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Statistical assessment of treatment response in a
cancer patient based on pre- and post-therapy
FDG-PET scans

E. Wolsztynski∗,1, F. O’Sullivan1, J. O’Sullivan1, J. F. Eary2

This work arises from consideration of sarcoma patients in which fluorodeoxyglucose Positron Emission

Tomography (FDG-PET) imaging pre- and post-chemotherapy is used to assess treatment response. Our focus

is on methods for evaluation of the statistical uncertainty in the measured response for an individual patient. The

Gamma distribution is often used to describe data with constant coefficient of variation, but it can be adapted to

describe the pseudo-Poisson character of PET measurements. We propose co-registering the pre- and post- therapy

images and modelling the approximately paired voxel-level data using the Gamma statistics. Expressions for the

estimation of the treatment effect and its variability are provided. Simulation studies explore the performance in

the context of testing for a treatment effect. The impact of mis-registration errors and how test power is affected by

estimation of variability using simplified sampling assumptions, as might be produced by direct bootstrapping, is

also clarified. The results illustrate a marked benefit in using a properly constructed paired approach. Remarkably

the power of the paired analysis is maintained even if the pre- and post- image data are poorly registered. A

theoretical explanation for this is indicated. The methodology is further illustrated in the context of a series of FDG-

PET sarcoma patient studies. These data demonstrate the additional prognostic value of the proposed treatment

effect test statistic. Copyright c© 2016 John Wiley & Sons, Ltd.

Keywords: therapeutic effectiveness, percentage change in mean, paired analysis, patient-adaptive

treatment, Gamma distribution.

1. Introduction

1.1. Methodological background

Positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) is a widely used clinical imaging diagnostic in

the management of cancer [1, 2, 3, 4, 5, 6]. It is useful in particular for early assessment of therapeutic response, with

a view to favor timely and individualized treatment planning [1, 2, 4]. This question is common to a range of cancers

(carcinomas in particular), and also arises in the design of novel protocols for clinical trials. The PET-specific set of

guidelines, PERCIST, proposed by Wahl et al in 2009 [2] attests of its accrued relevance to therapeutic assessment.

Much of the analysis of FDG-PET data is based on standardized uptake values (SUV), which are the image intensity

values (PET measured local photon counts) used to characterise metabolic FDG activity within a tumor. SUVs are defined

as the ratio of the PET-measured radioactivity (measured in kBq per ml of tissue) to the injected dose (kBq) per unit weight

of the patient. These values are dimensionless under the assumption that 1ml of tissue weighs 1gm [7]. Sometimes lean

body mass is used in place of the gross weight of the patient. Our analysis is invariant to such scaling. A number of PET

image-based tumor biomarkers are obtained from the SUV: SUVmean, SUVmax, SUVpeak, and volume-based quantitators

such as metabolically active tumor volume (MATV) and total lesion glycolysis (TLG), which is the product of SUVmean

with MATV [2]. SUVmean and TLG both implement averaging over a selected metabolically active volume. SUVmax and
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SUVpeak are also widely considered for baseline diagnosis and staging. The latter are however sensitive to voxel-level

variability in measurements. In their landmark review [2], the authors of PERCIST discuss over thirty different methods

for therapeutic assessment, and conclude that SUV-based approaches emerge as the “most widely applied, generally

correlating well with more complex approaches”.

Early assessment of tumor response to treatment by PET involves the comparison of pre- and post-treatment imaging

information. Most typically, SUVmean, SUVpeak or TLG, depending on the disease and treatment center, are computed

independently within predefined volumes of interest (VOI) taken from the pre- and post-therapy sets. These measures are

then compared to form an assessment of patient response [1, 2, 8, 9, 10, 11, 12, 13]. Whatever the choice of index, an

assessment of proportional change in quantitation (percentage-change) is usually preferred over a comparison of absolute

change values.

Other quantitators, and in particular intratumoral heterogeneity, are also gaining interest, although they are not yet

applied routinely in cancer care. Macro-level heterogeneity can be assessed from PET imaging data and a number

of heterogeneity quantitation techniques have established relationship with patient outcome in a number of diseases

[6, 14, 15, 16], which demonstrates that a more detailed exploitation of PET imaging data is relevant to modern

medical and clinical practice. The literature now abounds with analytical image processing procedures for texture

analysis [17, 18, 19, 20]. Notably, a number of these techniques consist in deriving statistical variables at the voxel level

[14, 16, 19, 21].

1.2. Need to evaluate reliability of response assessment

Clinical utility of these image-derived biomarkers is validated by correlation with endpoints such as patient outcome or

therapeutic response. These methodologies have an established prognostic utility in the diagnostic and treatment of many

types of cancers. They are however often considered without an associated assessment of variability, or this assessment

may be performed naively in an unpaired fashion (using e.g. bootstrapping), which we suggest is not appropriate in this

context. Many studies illustrate this that may be found with a simple Pubmed search. In [22, 23] for example, the authors

present thorough statistical analyses, but ones that exclude an individual assessment of variability in the change of SUVmean

for each patient (studies usually quote the variability of quantitation of change across subcohorts, which only serves to

summarize the distribution of measures of change in SUVmean for those cohorts, not for a given patient). This general trend

is observed in spite of recurrent considerations on test/retest procedures for data reproducibility (see e.g. in [2]), which

are indicative of the general concern that PET imaging data must be statistically reliable. At the patient level, there is a

practical interest in having a mechanism to routinely assess the validity and significance of imaging biomarker values for

treatment effects. This quantitation may be used clinically in its own right, as a novel variable. Such information would

also provide further opportunities for patient-adaptive care, as knowledge of the degree of reliability of the assessment of

therapeutic effectiveness could be useful for subsequent treatment path selection.

The contribution of this paper is twofold. First, the paper develops a statistical model that aligns with the use of percent-

change in SUVmean (which is an important routine marker, and part of the PERCIST guideline), from which we derive

a measure of associated standard error. We are not aware of similar statistical developments to support existing response

quantitation methods elsewhere. The statistical framework has the pseudo-Poisson property and is based on data pairing,

in a concept further developed in Section 1.3. The paper also demonstrates that data pairing (i.e. scan co-registration) is not

unpractical and should therefore be considered over naive unpaired quantitation. Second, we consider using the derived

quantitation of paired standard error for prognostic assessment, therefore proposing an outcome variable that has not yet

been considered elsewhere, to the best of our knowledge.

1.3. Assessing variability in response quantitation

Beyond the possibility to derive approximate confidence intervals, an evaluation of the variability associated with this

assessment would be useful in terms of further characterization of the metabolic information. In particular, the standard

error associated with a sample mean uptake may help discriminate between homogeneous and heterogeneous uptake

distributions with otherwise comparable mean values. In this view, and as in other models for treatment effect in medical

statistics, pairing is advocated here in order to integrate the fact that the same biological volume of interest, and thus a

common structure of PET pseudo-count rates, is imaged at different time points, when assessing variability. In a generic

experimental setting, data pairing arises in situations where the statistical experiment consists in making two separate

observations on each subject from a sample of n such subjects, such as ”before-and-after” clinical trial studies. Pairing

consists in analysing the (fixed) individual effects, i.e. the difference between the observations obtained for each individual

[24, 25, 26]. We may still view the pre- and post-therapy errors as independent, but the common underlying structure

proscribes the use of a naive variance estimator.

In terms of PET imaging data obtained at multiple time points from a single patient, if the pre- and post-treatment

scans are properly aligned (i.e. co-registered), it is possible to make voxel-level comparisons between them (a voxel,
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or volume element, is the 3D equivalent of an image pixel). Methodologically, the resulting data configuration can be

considered as a paired study in which the experimental units are image voxels. The obvious statistical interest in pairing

the treatment data is thus to exploit more detailed levels of information available at the voxel-level, on metabolic variations

happening at a same physiological location. Elaborate co-registration techniques [27, 28] exist that make this general

pairing principle implementable in practice. Co-registration of PET/CT or PET/MR acquisitions onto the initial scan are

often considered, as in [29]. The attenuation (CT) image routinely obtained with PET scanning may also be used for this

purpose. A recent study by Guo et al [30] proposed a paired voxel-level analysis for brain tumor imaging data. This work

draws on the incorporation of additional MR scan information which would not be routinely available in many clinical

settings where FDG-PET is used to follow tumor response. In any case, although co-registration of PET imaging data

cannot be perfect, we argue in what follows that there is reason to utilizing even mis-registered information in image-

based assessment of therapeutic response. In the validation study described in Section 4, where the approach is applied

to clinical sarcoma datasets, this co-registration step is in fact performed manually, using expert guidance. Appropriate

assessment of quantitation variability may be used to refine the scoring of risk associated with a given level of therapeutic

response.

We suggested above that a paired assessment of voxel-response variability, σP , may be interpretable. Assuming

acceptable scanner co-registration, σP captures an element of spatial variability in the difference in activity pre- and

post-therapy, since a more heterogeneous spatial distribution is likely to yield higher variability of the observed paired

differences than would a more homogeneous pattern. Adjusting the proportional change in uptake means for spatially-

relevant variability thus yields an interpretable test-like, normalized statistical variable. This assessment can complement

that of proportional change as it assays the level of homogeneity of the magnitude of voxel changes throughout the volume.

Unpaired assessment, on the other hand, does not have this potential. Potential use of the paired standard error quantitation

with respect to intratumoral heterogeneity is further discussed in Section 5.

The first contribution of this paper is the derivation in Section 2 of closed-form expressions for paired and unpaired

quantitation of metabolic change, which are derived from a model for the global change in population mean allowing for

marginal variations at the voxel level, with a restriction to univariate treatment effect. We incorporate the fact that PET

data have count-like variation [31, 32] in the analysis, using an approach based on a Gamma distribution with the pseudo-

Poisson assumption. Under this model, maximum likelihood solutions yield simple closed-form solutions. As we will see,

modelling the pre- and post-therapy uptake data using a Gamma model (with the pseudo-Poisson characteristic) actually

corresponds to the analysis of the percentage change in population means, one of the predominant indexes considered in

the field. This aligns with the current PERCIST guidelines [2] for PET-based therapeutic response assessment. It is worth

noting that the other main indexes used in the community also implement a form of averaging (total lesion glycolysis uses

averaging over the whole sample, and SUVpeak is the average of standardized uptake values in a neighborhood of the most

intense voxel). Other techniques such as (paired or unpaired) t-tests [24, 25, 26, 33, 34], which analyse absolute differences

in population means rather than proportional ones, and other parametric or semi-parametric alternatives [35, 36, 37, 38]

may be considered too but they do not conform to standard practice.

