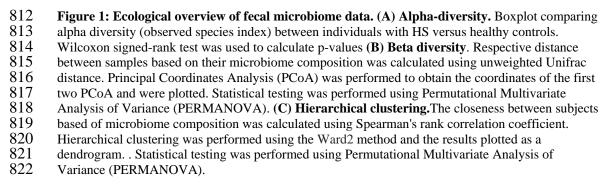
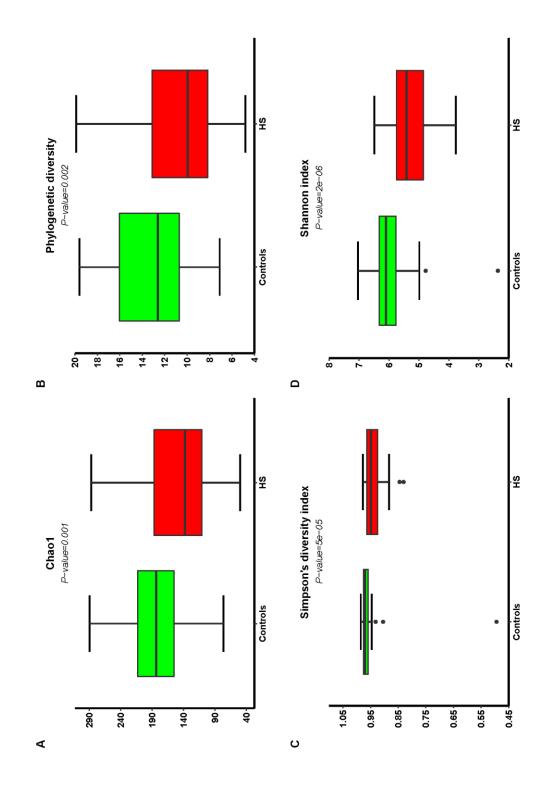

	HS	Controls	Significance
Fecal			
N (patients)	59	30 (fecal)	n/a
~		20 (skin)	
Gender (Female/Male)	45/14	20/10 (fecal)	NS
		15/5 (skin)	
Age (mean, range)	37, 21-62	38, 19-62	NS
		(fecal)	
		41, 24-68	
DMI (21.5.10.6.45.0	(skin)	0.022
BMI (mean, range)	31.5, 19.6-45.0	28.2, 18.7-46.3	0.023
		(fecal) 28.06 20.3-40	
		(skin)	
Crohn's Disease (yes/no)	4/59	0/30 (fecal)	NS
TNF-α inhibitor therapy	9/59	0/30 (fecal)	
Nasal	7/37	0/30 (iccal)	
N (patients)	25	17	n/a
Gender (Female/Male)	22/3	12/5	NS
Age (mean, range)	41, 24-54	36, 24-68	NS
BMI (mean, range)	33, 20.4-45.0	29	NS
Axilla	33, 20.4-45.0	23	
N (patients)	19	6	n/a
Gender (Female/Male)	16/3	2/4	NS
Age (mean, range)	39, 24-54	37, 29-52	NS
BMI (mean, range)	31, 19.6-45.0	29, 22.5-39.2	NS
Groin	51, 17.0-45.0	2), 22.3-3).2	115
N (patients)	15	17	n/a
Gender (Female/Male)	12/3	12 /5	NS
Age (mean, range)	35, 24-52	40, 24-68	NS
BMI (mean, range)	30, 20.4-44.9	29, 20.9-40.0	NS
Breast		29,2019 1010	
N (patients)	5	13	n/a
Gender (Female/Male)	5/0	13/0	NS
Age (mean, range)	39, 25-52	39, 24-54	NS
BMI (mean, range)	30.5, 19.6-38.0	28.3, 23.6-40.0	NS
Buttock	, 1910 0010		
N (patients)	4	19	n/a
Gender (Female/Male)	2/2	14/5	NS
Age (mean, range)	36, 28-39	40, 24-68	NS
BMI (mean, range)	31 30.0-31.6	28, 20.9-40.0	NS

Table 1. Subject characteristics: HS subjects and healthy controls.Comparisonof variables between HS cohort and healthy controls.Wilcoxon signed-rank test or

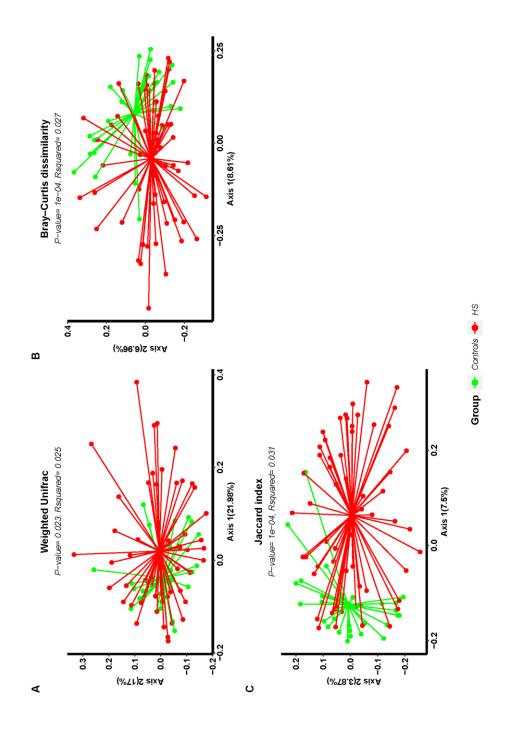

 $\chi 2$ statistic was used to determine significance.

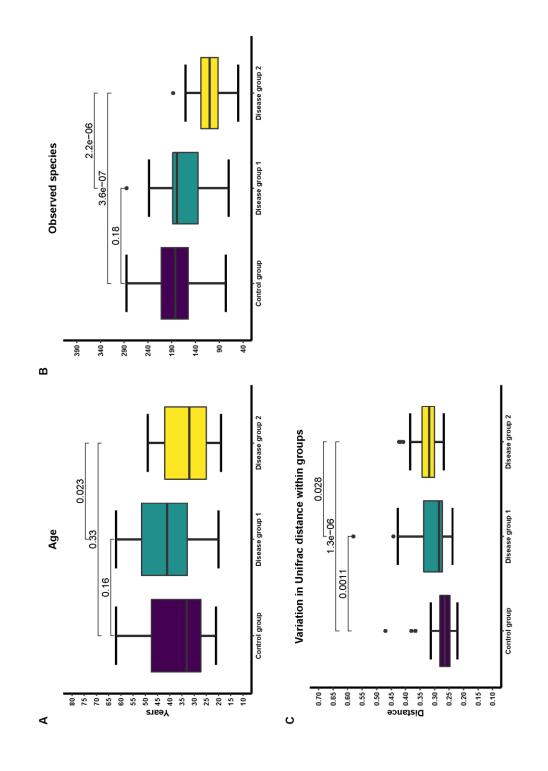
5.3.2 Overall structure of the fecal microbiota is altered in HS


793	We examined the microbiome composition of 59 and 30 fecal specimens from
794	individuals with HS and healthy controls respectively (eFigure 1). Ecological metrics
795	showed a difference between the microbiome of individuals with HS and healthy
796	controls (Figure 1). Alpha-diversity, a marker of microbial species richness or
797	variation within a sample, was significantly lower in individuals with HS (Figure
798	1A). This reduction was also observed for four other metrics of alpha-diversity
799	including Shannon and phylogenetic diversity (eFigure 2). A microbiome separation
800	in beta-diversity, (a comparison of global microbial composition in all the samples),
801	between the HS and healthy controls was observed across all metrics tested (Figure
802	1B) (eFigure 3), noting also less clustering within the HS samples. Hierarchical
803	clustering replicated and reinforced this separation as seen by the presence of a
804	cluster composed exclusively of patients with HS (Figure 1C).
005	



eFigure 1: Taxonomic representation within faecal specimens. Bar plots displaying the relative abundance of genera within faecal samples. Genera with a relative abundance of less 1% across all samples grouped into 'others' with sequences not classified at the genus level




825 eFigure 2: Bar plots of alpha diversity metrics regarding faecal samples. (A) Chao1. (B) Phylogenetic
 826 diversity. (C) Simpson's Diversity Index. (D) Shannon index. Wilcoxon signed-rank test was used to
 827 calculate p-values.

eFigure 3: PCoA representing Beta diversity metrics regarding faecal samples. (A) Weighted

- 831 Unifrac. (B) Bray–Curtis Dissimilarity. (C) Jaccard index. Statistical testing was performed using
- 832 Permutational Multivariate Analysis of Variance (PERMANOVA).
- 833

834	We further investigated this cohort by grouping the individuals informed by the
835	hierarchical clustering that is, control group (control samples, cyan branch, branch
836	No.1), disease group 1 (cyan branch, branched No.1) and disease group 2 (orange
837	branch, branched No.2). We found that disease group 2 was composed of
838	significantly younger subjects than disease group 1 but not the controls (eFigure 4A).
839	Alpha diversity was lower in disease group 2 compared to the disease group 1 and
840	the control group (eFigure 4B). There was greater within-group microbiome
841	variation, evidenced by higher levels of Unifrac distance between samples, within
842	disease group 2 compared to the other two groups (eFigure 4C).

845 eFigure 4: Difference in groups informed by clustering. (A) Bar plot of age differences (B) Bar plots
846 of observed species. (C) Differences in the Variation in Unifrac distance within groups. Wilcoxon
847 signed-rank test was used to calculate p-values.

5.3.3 Differentially abundant ASVs in the fecal microbiome

850	Microbial amplicon sequencing data can be rationalised in terms of amplicon
851	sequence variants (ASVs) which allows the data to be resolved down to single-
852	nucleotide difference ³⁴ . A number of ASVs were found to be differentially abundant
853	between the fecal microbiome of patients with HS and healthy controls (Figure 2A).
854	With regard to log2 fold differences, the ASVs assigned to the taxa Ruminococcus
855	callidus and Eubacterium rectale were the most enriched in individuals with HS
856	relative to healthy controls. However, with respect to proportional abundance, the
857	greatest difference was detected in ASVs assigned to the taxa Streptococcus spp. (an
858	average relative abundance of 0.19% in the control cohort versus 0.95% in the HS
859	cohort) and Ruminococcus gnavus (average relative abundance values of 0.01% in
860	the control cohort versus 0.7% in the HS cohort).

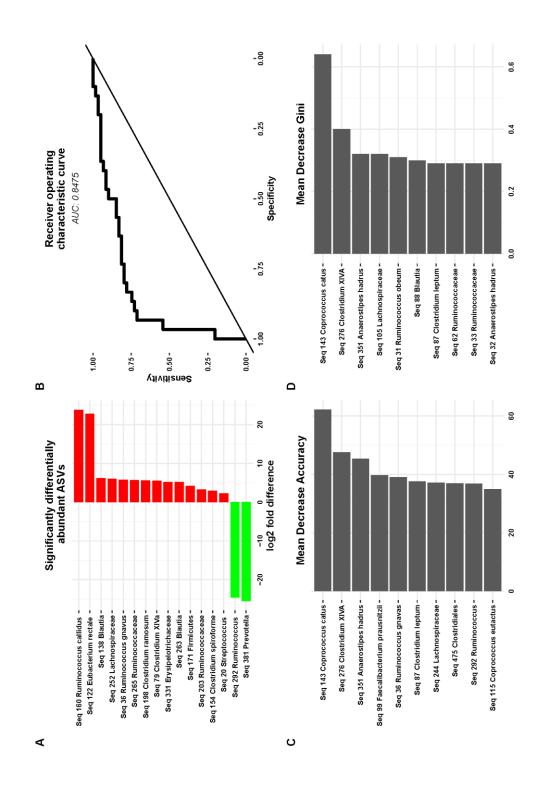
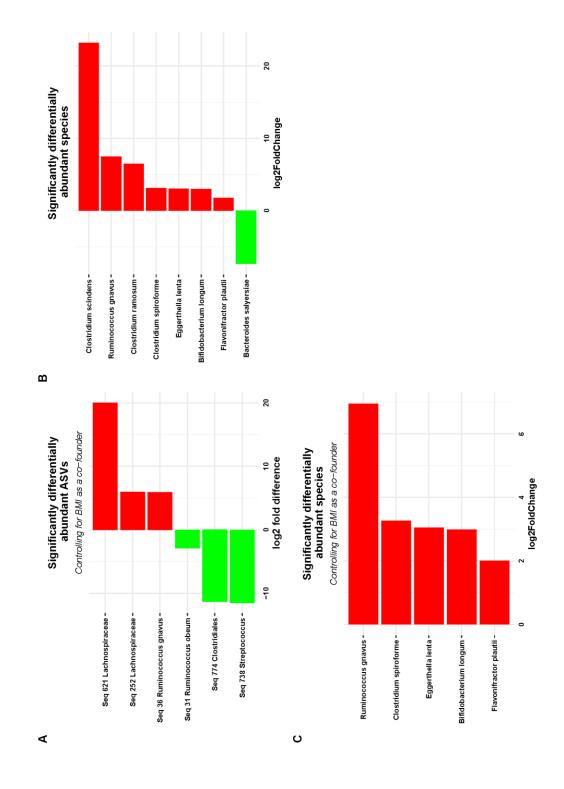



Figure 2: Differentially abundant ASVs and machine learning classification. (A) Bar plot of
differential abundant ASVs as expressed by log fold difference. Negative values indicates
overrepresented in controls. Positive values indicates overrepresented in individuals with HS (B)
Receiver operating characteristic curves (ROC) (C,D) Top discriminatory ASVs with regard to
discriminating the HS subjects from healthy controls. (C) Mean Decrease Accuracy. (D) Mean
Decrease Gini.

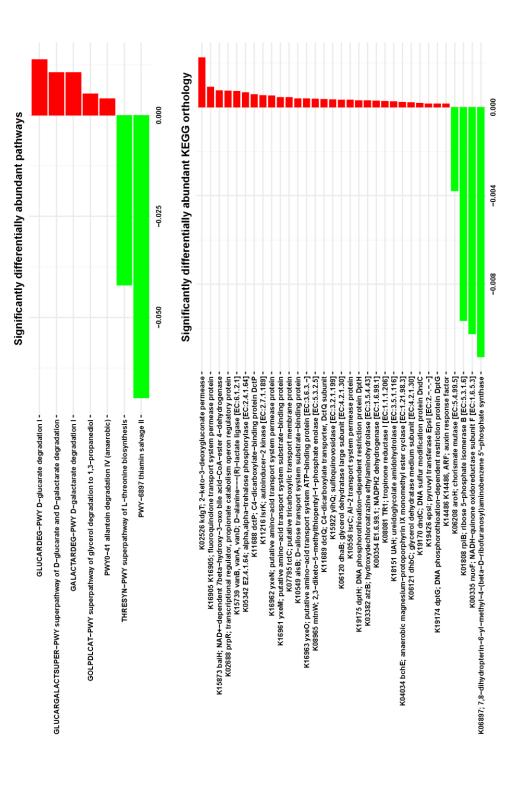
870	As BMI was significantly different between the groups, the DESeq2 model was re-
871	run to adjust for BMI (eFigure 5). The differential over-abundance of Ruminococcus
872	gnavus remained statistically significant in the HS cohort. However, an ASV
873	assigned to Ruminococcus obeum was revealed to be depleted in individuals with
874	HS. ASVs were also collapsed to the species level and differential abundance of
875	species determined with and without BMI as a confounder (eFigure 5). R. gnavus
876	was retained as being significantly over-abundant in the HS cohort in both analyses.
877	

879 eFigure 5: Bar plots of differential abundant ASVs and species in fecal samples. (A) Significantly
880 differentially abundant ASVs with BMI integrated into the model. (B) Significantly differentially
881 abundant species. (C) Significantly differentially abundant species with BMI integrated into the
882 model. DESeq2 used to for statistical analysis. ASVs/species enriched in HS samples in red.
883 ASVs/species enriched in control samples in green.

Antibiotic usage for the previous year was recorded in the HS cohort. There were no significant ASVs that were differently abundant between those who had received antibiotic therapy in the last year and those who did not.

888

889 **5.3.4 Machine learning identification of HS-related microbiota**

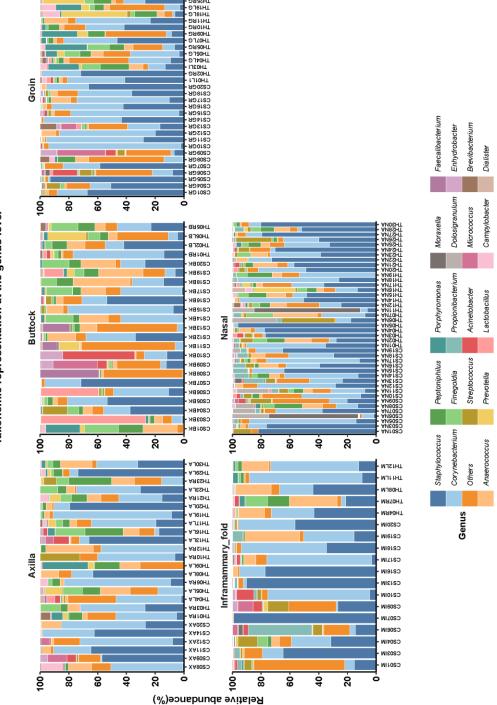

- 890 members
- 891 The machine learning classifier random forest (RF) was employed to test if ASVs
- 892 could discriminate the HS patients from the healthy control cohort. The RF classifier
- 893 performed reasonably with an area under the curve (AUC) of 0.8458 (Figure 2B). A
- number of ASVs identified as discriminatory (i.e. as contributing to the RF model)
- 895 were taxonomically assignable to butyrate-producing bacterial species including
- 896 Faecalibacterium prausnitzii, Coprococcus eutactus, Coprococcus catus and
- 897 Anaerostipes hadrus (Figure 2C). A number of ASVs that we had identified using
- the DESeq2 model as being differentially abundant were also identified including
- 899 Ruminococcus gnavus and Ruminococcus obeum.
- 900

901 **5.3.5 Changes in predicted metabolic function of the fecal**

902 microbiota

- 903 Metagenomic functionality was inferred using the algorithm PICRUSt2, which is
- 904 based on the metabolic pathways of reference microbiota data to which a test-set of
- 905 16S data is compared. Several metabolic pathways were thus predicted to be
- 906 differentially abundant between HS and control metagenomes (Figure 3A).

- 907 Metabolic pathways for D-glucarate degradation and D-galactarate degradation,
- 908 which are associated with a poor prognosis in CD, were overrepresented in
- 909 individuals with HS relative to healthy controls 35 .


912 Figure 3: Differentially abundant metabolic pathways and KEGG orthologs. (A) Bar plot of

913 differential abundant MetaCyc as expressed by difference in mean proportional abundance. MetaCyc

- pathways enriched in HS samples in red. MetaCyc pathways enriched in control samples in green.
- 915 (B) Bar plot of differential abundant KOs as expressed by difference in mean proportional
- 916 abundance. . KOs enriched in HS samples in red. KOs enriched in control samples in green.
- 917 Wilcoxon signed-rank test was used to calculate p-values.

5.3.6 Ecological structure is altered in nasal and skin microbiome

920	The overall microbiome composition of nasal and skin samples was typical of what
921	has been previously described, that is, mainly composed of the genera
922	Staphylococcus and Corynebacterium (efigure 6). Both nasal and skins swabs
923	showed a reduction in alpha-diversity in the HS cohort (Figure 4) ³⁶ . However, only
924	nasal swabs reached statistical significant decrease. This was also true for other
925	alpha-diversity metrics including Observed species and Chao1 but not for Simpson
926	or Shannon indices (eFigure 7). The number of subjects that contributed samples to
927	some sites was low, with a low control number, thus the statistical power was
928	reduced and significance difficult to capture. There was a statistically significant
929	separation in beta-diversity with respect to axilla, groin, and nasal microbiota
930	datasets (eFigure 8), showing that different microbiome communities are present at
931	these body sites.

Taxonomic representation at the genus level

933

eFigure 6: Taxonomic representation within nasal and skin specimens. Bar plots
displaying the relative abundance of genera within nasal and skin samples. Genera
with a relative abundance of less than 0.5% across all samples grouped into 'others'
with sequences not classified at the genus level.

