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Abstract

Abstract
The keystone aquatic organism Daphnia magna is extensively used to assess the
toxicity of chemicals. This has recently lead to an increase in the omics literature
focusing on daphnids, an increase fuelled by the sequencing of the Daphnia pulex
genome. Yet, no omics study has looked directly at oxidative stress (OS) in
daphnids, even though OS is of primary importance in the response of aquatic
organisms to their changing environment and is often induced by anthropogenic
xenobiotics. This thesis thus focuses on the application of redox-proteomics,
the study of the oxidative modification of proteins, to D. magna. Specifically,
daphnids were exposed to copper or paraquat, two well studied prooxidants,
and protein carbonyls were labelled with fluorescein-5-thiosemicarbazide prior to
two-dimensional electrophoresis (2DE). This showed clearly that both compounds
affect a different portion of the proteome. The identified proteins indicated that
energy metabolism was affected by paraquat, while copper induced a reduction
of the heat shock response (heat shock proteins, proteases and chaperones) a
counterintuitive result which may be adaptative to metal toxicity in arthropods.

The same approach was then applied to the study of the toxicity mechanism
of silver nanoparticles (AgNP), an increasingly utilised form of silver with ex-
pected environmental toxicity, and its comparison to silver nitrate. The results
demonstrate that, although less toxic than silver ions, AgNP toxicity functions
through a different mechanism. AgNP toxicity is thus not a product of silver
dissolution and increased protein carbonylation indicates that AgNP cause OS.
Interestingly three of the four tested compounds altered vitellogenin levels and
oxidation. Vitellogenins could thus represent an interesting subproteome for the
detection of stress in daphnids. Finally, an experiment with oxidised BSA demon-
strates the applicability of solid phase hydrazide in the enrichment of undigested
carbonylated proteins.
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Chapter 1

Introduction

1.1 Ecotoxicology

Although man impacted on his environment from early times, the rise of industry

following the two world wars led to a sharp increase of the number and impact

of man-made products on the environment. It is now estimated that there are

over 140 000 chemicals on the market (Massey and Jacobs, 2013), chemicals that

will inevitably reach the environment. They are released accidentally, through

normal use or as an inescapable consequence of industrialisation. In response to

the observation of the adverse effects of pollutants on ecosystems, the field of eco-

toxicology emerged over the second half of the 20th century. Broadly speaking,

“ecotoxicology aims at characterizing, understanding and predicting deleterious

effects of chemicals on biological systems” (Schüürmann and Markert, 1998). In

order to do so, ecotoxicology must be multidisiplinary, relying mostly, but not

exclusively, on the fields of chemistry, ecology and toxicology. This is required

as the impact of pollutants begins at the molecular level and trickles up to the

ecosystem, affecting all levels of biological organisation (Fig. 1.1). Ecotoxicology

thus attempts to study the relationship between ecosytems, chemical pollutants

and living organisms (Dowling and Sheehan, 2006). One of the main challenges

1



1. Introduction 1.1 Ecotoxicology

lies in the fact that those same chemicals which are now known to impact nega-

tively on the environment are also responsible for the massive increase in quality

of life that characterised the 20th century. Economic and social development are

main drivers of human progress and consequently of chemical industries. Ecotox-

icology is therefore constantly faced with the challenge of emerging categories of

pollutants and the often opposite needs of society and the environment. One must

also add, as pollutants are products of human economies, that ecotoxicologists

are sometimes required to advise government agencies in determining policies

concerning chemical pollution. Thus, the relationship between ecotoxicology and

policy makers cannot be overlooked. There is a requirement for ecotoxicology

to help to develop predictors of toxicity for environmental samples, industrial

effluents or newly developed compounds. Also, new tools are required to identify

principal causes of observed environmental impacts, in a manner analogous to

human toxicology.

Figure 1.1: Linkages between biochemical, physiological, individual and popula-
tion responses to pollutants (taken from Peakall, 1992).

In order to achieve this, ecotoxicologists often use sentinel species and molec-

ular biomarkers. Sentinel species are organisms that are used to infer the health

of an ecosystem, either because of their higher sensitivity to stressors or through
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1. Introduction 1.2 Daphnids

their particular characteristics (e.g.: sessile, non-migratory, filter-feeders, hyper-

accumulators) (Wetzel, 1998). They are expected to indicate the presence of

stress on an ecosystem before irreversible damage is done. Biomarkers fulfil a

similar role but at the molecular or cellular level, enabling us to detect pollutant

impacts before they are visible at the organism or population level (Livingstone

and Goldfarb, 1998). They can be used either in the field, being then measured

in sentinel species, or in the laboratory, to study potential impacts of pollutants.

Such laboratory experiments on effluents or new compounds are used to assess

their toxicity and also for regulatory purposes.

1.2 Daphnids

It is of course impossible to fully study the impact of all xenobiotics, or even just

one xenobiotic, on all the elements of an ecosystem, nor on all the ecosystems

present on Earth (Jørgensen, 1998). It is therefore necessary to limit the range of

species tested in the field (sentinels), or in the laboratory, in order for ecotoxico-

logical studies to be possible at all. The choice of species must be well considered,

both in terms of the ecological importance of the test organism as well as on a

practical level.