In Section 3, numerical experiments are used to illustrate specific aspects related to the role of the approximated

associated paired standard error, including its impact on test power. Both Sections 2 and 3 also provide a conceptual

examination of the impact of mis-alignment of data during the pairing process, which is a realistic prospect – especially

when analyzing spatial information defined on a multidimensional grid, such as “before and after” images or medical

scans.

Validation of the principle of paired imaged-based therapeutic assessment, via multivariate survival analysis, is exposed

in Section 4. We consider an application to the non-invasive assessment of therapeutic response in patients with sarcoma, a

rare malignant disease with (typically) slow-growing solid masses that may or may not respond well to chemotherapy prior

to resection, depending on tumor subtype. Investigative work was carried out on a cohort of 50 clinical sarcoma studies

acquired by Positron Emission Tomography at the University of Washington School of Medicine. The paired, test-like

variable mentioned above is included in a multivariate risk analysis in order to query its potential relationship with cancer

patient outcome. This study exhibits a potential benefit in incorporating this statistical quantitation of response performed

at the voxel level for both survival and disease progression.

2. Paired assessment of the treatment effect

In what follows we consider the problem of comparing two paired volumes of interest, namely Ω0 and Ω1, with voxel

uptake data {(xj , Yj)i}
N
i=1, with j = 0, 1 labeling respectively the pre- and post-therapy datasets, xj ∈ R

3 denoting voxel

coordinates and Yj the corresponding set of measured uptake levels (i.e. voxel intensities). In this context, by pairing we

understand that the two volumes Ω0 and Ω1 are obtained by co-registration of the two imaging sets, before VOI boundaries

Statist. Med. 2016, 00 1–?? Copyright c© 2016 John Wiley & Sons, Ltd. www.sim.org 3
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be drawn over the co-registered paired of images. These two regions therefore comprise of the same set of N voxels, i.e.

voxel coordinates are such that x0i = x1i = xi, i = 1, . . . , N .

2.1. Log-linear modelling of treatment effect

If the pre- and post-treatment data (Y0, Y1) were Gaussian random variables, then the standard paired t-test analysis can

be applied provided the voxel values are independent conditional on (a potentially random but unobservable) voxel effect.

However such assessment procedures are not robust to cases that strongly violate the Gaussian assumption (they also do

not align with current medical methodologies for image-based therapeutic assessment). Here we consider modelling Yji
via the pre- and post-treatment rates λji at unit voxel xi (i = 1, . . . , N ; j = 0, 1) assuming the variances are proportional

to the means, i.e.

Var(Yji) = φE(Yji) = φλji (1)

where j ∈ {0, 1} denotes respectively pre- and post-treatment information, and where φ denotes a positive dispersion

factor [39], φ < 1 and φ > 1 indicating under- and over-dispersion respectively. The effect of treatment may then be

represented by an overall factor γ in the relationship between the pre- and post-treatment observations, i.e. λ1i = γλ0i.
For simplification, we can pose that λ0i = λi denotes unknown unit voxel effect at baseline. In this framework, therapeutic

effect γ may be estimated assuming that pre- and post-therapy uptake variables both have the pseudo-Poisson property

(1). To this end we found that a Gamma distribution has the potential to represent the variance of the uptake information

adequately (a justification is provided in Appendix C). We model the two-sample comparison problem for i = 1, . . . , N
with

Y0i | λi ∼ G

(

λi
φ0
, φ0

)

, Y1i | λi ∼ G

(

γλi
φ1

, φ1

)

(2)

where the {λi}Ni=1 describe individual voxel effects and γ represents the global change in uptake following therapy.

Conditional on λi, observations Y0i and Y1i are independent. We may equally consider the problem of estimating β in

log(λ1i) = β + log(λ0i), i = 1, . . . , N . Here we write the pdf for the Gamma distribution G(α, S) in terms of its shape α
and scale S parameters (both strictly positive) as

f(y;α, S) =
1

Γ(α)Sα
yα−1 exp

(

−
y

S

)

(Γ(.) denoting the Gamma function). Under this parametrization, we have E(Y ) = αS and Var(Y ) = αS2, which, in

combination with (2), satisfies (1). The choice of the Gamma distribution to model the pre- and post-therapy uptake data

(beyond the fact that it provides the pseudo-Poisson property) is further motivated in Appendix C, where we assess the

adequacy of this model against standardized PET data designed specifically for the purpose of universal PET scanner

calibration.

2.1.1. Interpretation of model scale. In (2) the parameters φj quantify the scale of the uptake data, and under (1) adjust

the level of overdispersion. In terms of PET imaging data, for a given patient this scale is primarily governed by radiotracer

dose per unit weight of patient, scanner technology, and physical characteristics of the patient including attenuation and

motion. Of these dose is most important. Care is taken to ensure that the dose per unit mass of the patient is the same for

pre- and post-therapy scans. Current guidelines advise against follow-up imaging being performed on a different scanner,

see e.g. RECIST [40, p. 242 and 246] and PERCIST [2, p. 133S] guidelines. Moreover, there is usually an attempt in

routine practice to achieve the same level of dose at different scanning time points, so that the two attenuation scans be

comparable. It is therefore reasonable to assume that φ0 ≈ φ1 given two uptake samples obtained at reasonably close

scanning time points for a same patient and with the same PET scanner. It is also reasonable to consider that two patients

would have two different φ characteristics. With this in mind we consider the slightly simpler modelling approach

Y0i | λi ∼ G

(

λi
φ
, φ

)

, Y1i | λi ∼ G

(

γλi
φ
, φ

)

(3)

In particular this second model allows for paired estimation of the quantity φ for a given patient.

2.1.2. Interpretation of rates λ and relation to pairing. In (3) the {λi} describe fixed voxel effects, i.e. they constitute the

invariant underlying structure of glucose uptake in the tissue that is being imaged. Their invariance between two imaging

time points implies that overall uptake changes are captured by γ. These quantities must thus be estimated along with γ.

The pre- and post-therapy uptake samples Y0 and Y1 may be assumed independent conditionally on the structure λ, since

the random errors in measurements result mainly from data acquisition and may be assumed to be independent at separate
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injection time points. As such, “pairing” is here understood as the co-registration of the two imaging sets so as to capture

the same set of underlying {λi}. Note that the standard assumption underlying the usual paired t-test involves Y1i − Y0i
being i.i.d. (Gaussian) with common mean. In the present case, this is not true, as the mean of Y1i − Y0i is dependent on

the unknown voxel effect λi.

2.1.3. Assumption of spatial independence. In this paper we make the underlying assumption of spatial independence of

the count rate data {λi}Ni=1, and furthermore that of uptake data {Yj}Ni=1, j = 0, 1. In other words we assume here that

the realizations within a sample Yj are independent of each other. In this sense our derivations correspond to the case

of an ideal PET scanning modality coupled with perfect reconstruction. Application to real PET imaging data requires

the incorporation of spatial correlation κ in order to obtain a more accurate patient-specific interpretation of quantities of

interest. This is discussed further in Section 2.5.

2.2. Closed-form expression for the therapeutic effect

The estimation problem defined by (1) and (3) allows the derivation of approximating expressions of maximum likelihood

estimators for φ, λ and γ. We refer the reader to Appendix A for technical details on derivations of the following quantities;

this section is a summarised presentation of the closed-form analytic expressions we obtained. Based on (3) and under the

assumptions presented above, a general expression for the log-likelihood for the two-sample problem with Y = (Y0, Y1)
is easily obtained and joint maximum likelihood solutions for λ and γ take the form

γ̂ =

∑N
i=1 Y1i

∑N
i=1 Y0i

=
Ȳ1
Ȳ0

(4)

where Ȳj denotes the sample mean of the observations {Yji}Ni=1, j = 0, 1. Expression (4) thus evaluates the percentage

change in mean measurements before and after treatment. Note that this estimator is unaffected by pairing – the same

quantity can be used to quantify treatment effect in an unpaired scheme. From (4) we also derive β̂ = log(γ̂). The marginal

effects are estimated jointly with (4) for each voxel i = 1, . . . , N, by

λ̂i =
Y0i + Y1i
1 + γ̂

(5)

We now propose two finite-sample evaluations of the maximum likelihood estimator of scale parameter φ, obtained

from paired analysis for model (3). A first estimator is

φ̃ =
1

Nγ̂

N
∑

i=1

(γ̂Y0i − Y1i)
2

Y0i + Y1i
(6)

For high counts, φ may be approximated instead with

φ̂ =
1

N

N
∑

i=1

(γ̂Y0i − Y1i)
2

γ̂2Y0i + Y1i
(7)

Recall that (6) and (7) are two different paired assessments of the quantity φ; they become equivalent at higher counts,

as demonstrated in Appendix B.1. If one had reasons to doubt that φ0 ≈ φ1 ≈ φ, then φ0 and φ1 may be estimated

independently from samples {Y0i}Ni=1 and {Y1i}Ni=1 respectively, e.g. using the pseudo-Poisson assumption (1) with

sample approximations for the quantities φj =
Var(Yji)
E(Yji)

. This possibility is further explored in Appendix B.2. In the above

expressions we also use the whole tumor volume for evaluation. Alternative estimates for φ may be obtained using a

reliable subset of the specified volume of interest. This may be helpful for instance in situations where co-registration is

found particularly difficult.

2.3. Assessment of the variability associated with β̂

In Appendix A we also derive closed-form expressions for estimators of the variances associated with the estimator β̂,

β̂ = log(γ̂) = log(Ȳ1)− log(Ȳ0) (8)

By the Delta method,

σ2
β̂
≈

φ

Nλ̄

(

1 +
1

γ̂

)

(9)
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where λ̄ is the sample mean of the estimated marginal effects λ̂i given by (5). This expression is obtained under the

assumption that λ̄1 = γλ̄0. It may be approximated using uptake samples and e.g. (7) by

σ̂2
β̂
≈

φ̂

N

(

1

Ȳ0
+

1

Ȳ1

)

(10)

A naive estimator if variance is

σ̂2
β̂,U

=
VarN (Y0)

Ȳ 2
0 N

+
VarN (Y1)

Ȳ 2
1 N

(11)

where VarN (Yj) is the usual sample variance. The appendix shows that

σ2
β̂,U

≈
1

λ̄N

((

1 +
1

γ

)

φ+
2ξ(λ)

λ̄

)

(12)

where ξ(λ) = (
∑N

i=1(λi − λ̄)2)/N is the variation in count rates λi. Constructions (8), (10) and (11) are clearly invariant

to a change in scale of observations Y . Note that if ξ(λ) = 0 (λi constant) then σ2
β̂,U

reduces to σ2
β̂

, but otherwise this

naive estimator will be positively biased.