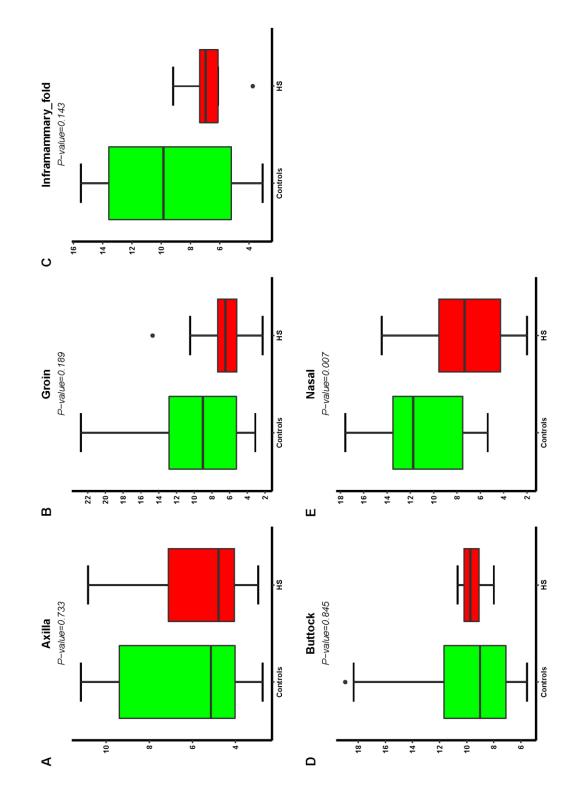
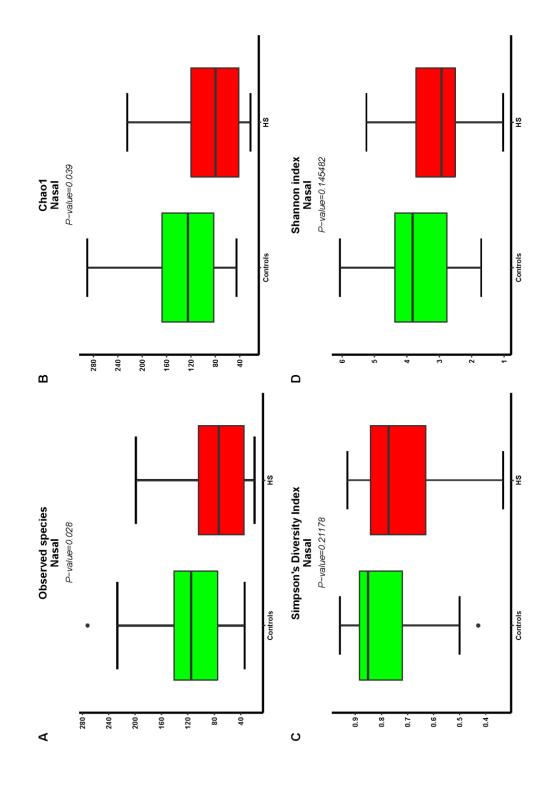
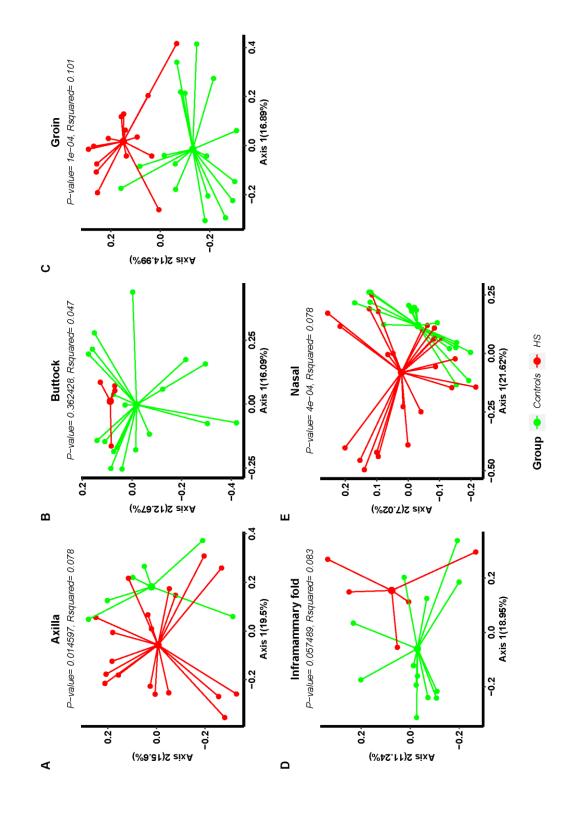
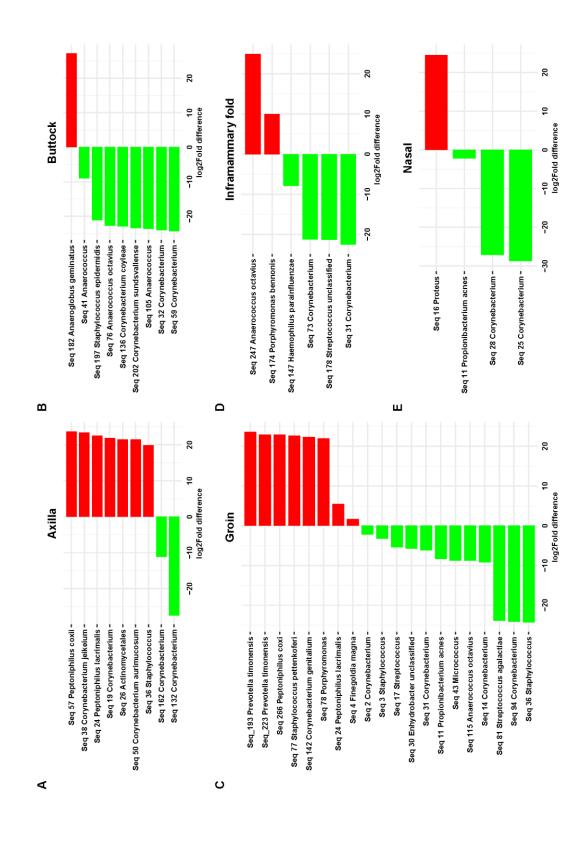
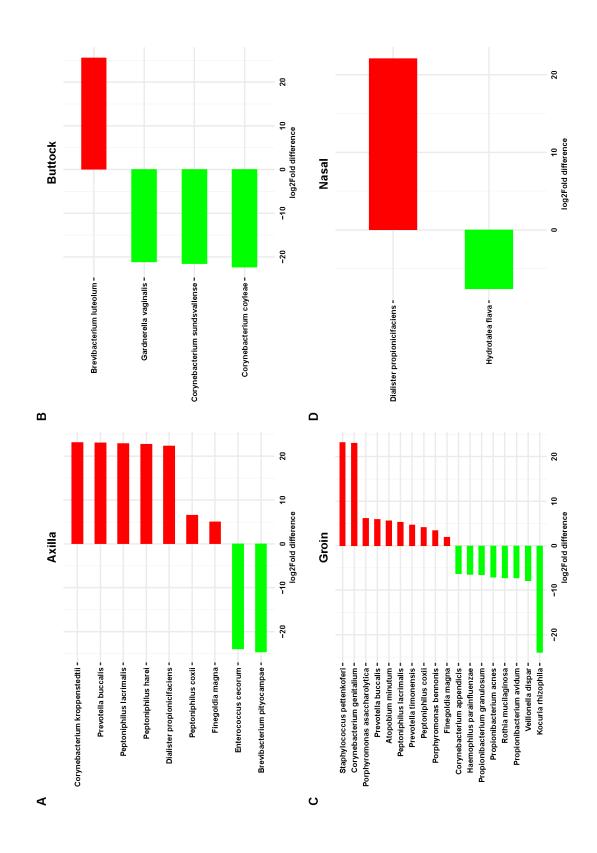




Figure 4: Alpha-diversity comparisons across nasal and skin. Bar plots of alpha-diversity
 (Phylogenetic diversity) comparing healthy controls versus individuals with HS. Wilcoxon signed rank test was used to calculate p-values.

945 eFigure 7: Bar plots of alpha diversity metrics regarding nasal samples. (A) Chao1. (B) Phylogenetic
 946 diversity. (C) Simpson's Diversity Index. (D) Shannon index. Wilcoxon signed-rank test was used to
 947 calculate p-values.

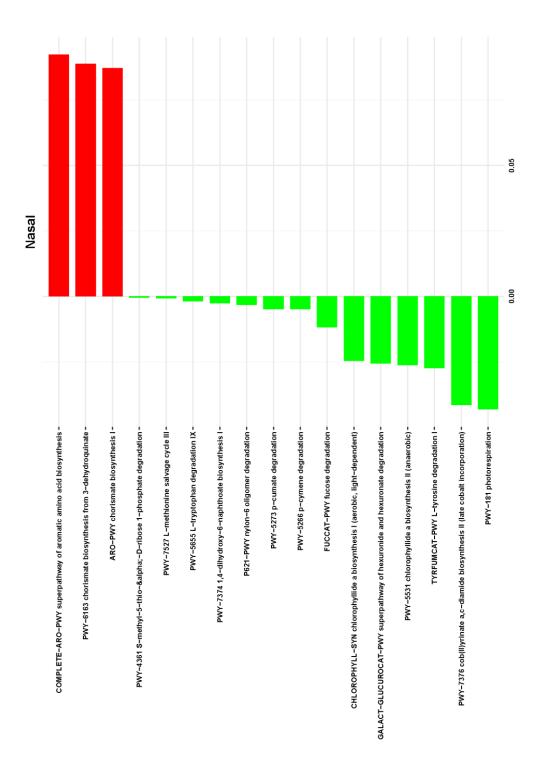

eFigure 8: Beta-diversity comparisons of nasal and skin microbiome. Principal Coordinates Analysis
 representation of Beta diversity (Unweighted Unifrac) between individuals with HS versus healthy
 controls. Statistical testing was performed using Permutational Multivariate Analysis of Variance.

5.3.6 Differentially abundant ASVs and metabolic pathways in the


955 nasal and skin microbiome of HS patients

956 We identified differentially abundant ASVs in the nasal microbiome and all skin

- sites studied (eFigure 9). ASVs were collapsed to the species level and differential
- 958 species abundance delineated (eFigure 9). An ASV assigned to *Finegoldia magna*
- had a significantly higher abundance at the groin site in individuals with HS relative
- 960 to healthy controls. Furthermore, at the species level, *F. magna* was more abundant
- 961 in HS relative to healthy controls in groin and axilla samples (eFigure 10).
- 962 Significantly differentially abundant pathways were found in relation to the nasal
- 963 microbiome and one pathway in the groin microbiome (eFigure 11).



966 eFigure 9: Bar plots of differential abundant ASVs across nasal and skin swab samples. DESeq2 used
 967 to for statistical analysis. ASVs enriched in HS samples in red. ASVs enriched in control samples in
 968 green.

971 eFigure 10: Bar plots of differential species across nasal and skin sites. DESeq2 used to for statistical
 972 analysis. Species enriched in HS samples in red. Species enriched in control samples in green.

eFigure 11: Differential MetaCyc pathways across skin sites. Nasal. Wilcoxon signed-rank test was 977 used to calculate p-values. MetaCyc pathways enriched in HS samples in red. MetaCyc pathways

enriched in control samples in green.

979 **<u>5.4. Discussion</u>**

980 We identified a number of differences in microbiome configuration in fecal and 981 swab samples from across a number of body sites in individuals with HS compared 982 to healthy controls. Alpha diversity was lower in subjects with HS across most of 983 these sites suggesting a reduction in the richness of the gut and skin microbiota 984 compared to controls. Decreases in alpha diversity in skin, and nasal microbiota have 985 been previously reported in atopic dermatitis, with conflicting results for the gut microbiota³⁷⁻⁴⁰. Alpha-diversity has also been observed to be lower in skin samples 986 from individuals with psoriasis, with even more variable results in the gut^{41-43} . 987

988

989 5.4.1 Gut Microbiome in HS

Elevated levels of Ruminococcus gnavus and Clostridium ramosum were among the 990 991 greatest differences in relative abundance between patients with HS and healthy 992 control microbiomes in this study. R. gnavus has been consistently found to be 993 overrepresented in subjects with Crohn's Disease and has also been associated with spondyloarthritis, and irritable bowel syndrome^{28,44-49}. *R. gnavus* has also been 994 995 linked to development of eczema and other allergic diseases in infants, thought to be due to its effect on the host immune system development^{37,49}. A mechanistic role of 996 997 *R. gnavus* in Crohn's disease has been experimentally supported namely the 998 production of a potent proinflammatory polysaccharide which induces the 999 production TNF- α via interacting with the toll-like receptor 4 (TLR4) of innate immune cells such as dendritic cells⁵⁰. The production of this polysaccharide could 1000 1001 be a contributor to the pathogenesis of HS. It is possible that the diseases that are

1002 comorbid with HS have a common aetiology, due, in part, to the activity of *R*.

1003 gnavus. The abundance of C. ramosum has also been reported to be increased in

1004 Crohn's disease and obese individuals^{26,51}. In a previous study, *R. obeum* was

1005 strongly enriched in controls relative to individuals with IBD, as seen in this study⁵².

1006

1007 We found that pathways related to galactarate and glucarate degradation were more 1008 abundant in the fecal microbiome from individuals with HS. These metabolic 1009 pathways have also been implicated in Crohn's disease clinical outcome and could 1010 be linked to systemic inflammation. In a recent paired whole exome shotgun 1011 metagenomics study comparing individuals with IBD and healthy controls, immunerelated gene CABIN1 was associated with an increase of D-glucarate degradation⁵³. 1012 1013 Both D-glucarate degradation and D-galactarate degradation were overrepresented in 1014 individuals with Crohn's Disease with a poor prognosis relative to those with a good 1015 prognosis³⁵. Antibiotics are known to induce a host-mediated elevation in the levels 1016 of galactarate and glucarate in the gut and increased expression of microbial genes responsible for galactarate and glucarate degradation may be a response to this⁵⁴. 1017 1018 Mouse model studies demonstrated that antibiotic treatment leads to an increase in 1019 galactarate and glucarate through increased expression of inducible nitric oxide synthase (iNOS)⁵⁴. 1020

1022 **5.4.2 Skin Microbiome**

1023 In a previous study, Ring et al examined the difference in the skin microbiome 1024 between subjects with hidradenitis suppurativa and healthy controls using skin biopsies⁵⁵. Our analysis corroborates and extends the number of taxa found to 1025 1026 differentially abundant. In particular there is agreement that *Peptoniphilus* 1027 lacrimalis, Finegoldia magna, Peptoniphilus coxii, Anaerococcus murdochii, and 1028 Anaerococcus obesiensis are more abundant in HS, with a higher abundance of 1029 Cutibacterium acnes in healthy controls. Colonisation and proliferation of certain 1030 strains of C. acnes are thought to play an important role in the pathogenesis of acne vulgaris^{56,57}. The depletion of *C. acnes* in individuals with HS suggests that it does 1031 1032 not play a similar mechanistic role in HS as it does in acne. However, a decrease in 1033 C. acnes may alter the microbial ecological of skin in a manner that promotes HS 1034 pathogenesis. Alpha diversity was reduced in nasal and groin samples. This is also 1035 reflected in findings for atopic dermatitis; however, the corresponding increase in 1036 Staphylococcus aureus typically seen in atopic dermatitis was not detected in these patients with HS^{39,58}. Similarly, in psoriasis a reduction in alpha diversity is seen 1037 1038 compared to healthy controls, featuring elevated Streptococcus and reduction in Propionibacterium that was not seen in this cohort with HS⁴³. Higher numbers of 1039 1040 bacteria with pathogenic capability namely F. magna was noted in the current study. 1041 F. magna has been shown to have immune modulating activities; in particular it can 1042 promote the formation of neutrophil extracellular traps (NET). These NETs feature 1043 prominently in HS lesions and their abundance is correlated with disease severity, as measured by Hurley staging⁵⁹. Thus F. magna may contribute to HS disease biology 1044 1045 by stimulating NET formation. F. magna has also been shown to activate mast cells

and basophils which in turn produce proinflammatory histamine and cytokines^{60,61}.
In a recent study *F. magna* was demonstrated to activate proinflammatory
neutrophils mediated by virulence factors protein L and FAF (*F. magna* adhesion
factor)⁶².

1050

1051 5.4.3 Potential impact

There is a lack of high-quality evidence for the best treatment options in $HS^{1,6}$. A 1052 multidisciplinary approach with a combination of medical and surgical treatment is 1053 1054 often needed, combined with lifestyle measures: smoking cessation and weight loss^{1,6}. Antibiotics remain the initial treatment for most patients, with TNF-alpha 1055 inhibitors in those who fail to respond^{1,6}. The use of antibiotics in HS, for their anti-1056 1057 inflammatory rather than anti-microbial effect, may play a role in the reduction in 1058 alpha-diversity seen in this study; however we detected no significant difference in 1059 ASVs in those who received antibiotics in the preceding year compared to those who 1060 did not. Microbiota based therapies may have potential benefits in HS, in particular 1061 targeted microbial supplementation to increase diversity and richness. Furthermore, the selective depletion of certain microbes such as F. magna and R. gnavus, which 1062 may play a pathogenic role, may prove another target for evolving therapies. 1063

1064

We have characterised the gut and skin microbiota in patients with HS compared to
healthy controls. We have provided evidence for a possible microbial link between
IBD and HS, with *R. gnavus* abundant in both conditions. The identification of

1068 particular taxa that may contribute to HS pathogenesis, such as *R. gnavus* and *F*.

1069 *magna*, could inform future microbiota-based therapeutic strategies.

1070

1071 5.5. Material and Me thods

1072 5.5.1 Study Population

1073 Adult patients with a confirmed clinical diagnosis of hidradenitis suppurativa made 1074 by a consultant dermatologist in two tertiary referral centres in Ireland were invited 1075 to participate in the study. Ethical approval was obtained (Cork Research Ethics 1076 Committee and Tallaght University Hospital Ethics Committee). Exclusion criteria 1077 included topical or oral antibiotic usage in the preceding four weeks. Data including 1078 age, gender, smoking status, weight, height, body mass index, presence of co-1079 morbidities and severity of disease (Hurley Score) were recorded⁶³. Healthy adult 1080 controls were recruited from the general population, and were age and gender 1081 matched.

1082

1083 5.5.2 Sample collection

1084 Fresh (<24 hours) fecal samples were provided by patients and controls and stored at

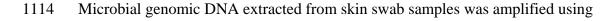
1085 -80°C prior to microbial DNA extraction. In patients with HS, skin swabs (DNA-

1086 free) were taken from affected sites (axilla, inframammary, inguinal and

- 1087 perineal/buttocks) using a buffer solution with firm swabbing for 30-60 seconds.
- 1088 Affected sites varied by number and location in HS patients. Participants did not

1089 bathe for at least 24-48 hours prior to taking swabs and were asked to not apply anti-

- 1090 perspirants or emollients on the skin in that time. Skin swabs were taken from
- 1091 corresponding sites in controls (axilla, inframammary, inguinal and
- perineal/buttocks) using the same technique. Nasal swabs were also taken from bothgroups.


1095 5.5.3 Microbial DNA extraction

- 1096 Microbial DNA was extracted from stool samples using the repeated bead beating
- 1097 method as previously described, with some modifications.(Ghosh et al., 2020) Nasal
- 1098 and skin swabs were extracted using QIAamp UCP Pathogen Mini Kit (Qiagen,
- 1099 Hilden, Germany) as per manufacturer's instructions.
- 1100

1101 **5.5.4 Library Preparation and 16S rRNA gene sequencing**

- 1102 Total community DNA extracted from clinical samples underwent 16S rRNA gene
- 1103 PCR. The 16S rRNA gene was amplified using primers for the V3-V4 region;
- 1104 forward,
- 1105 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCA
- 1106 G-3' and reverse, 5'-
- 1107 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATC
- 1108 TAATCC-3'.(Klindworth et al., 2013)
- 1109 Fecal microbial genomic DNA was amplified using Phusion High-Fidelity DNA
- 1110 Polymerase (Thermo Scientific, Massachusetts, USA) with the PCR thermocycler
- 1111 protocol as follows: Initiation step of 98 °C for 3 min followed by 25 cycles of 98 °C

for 30 s, 55 °C for 60 s, and 72 °C for 20 s, and a final extension step of 72 °C for 5
min.

1115 MTP Taq DNA Polymerase (Merck KGaA, Darmstadt, Germany) with the PCR

1116 thermocycler protocol as follows: Initiation step of 94°C for 1 min followed by 35

1117 cycles of 94°C for 60 s, 55 °C for 45 s, and 72 °C for 30 s, and a final extension step

1118 of 72 °C for 5 min.

A subsequent indexing PCR was carried out to add unique sample-specific DNA barcodes to the generated amplicons in accordance with the Illumina 16S Metagenomic Sequencing Protocol (Illumina, California, USA).(Illumina, n.d.) Libraries DNA concentration was quantified using a Qubit fluorimeter (Invitrogen) using the 'High Sensitivity' assay and samples were pooled at a standardised concentration.(Illumina, n.d.) The pooled library was sequenced on the Illumina MiSeq platform (Illumina, California, USA) utilising 2×300 bp chemistry.

1126

1127 **5.5.5 Bioinformatic and biostatistical analysis**

1128 The majority of the analysis was performed in R (v3.6.0). Paired reads were quality

1129 filtered, trimmed, merged and Amplicon Sequence Variants (ASV) inferred using the

1130 R package dada2 $(v1.12.1)^{34}$. Taxonomic classification was performed using the

1131 RDP Classifier within Mothur in conjugation with SPINGO, a species-level

1132 classifier⁶⁴. A confidence cut of 80% was used for taxonomic assignment. QIIME

1133 v1.9.1 and the R package vegan v2.5.6 were used to calculate β -diversity metrics⁶⁵.

1134 β-diversity was visualized via principal coordinates analysis (PCoA) plots whose

coordinates were identified using with the Ape package v5.1. R-squared (R²) and pvalue were calculated using Permutational Multivariate Analysis of Variance

1137 (PERMANOVA) via the R package vegan (v2.4.2). Differential abundance analysis

1138 was carried out using DEseq2 (v1.22.2)⁶⁶. Random forest was performed in R using

1139 the package randomForest (v4.6.14) Genomic functionality was inferred using

1140 PICRUSt2 with the command picrust2_pipeline.py with default⁶⁷.

1141

1142 **5.5.6 Identification of potential microbial DNA contamination**

1143 Because skin samples are considered low biomass with respect to bacterial load, we

1144 included protocols to mitigate the potential impact of contamination. Reagents used

1145 were selected based on their quality of being putatively microbial DNA free

1146 including the QIA amp Ultraclean production Pathogen Mini Kit (Qiagen, Hilden,

1147 Germany) and MTP Taq DNA Polymerase (Merck). A negative control was run

1148 within the same sequencing batch to detect potential contamination from reagents.

