

Title	Investigation of the gut microbiome, bile acid composition and host immunoinflammatory response in a model of azoxymethane-induced colon cancer at discrete timepoints
Authors	Keane, Jonathan M.;Walsh, Calum J.;Cronin, P.;Baker, Kevin J.;Melgar, Silvia;Cotter, Paul D.;Joyce, Susan A.;Gahan, Cormac G. M.;Houston, Aileen M.;Hyland, Niall P.
Publication date	2022-11-23
Original Citation	Keane, J.M., Walsh, C.J., Cronin, P., Baker, K., Melgar, S., Cotter, P.D., Joyce, S.A., Gahan, C.G.M., Houston, A., and Hyland, N.P. (2022) 'Investigation of the gut microbiome, bile acid composition and host immunoinflammatory response in a model of azoxymethane-induced colon cancer at discrete timepoints', British Journal of Cancer, https://doi.org/10.1038/ s41416-022-02062-4.
Type of publication	Article (peer-reviewed)
Link to publisher's version	https://doi.org/10.1038/s41416-022-02062-4 - 10.1038/ s41416-022-02062-4
Rights	© The Author(s),This version of the article has been accepted for publication, after peer review and is subject to Springer Nature's AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1038/ s41416-022-02062-4.
Download date	2025-05-30 06:31:44
Item downloaded from	https://hdl.handle.net/10468/13895

University College Cork, Ireland Coláiste na hOllscoile Corcaigh

Supplemental Methods:

Faecal 16S rRNA Gene Sequencing:

Amplicon Sequencing: The V3-V4 variable region of the 16s rRNA gene was amplified from each extracted DNA sample according to the 16S metagenomic sequencing library protocol (Illumina, Sweden). Initially, the template DNA was amplified using primers specific to the V3-V4 region of the 16s rRNA gene overhang (5'-3': 5'-3': which also incorporates the Illumina adaptor tcgtcggcagcgtcagatgtgtataagagacagcctacgggnggcwgcag; gtctcgtgggctcggagatgtgtataagagacaggactachvgggtatctaatcc. Each PCR reaction contained 2.5µl DNA template, 5µl forward primer (1µM), 5µl reverse primer (1µM) (Sigma, Ireland) and 12.5µl Kapa HiFi HotStart ReadyMix (2X) (Kapa Biosystems, London, United Kingdom). The template DNA was amplified under the following PCR conditions: 95°C for 3 min (initialisation); followed by 25 cycles of 95°C for 30 sec (denaturation), 55°C for 30 sec (annealing), 72°C for 30 sec (elongation); followed by a final elongation period of 5 minutes. A negative control reaction whereby the DNA template was replaced with PCR grade water was employed to confirm lack of contamination, and PCR products were visualised using gel electrophoresis (1X TAE buffer, 1.5% agarose gel, 100V) post PCR reaction. Successful amplicons were then cleaned using the AMPure XP purification system (Labplan, Dublin, Ireland). A second PCR reaction was then performed using the previously amplified and purified DNA as the template. Two indexing primers (Illumina Nextera XT indexing primers, Illumina) were used per sample to allow all samples to be pooled, sequenced and subsequently identified. Each reaction contained 25µl Kapa HiFi HotStart ReadyMix (2X), 5µl template DNA, 5µl index 1 primer (N7xx), 5µl index 2 primer (S5xx) and 10µl PCR grade water. PCR conditions were the same as previously described with the samples undergoing just eight cycles instead of 25. PCR products then underwent the same electrophoresis and cleaning protocols as described above. Samples were then quantified using the Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA, USA) in conjunction with the broad range DNA quantification assay

kit (Biosciences, Dublin, Ireland). All samples were then pooled to an equimolar concentration and the pool underwent a final cleaning step. The quality of the pool was determined using the Agilent Bioanalyser prior to sequencing. The sample pool was then denatured with 0.2 M NaOH, diluted to 4pM and combined with 10% (v/v) denatured 4pM PhiX. Samples were then sequenced on the MiSeq sequencing platform using a 2.300 cycle V3 Kit following protocols outlined by Illumina.

Bioinformatic and Statistical Analysis: Two-hundred and fifty base pair paired-end reads were assembled using FLASH (1). Reads were further processed with the inclusion of quality filtering, based on a quality score of >25, followed by subsequent removal of mismatched barcodes and sequences below length threshold using QIIME. USEARCH v7 (64-bit) was used for noise removal and chimera detection as well as clustering into operational taxonomic units (OTUs). At the lowest taxonomic level, reads were clustered into 100 OTUs. Sequencing generated approximately 13 million clean sequences, ranging from approximately 75000 to 395000 per sample (Supplementary file, Table 1). PyNAST was used to align OTUs, and taxonomy was assigned to OTU sequences using the Qiime2 Naïve-Bayes classifier trained on V3-V4 regions extracted from the 99% identity 16S rRNA rep set of the Silva 119 database.

