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Abstract
In many application problems, including physical security and wildlife conservation, infrastructure
must be configured to ensure or deny paths between specified locations. We model the problem
as sub-graph design subject to constraints on paths and path lengths, and propose length-bound
reachability constraints. Although reachability in graphs has been modelled before in constraint
programming, the interaction of positive and negative reachability has not been studied in depth. We
prove that deciding whether a set of positive and negative reachability constraints are satisfiable is NP
complete. We show the effectiveness of our approach on decision problems, and also on optimisation
problems. We compare our approach with existing constraint models, and we demonstrate significant
improvements in runtime and solution costs, on a new problem set.
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1 Introduction

Many application problems require reasoning about reachability, including road network
design [10], in-building access control [19, 16] and ecosystem management [6]. In each case,
paths must be ensured or denied between sets of locations. Often there are further constraints
on the lengths of those paths. For example, in buildings, from every location there must exist
an accessible path to a fire escape of less than a specified limit [9], while physical security
may require protected assets to be kept at least a minimum distance away from unauthorised
users [11]. In some cases, solutions may need to be dynamic, responding to movements
of either assets, hazards, or users in order to maintain the reachability requirements. In
each case, the problem can be considered as sub-graph design, enabling or disabling edges
in a larger graph. Some applications have optimisation criteria, including minimising the
number of edges (e.g. maintenance cost), or minimising sums of path lengths (e.g. expected
travel distance). In this paper, we model the problems in constraint programming, including
constraints on reachability and on path length.

Constraint-based graph design for reachability has been studied before [21, 20, 8, 4, 1],
including constraints on the costs of paths [22, 5]. However, these papers focus on positive
constraints, requiring paths between pairs of nodes. Little attention has been paid to the
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interaction of positive and negative constraints. The interaction of the two makes the
problem significantly more complex, and we show that determining whether a graph contains
a subgraph that satisfies mixed positive and negative reachability constraints is NP-complete.
To incorporate the restrictions on path length, we introduce length-bound reachability
constraints, and to support large sets of constrained pairs, we implement propagation based
on upper and lower bounds on all-pairs shortest paths. We evaluate our constraints on
random instances based on road networks, and consider both decision and optimisation
problems. We compare to the Dreachable constraint [4], and we show significantly faster
runtimes for decision problems and orders of magnitude improvement in costs for time-limited
optimisation problems.

In the remainder of the paper, we briefly summarise related work, and we then establish
the problem complexity of mixed positive and negative reachability sub-graph design. We
describe the length bound reachability constraint, including transitive closure and dominators.
Finally, we present the empirical evaluation, showing the behaviour of different versions of
the constraints on random problems.

2 Related Work

Reachability constraints [20, 4] enforce a graph variable to specify a graph that contains paths
between designated vertices. Path constraints [22, 7, 4] enforce a graph variable to represent a
path in the graph between two specified vertices, including in some cases bounds on the path
lengths [22, 5]. Our interest is in being able to express both positive and negative reachability
– that is, to deny connections between some vertex pairs, while enforcing connections between
others. Reachability can be expressed in terms of path constraints by having a path constraint
for each positive pair, and a negated path constraint for each negative pair. However, having
one constraint for each reachability pair leads to redundant computation as the constraints
do not share information on their selected paths. For instance, if a path constraint enforcing
reachability from i to j discovers that i must reach k, the other path constraints cannot take
advantage of that knowledge because they only communicate via the decision variables. That
is, not only are the space and time complexity of path constraints higher, but the level of
pruning achieved is much less than could be expected from a single global constraint that
incorporate all positive and negative reachability constraints on the same graph. One-to-many
(e.g., [8, 4]) and many-to-many (e.g., [20, 1]) approaches have been proposed to mitigate
redundancy and improve pruning when handling several reachability constraints. However,
their focus is still on positive reachability constraints rather than on the combination of both
positive and negative reachability constraints. We are not aware of any research handling
simultaneous positive and negative reachability constraints.

3 Positive and Negative Reachability Constraints

In this section we describe the input and the output of the problems we study, and then
establish the complexity of the core problem.

3.1 Input and Output
Input. We have the following input:

A directed graph G = (V, E), where each edge e ∈ E has an integer cost ec
1.