Practical limitations are particularly important for laboratory experiments,

where the maintenance of healthy cultures of the organism quickly becomes re-

source and labour intensive (Persoone and Janssen, 1993). For these reasons,

relatively few organisms are routinely used in the laboratory for toxicological

studies. In the case of freshwater environments, one of the most studied taxa, if

not the most studied, are members of the Daphniidae family.

Daphnids are planktonic crustaceans that are ubiquitous in freshwater envi-

ronments worldwide. They are filter feeders, feeding on suspended particles and

microorganisms, mainly planktonic algae (Ebert, 2005). Their role as pelagic

Proteomic approach to oxidative stress in
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1. Introduction 1.2 Daphnids

grazers makes them an essential part of the food chain in lakes, often as a pri-

mary food source for fish (Shaw et al., 2008). Predation is thus a major determi-

nant of species distribution, the larger species being found mostly in predator-free

environments (Ebert, 2005).

Their important ecological role along with their wide geographical distribution

has made them a widely studied family and one of the most used organisms for

laboratory environmental toxicity evaluation of both isolated compounds and

effluents. This is in addition to their cyclical parthenogenetic reproduction (Fig.

1.2), which enables maintenance of clonal lines in the laboratory. This reduces

biological variability, as well as opening the possibility of using a particular clonal

line in different laboratories. These lines are also relatively simple to maintain in

the laboratory.

Their ecological relevance and relative ease of culture has lead to the use of

daphnids for regulatory purposes in many countries worldwide (Persoone and

Janssen, 1993). This is in addition to their short life span, which enables chronic

toxicity reproduction tests as well as acute toxicity testing. Their importance

in the field of ecotoxicology is emphasised by the national and international

guidelines offering standardised protocols for toxicity testing on daphnids, mainly

Daphnia magna (EC, 2000; OECD, 2008, 2004), Ceriodaphnia dubia (EC, 2007;

USEPA, 2002) and Daphnia pulex (OECD, 2004).There is thus an extensive

database of acute and chronic toxicities in daphnids, both for pure compounds

and for environmentally relevant mixtures. Despite this extensive litterature,

there are surprisingly few biomolecular studies on daphnids. This is now chang-

ing though, as daphnias were the first crustaceans to have their genome sequenced

(starting with D. pulex (Colbourne et al., 2011), there is also an ongoing project

to sequence the genome of D. magna - https://daphnia.cgb.indiana.edu).

In addition to the large amount of laboratory data on daphnids, their ecology

has also been widely studied over the last century (Shaw et al., 2008) and they
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1. Introduction 1.2 Daphnids

Figure 1.2: Depending on environmental conditions, female daphnias will produce
diploid eggs, which will develop into clonal males or females, or produce haploid
eggs, leading to sexual reproduction and formation of an ephipia that will rest in
the sediments for extended periods of time before hatching (taken from Ebert,
2005).

Proteomic approach to oxidative stress in
Daphnia magna

5 Louis-Charles Rainville



1. Introduction 1.3 Biomarkers

are thus a prime candidate to link the impact of biochemical modifications to

their ecosystemic effects. As mentioned above, there has been relatively limited

biomolecular studies involving this taxa, especially when compared to fish and

mussels. This can be understood because of practical difficulties in obtaining

sufficient material either from the field or in the laboratory. Nonetheless, the

amount of ecological information available on daphnids is unique and makes them

a particularly interesting model for molecular studies. As molecular markers are

becoming ever more prevalent in ecotoxicology, both for modelling and regulatory

purposes, daphnids can be expected to receive increased attention.

1.3 Biomarkers

As with laboratory model organisms such as rodents, a better understanding

of the mechanism of actions of toxicants on sentinel species can help predict

and detect environmental toxicity. Such an understanding can only come from

detailed studies of the biochemical response of organisms to various toxicants,

and are impossible on a large scale. Yet, it is possible to link whole-organism

end points to biomarker responses, which are potentially more sensitive (Lam,

2009). Thus biomarkers could help determine the presence of toxic stress before

the appearance of organism- or population-level effects.

Biomarkers can be broadly defined as “xenobiotically induced variations in

cellular or biochemical components, processes, structures or functions” (Wetzel,

1998). This covers many different types of measurements, including enzymatic

activities, protein or mRNA expression levels, changes in organelle properties (e.g.

Neutral red retention; Lowe et al., 1995) and measurement of immune functions

(Croxton et al., 2012). Despite many promises, and the popularity of certain

markers, reports of biomarkers specific to a xenobiotic or a class of xenobiotics

are still relatively rare (Lam, 2009), with the notable exception of acetylcholine

Proteomic approach to oxidative stress in
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1. Introduction 1.3 Biomarkers

esterase activities for organophosphates (Peakall, 1992) and aminolevulinic acid

dehydratase for lead (Lam, 2009). This problem is not unique to ecotoxicology,

as similar issues have arisen in the biomedical field (Schiess, 2008). There is

thus a need for further research in order to identify biomarkers specific to certain

toxicants or mechanisms of action, as well as to validate new potential biomarkers

in the laboratory and in the field.

