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A B S T R A C T   

The role of the intestinal microbiota as a regulator of gut-brain axis signalling has risen to prominence in recent 
years. Understanding the relationship between the gut microbiota, the metabolites it produces, and the brain will 
be critical for the subsequent development of new therapeutic approaches, including the identification of novel 
psychobiotics. A key focus in this regard have been the short-chain fatty acids (SCFAs) produced by bacterial 
fermentation of dietary fibre, which include butyrate, acetate, and propionate. Ongoing research is focused on 
the entry of SCFAs into systemic circulation from the gut lumen, their migration to cerebral circulation and 
across the blood brain barrier, and their potential to exert acute and chronic effects on brain structure and 
function. This review aims to discuss our current mechanistic understanding of the direct and indirect influence 
that SCFAs have on brain function, behaviour and physiology, which will inform future microbiota-targeted 
interventions for brain disorders.   

1. Introduction 

The community of microbes within our gut has co-evolved with its 
human host over thousands of years and understanding this relationship 
is vital for appreciating how our microbiome contributes to our health 
and wellbeing (Llorens-Rico and Raes, 2019; Gomaa, 2020). There are 
over 100 trillion microbes residing in the human gastrointestinal (GI) 
tract, made up of bacteria, viruses, phages, and archaea, collectively 
known as the gut microbiome. Over recent years, they have been shown 
to affect physiological systems of the body, including our brain and 
behaviour, via direct and indirect mechanisms (Agus et al., 2018; Fan 
and Pedersen, 2021; Sekirov et al., 2010; Rutsch et al., 2020). 
Communication between the gut microbiome and the brain occurs along 
the gut-brain axis, a bidirectional signalling pathway comprising the 
immune system, tryptophan metabolism, vagus nerve activity, the 
enteric nervous system (Soret et al., 2010), as well as bioactives (mi-
crobial by-products or metabolites) produced by the gut microbiome 
(Vuong et al., 2017; van der Hee and Wells, 2021; Fung et al., 2017). 
Studies, largely in animal models, have examined the effects of bacterial 
interventions on behaviour using different bacterial strains, multiple 

administration techniques, and different life stages (for review see 
(Cryan et al., 2019)). However, we still lack an intricate mechanistic 
understanding of how these microbes and microbial metabolites affect 
our behaviour in health and disease. 

The microbiota represents a rich reservoir of potential novel me-
tabolites and bioactives, with pleiotropic functionalities for the host 
(Agus et al., 2021). It is thought that probiotics, live microorganisms 
that provide health benefits, can do so without having a major effect on 
microbiome composition, per se (Kristensen et al., 2016). Indeed, 
administration of certain probiotic strains of bacteria (mainly Bifido-
bacterium spp. and Lactobacillus spp.) has been shown to alter the 
metabolic profile of the host through production of metabolites that 
could be beneficial in certain contexts including serotonin, histamine, 
γ-aminobutyric acid (GABA), branched-chain amino acids (BCAAs), and 
SCFAs (Hemarajata and Versalovic, 2013; Chung et al., 2018). Indeed, 
accumulating evidence suggests that bacterial metabolites can act at 
multiple locations both local to and distant from their site of production, 
modifying host behaviour and health (Fung et al., 2017; Spichak et al., 
2021a; Nikolova et al., 2021). For instance microbes can act locally, 
producing bioactives, including mediators normally associated with 
mammalian neurotransmission (Wall et al., 2014). It seems likely then 
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that microbial metabolites could play a significant role in the behav-
ioural changes noted after probiotic administration (Sarkar et al., 2016; 
van de Wouw et al., 2017), as well as regulating brain function in health, 
stress and ageing (van de Wouw et al., 2018; Boehme et al., 2021). In 
this review, we will focus on the microbial metabolites SCFAs produced 
by the gut microbiome to explore their potential as a key player in 
microbiota-gut-brain axis communication, and ability to act as a novel 
therapeutic for human disease. We will start by examining what SCFAs 
are, where they are located along the GI tract, and at what 
concentration. 

2. Microbial metabolites - short-chain fatty acids 

SCFAs are the most commonly studied gut microbial-derived 
metabolite. They are carboxylic acids with aliphatic tails of 1–6 car-
bon atoms (van der Hee and Wells, 2021; Parada Venegas et al., 2019). 
They are the product of bacterial fermentation of complex poly-
saccharides, which are otherwise non-digestible by the host (Brestoff 
and Artis, 2013). Over 95% SCFAs produced in the gut are acetate, 
propionate and butyrate (Parada Venegas et al., 2019; Rios-Covian et al., 
2020), although valerate, iso-valerate, valproate, caproate, isocaproate, 
succinate, iso-butyrate, and hexanoate are also found in smaller quan-
tities (Rios-Covian et al., 2020; Cook and Sellin, 1998). SCFAs can be 
sourced from, and correlate strongly with, our diet (van der Hee and 
Wells, 2021; Dalile et al., 2019). For example, SCFAs are found in high 
concentrations in foods such as butter and other dairy products (Stilling 
et al., 2016; Butler et al., 2020). Acetate is the smallest and most 
structurally simple with only a single carbon bound to the carboxyl 
group, followed by propionate and butyrate with two and three bound 
hydrocarbons, respectively (Ríos-Covián et al., 2016). 

SCFAs have been associated with many different host physiological 
processes including GI function (Gill et al., 2018), the regulation of 

blood-pressure (Pluznick, 2017), circadian rhythms (Tahara et al., 
2018), and innate and adaptive immune regulation, including microglial 
(the brains resident immune cells) maturation in the brain (Erny et al., 
2017), and astrocyte gene expression in a sex-specific manner (Spichak 
et al., 2021b). Intriguingly, altered SCFA levels in faecal content have 
been seen in human disorders where brain physiology and behaviour are 
modified: decreased SFCA levels have been reported in anorexia nervosa 
(Morita et al., 2015) and Parkinson’s disease (PD) (Unger et al., 2016), 
and increased SCFA levels in obesity (van de Wouw et al., 2017; Raha-
t-Rozenbloom et al., 2014), in children exposed to chronic psychosocial 
stress (Michels et al., 2017), and in autism spectrum disorder (ASD) 
(Wang et al., 2012). More recently, decreased faecal acetate and buty-
rate levels were seen in children with ASD (Liu et al., 2019). Preclini-
cally, reduced levels of SCFAs have been seen to be associated with 
Alzheimer’s disease (AD) (Zhang et al., 2017), and chronic stress (Maltz 
et al., 2018). Alterations in SCFA levels were also reported in depressed 
mice, relative to controls, which correlated with specific bacterial taxa 
(Wu et al., 2020a). 

Studies examining physiological concentrations of SCFAs in the brain 
are scarce (Silva et al., 2020). However, the Human Metabolome 
Database (http://www.hmdb.ca/) reports cerebrospinal fluid SCFA 
concentrations as 0–171 μM for acetate, 0–5 μM for propionate, and 
0–2.8 μM for butyrate (see Table 1). Tissue concentrations have also 
been examined and reported as 17.0 pmol/mg of tissue for butyrate, and 
18.8 pmol/mg of tissue for propionate in the human brain (Bachmann 
et al., 1979). SCFA concentrations in the blood have been reported 
highest in the portal circulation, lower in the hepatic circulation and 
lowest in the peripheral circulation, where mean concentrations were 
70 μmol/l for acetate, 5 μmol/l for propionate, and 4 μmol/l for butyrate 
(Cummings et al., 1987). 

In one report, in-depth information on concentration variation from 
the proximal to distal intestine in humans was gathered post-mortem 

Abbreviations 

5-HT 5-hydroxytryptamine or serotonin 
5-HT3B Serotonin 3B receptor 
AD Alzheimer’s disease 
Aβ β-amyloid 
APP Amyloid precursor protein 
ASD Autism spectrum disorder 
BBB Blood-brain barrier 
BCAA Branched-chain amino acid 
CD41 Glycoprotein (Gp) IIb/IIIa integrin 
CNS Central nervous system 
CSF Cerebrospinal fluid 
DC Dendritic cells 
DNA Deoxyribonucleic acid 
EAE Experimental autoimmune encephalomyelitis 
EEC Enteroendocrine cell 
ENS Enteric nervous system 
ERK Extracellular signal-regulated kinase 
FFAR Free fatty acid receptor 
FMT Faecal microbiota transplant 
GABA γ-aminobutyric acid 
GHSR-1a Growth hormone secretagogue receptor 1a 
GLP-1 Glucagon-like peptide-1 
GPCR G-protein coupled receptor 
HDAC Histone deacetylase 
hCMEC/D3 Immortalised human cerebromicrovascular endothelial 

cell line 
HPA Hypothalamic-pituitary-adrenal 
IBD Inflammatory bowel disease 

IBS Irritable bowel syndrome 
IFN Interferon 
IL Interleukin 
i.c.v. Intracerebroventricular 
i.p. Intraperitoneal 
IPE Inulin-propionate ester 
JNK c-Jun N-terminal kinase 
LPS Lipopolysaccharides 
MCT1 Monocarboxylate transporter 1 
MDD Major depressive disorder 
MS Multiple sclerosis 
mTOR Mammalian target of rapamycin 
NFKB Nuclear factor kappa-light-chain-enhancer of activated B 

cells 
NFE2L2 Nuclear Factor, Erythroid 2 Like 2 
NTS Nucleus tractus solitarius (the nucleus of the solitary tract) 
PBMC Peripheral blood mononuclear cells 
PD Parkinson’s disease 
PTM Post-translational modifications 
PYY Peptide YY 
SCFA Short-chain fatty acid 
SMCT1 Sodium-coupled (Na(+)-coupled) transporter for l-lactate 
SPF Specific pathogen-free 
Spp. Several species 
Foxp3 Forkhead box P3 
TJP Tight junction protein 
TMA Trimethylamine 
TMAO Trimethylamine N-oxide 
TNF-α/β Tumour necrosis factor alpha/beta  
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from six individuals with causes of death ranging from coronary heart 
disease to road traffic accidents (Cummings et al., 1987). Here it was 
noted that concentrations of acetate and butyrate peaked in the caecum, 
while propionate peaked in the ascending colon. SCFA concentrations 
reduce as they pass through the large intestine, but each undergo a small 
increase upon reaching the rectum (Cummings et al., 1987). Levels of 
SCFAs in human faeces have been reported as approximately 60 g/kg (1 
mol/kg) for acetate, 10–20 g/kg (136–274 mmol/kg) for propionate, 
and 3.5–32.6 g/kg (40–374 mmol/kg) for butyrate (McOrist et al., 2011; 
Macfarlane and Macfarlane, 2003); this is commonly cited as a 60:20:20 
ratio (den Besten et al., 2013). SCFA faecal concentrations have been 
shown to increase with prebiotic and probiotic treatment (Nagpal et al., 

2018; Baxter et al., 2019). SCFAs contribute to a wide range of processes 
including metabolism and immunity and can exert influence over 
neurological function and disease (Stilling et al., 2016; Sharon et al., 
2014). 