Evaluation of the naive standard error may be performed empirically in a number of ways, depending on the choice

of a definition for VarN (.). For example the sample quantities VarN (Ȳ0) and VarN (Ȳ1) may be bootstrapped directly to

evaluate Var(β̂) = Var(log(Ȳ0)) + Var(log(Ȳ1)) (but not surprisingly, this will produce the approximation (11)). Based

on variance estimators for β̂the variance of γ̂ can be derived (using the Delta method). This gives

σ̂2
γ̂ = (exp(σ̂2

β̂
)− 1)) exp(2β̂ + σ̂2

β̂
) (13)

and

σ̂2
γ̂,U = (exp(σ̂2

β̂,U
)− 1)) exp(2β̂ + σ̂2

β̂,U
) (14)

2.4. Quantities of interest

2.4.1. Confidence intervals around γ̂. ForN large and under usual regularity conditions, (10) may be used in the Gaussian

approximation (by the Central Limit Theorem) for the maximum likelihood estimator β̂ with mean β,

β̂ ∼ N
(

β, σ2
β̂

)

(15)

with σβ̂ = E(σ̂β̂). Quantities (13) and (14) are of particular interest as they allow to construct approximate confidence

intervals for the measure of percentage change in the mean, defined as γ̂ − 1 = (Ȳ1 − Ȳ0)/Ȳ0. Based on the Gaussian

approximation (15), confidence bounds for this popular quantitator may be derived from those obtained for β̂ = log(γ̂)

using (4) and (10) in [bL; bU ] where bL = β̂ − zασ̂β̂ , bU = β̂ + zασ̂γ̂ , and zα= Φ−1(1− α/2), Φ denotes the cumulative

distribution function of the standard normal distribution, and [bL, bU ] is a (1− α)×100% confidence interval for β. Then

the exponential transform of these bounds [gL = exp(bL), gU = exp(bU )] may be applied to the more interpretable value

γ̂. Note that in light of discussions in Section 2.1.3 and further in Section 2.5, confidence intervals would be biased unless

spatial correlation was incorporated in the assessment.

2.4.2. Hypothesis tests for the percentage change in mean uptake. Qualitative assessment of therapeutic effectiveness

may also be performed, based for example on the result of a two-sided test for metabolic change (with the null hypothesis

of no change in mean, i.e. β = β0), or that of a one-sided test for partial metabolic response (under the null hypothesis

that the percentage change in mean is not lower than some clinical threshold of interest, i.e. β ≥ β0). We may construct a

paired test based on the statistic

tQP =
β̂ − β0
σ̂β̂

(16)

for some null assumption on the value of β0 (e.g. H0 : β0 = 0 for the two-sided test mentioned above), using (4) and

(10) – see for instance [24] for details on the construction of paired tests of hypotheses. Based on the previous Normal

approximation for β̂, tQP can be assumed to be t-distributed. A test based on γ̂ may be constructed similarly. Note that

tQP and γ are not linearly related.
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2.4.3. Performance ratio for a paired analysis. The benefit conferred by data pairing in measuring the accuracy of the

estimate β̂ may be evaluated by

σ̂β̂,U
σ̂β̂

=

(

Ȳ 2
0 Var(Ȳ1) + Ȳ 2

1 Var(Ȳ
2
0 )

φ̂(Ȳ 2
0 + Ȳ 2

1 )

)
1

2

(17)

The ratio of σβ̂,U over σβ̂ boils down to

σβ̂,U
σβ̂

=

(

1 +
ξ(λ)

φλ̄

)
1

2

(18)

This ratio does not depend on global response γ. The ratio

σ̂γ̂,U
σ̂γ̂

(19)

can be used to evaluate the impact of a more careful assessment of variance on γ̂ inference.

2.5. Spatial dependence of imaging uptake data

As stated earlier in Section 2.1.3, the above expressions are derived using the underlying assumption of spatial

independence of uptake data {Yj}Ni=1, j = 0, 1, thus assuming ideal and perfectly reconstructed PET imaging data.

Application to real PET imaging data requires the incorporation of spatial correlation κ in order to obtain a more accurate

patient-specific interpretation of σ̂β̂ (for example when using confidence intervals on the percentage-change in means).

Note that by not including a correction for spatial correlation in assaying σ̂β̂ , we under-estimate assessment variability.

We further discuss this parameter in concluding Section 5.

Excluding κ from the quantitation is however not critical with regards to the significance of quantity tQP , since in that

construction the standard error term is used merely for standardizing the measure of proportional change. Omitting the

spatial correlation in this normalization does not affect the assessment of direction of this proportional change, and as such

it does not impact the degree of alignment of the risk covariate with patient outcome information. Inclusion of κ is thus

not mandatory in terms of defining a quantitation that correlates with patient survival or disease progression. Therefore

one could consider tQP rather than σ̂β̂ for assessment under the assumption of spatial independence. Performance ratios

(17) and (19) also remain relevant since the correction for within-sample spatial correlation is identical in the paired and

unpaired cases.

2.6. Characterisation of the impact of mis-alignment

The process of pairing two sets of observations implies that pairs of measurements be made according to a common basis

– in the case of PET imaging data, the two imaged sets of observations are aligned (or co-registered) according to a

common grid of spatial coordinates (e.g. of a same voxel in three-dimensional scans acquired before and after therapy).

This process is often complex and likely to introduce sub-grid approximations (e.g. interpolation), which introduces errors

in the paired data model (see e.g. [41]). In the case of co-registration of two scans of a cancer patient before and after

therapy, a number of factors including patient position, tumor evolution, and impact of treatment on physiology, render

the notion of “optimal co-registration” difficult to define, if not devoid of foundation. Nonlinear discrepancies resulting

from mis-alignment are not easily summarized in a model. Mis-alignment however typically occurs at a magnitude small

enough to allow for pairing to remain a plausible approach.

Let us consider the case where the baseline dataset Y0 is aligned onto Y1, and where we compute β̂ based on mis-

registered data Y ∆
0 . Recalling our earlier assumption that λ̄1 ≈ γλ̄0, and assuming that mis-registration preserves most of

the content present in the volume of interest with Y ∆
0 , where superscript ∆ denotes mis-registration, then it is realistic to

accept that λ̄1 ≈ γλ̄∆0 . With the latter approximation, and given (10), the variance of the estimator of therapeutic effect

derived from mis-registered data (say, σ̂2
β̂,∆

) may be considered as follows:

σ2
β̂,∆

= φ∆
(

1

Nλ̄∆0
+

1

Nλ̄1

)

≈ r∆σ
2
β̂

(20)

with r∆ = φ∆

φ . From (20), the effect of mis-registering the pre- and post-treatment data is a scaling of the standard error σβ̂
(our measure of assessment accuracy) achieved in the case of “ideal” registration. As before, for γ-based quantitation the

standard error in the presence of mis-registration error becomes σ̂2
γ̂,∆ = (exp(σ̂2

β̂,∆
)− 1) exp(2β̂ + σ̂2

β̂,∆
). In the following

section we illustrate the impact of registration error and demonstrate how a paired analysis of therapeutic assessment

standard error based on mis-registered information may still be preferable over an unpaired analysis.
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3. Illustrative experiments

We now provide an illustration of principle of the proposed paired assessment methodology for treatment effect. With

the following implementation we do not simulate response data using established PET simulators, which would require

deploying a computationally significant process, see e.g. [42]. Validation of our approach is presented in Section 4 with

an application to real PET imaging data. However, the data simulation model used here is justified in Appendix C where

the produced datasets are shown to compare well with real output PET imaging information.

Below we use a simplified framework on simulated 2D images to demonstrate the effect of pairing imaging data over an

unpaired analysis, including in the presence of mis-registration. A first experiment was conducted using an overdispersed

model (Section 3.1) to illustrate how pairing improves the evaluation of accuracy (Section 3.2). Then we evaluated the

impact of mis-registration in two different experimental frameworks (Section 3.3).

3.1. Experimental framework

The 16× 16 pre- and post-treatment imaging data (i.e. N = 256) were simulated according to (3). The marginal

voxel rates λi at voxels xi = (x1, x2)i were elliptically distributed within the image, using λ(x1, x2) = c0 +
c1 exp(−2(x1, x2)

TΣ(x1, x2)) with c0 = 1, c1 = 12, for the 2× 2 covariance matrix Σ = [1,−ρ,−ρ, 1]2×2 with ρ = 0.5,

and xk ∈ [−ak, ak] (for k = 1, 2), here with a1 = 1.5 and a2 = 1.2. A Gamma distribution with scale φ = 1.2 was used to

generate independent realizations of pre- and post-therapy uptake values as

Y0i ∼ G(τλi/φ, φ); Y1i ∼ G(γτλi/φ, φ) (21)

where γ controls the overall change in distribution shape τλi/φ. In this model τ plays a role comparable to the

normalization of PET counts by dose concentration (usually carried out to form SUV data in the output PET image),

in that for instance, E(Y0i) = τλi and V ar(Y0i) = φτλi, which is consistent with pseudo-Poisson property (1). Figure 1

shows an example of (e.g. baseline) data simulated with Gamma model (21), for varying τ values (i.e. for varying tumor

definitions). This figure indicates, in reference to the PET response data example of Figure 2, that the distribution of such

simulated uptake data has reasonable alignment with a true PET scenario; further justification for this simulation model is

provided in Appendix C. In the experiments described hereafter, we set τ = 1, which yields images with lower signal-to-

noise ratio (which would typically reduce the difference σ̂β̂,P − σ̂β̂,U , as discussed further), and also allows us to control

image contrast with c1.

As (21) models a linear overall change in voxel rates as in (3), with E(Y1i) = γE(Y0i), this simulation framework

implements features of our methodology and serves to motivate our approach. We stress here that (3) is merely a proposal

representation of dominant changes in metabolic information at successive imaging time points (local adjustments being

represented by individual effects λi). Its aim is not to capture complex underlying features of a tumor process, such as its

biology; however it reflects well what is currently done in practice where overall metabolic changes are summarized by

overall (linear) changes in a choice of standard indexes among those described in Section 1.1.

Voxel-level analysis of real PET information is depicted in Figure 2, where the pre- and post-therapy scans are aligned

and a common volume of interest Ω (e.g. ellipsoidal) is specified simultaneously for the same set of voxels, based on the

largest of the pre- and post-therapy tumor objects. Alignment is performed based on expert human assessment and consists

in rigid transformations (3D rotations and shifts) of the post-therapy image to overlay the pre-therapy image.

In the framework described above, the spatial structure of the simulated data is convenient in that co-registration is

easily controlled with the ellipsoidal structure. It is worth noting that some real PET datasets present themselves with

a similar pattern; it is the case e.g. in homogeneous sarcomas and also in lung cancers. The experiments were repeated

NS = 5, 000 times to assess the paired assessment approach (with a focus on its statistical power and magnitude of the

associated standard error).