1149 This negative control was dominated by taxa typical of contamination including

1150 Sphingobacterium and Hydrogenophilus(eFigure12)⁶⁸. Furthermore the negative

sample had atypically low DNA concentration (0.521ng/µl) relative to extracted

1152 clinical samples as measured by the qubit (eTable 1). Other non-contaminant taxa

1153 were found in the kit control but we posit that this is due to index swapping 69 . We

1154 further utilized the R package decontam to detect contaminating ASVs⁷⁰. Using the

1155 'frequency method' we identified 15 ASVs that reached the threshold (eTable 2).

1156 These ASVs contributed only modestly to the samples, median=0,

1157 mean=0.01881(eFigure 13). Filtering these ASVs from the ASV table had no effect

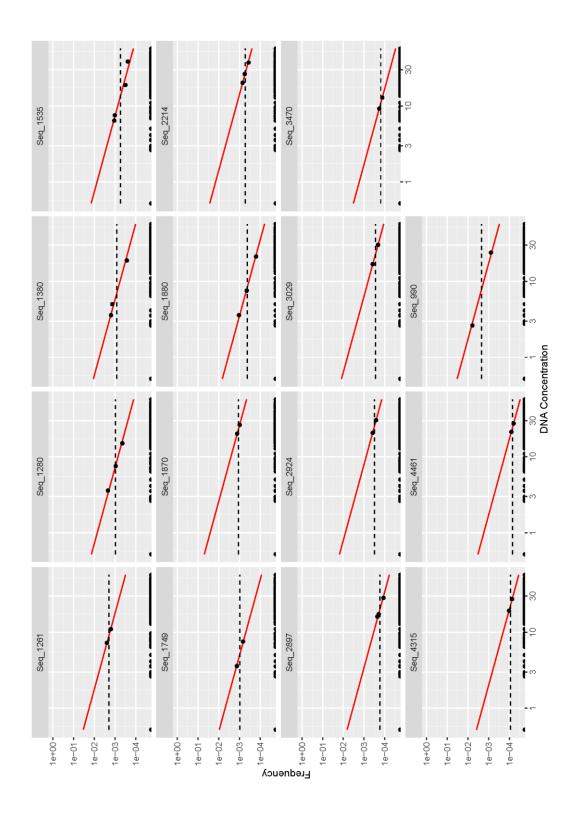
1158 on differential abundance analysis.

eFigure 12: Taxonomic representation within mock extraction. Bar plots displaying

1161 the relative abundance of genera within the kit control.

	patient	disease_state	qubit_values	skin_site	sample_type
Blank	Blank	_ blank	0.521	blank	blank
CS01BK	CS01	control	29.6	Buttock	swab
CS01GR	CS01	control	30.4	Groin	swab
CS01IM	CS01	control	2.63	Inframammary_fold	swab
CS01NA	CS01	control	30.7	Nasal	swab
CS03BK	CS03	control	35.1	Buttock	swab
CS03IM	CS03	control	7.25	Inframammary_fold	swab
CS03NA	CS03	control	31.7	Nasal	swab
CS04BK	CS04	control	28.6	Buttock	swab
CS04GR	CS04	control	24.9	Groin	swab
CS04IM	CS04	control	26.3	Inframammary_fold	swab
CS05BK	CS05	control	15.1	Buttock	swab
CS05GR	CS05	control	22.4	Groin	swab
CS05NA	CS05	control	8.53	Nasal	swab
CS06BK	CS06	control	28	Buttock	swab
CS06GR	CS06	control	7.55	Groin	swab
CS06IM	CS06	control	3.59	Inframammary_fold	swab
CS06NA	CS06	control	23.8	Nasal	swab
CS07BK	CS07	control	17.3	Buttock	swab
CS07GR	CS07	control	16.6	Groin	swab
CS07IM	CS07	control	16.1	Inframammary_fold	swab
CS07NA	CS07	control	40.2	Nasal	swab
CS08AX	CS08	control	18.6	Axilla	swab
CS08BK	CS08	control	25.3	Buttock	swab
CS08GR	CS08	control	24.3	Groin	swab
CS08NA	CS08	control	27.5	Nasal	swab
CS09AX	CS09	control	25.1	Axilla	swab
CS09BK	CS09	control	30.6	Buttock	swab
CS09GR	CS09	control	37.3	Groin	swab
CS09IM	CS09	control	26.4	Inframammary_fold	swab
CS09NA	CS09	control	20.2	Nasal	swab
CS10BK	CS10	control	3.55	Buttock	swab
CS10GR	CS10	control	23	Groin	swab
CS10IM	CS10	control	23.9	Inframammary_fold	swab
CS10NA	CS10	control	15.9	Nasal	swab
CS11AX	CS11	control	11	Axilla	swab
CS11BK	CS11	control	24	Buttock	swab
CS11GR	CS11	control	16.3	Groin	swab
CS11NA	CS11	control	19.6	Nasal	swab
CS12AX	CS12	control	15.9	Axilla	swab
CS12BK	CS12	control	24.5	Buttock	swab
CS12GR	CS12	control	24	Groin	swab

CS12NA	CS12	control	30.3	Nasal	swab
CS13BK	CS13	control	18.5	Buttock	swab
CS13GR	CS13	control	14.8	Groin	swab
CS13IM	CS13	control	23.8	Inframammary_fold	swab
CS13NA	CS13	control	18.9	Nasal	swab
CS14AX	CS14	control	2.98	Axilla	swab
CS14BK	CS14	control	18.2	Buttock	swab
CS14GR	CS14	control	32.7	Groin	swab
CS14NA	CS14	control	16.9	Nasal	swab
CS15BK	CS15	control	24.2	Buttock	swab
CS15GR	CS15	control	28.4	Groin	swab
CS15NA	CS15	control	19.2	Nasal	swab
CS16BK	CS16	control	5.02	Buttock	swab
CS16GR	CS16	control	13.9	Groin	swab
CS16IM	CS16	control	8.03	Inframammary_fold	swab
CS16NA	CS16	control	31.6	Nasal	swab
CS17BK	CS17	control	15.3	Buttock	swab
CS17GR	CS17	control	16.2	Groin	swab
CS17IM	CS17	control	19.2	Inframammary_fold	swab
CS17NA	CS17	control	13.6	Nasal	swab
CS18BK	CS18	control	16.2	Buttock	swab
CS18GR	CS18	control	9.69	Groin	swab
CS18IM	CS18	control	9.25	Inframammary_fold	swab
CS18NA	CS18	control	6.42	Nasal	swab
CS19BK	CS19	control	24	Buttock	swab
CS19IM	CS19	control	21.4	Inframammary_fold	swab
CS19NA	CS19	control	19.8	Nasal	swab
CS20AX	CS20	control	20.6	Axilla	swab
CS20BK	CS20	control	32	Buttock	swab
CS20GR	CS20	control	32.2	Groin	swab
CS20IM	CS20	control	27.1	Inframammary_fold	swab
TH01L1	TH01	HS	20.6	Groin	swab
TH01NA	TH01	HS	35.9	Nasal	swab
TH01RA	TH01	HS	32.5	Axilla	swab
TH01RB	TH01	HS	32.8	Buttock	swab
TH02LB	TH02	HS	20.7	Buttock	swab
TH02NA	TH02	HS	38.5	Nasal	swab
TH02RG	TH02	HS	36.2	Groin	swab
TH03LI	TH03	HS	30.7	Groin	swab
TH03NA	TH03	HS	2.76	Nasal	swab
TH03RA	TH03	HS	48	Axilla	swab
TH04LA	TH04	HS	2.95	Axilla	swab
TH04LA	TH04	HS	2.95	Groin	swab
TH04LG	TH04	HS	25.9 25.6	Nasal	swab swab
	TH04 TH04				
TH04RM	1004	HS	20.1	Inframammary_fold	swab


TH05LA	TH05	HS	21.8	Axilla	swab
TH05LB	TH05	HS	36.5	Buttock	swab
TH05LG	TH05	HS	18.1	Groin	swab
TH05NA	TH05	HS	22.1	Nasal	swab
TH05RB	TH05	HS	29.2	Buttock	swab
TH05RG	TH05	HS	44.8	Groin	swab
TH06NA	TH06	HS	30.8	Nasal	swab
TH06RA	TH06	HS	32	Axilla	swab
TH07LG	TH07	HS	43.1	Groin	swab
TH07NA	TH07	HS	45.8	Nasal	swab
TH07RM	TH07	HS	33.5	Inframammary_fold	swab
TH08LA	TH08	HS	39.7	Axilla	swab
TH08LM	TH08	HS	44.9	Inframammary_fold	swab
TH08SP	TH08	HS	28.7	Suprapubic	swab
TH09LA	TH09	HS	31	Axilla	swab
TH09RG	TH09	HS	24.6	Groin	swab
TH10RA	TH10	HS	28	Axilla	swab
TH10RG	TH10	HS	33.7	Groin	swab
TH11LM	TH11	HS	47.8	Inframammary_fold	swab
TH11NA	TH11	HS	37.1	Nasal	swab
TH11RG	TH11	HS	18.8	Groin	swab
TH12LM	TH12	HS	33.1	Inframammary_fold	swab
TH12NA	TH12	HS	28.6	Nasal	swab
TH12RA	TH12	HS	52	Axilla	swab
TH13LA	TH13	HS	29.9	Axilla	swab
TH14NA	TH14	HS	57	Nasal	swab
TH15NA	TH15	HS	27.4	Nasal	swab
TH16LA	TH16	HS	27.9	Axilla	swab
TH16NA	TH16	HS	31.8	Nasal	swab
TH16RAB	TH16	HS	35.6	Abdomen	swab
TH17LA	TH17	HS	2.78	Axilla	swab
TH17NA	TH17	HS	44.9	Nasal	swab
TH18LG	TH18	HS	28.6	Groin	swab
TH18NA	TH18	HS	40.3	Nasal	swab
TH19LA	TH19	HS	19.7	Axilla	swab
TH19LG	TH19	HS	40.2	Groin	swab
TH19NA	TH19	HS	23.3	Nasal	swab
TH20LA	TH20	HS	37.9	Axilla	swab
TH20NA	TH20	HS	47.3	Nasal	swab
TH21NA	TH21	HS	22.9	Nasal	swab
TH21RA	TH21	HS	4.14	Axilla	swab
TH22NA	TH22	HS	32.1	Nasal	swab
TH22SP	TH22	HS	30.4	Suprapubic	swab
TH23LA	TH23	HS	38.9	Axilla	swab
TH23NA	TH23	HS	26.5	Nasal	swab

TH23RA	TH23	HS	34.7	Axilla	swab
TH24LSP	TH24	HS	27.5	Suprapubic	swab
TH24NA	TH24	HS	12.9	Nasal	swab
TH25NA	TH25	HS	31.1	Nasal	swab
TH25RG	TH25	HS	45.6	Groin	swab
TH26AB	TH26	HS	43.2	Abdomen	swab
TH26NA	TH26	HS	49.5	Nasal	swab
TH27NA	TH27	HS	31.1	Nasal	swab
TH28LG	TH28	HS	6.89	Groin	swab
TH28NA	TH28	HS	27.9	Nasal	swab
TH29LA	TH29	HS	21.3	Axilla	swab
TH29LSP	TH29	HS	40.7	Suprapubic	swab
TH30LA	TH30	HS	34.7	Axilla	swab
TH30NA	TH30	HS	34.1	Nasal	swab
TH30RG	TH30	HS	30.3	Groin	swab

Etable 1| **DNA concentrations of samples post library preparation.**

	Phylum	Class	Order	Family	Genus	Species
Seq_990	Firmicutes	Clostridia	Clostridiales	Lachnospiraceae	Blautia	Blautia luti
Seq_1261	Cyanobacteria /Chloroplast	Chloroplast	Chloroplast	Streptophyta	unclassified	unclassified
Seq_1280	Actinobacteri a	Actinobacteri a	Actinomycetales	Micrococcaceae	Kocuria	unclassified
Seq_1380	Proteobacteria	Alphaproteob acteria	Sphingomonadales	Sphingomonadaceae	Sphingomonas	unclassified
Seq_1535	Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Lactobacillus	Lactobacillus delbrueckii
Seq_1749	Proteobacteria	Gammaproteo bacteria	Pseudomonadales	Pseudomonadaceae	Pseudomonas	Pseudomonas rhizosphaerae
Seq_1870	Bacteroidetes	Flavobacteriia	Flavobacteriales	Flavobacteriaceae	Wautersiella	Wautersiella falsenii
Seq_1880	Proteobacteria	Alphaproteob acteria	Rhizobiales	Xanthobacteraceae	Xanthobacter	unclassified
Seq_2214	Candidatus_S accharibacteri a	unclassified	unclassified	unclassified	unclassified	unclassified
Seq_2897	Proteobacteria	Alphaproteob acteria	Rhizobiales	Methylobacteriaceae	Methylobacteri um	Methylobacterium aquaticum
Seq_2924	Firmicutes	Erysipelotrich ia	Erysipelotrichales	Erysipelotrichaceae	unclassified	unclassified
Seq_3029	Firmicutes	Bacilli	Bacillales	Bacillaceae_1	Bacillus	unclassified
Seq_3470	Bacteroidetes	Bacteroidia	Bacteroidales	Porphyromonadaceae	Tannerella	Tannerella forsythia
Seq_4315	Acidobacteria	Acidobacteria _Gp4	Blastocatella	unclassified	unclassified	unclassified
Seq_4461	Proteobacteria	Epsilonproteo bacteria	Campylobacterales	Campylobacteraceae	Campylobacter	Campylobacte ureolyticus

1167 Etable 2| Taxonomic assignment of ASVs identified as contamination.

eFigure 13: Decontam frequency graph. X axis equals concentration of sample before normalization.
 Y-axis equals frequency of ASV. Each dot represents a sample.

1173 **5.5.7 Storage of sequencing data**

- 1174 Datasets related to this article can be found at
- 1175 https://www.ebi.ac.uk/ena/browser/home, hosted at European Nucleotide Archive,
- 1176 accession number
- 1177 PRJEB43835.(https://www.ebi.ac.uk/ena/browser/view/PRJEB43835, Accessed
- 1178 03/26/2021.)

1179 **<u>5.6 Acknowledgement</u>**

- 1180 Access to Data and Data Analysis
- 1181 Dr Siobhan McCarthy and Mr. Maurice Barrett had full access to all the data in the
- 1182 study and take responsibility for the integrity of the data and the accuracy of the data
- analysis.

1184 **5.7 Authors Contribution statement**

- 1185 SM, MM, AMT, PWOT & FS conceived and designed the study. SM, SK, MB, KV,
- and PP were involved in data curation. MB, PWOT performed the formal analysis.
- 1187 MM, FS and PWOT were involved in funding acquisition. SM, MB, and PWOT
- 1188 wrote the original draft. AMT, SK, KV, PP, FS, MM, and PWOT reviewed and
- edited the paper for publication.
- 1190
- 1191 Conflicts of Interest: None declared
- 1192
- 1193 Funding/Support
- 1194 Dr Siobhan McCarthy received a grant from the City of Dublin Skin Cancer Hospital

- 1195 Charity (CDSCHC) and a grant in the form of salary support from the Irish Centre
- 1196 for Arthritis Research and Education (ICARE).

- 1198 Work in Professor Paul W. O'Toole's laboratory is supported by Science Foundation
- 1199 Ireland through a Centre award (APC/SFI/12/RC/2273_P2) to APC Microbiome
- 1200 Ireland.
- 1201
- 1202 Role of Funder/Sponsor Statement
- 1203 Sponsors CDSCHC, ICARE and SFI had no role in design and conduct of the study;
- 1204 collection, management, analysis, and interpretation of the data; preparation, review,
- 1205 or approval of the manuscript; and decision to submit the manuscript for publication

1206 **<u>5.8 References</u>**

1207 1208 1209	1	Zouboulis, C. <i>et al.</i> European S1 guideline for the treatment of hidradenitis suppurativa/acne inversa. <i>Journal of the European Academy of Dermatology and Venereology</i> 29 , 619-644 (2015).
1210 1211 1212	2	Jemec, G. B. & Kimball, A. B. Hidradenitis suppurativa: epidemiology and scope of the problem. <i>Journal of the American Academy of Dermatology</i> 73 , S4-S7 (2015).
1213 1214 1215	3	Miller, I. M., McAndrew, R. J. & Hamzavi, I. Prevalence, risk factors, and comorbidities of hidradenitis suppurativa. <i>Dermatologic clinics</i> 34 , 7-16 (2016).
1216 1217 1218	4	Revuz, J. E. <i>et al.</i> Prevalence and factors associated with hidradenitis suppurativa: results from two case-control studies. <i>Journal of the American Academy of Dermatology</i> 59 , 596-601 (2008).
1219 1220	5	Sabat, R. <i>et al.</i> Increased prevalence of metabolic syndrome in patients with acne inversa. <i>PloS one</i> 7 , e31810 (2012).
1221 1222	6	Ingram, J. R. Interventions for hidradenitis suppurativa: updated summary of an original Cochrane Review. <i>JAMA dermatology</i> 153 , 458-459 (2017).
1223 1224	7	Sabat, R. <i>et al.</i> Hidradenitis suppurativa. <i>Nature Reviews Disease Primers</i> 6 , 1-20 (2020).

1225 1226 1227 1228	8	Chen, WT. & Chi, CC. Association of Hidradenitis Suppurativa With Inflammatory Bowel Disease: A Systematic Review and Meta-analysis. <i>JAMA Dermatol</i> 155 , 1022-1027, doi:10.1001/jamadermatol.2019.0891 (2019).
1229 1230 1231	9	Richette, P. <i>et al.</i> Hidradenitis suppurativa associated with spondyloarthritis—results from a multicenter national prospective study. <i>The Journal of rheumatology</i> 41 , 490-494 (2014).
1232 1233 1234	10	Egeberg, A., Gislason, G. H. & Hansen, P. R. Risk of major adverse cardiovascular events and all-cause mortality in patients with hidradenitis suppurativa. <i>JAMA dermatology</i> 152 , 429-434 (2016).
1235 1236 1237	11	Jung, J. M. <i>et al.</i> Assessment of Overall and Specific Cancer Risks in Patients With Hidradenitis Suppurativa. <i>JAMA Dermatol</i> 156 , 844-853, doi:10.1001/jamadermatol.2020.1422 (2020).
1238 1239 1240 1241	12	Garg, A., Papagermanos, V., Midura, M., Strunk, A. & Merson, J. Opioid, alcohol, and cannabis misuse among patients with hidradenitis suppurativa: A population-based analysis in the United States. <i>Journal of the American Academy of Dermatology</i> 79 , 495-500. e491 (2018).
1242 1243 1244	13	Patel, K. R. <i>et al.</i> Association between hidradenitis suppurativa, depression, anxiety, and suicidality: a systematic review and meta-analysis. <i>Journal of the American Academy of Dermatology</i> 83 , 737-744 (2020).
1245 1246 1247	14	Balato, A. <i>et al.</i> Human microbiome: composition and role in inflammatory skin diseases. <i>Archivum immunologiae et therapiae experimentalis</i> 67 , 1-18 (2019).
1248 1249	15	Guet-Revillet, H. <i>et al.</i> Bacterial pathogens associated with hidradenitis suppurativa, France. <i>Emerging infectious diseases</i> 20 , 1990 (2014).
1250 1251 1252	16	Kelly, G. <i>et al.</i> Dysregulated cytokine expression in lesional and nonlesional skin in hidradenitis suppurativa. <i>British Journal of Dermatology</i> 173 , 1431-1439 (2015).
1253 1254 1255	17	Laffert, M. v. <i>et al.</i> Hidradenitis suppurativa (acne inversa): early inflammatory events at terminal follicles and at interfollicular epidermis. <i>Experimental dermatology</i> 19 , 533-537 (2010).
1256 1257 1258	18	Nikolakis, G. <i>et al.</i> Bacteriology of hidradenitis suppurativa/acne inversa: a review. <i>Journal of the American Academy of Dermatology</i> 73 , S12-S18 (2015).
1259 1260 1261 1262	19	van der Zee, H. H., Horvath, B., Jemec, G. B. & Prens, E. P. The association between hidradenitis suppurativa and Crohn's disease: in search of the missing pathogenic link. <i>Journal of Investigative Dermatology</i> 136 , 1747-1748 (2016).
1263 1264	20	Abraham, C. & Cho, J. H. Mechanisms of disease. <i>N Engl J Med</i> 361 , 2066-2078 (2009).
1265 1266	21	Duerr, R. H. <i>et al.</i> A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. <i>science</i> 314 , 1461-1463 (2006).
	313	

1267 1268 1269	22	Schlapbach, C., Hänni, T., Yawalkar, N. & Hunger, R. E. Expression of the IL-23/Th17 pathway in lesions of hidradenitis suppurativa. <i>Journal of the American Academy of Dermatology</i> 65 , 790-798 (2011).
1270 1271	23	Baumgart, D. C. & Sandborn, W. J. Crohn's disease. <i>The Lancet</i> 380 , 1590-1605 (2012).
1272 1273 1274	24	Seksik, P., Nion-Larmurier, I., Sokol, H., Beaugerie, L. & Cosnes, J. Effects of light smoking consumption on the clinical course of Crohn's disease. <i>Inflammatory bowel diseases</i> 15 , 734-741 (2009).
1275 1276 1277	25	Tuvlin, J. A. <i>et al.</i> Smoking and inflammatory bowel disease: trends in familial and sporadic cohorts. <i>Inflammatory bowel diseases</i> 13 , 573-579 (2007).
1278 1279	26	Clooney, A. G. <i>et al.</i> Ranking microbiome variance in inflammatory bowel disease: a large longitudinal intercontinental study. <i>Gut</i> 70 , 499-510 (2021).
1280 1281 1282	27	Clooney, A. G. <i>et al.</i> Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. <i>Cell host & microbe</i> 26 , 764-778. e765 (2019).
1283 1284 1285	28	Lloyd-Price, J. <i>et al.</i> Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. <i>Nature</i> 569 , 655-662, doi:10.1038/s41586-019-1237-9 (2019).
1286 1287 1288 1289	29	Scher, J. U. <i>et al.</i> Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. <i>Arthritis Rheumatol</i> 67 , 128-139, doi:10.1002/art.38892 (2015).
1290 1291 1292	30	Schirmer, M., Garner, A., Vlamakis, H. & Xavier, R. J. Microbial genes and pathways in inflammatory bowel disease. <i>Nature Reviews Microbiology</i> 17 , 497-511, doi:10.1038/s41579-019-0213-6 (2019).
1293 1294 1295	31	Zhang, X. <i>et al.</i> The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. <i>Nat Med</i> 21 , 895-905, doi:10.1038/nm.3914 (2015).
1296 1297 1298	32	Eppinga, H. <i>et al.</i> Similar depletion of protective Faecalibacterium prausnitzii in psoriasis and inflammatory bowel disease, but not in hidradenitis suppurativa. <i>Journal of Crohn's and Colitis</i> 10 , 1067-1075 (2016).
1299 1300 1301	33	Kam, S., Collard, M., Lam, J. & Alani, R. M. Gut microbiome perturbations in patients with hidradenitis suppurativa: a case series. <i>The Journal of investigative dermatology</i> 141 , 225-228. e222 (2021).
1302 1303 1304	34	Callahan, B. J. <i>et al.</i> DADA2: High-resolution sample inference from Illumina amplicon data. <i>Nat Methods</i> 13 , 581-583, doi:10.1038/nmeth.3869 (2016).
1305 1306 1307	35	Park, Sk. <i>et al.</i> Differentially Abundant Bacterial Taxa Associated with Prognostic Variables of Crohn's Disease: Results from the IMPACT Study. <i>Journal of clinical medicine</i> 9 , 1748 (2020).