To help guide future therapeutics, the following SCFA-producing 
microbial genera that are commonly found in the gut should be 
considered in targeted approaches: Akkermansia, Bifidobacterium, 
Lactobacillus, Lactocaseibacillus, Ligilactobacillus, Ruminococcus, Rumino-
clustridium, Blautia, Bacteroides, Roseburia, Prevotella, Eubacterium, Fusi-
catenibacter, Faecalibacterium, Enterococcus, Clostridium and Coprococcus 
(see Table 2) (Dalile et al., 2019; Takada et al., 2016; Valles-Colomer 
et al., 2019). In addition, other species that have been associated with 
increased SCFA levels are: Alistipes, Bilophila, and Lachnospiraceae. It is 
increasingly apparent that SCFAs play an important role in host physi-
ology, therefore much more work is needed to fully elucidate this rela-
tionship. Firstly, we will examine how SCFAs arise in the gut through 
dietary intake, microbial metabolism, and host uptake. 

2.1. SCFAs in the gut – influence of diet 

While some foods contain SFCAs, the primary source is from colonic 
microbial fermentation of specific host-indigestible and non-absorbable 
dietary fibres (Macfarlane and Macfarlane, 2003; Baxter et al., 2019); 
examples include inulin, wheat bran, cellulose, and resistant starches. 
This is supported by the fact that germ-free animals (lacking a 
gut-microbiota and hence gut microbiota-derived SCFAs) and antibiotic 
treated mice (that have a strongly ablated gut-microbiota) have mark-
edly lower SCFA levels (Backhed et al., 2007; Hoverstad and Midtvedt, 
1986; Palleja et al., 2018; Zhao et al., 2016). Other sources of endoge-
nous SCFAs include the breakdown of proteins by the microbiota (Yao 
et al., 2016), host metabolism of long-chain fatty acids and pyruvate into 
acetate (Knowles et al., 1974), as well as the consumption of alcohol 
(Sarkola et al., 2002). Minor amounts of SCFAs can also be attained by 
the consumption of fermented foods (Gill et al., 2018). 

Given the importance of fibre in our diet (Berding et al., 2021; 
Reynolds et al., 2019), as the major supply for microbe-derived SFCAs to 
the host, research is increasingly focused on gut microbiota-derived 
modulation of gut SCFA levels depending on fibre type and 

Table 1 
Normal concentrations of short chain fatty acids in adults >18 years old.  

Tissue Concentration Refs 

Acetate 
Blood 26.8–64.2 μM a (Psychogios et al., 2011) 

30.4 (22.0–40.0) μM b (Lentner, 1981) 
41.9 ± 15.1 μM a (Psychogios et al., 2011) 
69.14(30.49) μM a (Zordoky et al., 2015) 

Cerebrospinal Fluid 58.0 ± 27.0 μM a (Wishart et al., 2008) 
100.0 ± 30.0 μM a (Commodari et al., 1991) 
116.0 ± 55.0 μM b (Lentner, 1981) 

Gut (wet faeces) 35.86 ± 16.8 μmol/g a (Zheng et al., 2013) 
37.4 (12.8–103.4) μmol/g a (Høverstad et al., 1984) 

Butyrate 
Blood 1.0 (0.3–1.5) μM b (Lentner, 1981) 
Cerebrospinal Fluid 1.4 (0–2.8) μM b (Lentner, 1981) 
Gut (wet faeces) 4.44–11.9 μmol/g a (Han et al., 2015) 

6.35 ± 3.13 μmol/g a (Zheng et al., 2013) 
12.4 (4–53) μmol/g a (Høverstad et al., 1984) 

Propionate 
Blood 0.9 ± 1.2 μM b (Lentner, 1981) 
Cerebrospinal Fluid 2.8 ± 3.2 μM b (Lentner, 1981) 
Gut (wet faeces) 6.58–14.4 μmol/g a (Han et al., 2015) 

11.4 ± 4.74 μmol/g a (Zheng et al., 2013) 
12.5 (4.5–27.8) μmol/g a (Høverstad et al., 1984)  

a References collected from the human metabolome database (https://hmdb. 
ca/). 

b References collected from the Geigy Scientific Tables. 

Table 2 
SCFA producing bacteria. A list of SCFA-producing gut bacteria discussed in the literature. Notably Bifidobacterium adolescentis, Faecalibacterium prausnitzii, and 
Bacteroides fragilis, are thought to be among the primary producers of acetate, butyrate, and propionate, respectively.  

SCFA Producer Notes Refs 

Acetate 
Bifidobacterium adolescentis Produces acetate, lactate and formate. Flint et al. (2015) 
The Bacteroidetes Phylum The main producers of acetate in the gut. (Macfarlane and Macfarlane, 2003;  

Hoverstad and Midtvedt, 1986; Levy 
et al., 2016) 

Butyrate 
Interspersed species in the Lachnospiraceae and 

Ruminococcaceae families such as Faecalibacterium 
prausnitzii. 

Dominant bacteria in human faecal samples capable of butyrate 
production. 

(Louis and Flint, 2017; Parada, 2019) 

Clostridium tyrobutyricum Used for monocolonisation to introduce butyrate to germ-free mice. Braniste et al. (2014) 
Clostridiales sp. SS3/4, Eubacterium rectale, Faecalibacterium 

prausnitzii, Roseburia intestinalis, Roseburia inulinivorans, 
and Eubacterium hallii 

Data from a metagenomic large cohort of affected individuals with type 2 
diabetes, which revealed a lack of butyrate-producing bacteria. 

(Ríos-Covián et al., 2016; Qin et al., 
2012) 

Propionate 
Clostridium ramosum Produced the greatest amount of propionate in comparison with several 

other species. 
Smith et al. (2013) 

The Desulfovibrio genus Increased levels of this genus are associated children with ASD. Finegold (2011) 
The Bacteroidetes genus, such as Prevotella copri Dominant bacteria in human faecal samples capable of propionate 

production. They may also be an important phylum in the contribution to 
the severity of symptoms in ASD. 

(Louis and Flint, 2017; Finegold et al., 
2010) 

Bacteroides fragilis Major propionate producing bacteria in the human intestine. (Shimizu et al., 2018; Rios-Covian 
et al., 2015) 

Acetate/propionate 
Bacteroides thetaiotaomicron Used for monocolonisation to introduce acetate/propionate to germ-free 

mice. 
Braniste et al. (2014)  
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bioavailability. Indeed, one intriguing study showed that a specific 
group of SCFA-producing microbes (Bifidobacterium pseudocatenulatum) 
was enhanced following a diet high in fibre (as a fermentable carbo-
hydrate) and its availability in the colon, which was capable of modu-
lating clinically-relevant host outcomes in Type 2 Diabetes (Zhao et al., 
2018). The fibre-promoted SCFA-producing microbes were present in 
higher diversity and abundance, correlating with improvements in 
clinical outcomes including improved haemoglobin A1c levels and 
increased glucagon-like peptide-1 (GLP-1) production, and a reduction 
in metabolically detrimental compounds such as indole and hydrogen 
sulfide. B. pseudocatenulatum in particular, had profound effects in mice, 
where it significantly reduced weight gain, body fat, fasting glucose, and 
insulin resistance, as well as improved the postprandial glycemic 
response and increased the caecal acetate content (Zhao et al., 2018). 

Diet-derived protein, the prime source of amino acids critical for 
synthesis of neurotransmitters and brain health in general, has been 
associated with increased levels of gut-derived SCFAs and BCAAs (Singh 
et al., 2017). The consumption of a pea protein increased intestinal 
SCFAs associated with anti-inflammatory effects and mucosal barrier 
maintenance (Swiatecka et al., 2011). A protein-rich diet has also been 
associated with increases in Bacteroides abundance, a microbial genus 
crucial for the initial gut-based proteolysis of protein into amino acids. 
Further, an animal-based protein diet showed significant increases in the 
bile-tolerant anaerobes Alistipes, Bilophila and Bacteroides (David et al., 
2014; Cotillard et al., 2013). In a comparison of children fed animal 
protein in Italy to rural African children on an agrarian diet, the animal 
protein-based diet increased abundances of Alistipes and Bacteroides (De 
Filippo et al., 2010). This may be important given that data showed 
increased abundance of Alistipes correlated with depression (Jiang et al., 
2015). In fact, it is possible that long-term animal-based diets could have 
a detrimental effect on gut microbiota (Moreno-Perez et al., 2018). 

Access to dietary SCFAs during early-life development may be 
equally or more important than in adults and is now under greater 
scrutiny. It was shown that butyrate supplementation during the post- 
weaning phase in mice significantly altered social behaviour, sexual 
preference, and depression-like behaviours (Zhao et al., 2020). 
Furthermore, fibre in the maternal diet has the potential to regulate 
neurocognitive functions in the offspring (Yu et al., 2020), likely via 
modulation of gut-derived SCFA levels. Also, a high-fibre diet was 
capable of abrogating maternal obesity-induced cognitive and social 
deficits and synaptic impairments seen in the offspring (Liu et al., 2021). 
This evidence supports the use of SCFA-dependent perinatal interven-
tion, potentially through dietary fibre supplementation, for improving 
offspring brain health. Overall, more work is needed in understanding 
the relative contribution of the effects of diet on the SCFA-producing 
microbiota and their impact on brain function, including the establish-
ment of guidelines of safe levels of SCFA administration in humans. 