3.2. Effect of alternative variance estimators

We compared the powers of the paired and unpaired tests tQP based on (16), derived from the estimates of interest and

at the 5% significance level. Figure 3 illustrates the benefit of pairing on power of one-sided tests based on β̂ of the null

hypothesis H0 : β > β0 = log(0.7), evaluated for a varying response γ ∈ (0.40, . . . , 0.90) in (21). The solid black line

indicates the theoretical power of the test statistic Power(tQP | β) = Prob (tQP < 1.96 | β), using the standard Normal

distribution function, and an approximate theoretic expression for the standard error

σ2
β =

φ

λ̄0N

(

1 +
1

γ

)
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derived in the case of ideally paired images, as in (9), but for the true response value γ. The dashed line indicates the

unpaired counterpart obtained using approximate theoretic standard error (12) evaluated using the true response, i.e.

σ2
β,U =

1

λ̄0N

(

φ+
ξ(λ0)

λ̄0

)(

1 +
1

γ

)

recalling that ξ(λ0) = (
∑N

i=1(λ0,i − λ̄0)
2)/N is the energy associated with the sample image of pre-therapy raw counts

λ0 = {λ0}Ni=1. This figure clearly depicts the theoretical advantage of not using the standard variance estimators in this

case. The empirical power of the paired test based on σ̂2
β̂

, evaluated as the observed proportion of Monte-Carlo values of the

test statistics that were found to be statistically significant at the 5% significance level, aligns with its theoretic counterpart

when using the true value φ (red, ‘x’), thus demonstrating that the sample approximation (10) is adequate. Similarly, the

approximating expression for the unpaired standard error is also shown to align with its theoretical counterpart (blue,

broken line with fat dots). The power derived from σ̂2
β̂

but using the paired estimate (7) for φ, rather than the true value φ,

has reasonable alignment with the empirical power for the paired test using the exact φ; the bias induced by the use of φ̂
decreases as dose level τ increases in (21). The other broken curve corresponds to a mis-registered case and is described

further in Section 3.3.

It is worth noticing that the magnitude of the gain obtained from pairing as quantified by ratio (19) does not depend

on the true underlying therapeutic response, but rather on the image statistics (which are partly driven by tumor features).

For this reason, we describe here another experiment to illustrate the impact of pairing with respect to image contrast.

We considered the ratio of standard errors (19) as a function of range of voxel intensities (which may be characterized

by c1 in model (21)), a ratio greater than 1 indicating a benefit in pairing. Figure 4 shows the variation of the mean

ratio of standard errors, over NS = 5, 000 Monte-Carlo simulations of the null scenario where γ = 0.7, w.r.t. varying

c1 ∈ {1.5, 3.5, 5.5, . . . , 17.5}, for the ideal paired case (solid line) as well as for various typical mis-registration errors

described further. This range of contrast values would correspond to imaging data going from extremely noisy to extremely

well defined; the case c1 = 12 of data with an acceptable signal-to-noise ratio is indicated by a vertical dashed line. In this

experiment the benefit of pairing is systematic for all contrasts, even under mis-registration. This example also shows that

the overstatement of the variance estimate for β̂ increases with the dynamic range of the data, and confirms one’s intuition

that the gain yielded by pairing is greater for better-defined imaged objects of interest.

3.3. Effect of mis-registration

3.3.1. Simulated experiment. In the experimental setup described in Section 3.1, we simulated mis-registration as a

spherically symmetric shift ∆, with ∆ ∼ N(0, σ2
∆) and where σ∆ therefore controlled the level of typical mismatch error

committed, in terms of number of voxels, for data generated according to experimental model (21). For practical reasons

the randomized registration error ∆ was capped at 75% of the grid length. Figure 3 (left panel) illustrates the empirical

powers for the tests based on γ̂ obtained for the unpaired and ideal paired cases (i.e. (16) using σ̂2
β̂,U

and σ̂β̂ respectively),

as well as for a mis-registered scenario ((16) using σ̂β̂,∆) with σ∆ = 4. Note that here, σ∆ = 4 corresponds to a case

of a typical mis-registration error of one quarter of the image. In this example the plots illustrate how the unpaired test

generally remains less powerful than the paired ones carried out on mis-registered data. Similar comparisons were obtained

for stronger mis-registration errors (e.g. σ∆ = 6) in this illustrative example. Note that such comparisons depend on both

the magnitude of ∆ and on sample size.

The right panel of Figure 3 provides further illustration of the advantage of pairing. It exhibits two additional (Monte

Carlo) curves. The higher of these two new curves (red, fat stars) shows the power of an empirical paired test based on

(10) under perfect coregistration but carried out on (Y0, Y
S
1 ) where Y S

1 denotes a random “scrambling” of image Y1, i.e.

Y S
1 holds the same content as does Y1 but this content has been spatially randomly rearranged. The other addition (blue,

hollow diamonds) shows the power of the empirical unpaired test based on (11). On this figure the power of the unpaired

construction remains lower than that of the “scrambled” version. This extreme example illustrates how pairing may still

provide a more useful assessment of standard error than would an unpaired analysis, given the same image content, even

in situations where co-registration appears very difficult.

Figures 4 and 5 further illustrate how sub-optimal registration may still be preferable to unpaired assessment, in terms

of performance ratio
σ̂
β̂,U

σ̂
β̂,∆

defined by (18) in the null scenario γ = 0.7, and for a relatively realistic signal-to-noise level

(τ = 1). In Figure 4 we used σ∆ ∈ {1, 3, 5, 7}. The mean ratio remains consistently above 1 for all σ∆ values. We verified

that this distinction increases as τ increases. For the experiment summarized in Figure 5, the typical mis-registration error

σ∆ was varied between 1 and 10 voxel units. The ratio distributions remain significantly over 1, even for extreme cases

with a mis-registration scale up to σ∆ = 10. The results here suggest that a paired approach can remain more useful than

an unpaired one even in the case of a large mis-registration error. One may note that the performance ratio does not depend

on the true value of the response γ used for the simulation.
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3.3.2. Practical experiment. A practical experiment carried out using a dataset of 50 GE-Advance clinical sarcoma

studies acquired at University of Washington in Seattle further illustrates the influence of mis-registration on the proposed

assessment. Sarcomas are a particular type of malignant tumors that tend to be diagnosed late and may present complex

spatial metabolic distributions. Table 1 summarizes some characteristics for this dataset, and Figure 2 illustrates one of

these sarcoma studies.

In this experiment, the pre-therapy scans were used as baseline information, and also shifted (using shifts ∆ ∈
{−2, ..., 2}3 ⊂ Z

3 successively) to create a mis-registered post-treatment image. Ellipsoidal regions of interest were drawn

by hand for the post-treatment images of the primary tumor site, once paired with the pre-therapy ones. In the ideal case

∆ = (0, 0, 0), the estimated response is thus γ = 1 by construction. The merit of this experiment is that it allows testing

the proposed analysis on real PET data, with realistic noise characteristics, and uptake distributions that may depart from

experimental model (3).

Figure 6 illustrates the distributions for γ̂, σ̂γ̂,∆ and σ̂γ̂,U obtained in all 125 scenarios. The estimated response (ideally

γ̂ = 1) over this range of ∆ was not biased (leftmost panel). Some rather large errors in therapeutic response quantitation

were occasionally obtained for the more extreme registration mismatches; however we found that the mean and median

γ̂ was 1 (s.e. 0.0481). Further summary statistics of |γ̂| for this experiment yielded percentiles P0.05 = 0.9439, P0.25 =
0.9841, P0.50 = 1.0000, P0.75 = 1.0160, P0.95 = 1.0594, so this experimental can be considered useful and exploitable.

The large errors in γ̂ result from poor estimation of the φ parameter in a few mis-registered scenarios. Finite-sample

evaluation of the quantitation standard error (rightmost panel) yielded a performance ratio σ̂γ̂,U/σ̂γ̂,∆ consistently above

1 (values for this ratio range between 1.047 and 7.128), with medians at 0.0061 (s.e. 0.0136) and 0.0125 (s.e. 0.0266)

respectively for σ̂γ̂,∆ and σ̂γ̂,U . These coherent results, obtained from real PET imaging data samples, confirm the

illustrations of principle of previous numerical experiments presented up to Section 3.3.1, which were run from proposed

simulation model (3).

We also carried out a similar experiment on more severe scenarios. For example, using ∆ = (3, 3, 1), ∆ = (5, 5, 2)
and ∆ = (7, 7, 3) yielded results shown in Table 2 that confirmed the benefit of pairing, on average. The performance

ratio σ̂γ̂,U/σ̂γ̂,∆ was above 1 in 84% of cases for this experiment. This complementary experiment also suggests that the

bias is only mildly affected by mis-registration (it is in fact rather affected by mis-segmentation of the tumor volume),

whereas the assessment standard error will increase with larger errors, as suggested already by the decrease in power in

Figure 3. These PET scans achieve a definition of about 4.25 mm per voxel (and about 4.5 mm on the longitudinal axis);

mis-registration of five voxels roughly yields a 21.2 mm mismatch, which is considered quite large.

4. Application to therapeutic assessment in sarcoma: prognosis

In this section we consider the problem of evaluating the response to neoadjuvant chemotherapy for the treatment of

human sarcomas. With the pseudo-Poisson framework we can adapt the analysis to account for the empirical structure

of reconstructed PET data, whose variance is proportional to the mean [31, 43], and analyze the change in the FDG

biodistribution at the primary site pre- versus post-therapy, based on the paired tracer uptake information. We applied this

methodology to the aforementioned cohort of 50 FDG-PET studies of patients with sarcoma (17 deaths and 22 disease

progression events), for which the primary tumor site was imaged at baseline and mid-chemotherapy, under the same

treatment plan. A multivariate prognostic model applicable at time of first patient follow-up was used to validate the

proposed approach. All data and associated patient outcome information were acquired at the University of Washington

School of Medicine.

4.1. Methodology

4.1.1. Data pairing. To allow for paired analysis of φ, it is necessary to first co-register the pre- and post-therapy VOIs

so as to align the two sets of uptake information at the voxel level. Co-registration of FDG-PET images posterior to their

acquisition may be best performed by exploiting the contextual information of a corresponding MRI or CT scan (see e.g.

[44]), which would provide detailed physiological landmarks. Here however, we consider that only PET information is

available, which provides but crude anatomical features. The pre- and post-therapy scans were co-registered by visual

assessment using 3D translations and rotations. Note that rotations of the scans in the 3D plane induce an interpolation of

the voxel coordinates, which can be dealt with e.g. by re-binning the latter onto a regular grid.