1 We use the terms cost and length interchangeably.
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A set of positive reachability constraints (PRC). A prc ∈ PRC is represented with a
tuple (i, j, λ) meaning that there is at least one path from i to j in the resulting graph
whose cost is less than or equal to λ.
A set of negative reachability constraints (NRC). An nrc ∈ NRC is represented with a
tuple (i, j, λ) meaning that there is no path from i to j in the resulting graph whose
length is less than λ.

In what follows we may omit λ in a positive reachability constraints if there is no bound
on the length of the path from i to j. Similarly, we may omit it in a negative reachability
constraint if all paths from i to j are to be denied.
Output. We consider three possible outputs:

Obj 1. Find G′ subgraph of G where all prcs and nrcs are respected.
Obj 2. Find G′ subgraph of G where all prcs and nrcs are respected, and the sum of
the costs of edges of G′ is minimised.
Obj 3. Find G′ subgraph of G where all prcs and nrcs are respected, and the sum of
the costs of the shortest paths in G′ connecting the vertices in the prcs is minimised.

3.2 Complexity of length-bound reachability constraint problems
In this section section we discuss the complexity of the decision problems involved in
length-bound reachability constraint problems.

3.2.1 Positive and negative reachability constraints
If we only have positive reachability constraints (i.e., NRC = ∅), checking whether the set of
reachability constraints in PRC is satisfiable is straightforward: we just just need to check
the existence of a path for every positive reachability constraint. The case where we only
have negative reachability constraints is trivial since a totally unconnected graph would
satisfy all of them. However, a mix of positive and negative reachability constraints is more
challenging. Let us formally define the problem as follows:

▶ Definition 1 (The Positive and Negative Reachability Constraints problem (PNRC )). Given
a directed graph G, a set of unbounded positive reachability constraints PRC, and a set of
unbounded negative reachability constraints NRC, is there a sub graph G′ of G that satisfies
all constraints in PRC and NRC?

▶ Theorem 2. PNRC is NP complete

Proof. First, we show PNRC is in NP. We use G′ as the certificate, and run Floyd Warshall [3]
on it to get the lengths of all-pairs shortest paths. If there is no path between two vertices,
it returns ∞ as the length. For each (s, t) ∈ PRC , check that the length of their path is less
than ∞; for each (p, q) ∈ NRC , check that the length is equal to ∞. This is polynomial.

We now give a reduction from 3SAT [12] to PNRC. We map a SAT instance to a directed
graph (following the approach in [15]) with reachability constraints. We start with a SAT
instance

∧n
i=1 xi1 ∨ xi2 ∨ xi3, where each xij is a literal (i.e., it is either a variable or a

negation of a variable), and construct a directed graph G = (V, E), where the vertices are
associated with levels from 0 to n + 1.

1. Create vertices s, t ∈ V . s is the only vertex at level 0. t is the only one at level n + 1.
2. Now create a vertex for each literal, add them to V, and assign the vertices for literals of

clause i to level i. That is, the three vertices of level i are xi1, xi2, and xi3.
3. Add to E a directed edge from s to each vertex of level 1.

CP 2021
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4. For each level i from 1 to n − 1, add to E an edge from each vertex of level i to each
vertex of level i + 1.

5. Add to E a directed edge from each vertex of level n to t.

To ensure that the SAT instance is satisfied, we add a positive reachability constraint
from s to t. A path from s to t represents an assignment of values to the Boolean variables
in the literals represented by the vertices in the path. That is, it assigns 1 to the Boolean
variable if the literal is positive and 0 otherwise. A path from s to t satisfies all the clauses,
and it is consistent if it does not assign two different values to the same variable. To ensure
that the assignment to the SAT instance is consistent we add negative reachability constraints
as follows. For any two vertices xij and xkl (i < k) representing literals that negate each
other, we must ensure that one is not reachable from each other. Since the directed edges
only ascend the levels, we only need to add (xij , xkl) to NRC .