2.2. Delivering SCFAs to the gut and impact on serotonin 

Another innovation within the microbiome-gut-brain axis research 
field has focused on examining formulation approaches to get SCFAs to 
specific sites along the GI tract, such as the colon. Recent human studies 
show that colon-delivered SCFAs have the capacity to attenuate the male 
cortisol response following psychosocial stress (Dalile et al., 2020). 
However, a recent randomised crossover-designed healthy human study 
found no differences in blood glucose or insulin concentrations, nor 
changes in neuropeptide levels after targeted delivery of propionate (as 
an inulin-propionate ester: IPE) to the colon; although brain imaging 
fMRI indicated the IPE reduces anticipatory reward responses in the 
human striatum to high-energy foods (Byrne et al., 2016). On the other 
hand, preclinical evidence showed that acylated starches, which reach 
the colon without being absorbed, can substantially increase caecal ac-
etate, butyrate, and propionate levels (Kimura-Todani et al., 2021). 
Indeed, acetylated, propionylated, and butyrylated high-amylose maize 
starches can deliver SCFAs directly to the colon (Annison et al., 2003). It 

has also been shown that mid-colon can be stimulated by SCFAs to 
secrete the neurotransmitter serotonin (5-HT) (Fukumoto et al., 2003), 
but this was not the case for the orad or caudad colonic compartments, 
highlighting the importance of spatial biogeographic differences along 
the colon, and in particular, relevance to local spatial microbial popu-
lation abundance changes (Grider and Piland, 2007). Moreover, SCFAs 
failed to stimulate 5-HT secretion from primary mouse enterochromaffin 
cells (Martin et al., 2017), and acetate has been shown to modulate gut 
5-HT response by decreasing serotonin receptor 5-HT3B expression 
(Bhattarai et al., 2017). As a result, more research is warranted to 
examine the potential mechanisms involved in SCFA impact on colonic, 
systemic and central serotonergic signalling (Russo et al., 2019), as it is 
yet unclear if this is beneficial or harmful to the host. Having considered 
the concentration and location of SCFAs in the GI tract, we will now 
cover the uptake of SCFAs by the host, from the gut. 

2.3. SCFA uptake 

While it is clear that gut SCFA levels are high and concentrations 
fluctuate along the extent of the small intestine, what is less obvious is 
how that affects host-microbe interaction and SCFA uptake. Specifically, 
gut-derived SCFAs are absorbed by the host epithelium, after which 
predominantly butyrate is used as an energy source for colonocytes 
(Hamer et al., 2008; Clausen and Mortensen, 1994; McNeil et al., 1978), 
which can be taken up from the intestinal lumen in one of two ways: via 
passive diffusion through the epithelia as non-ionised SCFAs (Mascolo 
et al., 1991; Walter and Gutknecht, 1984), or through protein trans-
porters (Kekuda et al., 2013; Tamai et al., 1995). Non-ionised passive 
uptake of SCFAs was the first route identified (for example: reviewed in 
(Kamp and Hamilton, 2006)). This non-ionic theory of SCFA uptake was 
initially challenged, as butyrate rapidly dissociates to its anionic form in 
the colon, thus facilitated diffusion through transporters must take place 
(Phillips and Devroede, 1979). Indeed, only a very small portion of 
SCFAs in the gut are present in their non-ionised form, making the role 
of passive diffusion rather minor (Sellin, 1999). 

The remainder of butyrate, as well as the majority of propionate, is 
subsequently metabolised by hepatocytes, resulting in 1- to 15- μmol/L 
concentrations of propionate and butyrate in circulation, whereas ace-
tate is found within a range of 100–200 μmol/L (Stilling et al., 2016; 
Cummings et al., 1987; Peters et al., 1992; Bloemen et al., 2009) (see 
Table 1). This is supported by reports showing that exogenously 
administered SCFAs are metabolised in the same SCFA-specific prefer-
ential manner (Boets et al., 2017): i.e., butyrate > propionate > acetate. 

Most SCFA anions are co-absorbed with cations such as Na+ or K+

(for example: reviewed in (Stumpff, 2018)). Facilitated SCFA diffusion 
through epithelia uses transporters such as the sodium-coupled mono-
carboxylate transporter (SMCT1) (Miyauchi et al., 2004; Cuff and 
Shirazi-Beechey, 2002), and the pH dependent hydrogen-coupled 
monocarboxylate transporter (MCT) 1 and 4 (Keduka et al., 2013; 
Tamai et al., 1995; Thangaraju et al, 2008). Other transporters for SCFAs 
exist but are thought to be quantitatively less important (for example: 
reviewed in (Dalile et al., 2019)). It is relevant to note that SCFAs can 
exert effects on the gut before they are taken into the general circulation, 
through various G-protein coupled receptors (GPCRs) and hydrox-
ycarboxylic acid receptor 2 (for example: reviewed in (Parada Venegas 
et al., 2019)), mediating an anti-inflammatory effect (for example: 
reviewed in (Thorburn et al., 2014)). 

Both diet and the transit time of digesting food may play a role in 
SCFA uptake. A diet high in resistant starch was found to increase the 
expression of MCT1 in pigs (Haenen et al., 2013). Faster colonic transit 
times in an in vitro model have been found to increase the faecal SCFA 
content, which is possibly due to impeded absorption of SCFAs (El Oufir 
et al., 2000), an important fact to keep in mind when measuring faecal 
SCFA content as an experimental output. Mice and rats express MCT1 
highest in the caecum and colon, while other regions have low MCT1 
expression (Iwanaga et al., 2006). The capacity of the GI tract to take up 
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SCFAs is likely highest in these areas of high expression. In humans, it 
has been shown that the proximal colon and ileum have very low 
expression of SCFA transporters but, MCT1, MCT4, and MCT5 increase 
along the colon, reaching its highest level of expression in the distal 
colon (Iwanaga et al., 2006). 

2.4. SCFAs metabolism 

Once taken up by the host, SCFAs act as an important metabolic fuel 
(Inoue et al., 2014; Bogie et al., 2020) as they can be used for the syn-
thesis of glucose and lipids as host energy sources (Cani et al., 2019; Hu 
et al., 2018). When absorbed by colonocytes they are used in mito-
chondrial β-oxidation and the citric acid cycle (Schönfeld and Wojtczak, 
2016). This provides a vital energy source for colonocytes; butyrate 
alone has been shown to provide 70% of energy requirements for 
colonocytes in mice (Serpa et al., 2010), and acetate can account for 
about 60–75% of the total faecal SCFAs (Parada Venegas et al., 2019). 
Intriguingly, germ-free mice exhibit a deficit in mitochondrial respira-
tion in colonocytes (Donohoe et al., 2011). Those SCFAs not metabolised 
by colonocytes are transported into portal circulation (Bloemen et al., 
2009). A comparatively small fraction of SCFAs enter systemic circula-
tion capable of reaching peripheral tissues (Boets et al., 2015). In 
humans, the complete energy contribution of SCFAs has been estimated 

to provide 10% of daily caloric requirements (Bergman, 1990). Unlike 
butyrate, propionate and acetate do not serve as a primary energy source 
for colonic epithelia, but instead are used as energy substrates for pe-
ripheral tissues (den Besten et al., 2013), where concentrations of SFCAs 
can reach 19–160 μmol/l for acetate, 1–13 μmol/l for propionate, and 
1–12 μmol/l for butyrate (Canfora et al., 2015) (see Table 1). Aside from 
being a source of fuel for the body, SCFAs can play a role in treatment 
and protection against metabolic disease; they have functions in host 
insulin sensitivity and appetite regulation, and could aid prevention of 
diet-induced insulin resistance and obesity (Shimizu et al., 2019). SCFAs 
are also used as substrates for gluconeogenesis, and cholesterol synthesis 
(van de Wouw et al., 2017; Boets et al., 2015; Hellman et al., 1954). 

SCFA metabolism can lead to possible effects on host behaviour and 
physiology (see Table 3). For example, the metabolism of SCFAs by the 
citric acid cycle subsequently increases levels of mammalian target of 
rapamycin (mTOR) which functions in regulatory pathways controlling 
ribosome biogenesis and cell growth (Dennis et al., 2001). mTOR has 
also been implicated in host behaviour (Xu et al., 2018) and brain 
physiology (O’Riordan et al., 2014). 

While much has been learned about diet-delivered host-indigestible 
and non-absorbable dietary fibres, which are metabolised by gut mi-
crobes into metabolites such as SCFAs, that then interact with the host 
gut epithelium, and are taken up for host metabolism, much work is still 

Table 3 
SCFA effects on brain physiology. SCFAs have a wide range of effects on the host’s brain. They influence BBB integrity, regulate normal development and function of 
microglia, participate in inflammation, and even alter levels of neurotransmitters and intracellular potassium levels. SCFAs carry out these processes through affecting 
intracellular pathways, affecting cellular epigenetics, and changing protein levels.  

Effect Model Refs 

Acetate 
Altered levels of glutamine, glutamate, GABA, and anorexigenic 

neuropeptide expression in the hypothalamus. 
In vivo mouse model Fung et al. (2017) 

Butyrate 
Improved integrity of BBB associated with increased levels of tight- 

junction protein occludin in frontal cortex and hippocampus, but no 
effect on claudin-5. Increased histone acetylation in brain lysates. 

Effect seen with (i) Oral gavage of germ-free mice with butyrate and 
(ii) mono-colonisation with butyrate-producing Clostridium 
tyrobutyricum or acetate/propionate producing Bacteroides 
thetaiotaomicron. 

Braniste et al. (2014) 

Gut microbiota-derived butyrate may contribute to histone 
crotonylation in the brain. 

Microbiota depletion in mice (specific pathogen free/ABX). Fellows et al. (2018) 

Butyrate epigenetically regulates the microglia response through 
downregulation of pro-inflammatory mediators and upregulation of 
anti-inflammatory mediators. 

Experimental mouse (C57BL/6NTac) model. Patnala et al. (2017) 

Triggered the reversible elongation of microglial processes in normal 
and inflammatory conditions, through Akt activation. 

In vitro/in vivo Wang et al. (2018) 

Abolished LPS-induced depressive-like behaviours and microglia 
activation in the hippocampus. 

Behavioural mouse model Yamawaki et al. (2018) 

Obese individuals (n = 35) had higher levels of SCFAs than lean 
individuals (n = 33), while treated (Roux-en-Y gastric bypass/gastric 
sleeve) obese individuals (n = 90) showed reduced SCFA levels in 
faeces (n = 80, 6 months post-op). 

Clinical studies Farup et al., 2016; Schwiertz 
et al., 2010; Liu et al., 2018;  
Kim et al., 2019) 

Propionate 
Can modulate lung immune responses: high-dose propionate delivered 

to the murine lung, mimicking antibiotic exposure, altered SCFA 
levels resulting in a diminished immune containment of 
Staphylococcus aureus pneumonia. 

Mouse models (Wild-type C57BL/6 and C3H/HeOuJ)/cell cultures Tian et al. (2019) 

i.c.v. application of high doses caused ASD-like behavioural changes in 
rats. 