Following this procedure, tumor delineation can be specified, which may be basic (e.g. ellipsoidal or cylindrical) or

elaborate (cf. [14]). The co-registered VOIs are then merged into one region of N voxels such that the output data array

contains its 3D coordinates xi, i = 1, . . . , N , and its corresponding pair of uptake values Yi = (Y0i, Y1i), respectively the

pre- and post-therapy voxel-level uptake data within the common VOI. In this study the ellipsoidal VOIs were drawn

based on the largest of the pre- and post-therapy tumor objects and so as to retain a minimum of background voxels from
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the corresponding scan. An example dataset is illustrated in Figure 2. VOIs were drawn using the open-source imaging

software AMIDE [45].

4.1.2. VOI analysis. Conservative thresholding at SUV> 1 was applied to the input VOIs to compute classical

comparative measures of percentage change (denoted by prefix ’%’) in SUVmean, SUVmax and SUVpeak. In parallel to that,

the input VOIs were paired (see Section 4.1.1) before double-thresholding at SUV > 1 was applied, in order to remove

those voxels with low SUV in both sets of images. This allowed deriving measures for the standard paired and unpaired

t-tests, and for the therapeutic response γ̂ − 1 using the exponential of (8), and associated paired (13) and unpaired (14)

estimated standard errors, denoted respectively σ̂γ̂,P and σ̂γ̂,U hereafter. SUVpeak was computed as the average uptake

in the 27-voxel cubic neighborhood of the hottest voxel. The other variables included for analysis were gender, age at

baseline, tumor grade (low or high) and tumor site (trunk or limb). Analyses were performed using R [46].

4.2. Measured accuracy

We assessed the effect of pairing in terms of the ratio σ̂γ̂,U/σ̂γ̂,P of standard errors measured without and with pairing.

The first histogram of Figure 7 indicates that a finer assessment of accuracy was obtained in 98% of cases thanks to pairing

the pre- and post-therapy information (without attempting to refine the initial co-registration). The only case for which

σ̂γ̂,U < σ̂γ̂,P yielded σ̂γ̂,U/σ̂γ̂,P = 0.967 (with σ̂γ̂,U ≈ 0.0062 and σ̂γ̂,P ≈ 0.0063) was a very large sarcoma in the leg (ca.

23,700 voxels before thresholding), with drastic reduction in SUV levels (with SUVmax declining from 15.7 to 6.7 units).

As the tumor volume increased between the two imaging time points, and the spatial uptake pattern was heterogeneous (in

particular with a large inactive core), our conservative thresholding approach may have left a large amount of undesired

background. A better suited thresholding strategy would help obtain a refined assessment of paired standard error over the

unpaired reference, and change the performance ratio in favor of the paired analysis. However as the two quoted values

suggest, the assessment of standard error is already very small and therefore useful for further qualitative analysis in either

case. The second histogram is concerned with the magnitude of the measured standard errors for the 50 studies. This

figure shows that the therapeutic assessment approach we considered appears to be quite reliable for a majority of cases.

For all but one case the estimated standard error was found to be lower than 5%. This scale for standard error is relevant

to qualitative decision-making processes applied routinely that use assessments based on observed changes in metabolic

activity. Note that the one case above the 5% mark had σ̂γ̂,P = 0.09 and corresponds to a relatively small volume (339

voxels before thresholding).

4.3. Univariate analysis

Since information on the histopathologic response at primary site was not available for this study, we benchmarked the

quantitators of interest independently against patient outcome, in terms of overall survival (OS) and progression-free

survival (PFS). To do so we evaluated the area under the curve (AUC) of their empirical, unsmoothed receiving operator

characteristics (ROC) curves using the R package pROC, and the AUCs were computed using trapezoids [46, 47]. Note

that this approach does not constitute a direct assessment of the performance of response quantitation, as the measures

were computed at the primary site only, and patient outcome is likely to be driven by other co-factors also. Table 3

provides the AUCs computed for the main pseudo-markers under comparison. For this experiment, the baseline markers

had a weaker connection with outcome than did comparison-based measures – all baseline measures yielded AUCs below

61. The paired assessment γ̂ achieved the highest AUC, which is in line with the interest it receives in routine practice and

motivates further assessment of its standard error. Comparable results were found when using smoothed ROC curves.

We also compared the various markers in terms of univariate prognostic value, via a univariate Cox regression [46, 48].

The results are also shown in Table 3, in terms of likelihood ratio, which quantifies the effect of adding the variable to

the baseline survival scenario, and significance of the variable considered, for both OS and PFS. Conclusions drawn from

this experiment align strongly with those yielded by AUC comparison. The paired assessment γ̂ − 1 turned out to be

significant for both OS and PFS (p < 0.01), and also yielded the highest likelihood ratios. The paired tests were not found

to be significant for this dataset. All percentage change measures were found to be significant (p < 0.05). Tumor site was

the only other significant univariate prognostic variable for PFS.

4.4. Multivariate analysis

The prognostic utility for OS and PFS of the 14 covariates considered in this study (σ̂γ̂,U was dropped at this stage) was

analyzed via multivariate Cox survival analysis [46, 48]. All continuous covariates were standardized before analysis, i.e.

initial measurements {xc}i=1,...,50, where c labels the covariate, e.g. SUVmax,0, were transformed into x̃c = (xc − x̄c)/σxc
,

where x̃c and σxc
denote mean and standard deviation of the values of covariate xc. We first performed model comparison
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[49] over the 50 datasets on the basis of both Akaike’s Information Criterion (AIC) minimization and likelihood cross-

validation (LCV), so as to identify subsets of covariates deemed most valuable for prognosis. We found that the AIC-

optimal subset of covariates was (age, site, γ̂ − 1, SUVmean0, tQP , σ̂γ̂,P ). In parallel, selecting the subset (age, site, γ̂ − 1,

SUVmean0, σ̂γ̂,P ) optimized LCV. For both AIC and LCV, a number of models may have been selected as their scores

were comparable, within reason, to those achieved by the optimal set of covariates; all included γ̂ and σ̂γ̂,P . This model

analysis highlights the relevance of including a measure based on σ̂β̂ in a multivariate description of patient risk for this

study, whether directly as a standalone variable or indirectly e.g. in the form of a test-like statistic such as tQP .

Furthermore, our multivariate Cox analyses found proportional change quantitation γ̂ − 1 to be statistically significant

(it is the case in particular for subsets of covariates optimizing LCV and AIC, which yielded statistical significance of

γ̂ − 1 (p < 0.001 for both OS and PFS, and for both survival models). This further motivates our proposal to include an

assessment of its variability to help enhance treatment planning and other medical decision-making aspects.

Hereafter we will focus on a risk model that includes tQP , in order to focus on its contribution to the description of risk

of death and of disease progression. Our choice to consider the test-like statistic and exclude using the assessed standard

error as a standalone covariate from here on is further motivated by our discussion in Section 2.5.

A multivariate Cox analysis obtained using covariates age, site, SUVmean0, γ̂ − 1 and the paired test statistic tQP is

shown in Table 4. All covariates in the model were found to be significant for at least one of OS or PFS; tQP was found

to be statistically significant at the 5% level in both. The last row indicates the value of the likelihood ratio (LR) when

comparing the likelihoods associated with the multivariate models with and without tQP , along with the corresponding

p-value of the likelihood ratio test using a χ2-distribution with 1 degree of freedom. The likelihood ratios both clearly

indicated that the paired test statistic was a significant addition to the prognostic model. The model also yields high

concordance (C = 0.79 and C = 0.75 respectively for OS and PFS).

Figure 8 shows Kaplan-Meier curves (a nonparametric estimate of hazard rates) for high- and low-risk groups as

identified by the median hazard within the cohort of studies [48]. It illustrates the benefit of incorporating tQP (solid

blue curves) in the second survival model as it yields a clearer distinction between low- (higher curves) and high-risk

groups (lower curves). The separation between survival curve estimates (i.e. between low- and high-risk groups) became

statistically significant, in terms of a log-rank (Mantel-Haenszel) test [50], when including tQP in the multivariate model.

These survival analyses, including survival model selection, suggest that the proposed paired assessment is relevant for

the analysis of prognosis. Further analysis of the impact of delineation could be the focus of another application, with the

inclusion of automatic segmentation procedures such as those of [14, 51]. Robustness of measures based on the SUVmax

and SUVpeak to the choice of delineation procedure would likely play a role in this context. Note that the assessment

considered here is conducted at the primary site only. A surrogate marker for metastasis information, such as surgical

margin information or tumor heterogeneity, could be incorporated in the validation model in order to mark the presence of

secondary sites. In this respect, we believe that the proposed assessment of estimation accuracy (using the derived standard

errors) will provide an indication of spatial heterogeneity.

5. Discussion

Positron emission tomography using 18F-fluorodeoxyglucose (FDG-PET) is a predominant imaging diagnostic tool for

the treatment of cancer and of other conditions, due to its unique ability to describe metabolic activity, which is difficult to

recover from other imaging modalities. It is now gaining particular attention for early assessment of therapeutic response

for improved individualized treatment planning in oncology. In this view, the PET-specific set of guidelines, PERCIST,

proposed by Wahl et al in 2009 [2], reinforces this emerging importance of the modality in assessing therapy effectiveness.

In this context, standard practice consists in assaying the proportional change in a summary of metabolic tracer uptake

activity observed pre- and post-therapy; typical such statistical summaries include the mean and peak uptake measured

within the volume of interest.

Although both quantitations consist in measuring an average within a predefined volume, an assessment of the

corresponding standard error is seemingly systematically omitted in practice. In this work we model pre- and post-

therapy data with Gamma distributions that feature the pseudo-Poisson characteristic. We calibrated this model against

clinical sarcoma datasets from the University of Washington, and we also carried out a suitability analysis using standard

calibration phantom data provided by the American College of Radiology Imaging Network. Under this framework we first

obtain that the maximum likelihood estimator for global change in uptake distribution actually is the percentage change

in mean uptake, a solution that aligns with standard medical and clinical practice (relying on SUVmean quantitation). We

explore the feasibility of pairing the pre- and post-therapy uptake information (in the sense of image co-registration)

in order to adequately evaluate the standard error associated with this quantitation. We illustrate both analytically and

numerically how pairing yields a benefit in the assessment of the standard error. This has obvious implications in
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terms of the performance of statistical tests and confidence estimators derived from this framework, over an unpaired

approach. Whether expert-guided or automatized, scan co-registration will induce a form of misalignment due to complex

nonlinear deformations (body position and motion, changes in organ shapes, tumor shape, etc.). Since pairing requires data

alignment, and this may in turn introduce errors, the impact of data mis-alignment on the theoretical benefit of pairing was

evaluated in concept. It was found that mis-alignment should not necessarily prevent the use of paired observations, and

this was also verified with clinical data.

