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Abstract. 

The oxygen evolution reaction (OER) is accepted as the bottleneck in overall water splitting 

and has seen intense interest. In this work, we have prepared rutile TiO2 modified with 

nanoclusters of alkaline earth metal oxides for the OER. Photocatalytic O2 evolution reaction 

was performed over TiO2 rutile surface-modified with alkaline earth oxide nanoclusters, 

namely CaO and MgO. The O2 evolution activity is notably enhanced for MgO modified 

systems at low loadings and a combination of characterisation and first principles simulations 

allows the interpretation of the role of the nanocluster modification on improving 

photocatalytic performance of alkaline earth modified rutile TiO2. At such low loadings, the 

nanocluster modifiers would be small and this facilitates close correlation with theoretical 

models. The structural and surface characterisation of the modified systems indicate that the 

integrity of the rutile phase is maintained after modification. However, charge carrier 

separation is strongly affected by the presence of surface nanoclusters. This improved 

performance is related to surface features such as higher ion dispersion and surface 
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hydroxylation, which are also discussed with first principles simulations. The modified systems 

are reducible so that Ti3+ ions will be present. Water dissociation is favourable at cluster and 

interfacial sites of the stoichiometric and reduced modified surfaces. Pathways to water 

oxidation at interfacial sites of reduced MgO-modified rutile TiO2 are identified, requiring 

overpotentials of 0.68 V. In contrast, CaO-modified systems required overpotentials in excess 

of 0.85 V for the reaction to proceed. 

Keywords: TiO2; surface modification; alkaline earth oxide nanocluster; photocatalysis; O2 

evolution. 
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1. Introduction. 

Since the discovery of photocatalytic water cleavage, significant effort has been put into 

developing new photocatalyst materials for water splitting, and some excellent results have 

been obtained.1-5 Nevertheless, the efficiencies achieved are still far from those required for 

practical applications. The overall water splitting reaction consists of two half reactions, the 

hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). While H2 

production from aqueous solutions containing sacrificial reagents has been demonstrated to be 

quite an efficient process, the OER remains a challenging redox process and is the limiting 

reaction in overall water splitting. Hence, the development of a highly active photocatalyst for 

the OER is important for enhancing the efficiency of solar-driven hydrogen production 

technologies. 

Titania surfaces, modified with dispersed nanoclusters of other materials, have been studied 

for a variety of photocatalytic applications.6-22 This strategy differs from doping schemes as 

the modification is at the titania surface rather than through incorporation of other species into 

the titania lattice. The key feature of surface modified systems is the interface between the 

support and the nanocluster modifier, similar to work on supported metal catalysts. The visible 

light response of the catalyst can be enhanced through a dual consequence of favourable 

alignment of band energies and new active sites that arise from the modification with the 

nanoclusters. The usual benchmark material, TiO2 P25, consists of interfaced rutile and anatase 

phases and shows enhanced photocatalytic activity, which is proposed to arise from suitable 

band alignments and enhanced electron and hole separation upon light absorption.23, 24 

Heterostructures of different metal oxides sharing an interface have also shown enhanced 

photocatalytic performance.21, 25-28 

Moreover, nanostructured metal oxides are considered promising photocatalysts due to 

enhanced surface area and the presence of low-coordinated metal and oxygen sites for the 

adsorption of feedstock species.29-32 Thus, the surface modification of titania with nanoclusters 

of other materials can combine the favourable features of heterostructuring and nanostructures. 

This approach has also been shown to suppress electron-hole recombination via the promotion 

of charge carrier separation.7, 12, 14 In addition, first principles studies show surface-modified 

titania systems to be more reducible, with oxygen vacancies forming spontaneously or with a 

significant reduction in the formation energies compared to unmodified TiO2.6, 8, 12 This is an 

important aspect of this surface modification approach as oxygen vacancies are active sites in 
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metal oxide catalysts33-35 and reduced Ti3+ cations play a crucial role in the chemistry at titania 

surfaces.36, 37 

Catalysts based on metal oxides are widely used38-40 for the OER and first principles studies 

have examined reaction pathways for water oxidation at oxide surfaces.41-44 In general, these 

studies focus on the free energies of four proton-coupled electron transfer (PCET) steps 

involved in the following reaction: 

 2H O → O + 4(H + e ) (1) 

By examining the relative stability of the surface-bound intermediates, it is possible to identify 

the reaction step that requires the highest free energy input and hence compute the overpotential 

required to render each step thermodynamically favourable. The overpotential, 휂 , is 

determined from: 

휂 	= 	
max[ΔG ]

e − 	1.23	V 

where max[ΔG ] is the highest free energy step in eV, e is the electron charge and 1.23 V is 

the theoretical potential for O-H cleavage. Further details on this model, and its application in 

the current work, will be discussed in the following sections and the Supporting Information 

(SI).  

A DFT study of water oxidation at rutile-type oxides computed overpotentials of 0.37, 0.56 

and 1.19 V at the (110) surfaces of RuO2, IrO2 and TiO2, respectively.45 The overpotential 

required for rutile TiO2 was revised to 0.97 V in a subsequent paper by the same authors.41 

Another first principles study of water oxidation at CeO2 nanorods attributed an important role 

to oxygen vacancies in improving the production of O intermediates.46 Ulman et al reported 

overpotentials of ~0.8 V for water oxidation at hematite surfaces with various terminations.47 

Moreover, upon modification of the hematite surface with Ga2O3, the overpotential was 

computed as ~0.95 V. Consistent across the surfaces studied by Ulman et al is the 

overpotential-determining step, which involves dehydrogenation of surface-bound hydroxyls. 

In this work, we present an experimental and theoretical study of rutile TiO2 modified with 

nanoclusters of the alkaline earth oxides (AEO) CaO and MgO and their application in the 

oxygen evolution reaction. The combination of experiment and computation yields a 

comprehensive and cohesive analysis of the activity of the novel AEO-modified rutile TiO2 

catalyst for the OER.  
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The preparation method in this work, incipient impregnation, is a well-established technique 

for the deposition of modifiers at semiconductor surfaces.48-50 A similar synthesis approach has 

been used to deposit nanoclusters of PtOx,48, 51 SnOx,51 ZnO,52 and MoO3,53 on TiO2. Thus, 

based on this synthesis procedure, the rutile TiO2 surface will be modified with dispersed AEO 

nanoclusters, rather than being doped with the alkaline earths incorporated onto lattice sites. 

Samples were prepared with different loadings of the AEO nanocluster modifiers and the 

performance of nanocluster modified TiO2 as a catalyst for the OER was determined.  

In our DFT calculations, we implement the standard model approach [REFERENCES]which 

has been widely reported in the literature; the outputs of this model are generally accepted as 

material descriptors for the photocatalytic performance. We apply this model approach to 

provide a comprehensive analysis of the OER activity of the new AEO-modified TiO2 catalysts 

and this is complemented by direct comparisons with experiment.  

Alkaline earth oxide modification has been previously reported to enhance the photoactivity of 

anatase TiO2 for dye degradation or H2 production using Pt as a co-catalyst.54, 55 However, as 

far as we know, this is the first time that the use of alkaline earth oxide nanocluster modification 

of rutile for OER is reported. Scheme 1 summarises the experimental and modelling approach 

in developing alkaline earth oxide nanocluster modified rutile for OER. 

 

Scheme 1: Multistep preparation synthetic route for alkaline earth oxide supported on rutile 

TiO2. Rational design and photocatalytic studies for OER.  
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We observe clear differences in the activities of CaO- and MgO-modified TiO2 for OER, 

depending on the loading of the AEO nanocluster. In particular, low coverages of highly-

dispersed MgO-nanoclusters yield a significant enhancement, doubling the photonic efficiency 

relative to unmodified rutile. 

To investigate this result further, we characterise the modified surfaces experimentally and 

computationally. The structure of the heterostructured surfaces was investigated via X-ray 

diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Further insight into this 

characterisation is provided though DFT calculations. We examine the aggregation of the 

nanoclusters at the rutile surface and, by comparison with metal-oxygen binding energies and 

formation energies, explain trends in the dispersion of the nanoclusters at the rutile surface. In 

addition, we assess the reducibility, via oxygen vacancy formation, of the composite systems.  