Long–Evans rats Macfabe (2012) 

Reduction in inflammation and oxidative stress through decreasing 
CD41 expression on hCMEC/D3 cells, and affected the 
translocalisation of NFE2L2, a transcription factor nuclear factor 
involved in the antioxidant pathway. 

In vitro cell cultures Hoyles et al. (2018) 

Reduction of experimental autoimmune encephalomyelitis (EAE) and 
axonal damage through increased Treg differentiation. 

In vitro cell cultures Haghikia et al. (2015) 

Propionate and butyrate 
Regulated the expression of tryptophan hydroxylase and altered 

intracellular potassium in the cells of the central nervous system. 
Review Oleskin and Shenderov (2016) 

Acetate, Propionate, and Butyrate 
SCFAs are sufficient to normalise germ-free associated alterations in 

microglia gene expression, morphology, and abundance, as well as 
establish normal maturation of microglia in germ-free animals. 

Post-natal supplementation to germ-free animals. (Borre et al., 2014; Erny et al., 
2015)  
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needed to track and trace SCFAs mobility from the gut epithelium to the 
brain. We now turn our focus to the potential SCFAs have as gut-brain- 
axis signalling molecules in the host. 

3. SCFAs: microbial metabolites that modulate gut-brain 
signalling 

3.1. SCFAs and their peripheral and CNS receptors 

The host enteric nervous system (ENS) is one of the first host phys-
iological interactions for SCFAs in the gut (see Fig. 1) (Fung et al., 2017; 
Dalile et al., 2019; Stilling et al., 2016; Borre et al., 2014). Butyrate, 
propionate, and acetate have been shown to activate several GPCRs 
including GPR109A, GPR164 and OR51E2, the best characterised of 
which are GPR43 and GPR41 (Dalile et al., 2019). Now commonly 
referred to as free fatty acid receptor 2 (FFAR2) and FFAR3, the speci-
ficity of these receptors is known to be influenced by the length of the 
SCFA carbon chain (Nohr et al., 2015). Both FFAR2 and 3 are located on 
chromosome 19, where there is about 50% sequence similarity; it has 
been shown that FFAR2 has a high affinity for the shorter carbon chain 
SCFAs acetate and propionate, while FFAR3 prefers longer fatty acid 
molecules such as butyrate (Brown et al., 2003). These receptors are 
known to be expressed in a wide variety of cell types, including immune 
cells such as neutrophils, monocytes, and lymphocytes (Brown et al., 
2003), innate lymphoid cells (Sepahi et al., 2021), as well as tissues 
ranging from gut and vasculature to organs, such as the kidneys. 
Although widely expressed on many different cell types, for the purposes 
of this review we will focus on the role of these receptors in neurons and 
their associated tissues. 

Neuronally expressed SCFA receptors have been found in both the 
peripheral and central nervous systems (Falomir-Lockhart et al., 2019). 
The ability of SCFAs to cross the blood brain barrier (BBB; the primary 
structural barrier between the blood and the brain) was confirmed when 
radiolabelled 14C–SCFAs were injected into the carotid artery of rats and 
detected in the brain (Oldendorf, 1973), in a self-inhibitory manner, 
where butyrate reported in higher per-cent access, then propionate, 
followed by acetate, at the ratio of 4.6:3.1:1.4 (B:P:A). Although, such 
experiments are often carried out with concentrations of SCFAs far 
above physiological levels, it is known that SCFAs are detectable at 
appreciable concentrations in human CSF (Wishart et al., 2018), with 
acetate at 0–171 μM, propionate at 0–6 μM, and butyrate at 0–2.8 μM 
(see Table 1). Not only are SCFAs capable of crossing the BBB but they 
are also believed to be important for BBB integrity and function. 
Germ-free mice have been shown to have appreciably lower levels of the 
important BBB tight junction proteins (TJP) claudin-5 and occludin, 
which can be reversed by colonisation of these animals with a mixture of 
bacteria, including SCFA producing strains (Braniste et al., 2014). 
Interestingly, expression of FFAR3 has been confirmed in brain endo-
thelial cells, tentatively suggesting a mechanism whereby butyrate may 
influence the structure and function of the BBB (Hoyles et al., 2018). 

Activation of FFAR’s leads to the suppression of orexigenic hypo-
thalamic activity in neurons expressing neuropeptide Y, which has been 
linked to changes in appetite and circadian rhythms (Silva et al., 2020). 
Interestingly, microbial SCFA-mediated stimulation of FFAR’s has a 
downstream inhibitory effect on ghrelin secretion (Mishra et al., 2020; 
Engelstoft and Schwartz, 2016; Engelstoft et al., 2013). Indeed, an acute 
increase in colonic SCFAs was associated with reduced ghrelin concen-
trations (Rahat-Rozenbloom et al., 2017). Noteworthy, recent evidence 
suggest that SCFAs may inhibit signalling through the ghrelin receptor 
or the growth hormone secretagogue (GHSR-1a) receptor (Torres--
Fuentes et al., 2019). Both propionate and butyrate were able to atten-
uate ghrelin-mediated Gq signalling of the GHSR-1a receptor. 
Additionally, acetate, butyrate and propionate decreased 
ghrelin-mediated GHSR-1a internalisation, a measure of β-arrestin 
mediated GHSR-1a signalling. Thus, SCFA-producing gut microbes may 
indirectly impact on ghrelin signalling via FFAR2-mediated ghrelin 

regulation, or directly via either antagonism or allosteric modulation of 
the GHSR-1a (Leeuwendaal et al., 2021). It has also been shown that 
acute oral administration of butyrate leads to a drop in the activation of 
a cohort of hypothalamic neurons which express neuropeptide Y, lead-
ing to a suppression of food intake (Li et al., 2018). 

FFAR’s also have a role in the normal function of glial cells. Although 
the mechanisms are yet unknown, it has been shown that mice lacking 
FFAR2 have microglia that were similar in profile to those of germ-free 
animals (Silva et al., 2020). Moreover, butyrate has been found to signal 
through GPR109a, which has been found to be expressed in the sub-
stantia nigra of individuals with PD (Wakade et al., 2014). Using fluo-
rescent microscopy this same work demonstrated that the expression of 
GPR109a showed significant co-localisation with microglia, thereby 
suggesting a role in neuroinflammation, which we describe elsewhere in 
this review. 

SCFAs have also been shown to interact locally in the gut, regulating 
ENS function and motility (Soret et al., 2010), where butyrate has been 
suggested as a treatment for GI motility disorders, including Inflam-
matory bowel disease (IBD) (Harig et al., 1989; Scheppach et al., 1992). 
The local mechanism of action in the colon has been proposed to be via 
commensal microbe-mediated induction of functional regulatory T 
(Treg) cells in the colonic mucosa (Furusawa et al., 2013). Indeed, such 
work has led to the idea of the diet-microbiota axis as a regulator of host 
immunity and homeostasis (Nagai et al., 2016). Further, targeting the 
duodenum with bioactive gut molecules called bacterial 
SCFA-containing enterosynes, has become a novel treatment therapeutic 
for type 2 diabetes, specifically modulating smooth muscle cells of the 
duodenal ENS (Knauf et al., 2020). SCFAs not only interact with and 
signal through the ENS in the host gut epithelium, but they also act on 
colonocytes, which we will explore in the next section. 

3.2. SCFA-mediated enteroendocrine signals in the microbiome-gut-brain 
axis 

As mentioned previously (and see Table 4), SCFAs are probably best 
known for their effects on type-L enteroendocrine colonocytes, specif-
ically (Leeuwendaal et al., 2021). In binding FFAR2 and FFAR3 re-
ceptors (Lu et al., 2018), SCFAs signal the secretion of the anorexigenic 
hormones peptide YY (PYY) and GLP-1 (Tolhurst et al., 2012; Psichas 
et al., 2015; Cani et al., 2009; Larraufie et al., 2018). These peptides are 
transported to the brain via vagal afferents (Goswami et al., 2018) or 
circulating blood (Freeland and Wolever, 2010), where they can influ-
ence appetite and food intake (De Silva and Bloom, 2012). Notably, 
acetate was shown to cross the BBB and signal into different brain areas 
including increasing hypothalamic neuropeptide expression regulating 
satiety (Frost et al., 2014). Further, increased levels of colonic propio-
nate was associated with decreased subjective appeal of high-energy 
foods, a reduction in energy intake, and a decreased actifvity in 
reward centres, with no changes in PYY and GLP-1 levels (Byrne et al., 
2016). However, it has been reported that an acute increase in colonic 
SCFAs had no effect on GLP-1 or PYY levels in lean or healthy over-
weight/obese subjects (Rahat-Rozenbloom et al., 2017); although they 
suggest that a chronic enhancement in SCFA levels in a larger sample 
size may result in different outputs. Yet, another study using the same 
propionate delivery method saw increased GLP-1 and PYY levels after 
acute but not chronic delivery (Chambers et al., 2015). 

While early evidence indicates that both PYY and GLP-1 are 
expressed in different brain regions (Trapp and Richards, 2013; Alvarez 
et al., 2005; Morimoto et al., 2008; Katsurada and Yada, 2016), 
including the nucleus tractus solitarius (NTS; a projection area of the 
vagus nerve) (Trapp and Richards, 2013), and that both have been 
shown to mediate reward-related cognitive processes, to have 
anti-anxiety and anti-depressant properties, and to enhance memory and 
neuroplasticity (van Bloemendaal et al., 2014; Anderberg et al., 2016; 
Gil-Lozano et al., 2010; During et al., 2003; Isacson et al., 2011), more 
work is needed to provide stronger evidence that PYY is produced 

K.J. O’Riordan et al.                                                                                                                                                                                                                           



Molecular and Cellular Endocrinology 546 (2022) 111572

7

outside of the GI tract. Further, the extent to which SCFA-induced 
changes in these two appetite hormones could influence anxiety, stress 
or depression is still unclear. 