1308 1309	36	Byrd, A. L., Belkaid, Y. & Segre, J. A. The human skin microbiome. <i>Nature Reviews Microbiology</i> 16 , 143 (2018).
1310 1311 1312	37	Clausen, ML. <i>et al.</i> Association of disease severity with skin microbiome and filaggrin gene mutations in adult atopic dermatitis. <i>JAMA dermatology</i> 154 , 293-300 (2018).
1313 1314	38	Fyhrquist, N. <i>et al.</i> Microbe-host interplay in atopic dermatitis and psoriasis. <i>Nature communications</i> 10 , 1-15 (2019).
1315 1316 1317	39	Kong, H. H. <i>et al.</i> Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. <i>Genome research</i> 22 , 850-859 (2012).
1318 1319 1320	40	Petersen, E., Skov, L., Thyssen, J. & Jensen, P. Role of the gut microbiota in atopic dermatitis: a systematic review. <i>Acta dermato-venereologica</i> 99 , 5-11 (2019).
1321 1322	41	Alekseyenko, A. V. <i>et al.</i> Community differentiation of the cutaneous microbiota in psoriasis. <i>Microbiome</i> 1 , 1-17 (2013).
1323 1324	42	Sikora, M. <i>et al.</i> Gut microbiome in psoriasis: an updated review. <i>Pathogens</i> 9 , 463 (2020).
1325 1326 1327	43	Yerushalmi, M., Elalouf, O., Anderson, M. & Chandran, V. The skin microbiome in psoriatic disease: A systematic review and critical appraisal. <i>Journal of translational autoimmunity</i> 2 , 100009 (2019).
1328 1329 1330	44	Breban, M. <i>et al.</i> Faecal microbiota study reveals specific dysbiosis in spondyloarthritis. <i>Annals of the Rheumatic Diseases</i> 76 , 1614, doi:10.1136/annrheumdis-2016-211064 (2017).
1331 1332 1333	45	Hall, A. B. <i>et al.</i> A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. <i>Genome Med</i> 9 , 103, doi:10.1186/s13073-017-0490-5 (2017).
1334 1335 1336	46	Jeffery, I. B. <i>et al.</i> Differences in fecal microbiomes and metabolomes of people with vs without irritable bowel syndrome and bile acid malabsorption. <i>Gastroenterology</i> 158 , 1016-1028. e1018 (2020).
1337 1338	47	Joossens, M. <i>et al.</i> Dysbiosis of the faecal microbiota in patients with Crohn's disease and their unaffected relatives. <i>Gut</i> 60 , 631-637 (2011).
1339 1340 1341	48	Nishino, K. <i>et al.</i> Analysis of endoscopic brush samples identified mucosa- associated dysbiosis in inflammatory bowel disease. <i>Journal of</i> <i>gastroenterology</i> 53 , 95-106 (2018).
1342 1343	49	Zheng, H. <i>et al.</i> Altered gut microbiota composition associated with eczema in infants. <i>PloS one</i> 11 , e0166026 (2016).
1344 1345 1346 1347	50	Henke, M. T. <i>et al.</i> Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn's disease, produces an inflammatory polysaccharide. <i>Proceedings of the National Academy of Sciences</i> 116 , 12672-12677 (2019).

1348 1349	51	Le Chatelier, E. <i>et al.</i> Richness of human gut microbiome correlates with metabolic markers. <i>Nature</i> 500 , 541-546, doi:10.1038/nature12506 (2013).
1350 1351 1352	52	Franzosa, E. A. <i>et al.</i> Gut microbiome structure and metabolic activity in inflammatory bowel disease. <i>Nat Microbiol</i> 4 , 293-305, doi:10.1038/s41564-018-0306-4 (2019).
1353 1354	53	Hu, S. <i>et al.</i> Whole exome sequencing analyses reveal gene–microbiota interactions in the context of IBD. <i>Gut</i> 70 , 285-296 (2021).
1355 1356	54	Faber, F. <i>et al.</i> Host-mediated sugar oxidation promotes post-antibiotic pathogen expansion. <i>Nature</i> 534 , 697-699 (2016).
1357 1358	55	Ring, H. C. <i>et al.</i> The follicular skin microbiome in patients with hidradenitis suppurativa and healthy controls. <i>JAMA dermatology</i> 153 , 897-905 (2017).
1359 1360 1361	56	Beylot, C. <i>et al.</i> Propionibacterium acnes: an update on its role in the pathogenesis of acne. <i>Journal of the European Academy of Dermatology and Venereology</i> 28 , 271-278 (2014).
1362 1363	57	Tuchayi, S. M. et al. Acne vulgaris. Nature reviews Disease primers 1, 1-20 (2015).
1364 1365 1366	58	Li, W. <i>et al.</i> Inverse association between the skin and oral microbiota in atopic dermatitis. <i>Journal of Investigative Dermatology</i> 139 , 1779-1787. e1712 (2019).
1367 1368 1369	59	Byrd, A. S. <i>et al.</i> Neutrophil extracellular traps, B cells, and type I interferons contribute to immune dysregulation in hidradenitis suppurativa. <i>Science translational medicine</i> 11 (2019).
1370 1371 1372 1373	60	Genovese, A. <i>et al.</i> Bacterial Immunoglobulin Superantigen Proteins A and L Activate Human Heart Mast Cells by Interacting with Immunoglobulin E. <i>Infection and Immunity</i> 68 , 5517, doi:10.1128/IAI.68.10.5517-5524.2000 (2000).
1374 1375 1376	61	Patella, V., Casolaro, V., Björck, L. & Marone, G. Protein L. A bacterial Ig- binding protein that activates human basophils and mast cells. <i>The Journal of</i> <i>Immunology</i> 145 , 3054-3061 (1990).
1377 1378 1379 1380	62	Neumann, A., Björck, L. & Frick, IM. Finegoldia magna, an Anaerobic Gram-Positive Bacterium of the Normal Human Microbiota, Induces Inflammation by Activating Neutrophils. <i>Frontiers in microbiology</i> 11 , 65 (2020).
1381 1382	63	Hurley Jr, H. Hidradenitis suppurativa. <i>Dermatology in General Medicine</i> 1 , 761-766 (1993).
1383 1384 1385	64	Allard, G., Ryan, F. J., Jeffery, I. B. & Claesson, M. J. SPINGO: a rapid species-classifier for microbial amplicon sequences. <i>BMC Bioinformatics</i> 16 , 324, doi:10.1186/s12859-015-0747-1 (2015).
1386 1387	65	Caporaso, J. G. <i>et al.</i> QIIME allows analysis of high-throughput community sequencing data. <i>Nat Methods</i> 7 , 335-336, doi:10.1038/nmeth.f.303 (2010).

Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. <i>Genome Biol</i> 15 , 550, doi:10.1186/s13059-014-0550-8 (2014).
Douglas, G. M. <i>et al.</i> PICRUSt2 for prediction of metagenome functions. <i>Nature Biotechnology</i> 38 , 685-688, doi:10.1038/s41587-020-0548-6 (2020).
Eisenhofer, R. <i>et al.</i> Contamination in Low Microbial Biomass Microbiome Studies: Issues and Recommendations. <i>Trends Microbiol</i> 27 , 105-117, doi:10.1016/j.tim.2018.11.003 (2019).
Costello, M. <i>et al.</i> Characterization and remediation of sample index swaps by non-redundant dual indexing on massively parallel sequencing platforms. <i>BMC Genomics</i> 19 , 332, doi:10.1186/s12864-018-4703-0 (2018).
Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. <i>Microbiome</i> 6 , 226, doi:10.1186/s40168-018-0605-2 (2018).

1404 Chapter 6- General discussion and future perspectives

1406 <u>6.1 The role of microbiology in cancer research in the 21st</u> 1407 <u>century</u>

1408 For much of human history, infections by microbes were the leading causes of death. 1409 Microbes such as Mycobacterium tuberculosis (Tuberculosis), influenza (flu) and 1410 *Plasmodium falciparum* (malaria) have killed innumerable individuals throughout human existence. However, research into microbes in the 20th century allowed us to 1411 1412 combat infectious diseases through medical innovations including antibiotics and 1413 vaccines. This is particularly the case in developed countries, with developing countries still suffering considerably from infectious agents¹. In the second half of 1414 the 20th century and during the 21st century, non-communicable diseases including 1415 1416 cancer and heart disease have become the leading cause of mortality. Cancer is now 1417 the leading cause of death in high-income countries². This shift is due to many 1418 factors including lifestyle changes such as diet and a longer lifespan. Cancer research 1419 is obviously a major effort within the overall field of biomedical research, with 1420 billions of US dollars being spent a year worldwide³. 1421 Research into the relationship between human biology and the resident human 1422 microbiota has experienced a renaissance over the past 15 years. As an aspect of this 1423 endeavour, a complex model describing the interaction between cancer and the

- 1424 microbiota is currently being formed. Knowledge of this interaction has informed
- 1425 practically all areas of cancer research including oncogenesis, diagnostics,
- 1426 prognostics and therapeutics. Thus, research into microbes may be integral to
- 1427 combating and hopefully eliminating cancer in the 21st century, saving even greater
- 1428 millions of lives above those saved in the 20th century.

<u>6.2 Categorization of areas of cancer research</u>

1430 One might divide cancer research areas into three categories.

1431	1)	The cause of cancer: Key to combatting cancer is understanding the
1432		underlying mechanisms by which normal healthy cells transform into cancer
1433		cells. This includes knowledge of all factors modulating the risk of this
1434		phenomenon, predominantly environmental and genetic risks. A high
1435		proportion of cancers are believed to be avoidable through risk aversion
1436		measures. Bearing in mind the wisdom of the Dutch philosopher Desiderius
1437		Erasmus - 'prevention is better than cure', comprehensive models of the
1438		origin of cancer would enable strategies to reduce cancer incidences.
1439	2)	Diagnostics and prognostics: Quick, cheap, sensitive and specific tests are
1440		needed to identified individuals with cancer and to determine the likely
1441		course of disease progression. Early detection of certain cancers such as
1442		colon, liver and lung cancer can improve survival rates ⁴ . Furthermore, many
1443		cancers have identified pre-cancer lesions from which the develop including
1444		Barrett's Oesophagus and colonic polyps which are the precursors of
1445		oesophageal adenocarcinoma and colorectal cancer, respectively.
1446		Stratification of individuals with precancerous lesions into those who are
1447		likely and are not likely to develop cancer is needed to save lives.
1448	3)	<i>Therapeutics:</i> The presence of cancer in a population is all but inevitable.
1449		Although a significant proportion of cancer related deaths are avoidable
1450		through the modification of risk factors, cancer will arise in population.
1451		Furthermore, the elimination of environmental risk factors for cancer such as
1452		smoking, or obesity does not seem likely in the near future. Even with our

1453current arsenal of cancer therapeutics, the survival rate of many cancers1454remains poor. The overall 5-year survival rate for pancreatic cancer and1455oesophageal cancer is <7% and <20% respectively^{5,6}. This is particularly the1456case if cancer has metastasised, known as distant disease or distant1457metastasis.

I contend that the contents of this thesis provide arguments and evidence for thecontributory role of microbiota research into all three areas.

1460

1461 **6.2.1 The cause of cancer and the microbiota**

The question "What is the cause of cancer?" is a captivating question for researchers 1462 and non-researchers alike. In modern molecular biology, oncogenesis involves the 1463 Darwinian natural selection of somatic mutations within somatic cells⁷. Mutated 1464 cells may evolve to acquire the phenotypes known as the Hallmarks of Cancer^{8,9}. It 1465 1466 is important to recognise that the fitness associated with a mutation, somatic or 1467 otherwise, is dependent on the environment in which it occurs 10,11 . Cells in a healthy tissue environment are under purifying selection¹². It is therefore integral to consider 1468 1469 the changes to the tissue environment in which these mutations occur, because change to a tissue environment may itself be a major driver of cancer 10,11 . 1470 1471 Accumulation of mutations with age, as well as age related changes to the tissue 1472 microenvironment, explain why old age is the strongest risk factor for cancer 1473 development. What are the other factors which modulate the generations of somatic 1474 mutations and changes to tissue microenvironment? In this thesis, the microbiota is 1475 considered as such a factor. It may be important to distinguish two microbiotas 1476 which influence cancer biology: the gut microbiota and the intratumoral bacteria

specific to the cancer tissue. The gut microbiota contains approximately 97% of the bacterial cells found in the human body¹³. Due to its metabolic range and size, it can exert an influence all tissues in the body through communication with the immune system and release of metabolites into the bloodstream. Increasing number of reports describe the existence of an intratumoral microbiome¹⁴⁻¹⁶. Theses microbiomes may act locally to modulate the tumour microenvironment.

1483 In chapter one of this thesis, I provided a comprehensive discussion of the role of

1484 microbes in mutational mechanisms. The mechanism by which colibactin producing

1485 E. coli generates mutational signatures is supported by the most robust evidence.

1486 However, future studies will need to investigate the global structure of the

1487 microbiota and how it relates to the mutational portrait of cancers rather than

1488 individual microbes and their related mutational mechanism. Such research would

1489 hopefully allow researchers discover microbially driven mutational mechanisms in a

1490 more systematic manner rather than one microbe, one metabolite, one mutational

signature at the time.

1492 Beyond initiation of cancer evolution though mutational mechanisms, the microbiota

1493 can drive tumorigenesis through mechanisms that alter the tissue microenvironment.

1494 Another way of looking at this question is, how might the microbiota influence the

1495 purifying selection that somatic cells are under?

1496 Shanahan & O'Toole hypothesize that a difference in microbial load and content may

1497 in part explain the differences in the rates of cancers between the proximal gut (small

- 1498 intestine) and distal gut (large intestine)¹⁷. This hypothesis has been recently
- 1499 supported by work by Kadosh et al^{18} . The phenotype expressed by mutations in
- 1500 Trp53 (the gene that encodes p53 in mice) varied from tumour-suppressive to

1501 oncogenic depending on the tissue environment. In particular Kadosh et al

1502 demonstrated that, in the context of WNT-driven intestinal cancer mouse models,

1503 p53 had a pro-oncogenic effect in the distal gut while it exerted a tumour suppressive

1504 effect in the foregut Such a switching between genetic functionality was found to be

1505 dictated by microbiota-derived gallic acid¹⁸

1506 Chronic inflammation increases the risk of cancer, with 30% of cancers incidences being linked to chronic inflation¹⁹. Environmental factors such as tobacco smoking 1507 1508 promote cancer in part by promoting chronic inflammation. Microbial causes of 1509 inflammation included *Helicobacter pylori* and hepatitis B virus (HBV) or C (HCV) 1510 which promote the development of gastric cancer and hepatocellular carcinoma, respectively^{20,21}.Inflamtion can be regarded as a pro-carcinogenic environment for 1511 1512 cancer development. Many diseases characterised by chronic inflammation are 1513 associated with an increased risk of cancer. Ulcerative colitis, pelvic inflammatory 1514 disease and celiac disease are linked to increases in colorectal cancer, ovarian cancer, and intestinal lymphoma respectively²²⁻²⁴. Current models of the pathogenesis of 1515 1516 these inflammatory diseases include, to varying degrees, the microbiota playing a role²⁵⁻²⁷. 1517

In chapter 5 of this thesis, I describe changes in the skin and faecal microbiota that
are linked to hidradenitis suppurativa. Individuals with hidradenitis suppurativa have
an increased risk for a variety of cancers. Relevant to this thesis, individuals with
hidradenitis suppurativa have a reported increased risk of colorectal cancer of
~45%²⁸. Individuals with HS have a higher rate of IBD and in particular Crohn's
Disease relative to the general population. The prevalence of IBD in the general
population is 0.3% and 0.5% for Crohn's disease and ulcerative colitis, respectively,

1525 while in the HS population the rates are 0.8–2.5% and 0.8–1.3% for Crohn's disease 1526 and ulcerative colitis, respectively. Individuals with Crohn's disease have an increased risk of colorectal cancer (~40% increase) and small bowel cancer (~1000% 1527 increase)^{29,30}. Microbiome features associated with HS and Crohn's, both shared and 1528 1529 otherwise, may at least in part explain this increase in cancer risk. We found 1530 Ruminococcus gnavus, a microbe commonly found to be enriched in individuals 1531 with Crohn's disease, to be enriched in individuals with HS. Ruminococcus gnavus 1532 has been demonstrated to have pro-inflammatory activities. Thus, particular 1533 incidences of colorectal cancer could be explained using a model involving 1534 microbially-induced inflammation. Such models have been experimentally 1535 supported. Lung adenocarcinoma development was found to be promoted by lung 1536 microbiota driven inflammation through the activation of interleukin-17 and interleukin-23 producing $\gamma\delta$ T cells³¹. Such findings will have to be replicated in 1537 1538 other geographical settings and with larger cohorts. Furthermore, methodologies 1539 which offer a more in depth interrogation of the gut microbiome namely shotgun 1540 metagenomic sequencing should be employed. There is a growing selection of 1541 methods which enable the engineering of microbiome features including faecal 1542 microbiota transplant, phage therapy, bacteriocins and dietary medication³²⁻³⁴. Such strategies are being developed to treat inflammatory bowel diseases³⁵. One could 1543 1544 envisage the opportunity to take advantage of such efforts in order to treat HS. For 1545 example the development of a phage based therapeutic strategy to target 1546 *Ruminococcus gnavus* with the purpose of treating IBD may be repurposed to treat 1547 HS.

1548

324

1549 **6.2.2 Diagnostic and prognostic potential of microbiota data**

1550 Certain microbial signatures that are correlated with specific cancers hold the 1551 potential to be exploited for diagnostic and prognostic purposes. Currently available 1552 methods to detect colorectal cancer include the faecal occult blood test which allows 1553 non-evasive detection. Colonoscopy in conjunction with biopsy collection are used 1554 as more comprehensive yet more invasive forms of CRC detection. A microbiome-1555 based test could replace or, more likely, complement such procedures. Flemer et al 1556 identified an enrichment of taxa that typically colonize the oral cavity in individuals 1557 with polyps and CRC³⁶. These results were supported by work by Thomas et al who found an increase in the abundance of oral species in individuals with CRC relative 1558 to healthy controls³⁷. Using machine learning classifiers on oral and/or stool 1559 1560 microbiome data, a number of studies have demonstrated that individuals with CRC can be distinguished from control cohorts³⁶⁻³⁹. 1561

1562

1563 In our study described in Chapter 3 we established that mucosal biopsies derived 1564 from different areas of a single excised tumour harboured largely the same 1565 microbiota and were similar to undisease tissue from the same individual. This might 1566 suggest that samples taken during colonoscopy from the colon for microbiome analysis would be equally informative regardless of the location from which the 1567 1568 sample was taken. However, we did find certain microbes enriched on tumour 1569 samples relative to non-diseased tissue. In particular Fusobacterium nucleatum was 1570 found to be enriched. *F.nucleatum* has been identified as predictive within these 1571 models. Thus, it is possible that the predictive power of samples derived from non-1572 tumour samples may be reduced.

1573 The identification of individuals that will develop cancer is a key strategy in early 1574 detection and prevention. As discussed in preceding chapters, individuals with 1575 Barrett's Oesophagus have a 10-fold to 55-fold higher risk of developing 1576 oesophageal adenocarcinoma. However only about 0.1%-1% of individuals with 1577 Barrett's Oesophagus go on to develop OAC. Thus the question arises, what are the 1578 biological mechanisms that determine progression of Barrett's oesophageal to 1579 oesophageal adenocarcinoma? Furthermore, can we predict those individuals with 1580 Barrett's oesophageal disease that will go on to develop oesophageal 1581 adenocarcinoma? Biomarkers in the form of genomic and epigenetic including p53 1582 expression, DNA-methylation changes, copy number instability and clonal 1583 diversity⁴⁰⁻⁴³.