UV-vis diffuse reflectance spectroscopy and photoluminescence (PL) spectroscopy are used to 

assess the impact of modification on the light absorption properties and charge carrier 

dynamics, respectively. The analysis is supported by DFT computations of the density of states 

(DOS) and a model for photoexcitation, through which we assess the stability of the excited 

state and the localisation of photogenerated electrons and holes.  

To investigate active sites of AEO-modified TiO2 for the OER, we use DFT calculations to 

examine water adsorption at various sites of the stoichiometric and reduced nanocluster 

modified surfaces. This includes water adsorption at nanocluster sites, adsorption at the 

interface between the nanocluster modifier and the titania surface, and water adsorption at an 

already hydroxylated heterostructure. Here, we note that many DFT studies of water oxidation 

at surfaces ignore the role of surface hydroxylation. We find that reduction of the system, and 

the presence of reduced Ti3+ cations, play a crucial role in the photocatalytic performance by 

stabilising OER intermediates at the surface. Moreover, we identify interfacial sites as active 

sites and this, importantly, indicates that small, dispersed nanoclusters will yield the highest 

OER activity. 
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2. Methodology 

2.1 Catalyst preparation 

The TiO2 system was prepared by a sol-gel method using titanium tetraisopropoxide (TTIP) as 

precursor (20 mL TTIP) in isopropanol (40 mL iPrOH). Forced hydrolysis of the TTIP solution 

was achieved by adding a certain volume of bidistilled water (20 mL). The white precipitate 

was then filtered and washed several times with water and methanol. Finally, the resulting solid 

was dried overnight at 90 ºC. Amorphous TiO2 was submitted to a sulfation step prior to 

calcination. Thus, TiO2 precursor was immersed in 1 M sulphuric acid solution for 1 hour upon 

stirring. This pre-treatment will hinder the anatase to rutile phase transition to high 

temperature.56  The suspension was then filtered again, the precipitate dried at 90 ºC overnight 

and calcined at 725 ºC for 2 hours, after which we obtain TiO2 showing mainly rutile structure. 

M-TiO2 (M = Mg2+ and Ca2+) systems were obtained by incipient impregnation of the 

corresponding nitrate precursor with a loading range between 0.05 at% to 3 at%. The obtained 

impregnated powder was dried at 90 ºC and then calcined at 400 ºC for 1 hour for the 

elimination of nitrates. 

Details of the methods of characterisation of the modified systems are provided in the SI. 

2.2 Photocatalytic runs 

Photocatalytic O2 production tests were performed in a flow-reactor system (Figure S1). The 

powder photocatalysts were suspended in AgNO3 water solution (0.02 M) that acts as an 

electron trapping sacrificial agent. The reaction media was continuously thermostated at 20ºC 

± 1ºC to prevent any temperature effect. The catalyst suspension (0.5 g/L) was firstly degassed 

with an N2 stream (100 mL/min) for 15 min. After that, the N2 flow was settled at 15 mL/min 

and stabilised for 30 min. This nitrogen flow was used to displace the oxygen produced from 

the photoreactor headspace towards the GC measuring system. Then, the lamp (125 W medium 

pressure Hg lamp) was switched on and the effluent gases were analysed to quantify O2 

production by gas chromatography (Agilent 490 micro GC) using a thermal conductivity 

detector.  

The photonic efficiency for the O2 evolution reaction has been determined from the reaction 

rate and the flux of incoming photons (calculated for the irradiation wavelengths of 365 nm).57 
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2.3 DFT calculations 

The spin-polarised DFT calculations were performed with the VASP5.458, 59  code using 

projector augmented wave (PAW) potentials60, 61 and the Perdew-Wang (PW91)62 

approximation to the exchange correlation functional. The plane-wave energy cut-off was 400 

eV; Ti is described with 12 valence electrons, Mg and Ca with 8, O with 6 and H with 1. The 

convergence criteria for the energy and forces were 10-4 eV and 0.02 eV Å-2, respectively. The 

k-points were sampled at the Γ-point and aspherical gradient corrections were applied 

throughout. Gaussian smearing with σ = 0.1 eV was implemented in calculations of the density 

of states (DOS). This set-up is consistent with our previous work on similar systems, which 

facilitates comparison. 

A Hubbard U correction was applied to the Ti 3d states with U(Ti) = 4.5 eV, consistent with 

previous work.63-68 This correction is necessary in describing the partially filled d-orbital and 

reduced Ti3+ states.69, 70 An additional +U correction was applied to the O 2p states (U(O) = 

5.5 eV) in the photo-excited state model to describe hole localisation. The +U correction for O 

2p states is necessary to obtain a localised O polaron6, 8, 12 and this is only required in the 

photoexcitation model; implementing +U on O 2p states for other calculations would make 

comparisons with computational studies in the literature difficult. The goal of this model is to 

obtain a qualitative description of the localisation and stability of photoexcited charges; 

comparing the results between the bare surface and after AEO-modification shows the impact 

of modification on charge carrier separation.  

Further details regarding construction of the models and their computational characterisation 

is provided in the SI. 

 

3. Results and Discussion 

3.1 Photocatalytic performance for water oxidation 

A series of MgO- and CaO-nanocluster modified rutile samples were prepared with alkaline 

earth loadings ranging from 0.05-3 at.%, using the impregnation procedure outlined in the 

experimental section (see SI). In Figure 1 we show the photoactivity of the alkaline-earth 

modified rutile materials for the OER, with a silver nitrate electron scavenger. The 

photoactivity of bare TiO2 for OER is notable compared with other reports in the literature.71-

73  Such outstanding photoactivity could be associated with the structural and surface feature 
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as we will describe later. In fact, pre-sulfation treatment has demonstrated to improve 

significantly the photocatalytic performance of anatase TiO2 for phenol degradation reaction.74 

Depending on the loading of the modifier, surface modification of rutile with both nanocluster 

of MgO and CaO can lead to improvements in the OER activity and the photonic efficiency. 

 

Figure 1. (a) Photonic efficiencies for MgO- and CaO-modified TiO2 for the OER. (b) Photocatalytic 
O2 evolution (mmol/g) after 60 min for MgO- and CaO-modified TiO2 (0.5 g/L catalyst, 0.02 M AgNO3, 
Hg lamp 125 W). 

This improvement is particularly notable for MgO-modified TiO2 (Figure 1). In particular, for 

an MgO loading of 0.05 at.%, the achieved photonic efficiency and the O2 production after 60 

minutes are double that measured for bare TiO2 rutile. This is a remarkable result considering 

the extremely low level of surface modification. The efficiency decays as the Mg2+ content 

increases, eventually reaching photoactivities similar to those of bare TiO2 for loadings of 2-3 
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at.%. Such an effect has been observed in other studies of surface-modification schemes, where 

increased loadings of the modifier have a detrimental effect on the activity.71, 75, 76 This suggests 

a bi-functionality, where sites of both the surface and the modifier play a role in the catalytic 

activity and  a key role for nanostructured MgO supported on TiO2. 

As mentioned before, the comparison of the OER efficiency with other reported systems is 

quite complex since the reaction operational parameters are different and the photonic 

efficiencies are not provided. In any case, the optimum O2 yield obtained in the present work 

is notable with respect to similar systems.  

 

Table 1. Surface features of AEO-modified rutile TiO2 from XPS. 