We applied this statistical framework to non-invasive, early therapeutic response assessment in patients with sarcoma,

a rare form of cancer, from baseline and follow-up FDG-PET scans. Paired analysis of the standard error associated

with the percentage change in mean PET probe uptake incorporates the relationship between pre- and post-therapy PET

imaging information at a voxel level. The advantages of a paired analysis in deriving a measure of accuracy of therapeutic

assessment, compared to a traditional unpaired procedure, were highlighted. Our experiments also confirmed the clinical,

prognostic utility of the proposed evaluation of treatment effect, for both patient survival and disease progression, in a

multivariate prognostic model. In this setup the proposed quantitation was found to be a significant addition to the model

and a significant prognostic indicator for both survival and disease progression.

We found that clinical PET imaging data tend to be well described with the Gamma model used here, both for static

and dynamic PET datasets. However other statistical frameworks may be used that implement the assumption of pseudo-

Poisson uptake characteristics. A common alternative is to model treatment effects with a pseudo-Poisson Generalized

Linear Model approach, where standard implementation relies on a Newton-Raphson procedure, which we considered in

previous work. Under that approach we derived closed-form expressions for the corresponding treatment effect estimator

and for its associated standard error, which also readily provided an optimization-free solution to the estimation problem

along with an evaluation of associated variability. Remarkably, the analytical form of the GLM-based estimator is also an

evaluation of the percentage change in mean value of the observations, as is the case when modelling response with the

Gamma model proposed in this paper. Approximate expressions for estimation variance were also derived analytically but

proved to be less efficient on real PET data (in terms of separation from unpaired quantitation) than those derived under

the present Gamma model.

We suggested in Section 1.3 that the paired standard error quantitation could be explored in the context of measuring

intratumoral (macro level) heterogeneity, since due to pairing it evaluates the magnitude of variations in intensity of

matched voxels within a given volume of interest. This could be either as a univariate approach or as part of a multivariate

formulation of heterogeneity. Tumor heterogeneity is a complex process that requires taking into consideration a variety

of physiological, biological and metabolic factors. How one should define intratumoral heterogeneity from non-invasive

imaging data is not clear. Typical texture-based (co-adjacence, ) or distribution-based quantitations (entropy, uniformity,

kurtosis, co-occurrence moments, ) could yield as many different assessments for the process, and this is likely to be

disease-dependent also.

In some settings, the proposed approximation for the standard error could be further calibrated to account for spatial

correlation among image voxels. In the application to PET data considered here, the standard errors for β̂ and γ̂ could

be normalized to correct for spatial correlation induced by the scanner acquisition process. Typically, this value would be

expected to be approximately κ = 0.9 ([43, 52]) – this value may be provided by the manufacturer – and the appropriate

correction factor should be (1 + κ2)/(1− κ2). The present analysis does not implement this. It is certainly worthy of

further investigation as incorporating this parameter could yield to improving the power of tests based on tQP . Future

work will explore this.

As a possible extension of the present contribution, analytical treatment of a model extended to multivariate responses

(described by multiple additive components in a loglinear representation) would be of interest to a variety of applications.

Paired data (treatment versus control, pre- versus post-, etc.) are commonly encountered in a wide variety of medical

and non-medical contexts. While there are many situations where measurements (perhaps after transformation) might

follow the classical assumptions of the paired t-test, there are certainly situations where this might not be well justified.

For example, count data (and scaled counts) are fundamental to the various proteomic and genomic investigations that are

so widely used in medical research, and the development of novel methodologies for analysis of paired studies in such

settings is of on-going interest in the field–see, for example, Pham et al [53]. There is potential to adapt our approach for

evaluation in this context. Future work will explore this.
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A. Derivations of closed-form solutions

Hereafter we provide details on the derivations of quantities of interest under the assumption of Gamma-distributed uptake

information. In particular we show that the solution to the therapeutic response quantitation problem in this model actually

is the percentage-change in mean uptake. We also provide finite-sample analytic and approximating expressions for paired

and unpaired standard error terms.

Assuming that pre- and post-therapy uptake values (resp. y0i and y1i) have the pseudo-Poisson property (1) and posing

that λ1i = γλ0i, we model the two-sample comparison problem for i = 1, . . . , N with

y0i ∼ G

(

λi
φ
, φ

)

, y1i ∼ G

(

γλi
φ
, φ

)

(22)

where the {λi}Ni=1 describe fixed individual effects and γ represents the global change in uptake following therapy. Here

we consider the pdf for the Gamma distribution G(α, S) in terms of its shape α and scale S parameters (both strictly

positive) as

f(y;α, S) =
1

Γ(α)Sα
yα−1 exp

(

−
y

S

)

(23)

(Γ(.) denoting the Gamma function). Under this parametrization, we have

E(y) = αS, Var(y) = αS2 (24)

which, in combination with (22), satisfies (1). As discussed in Section 2 we assume the pre- and post-therapy uptake

information to be uncorrelated. Under this model, the log-likelihood expression for the two-sample problem is given by

l(Y ; γ, λ, φ) = −
N
∑

i=1

[

Y0i + Y1i
φ

−
λi
φ

log

(

Y0i
φ

)

− γ
λi
φ

log

(

Y1i
φ

)

+ log

(

Γ

(

λi
φ

))

+ log

(

Γ

(

γλi
φ

))]

(25)
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A.1. Paired assessment of treatment effect

First we derive maximum likelihood solutions for λ and γ in the joint estimation problem stated by (23). The score

equation for a particular λi satisfies

log

(

Y0i
φ

)

+ γ log

(

Y1i
φ

)

= ψ

(

λ̂i
φ

)

+ γψ

(

γλ̂i
φ

)

(26)

where ψ(.) denotes the digamma function. First-order expansions of the log(.) and ψ(.) terms give the following useful

approximations:

log(Y0i) ≈ log(λi) +
Y0i − λi
λi

log(Y1i) ≈ log(γλi) +
Y1i − γλi
γλi

ψ
(

λ̂iφ
)

≈ ψ (λiφ) +
1

φ
ψ1

(

λi
φ

)

(λ̂i − λi)

ψ
(

γλ̂iφ
)

≈ ψ (γλiφ) +
γ

φ
ψ1

(

γλi
φ

)

(λ̂i − λi)

(27)

Using the above in (26), and furthermore that for x large, ψ1(x) ≈ 1/x and ψ(x) ≈ log(x) (in our context it is reasonable

to assume that λi/φ be large enough, cf. Appendix C), we obtain

Y0i − λi
λi

+
Y1i − γλi

λi
≈ (1 + γ)

λ̂i − λi
λi

and

λ̂i ≈
Y0i + Y1i
1 + γ

(28)

The score equation for γ can be analyzed in a similar fashion, yielding

N
∑

i=1

[

λi
φ

(

log

(

γλi
φ

)

+
Y1i − γλi
γλi

)]

=

N
∑

i=1

[

λi
φ

(

ψ

(

γλi
φ

)

+
λi
φ
ψ1

(

γλi
φ

)

(γ̂ − γ)

)]

(29)

from which it follows that γ̂ ≈
∑N

i=1
Y1i

∑
N
i=1

λi
. Combining this result with (28) we obtain the approximate MLE

γ̂ =
Ȳ1

Ȳ0
(30)

where Ȳj denotes the sample mean of the observations {Yji}Ni=1, j = 0, 1. It is worth noticing that γ̂ − 1 quantifies the

percentage-change in uptake means, i.e. that the MLE for γ under model (22) coincides with the widely used therapeutic

assessment %SUVmean.

A.2. Estimation of φ

For the estimation of φ it is convenient to rewrite the log-likelihood in terms of θ = 1/φ, which yields the following score

equation for θ:

N
∑

i=1

[(Y0i + Y1i)− λi − γλi − λi log(θY0i)− γλi log(θY1i) + λiψ(θλi) + γλiψ(γθλi)] = 0 (31)

For x > 1, ψ(x) ≈ log(x) − 1
2x , so λiψ(θλi) + γλiψ(γθλi) ≈ λi log(θλi) + γλi log(γθλi)−

1
θ . This gives the

approximation

1

θ
≈

1

N

N
∑

i=1

[

(Y0i + Y1i)− λi(1 + γ)− λi log

(

Y0i
λi

)

− γλi log

(

Y1i
γλi

)]
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Now, using the following second-order Taylor expansions in the above:

log(Y0i)− log(λi) ≈
Y0i − λi
λi

−
(Y0i − λi)

2

2λ2i

log(Y1i)− log(γλi) ≈
Y1i − γλi
γλi

−
(Y1i − γλi)

2

2γ2λ2i

(32)

we obtain the following approximate MLE for φ:

1

θ̂
= φ̂ =

1

2N

N
∑

i=1

(

(Y0i − λi)
2

λi
+

(Y1i − γλi)
2

γλi

)

(33)

Using (28) and (30) in the above, and adjusting the biased maximum likelihood estimator obtained initially for N degrees

of freedom, we obtain

φ̃ =
1

Nγ̂

N
∑

i=1

(γ̂Y0i − Y1i)
2

Y0i + Y1i
(34)

At this point an alternative to (34) may also be derived. Considering the terms Ui = γY0i − Y1i which arise form the MLE

in (34), and assuming more loosely that λ̄1 = γλ̄0 but not necessarily that λ1i = γλ0i, we have

Var(Ui) = Var(γY0i − Y1i) = γ2Var(Y0i) + Var(Y1i) = φ(γ2λ0i + λ1i)

Since E(Ui) = γλ̄0 − λ̄1 = 0, we also have that Var(Ui) = E(U2
i ) = E((γY0i − Y1i)

2), which combined to the above

expression yields a direct estimator for φ as

φ̂ =
E
(

(γY0i − Y1i)
2
)

γ2λ0i + λ1i

This analytic expression may be approximated with

φ̂ =
1

N

N
∑

i=1

(γ̂Y0i − Y1i)
2

γ̂2Y0i + Y1i
(35)

A.3. The mean and variance of β̂

We can now derive closed-form expressions for estimated variances associated with the maximum likelihood estimator

(30) for γ. At this point it is convenient to consider the log-transform of this estimator, i.e.