1584 Changes in the oesophageal tract may predict defined histological progression along1585 the oesophageal adenocarcinoma sequence.

1586 In Chapter 2, we defined a number of differences in microbial features between

1587 clinical groups within the oesophageal adenocarcinoma sequence. Pertinent to the

above discussion we found that, with respect to biopsy samples derived from the

1589 gastro-oesophageal junction, an enrichment occurred of *Fusobacterium*

necrophorum in dysplastic and neoplastic tissue relative to normal stratified

1591 epithelium and metaplastic tissue. The relative/absolute abundance of *Fusobacterium*

necrophorum may thus be predictive of the transformation of metaplastic tissue to

1593 dysplastic and neoplastic tissue. However, the cross-sectional nature of the study

design in chapter 2 limits what one can infer with regard to the microbiome

1595 dynamics during the oesophageal adenocarcinoma sequence. For example, the

abundance of *Fusobacterium necrophorum* may simply increase in parallel with

histological transformation. Longitudinal studies are required to provide greater
predictive power using microbiome data when it comes to transformation of
metaplastic tissue.

1600 **6.2.3 The role of the microbiota in cancer therapeutics**

1601 The use of microbes in the treatment of cancer is an ancient endeavour. A treatment attributed to the Egyptian physician Imhotep (~2600 BCE) involved causing an 1602 infection to reduce tumours (swellings)⁴⁴. In 1891, William B. Coley injected heat-1603 1604 killed streptococcal organism [sic] and Serratia marcescens (Coley's Toxin) into 1605 individuals with cancer with the hope of eliciting an anti-tumorigenic immune response⁴⁵. This treatment demonstrated some level of success with a >10-vear 1606 disease-free survival in $\sim 30\%^{44}$. Thus, this not only the first demonstration of 1607 1608 immunotherapy but also the first (recorded) example of microbially directed

1609 immunotherapy

1610 The microbiota is now considered an important modulator of immune checkpoint inhibitor (ICI)-based therapeutics. In chapter 4 of this thesis, we described the 1611 1612 difference between the faecal microbiota of responders versus non-responders and 1613 individuals with no-side effects versus individuals with side effects, with regards to 1614 ICI, in an Irish cohort. With respect to responders, there was notably an overlap in 1615 taxa found to be associated with responders between our study and previous studies. 1616 Inter-individual variation in gut microbiome composition is strongly influenced by geography⁴⁶⁻⁴⁸. Thus, the reproducibility of response associated taxa is strengthened 1617 1618 by the fact the data come from geographically distinct locations. Functional genomic 1619 features have failed to reveal a similar consistency. In the study described in chapter 1620 4, microbiome functional features associated with response included those involved

in exopolysaccharide synthesis. Exopolysaccharides have been reported to have
immunomodulatory activity. In chapter 4 I also explored the relationships between

1623 the faecal microbiome and ICI induced side-effects.

1624 Data derived from microbiome studies can be used to inform and enhance ICI 1625 therapeutics. In a broad sense one can change the microbiota of an individual to that 1626 corresponding of those of patients who responded to ICIs. Early-stage clinical trials regarding the use of FMTs in ICIs therapy has shown preliminary promise^{49,50}. The 1627 1628 use of single microbes in the form of probiotics such as Bifidobacterium to complement ICI therapy is being explored^{51,52}. The introduction of living bacteria 1629 1630 may not be even necessary. In chapter 4 we reported that Akkermansia muciniphila 1631 was associated with individuals who did not exhibit side effects when treated with 1632 ICI. In mouse models, the introduction of pasteurized A. muciniphila or Amuc_1100 1633 (Type IV pili protein and agonist to Toll-like receptor 2) attenuated azoxymethane induced colitis and colon carcinogenesis^{53,54}. This anti-inflammatory effect was 1634 1635 reported to be achieved though effecting a reduction in infiltrating macrophages and CD8+ cytotoxic T lymphocytes in the colon⁵³. Flagellin derived from E. gallinarum 1636 was shown to be an immunostimulant by interacting the toll like receptor 5⁵⁵. These 1637 1638 studies demonstrate that abiotic microbial derived materials may augment ICI 1639 therapy.

1640 **6.2.3.1** Cancer vaccines

1641 No fields of productive scientific research happen in isolation from society at large.

1642 Currently, there is a global pandemic caused by Severe acute respiratory syndrome

1643 coronavirus 2 (SARS-CoV-2). Vaccines can be argued to be the single greatest

1644 innovation in medical history as measured by lives saved. Vaccines are being

1645 employed to tackle the current pandemic and are seen as the most promising avenue
1646 to exit this pandemic. These vaccines have been developed as a result of great
1647 scientific effort backed by appropriate funding. Such an endeavour would hopefully
1648 have spinoffs to other biomedical fields including cancer research in the same
1649 manner that space exploration has lent itself to society-changing spinoff
1650 technologies.

1651 Therapeutic cancer vaccines are currently under development. These are distinct 1652 from prophylactic cancer vaccines such as those directed against hepatitis B virus 1653 and human papillomavirus, which are the causes of hepatocellular carcinoma and cervical cancer, respectively⁵⁶. Therapeutic cancer vaccines are designed to target 1654 1655 antigens of two general classes: tumour-associated antigens and tumour-specific antigen⁵⁷. Tumour-associated antigens are self-antigens that are either preferentially 1656 1657 or abnormally expressed in tumour cells. Tumour-associated antigens are expressed 1658 to some extent on normal healthy cells; thus, vaccines developed against these 1659 antigens encounter the problems of low immunologically reactivity and (in the cases where they do work) autoimmune reactions⁵⁷. Vaccines developed against tumour-1660 1661 specific antigen, antigens expressed exclusively by tumours, hold the potential to 1662 train the immune system to selectively destroy tumour cells.

1663 A mutated variant of isocitrate dehydrogenase is commonly identified in

astrocytomas, a type of brain cancer and is presented on the major histocompatibility

1665 complex (MHC) class II⁵⁸. Such an antigen can be defined as a 'shared neoantigen'

as it is a tumour-specific antigen which is shared across tumours from many

1667 individuals⁵⁷. Recent vaccines against this antigen have proven safe and preliminary

1668 effective in phase I clinical trials⁵⁹. Therapeutic cancer vaccines could work in

1669 conjunction with other therapeutics, namely ICIs. Indeed, several studies have
1670 explored the possibility of this synergistic interaction and their results have shown
1671 promise⁶⁰⁻⁶².

1672 Intratumoral bacteria may provide tumour-specific antigens which vaccines could be
1673 developed against. In recent work by Kalaora et al, melanoma cells were found to
1674 present bacterially- derived peptides on human leukocyte antigens (HLAs)⁶³. As
1675 there is growing evidence for a resident tumour microbiome, a range of cancers may
1676 be targeted by developing vaccines for tumour specific bacteria.

1677 Using bacterially derived tumour-specific antigen as targets for vaccines faces a

1678 number of obstacles. First, one must ensure that such bacterial antigens are truly

1679 tumour specific. Previous studies regarding intratumoral bacteria reported taxa such

as Fusobacterium and Staphylococcus that are readily found elsewhere in the

1681 body^{14,63}. Thus, a vaccine targeting these taxa are likely to have off-target effects. In

1682 the context of situations where vaccines are used to augment ICI, the unintended

1683 targeting of responder-associated taxa could possibly have detrimental outcomes.

1684 Furthermore, why does the immune system attack this non-self-entity without

1685 therapeutic intervention? Like cancer cells, bacterial cells are under evolutionary

1686 pressure to evade the immune system. *Fusobacterium nucleatum* has been

1687 demonstrated to supress immune surveillance by the binding of its surface protein

1688 Fap2 to the TIGIT receptor of tumour-infiltrating lymphocytes⁶⁴. Thus, attenuating

1689 the immune suppressive activity of the intratumoral microbiota may be crucial to

1690 harnessing the full potential of cancer vaccines.

1691 Finally, the issue of contamination comes into focus when dealing with the

1692 intratumoral microbiota. In chapter 2, 3 and 5 I carefully applied methodologies to330

1693 mitigate the effect of contamination on the microbiome data under study. The 1694 intratumoral microbiome of almost all cancers surveyed would necessarily be 1695 derived from samples with a lower biomass than oesophageal biopsies, colonic 1696 biopsies, and skin swabs. Studies reporting taxa which compose the intratumoral 1697 microbiome report taxa indicative of contamination such as Pseudomonas, 1698 Sphingomonas, Shewanella, and Photobacterium, even though these studies seek to 1699 address contamination^{14,63}. Still other studies do not give sufficient care to the issue 1700 of contamination. A number of recent reports have published data that one would 1701 regard as clear indications of contamination. Thyagarajan et al reported that, in terms 1702 of relative abundance, *Ralstonia* was the dominant bacterial genus in biopsies in 1703 derived from breast tumours and healthy breast tissue⁶⁵. In another study which 1704 aimed to define the microbiome of three adipose tissue deposits as well as the liver 1705 and plasma of morbidly obese individuals, the authors went so far to propose "... 1706 environmental bacteria-and/or their fragments-that are present in food and water 1707 can accumulate in the MAT[mesenteric adipose tissue] and may affect blood glucose regulation"⁶⁶. A more in-depth critical analysis to rule out contamination is needed 1708 1709 before one can start discussing the potential mechanistic implications of the presence 1710 of microbes in certain tissues.

Further methodological improvements need to be developed and implemented to
address the issue of contamination. Negative controls in the form of mock
extractions may not be suitable to detect reagent related contamination. DNA
extraction protocols using the silica-based method, such as those included in
commercially available QIAGEN kits, can be limited in their efficacy by very low
quantise of starting template DNA. Although a biopsy sample might contain
relatively small microbiota levels, this would usually have an abundance of human
331

DNA. Thus, a clinical sample used in a DNA extraction may be more prone to
suffering from contamination. The use of carrier DNA has been shown to increase
DNA extraction efficacy and has been utilized to address contamination in relation to
ancient DNA analysis⁶⁷. Thus, carrier DNA may enhance the ability of negative kit
controls to detect contamination.

1723

1724

1725 **6.3 Concluding remarks.**

The research undertaken in this thesis hopefully contributes to our understanding of 1726 1727 the relationship between the microbiome and cancer. Chapter 2 offers one of the 1728 most in-depth studies describing the oesophago-gastric mucosal microbiome in the 1729 context of the oesophageal adenocarcinoma sequence. Information gleaned may 1730 provide avenues to develop diagnostic tools but also to provide the associations 1731 needed to inform mechanistic studies. In chapter 3, we further strengthen the 1732 hypothesis that colorectal cancer is associated with a change along the whole colon, 1733 and it is not restricted to the tumour. However, taxa such as F. nucleatum can be 1734 observed to be differentially abundant between tumour and matched healthy tissue. 1735 In chapter 3 we identified a number of taxa associated with response to ICI. While 1736 this thesis presented multiple novel findings, the global thesis findings also 1737 corroborate other studies which were carried out in other geographical settings. 1738 Taken together this suggests a level of robustness in the microbiome alterations 1739 identified. In chapter 5 we identified microbiome changes which may explain, in 1740 part, the inflammatory phenotype observed in HS while also providing a

- 1741 microbiome-based explanation for the comorbidity between HS and Crohn's disease.
- 1742 Further, due to the link between inflammation and cancer, the difference alteration in
- the microbiome of individuals with HS may explain the increase relative risk of
- 1744 cancer. As is with the nature of science, these chapters open more questions which
- 1745 will need to be answered by future studies.

1746

<u>6.4 References</u>

1748 1749	1	Reid, M. J. <i>et al.</i> Building a tuberculosis-free world: The Lancet Commission on tuberculosis. <i>The Lancet</i> 393 , 1331-1384 (2019).
1750 1751 1752	2	Dagenais, G. R. <i>et al.</i> Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE): a prospective cohort study. <i>The Lancet</i> 395 , 785-794 (2020).
1753 1754 1755	3	Eckhouse, S., Lewison, G. & Sullivan, R. Trends in the global funding and activity of cancer research. <i>Mol Oncol</i> 2 , 20-32, doi:10.1016/j.molonc.2008.03.007 (2008).
1756	4	Hawkes, N. (2019).
1757 1758	5	Kleeff, J. <i>et al.</i> Pancreatic cancer. <i>Nature reviews Disease primers</i> 2 , 1-22 (2016).
1759 1760 1761	6	Thrift, A. P. Global burden and epidemiology of Barrett oesophagus and oesophageal cancer. <i>Nature Reviews Gastroenterology & Hepatology</i> , 1-12 (2021).
1762 1763	7	Gerlinger, M. <i>et al.</i> Cancer: evolution within a lifetime. <i>Annual review of genetics</i> 48 , 215-236 (2014).
1764 1765	8	Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. <i>Cell</i> 144 , 646-674, doi:10.1016/j.cell.2011.02.013 (2011).
1766 1767	9	Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. <i>Cell</i> 100 , 57-70 (2000).
1768 1769 1770	10	Rozhok, A. I. & DeGregori, J. Toward an evolutionary model of cancer: Considering the mechanisms that govern the fate of somatic mutations. <i>Proceedings of the National Academy of Sciences</i> 112 , 8914-8921 (2015).
1771 1772 1773	11	Laconi, E., Marongiu, F. & DeGregori, J. Cancer as a disease of old age: Changing mutational and microenvironmental landscapes. <i>British journal of</i> <i>cancer</i> 122 , 943-952 (2020).
1774 1775	12	Rozhok, A. I. & DeGregori, J. The evolution of lifespan and age-dependent cancer risk. <i>Trends in cancer</i> 2 , 552-560 (2016).
1776 1777 1778	13	Sender, R., Fuchs, S. & Milo, R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. <i>PLoS Biol</i> 14 , e1002533, doi:10.1371/journal.pbio.1002533 (2016).
1779 1780	14	Nejman, D. <i>et al.</i> The human tumor microbiome is composed of tumor type–specific intracellular bacteria. <i>Science</i> 368 , 973-980 (2020).
1781 1782 1783	15	Dohlman, A. B. <i>et al.</i> The cancer microbiome atlas: a pan-cancer comparative analysis to distinguish tissue-resident microbiota from contaminants. <i>Cell Host & Microbe</i> 29 , 281-298. e285 (2021).

1784 1785	16	Poore, G. D. <i>et al.</i> Microbiome analyses of blood and tissues suggest cancer diagnostic approach. <i>Nature</i> 579 , 567-574 (2020).
1786 1787	17	Shanahan, F. & O'toole, P. W. Host–microbe interactions and spatial variation of cancer in the gut. <i>Nature Reviews Cancer</i> 14 , 511-512 (2014).
1788 1789	18	Kadosh, E. <i>et al.</i> The gut microbiome switches mutant p53 from tumour- suppressive to oncogenic. <i>Nature</i> 586 , 133-138 (2020).
1790 1791	19	Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. <i>Cell</i> 140 , 883-899 (2010).
1792 1793	20	McColl, K. E. Helicobacter pylori infection. <i>New England Journal of Medicine</i> 362 , 1597-1604 (2010).
1794 1795 1796 1797	21	Perz, J. F., Armstrong, G. L., Farrington, L. A., Hutin, Y. J. & Bell, B. P. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. <i>Journal of hepatology</i> 45 , 529-538 (2006).
1798 1799	22	Olén, O. <i>et al.</i> Colorectal cancer in ulcerative colitis: a Scandinavian population-based cohort study. <i>The Lancet</i> 395 , 123-131 (2020).
1800 1801 1802	23	Piao, J., Lee, E. J. & Lee, M. Association between pelvic inflammatory disease and risk of ovarian cancer: An updated meta-analysis. <i>Gynecologic oncology</i> 157 , 542-548 (2020).
1803 1804 1805	24	Catassi, C., Bearzi, I. & Holmes, G. K. Association of celiac disease and intestinal lymphomas and other cancers. <i>Gastroenterology</i> 128 , S79-S86 (2005).
1806 1807 1808	25	Caruso, R., Lo, B. C. & Núñez, G. Host-microbiota interactions in inflammatory bowel disease. <i>Nature Reviews Immunology</i> 20 , 411-426 (2020).
1809 1810	26	Brunham, R. C., Gottlieb, S. L. & Paavonen, J. Pelvic inflammatory disease. <i>New England Journal of Medicine</i> 372 , 2039-2048 (2015).
1811 1812	27	Valitutti, F., Cucchiara, S. & Fasano, A. Celiac disease and the microbiome. <i>Nutrients</i> 11 , 2403 (2019).
1813 1814 1815	28	Jung, J. M. <i>et al.</i> Assessment of Overall and Specific Cancer Risks in Patients With Hidradenitis Suppurativa. <i>JAMA Dermatol</i> 156 , 844-853, doi:10.1001/jamadermatol.2020.1422 (2020).
1816 1817 1818	29	Olén, O. <i>et al.</i> Colorectal cancer in Crohn's disease: a Scandinavian population-based cohort study. <i>The Lancet Gastroenterology & Hepatology</i> 5 , 475-484 (2020).
1819 1820	30	Zhao, R. <i>et al.</i> Crohn's disease instead of UC might increase the risk of small bowel cancer. <i>Gut</i> 70 , 809-810 (2021).
1821 1822	31	Jin, C. <i>et al.</i> Commensal microbiota promote lung cancer development via $\gamma\delta$ T cells. <i>Cell</i> 176 , 998-1013. e1016 (2019).

1823 1824 1825	32	Heilbronner, S., Krismer, B., Brötz-Oesterhelt, H. & Peschel, A. The microbiome-shaping roles of bacteriocins. <i>Nature Reviews Microbiology</i> , 1-14 (2021).
1826 1827 1828 1829	33	Bilinski, J. <i>et al.</i> Fecal microbiota transplantation in patients with acute and chronic graft-versus-host disease-spectrum of responses and safety profile. Results from a prospective, multicenter study. <i>American journal of hematology</i> 96 , E88-E91 (2021).
1830 1831	34	Dalmasso, M. <i>et al.</i> Three new Escherichia coli phages from the human gut show promising potential for phage therapy. <i>PloS one</i> 11 , e0156773 (2016).
1832 1833 1834	35	Sokol, H. <i>et al.</i> Fecal microbiota transplantation to maintain remission in Crohn's disease: a pilot randomized controlled study. <i>Microbiome</i> 8 , 1-14 (2020).
1835 1836	36	Flemer, B. <i>et al.</i> The oral microbiota in colorectal cancer is distinctive and predictive. <i>Gut</i> 67 , 1454-1463, doi:10.1136/gutjnl-2017-314814 (2018).
1837 1838 1839	37	Thomas, A. M. <i>et al.</i> Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. <i>Nature medicine</i> 25 , 667-678 (2019).
1840 1841 1842	38	Wirbel, J. <i>et al.</i> Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. <i>Nat Med</i> 25 , 679-689, doi:10.1038/s41591-019-0406-6 (2019).
1843 1844 1845	39	Ghosh, T. S., Das, M., Jeffery, I. B. & O'Toole, P. W. Adjusting for age improves identification of gut microbiome alterations in multiple diseases. <i>Elife</i> 9 , e50240 (2020).
1846 1847 1848	40	Sikkema, M. <i>et al.</i> Aneuploidy and overexpression of Ki67 and p53 as markers for neoplastic progression in Barrett's esophagus: a case-control study. <i>American Journal of Gastroenterology</i> 104 , 2673-2680 (2009).
1849 1850 1851	41	Jin, Z. <i>et al.</i> A multicenter, double-blinded validation study of methylation biomarkers for progression prediction in Barrett's esophagus. <i>Cancer research</i> 69 , 4112-4115 (2009).
1852 1853	42	Killcoyne, S. <i>et al.</i> Genomic copy number predicts esophageal cancer years before transformation. <i>Nature medicine</i> 26 , 1726-1732 (2020).
1854 1855	43	Martinez, P. <i>et al.</i> Dynamic clonal equilibrium and predetermined cancer risk in Barrett's oesophagus. <i>Nature communications</i> 7 , 1-10 (2016).
1856 1857	44	Sepich-Poore, G. D. <i>et al.</i> The microbiome and human cancer. <i>Science</i> 371 (2021).
1858 1859	45	McCarthy, E. F. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. <i>The Iowa orthopaedic journal</i> 26 , 154 (2006).
1860 1861 1862	46	Ghosh, T. S., Arnoux, J. & O'Toole, P. W. Metagenomic analysis reveals distinct patterns of gut lactobacillus prevalence, abundance, and geographical variation in health and disease. <i>Gut microbes</i> 12 , 1822729 (2020).