SCFAs have also been associated with changes in the secretion of 
other hormones such as insulin and leptin; in particular, leptin secretion 
from adipocytes has been reported to be enhanced following SCFA 
stimulation (Xiong et al., 2004; Zaibi et al., 2010). Further, microbial 
derived SCFAs augmented FFAR stimulation and had a downstream 
inhibitory effect on ghrelin secretion (Engelstoft and Schwartz, 2016; 
Engelstoft et al., 2013). Interestingly, these hormones have been shown 

to influence brain function (Lee et al., 2016; Kullmann et al., 2016; Farr 
et al., 2015; Bali and Jaggi, 2016); thus, their possible involvement in 
SCFA-mediated cognitive processes constitutes an interesting avenue for 
further investigation. Both insulin and leptin have been shown to be 
differentially altered by SCFA supplementation regimes (Lin et al., 2012; 
Robertson et al., 2005), although some studies have reported no effects 
too (Zaibi et al., 2010; Perry et al., 2016; Frost et al., 2014). Not only 
have SCFAs been shown to interact with the ENS, CNS and gut epithelia, 
the have a potential influence on host epigenome. Next, we will review 
this association and potential avenue for microbial metabolite derived 

Fig. 1. The Microbiome-gut-brain axis. Communication between the gut microbiome and the brain occurs along the gut-brain axis, a bidirectional signalling 
pathway, comprising the 1) immune system, 2) tryptophan metabolism, 3) vagus nerve activity, 4) the enteric nervous system, as well as the bioactives (microbial by- 
products or metabolites) produced by the gut microbiome. FMT= Faecal microbiota transplant; FOS = Fructo-oligosaccharides; GOS = Galacto-oligosaccharides; 
SCFA = Short-chain fatty acids; EEC = Enteroendocrine Cell; 5-HT -5-hydroxytryptamine/Serotonin. 
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host epigenomic signalling. 

3.3. SCFAs: signalling molecules at the interface between microbiome and 
epigenetics 

The microbiome and the epigenome are dynamic systems that are in 
a constant state of flux dependent nutrient accessibility. Epigenetic 
mechanisms are required to respond to environmental stimulation, a 
process facilitated by several key enzymes. Many of these enzymes 
employ cellular metabolites as a source of acetyl, methyl or phosphate 
groups, which highlights the crucial role these metabolites may play in 
this epigenetic-microbiome crosstalk. It is at this juncture between the 
microbiome and epigenetic mechanisms that SCFAs have the potential 
to play a crucial role. In 1977, n-butyrate was shown to be a histone 
deacetylase (HDAC) inhibitor, providing early evidence of the impor-
tance of SCFAs in regulating host chromatin conformation (Riggs et al., 
1977). Evidence for metabolic regulation of epigenetic signalling came 
from in vitro experiments showing that acetate was a putative marker for 
increased histone acetylation in adipocytes (Wellen et al., 2009), while 
experiments using propionate showed a reduction in HDAC expression 
in human colon cancer (HT-29) cells, and others showed increased 
histone acetylation (Hinnebusch et al., 2002). Using an organoid model, 
propionate and butyrate were shown to increase expression of HDAC3 
and HDAC5 (Lukovac et al., 2014). Conversely, in HT-29 cells it was 
shown that butyrate was a potent inhibitor of HDAC activity in the colon 
(Waldecker et al., 2008). 

Butyrate is a key metabolite capable of influencing epigenetic sig-
nalling; it was shown that dietary fibre could protect against tumour 
growth in the colon, which was consequently dependent on the presence 
of butyrate (Waldecker et al., 2008). Furthermore, when butyrate was 
supplemented to a high-fat diet given to obese C57BL/6J mice, it was 
capable of preventing and treating insulin resistance by promoting en-
ergy expenditure and stimulation of mitochondrial function (Gao et al., 
2009). The gut microbiota also influences epigenetic programming as a 
function of colonisation status. Several post-translational modifications 
(PTMs) were shown to be dependent on the microbiome in germ-free, 
recolonised germ-free, and conventionally raised mouse studies. 

Intriguingly, these PTMs were noted in the liver and white adipose tissue 
as well as the colon, demonstrating that direct contact with the micro-
biome is not essential. Moreover, it was shown that the sensitivity of 
PTMs to colonisation was also influenced by diet with mice receiving a 
Western style diet displaying no changes in PTM composition (Krautk-
ramer et al., 2016). A recent paper that examined the transcriptional 
landscape of the intestinal epithelial cell under homeostatic and in-
flammatory conditions, revealed that the methylome was shaped by the 
microbiome and that microbiome induced epigenetic changes were 
essential for maintaining homeostasis (Ansari et al., 2020; Pan et al., 
2018). It is becoming clear that enzymes that modify histones have not 
only evolved to “recognise” endogenous metabolites but also metabo-
lites derived from the gut microbiota. 

Other histone PTMs include crotonylation, butyrylation and 
hydroxybutyrylation. Crotonylation in particular, is a PTM where a 
crotonyl group from crotonyl-coenzyme A is added to lysine residues 
that can both initiate and repress gene expression (Martinez-Moreno 
et al., 2020; Tweedie-Cullen et al., 2012). Crotonylation is found in the 
brain, and SCFAs are absorbed in the colon and enter the bloodstream 
(Fellows et al., 2018), which portends that SCFAs could influence 
neurophysiology and may have brain specific functions. Intriguingly, 
work involving butyrate producing bacteria such as Clostridium butyr-
icum demonstrated a capacity to increase brain butyrate concentrations 
an order of magnitude higher than physiological levels (Sun et al., 
2016). While it is clear that microbial metabolites can interact with the 
hosts epigenome directly, or indirectly, how much of an impact this has 
to modify the epigenome is less well understood. Nonetheless, a few 
studies have highlighted the affect the gut microbiome has on host 
physiological systems, both directly and indirectly, including brain 
function and behaviour, and the immune system, which we will now 
discuss. 

3.4. SCFAs and host immunity 

A single layer of epithelial cells constitutes a mucosal interface be-
tween the gut microbiome and host systemic immunity. This border is 
the setting for an interaction between metabolites produced by the 

Table 4 
Role of SCFAs in enteroendocrine and neuropeptide signalling in the microbiome-gut-brain axis. SCFA interaction with their receptors on colonic enteroendocrine L- 
cells leads to the secretion of gut hormones such as PYY and GLP-1, both of which will signal to the brain via the vagus nerve or circulation. These hormones can in turn 
influence learning, memory and mood. SCFAs can also cross the BBB and influence central synthesis of some of these peptides. SCFAs have been shown to influence 
levels of other hormones, such as leptin, insulin and ghrelin. Finally, SCFAs are also able to cross the BBB and directly influence brain neuropeptide production and 
other aspects of brain function. FFAR-free fatty acid receptor; GLP-1- glucagon-like peptide-1; PYY-peptide YY; AMP- adenosine monophosphate; HDAC-histone 
deacetylase.  

Target Effect Function Refs 

Acetate 
Hypothalamus ↑anorexigenic 

neuropeptide 
expression 

Acetate suppressed appetite through phosphorylation-based changes in 
hypothalamic AMP-activated protein kinase and acetyl-CoA carboxylase 
activity, resulting in changes in downstream neuropeptide expression. 

Frost et al. (2014) 

Propionate 
Caudate and nucleus 

accumbens 
↔GLP-1 ↔PYY plasma 
levels 

Decreased appeal of subjective high-energy foods; reduced energy intake; 
decreased activity in reward centres. However, no differences in blood glucose 
or insulin concentrations, nor changes in neuropeptide levels, were found. 

Byrne et al. (2016) 

Butyrate, Propionate, and Acetate 
L-type enteroendocrine 

cells (FFAR2, FFAR3) 
↑GLP-1 and ↑PYY 
secretion 

Enhancement of GLP-1 release occurred via FFAR2 and FFAR3, while SCFA- 
induced release of PYY occurred in human enteroendocrine cells via HDAC 
inhibitory activity. 

(Lu et al., 2018; Tolhurst et al., 2012;  
Psichas et al., 2015; Larraufie et al., 
2018) 

Adipocytes (FFAR3) ↑Leptin secretion SCFAs stimulated leptin production through the Gi family by activating FFAR3 
receptors. Increased SCFAs has been associated with reduced leptin levels and a 
suppression of body weight/fat gain. 

(Xiong et al., 2004; Gabriel and 
Fantuzzi, 2019) 

Ghrelin ↓↑Ghrelin secretion 
↑PYY and GLP-1 

Plasma ghrelin levels decreased after i.v. injection with all 3 SCFAs, and plasma 
glucose and insulin increased, but only with butyrate and propionate. Ghrelin, 
plasma PYY and GLP-1 were significantly increased after rectal acetate infusion 
in hyperinsulinaemic females. 

(Freeland and Wolever, 2010;  
Fukumori et al., 2011) 

Pancreas (FFAR2, FFAR3) ↓↑ Insulin secretion Propionate, signalling by FFAR3 through a Gαi/o pathway, inhibited glucose- 
dependent insulin secretion. Acetate and propionate potentiated insulin 
secretion through FFAR2 in a mechanism coupled to Gq activation of 
phospholipase C and protein kinase C. 

(Priyadarshini and Layden, 2015;  
Pingitore et al., 2019)  
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microbiome and immune cells from the host. It is here that our gut 
microbiota influences host immunity locally and in the periphery (Rooks 
and Garrett, 2016). SCFAs, through HDAC inhibition, can control the 
expansion of haematopoietic and non-haematopoietic cell lineages 
along with influencing their role in host immunity (Fellows et al., 2018). 
HDACs, when inhibited by SCFAs, promote tolerance and develop an 
anti-inflammatory phenotype that is important for maintenance of ho-
meostasis and promote the concept that the microbiome can influence 
host physiology through epigenetic signalling (Rooks and Garrett, 
2016). Many cells of the immune system are affected by SCFAs through 
HDAC inhibition; peripheral blood mononuclear cells (PBMCs), when 
stimulated with butyrate, decreased nuclear factor κB (Nf-κB) activation 
and tumour necrosis factor (TNF)-α secretion (Usami et al., 2008), while 
in neutrophils, acetate, propionate, and butyrate inhibited cytokine 
production and Nf-κB activation in a similar manner. Macrophages show 
a similar response to acetate and butyrate (Kendrick et al., 2010; Chang 
et al., 2014), while in dendritic cells (DC) butyrate and propionate block 
cell development and generate tolerogenic DCs (Singh et al., 2010; 
Trompette et al., 2014). These studies recognise HDAC inhibition by 
SCFAs as a crucial regulator of the host innate immune response through 
Nf-κB activation. 

In another study examining the effect of gut-derived enrichment of 
propionate-producing gut bacteria, it was shown that this could modu-
late lung immune responses; although the same study reports that 
exposure of a high dose of propionate to the lungs directly, intended to 
mimic post antibiotic exposure status, reduced host immune contain-
ment of a Staphylococcus aureus pneumonia (Tian et al., 2019). 