The direction of biomarker research in ecotoxicology has tended to borrow

strongly from various other fields of science. New methods developed for the

biomedical and molecular biology fields are now widely used by ecotoxicologists,

and the systems biology approach is one of the most promising for the future.

“Systems biology studies biological systems by systematically perturbing them

(biologically, genetically, or chemically); monitoring the gene, protein, and infor-

mational pathway responses; integrating these data; and ultimately, formulating

mathematical models that describe the structure of the system and its response

to individual perturbations” (Ideker et al., 2001).

As modelling is now such a prevalent tool in ecotoxicology (Devillers, 2009),

mostly concerned with the chemical and/or ecological elements of ecotoxicol-

ogy, systems biology offers the promise of integrating suborganism responses

into modelling. There is, of course, much research required but, as the Hu-

man Genome Project was a driving factor behind the emergence of systems

biology, the Daphnia Genomics Consortium (http://wfleabase.org/) opens the

door to the application of a systems biology approach using daphnids as a

model organism. This is illustrated by the Computational Toxicology project

(http://epa.gov/comptox) initiated by the United-States Environmental Protec-

tion Agency (USEPA) in order “to better understand the relationships between

sources of environmental pollutant exposure and adverse outcomes.” Within this

initiative, the USEPA plans to use dapnids as a model organism in the Daph-

nia pilot project (http://www.epa.gov/heasd/edrb/comptox.html) to use omics
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1. Introduction 1.3 Biomarkers

in order to link exposure to observed effects at the animal level. As the ecology of

daphnids has been well studied, this raises the possibility of linking biochemical

endpoints with community level effects.

The development of biomolecular, discovery based, approaches in daphnids

is one of the emerging phenomenona in ecotoxicology. Biochemical data was

surprisingly rare for daphnids only 15 years ago, when compared to other en-

vironmentally relevant models such as mussels and fish and to the amount

of data available for the taxa (Shaw et al., 2008). However there has now

been an explosion over the last years in the application of omics approaches

in daphnids, with the recent publication of many studies using transcriptomics

(Heckman et al., 2006; Shaw et al., 2007; Poynton et al., 2008a,b, 2011, 2012;

Jansen et al., 2013), proteomics (Le et al., 2013; Fröhlich et al., 2009; Schw-

erin et al., 2009; Zeis et al., 2009, 2013) and metabolomics (Bunescu et al.,

2010; Taylor et al., 2009, 2010; Nagato et al., 2013). This is in addition to,

and in close relation with, the recent sequencing of the Daphnia pulex genome

(Colbourne et al., 2011) and the current project to sequence Daphnia magna

(https://wiki.cgb.indiana.edu/display/DGC/Daphnia+magna+Genome).

This rapid change in the studies involving daphnids is driven by the develop-

ment of new computational and laboratory methods. These open the door for the

modelling of the impact of toxicants in a manner that is based on the impact of

xenobiotics on subcellular pathways and which could be linked to organism-level

responses, thus predicting better the impact of known contamination and emerg-

ing contaminants. For this goal to be achieved, there is still a need to develop and

apply molecular biology methods to daphnids. In this domain, the best-studied

species is D. magna.

In this context, the present thesis focuses on the application of proteomics,

specifically redox-proteomics, to the keystone species D. magna, and its applica-

tion to the study of emerging contaminants such as silver nanoparticles (AgNP).
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1.4 Proteomics

Traditionally, the use of biomarkers relies on prior knowledge of toxicity targets

or of the biochemical response of organisms. This limits the use of biomarkers

to the study of known contaminants and their effects or to the measurement of a

non-specific stress response shared across a wide range of organisms (Thompson

et al., 2012). This hypothesis-driven approach now coexists with the more recent

discovery-based approaches, made available by the methodological developments

of the last decades. These methods, widely known as omics in biology, aim at

defining the elements of a system in order to create a database (Ideker et al.,

2001). Omics will not replace traditional biomarkers but offer new opportunities

in ecotoxicology, and the potential to integrate the developing field of systems

biology into ecotoxicological studies.

A major impact of the development of omics is the widening of the the con-

cept of biomarker to include expression signatures, where the expression of many

proteins (i.e. protein expression signatures – PES) or genes are used as a multi-

component signature of exposure to chemical or other stress (Vioque-Fernández

et al., 2009; Bradley, 2012). A signature based on a concept similar to the one

underlying the measurement of species composition, where the presence and abun-

dance of not only single species is considered but also changes of species assem-

blage (Johnston and Roberts, 2009). As omics approaches gather suborganismic

information, they are also widely expected to lead to the discovery of novel con-

taminant specific “traditional” biomarkers.

Obtaining meaningful suborganism information from proteomics experiments

requires identification of the proteins forming the PES associated with a treat-

ment. Protein identification requires the availability of mRNA, gene or protein

sequences, or ab initio sequencing of the proteins of interest, a laborious and ex-

pensive process. This is an issue in ecotoxicology as there is very little sequence in-

formation available for most organisms of interest (Monsinjon and Knigge, 2007).
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As the genome of D. pulex is now available, the identification of proteins from

daphnids, and potentially crustaceans, is greatly simplified, genomic information

is also useful for species related to the one which is sequenced (Fröhlich et al.,

2009). This is why this project focuses on the use of proteomics in D. magna, as

a high rate of identification can be expected for proteins of interest.