1863 1864 1865	47	Keohane, D. M. <i>et al.</i> Microbiome and health implications for ethnic minorities after enforced lifestyle changes. <i>Nature Medicine</i> 26 , 1089-1095 (2020).
1866 1867	48	He, Y. <i>et al.</i> Regional variation limits applications of healthy gut microbiome reference ranges and disease models. <i>Nature medicine</i> 24 , 1532-1535 (2018).
1868 1869	49	Baruch, E. N. <i>et al.</i> Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. <i>Science</i> 371 , 602-609 (2021).
1870 1871	50	Davar, D. <i>et al.</i> Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients. <i>Science</i> 371 , 595-602 (2021).
1872 1873 1874 1875	51	Sun, S. <i>et al.</i> Bifidobacterium alters the gut microbiota and modulates the functional metabolism of T regulatory cells in the context of immune checkpoint blockade. <i>Proceedings of the National Academy of Sciences</i> 117 , 27509-27515 (2020).
1876 1877 1878	52	Lee, SH. <i>et al.</i> Bifidobacterium bifidum strains synergize with immune checkpoint inhibitors to reduce tumour burden in mice. <i>Nature Microbiology</i> 6 , 277-288 (2021).
1879 1880 1881	53	Wang, L. <i>et al.</i> A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8+ T cells in mice. <i>Gut</i> 69 , 1988-1997 (2020).
1882 1883 1884	54	Plovier, H. <i>et al.</i> A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. <i>Nature Medicine</i> 23 , 107-113, doi:10.1038/nm.4236 (2017).
1885 1886 1887	55	Lauté-Caly, D. L. <i>et al.</i> The flagellin of candidate live biotherapeutic Enterococcus gallinarum MRx0518 is a potent immunostimulant. <i>Scientific</i> <i>reports</i> 9 , 1-14 (2019).
1888 1889 1890	56	Stanley, M. Tumour virus vaccines: hepatitis B virus and human papillomavirus. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> 372 , 20160268 (2017).
1891 1892	57	Hollingsworth, R. E. & Jansen, K. Turning the corner on therapeutic cancer vaccines. <i>npj Vaccines</i> 4 , 1-10 (2019).
1893 1894	58	Schumacher, T. <i>et al.</i> A vaccine targeting mutant IDH1 induces antitumour immunity. <i>Nature</i> 512 , 324-327 (2014).
1895 1896	59	Platten, M. <i>et al.</i> A vaccine targeting mutant IDH1 in newly diagnosed glioma. <i>Nature</i> , 1-6 (2021).
1897 1898	60	Sahin, U. <i>et al.</i> An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. <i>Nature</i> 585 , 107-112 (2020).
1899 1900 1901	61	Shekarian, T. <i>et al.</i> Repurposing rotavirus vaccines for intratumoral immunotherapy can overcome resistance to immune checkpoint blockade. <i>Science translational medicine</i> 11 (2019).

1902 1903 1904	62	Ali, O. A., Lewin, S. A., Dranoff, G. & Mooney, D. J. Vaccines combined with immune checkpoint antibodies promote cytotoxic T-cell activity and tumor eradication. <i>Cancer immunology research</i> 4 , 95-100 (2016).
1905 1906	63	Kalaora, S. <i>et al.</i> Identification of bacteria-derived HLA-bound peptides in melanoma. <i>Nature</i> , 1-6 (2021).
1907 1908 1909	64	Gur, C. <i>et al.</i> Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. <i>Immunity</i> 42 , 344-355 (2015).
1910 1911	65	Thyagarajan, S. <i>et al.</i> Comparative analysis of racial differences in breast tumor microbiome. <i>Scientific reports</i> 10 , 1-13 (2020).
1912 1913 1914	66	Anhê, F. F. <i>et al.</i> Type 2 diabetes influences bacterial tissue compartmentalisation in human obesity. <i>Nature Metabolism</i> 2 , 233-242 (2020).
1915 1916	67	Xu, Z. <i>et al.</i> Improving the sensitivity of negative controls in ancient DNA extractions. <i>Electrophoresis</i> 30 , 1282-1285 (2009).
1917		

Appendix 1-Comparative exome analysis of mutational processes in colorectal cancers from patients harbouring two divergent gut microbiota types.

7.1 Abstract

Like other cancers, colorectal cancers (CRC) develop through a process that involves Darwinian selection acting upon somatic mutations in cancer cells. There is mounting evidence of a significant role for the colonic microbiota in the development, progression and treatment of CRC. Previously we defined six microbiota subtypes whose abundance was differentially associated with CRC or healthy controls. To explore the microbiota as an environmental driver of mutation, CRC exome sequence data was generated from six subjects, three from each of two distinct colonic microbiota subtypes dominated by either phylum Firmicutes or genus Prevotella. No significant differences in the somatic exonic mutational landscape were identified between the microbiota-defined groups. However, there was a non-significantly higher mutational burden and greater representation of mutational signature 5 in the Prevotella microbiota subtype tissue samples, which may reflect an underlying biological mechanism.

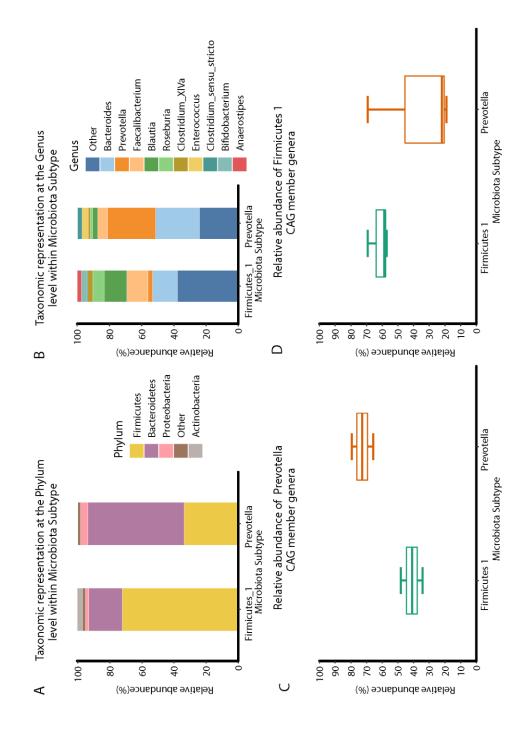
7.2 Introduction

Colorectal cancer kills almost 700,000 people a year worldwide, making it the 4th leading cause of cancer morbidity.¹ As for all cancers, the development of CRC is an evolutionary process enabled by somatic mutation.² Tomasetti and Vogelstein showed that a major source of mutations (~66%) is stochastic DNA replication errors, ^{3,4} and indeed hydrolytic deamination of 5-methylcytosine, tautomeric mispairs and anionic mispairs are seemingly inevitable aspects of DNA biology.⁵⁻⁸ Nonetheless, dietary and lifestyle variables including wholegrain consumption, alcohol, calcium intake, smoking and consumption of processed meat and red meat are other plausible sources of mutagens, either directly or as a consequence of gut bacterial processing.^{4,9-11}

The human microbiota is increasingly recognised as playing a role in human health and disease.¹² The greatest density of microbiota resides in the colon with an estimated 9x10¹⁰ bacteria per gram of wet stool.¹³ A growing body of evidence implicates the colonic microbiota in CRC development.¹⁴ Using hierarchical clustering techniques, we previously identified six mucosal-associated bacterial coabundance groups (CAGs) that are differentially represented in CRC patients compared to controls.^{15,16} These CAGs resemble previously described enterotypes.^{17,18} Categorization of the gut microbiome into subtypes as described by CAGs or enterotypes allows for the separation/stratification of cohorts into defined groups. These groupings enable study design to interrogate the microbiota configuration as a whole rather than focusing on individual elements such as taxa.

The mutagenic influence of the microbiota occurs through multiple mechanisms.¹⁹ It is reasonable to hypothesize that microbiota subtypes may contribute varying degrees of risk/protection by varying the extent to which they promote or protect against somatic mutation. Gastrointestinal microbe-derived genotoxins such as cytolethal distending toxin (produced by an array of gram-negative bacteria within the gamma and epsilon classes of the phylum Proteobacteria) and colibactin (produced by pks+ strains of *Escherichia coli*) induce double stand breaks.²⁰⁻²⁴ The immune system may be stimulated by microbes in a manner that leads to DNA damage. *Enterococcus faecalis*-generated superoxide radicals can activate

macrophage cyclooxygenase-2 expression leading to the production of genotoxic trans-4-hydroxy-2-nonenal, which in turns causes chromosomal instability (CIN). ²⁵ Finally, intestinal microbes have been shown to influence DNA damage repair.²⁶ *Helicobacter pylori* and enteropathogenic *E. coli* both down-regulate the expression of mismatch repair proteins including MSH2 and MLH1, thus compromising host genome integrity.^{19,27-29} The gut microbiota may modulate stochastically generated DNA aberrations by influencing their repair.


The characteristics of the mutations in a cancer genome are indicative of the mutational mechanisms which caused those mutations. For example, C>T transversions at CpG dinucleotides are indicative of spontaneous deamination of 5-methylcytosine.³⁰ Thus, interrogation of the cancer genome can yield information on the different mutational mechanisms which acted upon the cancer genome during its evolution. Recent developments in methods, namely those designed to extract so-called mutational signatures, allow an in-depth interrogation of the cancer genome regarding mutational mechanism.³¹

In this pilot study, we performed whole exome sequencing on paired cancer/ normal colorectal biopsy samples. Samples were derived from 6 individuals, 3 individuals from each of the two well categorized microbiota configurations, Firmicutes subtype and Prevotella subtype.^{15,16} We investigated the genomic architecture of these two groups in terms of somatic nucleotide variants (SNVs) and copy number alterations (CNA). The data-sets are a preliminary resource for studying the relationship between the gut microbiome and host genome stability while providing supportive impetus for further investigations of the microbiota-host genome interaction in cancer.

7.3 Results

We previously identified consortia of gut microbial taxa whose abundances co-vary, labelled co-abundance groups (CAGs). ^{15,16} Such definition of the structure of the colonic microbiota allows reduction of dimensionality in microbiota research. We have thus used this methodology to categorise individuals into microbiota subtypes.

The relative abundance of these CAGs within the colonic mucosal microbiota distinguished colorectal cancer cases from those of controls.¹⁵ With explicit relevance to this study, 'Firmicutes 1' CAG was over-represented in healthy individuals while the 'Prevotella' CAG was over-represented in individuals with colorectal cancer. We sought to determine if subjects with cancer belonging to these two microbiota subtypes had relevant mutational difference in their genomes. We identified 3 individuals whose colonic mucosal microbiota was dominated by either 'Firmicutes 1' CAG and 3 dominated by CAG 'Prevotella' CAG (**Figure 1**). These individuals were chosen to represent the most typical bacterial taxonomic profiles for the respective CAGs. Such a selection likely compensates for the limiting effect of small numbers through minimises within group variance.

Figure 1 Mucosal microbiota composition in CRC patients of divergent microbiota subtype. Data shown are proportional abundance of the indicated bacterial taxa in the colonic mucosal microbiota averaged across the 3 subjects per microbiota subtype. Bar plot of the relative proportions of indicated taxa at the phylum (panel A) and genus level (panel B) in each microbiota subtype group. Box plot summing the contribution of members of the genera of Prevotella (panel C) and Firmicutes (panel D).

Mutational burden in tumours from different microbiota subtypes

Tumour mutational burden (TMB), the total number of mutations per coding megabase of a tumour genome, is recognised as an indicator of cancer history as well as a prognostic marker, particularly in relationship to immunotherapy.³²⁻³⁵ Recent studies have identified the gut microbiota as a modulator of immunotherapy.³⁶⁻³⁹ Given these links, we sought to examine the relationship between defined microbiota subtypes and TMB. We analysed whole exome sequence data from paired tumour/normal tissue. Somatic mutations were called, filtered and quantified per exome. We performed a bivariate analysis on TMB versus microbiota subtypes taking into account sequencing depth. Although this analysis revealed a higher TMB in subjects from the Prevotella group relative to the Firmicutes 1 group, the difference did not reach statistical significance due to low sample number and within-subtype variation (**Figure 2.A**).

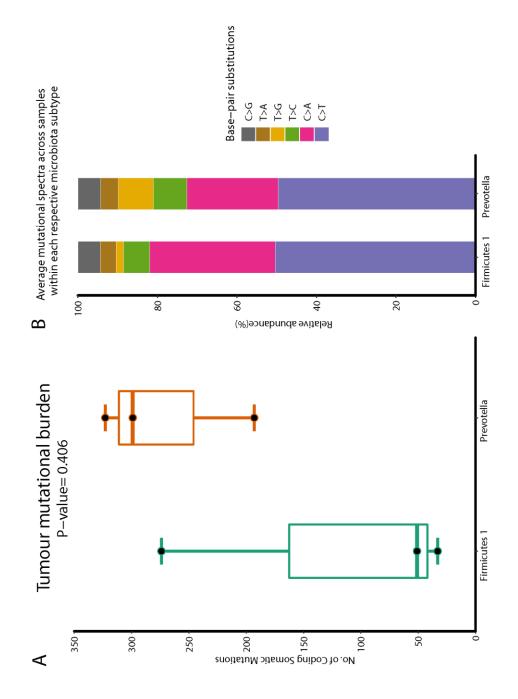
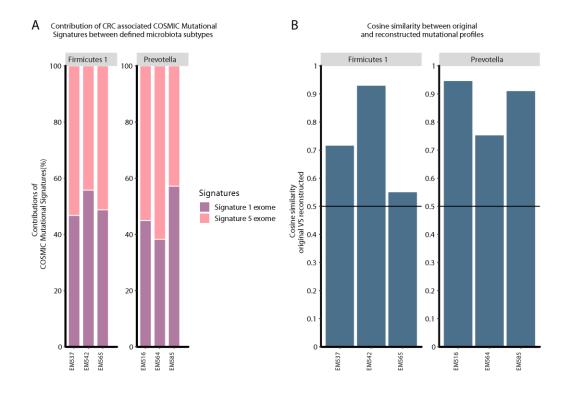
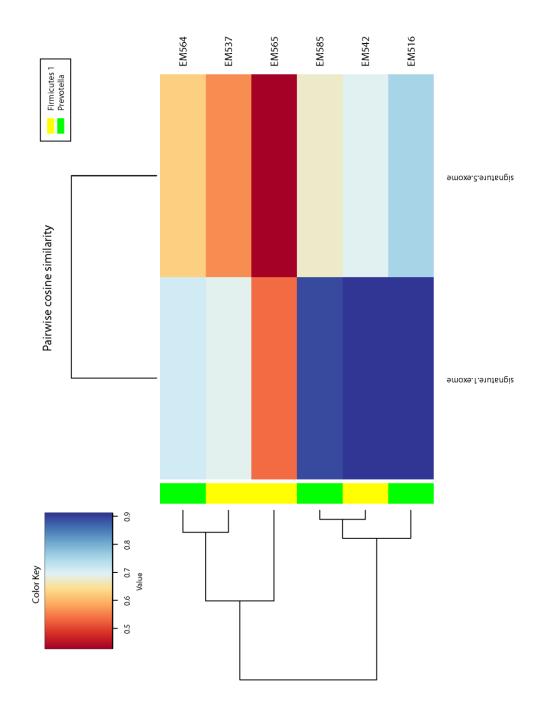



Figure 2| Tumour mutational burden and proportional representation of base substitutions between microbiota subtypes. A| Box plots of the abundance and distribution of the TMB with in each microbiota subtype. Y- axis shows absolute count of somatic base substitutions within the exome. B| Bar plots indicate the relative abundance of each base substitution type [note: In accordance with the Catalogue of Somatic Mutations in Cancer (COSMIC) system all substitutions are referred to by the pyrimidine of the mutated Watson-Crick base pair].³⁰

Microbiota associations of mutational spectra and signatures


To generate an overview of the genomic dynamics of the tumours, we identified and compared the mutation spectra of the samples in this study (**Figure 2.B**). Overall the mutational spectra obtained were typical of previously described spectra for CRC.⁴⁰ C>T transitions were slightly more represented in the Firmicutes 1 subtype tumours while T>G transversions were more common in the Prevotella group.With respect to the six classes of base pair substitutions, and the microbiota subtypes, we identified no gross difference in mutation spectra.

We fitted the mutational matrices of the samples to previously defined COSMIC mutational signatures (**Figure 3.A**) limiting them to signatures previously described in CRC which are known to act in a clock-like manner (signature 1 and 5).^{31,41} Further, we identified the fit of the model of contributions and the residuals (**Figure 3.B**). The relative contributions of the mutational signatures were somewhat typical of previous reports.^{31,41} We did not detect any statistically significant difference between the association of the microbiota subtypes and the fitted COSMIC mutational signatures. Mutational signature 5 showed a non-statically significant increased relative frequency in the Prevotella group.

Figure 3: Proportional representation of Mutational signatures and cosine similarity between original and reconstructed mutational profiles. A| Bar plots of relative contribution of fitted COSMIC mutational signatures. B| Bar plots showing the level in which the samples' mutational matrices can be recreated with fitted signatures.

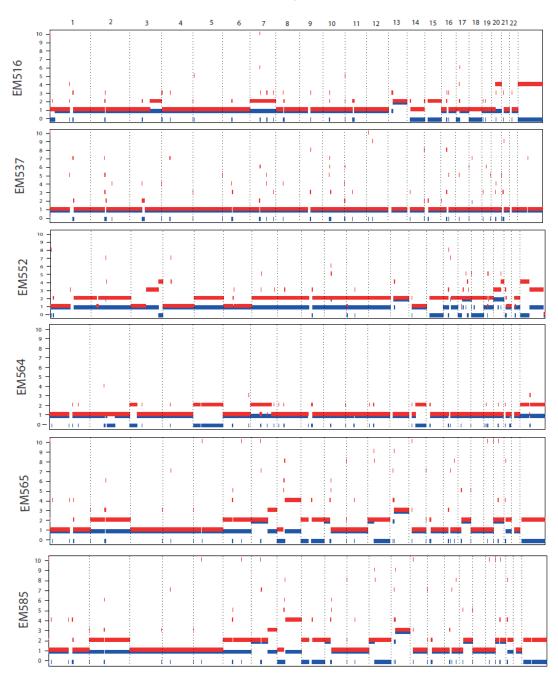

We sought to cluster samples based on the contributions of the defined COSMIC mutational signatures to the mutational profile of the samples. In brief, we measured the ability of COSMIC Mutational Signatures to explain the 96 trinucleotide mutation matrix of the tumour genomes by calculating cosine similarity. Cosine similarity was used to perform complete clustering and the results are visualized on a heat-map (**Figure 4**). This clustering provides an easy method to visualize the similarities between samples with regard to their mutational portrait. Samples clustered based on the number of somatic variants present. Clustering based on mutational signature did not co-segregate with clustering based on microbiota subtype.

Figure 4| **Heat map of pairwise cosine similarity between mutational profiles.** The degree to which the 96 trinucleotide mutation count was attributed to the COSMIC mutational was obtained through calculating Cosine similarity. Hierarchical clustering of the cosine similarity was performed using complete linkage clustering. Colour bars to left of figure indicate Firmicutes 1 (yellow) and Prevotella (green).

Copy number variation is independent of microbiota subtype

Aneuploidy is a feature of the majority of CRC genomes and has been identified as a prognostic marker.⁴² The R package Sequenza was used to infer copy-number alteration from the exome sequencing data. CNV did not statistically vary with respect to microbiota subtype (**Supplmenetary Figure 1**).

Genome-wide view copy number alterations

Supplementary figure 1 | Genome-wide view of CNA

Discussion

This analysis set out to test for interaction between the genetic architecture of colorectal cancer and the neighbouring colonic mucosal microbiota. We investigated the relationship between various features of the cancer genome including TMB, mutational signatures and copy number alterations. Although none of these features separate to an extent that reached significance, we did observe suggestive trends for of microbiota-host-genome interaction. Most notably was the trend towards higher TMB in the Firmicutes subtype.

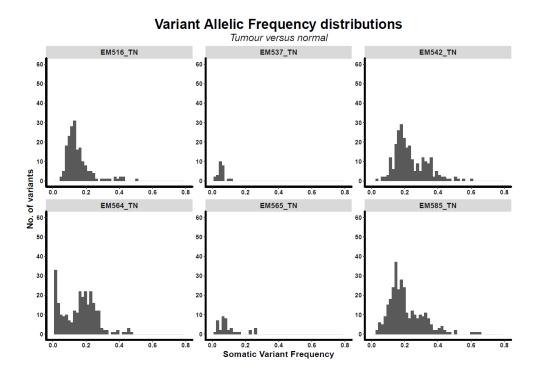
Recent studies have clearly identified the intestinal microbiota as modifying the efficacy of cancer immunotherapy. ³⁶⁻³⁹ The increased abundance of certain taxa (Ruminococcaceae, Faecalibacterium, Bifidobacteria, Alistipes, Enterococci, Collinsella) and higher microbiota diversity have been linked with positive response to immune checkpoint blockade treatment. Neoplasms develop through the accumulations of somatic variants, particularly in driver genes, which stimulate the evolution of healthy cells to cancer cells. It is possible that individuals that have a dominance of the Prevotella CAG in their gut microbiota experience increased mutagenic stress on their colonic cells and a correspondingly increased level of TMB. Thus the Prevotella CAG would be overrepresented in individuals with CRC. Somewhat paradoxically, provided a sufficient mutational effect, these individuals may have a better response rate to cancer immunotherapy because of higher level production of neoantigens.

None of the COSMIC signatures we identified exhibited a bias of representation with regard to microbiota defined groups. An increased contribution of signature 5 to the mutational portrait was observed (though was not significant) in patients whose tumour microbiota was dominated by the Prevotella CAG. The most prominent feature of mutational signature 5 is a transcriptional strand bias for T>C substitutions at the ApTpN context. A current model for the origin of mutational signature 5 involves deletion of the FHIT gene which leads to the down regulation of Thymidine Kinase 1 (TK1) expression and a reduction in thymidine triphosphate pool levels.⁴³ Such a decrease in of dTTP levels would lead to an increased ratio of dUTP:TTP thereby increasing the likelihood of dUTP misincorporation (U:A) in place of TTP. An abasic site may then arise during the base excision repair (BER) pathway. Certain translesion polymerase activity could incorporate guanine or a cytosine across from an abasic site, ultimately leading to T>C or a T>G base substitution during subsequent S phase. Notably, the intestinal microbiota is known to influence the activity of various host enzymes and proteins. In one mouse study examining the differential activity of various enzymes between germ free and normal mice, it was found that the presence of a microbiota reduced the activity of thymidine kinase by 50%.⁴⁴ Thus, it is reasonable to postulate that the metabolic activity of the intestinal microbiota influences genome instability such as that induced by FHIT deletion. In terms of candidate mechanisms, it is also possible that certain microbiota compositions have specific or greater magnitude of influence upon the regulation of expression of particular colonic cell proteins. Individuals in the current study whose microbiota was dominated by Prevotella may have experienced greater dysregulation of genome integrity leading to an increased prevalence of COSMIC mutational signature 5.