SCFAs can also influence the amount and function of immune cells 
such as Treg cells in the periphery through HDAC inhibition in vivo. These 
functions have been shown to be essential in maintaining immune ho-
meostasis. In mice, the T cell transcription factor, forkhead box P3 
(Foxp3), which is normally suppressive, was increased in Treg cells and 
supported the attenuation of colitis through inhibition of HDAC9 
expression (Tao et al., 2007). In fact, many studies have shown that 
HDAC inhibition by SCFAs can influence the number of Foxp3+ Treg cells 
in the colon under normal conditions (Rooks and Garrett, 2016). Inter-
estingly, maternal diet enriched with SCFAs was capable of influencing 
asthma by suppression of Foxp3+ Treg cells in the lung (Thorburn et al., 
2015). Therapeutically, the use of HDAC inhibitors has been shown in 
many mouse models of inflammation, including lipopolysaccharide 
(LPS)-induced cytokine production from DCs where it reduced TNF-α, 
interleukin (IL)-1β, IL-6 and interferon (IFN)-γ, through impairment of 
Nf-κB (Wang et al., 2009). SCFAs also play a crucial role in the main-
tenance of mucosal immunity by strengthening the epithelial cells that 
line the mucosal layer (Said et al., 2017). For example, mucus produc-
tion by goblet cells is enhanced in mice administered SCFAs, with 
increasing levels of Muc2 gene expression and prostaglandin synthesis 
(Willemsen et al., 2003), while in germ-free mice colonised with 
SCFA-producing Bacteroides thetaiotaomicron or Faecalibacterium praus-
nitzii, differentiation of goblet cells and mucus production was increased 
(Wrzosek et al., 2013). 

3.5. SCFAs and neuroimmune function 

Under normal physiological conditions activation of immune cells 
and cytokine production has minimal impact on the CNS. Systemic 
infection though, can have a considerable impact on cognition and 
behaviour (Nutma et al., 2019; Cruz-Pereira et al., 2020), and the 
interaction of cytokines with neural processes can influence both mood 
and motivation (Capuron and Miller, 2011). While we have already 
discussed the role SCFAs play in host immunity at the luminal surface, it 
is also conceivable that alterations in the microbiome can influence 
SCFA supply. This in turn could influence peripheral immunity, and 
hence the brain; therefore, systemic inflammation could be reduced by 
improving barrier function, and be modulated by the interaction of 
SCFAs with immune cells (Dalile et al., 2019). 

It is likely that SCFAs can also influence brain function through their 
interactions with the innate and adaptive arms of the immune system. 
One study observed a reduction in hippocampal neurogenesis following 
antibiotic treatment, which was subsequently reversed with a combi-
nation of probiotics and recolonisation with an unperturbed microbiota 
(Mohle et al., 2016). Of interest in this study was that LY6Chi monocyte 
levels in the brain correlated positively with neurogenesis (Mohle et al., 
2016), thus positing a role for SCFAs in this relationship (Nastasi et al., 
2015; Corrêa-Oliveira et al., 2016), which warrants further 
investigation. 

It is perhaps obvious that systemic inflammation may play an 
important role in neuroinflammation (Dalile et al., 2019), but more 
work is needed to interrogate the role that SCFAs may play. Within the 
brain, microglia control innate immune function and are critical for 
brain development. Moreover, the gut microbiome has been shown to 
influence microglia. Under homeostatic conditions, a composite micro-
biome promotes the maintenance and function of the microglia while 
also contributing to maturation (Erny et al., 2015). Interestingly, in 
germ-free mice that normally possess underdeveloped microglia, sup-
plementation with SCFAs (acetate, butyrate and propionate) enhanced 
maturation of underdeveloped microglia back to a structure similar to 
that of specific pathogen-free (SPF)/control mice (Erny et al., 2015). 
How SCFAs sourced from the gut influence microglia structure and 
function remains to be elucidated, but it is likely to involve FFAR’s. Of 
interest, it was shown that FFAR2 knockout mice possess microglia 
similar in structure and stunted appearance to germ-free mice (Gautier 
et al., 2012). SCFAs can regulate many processes along the 
microbiota-gut-brain axis through direct and indirect methods, and 
epigenetic signalling, as discussed earlier, is central to this communi-
cation. Understanding this relationship may be key to developing ther-
apeutic strategies for disorders of the CNS. 

In rat primary microglia, LPS-induced inflammation was reduced by 
treatment with butyrate, indicating an anti-inflammatory mode of ac-
tion. However, treatment of microglia with butyrate and propionate 
following an LPS challenge displayed a pro-inflammatory response 
(Huuskonen et al., 2004), by reducing IL-6 secretion by primary murine 
microglia and increasing IL-6 secretion from N9 microglia. Further, a 
SCFA mixture at “physiological” micromolar concentrations reduced the 
level of cytotoxins and cytokines secreted by THP-1 microglia-like cells, 
and the SCFAs formate and valerate specifically decreased the phago-
cytic activity of stimulated THP-1 cells (Wenzel et al., 2020). It is clear 
that much more research is needed to elucidate the precise mechanisms 
SCFAs produced by the gut microbiota could influence neuro-
inflammation. However, now we will consider the effect of the BBB on 
SCFA signalling to the brain. 

4. SCFAs and the blood brain barrier 

As mentioned earlier, the primary structural barrier between blood 
and brain, the BBB, plays a critical role of defence for the brain against a 
potentially detrimental attack. The BBB helps maintain brain homeo-
stasis and is highly selective with very low paracellular permeability, 
preventing unwanted toxins and pathogens from entering the brain, and 
therefore must be a prime consideration of the direct effect of SCFAs on 
brain and behaviour. The BBB is a close connection of endothelial cells, 
astrocytes, pericytes, and the basement membrane, tied to one another 
through the tight junction proteins claudin-5, occludin, and zonula 
occludens-1. Barrier integrity is measured both through functional 
permeability of the barrier and expression of the tight junction proteins, 
which are known to greatly reduce paracellular permeability. The bar-
rier function plays a crucial role in the microbiome-gut-brain axis, 
seeing that it is significantly more permeable in germ-free mice (Braniste 
et al., 2014) (see Fig. 2A), or in mice treated with antibiotics, when 
compared to control mice (Sun et al., 2020a; Wu et al., 2020b). 

It is possible that SCFAs can affect BBB permeability and integrity 
through microbial metabolite interactions with the cellular components 
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of the BBB (see Table 3). Oral gavage of germ-free mice with sodium 
butyrate significantly improved BBB integrity through a reduction in 
permeability and an increase in TJP expression (Braniste et al., 2014). 
Additionally, mono-colonisation of germ-free mice with the butyrate 
producer Clostridium tyrobutyricum, and the acetate and propionate 
producers Bacteroides thetaiotaomicron, also reduced BBB permeability 
(Braniste et al., 2014) (see Fig. 2B). This was recapitulated in vitro where 
both butyrate and propionate, but not acetate, protected the BBB from 
LPS-mediated disruption (Hoyles et al., 2018) (see Fig. 2C). 

As mentioned earlier, data thus far indicates that SCFAs can reach 
the brain, having been found in CSF in appreciable concentrations 
(Wishart et al., 2018) (see Table 1), and hence influence BBB integrity 
through modulation of the TJPs, but further understanding of the 
mechanisms have yet to be elucidated. Also mentioned earlier, one other 
potential mechanism is through interactions with the FFAR3 receptors 
present on brain endothelial cells. Propionate reduces inflammation and 
oxidative stress through decreasing CD41 expression on the surface of 
cells, and effecting the translocalisation of NFE2L2, a transcription 
factor nuclear factor involved in the antioxidant pathway (Hoyles et al., 
2018). The involvement of other cellular structures and components 
remain unknown. It should be noted that only the SCFAs acetate, 
butyrate, and propionate have been explored for direct effects on BBB 
physiology. However, an additional microbial metabolite, methylamine 
trimethylamine N- oxide (TMAO) also has protective effects on BBB 
integrity, while its precursor trimethylamine (TMA) impairs BBB 
integrity (Hoyles et al., 2021). It is clear that much more work is still 
needed to elucidate the involvement of the BBB in SCFA-mediated brain 
and behaviour interactions. 

Thus far we have assessed that gut-derived bioactive molecules such 
as SCFAs can signal to the brain, directly and indirectly, through inter-
action with GPCRs (FFARs) on the host gut epithelium (e.g. colono-
cytes), the brain and the BBB, and with immune cells, suggesting a role 
for SCFAs in neuroinflammation, as well as regulating appetite and food 

intake. One alternative route of communication between the gut and the 
brain where SCFAs could play a role is with vagus nerve activity, which 
we will address next. 

5. SCFA-induced vagus nerve activation 

Probably the fastest and most direct route of communication be-
tween the gut microbiota and the brain involves signalling via the vagus 
nerve (see Fig. 1). Much research has so far been conducted to help 
elucidate the mechanisms involved. For example, acetate can reduce the 
effect of food intake, which was shown when it was administered 
directly into the third ventricle of intracerebroventricular (i.c.v.) can-
nulated male Wistar rats and compared to intraperitoneal (i.p.) delivery 
(Frost et al., 2014). Further, when butyrate was administered via oral 
gavage to rodents, decreased food intake, and reduced neuronal activity 
in the NTS were seen. This effect was abolished in mice that had un-
dergone subdiaphragmatic vagotomy, where they did not show a 
reduction in food intake relative to sham mice supplemented with 
sodium-butyrate enriched food for 7 weeks (Li et al., 2018). Moreover, 
an i.p. injection of SCFAs differentially reduced food intake, with 
butyrate being more effective than propionate, and both more so than 
acetate, which was attenuated following ablation of the hepatic branch 
of the vagus nerve (Goswami et al., 2018), although it should be noted 
that i.p. injections of SCFAs may potentially be noxious and thus have 
acted as a possible confounding factor in this study. However, it is as yet 
unknown if SCFAs themselves act on the vagus nerve directly, or indi-
rectly. It has been shown that FFAR3 is expressed in the periportal 
afferent neural system, hinting at the possibility of FFAR3 expression in 
vagal afferents allowing for the potential of direct vagal activation by 
SCFAs (De Vadder et al., 2014). FFAR3 has been shown expressed in the 
enteric neural plexus and autonomic and sensory ganglia, supporting the 
hypothesis that SCFAs are able to directly mediate their effects via the 
vagus nerve or the ENS (Nohr et al., 2015; De Vadder et al., 2014; Kaji 

Fig. 2. Short chain fatty acids protect blood brain barrier structure and integrity. A) Germ-free mice have a disrupted BBB and, B) monocolonisation with bacterial 
strains producing mainly acetate and propionate, or butyrate, as well as oral gavage of sodium butyrate, improves BBB integrity. C) Cell culture BBB models have 
disrupted integrity when treated with LPS, but pre-treatment with propionate protects against BBB disruption. BBB = Blood-brain barrier. LPS = Lipopolysaccharide. 
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et al., 2016; Won et al., 2013). 
It is clear that SCFA-induced vagus nerve signalling results in the 

activation of various neurons in the CNS. However, more research is 
needed to investigate the regulatory mechanisms occurring, and which 
specific neuronal populations are activated in SCFA-induced vagus 
nerve signalling throughout the brain, and how this relates to behaviour. 
While much of the discussion thus far has dealt with homeostasis and 
healthy scenarios, much work has uncovered a role for SCFAs in 
diseased or immunocompromised host states, which we will now 
explore. 