Proteomics studies the entire complement of proteins expressed spatially and

temporally in an organism, organ or tissue, including protein variants and post-

translational modifications (PTM), and the characterisation of protein-protein

interactions (Martyniuk and Denslow, 2009). The entire complement of proteins

in a given sample form its proteome, and proteomics approaches aim at covering

as much of the proteome in a single measurement as possible. This is not achiev-

able in practice, as proteins present very diverse physico-chemical properties as

well as a range of concentrations spanning well over five orders of magnitude

(Corthals et al., 2000). No method can analyse the whole dynamic range of pro-

teins in a cell, tissue or organism, the method chosen will thus determine the

results obtained to some extent. This has led some authors to reintroduce, at

least in part, an hypothesis-driven approach in proteomics (Lay et al., 2006). This

is done by chosing a subproteome to analyse, as it is possible to study specifici-

cally a subclass of proteins (e.g.: membrane proteins, affinity-selected proteins,

PTM) (Osburn et al., 2011; Medvedev et al., 2012), thus reducing the complexity

of the sample while increasing the sensitivity of the analysis, if the subproteome

is well chosen. This maintains the advantage of a discovery-based approach:

the proteins to be detected are unknown at the start of the analysis, only the

subproteome is targeted. Yet it is possible to complement hypothesis-free ap-

proaches with specific reaction monitoring (SRM), a targeted mass spectrometry

technique (Picotti and Aebersold, 2012). This is of particular interest in “non-

traditional” species such as daphnids, as typical in-depth analysis of a toxicant’s

mode of action (MoA) relies on the study of specific proteins by Western blot,
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and thus on specific antibodies. These are usually not available for proteins from

ecotoxicologically-relevant species, and it can be hoped that SRM will replace,

at least in part, Western blotting for this purpose, in addition to circumvent-

ing many of the technical pitfalls associated with antibody-based measurements

(Aebersold et al., 2013).

Redox-proteomics is one of the approaches reintroducing a prior hypothesis

in the proteomics field: The treatment of interest alters specifically the redox

status of proteins. The different PTM associated to the redox status of cells and

proteins enable the definition of different subproteomes, which are now known to

vary as a result of toxicity mechanisms leading to oxidative stress (OS).

1.5 Oxidative stress and Redox-proteomics

Oxidative stress results from an imbalance in cells between reactive oxygen and

nitrogen species (ROS and RNS) and their scavenging mechanisms (Fig. 1.3)

(Valavanidis et al., 2006). As normal aerobic metabolism generates ROS, early

cells evolved molecular and enzymatic defences in order to maintain a balance be-

tween production and scavenging of reactive species, thus maintaining the redox-

homeostasis of cells. There is also a large amount of data demonstrating the

importance of redox processes for signal transduction in healthy cells (Jones,

2008).

In healthy cells, most ROS react quickly with antioxidant molecules and en-

zymes, before it is possible for them to cause irreversible damage to DNA, lipids

or proteins. Yet this balance is fragile and when more ROS and RNS are produced

than the cell can buffer, a state of OS is entered. Oxidative stress is linked to

ageing (Stadtman, 2006), diseases (Sultana et al., 2010), toxic stress (Valavanidis

et al., 2006) and environmental factors (Borgeraas and Hessen, 2002). Having

often been related to pollutants, its interest in ecotoxicology is now undeniable
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Figure 1.3: Maintenance of cellular homeostasis requires a balance between the
formation of oxidative and nitrosative species and the anti-oxidant defenses of
the cells. Taken from Sheehan et al. (2012)

and measures of OS are widespread. These include measurements of antioxidant

enzymes and molecules (Regoli et al., 2002) but also of damage caused by ROS,

of which lipid peroxidation (Marnett, 2002) and DNA damage (Shugart, 2000)

are the most frequently measured in ecotoxicology. Yet, proteins are expected to

absorb and sustain most of the ROS-induced damage in cells, up to 70 % (Davies,

2005). Many “lesions” are formed when ROS and RNS react with proteins. The

most frequently studied, protein carbonyls and thiol oxidations, are illustrated in

Figure 1.4.

Redox-proteomics tools are available to study the most common oxidative le-

sions of proteins: carbonyls, cysteine (thiol) oxidation, tyrosine nitrosylation and

methionine oxidation (Sheehan et al., 2012). To this day, oxidative lesions of pro-

teins have received little attention in ecotoxicology. Of the above lesions, protein

carbonylation gathered the most attention in ecotoxicological studies (Braconi

et al., 2011). Although most only measured carbonylation levels as a sign of OS

(Almroth et al., 2005; Tedesco et al., 2008; Atamaniuk et al., 2013) some did

apply a redox-proteomics perspective. These studies have focused on oxidation

of thiols in mussels (McDonagh and Sheehan, 2007; Tedesco et al., 2010b,a, 2012)
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Figure 1.4: (A) Oxidation states of protein cysteine, which can form intramolecu-
lar or mixed-disulfide bridges with small molecules or other proteins and can also
be reversibly oxidised to sulfenic acid or irreversibly to sulfinic and then sulfonic
acid. (B) Many amino acids are oxidised to carbonyl containing molecules, either
as free molecules or within proteins.
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or on protein carbonylation in mussels (McDonagh et al., 2005), clams (Dowling

et al., 2006), yeast (Braconi et al., 2009) or amoeba (Marsano et al., 2010).