We now show that the SAT instance is satisfiable if and only if there is a subgraph of G
that satisfies the constraints. If the SAT instance has a solution, then from it pick one TRUE
literal in each clause. These literals define a path from s to t in the graph (so satisfies the prc
in the PNRC instance). We select those vertices (literals) and edges as G′. There cannot be
any conflicting literals selected (since it is a 3SAT solution), and so no nrc can be violated,
and so the PNRC instance has a solution. If the PNRC instance has a solution, there is an
s-t path. This path has one TRUE literal in each clause. The graph obeys the nrcs, and we
have not added reachability, so there can be no conflicting literals in the path. Every 3SAT
variable not yet determined is then set to 0. This is a solution to the SAT instance.

Finally, we show that the construction is polynomial. If there are m clauses in the 3SAT
instance, then there are n = 3 ∗ m occurrences of literals. Each clause is processed in turn,
building each layer in the graph, with one vertex per occurrence of a literal. For each vertex,
we add incoming edges from the vertices in the previous layer, which is 3 + 3 ∗ (n − 3) + 3
edges. We add one prc for (s, t). For the nrcs, each time we add a vertex to the graph, we
sweep through the previous clauses and their literals. For each previous literal that negates
the current one we add an nrc between the corresponding previous vertex and the current
vertex. That requires O(n2) checks and additions of nrcs. ◀

3.2.2 Positive and negative reachability constraints with bounds on the
length of the paths

As the problem is already NP-complete without considering bounds on the lengths of the
paths, it follows that it is also NP-complete when considering bounds. Note, however, that
what makes the problem hard is the interaction between positive and negative constraints.
If NRC = ∅, the decision problem reduces to checking the lengths of the shortest paths for
every pair of vertices in PRC . As mentioned in the previous section, we are also interested in
minimising the sum of the costs of the selected edges and minimising the sum of the costs of
the paths connecting the vertices in PRC . Both optimisation problem are clearly NP-Hard
as both involve solving decision problems that are NP-complete.

4 CP approaches

In this section we present three approaches to model and solve the problem. G refers to the
input graph, and G′ refers to the resulting graph. In each model we separate the constraints
into two groups: essential and redundant. Essential constraints are required for the solution
to be sound. Redundant constraints are added to reduce the search space.
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4.1 Common variables
The models presented have the following common variables:

We associate a Boolean variable bee with edge e. bee = 1 means e ∈ G′

Each pair of vertices (i, j) is associated with a Boolean variable br . br ij = 1 means i

reaches j in G′

We have an integer variable epe per edge e. This variable represents the penalty associated
with the edge, which is dependent on the selection of the edge. More precisely, epe is
either equal to ec if ec ∈ G′ or ∞ if ec ̸∈ G′.
Each pair of vertices (i, j) is associated with an integer variable pc, which represents the
cost of the shortest path from i to j. That is, pcij is either equal to the shortest path
cost from i to j in G′ or ∞ if there is no path in G′ going from i to j.

4.2 The length-bound reachability constraint (LBRC)
All constraints are essential in this approach. This approach relies on the connection between
the reachability of vertex j from a vertex i and the shortest path from i to j. If there is no
path from i to j then we define the length of the shortest path to be ∞.

The PRC constraints are modelled in terms of the pc variables:

(i, j, λ) ∈ PRC ⇒ pcij ≤ λ (1)

The NRC constraints are modelled in terms of the pc variables:

(i, j, λ) ∈ NRC ⇒ pcij ≥ λ (2)

The cost of the shortest path to a reachable node is less than ∞:

br ij = 1 ⇔ pcij < ∞ (3)

The penalty of an edge e is either the cost of the edge, if the edge is selected, or ∞:

beij = 1 ⇔ epe = ec (4)

The cost of the shortest path from i to j must be the edge (i, j) or, for some in-neighbour
x of j, a shortest path from i to x followed by the edge (x, j):

pcij = min({ep⟨i,j⟩} ∪ {pcix + ep⟨x,j⟩|x ∈ in(j)}) (5)

where in(j) refers to the incoming neighbours of j, and for each pair (i, j), we have
1 + |in(j)| cost variables. This maintain bounds on the costs of the shortest paths, and as
edges are denied or enforced, the bounds are updated and propagated.

We define the length-bound reachability constraint (LBRC) as the constraint that keeps
variables be, ep, pc, and br consistent in the way described above. More formally,

▶ Definition 3.