 

AE-modified TiO2 
Binding Energy (eV) AE/Ti 

ratio O/Ti OH (%) 
Mg 1s Ca 2p Ti 2p 

Bare TiO2 --- --- 458.7 --- 2.21 11.0 

Mg2+ 

0.10 1303.9 --- 458.7 0.015 2.54 36.1 

1.00 1303.7 --- 458.4 0.587 2.88 27.0 

2.00 1303.8 --- 458.3 0.796 2.90 19.5 

3.00 1303.6 --- 458.2 0.867 2.64 18.0 

Ca2+ 

0.10 --- 347.2 458.3 0.107 2.32 9.2 

1.00 --- 347.1 458.3 0.147 2.87 16.9 

2.00 --- 347.4 458.2 0.260 2.79 14.0 

3.00 --- 346.5 458.2 0.479 3.08 21.9 

 

 

For CaO modification, the highest efficiency is attained at a higher Ca2+ ion content compared 

to Mg2+ but the improvement is less significant compared to MgO modification. It is clear that 

the presence of these modifiers affects the photocatalytic activity of rutile TiO2 in different 

ways. To understand the influence of AEO-modification we have performed a wide surface, 

structural and electronic characterisation of the catalysts. This analysis is complemented by 
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first principles calculations, with particular focus on identifying active sites of water oxidation 

at the AEO-modified TiO2 surface. 

 

3.2 Structural and Surface Characterisation of AEO-nanocluster modified Rutile TiO2 

We have prepared TiO2 rutile by precipitation and further sulphuric acid pre-treatment. As 

previously reported sulphuric acid pre-treatment prior to the calcination step delays the anatase 

to rutile transformation and favours the formation of a well-crystallised anatase structure with 

relatively high surface area.74 Thus, the presence of surface anchored sulfate groups stabilises 

the anatase structure at high temperatures, such as 650ºC. The transition to rutile phase takes 

place once surface sulfates evolve during calcination. By calcination at 725 ºC, the obtained 

TiO2 materials show a dominant rutile phase with a crystallite size of 55 nm, which denotes a 

high degree of crystallisation (Figure 2.a).  

 

Figure 2. Structural and textural properties of TiO2 rutile photocatalysts: a) XRD pattern of r-TiO2 

support; b) Raman spectra of bare r-TiO2 and alkaline modified r-TiO2; c) N2 adsorption-desorption 

isotherm (inset: pore size distribution plot) of r-TiO2 support; d) SEM image of r-TiO2 support.  
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Raman spectra in Figure 2.b provide further evidence of the predominance of the rutile phase. 

Thus, characteristic rutile Raman modes at 157 cm−1 (B1g), 235 cm−1 (multi-phonon process), 

447 cm−1 (Eg) and 610 cm−1 (A1g) are present. Since Raman spectroscopy is very sensitive to 

different crystalline structures, in accordance with the XRD data, tiny bands corresponding to 

the anatase phase can be seen. There are no strong distortions or shifts of the Raman modes 

after modification with the alkaline earths, indicating that there is no doping of the metals onto 

Ti sites in the rutile lattice. Doping would result in formation of oxygen vacancies to 

compensate the lower oxidation state of Mg and Ca, which would distort the local atomic 

structure and hence the Raman peaks. Due to the high calcination temperature to assure the 

rutile phase, the TiO2 support shows a notably low specific surface area of 13 m2/g, with a 

negligible porosity (Figure 2.c). As expected, the impregnation with the alkaline-earth oxide 

nanoclusters does not induce any notable change in the structure of modified rutile. The 

morphology of the sample in Figure 2.d for TiO2 rutile from SEM also confirms the sample 

sintering due to the high calcination temperature (Figure 2.d). 

The presence and dispersion of alkaline-earth ions at the rutile surface have been studied by 

XPS analysis. In Figure 3 we show the Mg 1s and Ca 2p XPS spectra for samples with different 

coverages of the alkaline earth. The core electron binding energy is 1304 eV for Mg 1s and 347 

eV for Ca 2p, which correspond in both cases to Mg2+ and Ca2+ (Table 1).77, 78 For Ti 2p, the 

observed binding energies all lie around 458.5 eV, which is the typical value for Ti4+ in TiO2. 

With the introduction of the alkaline earth modifiers, there is a small shift in the Ti 2p position 

towards lower binding energies. This shift has also been observed for Mg modified systems 

and indicates the formation of Ti-O-Mg bonds,79 which would be present with alkaline earth 

oxide nanoclusters supported on the rutile TiO2 surface coordinating to surface oxygen atoms. 

By considering the chemical features of the surface, it is possible to see an important difference 

between Mg and Ca modification. Firstly, considering the atomic ratio of the alkaline earth to 

Ti4+ from XPS and presented in Table 1, the Mg/Ti ratio for MgO-modified TiO2 at the lowest 

loadings is significantly lower when compared to the Ca-modification at the same nominal 

loading and compared to higher Mg-loadings. This suggests a higher dispersion of Mg2+ at the 

rutile surface, but this dispersion is not observed for Ca2+, even at the lowest loadings. 

Moreover, as the alkaline-earth content increases, the AE/Ti ratio progressively increases for 

both modifiers, which denotes a lower degree of dispersion. This can be due to the formation 

of larger sized nanoclusters due to aggregation at the surface. For higher content samples, Ca/Ti 

atomic ratios are significantly lower than for Mg. 
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Figure 3. XPS spectra for alkaline earth modified TiO2 rutile photocatalysts. 

 

With regard to the degree of hydroxylation of the modified samples, the MgO-modified TiO2 

samples with the lowest loadings show the highest level of surface hydroxylation, 36.1% for 

0.1% Mg, and we note that the trends in hydroxylation coverage with the loading of the alkaline 

earth behave differently for MgO and CaO. For MgO modified rutile, the higher dispersion of 

Mg2+ ions at low coverages appears to favour hydroxylation. For example, the sample with Mg 

0.1 at.% shows both high dispersion (lower Mg/Ti value of 0.015) and a high degree of surface 

hydroxylation (36.1%). This effect is not observed for the CaO-modified series, for which the 

hydroxylation coverage increases as the Ca2+ content increases. 

This result is consistent with previous work which showed that water dissociation is favourable 

for MgO nanoclusters supported on TiO2
7 and on ultra-thin MgO films supported on metals 

(Ag and Mo), but is not favourable on bulk MgO or beyond 3 monolayer (ML) thick films.80-
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82 Therefore as the loading of Mg increases, hydroxylation will become less favourable. By 

contrast, previous work clearly shows that water dissociation is favourable on CaO films and 

on the (100) bulk cleaved surface83, 84 so that the degree of hydroxylation, as a result of water 

dissociation at the oxide, increases with an increase in the loading of CaO on rutile. 

Further insight into the dispersion of AEO nanoclusters at the titania surface is provided by 

DFT calculations. To model AEO-modified rutile TiO2, the most stable rutile facet, the (110) 

surface, is modified with MgO and CaO nanoclusters of three compositions, 4-, 8-, and 12-

MgO/CaO units, denoted M4O4-, M8O8-, and M12O12-r110 (M = Mg, Ca). The starting 

geometries for these clusters were published in the work of Haertelt et al.85 In this way, we 

investigate the effects of dispersion/aggregation and coverage for comparison with 

experimental results. The stable, relaxed geometries and computed adsorption energies for the 

4-, 8-, and 12-unit clusters of MgO and CaO adsorbed at the rutile (110) surface are shown in 

Figure 4. Additional geometries and discussion are presented in the SI (Figures S4 and S5). 

 

Figure 4. The top panels show the relaxed atomic structure of rutile (110) modified with nanoclusters 

of composition (a) Mg4O4, (b) Mg8O8 and (c) Mg12O12. The bottom panels show the relaxed atomic 

structure of rutile (110) modified with nanoclusters of composition (d) Ca4O4, (e) Ca8O8 and (f) Ca12O12. 

The adsorption energies are included in the insets. In this and subsequent figures Ti is represented by 

grey spheres, O by red, Mg by light green and Ca by dark green. Atoms of the nanoclusters have been 

enlarged. 

 

These modified surfaces do not necessarily represent global minima, as the space of possible 

adsorption configurations is too large to easily investigate. Rather, the geometries shown in 

Figure 4 are representative structures for which we may compute material descriptors relevant 
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to the photocatalytic activity. They are the most favourable structures we have found in our 

search of different configurations. Previous work on modified metal oxide surfaces shows that 

key properties determining the chemistry of these structures are not sensitive to the precise 

adsorption structure of the modifiers at the surface. The properties of the modified surface are 

consistent, so long as the nanocluster modifier binds with the surface through new interfacial 

bonds; that is, new bonds that form between cations and anions in the surface and the 

nanocluster.86 To explore this, we analysed in detail a less stable Mg12O12-r110 geometry, 

Figure S4.a, for which the results are discussed in the SI. This analysis shows that there are 

small quantitative, but not qualitative, differences in the computed properties so that the 

sensitivity to the precise structure is not significant. 