There is no study published yet that applies the toolbox of redox proteomics to

daphnids. This is not surprising when considering the small amount of molecular

studies involving this taxa up to recent years. This gap deserves being filled as the

presence of daphnid species in ponds means that OS is already an important part

of their ecology, something their exposure to toxicants is likely to increase. Indeed,

a relatively high proportion of the molecular literature in daphnids focuses on OS.

Such an interest stems from their exposure to high levels of UV, as they can be

found in shallow ponds (Borgeraas and Hessen, 2000, 2002), their use as a model

species in aquatic toxicology (Barata et al., 2005a,b) as well as their capacity

to adapt to oxygen-poor environments (Becker et al., 2011). The application

of redox proteomics to daphnids is thus timely. As a first step in this direction,

this thesis focuses on the measurement on protein carbonylation using fluorescent

labelling and two-dimensional electrophoresis (2DE).

1.6 Protein Carbonyls

Protein carbonyls, as a group, represent the most abundant oxidative modifica-

tion of proteins (Stadtman, 2006), but they encompass a high structural diversity.

This diversity arises from the many reactions that can introduce a carbonyl func-

tion in proteins. Primary carbonyls are formed through the direct oxidation of

amino acids by ROS, while secondary carbonyls are introduced by the conjuga-

tion of lipid and sugar oxidation products, and their derivatives, to the amino and

thiol groups of proteins (Stadtman and Levine, 2000). Between these two main

categories, there are more than 20 structurally different carbonyl species that

are generated by the oxidation of proteins (Madian and Regnier, 2010b). This

structural diversity means that carbonyls integrate well the oxidation of proteins
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in cells. This is strengthened by the fact that they are produced by different

ROS-linked reactions and carbonylation is generally irreversible (Fedorova et al.,

2013). Additionally, carbonylation is not just a symptom of oxidative stress, but

also plays a role in signal transduction (Wong et al., 2013) and auto-immune

syndromes (Fedorova et al., 2013).

It is thus no surprise that many analytical strategies were developed to mea-

sure protein carbonylation levels and detect carbonylation sites (Fig. 1.5). Tradi-

tionally, protein carbonyls are quantified by labelling with dinitrophenylhydrazine

(DNPH), through the formation of a hydrazone linkage, followed by spectrophoto-

metric quantification (Levine et al., 1990). This method requires a large amount

of sample and yields no information on the carbonylated proteins themselves.

Based on the same derivatisation, immunoaffinity methods have been developed

to quantify carbonyls (ELISA, Buss et al., 1997) or detect carbonylated proteins

after electrophoretic separation (Western blot, Sultana et al., 2010). While ex-

cellent results have been obtained with these methods, they rely on anti-DNP

antibodies. They are known to be unreliable and present high noise levels in

Western blot, a high level of expertise is thus required to obtain good, reliable

results when using them. To circumvent these issues, hydrazine derivatives linked

to fluorescent labels were developed to detect and quantify protein carbonyls in

gel-based separations. While not replacing DNPH-based spectrophotometric or

ELISA approaches for global quantification of protein carbonyls, the use of fluo-

rescent probes enables simple measurement of carbonylated proteins in gel-based

approaches. It is even possible to obtain quantitative results if the proper controls

are used (Chaudhuri et al., 2006). Four fluorecent labels are used for carbonyl

detection: fluorescein-5-thiosemicarbazide (FTC), coumarin hydrazine, BODIPY

FL-hydrazide and cyanide dyes (Fedorova et al., 2013). All these enable gel-

based proteomics detection of carbonyls without the requirement of transfer to

nitrocellulose membranes and immunodetection. Fluorecent scanning of gels, al-
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though requiring expensive equipment, is now widely available and requires little

expertise.

Figure 1.5: Overview of analytical approaches for detection and quantification of
protein carbonyls. These can either be direct, or require a specific carbonyl label,
DNPH is used as an example in this case. Dashed lines indicate that a label other
than DNPH is required for the specified applications.

In parallel to gel-based approaches, many gel-free mass spectrometric methods

have been developed in recent years to detect carbonylation sites, either directly

(Guo and Prokai, 2011), with labelling (Palmese et al., 2012) or after enrichment

(Rauniyar et al., 2010). The high structural diversity of carbonyls means that no

single approach can detect equally all carbonyls. For all the methods detailled

here, the questions of labelling specificity and detection efficiency are still under

investigation (Guo and Prokai, 2011; Bollineni et al., 2013).

In addition to the direct detection of protein carbonyls in a complex matrix,

many approaches are available for the isolation of carbonylated proteins, which

can then be studied with gel-based or gel-free methods. A hydrazine deriva-

tive, biotin-hydrazide being the most common (Madian and Regnier, 2010a), is

used to label carbonylated proteins before isolation from the sample by affinity

chromatography. Another approach was developed by Roe et al. (2007) using

hydrazide-functionalised beads (termed solid-phase hydrazide – SPH) to isolate

4-hydroxynonenal (HNE) derivatised peptides followed by analysis of the modi-

fied peptides by mass spectrometry (MS). Chapter 4 expands on their approach

and demonstrates its applicability to the isolation of undigested proteins oxidised
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by metal-catalysed oxidation (MCO).