LBRC (be, ep, pc, br) ≡ (i, j, λ) ∈ PRC ⇒ pcij < λ ∧
(i, j, λ) ∈ NRC ⇒ pcij ≥ λ ∧
br ij = 1 ⇔ pcij < ∞ ∧
beij = 1 ⇔ epe = ec ∧
pcij = min({ep⟨i,j⟩} ∪ {pcix + ep⟨x,j⟩|x ∈ V })

CP 2021
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Figure 1 A simple directed graph with vertex 4 dominating vertex 7 on paths from vertex 1.

4.3 The length-bound reachability constraint with Transitive closure
(LBRC+TC)

Consider the graph in Figure 1, and assume that we have:

br17 = 0 ∧ br14 = 1 ∧ br47 = 1

These reachability constraints are unsatisfiable. However we cannot detect that unsatis-
faction by pure propagation with LBRC. Notice that:

br14 = 1 ⇒ pc14 < ∞
⇒ (ep12 + ep24 < ∞) ∨ (ep13 + ep34 < ∞)

Similarly, we have that:

br47 = 1 ⇒ pc47 < ∞
⇒ (ep45 + ep57 < ∞) ∨ (ep46 + ep67 < ∞)

And we also have that:
br17 = 0 ⇒ pc17 = ∞

⇒ pc15 + ep57 = ∞
⇒ pc16 + ep67 = ∞

However, we cannot go any further since both pc15 and pe57 can be set to ∞ (i.e., we
have a disjunction). We have the same situation with pc16 and pe67 . The propagators
behind these sum constraints will just wait until one of the variables become less than ∞ to
set the other variable to ∞, or until one of the variables becomes ∞ to declare entailment.

In order to address this lack of propagation, in addition to the essential constraints of
LBRC we add redundant constraints implementing the transitive closure of the output graph:

br ij = 1 ∧ br jk = 1 ⇒ br ik = 1 (6)

Taking into account these redundant constraints, we have that br17 = 0 implies br14 =
0 ∨ br47 = 0 , which is in direct contradiction with br14 = 1 ∧ br47 = 1 .

4.4 The length-bound reachability constraint with Dominators
(LBRC+Dom)

Consider again the graph in Figure 1. Suppose now that we have:

br17 = 1 ∧ br14 = 0

These two constraints are clearly unsatisfiable given the structure of the graph. However,
we cannot detect that unsatisfiability just by pure propagation with LBRC+TC. To do that
we need to take into account that all paths from vertex 1 to vertex 7 go through vertex 4.

In this approach we use a constraint from [20], which relies on the notion of dominators:



L. Quesada and K. N. Brown 46:7

▶ Definition 4. Given a directed graph G = (V, E), and vertices i, j, k ∈ V , j is a dominator
of k with respect to i if all paths from i to k in G go through j

For Figure 1 we see that vertex 4 is a dominator of vertex 7 with respect to vertex 1.

▶ Definition 5. The DomReach(be, dom, br) constraint holds iff br represents the transitive
closure of G′,the graph represented by be, and dom is a 3D array representing the dominators
of G′, i.e., domijk = 1 iff j is a dominator of k with respect to i in G′.

We implemented the DomReach constraint following the same ideas of [20], with two
main differences. First, we omit the pruning rules associated with the relation between the
graph and its transitive closure, as we achieve this through the implementation of Equation 5.
Second, we maintain dominators from all sources. In [20], the focus is on computing a single
path with mandatory nodes, but in our case reachability constraints could involve all possible
sources, which justify maintaining dominators from all sources.

We replace Constraint 6 in LBRC+TC with the following constraints:

One DomReach constraint to enforce the transitive closure and the dominator relation:

DomReach(be, dom, br) (7)

For all i, j, k:

(domijk = 1 ∧ br ik = 1 ) ⇒ (brij = 1 ∧ br jk = 1 ) (8)

With these redundant constraints, we have that br17 = 1 and dom147 = 1 implies
br14 = 1 , which contradicts br14 = 0 .

5 Dreachable approach

We can also model unbounded positive reachability constraints using Dreachable [4].