β̂ = log(γ̂) = log(Ȳ1)− log(Ȳ0) (36)

with

E(β̂) ≈ log(λ̄1)− log(λ̄0) = β

By the Delta method,

Var(β̂) = σ2
β̂
= Var(log(Ȳ0)) + Var(log(Ȳ1)) ≈

Var(Ȳ0)

λ̄20
+

Var(Ȳ1)

λ̄21
=

φ0

Nλ̄0
+

φ1

Nλ̄1

Assuming as discussed in Section 2 that φ0 ≈ φ1 ≈ φ, and furthermore that λ̄1 = γλ̄0, we obtain the following

approximate analytic expression for the paired standard error of β̂:

σ2
β̂
=

φ

Nλ̄

(

1 +
1

γ

)

(37)

This expression may be estimated using uptake samples and e.g. (35) by

σ̂2
β̂
=

φ̂

N

(

1

Ȳ0
+

1

Ȳ1

)

(38)
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A.4. Naive estimation of variability

If Var(Ȳj) is estimated by the usual sample variance we get

σ2
β̂,U

≈

(

E(SDN (Y0)
2)

Nλ̄20
+
E(SDN (Y1)

2)

Nλ̄21

)

(39)

subscript U denoting the usual approach, where

SD2
N (Yj) =

1

N

N
∑

i=1

(Yji − Ȳj)
2 =

1

N

N
∑

i=1

Y 2
ji − Ȳ 2

j

E
(

SD2
N (Yj)

)

=
1

N

N
∑

i=1

(

Var(Yji) + E(Yji)
2
)

−Var(Ȳj)− E(Ȳj)
2

=
1

N

N
∑

i=1

(

λjiφ+ λ2ji
)

−
1

N2

N
∑

i=1

λjiφ−

(

1

N

N
∑

i=1

λji

)2

= λ̄j

(

φ

(

1−
1

N

))

+
1

N

N
∑

i=1

(

λji − λ̄j
)2

≈ λ̄jφ+ ξ(λj)

where

ξ(λj) =
1

N

N
∑

i=1

(λji − λ̄j)
2, λ̄j =

1

N

N
∑

i=1

λji

If λ1i = γλ0i then

E
(

SD2
N (λ1)

)

≈ γλ̄0φ+ γ2ξ(λ0)

so

σ2
β̂,U

≈
λ̄0φ+ ξ(λ0)

Nλ̄20
+
γλ̄0φ+ γ2ξ(λ0)

Nλ̄20γ
2

=
1

Nλ̄0

(

2ξ(λ0)

λ̄0
+

(

1 +
1

γ

)

φ

)

B. Numerical discussion of hypotheses

B.1. Case of varying scale parameter φ across treatment time points

In Section 2.1 we discussed our modelling of treatment effect using a pseudo-Poisson Gamma model, and proposed

formulation (3) by which pre- and post-therapy data had a common scale parameter φ. This assumption was based on

considerations on the routine practice of therapeutic assessment using PET imaging. Here we consider a numerical analysis

to evaluate the estimation of model scale φ in a more elaborate situation in which φ0 and φ1 are function of dose τ in that

φ = a/τ , where a is a scale factor and τ is dose per unit volume. (We do not discuss the eventuality of the use of different

scanners throuhgout therapy.) This alternative model allows for the two model scales to differ as per (2), which stated for

i = 1, . . . , N that

y0i | λi ∼ G(λi/φ0, φ0)

y1i | λi ∼ G(γλi/φ1, φ1)

With this model, normalisation of raw count data by injected dose τ yields dimensionless standardized uptake values

(SUVs). Recall that the proposed estimators of therapeutic effect and associated standard error (constructions (8), (10)

and (11)) are scale-invariant, i.e. the value of the injected dose τ has no bearing on the effectiveness of the estimation.

Only φ̂ is affected by a change in τ , in the same way as Y would be. We implemented this model in simulations using

φ0 = a/τ0 and φ1 = a/τ1, where τ0 and τ1 are known, a, γ and λ are unknown. We present here a specific example where

we set τ0 = 2τ1, and with γ = .25, a = 0.5 and λ ranging quadratically between 0 and 1. A range of sample sizes N
and doses were explored, with N ∈ {500, 1000, 2000, 4000, 10000} and τ ∈ {101, 102, 103, 104, 105, 106}. Note that the
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value τ = 104 would be typical of FDG-PET data (with tissue activity measured at around 0.1 kBq/ml), lower values of τ
yielding less defined uptake information. To estimate a we used â = τφ̂, where φ̂ is derived using (5) in an adaptation of

(7) to the case of different τ values before and after treatment, to obtain

â =
1

N

N
∑

i=1

(y0iγ̂ − y1i)
2

λ̂iγ̂(γ̂/τ0 + 1/τ1)
.

For each (N, τ) experimental setting we carried out 1,000 Monte Carlo repetitions of the experiment, the results of which

are presented in Figure 9. These results indicate that estimation of a is consistent with increasing dose (τ ) and ROI size

(N ). For fixed N , estimation accuracy decreases in a quadratic fashion with τ . Estimate variability also diminishes with

1/N . This behaviour replicates the performance of the usual estimator of variability in the standard two-sample paired test.

There the usual estimator is the sample variance of the observed differences and its MSE behaves as σ4/N , diminishing

with σ2 decreasing and N increasing. Note that in the Gamma model 1/τ plays the role of σ2.

B.2. Comparison of paired estimators for scale φ with respect to size and dose

We now evaluate the two estimators of φ in a paired model given by (6) and (7) in Section 2.2. In that section we

suggested that (7) was more appropriate in a “high count” scenario (i.e. for higher doses τ ). To do this we considered

the Gamma model used in Appendix B.1, with φ0 = φ1 = a/τ , τ known, γ, λi and a unknown. A Monte Carlo

simulation was carried out for varying sample sizes (using N respectively in {500, 1000, 2000, 4000}), each with varying

τ ∈ {101, 102, 103, 104, 105, 106}, and for 1,000 repetitions of the experiment for each value (N, τ) of the experimental

setting. The results are shown in Figure 10.

In this figure the top row of boxplots indicates distributions of a-estimates obtained for the various experimental settings,

which demonstrate that a is recovered properly in this framework with φ0 = φ1. The bottom row of boxplots illustrates

how with increasing τ , the estimates (6) and (7) coincide, regardless of sample size N . The figure also demonstrates how

estimation of φ (standardised for dose) improves with increasing dose and ROI size.

C. Data simulation

A Gamma model was fitted to validation phantom data from the American College of Radiology Imaging Network

(ACRIN) Core Laboratory. Views of this dataset are provided in Figure 11. The ACRIN PET and PET/CT Scanner

Qualification is available at

http://www.acrin.org/CORELABS/PETCORELABORATORY/PETQUALIFICATION/tabid/485/Default.aspx

(last accessed December 14, 2015). These results motivate the simulation model used in Section 3, describing uptake y at

voxel x as

y(xi) ∼ G(τλi/φ, φ) (40)

with E(y) = τλ, Var(y) = τλφ, and where τ acts as a dose-normalizing constant and φ is a fixed value (the ACRIN

data typically suggests φ = 1.2). The count-rate dependent value of τ may vary with axial slice and time in dynamic

PET data. In this model voxel rates λi are counts per volume, and may be understood as a conversion of the tracer

concentration in tissue, i.e. λi = CT,i(t)Kt that we evaluate e.g. at the final time point tmax if using the summed PET

image. Here CT,i(t) denotes the concentration at voxel i, in kBq per cc (typically 103 counts per second, i.e. within the

rang 0.01 tp 1 kBq per cc) and conversion factor Kt = ∆V,i∆F,tδ(t) is used to to convert tissue activity per unit volume

into counts information, where ∆V,i ≈ (0.4)3 denotes volume of voxel i, ∆F,t denotes duration in seconds of frame t
and δ(t) = exp(− log(2) t

hlife ), dimensionless, is the decay (using e.g. hlife = 109.7 mns for FDG), i.e. the fraction of

remaining PET tracer radioactivity at time t. The proposed model was fitted to both dynamic and static (i.e. summed)

phantom data with satisfaction. For static imaging data, CT,i(t) and Kt become constant with respect to time and the only

variation is spatial, in local tracer concentration. In this setting, the dose-adjusting factor τ controls the overall level of

activity (the higher the dose, the greater the activity, and the smaller the estimation error for γ).

The Gamma model was chosen for its ability to model pseudo-Poisson characteristics as observed in PET data [31, 32],

in particular with a proportional mean–variance relationship, and its asymptotic equivalence with normality as the uptake

rate increases. The above model was fitted via maximum likelihood and Figure 12 illustrates the output of this analysis.

Validation study of the Gamma model for simulated illustrative experiments, based on the ACRIN qualification data shown

in Figure 11. Since imaged tracer activity is proportional to scanning duration, it is relevant to analyse model fitting with

respect to this parameter. PET-data distributions were therefore obtained from four different imaging frames of varying

duration (10, 30, 60 and 120 seconds) for a slice picked in the centre of the scanner. The histograms shown in Figure 12

indicate that the distribution of reconstructed PET values within the phantom slice tends to be more skewed at lower frame
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durations and more normal at larger ones, as expected. Gamma model (40) allows for this pattern, and its calibration

must reflect this principle. For each frame duration the Gamma density model fitted to the data is indicated by the red

line. Kolmogorov-Smirnov tests consistently led to failing to reject the null hypothesis of a difference between the data

distribution and the Gamma model. All our findings in this analysis are compliant with the assumption that the above

Gamma model adequately describes real PET data.

Figure 1. Top left: 2D mapping of the noiseless image response {λi}
N
i=1

used in (21). Top right: example of simulated data using {λi}
N
i=1

in (21) using γ = 1, τ = 1

(interpolated to the half-pixel). Middle row: same simulated data image as top-right, but using τ = 10 (left) or τ = 50 (right) to illustrate how τ enhances image contrast. Bottom

left: comparison of the histogram of the same simulated image with the true baseline PET dataset shown in Figure 2. Bottom right: illustration of relationship of true pre- vs

post-therapy PET data (black dots, which form a curve) and simulated sets (gray dots). The dashed line indicates the unit (y = x) line.
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Figure 2. 17 y.o. male with grade 3 osteosarcoma with metastasis at baseline, in the humerus, imaged at baseline (top, SUVmax,0 = 14.6) and mid-chemotherapy (bottom, SUVmax,1

= 8.8). The views consist in sagittal (S) and transverse (T) “slices”. The line corresponds to the ellipsoidal input ROI used for analysis.

Table 1. Characteristics of the dataset of 50 sarcoma studies, which consists of 27 female and 23 male patients, 20 bone

and 30 soft-tissue sarcoma tumors, 28 grade 3 tumors and 22 tumours less than grade 3 (1 grade 1 and 21 grade 2 tumors),

38 tumors located in a limb and 12 located in the trunc, 17 deaths, 22 progressions.

min median max

N 269 5802 50425

SUVmax,0 2.0 7.4 31.8

SUVmax,1 1.4 4.0 19.1

age 10 30 65

Table 2. Mean and standard error of estimates for extreme mis-registrations, using ∆ = (3, 3, 1), ∆ = (5, 5, 2) and

∆ = (7, 7, 3), for the experiment of Figure 6, against the reference case ∆ = (0, 0, 0).