Prior to the studies presented herein, no measurement of protein carbonylation

in daphnids has been reported in the literature. In line with the central role of

oxidative stress in aquatic toxicology (Lushchak, 2011) and concurring interest in

protein carbonylation, this thesis focuses on the study of protein carbonylation

in D. magna using redox-proteomics.

1.7 Methodology

The following two chapters (2 and 3) are interested in the detection and identifica-

tion of carbonylated proteins in D. magna, after exposure to prooxidants copper

and paraquat (Chapter 2) and exposure to silver nanoparticles and silver nitrate

(Chapter 3). They both follow the same methodological approach, attempting to

link the organism-level response to the proteomics measurements.

Whole-organism toxicity of the compounds was tested using the daphnia

immobilisation assay, according to OECD protocols (OECD, 2004). This was

achieved by exposing neonates (< 24 h) to a wide range of concentrations and

visually observe how many of the daphnids were immobilised after 48 h. This

binary data was then analysed with a curve-fitting approach (2 parameter log-

logistic) to establish the concentration that would cause 50 % immobilisation, the

EC50, as shown in Fig. 1.6. The drc package (Ritz and Streibig, 2005) for the

statistical software R (R Core Team, 2013) was used for the non-linear modeling

and calculation of EC50 values and their confidence intervals.

Following the immobilisation assay, seven days old organisms were exposed to

three or four concentrations, from one tenth to one half EC50, of each compound.

Seven days old daphnids were chosen over the more usual neonates in order

to obtain enough material for the biochemical and proteomics measurements.

Indeed, neonates were found to yield about one microgram of protein each after
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Figure 1.6: Percentage of immobilised neonates as a function of the logarithm of
exposure concentration. The presented results are those for 10 months old AgNP
(Chapter 3) The observed values are represented by squares and the calculated
EC50 by a diamond.

extraction, while this could be increased to 10 µg per organism when using 7

days old daphnids. About one milligram was required per biological replicate to

perform the required assays.

The activity of three enzymes was then measured: catalase, glyceraldehyde-

3-phosphate dehydrogenase (GAPDH) and glutathione transferase (GST). They

were chosen for their involvement in the cellular response to OS. Catalase is

one of the main antioxidant enzymes in cells (Matés et al., 1999), it catalyses

the reduction of hydrogen peroxide to water and is usually induced when ROS

production increases (Lushchak, 2011). GAPDH is a glycolytic enzyme and it

is involved in the regulation of many cellular processes (Nicholls et al., 2012).

It is known to be sensitive to OS and its expression is increased by oxidative

stress. GST is a phase II detoxification enzyme involved, among many other

reactions, in the detoxification of lipid peroxidation products and in the reduction

of hydroperoxides (Sheehan et al., 2001).

In addition to the measurement of enzymatic activities, two redox-linked PTM

were measured: protein thiols and carbonyls. They were respectively labelled

with 5-iodoacetamidofluorescein (IAF) and FTC, followed by SDS-PAGE separa-
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tion. The expected impact of OS on those two markers are a decrease of protein

thiols as they become oxidised and an increase in protein carbonylation (Fig.

1.4).

Proteins from exposed and control D. magna were also labelled with FTC

prior to 2DE. Protein features were compared between gels using the Progenesis

Samespots software, and features of interest (ANOVA p value < 0.05 and fold

change > ± 1.5) were picked and sent for MS analysis to identify the proteins

they contained. The MS analysis was performed at the Instituto de Technologica

Quimica e Biologica (Universidade Nova de Lisboa, Av. da República, 2780-157

Oeiras, Portugal). Bioinformatics were then used to infer the cellular role of the

detected proteins in link with the compounds tested.

The third experimental chapter of this thesis (Chapter 4) is methodological.

It presents the first application of SPH to the enrichment of whole proteins car-

bonylated by MCO. Previous applications of SPH focused on the detection of

carbonyls introduced by HNE adducts, a secundary carbonyl, on peptides (Rau-

niyar et al., 2009, 2010; Rauniyar and Prokai, 2011; Roe et al., 2007, 2010). The

protocol presented here was developed based on click chemistry literature (von

Delius et al., 2010) which often relies on the pH dependent reversibility of hydra-

zone links formed between a carbonyl and a hydrazine. This then led to reviewing

the work of Roe et al. (2007) and expanding its application to undigested pro-

teins. Initial attempts with complex samples did not lead to good results as the

long chemical oxidation step led to high levels of proteolysis. Chemically oxidised

bovine serum albumin (BSA) was thus chosen as a model protein to demonstrate

the principle of the method.
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Chapter 2

Application of the

redox-proteomics toolbox to

Daphnia magna

2.1 Introduction

Systems biology, and the omics approaches it is based upon, is gaining in impor-

tance in the environmental sciences as its field of application widens away from

human and traditional model species. Its presence is thus felt in ecology and eco-

toxicology, where there is hope that the gap between subcellular responses and

ecosystemic responses to stressors can be linked (van Straalen, 2003). In order

to achieve this, environmentally relevant model species need to be used.