In each structure shown in Figure 4, the adsorbed geometry of the nanocluster differs 

considerably from the most stable gas-phase structures. These are taken from ref.85 and our 

relaxed structures are shown in Figure S2. Upon relaxation, it is more energetically favourable 

for the MgO and CaO nanoclusters to wet over the rutile surface. This is driven by the formation 

of interfacial bonds between surface Ti and nanocluster oxygen as well as surface oxygen and 

nanocluster cations. These bonds anchor the nanoclusters at the rutile surface. For the example 

of Mg4O4-r110, (Figure 4.a), 8 interfacial bonds are established between the cluster and the 

surface. Of these 3 are Ti to nanocluster oxygen (OC) bonds, 4 are Mg to bridging surface 

oxygen (Obr) bonds and there is a single Mg to surface in-plane oxygen (Oip) bond. 

For the Mg8O8 and Mg12O12 nanocluster, we can adsorb a single nanocluster or two/three 

Mg4O4 nanoclusters. The most stable relaxed geometries result from an initial structure 

whereby the nanoclusters are adsorbed as two and three Mg4O4 units, shown in Figures 4.b 

and 4.c. In the relaxed heterostructures the surface Ti to OC distances are 1.76-2.12 Å. Distances 

for Mg to surface oxygen sites are 1.92-2.45 Å for Obr and 2.10-2.38 Å for Oip. 

The CaO-TiO2 surface modification shows similar changes in the nanocluster structures upon 

adsorption and relaxation. The relaxed Ca4O4-r110 structure (Figure 4.d) is qualitatively 

similar to that of Mg4O4-r110 (Figure 4.a), with the formation of 8 interfacial bonds, consisting 

of 3 Ti-OC bonds, 4 Ca-Obr bonds and 1 Ca-Oip bond. For Ca8O8-r110 (Figure 4.e), the most 

stable adsorption configuration is that in which two Ca4O4 nanoclusters are adsorbed in 

proximity but without interacting via shared bonds. The most stable Ca12O12-r110 structure 

(Figure 4.f) corresponds to three Ca4O4 nanoclusters in a contiguous cluster at the surface. The 

Ti-OC bond lengths from the surface to the nanocluster are 1.80-1.94 Å, the Ca-Obr and Ca-Oip 
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bond lengths between the nanocluster and the surface are 2.14-2.93 Å and 2.43-3.05 Å, 

respectively.  

The effect of the modification with MgO and CaO on the rutile (110) surface is most notable 

for those Ti ions that bind to oxygen atoms of the adsorbed nanoclusters. These Ti ions migrate 

out from the surface, towards the nanoclusters, by up to 0.8 Å, breaking bonds to subsurface 

oxygen ions. However, modification of the rutile surface with AEO-modifiers does not lead to 

a substantial reconstruction of the surface; this confirms the results of the experimental 

characterisation of the AEO-modified TiO2 systems. 

The magnitudes of the computed adsorption energies, shown in Figure 4, indicate that the 

nanoclusters adsorb strongly at rutile (110) and require significant temperatures to desorb. 

Mg4O4 and Ca4O4 have similar computed adsorption energies, -7.46 eV and -7.59 eV, while 

differences emerge in the computed adsorption energies of the larger nanoclusters. The 

adsorption energies for Mg8O8 and Mg12O12 are -7.98 eV and -8.66 eV, respectively, which are 

comparable to that of Mg4O4, indicating that there is little energy gained in the aggregation of 

MgO to form larger nanoclusters at the surface. Conversely, Ca8O8 and Ca12O12 have computed 

adsorption energies of -10.93 eV and -14.48 eV, which, although not so large as to prohibit the 

dispersion of smaller clusters at the surface, indicate that aggregation to larger clusters is 

preferred for CaO. These results are consistent with the experimental analysis that for low Mg 

contents, the MgO modifier is highly dispersed at the rutile surface whereas CaO will be less 

dispersed and present as larger structures.  

As the loading increases, the configurations in which the modifiers form contiguous clusters, 

as shown in Figures 4.c and 4.f, are more stable by similar amounts, 2.25 eV for Mg12O12 and 

2.11 eV for Ca12O12, than the next most stable configurations, which consist of three isolated 

Mg4O4 and Ca4O4 nanoclusters, shown in Figures S4 and S5 of the SI. 

To investigate these trends in aggregation, we compare the per-unit binding energies of the 

AEO nanoclusters, as shown in the SI. The binding energies of the 4-, 8-, and 12-unit MgO 

nanoclusters are -2.93, -3.76 and -4.14 eV, respectively; for CaO, the binding energies are -

4.16, -4.56, and -4.86 eV. A similar trend was reported by Malliavin et al in their study of 

(MgO)n and (CaO)n clusters with n ≤ 6.87 Similarly, bulk calculations for the formation 

energies of Mg-O and Ca-O showed that CaO has a larger formation energy (-6.55 eV) 

compared to MgO (-6.12 eV).88 Moreover, Chen and colleagues reported greater stability of 

MgO nanoclusters relative to bulk MgO, as compared with the stability of CaO nanoclusters 
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relative to CaO bulk.89, 90 These results suggest that CaO favours aggregation to larger 

structures compared to MgO. Moreover, for the 12-unit nanoclusters at the rutile surface, there 

are 23 interfacial Ca-O bonds formed, compared with 13 interfacial Mg-O bonds; this is likely 

the result of the larger ionic radius of Ca2+ (1.06 Å) compared to Mg2+ (0.78 Å)90 and indicates 

a stronger interaction of CaO at the rutile surface. 

To examine reducibility, the formation of a neutral oxygen vacancy was investigated at each 

oxygen site in the supported nanoclusters. The most stable structures with one oxygen vacancy 

are shown in Figure 5, along with the computed formation energies. The full set of oxygen 

vacancy formation energies is included in Table S4 the SI. On all MgO-modified and CaO-

modified TiO2 structures the energy cost to produce an oxygen vacancy increases with the size 

of the nanocluster. This is in agreement with an increase in the M-O binding energy with 

increasing nanocluster size.87 Despite this, the modified surfaces are clearly more reducible 

than bare rutile (110), for which the computed energy cost to produce a single oxygen vacancy 

from a bridging oxygen site is +4.50 eV.  

On MgO-modified rutile TiO2, the formation energies in Figures 5.a, 5.b and 5.c suggest that 

reducibility is enhanced at the lowest loadings, in which small MgO clusters are widely 

dispersed over the surface. As the coverage increases, and the modifiers aggregate to form 

larger nanoclusters, the energy cost to produce an oxygen vacancy increases. Similarly, for 

CaO modifiers, oxygen vacancy formation is computed to have lower energy costs for smaller 

clusters. However, for CaO-modified TiO2, aggregation to form larger clusters is favourable, 

even at lower coverages and this, combined with larger binding energies for CaO nanoclusters, 

means that the formation energies for oxygen vacancies are larger than on MgO-TiO2. 
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Figure 5. Relaxed atomic structures of AEO-modified rutile (110) with a single, reducing oxygen 

vacancy. Top panels show (a) Mg4O3-, (b) Mg8O7- and (c) Mg12O11-r110. Bottom panels show (d) 

Ca4O3-, (e) Ca8O7- and (f) Ca12O11-r110. The yellow isosurfaces enclose spin densities of up to 0.02 

eV/Å3. 

 

After formation of a neutral oxygen vacancy, two electrons are released and their localisation 

is visualised with the excess spin density plots in Figure 5. These charge distributions emerge 

after relaxation of the systems with one O ion removed. In all cases, the two electrons localise 

on Ti sites on the rutile (110) surface, since Mg is not reducible. One electron localises at a 

subsurface Ti site, typical for reduced rutile (110).91, 92 While there are studies in the literature 

showing that there are different energetics of different Ti3+ localisation patterns in unmodified 

rutile (110),91, 92 we stress that in our nanocluster-modified rutile structures, structural 

distortions are already present in the surface layer of the rutile substrate, which will promote 

the localisation of the second electron. 