(0,0,0) (3,3,1) (5,5,2) (7,7,3)

mean (s.e.) for γ̂ 1.0000 (0.0000) 1.0034 (0.0948) 0.9842 (0.1535) 0.9767 (0.2561)

mean (s.e.) for σ̂γ̂,P 0.0000 (0.0000) 0.0180 (0.0195) 0.0216 (0.0206) 0.0287 (0.0247)

mean (s.e.) for σ̂γ̂,U 0.0266 (0.0173) 0.0232 (0.0258) 0.0241 (0.0238) 0.0306 (0.0260)
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Figure 3. Illustrative experiment of power of one-sided tests tQP (16), testing null hypothesis H0 : β > β0 = log(0.70) versus HA : β ≤ β0. Similar tests may be used for

example for the medical assessment of partial response of the disease following treatment (assuming e.g. that metabolic response corresponds to a decrease of 30% or more in

mean activity). The output was obtained from NS = 5, 000 Monte Carlo simulations.

The solid black curve is the theoretic power of the paired test using the theoretic value σ
β̂

(9) under the Normal distribution assumption. The power of the same paired test obtained

using the Monte-Carlo average of analytic paired standard errors (10) calculated using the estimated response γ̂ and the true values for φ0 = φ1 under ideal co-registration (red,

’×’) is almost identical to it, which indicates adequacy of the proposed analytic expression for the standard error.

The empirical power for the test tQP derived using (9) for perfectly paired data (brown, ’+’) is close to this theoretic power. The slight bias is due to the estimates for φ0 (in

this example φ0 = φ1). The empirical power for tQP obtained from mis-registered data with σ∆ = 4 (green, ’o’) also remains close to the theoretic power, which illustrates our

proposal that perfect registration of the two imaging datasets is not critical in evaluating the standard error.

The blue curve marked with squares (left plot) gives the empirical power of the Monte-Carlo average naive test, using theoretic approaximation (12). The blue curve marked with

diamonds (right plot) gives the empirical power of the Monte-Carlo average naive test, using the sample-based evaluation (11).

The grey horizontal line marks the 5% significance threshold. The grey dashed vertical line indicates β0. A similar plot is obtained for empirical powers of a test based on γ rather

than β.
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Figure 4. Linear variation of the ratio σ̂γ̂,U/σ̂γ̂,∆ against magnitude c1. Here the quantities in the ratio are Monte Carlo means obtained for NS = 5, 000 repetitions using true

response γ = 0.7. The solid line shows the ideally paired case σ∆ = 0, using exact analytic expressions (9) and (12) for σ̂γ̂,U and σ̂γ̂,∆ respectively. The highest curve (brown,

’+’) is obtained using the corresponding sample-estimated standard errors (10) and (11) in the ratio, under perfect registration. The other, navy broken lines, from top to bottom,

correspond to σ∆ = 1, 3, 5 and 7. In this experiment the ratios systematically indicate a benefit in pairing. Here we used τ = 1; an increase in τ would result in an increasing

ratio σ̂γ̂,U/σ̂γ̂,∆ , which would magnify the effect of contrast illustrated here. The vertical, dashed orange line indicates the contrast used in the other experiments illustrated in

this section.

Figure 5. Distributions of the ratios σ̂γ̂,U/σ̂γ̂,∆ with respect to the typical mis-registration scale σ∆ (in voxels), obtained for NS = 5, 000 Monte Carlo simulations using true

response γ = 0.7. Here τ = 1 was used. In this experiment pairing remains beneficial even for large mis-registration scales (the boxed volumes of interest are 16×16, taken out

of simulated images of size 50×50). The straight line indicates the theoretic performance ratio (using the true φ value) in the case of perfect registration.
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Figure 6. Results of synthetic experiment described in Section 3.3.2 involving mis-registered pre-therapy 3D sarcoma PET scans, where mis-registration is introduced artificially

by mis-registering a PET scan onto itself and assessing response (hence ideally, γ̂ = 1). For each scan, the response analysis is carried out for perfectly registered sets as well

as for all mis-registered scenarios in the 3 directions (i.e. x, y and z) vary using shifts ∆ ∈ {−2, ..., 2}3 ⊂ Z
3 successively. The merit of this experiment is that it allows

testing the proposed analysis on real PET data, with realistic noise characteristics, and uptake distributions that may depart from experimental model (3). Left: distribution of γ̂

estimates for all 50 studies and all 125 scenarios, exhibiting reliability of the quantitation of therapeutic effectiveness for most cases. Right: corresponding distributions of σ̂γ̂,P

(leftmost boxplot) and σ̂γ̂,U (rightmost boxplot) for all 125 scenarios and all patient datasets. This panel is truncated above to magnify comparison between distributions of

paired and unpaired quantitations; in this experiment we found that the 99th quantiles for these were respectively 0.0552 and 0.0959 (with resp. max(σ̂γ̂,P ) = 0.3311 and

max(σ̂γ̂,U ) = 1.0260).

Figure 7. Left: distribution of observed ratios σ̂γ̂,U/σ̂γ̂,P for the 50 sarcoma studies; pairing was helpful in evaluating the assessment standard error for all but one study (i.e.

98% of the dataset; we observed σ̂γ̂,U/σ̂γ̂,P = 0.967 for the one case yielding a smaller standard error for the unpaired assessment–see Section 4.2). Right: distribution of

values of the paired standard errors for our dataset; the order of magnitude of the measured quantity suggested it has practical utility for our dataset (with σ̂γ̂,P < 2% for 86%

of studies, and σ̂γ̂,P > 4% for 4% of cases). A correlation of 0.986 was observed between the collections of values for σ̂γ̂,U and σ̂γ̂,P , confirming that they are qualitatively

comparable.
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Table 3. Area Under the ROC Curve (AUC), Value of the Likelihood Ratio (LR) and associated p-value obtained by

univariate Cox survival analysis for OS and PFS. Variables are ordered by decreasing level of LR for OS. Bold p-values

indicate significance at the 5% level. Other values in bold indicate best performance.

OS PFS

Variable AUC LR p-value AUC LR p-value

%SUVmean(=γ̂ − 1) 76.8 4.450 0.005 74.0 4.994 0.002

%SUVmax 75.1 3.047 0.011 71.5 2.745 0.016

%SUVpeak 75.9 2.902 0.014 70.6 2.400 0.024

tQP 67.9 1.580 0.091 63.3 1.574 0.089

tQP,u 69.3 1.435 0.118 63.8 1.483 0.108

site 58.6 1.205 0.103 61.0 2.334 0.022

t-test 64.2 0.980 0.172 60.7 0.851 0.203

SUVmax0 58.2 0.304 0.408 51.2 0.044 0.762

age 53.8 0.299 0.443 50.3 0.006 0.912

σ̂γ̂,P 62.0 0.180 0.594 63.5 0.441 0.428

SUVpeak0 57.4 0.135 0.588 51.5 0.003 0.939

σ̂γ̂,U 58.5 0.103 0.672 62.7 0.329 0.471

SUVmean0 56.7 0.091 0.677 62.0 0.534 0.324

grade 52.3 0.012 0.875 55.4 0.127 0.613

gender 50.8 0.006 0.911 58.6 0.512 0.320

Table 4. Multivariate Cox regression results for OS and PFS for the model selected on the basis of minimized AIC. The

symbols +, *, ** and *** correspond to p-values below 0.1, 0.05, 0.01 and 0.001 respectively. C indicates concordance

for the model, i.e. the proportion of correct predictions from the model for this dataset.

OS (C = 0.79) PFS (C = 0.75)

Variable Hazard Ratio 95% C.I. Hazard Ratio 95% C.I.

age 0.42 [0.21;0.83]* 0.81 [0.46;1.42]

site 0.25 [0.08;0.83]* 0.18 [0.05;0.57]**

γ̂ − 1 14.18 [3.34;60.20]*** 6.23 [2.18;17.82]***

tQP 0.17 [0.05;0.59]** 0.32 [0.13;0.78]*

tQP× age 2.06 [1.04;4.05]* 1.51 [0.91;2.51]

Likelihood Ratio test LR = 8.30, p-value = 0.0157* LR = 5.79, p-value = 0.0553+
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Figure 8. Kaplan-Meier curves for OS (left) and PFS (right) for the model used in Table 4 with covariates age, site, γ̂ − 1, tQP and tQP×age. In each plot the solid blue curves

correspond to the model that includes tQP , and the dashed red curves, to the model without this quantitation. Separation between low-risk (top curves) and high-risk (lower curves)

patients obtained using the full model is found to be statistically significant at the 0.5% level (p = 0.0018 for OS, p = 0.0021 for PFS). Note that the same separation between

high- and low-groups using the reduced model (i.e. without tQP and tQP×age) is also significant, at a higher significance level (p = 0.0198 for OS and p = 0.0194 for PFS).

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

0.
25

0.
35

0.
45

0.
55

τ (10^)

D
is

tr
ib

ut
io

n 
of

 a
−e

st
im

at
es

0.
25

0.
35

0.
45

0.
55

N=500 N=1,000 N=2,000 N=4,000 N=10,000

Figure 9. Distributions of estimates of a in a dose-controlled experiment, where φ0 = a/τ0 and φ1 = a/τ1 for known doses τ0 and τ1. Here we set τ0 = 2τ1.

This Monte Carlo simulation demonstrates that accurate estimation of model scale is achieved in a model where different scales are allowed the pre- and post-therapy

uptake samples. The horizontal green broken line indicates the true value of a. The five groups of boxplots correspond to different sample sizes, with respectively N ∈

{500, 1000, 2000, 4000, 10000}.
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Figure 10. Top: distributions of estimates of a = 0.5 (horizontal dashed line) in a simulation framework similar to that of Figure 9 but where φ0 = φ1 , i.e. τ0 = τ1. In each

sample size grouping N ∈ {500, 1000, 2000, 4000}, Monte Carlo distributions are obtained for varying value of τ ∈ {101, 102, 103, 104, 105, 106}. Bottom: ratio of

estimates of φ obtained from paired constructions (6) and (7). A ratio of 1 (dashed line) indicates equivalence between the two estimators. These results suggest that estimator (7)

tends to yield greater values than (6) especially at low doses, but that the two estimators become equivalent at higher doses, irrespective of sample size N . The case τ = 104

would correspond to a typical dose used in routine practice.
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Figure 11. View of the ACRIN phantom dataset used for the validation study of the Gamma model, presented in Appendix C.

Figure 12. Validation study of the Gamma model for simulated illustrative experiments, based on the ACRIN qualification data whown in Figure 11. The histograms are obtained

from four different frames of varying duration (activity is proportional to scan duration) for a slice in the centre of the scanner. The histograms show the distribution of reconstructed

PET values within the phantom slice. The Gamma density model fit to the data is indicated by the red line. In each case the Kolmogorov-Smirnov test finds no significant difference

between the data and the Gamma model. This is typical.
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