In this context, attention is turning towards daphnids, as their ecology is very

well studied and omics tools are now applicable to this model organism as the

genome of Daphnia pulex was recently sequenced (Colbourne et al., 2011) and

there is an ongoing project to sequence D. magna. The applicability of omics to

daphnids is illustrated by the publication in recent years of studies on transcrip-

tomics (Poynton et al., 2012; Jansen et al., 2013; Zeis et al., 2013), proteomics
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(Fröhlich et al., 2009; Le et al., 2013; Schwerin et al., 2009; Zeis et al., 2009,

2013) and metabolomics (Taylor et al., 2009; Nagato et al., 2013). This opens

the door to the use of hypothesis-free approaches when studying the toxicity

of various aquatic contaminants, leading to better insight into mechanisms of

toxicity, resistance and interaction between contaminants, as well as potential

discovery of novel biomarkers. Daphnids also offer the opportunity to link molec-

ular responses to higher order measurments as their short generation time and

well studied reproduction enables multigenerational studies (Shaw et al., 2008).

As the effectors of cells and target of most toxic compounds, proteins present

a particular interest in ecotoxicoloy. Their activity has long been studied to

understand the impact of toxic compounds or determine the presence of a stress.

With the use of proteomics, it is possible to study whole sections of the proteome

in one experiment. This does raise the challenge of choosing the proteome to study

since no single method can measure all proteins in an organism or tissue (Lemos

et al., 2010). In the case of ecotoxicology, redox proteomics, the detection and

analysis of redox-based changes in the proteome, is a subproteome of interest as

many toxicants are known to alter the redox balance of cells (Sheehan et al., 2010).

This is in addition to the growing evidence of the involvement of redox-based post-

translational modifications (PTM) in cellular signalling, indicating that looking

at changes in the redox-proteome is not only useful in cases of oxidative stress

(OS) but also to follow cellular responses to conditions that do not necessarily

generate OS (i.e. even in sub-stress scenarios). The most widespread of the

redox-based modifications, carbonyl formation, occurs as various amino acids

are directly oxidised or react with lipid and sugar oxidation products, forming

carbonyl containing adducts (Stadtman, 2006). Measurement of protein carbonyl

levels is often used as a general marker of oxidative stress in organisms (Almroth

et al., 2008; Ching et al., 2009). Although often thought of as a non-specific sign

of protein damage, protein carbonylation is known to be selective to certain sites
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(Temple et al., 2006) and to be involved in signal transduction (Wong et al., 2010)

In order to show the applicability of redox-proteomics to study the D. magna

proteome, daphnids were exposed to the prooxidants copper and paraquat, two

redox-cycling compounds known to induce oxidative stress (Barata et al., 2005b).

Both are also environmentally relevant: copper is a contaminant often released

by mining activities (Nagato et al., 2013) and paraquat is a widely used herbicide

worldwide.

The approach chosen here was to expose the daphnids to three concentrations

of copper and paraquat (1/10 to 1/2 EC50) followed by measurement of enzymatic

activities, protein carbonyl and thiol levels and two-dimensional electrophoresis

(2DE) of samples labelled with fluorescein-5-thiosemicarbazide (FTC), a carbonyl

specific flourescent label (Chaudhuri et al., 2006). Features of interest (showing a

significant effect of treatments and a fold change > 1.5) were analysed by MS/MS

to identifiy the proteins affected by the treatments in order to gain insight into the

mechanism of action of the two compounds. The results show a clear difference

between the two prooxidants, although, surprisingly, no sign of OS could be

detected.

2.2 Material & Methods

2.2.1 Chemicals

All chemicals were sourced from Sigma-Aldrich Ireland Ltd. (Arklow, Co. Wick-

low). Reagents and consumables for proteomic work were sourced from GE

Healthcare, UK (Immobiline Drystrips and IPG buffer); Thermo Fisher, Rock-

ford, Il, USA (Unstained protein molecular weight markers); and Bio-Rad, CA,

USA (Protein Assay Dye Reagent concentrate).
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2.2.2 Daphnia magna culture

A clonal culture of D. magna was maintained in 4 L plastic aquaria in Elendt

M4 medium (Elendt and Bias, 1990) at 20 ± 1 ℃ with a 16:8 light-dark cycle

and constant bubbling. Daphnids were fed live Chlorella vulgaris (50 000 cells

per mL of medium) at least four times a week. Brood stocks were maintained

at 50 females per aquarium. Half the medium was renewed two or three times a

week. Neonates were removed three times per week. In order to obtain enough

tissue for bochemical assays, neonates where maintained for seven days (in 10 mL

of medium per neonate), with daily feed, until exposure to the toxicants on day

eight.

2.2.3 Immobilisation assay

Immobilisation assays were performed according to OECD (2004) recommenda-

tions. Thirty neonates were exposed, in three groups of 10, in glass beakers (40

mL medium) at 20 ± 1 ℃ under a 16:8 light-dark cycle. Immobilisation was

observed after 24 and 48 hours. EC50 values were calculated by fitting the re-

sults with a two-parameter log-logistic model using the dcr package in R (R Core

Team, 2013; Ritz and Streibig, 2005).