While the impact of electron localisation on different Ti sites could be examined, this will not 

change the key finding that the cost to remove an oxygen is significantly lower in surface 

modified rutile compared to the bare surface. The location of the second electron depends on 

the size of the modifier. On all reduced MgO-r110 structures, the second electron localises at 

a surface Ti. For Ca4O3-r110, both electrons localise at sub-surface Ti sites, while Ca8O7-r110 

and Ca12O11-r110 show electron localisation similar to the corresponding MgO-TiO2 

structures. The electron localisation at Ti sites is further confirmed by an increase in the 
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computed Bader charge of Ti from 9.6-9.7 electrons, for Ti4+, to 9.9-10.0 electrons, for Ti3+,6, 

7, 12 while the computed spin magnetisations for Ti3+ sites are in the range 0.8-0.9 µB. Finally, 

the Ti3+-O distances increase by up to 0.2 Å. 

 

3.3 Effect of AEO Nanoclusters Modification on Light absorption 

 

The UV-vis diffuse reflectance spectrum is presented in Figure 6.a. Unmodified rutile and 

MgO- and CaO-modified rutile show similar band gaps around 3.1 eV, typical for the TiO2 

rutile phase.93 However, if we examine closely the absorption edge, it is clear that for the MgO 

and CaO modified samples, some light absorption is apparent in the visible range. This 

absorption should correspond to the emergence of states in the TiO2 valance to conduction 

band energy gap, due to the presence of the modifier or vacancies at the rutile surface. This 

red-shift in absorption is more pronounced for Ca2+ modified TiO2.  

DFT insights into the optical properties of AEO-modified TiO2 rutile are provided through 

analysis of the computed projected electronic density of states (PEDOS), focused on the 4- and 

12-unit nanoclusters modifying the TiO2 surface. Figure 6 displays the PEDOS plots for the 

stoichiometric ground states (Figure 6.b, 6.c) and the reduced states, in which one oxygen 

vacancy is present, as described in Section 2.2, (Figure 6.d, 6.e). The top half of each panel 

shows the contribution to the PEDOS from Ti-3d and Mg/Ca-(s + p) states while the bottom 

half shows the 2p states of surface oxygen (OS) and nanocluster oxygen (OC). The PEDOS for 

the bare rutile (110) surface is given in Figure S7 in the SI for comparison and within our 

computational set-up the valence to conduction band energy gap is 2.2 eV. This 

underestimation of the energy gap is of course typical of approximate DFT methods and while 

it is possible to tune the +U correction to reproduce the experimental band-gap, this results in 

a poorer description of other material properties and so is not advised. Rather, the Coulomb 

correction is implemented to overcome the self-interaction error (SIE) of standard DFT and to 

describe localised electronic states. However, comparison of the PEDOS across the different 

modified TiO2 structures yields qualitative information about the impact of AEO-modification. 
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Figure 6. Optical properties of AEO-modified TiO2 rutile photocatalysts. (a) Absorption spectra for 
MgO- and CaO-modified rutile TiO2 (1 at.%). (b)-(e) Computed projected electronic density of states 
(PEDOS) plots for AEO-modified rutile (110). Top panels display the PEDOS for the stoichiometric 
ground states (b) Mg4O4-r110 and Mg12O12-r110 and (c) Ca4O4-r110 and Ca12O12-r110. The PEDOS in 
the bottom panels were computed after formation of a single oxygen vacancy and represent (d) Mg4O3-
r110 and Mg12O11-r110 and (e) Ca4O3-r110 and Ca12O11-r110. The top half of each plot shows the 
contributions due to Ti-d (black) and M-(s + p) (M = Mg, Ca; blue). The bottom half of each plot 
displays OS-p (red) and OC-p (orange) contributions. The rutile (110) VBM is set to 0 eV and the insets 
in the bottom panels show occupied Ti3+ states in the band-gap in the range [0 eV, 2 eV]. 

 

For stoichiometric structures, the computed PEDOS predicts a small red-shift in the band gap 

due to modifier-derived O 2p-states extending the valence band maximum (VBM) to higher 

energy and this effect is greater for the larger modifiers, and for CaO when compared to MgO. 

After modification, Ti 3d-states continue to dominate the conduction band minimum (CBM) 
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with unoccupied Mg- and Ca-derived states lying higher in energy. For the reduced structures, 

the smaller nanoclusters show no OC-derived states above the VBM of the TiO2 support. Mid-

gap states, due to reduced Ti3+, emerge at 1.0 eV and 1.3 eV above the VBM for Mg4O3-r110 

(the two peaks result from an asymmetric distribution of the two electrons) and at 1.0 eV above 

the VBM for Ca4O3-r110. Similarly, for Mg12O11-r110, high lying OC states are removed so 

that fewer nanocluster-derived states are present above the titania VBM and Ti3+ states emerge 

in the band gap at 0.9 eV. For Ca12O11-r110, cluster-derived states persist above the VBM after 

oxygen vacancy formation and Ti3+ states emerge at 1.0 eV and 1.2 eV above the VBM. 

In the context of measurements of the absorption edge of MgO-modified rutile TiO2, at 1 at.% 

loading, analysis of the computed PEDOS for such a system, namely Mg4O3-r110 (Figure 6.d), 

suggests that any impact on the light absorption properties will be minimal and due only to 

transitions from occupied Ti3+ states which emerge in the band-gap after reduction. For CaO-

modification, the computed PEDOS plots indicate a potential red-shift in the absorption edge 

due to cluster-derived states above the titania VBM. While oxygen vacancy formation is 

promoted in CaO-r110 relative to unmodified rutile, the effect on the valence band edge persists 

after reduction in the case of larger CaO nanoclusters. 

 

3.4 Photoluminesence and Charge Separation  

The influence of alkaline-earth modification on the charge carrier dynamics can be assessed 

using photoluminescence spectroscopy (Figure 7.a). In both cases, the presence of MgO and 

CaO induces a reduction in the magnitude of the PL signal compared to unmodified rutile TiO2, 

upon excitation at 320 nm. Therefore, it can be inferred that the surface modification with these 

alkaline-earth ions enhances the separation of photogenerated charges and suppresses electron-

hole recombination. Similar behaviour was reported by other authors for alkaline-earth doped 

ZnO systems.77 In that case, the difference in PL signal observed for doped systems was 

associated to the different ionic radii. In our case, small interesting differences can be noticed 

between Mg2+ and Ca2+. While for Mg2+ the PL signal is not strongly affected by the loading, 

for Ca2+ the modification with 0.05 at.% shows somewhat higher PL when compared to higher 

Ca2+ content. 
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Figure 7. (a) Photoluminescence spectra for Mg2+ and Ca2+ modified TiO2 upon excitation at 

320 nm. Spin density plots for the photoexcited model applied to (b) Mg4O4-r110, (c) Mg12O12-

r110, (d) Ca4O4-r110 and (e) Ca12O12-110. Localisation of electron and holes is indicated by 

yellow and blue isosurfaces, respectively, which enclose spin densities up to 0.02 eV/Å3. 
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Thus, both MgO and CaO positively influence the charge separation upon excitation. In 

addition, for CaO modified systems we have observed a slight absorption in the visible range, 

probably due to intermediate states in the bandgap. However, the better photocatalytic 

behaviour shown by MgO modified TiO2 is likely correlated with the surface features of the 

heterostructure, as already discussed, i.e. MgO modified TiO2 at low loadings exhibits a high 

degree of surface hydroxylation, as well as a notable Mg2+ ion dispersion, compared to the CaO 

modified systems. In addition, the supported MgO nanoclusters are more reducible than the 

supported CaO-nanoclusters.  

To explore the impact of AEO-modification on charge carrier separation and localisation 

within DFT, we impose a triplet electronic state and compute the vertical and singlet-triplet as 

well as the electron-hole relaxation (trapping) energies (see SI and ref. 6, 8, 12 for full details). 