This study provides suggestive evidence for the interaction between the gut microbiota and host genome stability. The gut microbiota is readily accessible to observation as well as intervention. The interrogation of the gut microbiota has been 354 shown as a credible method for diagnosing CRC.^{15,16,45} It could also be possible to derive added information from the microbiota with regard to the genomic architecture of a tumour. This data would inform the choice of further testing as well as therapeutics such as immunotherapy. Moreover, provided there is a direct causative effect of the microbiome in shaping the cancer genome and thus oncogenesis, one could devise strategies to intervene and alter the microbiota in a prophylactic manner. Finally, cancer therapeutics strategies have been devised that target DNA damage response (DDR).⁴⁶⁻⁴⁸ Gastrointestinal microbes are known to localise to CRC tumours as well as to interact with host DDR.^{19,49-51} It is conceptually possible to use microbes as a DDR centric therapeutic.

7.4 methods

7.4.1 Recruitment and sample acquisition


Biological samples were obtained as described in previous studies.^{15,16} In brief, individuals were recruited from a cohort scheduled to undergo colonic resection at Mercy University Hospital, Cork, Ireland. Exclusion criteria included no personal history of Irritable Bowel Syndrome or Inflammatory Bowel Disease and no treatment with antibiotics in the past month. Neoplasms and healthy samples were dissected from surgical restricted colon. Samples were placed in 3 mL RNAlater, stored at 4°C for 12 h and then stored at -20°C post-surgery.

7.4.2 DNA extraction and whole exome sequencing (WES)

Genomic DNA was extracted from biopsies using the AllPrep DNA/RNA kit from Qiagen as previously described¹⁵. DNA concentration was quantified by measuring the 260/280 nm and 260/230 nm ratios with an ND1000 spectrophotometer (Nanodrop Technologies, ThermoFisher). Exome capture was performed using Sureselect Human All Exon V5. Pair-end reads of length 101bp were produced on the Illumina HiSeq4000 platform (mean/median 100X raw data coverage).

7.4.3 WES pipeline: somatic SNV calling

WES reads were aligned to the reference human genome GRCh37 using BWA MEM-mem.⁵² Using the Picard tools (v.2.6.0), BAM files were sorted and duplicates marked thereby producing analysis-ready files (**Supplementary figure 2**). The somatic variant caller Mutect2, within the Genome Analysis Toolkit (GATK, v3.7) suite of tools, was used to call somatic variants by comparing BAM files from tumour and matched normal samples.⁵³ The confidence of somatic variants was weighted within the calling, using the Single Nucleotide Polymorphism Database (dbSNP, v138) and the Catalogue of Somatic Mutations in Cancer (COSMIC, v54).^{54,55} SNVs were further filtered on the criteria that at least 3 reads supported the variant in the tumour sample and at least 10 reads covered the variant in in both tumour and normal samples.

Supplementary figure 2 | Variant allele frequency distribution plot.

7.4.4 Mutational signature analysis

Mutational signature analysis was performed using the R package MutationalPatterns (version 1.6.1).⁵⁶ Known COSMIC mutational signatures which occur in CRC were fitted to the mutational profile of the samples. Trinucleotide counts within COSMIC mutational signatures were normalized by the number of times each trinucleotide context was observed in the exome region relative to the whole genome.

7.4.5 Copy number variation

Copy number variation was derived from the exome sequence data using Sequenza.⁵⁷ Further, tumour purities and ploidies were calculated using Sequenza with default parameters.

7.5 Acknowledgments

This work was supported by The Health Research Board of Ireland under Grant ILP-POR-2017-034, and by Science Foundation Ireland (APC/SFI/12/RC/2273) in the form of a research centre, the APC Microbiome Institute. We thank Prof Ian Sanderson (QMUL) for facilitating the collaboration between the Microbial Genomics Laboratory (UCC) and the Evolution and Cancer Laboratory (QMUL).

7.6 Disclosure of interest

No potential conflict of interest was reported by the authors.

7.7 References

- 1 Ferlay, J. *et al.* Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. *Int J Cancer* **136**, E359-386, doi:10.1002/ijc.29210 (2015).
- 2 Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. *Nature* **458**, 719-724, doi:10.1038/nature07943 (2009).
- Tomasetti, C. & Vogelstein, B. Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. *Science* **347**, 78-81, doi:10.1126/science.1260825 (2015).
- 4 Tomasetti, C., Li, L. & Vogelstein, B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. *Science* **355**, 1330-1334, doi:10.1126/science.aaf9011 (2017).
- 5 Duncan, B. K. & Miller, J. H. Mutagenic deamination of cytosine residues in DNA. *Nature* **287**, 560-561 (1980).
- Lewis, C. A., Jr., Crayle, J., Zhou, S., Swanstrom, R. & Wolfenden, R.
 Cytosine deamination and the precipitous decline of spontaneous mutation during Earth's history. *Proc Natl Acad Sci U S A* 113, 8194-8199, doi:10.1073/pnas.1607580113 (2016).
- Kimsey, I. J., Petzold, K., Sathyamoorthy, B., Stein, Z. W. & Al-Hashimi, H.
 M. Visualizing transient Watson-Crick-like mispairs in DNA and RNA duplexes. *Nature* 519, 315-320, doi:10.1038/nature14227 (2015).
- Kimsey, I. J. *et al.* Dynamic basis for dG*dT misincorporation via tautomerization and ionization. *Nature* 554, 195-201, doi:10.1038/nature25487 (2018).
- 9 Theodoratou, E., Timofeeva, M., Li, X., Meng, X. & Ioannidis, J. P. A. Nature, Nurture, and Cancer Risks: Genetic and Nutritional Contributions to Cancer. *Annu Rev Nutr* **37**, 293-320, doi:10.1146/annurev-nutr-071715-051004 (2017).
- Cheng, J. *et al.* Meta-analysis of prospective cohort studies of cigarette smoking and the incidence of colon and rectal cancers. *Eur J Cancer Prev* 24, 6-15, doi:10.1097/CEJ.000000000000011 (2015).
- 11 Wolin, K. Y., Yan, Y., Colditz, G. A. & Lee, I. M. Physical activity and colon cancer prevention: a meta-analysis. *Br J Cancer* **100**, 611-616, doi:10.1038/sj.bjc.6604917 (2009).
- 12 Lynch, S. V. & Pedersen, O. The Human Intestinal Microbiome in Health and Disease. *N Engl J Med* **375**, 2369-2379, doi:10.1056/NEJMra1600266 (2016).
- 13 Sender, R., Fuchs, S. & Milo, R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. *PLoS Biol* 14, e1002533, doi:10.1371/journal.pbio.1002533 (2016).

- 14 Tilg, H., Adolph, T. E., Gerner, R. R. & Moschen, A. R. The Intestinal Microbiota in Colorectal Cancer. *Cancer Cell* 33, 954-964, doi:10.1016/j.ccell.2018.03.004 (2018).
- 15 Flemer, B. *et al.* Tumour-associated and non-tumour-associated microbiota in colorectal cancer. *Gut* **66**, 633-643, doi:10.1136/gutjnl-2015-309595 (2017).
- 16 Flemer, B. *et al.* The oral microbiota in colorectal cancer is distinctive and predictive. *Gut* **67**, 1454-1463, doi:10.1136/gutjnl-2017-314814 (2018).
- 17 Arumugam, M. *et al.* Enterotypes of the human gut microbiome. *Nature* **473**, 174-180, doi:10.1038/nature09944 (2011).
- 18 Costea, P. I. *et al.* Enterotypes in the landscape of gut microbial community composition. *Nat Microbiol* **3**, 8-16, doi:10.1038/s41564-017-0072-8 (2018).
- 19 Chumduri, C., Gurumurthy, R. K., Zietlow, R. & Meyer, T. F. Subversion of host genome integrity by bacterial pathogens. *Nat Rev Mol Cell Biol* 17, 659-673, doi:10.1038/nrm.2016.100 (2016).
- 20 Bezine, E. *et al.* Cell resistance to the Cytolethal Distending Toxin involves an association of DNA repair mechanisms. *Sci Rep* **6**, 36022, doi:10.1038/srep36022 (2016).
- 21 Bezine, E., Vignard, J. & Mirey, G. The cytolethal distending toxin effects on Mammalian cells: a DNA damage perspective. *Cells* **3**, 592-615, doi:10.3390/cells3020592 (2014).
- Jinadasa, R. N., Bloom, S. E., Weiss, R. S. & Duhamel, G. E. Cytolethal distending toxin: a conserved bacterial genotoxin that blocks cell cycle progression, leading to apoptosis of a broad range of mammalian cell lineages. *Microbiology* 157, 1851-1875, doi:10.1099/mic.0.049536-0 (2011).
- 23 Bossuet-Greif, N. *et al.* The Colibactin Genotoxin Generates DNA Interstrand Cross-Links in Infected Cells. *Mbio* **9**, doi:ARTN e02393-17

10.1128/mBio.02393-17 (2018).

- 24 Vizcaino, M. I. & Crawford, J. M. The colibactin warhead crosslinks DNA. *Nat Chem* **7**, 411-417, doi:10.1038/nchem.2221 (2015).
- 25 Wang, X., Yang, Y. & Huycke, M. M. Commensal bacteria drive endogenous transformation and tumour stem cell marker expression through a bystander effect. *Gut* **64**, 459-468, doi:10.1136/gutjnl-2014-307213 (2015).
- 26 Sahan, A. Z., Hazra, T. K. & Das, S. The Pivotal Role of DNA Repair in Infection Mediated-Inflammation and Cancer. *Front Microbiol* 9, 663, doi:10.3389/fmicb.2018.00663 (2018).
- 27 Kim, J. J. *et al.* Helicobacter pylori impairs DNA mismatch repair in gastric epithelial cells. *Gastroenterology* **123**, 542-553 (2002).
- Koeppel, M., Garcia-Alcalde, F., Glowinski, F., Schlaermann, P. & Meyer,T. F. Helicobacter pylori Infection Causes Characteristic DNA Damage

Patterns in Human Cells. *Cell Rep* **11**, 1703-1713, doi:10.1016/j.celrep.2015.05.030 (2015).

- 29 Maddocks, O. D., Scanlon, K. M. & Donnenberg, M. S. An Escherichia coli effector protein promotes host mutation via depletion of DNA mismatch repair proteins. *MBio* **4**, e00152-00113, doi:10.1128/mBio.00152-13 (2013).
- 30 Helleday, T., Eshtad, S. & Nik-Zainal, S. Mechanisms underlying mutational signatures in human cancers. *Nat Rev Genet* **15**, 585-598, doi:10.1038/nrg3729 (2014).
- 31 Alexandrov, L. B. *et al.* Signatures of mutational processes in human cancer. *Nature* **500**, 415-421, doi:10.1038/nature12477 (2013).
- 32 Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. *N Engl J Med* **377**, 2500-2501, doi:10.1056/NEJMc1713444 (2017).
- 33 Pai, S. G. *et al.* Correlation of tumor mutational burden and treatment outcomes in patients with colorectal cancer. *J Gastrointest Oncol* 8, 858-866, doi:10.21037/jgo.2017.06.20 (2017).
- 34 Germano, G. *et al.* Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. *Nature* **552**, 116-120, doi:10.1038/nature24673 (2017).
- 35 Hellmann, M. D. *et al.* Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden. *N Engl J Med* **378**, 2093-2104, doi:10.1056/NEJMoa1801946 (2018).
- 36 Gopalakrishnan, V. *et al.* Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. *Science* **359**, 97-103, doi:10.1126/science.aan4236 (2018).
- 37 Matson, V. *et al.* The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. *Science* **359**, 104-108, doi:10.1126/science.aao3290 (2018).
- 38 Routy, B. *et al.* Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. *Science* **359**, 91-97, doi:10.1126/science.aan3706 (2018).
- 39 Zitvogel, L., Ma, Y., Raoult, D., Kroemer, G. & Gajewski, T. F. The microbiome in cancer immunotherapy: Diagnostic tools and therapeutic strategies. *Science* 359, 1366-1370, doi:10.1126/science.aar6918 (2018).
- 40 Lawrence, M. S. *et al.* Mutational heterogeneity in cancer and the search for new cancer-associated genes. *Nature* **499**, 214-218, doi:10.1038/nature12213 (2013).
- 41 Alexandrov, L. B. *et al.* Clock-like mutational processes in human somatic cells. *Nat Genet* **47**, 1402-1407, doi:10.1038/ng.3441 (2015).

- 42 Danielsen, H. E., Pradhan, M. & Novelli, M. Revisiting tumour aneuploidy the place of ploidy assessment in the molecular era. *Nat Rev Clin Oncol* **13**, 291-304, doi:10.1038/nrclinonc.2015.208 (2016).
- 43 Volinia, S., Druck, T., Paisie, C. A., Schrock, M. S. & Huebner, K. The ubiquitous 'cancer mutational signature' 5 occurs specifically in cancers with deleted FHIT alleles. *Oncotarget* **8**, 102199-102211, doi:10.18632/oncotarget.22321 (2017).
- 44 Whitt, D. D. & Savage, D. C. Influence of indigenous microbiota on activities of alkaline phosphatase, phosphodiesterase I, and thymidine kinase in mouse enterocytes. *Appl Environ Microbiol* **54**, 2405-2410 (1988).
- 45 Purcell, R. V., Visnovska, M., Biggs, P. J., Schmeier, S. & Frizelle, F. A. Distinct gut microbiome patterns associate with consensus molecular subtypes of colorectal cancer. *Sci Rep* 7, 11590, doi:10.1038/s41598-017-11237-6 (2017).
- 46 O'Connor, M. J. Targeting the DNA Damage Response in Cancer. *Mol Cell*60, 547-560, doi:10.1016/j.molcel.2015.10.040 (2015).
- 47 Pearl, L. H., Schierz, A. C., Ward, S. E., Al-Lazikani, B. & Pearl, F. M. Therapeutic opportunities within the DNA damage response. *Nat Rev Cancer* 15, 166-180, doi:10.1038/nrc3891 (2015).
- 48 Gavande, N. S. *et al.* DNA repair targeted therapy: The past or future of cancer treatment? *Pharmacol Ther* **160**, 65-83, doi:10.1016/j.pharmthera.2016.02.003 (2016).
- 49 Bullman, S. *et al.* Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. *Science* **358**, 1443-1448, doi:10.1126/science.aal5240 (2017).
- 50 Castellarin, M. *et al.* Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. *Genome Res* **22**, 299-306, doi:10.1101/gr.126516.111 (2012).
- 51 Kostic, A. D. *et al.* Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. *Genome Res* **22**, 292-298, doi:10.1101/gr.126573.111 (2012).
- 52 Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* **25**, 1754-1760, doi:10.1093/bioinformatics/btp324 (2009).
- 53 McKenna, A. *et al.* The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res* **20**, 1297-1303, doi:10.1101/gr.107524.110 (2010).
- 54 Forbes, S. A. *et al.* The Catalogue of Somatic Mutations in Cancer (COSMIC). *Curr Protoc Hum Genet* Chapter 10, Unit 10 11, doi:10.1002/0471142905.hg1011s57 (2008).
- 55 Smigielski, E. M., Sirotkin, K., Ward, M. & Sherry, S. T. dbSNP: a database of single nucleotide polymorphisms. *Nucleic Acids Res* 28, 352-355 (2000).

- 56 Blokzijl, F., Janssen, R., van Boxtel, R. & Cuppen, E. MutationalPatterns: comprehensive genome-wide analysis of mutational processes. *Genome Med* **10**, 33, doi:10.1186/s13073-018-0539-0 (2018).
- 57 Favero, F. *et al.* Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data. *Ann Oncol* **26**, 64-70, doi:10.1093/annonc/mdu479 (2015).

Appendix 2-Non-specific amplification of human DNA is a major challenge for 16S rRNA gene sequence analysis.

The following chapter has been accepted for publication in the journal Scientific Reports.

Authors:

Sidney P. Walker *, Maurice Barrett *, Glenn Hogan, Yensi Flores Bueso, Marcus J. Claesson, Mark Tangney

*Joint first authorship: These authors contributed equally to this work.

Citation:

WALKER, S. P., BARRETT, M., HOGAN, G., BUESO, Y. F., CLAESSON, M. J.

& TANGNEY, M. 2020. Non-specific amplification of human DNA is a major

challenge for 16S rRNA gene sequence analysis. Scientific reports, 10, 1-7.

8.1 Abstract

The targeted sequencing of the 16S rRNA gene is one of the most frequently employed techniques in the field of microbial ecology, with the bacterial communities of a wide variety of niches in the human body have been characterised in this way. This is performed by targeting one or more hypervariable (V) regions within the 16S rRNA gene in order to produce an amplicon suitable in size for next generation sequencing. To date, all technical research has focused on the ability of different V regions to accurately resolve the composition of bacterial communities.

We present here an underreported artefact associated with 16S rRNA gene sequencing, namely the off-target amplification of human DNA. By analysing 16S rRNA gene sequencing data from a selection of human sites we highlighted samples susceptible to this off-target amplification when using the popular primer pair targeting the V3-V4 region of the gene. The most severely affected sample type identified (breast tumour samples) were then re-analysed using the V1-V2 primer set, showing considerable reduction in off target amplification.

Our data indicate that human biopsy samples should preferably be amplified using primers targeting the V1-V2 region. It is shown here that these primers result in on average 80% less human genome aligning reads, allowing for more statistically significant analysis of the bacterial communities residing in these samples.

8.2 Introduction

This communication highlights off-target amplification of human DNA in 16S rRNA gene sequencing, detailing the circumstances necessary for this to occur, and the effects on ensuing research. Such artefacts are not a universal problem, and only occur in samples containing an overwhelming ratio of human to bacterial DNA. This leaves stool samples and skin samples which contain less than 10% and 90% human DNA respectively, unaffected, but can critically impact on analysis of human biopsy samples, where over 97% of the DNA present is of human origin ¹. Given the increased use of human biopsies from a number of body sites in microbiome research ²⁻⁵, this communication serves as a timely and, to our knowledge, unique methodological warning and remedy, particularly as only one mention of this issue can currently be found in the literature ⁶.

Currently, comparisons of primer pairs and the hypervariable regions they target in the 16S rRNA gene have focused exclusively on differing levels of taxonomic resolution and specificity ^{7,8}. The degree to which bacterial resolution is lost to the production human-derived amplicons has, so far, received no attention. This is because workflows for the analysis of 16S rRNA gene sequencing data typically remove reads falling too far from the mean or median sequence length, or if they are not classified taxonomically as originating from bacterial DNA. This is effective in ensuring that the presence of amplified human DNA does not have any impact on downstream analysis. Unaddressed is the fact that in a sequencing experiment yielding a finite amount of data (~13.5 Gb on a typical Miseq run ⁹), a significant proportion of these can be wasted due to this off target amplification. This affects sequencing studies in two ways:

- Prospectively: If this loss of data is anticipated, fewer samples can be sequenced on a given sequencing run, adding to the expense which is already prohibitive for smaller labs.
- Retrospectively: If this loss if data is not anticipated, insufficient bacterial reads may be yielded to accurately characterise the samples being sequenced, particularly if attempting to identify the prevalence of rare taxa between different treatment groups.

Here, we show that the most commonly-used primer set for 16S rRNA sequencing, targeting the V3-V4 hypervariable regions, is particularly susceptible to this off-target amplification, while another commonly used primer set, targeting the V1-V2 primer region, shows almost no off-target amplification, as outlined in Figure 1 below. While this off-target amplification does not appear to affect research using stool or skin swab samples, we would urge all groups carrying out metataxonomic analysis of low microbial biomass human biopsy samples using high throughput sequencing to use the V1-V2 primer set in future.

Figure 1| **Proposed mechanism for off target amplification of mammalian DNA by V3–V4 primers, as opposed to V1–V2**. (A) DNA extracted from human biopsies is known to contain large proportions of human DNA. In these circumstances V3–V4 degenerate primers, which also align to region in human mitochondrial DNA as shown can bind and amplify human DNA. There is no such alignment for V1–V2 degenerate primers. (B) Off target amplification significantly alters the 16S rRNA gene sequencing profile of a sample.

7.3 Materials/Methods

7.3.1 Sample Collection

Breast tissue was collected from women undergoing breast surgery at Cork University Hospital, Cork, Ireland. Breast tumour core-biopsies were aseptically resected using an Achieve 14G Breast Biopsy System (Iskus Health, UT, USA). The specimens were transported in sterile PBS to the lab, where they were flash-frozen and kept at -80°C until further processing. DNA from the specimens was purified following the protocol and reagents provided in the Ultra Deep Microbiome Prep (Molzym, GmbH & Co. KG., Bremen, Germany) and eluted in 100 µl of Tris-HCl.

7.3.2 DNA Purification

Samples were processed and DNA purified following the procedures specified in protocols listed in Table 1. In all cases, DNA was eluted in Tris-HCl buffer and stored at -20°C until further analysis.

Sample	DNA extraction strategy	
Breast: Tumour and Normal	Molzym Ultradeep Microbiome (Molzym,	
	Bremen, Germany)	
Oesophageal biopsies	AllPrep DNA/RNA Mini Kit (Qiagen, Hilden,	
	Germany) with modifications ¹⁰ .	
Skin Swab samples	QIAamp UCP Pathogen Mini Kit (Qiagen,	
	Hilden, Germany)	

Stool samples	Repeated bead beating method as previously	
	described, with modifications ^{11,12}	

Table 1. Samples and corresponding DNA extraction strategy.