▶ Definition 6. The Dreachable(G, s, G∗) constraint holds iff G∗ is a subgraph of G such
that all vertices and edges of G∗ are reachable from s in G∗.

The (unbounded) PRC constraints are modelled in terms of the br variables:

(i, j, _) ∈ PRC ⇒ br ij = 1 (9)

The (unbounded) NRC constraints are modelled in terms of the br variables:

(i, j, _) ∈ NRC ⇒ br ij = 0 (10)

One Dreachable constraint per source in PRC is posted:

∀i ∈ sources(PRC ) : Dreachable(G, i, Gi) (11)

where Gi is equal to the projection of G′ (the output graph) on the vertices that are
reachable from i, i.e., G′[{j|br ij = 1}].
The transitive closured is enforced:

br ij = 1 ∧ br jk = 1 ⇒ br ik = 1 (12)

Note that in this model the transitive closure constraints are essential to ensure that the
negative reachability constraints are respected.

In [4] it is stated that dominators are used in Dreachable to deal with cases like the one
in Section 4.4, so this approach should achieve the same level as pruning of LBRC+Dom.

CP 2021
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6 Empirical Evaluation

We performed our experiments on machines with Intel(R) Xeon(R) CPU with 2.40GHz
running on Ubuntu 18.04. The version of Minizinc [17] used in the experiments is 2.5.3, which
comes with Gecode [13] 6.3.0 and Chuffed [2] 0.10.4. LBRC, LBRC+TC and LBRC+Dom
were implemented directly in Gecode 6.2.0. However, LBRC was also implemented in Minizinc
to be able to compare the same model in both Chuffed and Gecode.

Figure 2 An instance of 40 vertices, 14 positive reachability constraints (coloured in green) and 1
negative reachability constraint (coloured in red).

6.1 Instances
The graphs considered in the evaluation are planar graphs extracted from a real-world road
network generated using the GIS-F2E tool [14]. The generated road network has 137626
nodes and 194996 (undirected) links. From this network we randomly select subgraphs
by choosing a random node and running Breadth First Search from that node, stopping
the search when reaching the specified number of nodes for the subgraph. The approaches
evaluated are based on directed graphs so the undirected graphs are converted to directed
graphs by adding symmetric edges. One instance is shown in Figure 2. In what follows we
use G to refer to the directed version of the generated road network.

The instances are characterised in terms of the following features:
size: the number of nodes of the graph. The set of sizes considered is {20, 24, 28, 32, 36, 40}.
We randomly select a subgraph of size vertices from G. For each size, we generate 10
graphs for the experiments in Figures 3, 4 and 5, and 100 for the other experiments.
Cs: the percentage of selected constraints. For each graph we randomly select Cs% of
the possible pairs. Each pair denotes a positive or negative reachability constraint.
(pos, neg): the ratio of positive and negative reachability constraints. For each set of
selected reachability constraints, pos% are labelled as positive and neg% as negative.
(pb, nb): the bounds on the positive and negative reachability constraints. Let maxp be
the maximum of the lengths of the shortest paths between the positive reachability pairs.
All positive reachability constraints are subject to an upper bound of maxp×(1 +pb/100 ).
maxn is the maximum of the lengths of the shortest paths between the negative reachability
pairs, and all negative reachabililty constraints have a lower bound of maxn×(1 +nb/100 ).
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Figure 3 Performance of LBRC in Gecode. Instances are classified as satisfiable (sat), unsatisfiable
(usat), and unknown (unk).

For example, consider the case where size = 40 , Cs = 1 , and (pos, neg) = (50 , 50 ), with
no length bounds. There are 40 × 39 = 1560 possible pairs. We randomly choose 1% of the
pairs, which amounts to 16 (after rounding up). Of these 16 pairs, 8 (50%) are labelled as
positive reachability constraints, and 8 are labelled as negative reachability constraints.

The first set of experiments, whose results are shown in Figures 3 and 4, correspond
to using LBRC on all the instances with both Gecode and Chuffed via Minizinc. We were
interested in real-time solutions for our application, therefore we set the objective to the
minimisation of path lengths (Obj 3), and the timeout to 120 seconds. These experiments let
us assess the role that the features described play in the difficulty of solving the instances. A
high Cs value usually led to trivially unsatisfiable instances, so we focused on small values.
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Figure 4 Performance of LBRC in Chuffed. Instances are classified as satisfiable (sat), unsatisfiable
(usat), and unknown (unk).