These energies are presented in Table S5 and values computed for the bare rutile (110) surface 

are included for reference. The values for Evertical represent the simple VB-CB energy difference 

and are analogous to the optical band gap. Hence, the energy gap for bare rutile (110) is 2.35 

eV, and again, the underestimation of the bandgap, which is inherent in approximate DFT, 

persists with our computational set-up. However, the photoexcitation model provides 

qualitative information about the effect of surface modification on the light absorption 

properties, charge localisation and the stability of photoexcited charges.  

The results in Table S5 show that modification of rutile (110) with the smaller nanoclusters, 

Mg4O4 and Ca4O4, has little effect on the optical band-gap; values for Evertical of 2.28 eV and 

2.39 eV are computed for the surfaces modified with these nanoclusters. Surface modification 

with the larger nanoclusters, Mg12O12 and Ca12O12, yields values for Evertical of 1.98 eV and 2.06 

eV, corresponding to decreases of 0.4 eV and 0.3 eV, respectively, so that at higher coverages, 

a small red shift in light absorption is predicted.  

The values for Eexcite, which is the energy difference between the fully relaxed triplet state and 

singlet ground state, accounts for structural relaxations and polaron formation in response to 

electron and hole localisation in the triplet electronic state. The energy gain in relaxation in the 

excited state is given by the values for Erelax, which represent the stability of the photogenerated 

electron-hole pairs and their trapping. The values for Erelax are considerably larger for the 

modified surfaces (1.06-2.20 eV) relative to that computed for the bare rutile (110) surface, 

0.50 eV. This reflects the greater degree of structural relaxation that is possible in nanocluster-
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modified TiO2 to accommodate the polarons formed in the triplet electronic state and suggests 

the photoexcited electron and hole will be more stable in the modified rutile structures. 

Another important factor in the stability of photoexcited charges is their spatial separation, 

which we assess through analysis of the excess spin density and the computed Bader charges. 

The excess spin density plots are shown in Figure 7. The charge localisation scheme is similar 

for each AEO-modified TiO2 structure. The photoexcited holes localise at oxygen sites on the 

nanocluster and the electrons localise at subsurface Ti sites in rutile (110). For Mg4O4-r110, an 

originally three-fold coordinated OC ion is now two-fold coordinated after hole localisation. 

For Mg12O12-r110, the OC ion at which the hole state localises is three-fold coordinated to Mg 

ions both before and after photoexcitation; however, the Mg-OC bond lengths increase by as 

much as 0.3 Å in the excited state. 

For Ca4O4-r110, the OC ion at which the hole localises is two-fold coordinated to Ca ions and 

was originally three-fold coordinated in the ground state. For Ca12O12-r110, after hole 

localisation at OC, the ion remains three-fold coordinated, however, the Ca-OC bond lengths 

increase by 0.2 Å.  

Hole localisation at OC ions is confirmed by a change in the computed Bader charge from 7.2 

to 6.8 electrons and a computed spin magnetisation of 0.7 µB. These values are typical of 

oxygen hole polaron formation. For those Ti sites at which the photoexcited electrons localise, 

the Bader charges increase from 9.6 to 9.9 electrons and the computed spin magnetisations are 

0.8 µB, indicating reduction to Ti3+. The results of this model suggest that modification of rutile 

(110) with AEO nanoclusters can promote the separation of photoexcited electrons and holes 

and thereby suppress charge carrier recombination, corroborating analysis of the PL spectra.  

 

 

4. Origin of Enhanced Oxygen Evolution on AEO Nanoclusters Modified Rutile (110) 

 

4.1 Water Adsorption at AEO Nanoclusters Modified Rutile (110) 

To better understand the improved OER activity on MgO-modified TiO2, we studied water 

adsorption at MgO- and CaO-modified rutile (110) and the subsequent water oxidation 

pathways with the standard DFT model approach for OER.41-44 We investigated multiple 
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adsorption configurations of water at each stoichiometric and reduced AEO-modified rutile 

surface. Three adsorption schemes were considered:  

 adsorption of water at sites on the nanocluster, 

 adsorption of water at an interfacial site between the modifier and the rutile surface, 

 adsorption of a second water at the interface site with dissociatively adsorbed water 

already present on the nanocluster.  

The last model aims to elucidate the impact of hydroxylation, which has been shown to be 

important on AEO-modified TiO2 structures, on the relative stabilities of the water oxidation 

intermediates and the free energies of each step in the OER model. 

Table S6 presents the computed adsorption energies of water at different sites at AEO-

modified TiO2. The adsorption geometries are shown in Figures S8-S13 in the SI. For all 

adsorption sites, the adsorption of one water molecule is exothermic and leads to spontaneous 

dissociation to produce surface-bound hydroxyls. In the stoichiometric systems, the computed 

dissociative adsorption energies of water, at sites of the nanoclusters, are between -2.3 eV and 

-3.5 eV, which provides an origin for the previously discussed hydroxylation of the AEO-

modified materials. The computed adsorption energies for water at the same cluster sites on 

reduced AEO-TiO2 are in the range of -2.4 eV to -1.5 eV, somewhat moderated from the 

stoichiometric cluster, but still highly exothermic. Thus, the nanocluster modifiers will promote 

hydroxyl formation through water dissociation. The atomic structure of these adsorption sites 

is shown in Figures S8 and S9. 

For the interfacial adsorption sites, shown in Figures S10 and S11 for the stoichiometric and 

reduced surfaces, respectively, the computed adsorption energies are less obviously dependent 

on whether the surface is stoichiometric or reduced. In addition, these are clearly less 

exothermic than adsorption on the nanocluster, with computed adsorption energies in the range 

of -1.2 eV to -1.0 eV. The exception is for water adsorbed at the interfacial site of Ca12O12-

r110 for which the computed adsorption energy is -1.6 eV (Figure S10).  

After the dissociative adsorption of the first water molecule at cluster sites, the computed 

adsorption energies for the subsequent adsorption of a second water at interfacial sites of the 

modified surfaces are in the range of -1.6 eV to -0.9 eV. These results indicate that, for the 

coverages investigated, hydroxylation of the modifiers has little impact on water adsorption at 

interfacial sites. The adsorption geometries for water adsorbed at interfacial sites of AEO-
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modified surfaces, in which the modifiers are hydroxylated, are shown in Figure S12 and S13 

for the stoichiometric and reduced systems, respectively. 

In the following, we analyse the OER using a widely accepted41-44 model for the water 

oxidation pathway. This pathway consists of four PCET steps, where (*) represents the AEO-

rutile structure:: 

(A) H O + (∗) →	 OH	
∗ + (H + e )  

(B) 	 OH	
∗ → O	∗ + (H + e )  

(C) 	H O + O	∗ → OOH	
∗ + (H + e )  

(D) 	 OOH	
∗ → O + (∗) + (H + e )  

The free energy of reaction “X” is calculated as:  

 ΔG 	= ΔE + ΔZPE − TΔS (4) 

In the above, ΔE  is the difference in total energy, computed via DFT, between the products 

and reactants. The difference in zero-point energies, ΔZPE, is derived from vibrational 

frequencies computed with DFT and the entropic contribution, TΔS, is taken from tabulated 

values for the gas phase molecules and neglected for adsorbed species 

Steps A and C each describe water adsorption events, however, water dissociation upon 

adsorption and the first dehydrogenation are dealt with implicitly as a single step. For an 

explicit description, we may consider these steps as consisting of sub-steps, which for water 

adsorption in dissociated form, may be expressed as follows, where (*) represents the AEO-

rutile structure: 

(A1) H O + (∗) →	 OH	
∗ + H	∗  

(A2) OH	
∗ + H	∗ → OH	

∗ + (H + e ) 

And  

(C1) H O + O	∗ →	 OOH	
∗ + H	∗  

(C2) OOH	
∗ + H	∗ → OOH	

∗ + (H + e ) 

  

The overall free energy of a given step is then the sum of the free energies of the sub-steps, so 

that: ΔG = ΔG + ΔG . The SI provides a detailed discussion of the set-up for the water 

oxidation analysis. 