Composition Analysis: The R package *compareGroups* (v. 3.1) was employed to detect statistically significant differences in abundances of individual taxa between groups using the Mann-Whitney U-test (MWU-test) with multiple corrections. Statistical significance was accepted as p \leq 0.05 after false discovery rate (FDR) multiple correction. Compositional alpha diversity was calculated in QIIME (v. 1.9.1) and statistical differences between groups were detected using the MWU-test. The remaining statistical analyses were all performed in R (v. 3.2.3). The *phyloseq* package (v. 1.10) was used to calculate compositional β -diversity using genus-level relative abundance data. This was visualised by principal coordinate analysis (PCoA) using *ggplot2* (v. 2.1.0). Permutational

multivariate analysis of variance (PERMANOVA) was used to test for differences in overall microbiome composition between groups using the vegan package's

'adonis' function.

Supplemental Figures:

Supplemental Figure 1: Generation of Co-abundance Groups (CAGs). A heatplot of Kendall correlation values for each pair of taxa clustered by Ward linkage of their Pearson correlations. Coloured bars along the axes denote the CAGs (a). Non-metric multidimensional scaling (NMDS) of the distance metrics of the CAGs correlation values (b). The composition if each CAG is presented in Supplemental Table 3.

Supplemental Figure 2: Representative H&E images from PBS and AOM treated mice at each timepoint (a; 20x magnification). Methylene blue stained tissue

from weeks 24 and 48 showing ACF (white boxes) and adenomas, respectively (b).

Supplemental Tables:

Supplemental Table 1: Information on sequencing result

	Post QC Paired				
Sample	Reads				
A1_PBS_48	295,122				
A2_PBS_48	227,238				
A3_PBS_48	248,175				
A4_PBS_48	207,957				
A5_PBS_48	226,384				
A6_PBS_48	326,112				
B1_PBS_24	252,312				
B2_PBS_24	273,995				
B3_PBS_24	131,959				
B4_PBS_24	271,205				
B5_PBS_24	313,322				
B6_PBS_24	308,514				
C1_PBS_12	198,378				
C2_PBS_24	250,337				
C3_PBS_12	259,375				
C5_PBS_48	155,774				
C6_PBS_48	217,138				
D1_PBS_12	224,150				
D2_PBS_12	257,442				
D3_PBS_12	205,023				
D4_PBS_12	75,233				
D5_PBS_12	107,419				
D6_PBS_12	255,268				
E1_PBS_8	237,996				

E2_PBS_8	178,569
E3_PBS_8	171,261
E4_PBS_8	142,438
E5_PBS_8	149,116
E6_PBS_8	157,760
F1_PBS_8	194,546
F2_PBS_8	191,113
G1_AOM_48	189,926
G2_AOM_48	82,468
G3_AOM_48	158,337
G4_AOM_48	173,334
G5_AOM_48	168,196
G6_AOM_48	274,927
H1_AOM_24	225,750
H2_AOM_24	341,234
H3_AOM_24	216,984
H4_AOM_24	243,222
H5_AOM_24	358,867
H6_AOM_24	277,854
i1_AOM_12	258,762
i2_AOM_24	108,535
i3_AOM_12	244,568
i4_AOM_24	281,743
i5_AOM_48	336,154
i6_AOM_48	168,177
J1_AOM_12	174,459
J2_AOM_12	253,445
J3_AOM_12	194,532
J4_AOM_12	242,148

J5_AOM_12	206,206
K1_AOM_8	212,231
K2_AOM_8	219,256
K3_AOM_8	103,886
K4_AOM_8	184,036
K5_AOM_8	213,128
K6_AOM_8	239,244
L1_AOM_8	353,915
L2 AOM 8	395,619

Supplemental Table 2: Primer Sequences and matching Universal Probe Library (UPL) Number

Gene	Forward Primer (5'-3')	Reverse Primer (5'-3')	UPL Number	
Mouse				
ASBT	agctggtcaaccctggtaca	gggggagaaggagagctg	99	
ΤΝFα	ctgtagcccacgtcgtagc	ttgagatccatgccgttg	25	
IL-16	agttgacggaccccaaaag	agctggatgctctcatcagg	38	
IL-6	gctaccaaactggatataatcagga	ccaggtagctatggtactccagaa	6	
IL-12	aaggaacagtgggtgtccag	gttagcttctgaggacacatcttg	27	
IL-10	cagagccacatgctcctaga	tgtccagctggtcctttgtt	41	
CXCL1	gactccagccacactccaac	tgacagcgcagctcattg	83	
CXCL2	aaaatcatccaaaagatactgaacaa	ctttggttcttccgttgagg	26	
CXCL5	tagagccccaatctccacac	gagctggaggctcattgtg	67	
ТGF-в	tggagcaacatgtggaactc	gtcagcagccggttacca	72	
<i>β-actin</i> ctaaggccaaccgtgaaaag		accagaggcatacagggaca	64	
Human				
ΤΝFα	cgctccccaagaagacag	agaggctgaggaacaagcac	57	
IL-6	caggagcccagctatgaact	agcaggcaacaccaggag	7	
IL-8	agacagcagagcacacaagc	atggttccttccggtggt	72	
IL-10	cataaattagaggtctccaaaatcg	cataaattagaggtctccaaaatcg	45	
CXCL2	cccatggttaagaaaatcatcg	cttcaggaacagccaccaat	69	