6. SCFAs in disorders of the microbiota-gut-brain axis 

Both preclinical and clinical evidence point to shifts in the compo-
sition of the gut microbiome being partially responsible for the exacer-
bation of several disorders of the CNS (see Table 5), including traumatic 
brain injury, AD and PD (Silva et al., 2020). Consequently, this implies 
that the microbiome and SCFAs can be a critical target in the treatment 
and improvement of core symptoms in these conditions (Long-Smith 
et al., 2020). Indeed, a range of disorders including ASD, anorexia 
nervosa, and multiple sclerosis (MS) have also been correlated with al-
terations in gut microbiota in humans and animal models (Spichak et al., 
2021a; Dalile et al., 2019; Morita et al., 2015; Unger et al., 2016; Zhang 

et al., 2017; Deng et al., 2019; Sharon et al., 2019; Jackson et al., 2019; 
Cryan et al., 2020). Regarding PD, an alteration in SCFA levels has been 
noted in individuals with PD, and animal models. Orally administered 
SCFAs was shown to be sufficient to induce PD related deficits and 
promoted neuroinflammation in an α-synuclein-based mouse model of 
PD (Sampson et al., 2016). This is at odds with a growing literature from 
human studies that have seen decreased SCFA-producing bacteria and 
decreased levels of SCFAs in PD individuals (Unger et al., 2016; Nishi-
waki et al., 2020; Vascellari et al., 2020; Wallen et al., 2020). Targeting 
this deficit by treating mesencephalic cell cultures with propionate in an 
in vitro model of PD, promoted cell survival of dopaminergic cells 
(Ostendorf et al., 2020). Further, amyloid uptake in humans positively 
associated with blood acetate levels, and negatively associated with 
blood butyrate levels (Marizzoni et al., 2020). 

Decreased SCFA levels were found in both experimental and clinical 
models of AD (Zhang et al., 2017; Doifode et al., 2021). Acetate has been 
seen to have an anti-inflammatory effect in a mouse model of AD, 
through upregulation of FFAR3, and inhibition of ERK/JNK/Nf-κB 
intracellular signalling pathway (Liu et al., 2020). The butyrate pro-
ducing C. butyricum protected against microglia mediated inflammation 
in a transgenic mouse model of AD (Sun et al., 2020b). Finally, SCFAs 
interfered with the formation of neurotoxic oligomers from amyloid-β 
peptides, one of the hallmarks of AD (Ho et al., 2018). However, it has 

Table 5 
Diseases associated with SCFA alterations/imbalance. SCFAs have been shown to associate with numerous diseases; however, these association are highly varied. SCFA 
supplementation appears to be a good candidate for disease amelioration in several cases, a theory bolstered by observations of reduced SCFA levels in some disease. 
However, some diseases feature increased SCFA levels and certain animal models of human diseases (e.g., ASD) associate with large concentrations of SCFAs in the gut. 
ASD-autism spectrum disorder.  

Disease Association Refs 

Autism Spectrum 
Disorder (ASD) 

Children with ASD had higher faecal acetate, butyrate, isobutyrate, valerate, isovalerate and caproate than 
controls. 

Wang et al. (2012) 

Children with ASD had much lower levels of acetate, propionate, and valerate than controls, and exacerbated 
further in children with autism taking probiotics. 

Adams et al. (2011) 

The severity of ASD was affected by increases in propionate-producing bacteria and decreases in butyrate 
producing bacteria. 

(Finegold, 2011; Finegold et al., 
2010) 

Administration of high amounts of propionate to rodents through various routes, such as i.c.v., is used as an animal 
model of autism. 

(Choi et al., 2018; Macfabe, 2012) 

Sodium butyrate increases sociability in autism mouse model (BTBR). Kratsman et al. (2016) 
Alzheimer’s Disease 

(AD) 
Amyloid uptake in humans positively associated with blood acetate levels and negatively associated with blood 
butyrate levels. 

Marizzoni et al. (2020) 

The level of SCFAs is reduced in mouse models of AD.Concentrations of butyrate, and isobutyrate in particular, 
were reduced in both faeces and brain of AD (APPswe/PS1ΔE9 (PAP)) transgenic male mice. 

Zhang et al. (2017) 

In vitro SCFAs interfere with the assembly of β-amyloid (Aβ) peptides into the soluble neurotoxic aggregates seen in 
AD. In particular, the relative anti-Aβ aggregation efficacy in decreasing order was valerate ≫ butyrate >
propionate. 

Ho et al. (2018) 

Supplementation of SCFAs to germ-free APPPS1 mice nearly doubled the cerebral Aβ plaque load, potentially 
through modulation of the microglial phenotype. 

Colombo et al. (2021) 

Multiple Sclerosis (MS) An animal model of MS found oral SCFA (butyrate, caproate, laurate) administration to be beneficial, reducing the 
severity of EAE. 

(Haghikia et al., 2015; Mizuno 
et al., 2017) 

Acetate supplementation prevented the onset of clinical symptoms of EAE. Chevalier and Rosenberger 
(2017) 

Oral administration of butyrate significantly ameliorated demyelination in mice fed oral antibiotics, which 
significantly enhanced cuprizone-induced demyelination. Further, in vitro (organotypic slice culture) butyrate 
treatment suppressed lysolecithin-induced demyelination and enhanced remyelination. 

Chen et al. (2019) 

Parkinson’s Disease 
(PD) 

Faecal butyrate levels in PD patients were reduced. Unger et al. (2016) 
Faecal acetate, propionate, butyrate and n-valerate were all increased in a murine PD model over control mice, 
with acetate up 260.6%. FMT from control mice reduced these increases to lower than control levels. 

Sun et al. (2018) 

Orally administered SCFAs promoted neuroinflammation and motor deficits in a mouse model of PD Sampson et al. (2016) 
Butyrate supplementation attenuated behavioural impairments in mouse and Drosophilia models of PD. (Liu et al., 2017; Laurent et al., 

2013) 
Butyrate rescued dopaminergic cells from transcriptional deregulation and DNA damage induced by α-synuclein. Paiva et al. (2017) 

Major Depressive 
Disorder (MDD) 

Faecal propionate content was lower and isocaproate was higher in depressed individuals; there was also negative 
correlations between acetate, propionate, and Beck’s score and significant correlations between acetate and 
propionate and BDI somatic scores, as well as isocaproate, and both cognitive/affective and somatic scores. This 
work suggests that SCFAs may potentially contribute to the depression phenotype. 

Skonieczna-Żydecka et al. (2018) 

Serum and cerebrospinal fluid SCFAs (including acetate and butyrate) levels were lower in a non-human primate 
model of depression. 

Deng et al. (2019) 

Butyrate has been shown to have possible antidepressant effects in rodent models e.g. reducing depressive-like 
behaviour from chronic psychosocial stress, and reversing anhedonia and sociability impairments. 

Resende et al. (2013)  
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been reported that SCFA supplementation to a germ-free AD mouse 
model was sufficient to nearly double cerebral Aβ plaque load (Colombo 
et al., 2021). There is also some evidence to show that butyrate can 
confer a neuroprotective effect in ischemic stroke by decreasing 
microglial activation, reducing levels of pro-inflammatory markers, and 
increasing the levels of anti-inflammatory markers (Patnala et al., 
2017). Clearly more work is needed to categorically elucidate the role, 
either positive or negative, if any, for SCFA involvement in either PD, 
AD, or ischemic stroke. 

Altered SCFA levels have also been seen in the pathophysiology of 
MS, although the picture is far from clear. Positive correlations between 
SCFAs and disease duration, and negative correlations between SCFA 
and disease starting age, have been found in individuals with untreated 
MS (Dominguez-Mozo et al., 2021). One study found that the serum and 
faeces of MS patients exhibited reduced propionate levels compared to 
healthy controls; however, the ratios of propionate/acetate and butyr-
ate/acetate were significantly higher in healthy controls, leading them 
to conclude that there may be a possible dual role for propionate or 
butyrate, and acetate (Duscha et al., 2020). Interestingly while acetate 
has been shown to correlate positively with disability and immune 
response (Pérez-Pérez et al., 2020), acetate supplementation has been 
shown to prevent the onset of symptoms in an animal model of MS 
(Chevalier and Rosenberger, 2017). 

Individuals with depression or a lower quality of life (using the 
RAND-36 health-related quality of life survey (Hays et al., 1993)) score, 
revealed an association between butyrate producing bacteria (Cop-
rococcus and Faecalibacterium), and indicators of a higher quality of life 
(Valles-Colomer et al., 2019). Two SCFA producing bacterial genera 
Prevotella (Lin et al., 2017) and Bifidobacterium (Koh et al., 2016; Rong 
et al., 2019) were present in greater relative abundance in individuals 
with major depressive disorder (MDD), a metric that is easily measured 
and should be factored in to the diagnosis and therapeutic intervention 
in MDD. Specific bacterial families (Lachnospiraceae and Rumino-
coccaceae) from the Firmicutes phylum were shown to be reduced in 
individuals with MDD (Jiang et al., 2015), while increased in healthy 
controls (Hu et al., 2019). From the Lachnospiraceae family in partic-
ular, Roseburia, Blautia, and Lachnospiraceae incertae sedis genera, are 
known to be involved in the production of SCFAs from the breakdown of 
carbohydrates (Duncan et al., 2007), and Roseburia, and Coprococcus 
(Hu et al., 2019), along with Faecalibacterium (Painold et al, 2019), were 
reported in lower abundance in individuals with bipolar disorder. Not 
only has Faecalibacterium been associated with better self-reported 
health outcomes, it was associated with better sleep quality, and lower 
generalised anxiety and mania in a bipolar population (Evans et al., 
2017), although see (Lu et al., 2019), where it was reported that Fae-
calibacterium prausnitzii was present in higher proportions in a bipolar 
population than healthy controls. This discrepancy may be explained by 
the fact that individuals in the first study (Evans et al., 2017) were on at 
least one or more medication for their condition at the time of testing, 
whereas individuals in the second study (Lu et al., 2019) had ceased 
medication for at least 3 months prior to testing, or had never received 
any psychotropic medication. Therefore, the state of medication and 
polypharmacy need to be taken into consideration for future human 
studies. 