In general, we find that for water adsorbed at stoichiometric AEO-TiO2, the surface-bound 

intermediates of the water oxidation pathway have high free energy costs for the subsequent 
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OER steps. This is due to localisation of hole states at surface-bound *O species after 

dehydrogenation (sub-step A2 and step B) of the hydroxyls produced from dissociative water 

adsorption.  

This effect is mitigated for the reduced systems because electrons can transfer from a reduced 

Ti3+ site to stabilise under-coordinated *O species. Spin magnetisations of 0.4-1.0 µB were 

computed for *O species after dehydrogenation at the stoichiometric systems. At reduced 

AEO-TiO2, the same *O species have spin magnetisations of 0 µB indicating a charge transfer 

from TiO2 to *O. At the same time, Ti ions of the surface cycle between Ti3+ and Ti4+, indicated 

by computed spin magnetisations of 0.8-0.9 µB and 0 µB, before and after formation of *O, 

respectively. After each dehydrogenation, one Ti3+ is oxidised to Ti4+, with the electron 

transferring to the resulting *O species. Moreover, for water oxidation at cluster sites of the 

reduced systems, we find that the final step, evolution of a molecule of O2, is excessively 

endothermic as the surface bound O2 species is over-stabilised at cluster sites. For these 

reasons, we focus in particular on the OER proceeding at interfacial sites of the reduced AEO-

modified surfaces. 

 

4.2 Water oxidation at interfacial sites of AEO-TiO2 

4.2.1 Water oxidation without prior AEO nanocluster hydroxylation 

We consider the water oxidation pathway, using the model for water oxidation described above. 

This model was applied to the bare rutile (110) surface,41 for which the highest Gibbs free 

energy (ΔG) of a single step (viz the dehydrogenation of a surface OH group) was computed as 

+2.20 eV (step A). In identifying favourable reaction pathways at the modified surfaces, we 

consider that should the free energy cost of any PCET step (indicated previously as A, B, C or 

D in section 3.1) exceed 2.20 eV there will be no enhancement in the OER over bare rutile 

(110). 

We use reduced AEO-modified rutile as a model system because the ease of reduction means 

that oxygen vacancies will be present and, as discussed, the OER at the stoichiometric surface 

is not favoured. We summarise the results of the calculations of steps A-D in the OER, without 

and with hydroxylation of the AEO nanocluster, in Table 2. 

The adsorption geometries in Figures S11 and S13 show water molecules dissociatively 

adsorbed at interfacial sites of the reduced AEO-modified systems, both without and with 
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hydroxylation of the nanocluster. At the interfacial site, the water-derived hydroxyl group is 

bound to a Ti site of the surface and a second hydroxyl forms after migration of the other 

hydrogen from water to bind with an OC site. Adsorption of OH at a Ti site results in the Ti 

ions migrating out from the surface and breaking a bond with subsurface oxygen.  

 

Table 2. Computed free energies for water oxidation PCET steps starting from a single water 
molecule adsorbed at interfacial sites of AEO-modified rutile (110) in the reduced state with 
one oxygen vacancy. 

1 x H2O Mg4O3-r110 Mg12O11-r110 Ca4O3-r110 Ca12O11-r110 

 ΔG (eV) ΔG (eV) ΔG (eV) ΔG (eV) 

Step A1 -0.53 -0.50 -0.34 -0.32 
Step A2 0.81 0.52 0.62 0.64 

Step A 0.28 0.02 0.29 0.32 
Step B 0.82 1.84 0.99 1.03 
Step C1 1.49 0.01 -0.96 2.61 

Step C2 0.31 1.95 2.25 0.38 

Step C 1.79 1.96 1.29 2.99 
Step D 2.03 1.09 2.35 0.58 

Sum 4.92 4.92 4.92 4.92 
 

The adsorption geometries that are shown in Figure S11 represent the end of sub-step A1, viz 

dissociative water adsorption at the interface of the reduced AEO nanocluster and the rutile 

support. The computed free energies of this and subsequent steps are presented in Table 2. 

Only two of the reaction pathways shown in Table 2 meet the criterion that each PCET step 

has a computed ΔG of less than +2.20 eV. These are both for water oxidation on the reduced 

MgO-TiO2 structures. 

On all reduced AEO-modified TiO2 structures, sub-step A1 is exothermic, with computed ΔG  

in the range -0.53 eV to -0.32 eV. The first dehydrogenation step (sub-step A2) is moderately 

uphill, with ΔG  in the range +0.56 eV to +0.85 eV. Thus, the PCET step A proceeds with 

overall free energies in the range +0.02 eV to +0.32 eV.  

The second dehydrogenation (step B) requires a larger free energy cost, with computed ΔG  in 

the range +0.82 eV to +1.84 eV. These free energies are however, well below the value of 
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+2.20 eV, computed for bare rutile. After step B, a terminal oxygen ion is singly coordinated 

to a Ti ion of the surface and acts as a site for the adsorption of a second water molecule for 

step C.  

The computed free energies of step C are in the range +1.29 to +1.96 eV, with the exception of 

Ca12O11-r110 for which ΔG  is +2.99 eV, which is significantly larger than the same energy 

step for bare rutile. Step D involves the evolution of O2 accompanied by the release of the 

fourth proton and an electron. For Mg4O3-r110 and Mg12O11-r110 the computed free energies 

are +2.03 eV and +1.09 eV, respectively. For Ca4O3-r110, the computed free energy, ΔG , is 

+2.35 eV and so this pathway requires a larger energy input than that computed for bare rutile 

(110). 

The intermediate states of the water oxidation pathway proceeding at the interfacial site of 

reduced Mg12O11-r110 (with no nanocluster hydroxylation) are shown in Figure 8, and for 

Mg4O3-r110 in Figure S14. The first dehydrogenation, step A, is most favourable from the 

surface-bound hydroxyl group and leaves a terminal *O species and a hydroxyl group on the 

cluster. Step B involves dehydrogenation of the cluster-bound hydroxyl so that the reduced 

Mg12O11 nanocluster and the terminal *O species remain at the rutile (110) surface.  

After the second water adsorption (sub-step C1), *O and *OH species are bound to the surface 

Ti site and a second hydroxyl forms due to migration of the H atom to oxygen on the 

nanocluster. In sub-step C2, dehydrogenation occurs from the *OH species bound at the Ti site 

so that after relaxation, two *O species are bound to the same Ti site of the surface. In step D, 

these *O species desorb, as does the cluster-bound H atom. 

The energy profiles in Figures 8 and S14 are based on the free energies presented in Table 2 

with the inclusion of a potential bias term, ΔG , which shifts the free energy of each PCET step 

by an amount – 푒U, where U is the electrode potential relative to the standard hydrogen 

electrode. For each profile we consider three applied biases:	U	 = 	0	V; the equilibrium 

potential: U	 = 	1.23	V; and the potential at which each PCET step becomes downhill in free 

energy. The difference between this potential and 1.23 V is the overpotential required for the 

oxygen evolution reaction to proceed at the modified TiO2 surface.   

From the free energy profile, we see that at the equilibrium potential, 1.23 V, steps B and C are 

uphill and an applied bias of 1.96 V is required to render all steps downhill, corresponding to 

an overpotential of 0.73 V. Similarly, for the Mg4O3-r110 surface, as discussed in the SI, the 

computed overpotential is 0.80 V. For Ca4O3-r110 and Ca12O11-r110, the computed 
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overpotentials are 1.07 V and 1.76 V respectively. This means that water oxidation is inhibited 

compared to the bare rutile surface. This result is reflected in the experimental findings of 

decreased oxygen evolution activity for CaO-modified rutile at low loadings. 

 

Figure 8 Reaction pathway for water oxidation starting from dissociative water adsorption at 
an interfacial site of the reduced Mg12O11-r110 composite surface. The free energy profile of 
the pathway is shown for overpotentials U = 0, 1.23 and 1.96 V. At the equilibrium potential, 
U = 1.23 V, steps C and D are uphill and at U = 1.96 eV all reaction steps are downhill in free 
energy. The intermediate states in the upper panels represent the end-points of reaction sub-
steps A1 and C1. In this figure, water-derived O ions are light blue and H ions are dark blue.  
 