7.3.3 16S rRNA gene sequencing Library Preparation.

Genomic DNA was amplified by PCR with primers targeting the hypervariable V1-V2 region or the V3–V4 region of the 16S rRNA gene. Table 2 details the primers sequences (underlined) included for compatibility with the Illumina 16S Metagenomic Sequencing Protocol (Illumina, CA, USA).

Region	Name	F/R	Sequence
V1-V2	S-D-Bact- 0027-b-S- 20	F	5'- <u>TCG TCG GCA GCG TCA GAT GTG TAT AAG</u> <u>AGA CAG</u> AGM GTT YGA TYM TGG CTC AG
13,14	S-D-Bact- 0338-a-A- 18	R	5'- <u>GTC TCG TGG GCT CGG AGA TGT GTA TAA</u> <u>GAG ACA G</u> GCT GCC TCC CGT AGG AGT
V3 – V4 15	S-D-Bact- 0341-b-S- 17	F	5' <u>TCG TCG GCA GCG TCA GAT GTG TAT AAG</u> <u>AGA CAG</u> CCT ACG GGN GGC WGC AG

S-D-Bact- 0785-a-A- 21 S' <u>GTC TCG TGG GCT CGG AGA TGT GTA T</u> <u>GAG ACA G</u> GAC TAC HVG GGT ATC TAA T

Table 2. Primers used for 16S rRNA gene sequencing analysis.

For Breast Tumour and Normal Adjacent samples, amplification was performed in 50 μ l reactions, containing 1X NEBNext High Fidelity 2X PCR Master Mix (NEB, USA), 0.5 μ M of each primer, 8 μ l template (5-15 ng/ μ l) and 12 μ l nuclease free water. The thermal profile included an initial 98 °C x 30 sec denaturation, followed by 25 cycles of denaturation at 98 °C x 10 sec, annealing at 55 °C x 30 sec for V3-V4 or 62°C x 30 sec for V1-V2 and extension at 72 °C x 30 sec. Plus a final extension at 72 °C x 5 min. Amplification was confirmed by running 5 μ l of PCR product on a 2 % agarose gel, by visualisation of a \approx 310 bp band for V1-V2 and \approx 460 bp band for V3-V4

Faecal microbial genomic DNA was amplified using Phusion High-Fidelity DNA Polymerases (Thermo Scientific, Massachusetts, USA) with the PCR thermocycler protocol as follows: Initiation step of 98 °C for 3 min followed by 25 cycles of 98 °C for 30 s, 55 °C for 60 s, and 72 °C for 20 s, and a final extension step of 72 °C for 5 min.

Oesophageal biopsies and skin swab samples microbial genomic DNA was amplified using MTP Taq DNA Polymerase (Merck KGaA, Darmstadt, Germany) with the PCR thermocycler protocol as follows: Initiation step of 94°C for 1 min followed by 35 cycles of 94°C for 60 s, 55 °C for 45 s, and 72 °C for 30 s, and a final extension step of 72 °C for 5 min.

An index PCR was performed to add sample specific DNA barcodes to sample amplicons in accordance with the Illumina 16S Metagenomic Sequencing Protocol (Illumina, California, USA)¹⁶. Libraries DNA concertation was quantified using a Qubit fluorometer (Invitrogen) using the 'High Sensitivity' assay and samples were pooled at a standardised concentration¹⁶. The pooled library was sequenced on the Illumina MiSeq platform (Illumina, California, USA) utilising 2×300 bp chemistry.

7.3.4 16S rRNA sequence analysis

The quality of the paired-end sequencing data was visualised using FastQC v(0.11.9), and trimmed using Trimmomatic v(0.39) ensuring a minimum average quality of 25. Reads were then imported into R environment $v(3.6.3)^{17}$ to be resolved into Amplicon Sequence Variants by the DADA2 package v(1.12).

7.3.5 Contamination Control

In all samples a contamination control strategy was implemented in keeping with the RIDE checklist as proposed by Eisenhofer et al¹⁸, incorporating aseptic techniques and a variety of negative controls from different stages of the sample-to-sequence data process. Retrospective contamination assessment and removal based on sequencing data from negative controls was also performed following published guidelines¹⁹.

7.3.6 Retrospective Bioinformatics based removal of human amplicons

Sequencing reads aligning to the human genome (*GRCh38*) within the fasta file generated by DADA2 were identified using bowtie2²⁰. To confirm reads mapped to the human genome were not erroneously aligned bacterial reads, all human aligning reads were classified with Mothur²¹, using the RDP database v(11.4) as a reference.

7.3.7 Statistical analysis and data visualisation

All statistical analysis was carried out in the R environment, using the following libraries: Phyloseq v(1.30), Vegan v(2.5.6), ggplot2 v(3.3.0), reshape2 v(1.4.3).

7.4 Results and Discussion

All three sampled biopsy sites where an overwhelming ratio of host DNA was expected (breast, breast tumour and oesophageal) showed significant off target amplification of human DNA when amplified using the V3-V4 primer set (Figure 2).

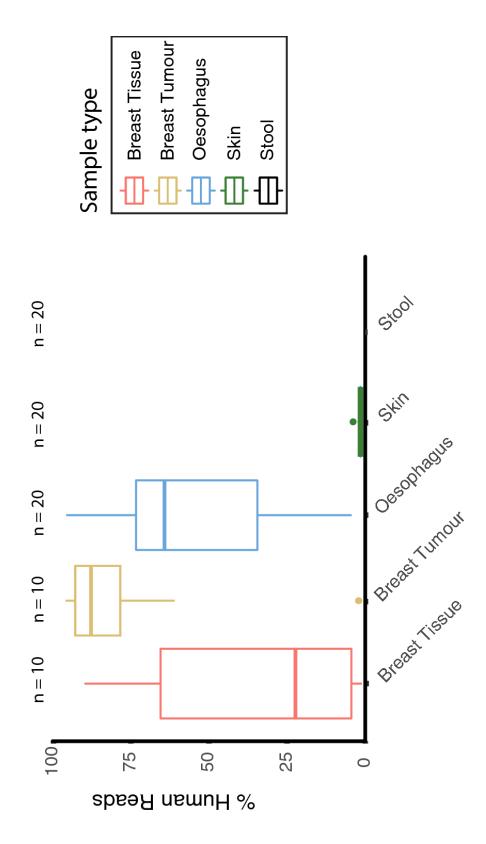


Figure 2| The scale of the problem of off-target amplification. % of sequencing reads produced by Miseq 2×300 bp sequencing of amplicons produced by primers targeting the V3–V4 regions shown to align to the human genome.

This was not seen when sequencing samples with lower levels of human DNA, such as skin swabs and stool samples. An average of 34.1% of all Amplicon Sequence Variants (ASV) detected in normal breast tissue samples were shown to align to the human genome GRCh38 using bowtie2. This included the most prevalent ASV, which was identified further using BLAST as Homo sapiens haplogroup H8 mitochondrion, complete genome (Accession no. MN986463.1) with an E-value of 7e-138 and 100% identity. In the breast tumour samples, 77.2% of all ASV's detected aligned to the human genome, with the most prevalent ASV again being identified as *Homo sapiens haplogroup H8 mitochondrion, complete genome* (Accession no. MN986463.1) with an E-value of 7e-138 and 100% identity. This situation was identical in Oesophageal biopsies, with a 55.6% of ASVs aligning to the human genome (Homo sapiens haplogroup H8 mitochondrion, complete genome (Accession no. MN986463.1) with an E-value of 7e-138 and 100% identity). The skin swab samples showed a much lower level of amplification of human DNA, but these reads aligned to chromosomal DNA, most frequently Homo sapiens chromosome 17, clone RP11-646F1, complete sequence and were present in very low levels.

While human contamination is a very common problem in amplification-free shotgun metagenomic sequencing strategies ²², it is under reported as an issue for 16S rRNA gene sequencing, due to the use of bacteria/archaea specific primers. However, degenerate primers are routinely used for 16S rRNA sequencing ²³. This increases coverage, in terms of the number of 16S rRNA sequences matched by at least one primer, but also allows for off target amplification of non-bacterial DNA. Figure 1A shows that the V3-V4 primers align to a region within the human mitochondrial DNA. We show here that when the ratio of host:bacterial DNA is overwhelming, human mitochondrial DNA can be amplified by primers targeting the 16S rRNA gene region. To ensure the validity of the results, reads identified as aligning to the human genome using Bowtie2 were classified using the Mothur ²¹ classifier trained on the RDP database. In all cases the reads identified as aligning to the human genome could not be classified when screened against the RDP database as shown in Table 3 below.

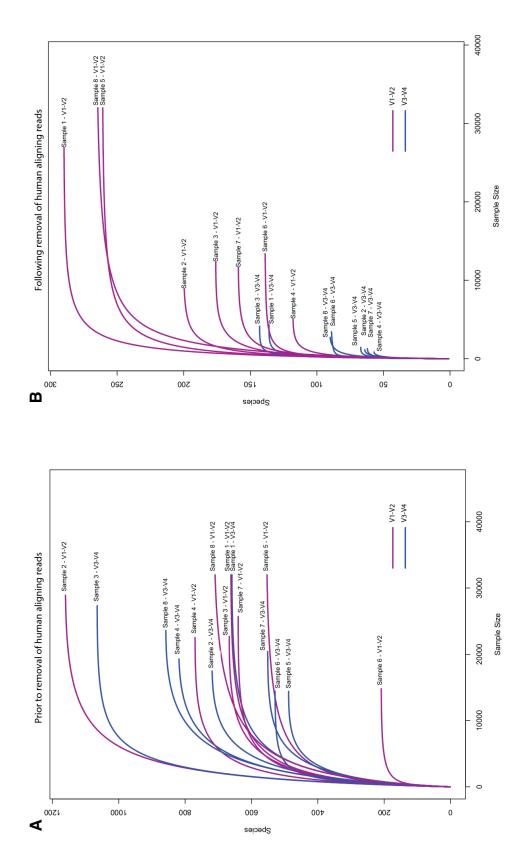
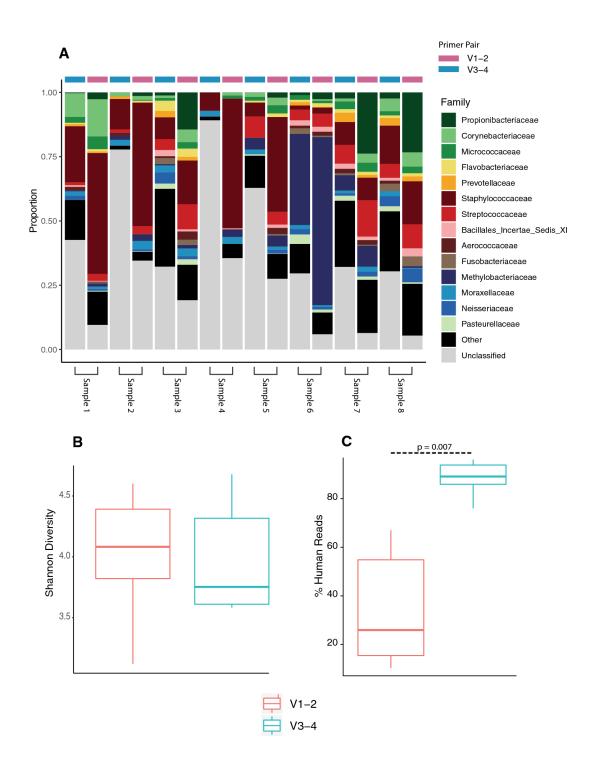

Sample	% reads unclassified at	% reads unclassified at
	Kingdom Level	Phylum level
Oesophageal samples	99.5373235	0.4626765
Normal adjacent samples	98.867576	1.132424
Tumour samples	98.710027	1.289973
Skin samples	99.8588468	0.1411532

Table 3. Summary of Mothur output when classifying reads identified as aligning to

 the human genome by Bowtie2.


The most heavily affected sample type in our study (breast tumour tissue) was reanalysed by performing a pairwise comparison of samples amplified with the V3-V4 and V1-V2 primer sets (Figure 3).

Looking initially at the rarefaction curves produced by the sequencing data corresponding to the previously mentioned paired V1-V2 and V3-V4 primer pair amplified breast tumour sample there is a clear difference between the two groups. This is done by plotting new species against number of reads per sample. Figure 3A below shows that the distribution of samples in this 2D plane appears to be stochastic prior to the removal of human reads. Figure 3B, following removal of human reads, shows clearly that samples amplified with the V1-V2 primer pair consistently yield more observable species, a greater number of reads per sample, and a plateauing of the rarefaction curve which suggests sufficient sampling depth is available for accurate characterisation.

Figure 3 | **Rarefaction curve generated by plotting observed species vs read depth on a per sample basis.** (A) Rarefaction curve prior to removal of human genome aligning reads. (B) Rarefaction curve following removal of human genome aligning reads.

The community structure in samples amplified with V1-V2 primers was visually similar to those amplified with V3-V4 primers(Figure 4A) and no bacterial family was found to be significantly elevated using one primer set over the other as per Wilcoxon signed-rank test, once p-values had been corrected for multiple testing using the FDR method (Supplementary table 1). There was also no significant difference in terms of Shannon diversity (Figure 4B), indicating choice of primers did not have any adverse effect on the downstream results. Of considerable interest to any groups carrying out low biomass research in the future, is the huge discrepancy in the number of reads yielded once human contamination had been filtered out. As can be seen in Figure 4C, samples amplified with primers targeting the V1-V2 region have a consistently and significantly higher number of ASVs per sample following the removal of ASV's aligning to the human genome.

Figure 4 Pairwise comparison of matched samples using primers targeting the V1–V2 and V3– V4 regions of the 16S rRNA gene fragment. (A) Sample composition at the family level of paired samples. (B) Average Shannon Diversity comparison between samples amplified using V1–V2 primers (red) and V3–V4 primers (blue). (C) Percentage of total sequencing reads aligning to human genome. In both (B) and (C) statistical testing is performed using Wilcoxon signed-rank test.

7.5 Future Perspectives

Third generation sequencing technologies, such as those produced by Oxford Nanopore Technologies and Pacific BioSiences are now being utilised in 16S rRNA gene sequencing experiments. The Pacific BioSciences SMRT platform has seen the greatest promise in this regard with the implementation of "Circular Consensus Sequencing" in conjunction with denoising algorithms, allowing for the production of long reads of high quality²⁴. Earl et al showed that this new method using degenerate primers targeting the entire 16S rRNA gene, still resulted in off target amplification of the human genome²⁵. This study also noted that this off target amplification was related to the ratio of human to bacterial DNA. The human genome must be considered when designing or choosing primers now and in the future.

7.6 Acknowledgements

The authors acknowledge the contribution of Prof. Paul O'Toole, Microbiology Department, UCC, in providing access to sequencing data used in this study.

7.7 Declarations

The authors declare no competing interests. All procedures in this study were performed in accordance to national ethical guidelines, following ethical approval from the University College Cork Clinical Research Committee. Patients provided written informed consent for sample collection and subsequent analyses.

7.8 Reference

- 1 Pereira-Marques, J. *et al.* Impact of Host DNA and Sequencing Depth on the Taxonomic Resolution of Whole Metagenome Sequencing for Microbiome Analysis. *Frontiers in microbiology* **10**, doi:10.3389/fmicb.2019.01277 (2019).
- 2 Deshpande, N. P., Riordan, S. M., Castaño-Rodríguez, N., Wilkins, M. R. & Kaakoush, N. O. Signatures within the esophageal microbiome are associated with host genetics, age, and disease. *Microbiome* **6**, 227, doi:10.1186/s40168-018-0611-4 (2018).
- 3 Riquelme, E. *et al.* Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes. *Cell* **178**, 795-806.e712, doi:10.1016/j.cell.2019.07.008 (2019).
- 4 Grice, E. A. & Segre, J. A. The skin microbiome. *Nat Rev Microbiol* **9**, 244-253, doi:10.1038/nrmicro2537 (2011).
- 5 Urbaniak, C. *et al.* The Microbiota of Breast Tissue and Its Association with Breast Cancer. *Applied and Environmental Microbiology* **82**, 5039, doi:10.1128/AEM.01235-16 (2016).
- 6 Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. *Microbiome* 6, 226, doi:10.1186/s40168-018-0605-2 (2018).
- Pinna, N. K., Dutta, A., Monzoorul Haque, M. & Mande, S. S. Can Targeting Non-Contiguous V-Regions With Paired-End Sequencing Improve 16S rRNA-Based Taxonomic Resolution of Microbiomes?: An In Silico Evaluation. *Frontiers in Genetics* 10, doi:10.3389/fgene.2019.00653 (2019).
- 8 Johnson, J. S. *et al.* Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. *Nature Communications* **10**, 5029, doi:10.1038/s41467-019-13036-1 (2019).
- 9 Illumina. Specifications for the Miseq system, <<u>https://www.illumina.com/systems/sequencing-platforms/miseq/specifications.html</u>> (
- 10 Flemer, B. *et al.* Tumour-associated and non-tumour-associated microbiota in colorectal cancer. *Gut* **66**, 633-643, doi:10.1136/gutjnl-2015-309595 (2017).
- 11 Yu, Z. & Morrison, M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. *Biotechniques* **36**, 808-812, doi:10.2144/04365st04 (2004).
- 12 Costea, P. I. *et al.* Towards standards for human fecal sample processing in metagenomic studies. *Nat Biotechnol* **35**, 1069-1076, doi:10.1038/nbt.3960 (2017).

- 13 Browne, H. P. *et al.* Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation. *Nature* **533**, 543-546, doi:10.1038/nature17645 (2016).
- Elliott, D. R. F., Walker, A. W., O'Donovan, M., Parkhill, J. & Fitzgerald, R.
 C. A non-endoscopic device to sample the oesophageal microbiota: a casecontrol study. *The Lancet Gastroenterology & Hepatology* 2, 32-42, doi:10.1016/S2468-1253(16)30086-3 (2017).
- 15 Klindworth, A. *et al.* Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. *Nucleic acids research* **41**, e1-e1, doi:10.1093/nar/gks808 (2013).
- 16 Illumina. Amplicon, P. C. R., Clean-Up, P. C. R. & Index, P. C. R. 16S Metagenomic Sequencing Library Preparation, <<u>https://www.illumina.com/content/dam/illumina-</u> support/documents/documentation/chemistry_documentation/16s/16smetagenomic-library-prep-guide-15044223-b.pdf (2013).> (
- 17 R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2019).
- 18 Eisenhofer, R. *et al.* Contamination in Low Microbial Biomass Microbiome Studies: Issues and Recommendations. *Trends in Microbiology* 27, 105-117, doi:<u>https://doi.org/10.1016/j.tim.2018.11.003</u> (2019).
- 19 Walker, S. P., Tangney, M. & Claesson, M. J. Sequence-Based Characterization of Intratumoral Bacteria—A Guide to Best Practice. *Frontiers in Oncology* **10**, doi:10.3389/fonc.2020.00179 (2020).
- 20 Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat Methods* **9**, 357-359, doi:10.1038/nmeth.1923 (2012).
- 21 Schloss, P. D. *et al.* Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. *Applied and environmental microbiology* **75**, 7537-7541, doi:10.1128/AEM.01541-09 (2009).
- 22 Marotz, C. A. *et al.* Improving saliva shotgun metagenomics by chemical host DNA depletion. *Microbiome* **6**, 42, doi:10.1186/s40168-018-0426-3 (2018).
- Sambo, F. *et al.* Optimizing PCR primers targeting the bacterial 16S ribosomal RNA gene. *BMC Bioinformatics* 19, 343-343, doi:10.1186/s12859-018-2360-6 (2018).
- Callahan, B. J. *et al.* High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. *Nucleic Acids Research* 47, e103-e103, doi:10.1093/nar/gkz569 (2019).
- Earl, J. P. *et al.* Species-level bacterial community profiling of the healthy sinonasal microbiome using Pacific Biosciences sequencing of full-length 16S rRNA genes. *Microbiome* 6, 190, doi:10.1186/s40168-018-0569-2 (2018).

Acknowledgements

After approximately 6 years and ~70,000 words one may not be so enthused to keep on writing. Unfortunately, I am told gratitude might require a modicum of effort and many people deserve much more than a modicum (whatever that is). Firstly, I would like to thank my supervisor Prof. Paul O'Toole for the opportunity to taken on a PhD. I would further like to thank him for his guidance during the PhD including his effort to polish my skill sets and rid me of my not so beneficial attributes. I would also like to give thanks to my co-supervisor Fergus Shanahan and advisor Collette Hand for their guidance and input throughout my PhD. I would like to thank my lab colleagues over the number of years. Many of you were not only a source of invaluable expertise but also friendship. I would like to give thanks to the institutions and people who form the environment I worked in, namely, the school of microbiology and APC Microbiome Ireland. I found this environment to be friendly, engaging and well suited for the growth of a scientific researcher.

I would have to mention the particular friends I made during my PhD including Adam Clooney, David Mullins, Feargal Ryan, Mrinmoy Das, Ross Holohan, Sidney Walker and Tom Sutton. I would not be able to complete my PhD without you not only due to your friendship but also the technical help.

I would like to thank my family. I am grateful to an immeasurable level for the love and support my parents, Kieran and Catherine, have given during my life. I would like to thank my siblings Siobhán, Keara, Tomás and Eoin, for their encouragement and help. Finally, and foremost, I would like to thank my dog, Patsey, for his eternal guardianship of reality from the encroachment of oblivion, without which, we would be all doomed to nothingness.