Further, recent work suggests that SCFAs may potentially contribute 
to the depression phenotype. Faecal propionate content was lower, and 
isocaproate higher, in depressed Polish individuals (Skonieczna--
Żydecka et al., 2018); there were also negative correlations between 
acetate, propionate, and Beck’s score, as well as significant correlations 
between acetate and propionate and BDI somatic score. Although the 
authors themselves point out that the group sizes were small (moder-
ately heavy (n = 5) and severe (n = 7) depression), as well as the 
pharmacotherapy of hyperlipidemia and thyroid disease present in the 
tested population. 

Given that SCFAs display neuroactive properties (Stilling et al., 
2016), their potential to modulate autism-related behaviour cannot be 

overlooked. Indeed, transplantation of human gut-microbiota to mice 
from donors with ASD, induced ASD-related behavioural deficits 
(Sharon et al., 2019). Intraventricular infusions of relatively high doses 
of propionate have been proposed as an ASD model, where neurotoxic 
doses of propionate could induce autism-like behaviour in rodents 
(MacFabe et al., 2011; Shultz et al., 2015). These mice display impaired 
sociability, epileptic and convulsive responses, and increased repetitive 
behaviours. It is possible that an underlying mechanism of ASD is 
overproduction of propionate by gut-microbiota leading to elevated 
levels of propionate in the brain. Another study reported vastly altered 
brain physiology following high doses of propionate using various 
modes of administration (Choi et al., 2018). However, whether elevated 
levels of an individual SCFA such as propionate can play a part in what is 
clinically observed in ASD individuals is unknown. Conflicting findings 
from clinical studies show both increases (Adams et al., 2011) and de-
creases in faecal SCFA levels (Wang et al., 2012), confusing the picture 
of the exact relationship of SCFAs to ASD. Along with altered behaviours 
such as repetitive actions, and impaired sociability, they noted changes 
in gene expression, and increased microglial activation. Moreover, so-
cial behaviour was shown to be modulated via immunoregulation and 
microbiota maintenance (Chen et al., 2019). Further, a recent large ASD 
stool metagenomics study uncovered negligible direct associations be-
tween ASD diagnosis and the gut microbiome, querying whether 
gut-derived microbial signalling molecules have any driving role in ASD 
at all (Yap et al., 2021). 

In humans, members belonging to the Lachnospiraceae family have 
been shown to be protective as an artificial stool preparation against 
antibiotic-resistant Clostridium difficile infection (Petrof et al., 2013) and 
metabolic disorders (Cho et al., 2012). In particular, one study (Petrof 
et al., 2013) reported associations with the abundance of the Lachno-
spiraceae family, but not direct evidence. Nonetheless, the members of 
Lachnospiraceae are potent producers of SCFAs (see Table 2) (Duncan 
et al., 2002), which suggests SCFA levels could act as potential drivers of 
protection against these ailments. 

SCFA uptake and absorption can be affected by numerous factors 
including obesity. When a high concentration of SCFAs was generated in 
the rectum of human subjects’, obese individuals were found to absorb 
more SCFAs than lean individuals (Rahat-Rozenbloom et al., 2014). 
However, most SCFAs are absorbed in the proximal colon, which in 
humans is as yet unexamined in this context. Inflammatory bowel dis-
order (IBD) features a decreased absorption of butyrate due to a 
downregulation of MCT1 (Thibault et al., 2007). A similar down-
regulation has also been seen in ulcerative colitis (Fisel et al., 2018), 
which likely has a similar effect on SCFA absorption. 

In irritable bowel syndrome (IBS), abnormal faecal SCFA levels have 
been reported (Farup et al., 2016), indicating that faecal SCFA levels 
could be used as a possible diagnostic biomarker. However, there does 
appear to be non-uniform SCFA changes across different IBS subgroups 
(Farup et al., 2016; Gargari et al., 2018; Ringel-Kulka et al., 2015; Tana 
et al., 2010). For example, individuals with IBS had a higher proportion 
of faecal propionate than healthy controls (Sun et al., 2019). Further, 
faecal microbiota transplantation (FMT) from a single super-donor was 
given to individuals with IBS, which ameliorated symptoms and raised 
butyrate levels across all IBS groups, including diarrhea-predominant 
IBS, the subgroup that displayed a raised level of butyrate compared 
to healthy controls (El-Salhy et al., 2021), and identified as having 
significantly reduced levels of MCT1 and SMCT1 (Fredericks et al., 
2020). However, not all research has reported SCFA level changes in IBS 
(Tian et al., 2020), although changes were reported in serum levels of 
butyrate and propionate. Such data indicates that further analysis of IBS 
subgroups is warranted, to ascertain different IBS subgroup SCFA 
profiles. 

Chronic stress is a considerable risk factor for the development of 
neuropsychiatric disorders (Ramirez et al., 2017) and the 
microbiome-gut-brain axis has been shown to play a key role in the 
relationship between stress and the brain (Cruz-Pereira et al., 2020). 
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Recent clinical work has shown that colon-delivered SCFAs have the 
potential to modulate the core hypothalamic-pituitary-adrenal 
(HPA)-axis responsivity to psychosocial stress (Dalile et al., 2020). 
Preclinical experiments have now convincingly shown that chronic 
stress alters the composition of the gut microbiome and interventions 
that target the microbiota can reduce or eliminate the effects of stress on 
host physiology and brain function (Burokas et al., 2017; Bharwani 
et al., 2017). Pre-clinical work from our lab has shown that supple-
mentation with acetate, butyrate and propionate in mice undergoing 
prolonged psychosocial stress had a positive effect on behaviour and 
stress-induced gut permeability (van de Wouw et al., 2018). 

As the field of microbiome-gut-brain axis research matures, and 
microbiota-derived SCFA involvement in health and disease is accruing 
more evidence, we are still at a somewhat preliminary stage of under-
standing whether our observations are correlational or if there is strong 
support for a causal role. Interpretation and a full understanding of such 
data is proving difficult and conflicting. This only emphasises the 
pressing need for better designed and controlled longitudinal human 
studies in healthy and diseased populations, run in tandem with pre-
clinical studies incorporating translational disease models, to fully un-
cover the underlying mechanisms and potential role for SCFAs as novel 
therapeutics. 

7. Conclusion and future research 

It is becoming increasingly clear that the gut-microbiota can act as 
key regulators of communication along the bidirectional gut-brain axis. 
While the communication pathways are facilitated via various routes 
including the immune system, the vagus nerve, and the enteric nervous 
system, the direct or indirect involvement of microbial metabolites such 
as SCFAs is being examined more closely, both as biomarkers of path-
ological states and for the development of novel therapeutic strategies. 
While a growing number of studies are examining the effects of gut 
derived SCFAs on host physiology, no consensus has yet been reached 
whether a specific SCFA signature exists, per se. Although there has been 
much warranted interest in the field, caution needs to be exercised as 
much of the available clinical data is largely derived from small cohorts 
and lacks consensus and a longitudinal perspective (McLoughlin et al., 
2017). More mechanistic studies are needed to understand how changes 
in gut microbiota metabolite levels can moderate health and disease, to 
ascertain safety efficacy for potential therapeutic advice. 

As it stands, SCFAs, circulating concentrations of which are heavily 
manipulable by diet, appear to be strong candidates with both direct and 
indirect effects on the brain. SCFAs can exert influence over intestinal 
barrier integrity and regulate host GI immunity, resulting in peripheral 
immunity modulation, ultimately protecting against disease states, 
which involves neuroinflammation, including obesity and affective 
disorders. SCFAs have also shown that they can protect against neuro-
toxin infiltration at the BBB through augmentation of BBB tight junction 
expression patterns. SCFAs have been shown to directly modulate 
luminal concentrations of neurotransmitters and neurotrophic factors, 
leading to the potential for neuronal growth and excitability regulation, 
in both the ENS and CNS. SCFAs have also been shown to modulate the 
HPA axis, regulating the stress responses in mammals. 

However, even with a growing body of preclinical research sup-
porting the hypothesis that SCFAs can be used as novel therapeutics to 
augment cognitive deficits, definitive evidence supporting trans-
latability of these findings to a human population is lacking, although 
early evidence is encouraging (Dalile et al., 2020; Schellekens et al., 
2021). There are only a few clinical observational and interventional 
studies to date, and more are needed, examining SCFA supplementation 
across the lifespan, including at the extremes of life. Much evidence is 
uncovering the involvement of SCFAs in brain health and function in 
offspring of maternal dietary interventions, and cognitive outcomes in 
an aging model. It is crucial that we gather more information that may 
inform if switching to a diet designed to increase/decrease SCFA levels 

in the body can improve cognitive outcomes. It may be that microbial 
accessibility (i.e., fermentability) is an important consideration in 
designing dietary needs for positive influence on cognition. Therefore, it 
is crucial that future research is designed to investigate the mechanisms 
involved, taking the individual’s genetics, gut-microbiota profile, and 
other pertinent lifestyle factors into consideration. 

Malnutrition is often associated with poor cognitive function; 
therefore, it is imperative that we examine whether supplementing 
impoverished societies with a microbiota-directed complementary food 
that modulates SCFA levels can improve neurodevelopment and cogni-
tive function, especially in children. More research needs to be con-
ducted to establish causality and understand the role SCFA-boosting 
foods or prebiotics can have in helping decipher mechanistic relation-
ships. Better dietary habits supporting mental health need to be advo-
cated, but an increase in understanding of the pathways are urgently 
needed. More high-quality data is needed on brain function, behaviour, 
and physiology, and should be championed to help establish evidence- 
based health claims aimed at developing therapeutic interventions for 
diseases associated with cognitive dysfunction and inform future 
microbiota-targeted interventions for brain disorders. 
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