 

These results compare with an overpotential of 0.97 V, computed for water oxidation at the 

bare rutile surface by Valdés et al41 and indicates a favourable effect of the MgO-modifier. On 

hematite, the highest free energy cost is 1.82 eV, which corresponds to an overpotential of 0.71 

V, given that the authors computed a free energy of 1.11 eV per PCET step.42 A more recent 

study of OER at hematite surfaces demonstrated a considerable reduction in the overpotential 

(0.47 V) after formation of oxygen vacancies in the (110) surface.94 Similarly, oxygen 

vacancies reduced the overpotential by 0.3 V for water oxidation at the hematite (0001) 

surface.95 A first principles study of water oxidation on pristine and oxygen-deficient barium 
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titanate found that, contrary to our results and experiment, the overpotential increased from 

0.45 V for the pristine surface to 1.47 V in the presence of oxygen vacancies.43 This was 

attributed to the strong stabilisation of *OH and *O species for the latter system, which is not 

observed in the current study. 

 

4.2.2 Water oxidation with prior AEO nanocluster hydroxylation 

The role of prior hydroxylation of the catalyst surface is often overlooked in first principles 

OER studies. In the following, we examine the impact of hydroxylation of the AEO modifiers 

on the water oxidation pathways. In Table S7, we present the computed free energies for water 

oxidation proceeding at interfacial sites of the reduced AEO-modified systems, in which the 

nanocluster is hydroxylated by dissociative water adsorption (see Figure S13).  

For each surface, sub-step A1 is exothermic with free energies in the range -0.87 eV to -0.23 

eV and the dehydrogenation step, sub-step A2, proceeds with ΔG 	in the range +0.40 eV to 

+1.05 eV. Thus, the overall step A, has free energies between -0.03 and 0.33 eV. The 

dehydrogenation in step B has ΔG  in the range +0.98 eV to +1.03 eV. These energies are 

comparable to those computed for the water oxidation pathway with no hydroxyls at the cluster 

sites; one exception is step B at Mg12O11-r110, which decreases by 0.86 eV in the presence of 

cluster-bound hydroxyls.  

Steps C and D have the highest free energy costs, with the free energies for step C in the range 

+1.85 eV to +2.08 eV and free energies of +1.50 eV to +1.96 eV for step D. For Ca4O3-r110, 

step C has the highest energy cost, with ΔG = +2.46 eV, indicating no enhancement relative 

to the bare surface. This is consistent with the low OER activity measured for low Ca loadings. 

However, water oxidation at the interface of Ca12O11-r110 is more favourable after 

hydroxylation of the cluster; the highest energy step decreases from +2.99 eV to +2.08 eV, 

corresponding to an overpotential of 0.85 V. Conversely, hydroxylation of the cluster in Ca4O3-

r110 renders water oxidation less favourable and increases the required overpotential by 0.1 V.  

The water oxidation pathway proceeding at the interfacial site of reduced, hydroxylated 

Mg12O11-r110 (Mg4O3-r110) is shown in Figure S15 (Figure S16). The reaction site is 

highlighted with a black circle in the panel on the left. After water adsorption at the interfacial 

site, the water-derived hydroxyl is singly coordinated to a 5-fold coordinated Ti site, as 

previously described. The second H ion migrates to a neighbouring OC ion.  
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Here we describe the reaction intermediates for Mg12O11-r110 and the details for Mg4O3-r110 

are provided in the SI. The first dehydrogenation is most favourable from the cluster-bound 

hydroxyl group and leaves a *OH species bound at the rutile (110) surface. After step B the 

terminal *O species remains at the surface. After the water adsorption described by sub-step 

C1, an *OOH species is bound to the surface Ti site and a second hydroxyl forms due to 

migration of the H atom to an OC site. In sub-step C2, dehydrogenation occurs from the *OOH 

species bound at the Ti site so that after relaxation, an *O2 species is bound to the surface. In 

step D, the O2 molecule evolves with the release of the cluster-bound H atom. 

The energy profiles in Figures S15 and S16 are based on the free energies presented in Table 

S7. An applied bias of 1.91 V is required to render all steps downhill, corresponding to an 

overpotential of 0.68 V. Similarly, for the Mg4O3-r110 surface, as discussed in the SI, the 

computed overpotential is 0.74 V. 

In summary, we identify water oxidation proceeding favourably at interfacial sites of reduced 

MgO-modified rutile (110), with lower free energy costs for the PCET steps compared to water 

oxidation at rutile (110). These results highlight the role played by oxygen vacancies and the 

presence of reduced cations (Ti3+), which are produced by enhanced reduction of the MgO-

TiO2 system, in promoting the oxygen evolution reaction. Furthermore, there is an important 

role of the water adsorption site, where water adsorption at the interface of the nanocluster 

modifier and the support is the most active site for OER. We also see that, after an initial 

dissociative water adsorption at cluster sites, water oxidation proceeds with similar energy 

costs at interfacial sites of Mg4O3-r110 and Mg12O11-r110; the values for ΔG are within 0.1 eV 

for these surfaces, with and without cluster-bound hydroxyls.  

While quantifying these results in the context of measured oxygen evolution activities is 

beyond the scope of the current models, our results corroborate those of experiment. We 

confirm an enhancement for water oxidation at MgO-modified rutile at low loadings and a 

negative impact due to CaO-modification, relative to unmodified TiO2. 

 

5. Conclusion 

By simple surface modification of TiO2 rutile with nanoscale MgO and CaO, the photoactivity 

for O2 evolution can be improved. The enhancement in O2 evolution is considerable for MgO 

at very low loadings and high dispersion, and decreases at higher loadings. From this we infer 
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that both the surface and modifier are involved in the water oxidation reaction and this is 

confirmed by a first principles investigation of active sites of the nanocluster-modified 

surfaces. From the range of AEO modifier contents examined, it is expected that the modifier 

is present as a nanocluster on the rutile surface. This feature permits a close correlation with 

our theoretical models, and indeed, we achieved good agreement between experimental and 

computational results. In addition, the results show that the modifier must be in the nanocluster 

regime to modify the chemistry of the TiO2 support effectively. 

 From the structural and textural properties, the surface modification does not induce any major 

changes to rutile. However, the charge carrier dynamics are improved by the presence of 

alkaline ions at low loadings, which leads to lower recombination. DFT simulations show that 

the spatial separation of electrons and holes is promoted for the modified systems. It has also 

been stated that alkaline ion dispersion on TiO2 surface was better for Mg2+ than for Ca2+. This 

high dispersion on Mg2+ at very low content is also accompanied by a higher hydroxylation 

degree. The greater dispersion of MgO at the surface was confirmed by first principles 

calculations, which indicate that aggregation of CaO to larger clusters is favoured.   

Oxygen vacancies form with moderate energy costs for the modified systems, leading to the 

reduction of Ti4+ to Ti3+. This has consequences for the DOS, however, the impact of 

modification on the light absorption properties was found to be small, both experimentally and 

based on computational results. 

Using a model for the water oxidation pathway we have computed the applied overpotential 

required for the OER to proceed. In general, for water adsorbed at cluster sites, the surface 

bound intermediates are over-stabilised, impeding the reaction. We have identified a reaction 

pathway that proceeds at interfacial sites of the reduced MgO-modified systems, which drives 

an enhancement of the O2 evolution activity relative to bare rutile TiO2.  

These results highlight the importance of nanocluster modifiers, oxygen vacancies and Ti 

reduction in promoting the OER and identifies interfacial sites present at low coverages of 

nanocluster MgO as active sites for water oxidation. Moreover, this model confirms the 

enhanced performance for MgO-modification, relative to CaO-modification. Thus, by rational 

design, we have interpreted and explained the better photocatalytic performance that arises 

from alkaline earth modification of rutile TiO2, particularly Mg2+ modification at low loading. 
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