CXCL5	cagcgctctcttgaccacta	cacaaggagctcgaaggacc	28
ТGF-в	actactacgccaaggaggtcac	tgcttgaacttgtcatagatttcg	31
в-actin	ccagaggcgtacagggat	ccaaccgcgagaagatga	64

Supplemental Table 3: Composition of CAGS

	Citrobacter			Streptococcus	
	Hydrogenoanaerobacterium			Bacteroidales S24-7; uncultured bacterium	
G1	Clostridiales vadinBB60; unidentified			Mollicutes RF9; uncultured Erysipelotrichaceae bacterium	
CA	Clostridiales vadinBB60; uncultured Clostridia bacterium			Mollicutes RF9; uncultured Firmicutes bacterium	
	Clostridiales vadinBB60; uncultured bacterium			Allobaculum	
	Anaeroplasma			Bifidobacterium	
	Marvinbryantia			Parasutterella	
	Rikenella		G5	Firmicutes bacterium CAG822	
	Anaerofustis		CA	Turicibacter	
	Lactobacillus			Mollicutes RF9; uncultured rumen bacterium	
2	Bacteroides			Clostridium sensu stricto 1 Gordonibacter	
CAG	Enterococcus				
0	Porphyromonadaceae; uncultured			Mollicutes RF9; uncultured Mollicutes bacterium	
	Psychrobacter			Mollicutes RF9; uncultured bacterium	
	Vibrio			Mollicutes RF9; unidentified	
	Bacteroidales S24-7; mouse gut metagenome			Mollicutes RF9; uncultured Paenibacillaceae bacterium	
	Prevotellaceae; uncultured			Lachnospira	
3	Escherichia-Shigella		G6	Anaerobacillus	
CAG	Lachnospiraceae; Incertae Sedis	CA		Delftia	
	Desulfovibrio			Candidatus Arthromitus	

		-		
	Parvibacter			Staphylococcus
	Enterorhabdus			Bacteroidales S24-7; uncultured Bacteroidales bacterium
	Defluviitaleaceae; uncultured			Acetatifactor
	cetanaerobacterium		Christensenella	
	Gastranaerophilales; uncultured bacterium	AG7		Intestinimonas
	Propionibacterium		Sporobacter	
	Ochrobactrum		Papillibacter	
	Thalassospira			Rhodospirillaceae; uncultured
	Parabacteroides			Rikenellaceae RC9 gut group
	Candidatus Saccharimonas			Alistipes
	Clostridiales vadinBB60; uncultured rumen bacterium			Odoribacter
G4	Akkermansia			Coprococcus
S	Clostridiales FamilyXIII; Incertae Sedis			Clostridiales FamilyXIII; uncultured
	Christensenellaceae; uncultured			Roseburia
	Bacteroidales S24-7; uncultured organism			Ruminococcaceae; uncultured
	Coriobacteriaceae; uncultured			Defluviitaleaceae; Incertae Sedis
	Caldicoprobacter	AG8		Defluviitaleaceae; uncultured bacterium
	Olsenella		Faecalibacterium	
	Erysipelotrichaceae; uncultured		AG	Oscillibacter
	Ruminococcus			Ruminococcaceae; Incertae Sedis
				Peptococcus

Bilophila Anaerovorax

Blautia

Anaerotruncus

Peptococcaceae; uncultured

Mucispirillum

Lachnospiraceae; uncultured

Week 12				
P-value	Taxon	Bile acid	R-value	
<0.001	Tenericutes	T-UDCA	-1	
<0.001	Verrucomicrobia	UDCA	-1	
<0.001	Parasutterella	T-UDCA	1	
<0.001	Escherichia_Shigella	DCA	-1	
<0.001	Akkermansia	UDCA	-1	
	Week 24			
<0.001	Tenericutes	T-DCA	-1	
<0.001	Verrucomicrobia	T-CA	-1	
<0.001	Verrucomicrobia	T-UDCA	-1	
<0.001	Coriobacteriaceae_uncultured	Total BA	-1	
<0.001	Bacteroides	DCA	-1	
<0.001	Caldicoprobacter	T-CA	-1	
<0.001	Caldicoprobacter	T-UDCA	-1	
<0.001	Christensenellaceae_uncultured	T-CDCA	-1	
<0.001	Akkermansia	T-CA	-1	
< 0.001	Akkermansia	T-UDCA	-1	

Supplemental Table 4: Spearman correlation analyses between individual taxa and bile acids at weeks 12 and 24.

References

1. Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011 Nov 1;27(21):2957-63.