The behaviour of Gecode was extreme: in most cases either it solved the instances very
quickly or did not solve them at all. In particular, unsatisfiable instances are challenging for
Gecode. Chuffed was better at dealing with the unsatisfiable instances, but its performance
was inferior when dealing with satisfiable cases.

We note that a small number of negative reachability constraints are enough to create
challenging instances. For example, when size = 40 , Cs = 1 , and (pos, neg) = (95 , 5 ), there
is only one negative reachability constraint, but most of the instances in this class remained
unsolved. We focus on this case in further experiments.
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(b) Chuffed.

Figure 5 Performance of LBRC on length-bound instances. Instances are classified as satisfiable
(sat), unsatisfiable (usat), and unknown (unk).

In Figure 5 we show the impact of the path-length bounds on the runtime for the instances
of size = 40 , Cs = 1 , and (pos, neg) ∈ {(5 , 95 ), (25 , 75 ), (50 , 50 ), (75 , 25 ), (95 , 5 )}. For
both pb and nb we consider values in {0, 20, 40, 60, 80, 100}, where pb = 0 means that the
positive constraint is unbounded, and nb = 0 means that all paths are denied. While there
is not much change when varying nb, we observe that the instances tend to get harder when
increasing pb.

6.2 Performance of the different LBRC versions
In this section we consider the different versions of the length-bound reachability constraint:
LBRC, LBRC+TC, and LBRC+Dom. We created 100 graphs of 40 vertices, and for each
graph we generated an instance of this class (i.e., where Cs = 1 , and (pos, neg) = (95 , 5 ))
without length bounds. Figure 2 shows one of these instances. As the purpose is to assess the
additional pruning obtained by the use of explicit transitive closure and dominators, we focus
on the decision problem. The decision variables are the be variables as the determination
of these variables fully determines the other variables. For each of the approaches we are
considering two variable orderings: setting the variable to its minimum value in the domain
first (min), and setting the variable to its maximum value in the domain first (max). Notice
that min corresponds to excluding the corresponding edge from the set of edges of the output
graph and max to adding it to the set. In what follows we refer to the approaches obtained
when considering the variable orderings as LBRCmin, LBRCmax, LBRCtcMin, LBRCtcMax,
LBRCdomMin and LBRCdomMax.

The results of the tests are shown in Figure 6, where Figure 6a refers to the running
time, Figure 6b to the number of failures, and Figure 6c to the number of instances that
the approach could not solve. The first thing to remark is the gain in pruning when we use
LBRC+TC and LBRC+Dom, which positively affects the running time. We also observe
that LBRC and LBRC+TC are more sensitive to the variable ordering than LBRC+Dom.
Better results are observed with max when using LBRC+TC and LBRC+Dom. We believe
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Figure 6 Comparing different versions of the length-bound reachability constraint. The box plots
in Figures 6a and 6b show median, inter-quartile range (IQR), bounds of +/− 1.5*IQR beyond the
box, and outliers, using the DataFrame.boxplot function of Pandas[18].

this is because there is more opportunity for the transitive closure rule to play a role as
we have more edges. As LBRC does not have the transitive closure pruning, adding edges
first actually leads to poorer performance as there are more chances of getting trapped in
unsatisfiable cases that are easily detectable by the transitive closure rule. When comparing
the performance of the approaches using min we see that LBRCtcMin is almost as good
as LBRCmin and LBRCdomMin performs much better than both of them, in particular if
we look at the number of unsolved instances (see Figure 6c). The advantage of reasoning
about dominators is clear, since vertices may become dominators when we take the decision
of removing an edge. As discussed in the next section, min is useful when optimising the
sum of the cost of the edges of the output graph, so it is important to perform well with min.
Similarly, max brings us closer to the optimal solution when minimising the sum of the costs
of the paths since the more edges the more chances to connect vertices through the shortest
paths. On the easy instances, LBRC perform better than the other two approaches since the
overhead of the transitive closure and dominator pruning is not justified. As LBRC+Dom
is the best version of the length-bound reachability constraint, we restrict attention to this
version for the remaining experiments.

6.3 LBRC+Dom vs Dreachable

We now compare our LBRC+Dom approach against the Dreachable approach of Section 5.
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Figure 7 LBRC+Dom vs Dreachable - Decision benchmarks on positive and negative reachability
constraints.

6.3.1 Positive and Negative Reachability Constraints
We revisit the instances from Section 6.2. We consider both the decision problem (see
Figure 7) and the minimisation of the sum of the costs of the edges of the output graph (see
Figure 8). In these experiments we also considered the default search strategy for Chuffed
(DreachDef), which is not documented, but led to better results.

The results of the decision problem show that our LBRC+Dom approach is able to find
solution faster because we are failing much less. Even though [4] states that dominators are
used in the implementation of the Dreachable constraints, it is not clear that is happening
in the version provided by Minizinc. Still it is important to mention that DreachMax did
manage to close slightly more instances than both LBRCdomMin and LBRCdomMax (see
Figure 7c).

The results of the optimisation problem follow the same trend observed in the decision
case with respect to the number of failures. However, both approaches ended timing out
in most of the cases. Despite that, LBRC+Dom approach managed to get better costs in
general. This was mostly due to the good performance observed when using min, which
tends to minimise the sum of the costs of the edges by selecting fewer edges. It is important
to note that in Chuffed we are using both restarts and nogood learning, while in Gecode we
have disabled those options. We expect to improve our results even further when considering
these options in Gecode.

6.3.2 Positive Reachability Constraints
As mentioned before, if there is no negative reachability constraint, satisfying a set of positive
reachability constraints is straightforward. However, if there is an upper bound on the
sum of the costs of the selected edges, the problem is NP-complete [1]. This makes the
corresponding optimisation problem, i.e., satisfying the set of positive reachability constraints
while minimising the sum of the costs of the selected edges, challenging.
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Figure 8 LBRC+Dom vs Dreachable – Optimisation benchmarks on positive and negative
reachability constraints.
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Figure 9 LBRC+Dom vs Dreachable – Optimisation benchmarks on positive reachability con-
straints.

We have created a new set of instances following the same procedure as above, except
instead of randomly selecting a set of pairs, we follow the approach of [1] and randomly select
a subset of vertices that are to be fully connected, i.e., for each pair of vertices in this set
there should be a path in both directions. Figure 9 shows the results for 100 graphs of 20
vertices. In each case we randomly selected 8 vertices to be fully connected.

The LBRC+Dom approach is outperformed by the Dreachable approach in these instances.
Not only does it prove optimality for most of the instances, but it has significantly lower
runtime. The main issue with the LBRC+Dom approach has to do with proving optimality.
As it can be observed in Figure 9b, the costs obtained by the LBRC approach are very close
to the ones obtained by the Dreachable approach but it spends most of the time trying to
prove optimality.

7 Conclusions and Future Work

Many practical applications impose positive and negative constraints on reachability, further
enhanced with upper and lower bound on the minimum cost paths between pairs of nodes.
We have shown that the interaction between positive and negative reachability constraints
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leads to complex problems. We have proposed three approaches to modelling these problem
as a global constraint on graph variables, which differ on the level of pruning achieved,
and demonstrated empirically that the additional pruning plays a key role in solving the
problems. We have also studied the dependency between the level of pruning and the search
strategy and concluded that the convenience of the search strategy depends on the level of
pruning. We have compared our best approach with an existing state of the art approach
and shown that when both positive and negative reachability constraints are present, our
best approach, incorporating propagation on the transitive closure and dominators, allows
significantly lower runtimes, and significantly lower costs for time-limited solving. On the
other hand, for problems with only positive reachability constraints, the existing Dreachable
constraint is significantly faster.

We believe the improvement offered by the new constraint can be increased by incorpor-
ating nogood learning techniques and restarts. Our primary focus in this paper has been on
the interaction of positive and negative reachability constraints. Future work will focus on
pruning rules to get tighter bounds for the cost, to make the new constraint more competitive
in cases where the complexity is driven by the bound on the cost.
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