2.2.4 Exposures

All exposures were performed for 24 h using 7 days old D. magna in 1 L fresh

medium in glass beakers at 100 daphnids per beaker in the culture conditions.

Daphnids were not fed during the exposures. Daphnids were exposed to three

concentrations of CuCl2 (45, 135, 270 µg Cu/L) and three concentrations of

paraquat (2, 7 and 13 mg/L). All exposures were repeated four times along with

controls. After the exposure, live daphnids were sieved, blotted dry, transferred

to a microcentrifuge tube and flash frozen in liquid N2, they were then stored at
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-80 ℃ until homogenisation.

2.2.5 Enzymatic and oxidative lesion assays

As previously (Rainville et al., 2014), 300 µL nitrogen bubbled homogenisation

buffer (10 mM tris HCl, pH 7.2, 0.5 M sucrose, 0.15 M KCl, 1 mM EDTA and

1 mM PMSF) were added to 100 frozen daphnids in a glass-teflon homogeniser,

followed by motor-driven homogenisation for one minute. Homogenates were cen-

trifuged at 14 000 g for 1 h, pellets were discarded and supernatants were aliquoted

for subsequent assays. Assays were performed on the day of homogenisation or

aliquotes were frozen at -80 ℃ immediately.

Protein concentrations were assessed by Bradford assay (Bradford, 1976) in

microtiter plates as per manufacturer’s instructions (Bio-Rad Protein Assay Dye

Reagent). Enzymatic assays and measurement of protein thiols and carbonyls

followed the same protocols as Rainville et al. (2014).

2.2.6 Two-dimensional electrophoresis and protein iden-

tification

Protein carbonyls were labelled by adding FTC to freshly prepared tissue ho-

mogenates (500 µg) to a final concentration of 1 mM (Chaudhuri et al., 2006).

Samples were incubated for 2h in the dark at 4 ℃ before precipitation of proteins

with a final concentration of 10 % w/v of trichloroacetic acid (TCA), incubated

on ice for 5 min and centrifuged at 11 000 g for 3 min. Pellets were washed twice

with 500 µL of ice cold 1:1 ethanol:ethylacetate. Prior to resuspension, they were

centrifuged down and dried to make sure no solvent was left in the samples. Re-

hydration buffer (5 M urea, 2 M thiourea, 2 %w/v CHAPS, 2 % IPG buffer, ) was

used to solubilise the proteins. Of this, 125 µL, containing 125 µg protein, were

loaded unto an Immobiline DryStrip (pH 3-10 NL, 7 cm, GE Healthcare), which
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was rehydrated overnight in the dark. Isoelectric focusing was then performed

on a PROTEAN IEF system (Bio-Rad), according to the strips manufacturer’s

recommendation. Hydrated strips were reduced with 2 % w/v dithiothreitol in

equilibration buffer (6 M urea, 0.375 M Tris, pH 8.8, 2% w/v SDS, 20% v/v glyc-

erol) for 20 min, followed by 2.5 % iodoacetamide in equilibration buffer for 20

min to block thiols. After equilibration, strips were loaded unto 10 % polyacry-

lamide gels for the SDS-PAGE separation. Gels were scanned using a Typhoon

scanner, model 9410 (Amersham Biosciences), with an excitation wavelength of

488 nm and emission of 520 ± 20 nm (bandpass filter). After acquisition of the

fluorescence image, gels were stained with colloidal coomassie (Dyballa and Met-

zger, 2009), and images were acquired with a GS-800 Calibrated Densitometer

(BioRad, Hercules, CA, USA). Image analysis was performed with the Progen-

esis SameSpots software (Nonlinear Dynamics Limited, UK). Experiments were

defined by compound, exposure concentrations were the treatments. Spots were

considered of interest when showing a 1.5 fold change between treatments as well

as being statistically significant (p < 0.05 in ANOVA). Interesting, well resolved

spots of sufficient intensity were then selected for mass spectrometric analysis.

Features from the fluorescence images were considered interesting only if they

could be matched to a coomassie stained feature of significant intensity.

Those were manually excised using clean pipette tips and in-gel digested with

trypsin according to Almeida et al. (2010). Extracted peptides were loaded onto

a R2 micro column (RP-C18 equivalent) where they were desalted, concentrated

and eluted directly onto a MALDI plate using α-cyano-4-hydroxycinnamic acid

as the matrix solution in 50 % acetonitrile and 5 % formic acid. Mass spectra of

the peptides were acquired with positive reflectron MS and MS/MS modes using

a MALDI-TOF/TOF MS instrument (4800 plus MALDI TOF/TOF analyzer)

with exclusion list of the trypsin autolysis peaks (842.51, 1045.56, 2211.11 and

2225.12). The collected MS and MS/MS spectra were analysed in combined
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mode by using the Mascot search engine (version 2.2; Matrix Science, Boston,

MA) and the NCBI database restricted to 50 ppm peptide mass tolerance for the

parent ions, an error of 0.3 Da for the fragments, one missed cleavage in peptide

masses, and carbamidomethylation of Cys and oxidation of Met as fixed and

variable amino acid modifications, respectively. No taxonomy restrictions were

applied. The identified proteins were only considered if a MASCOT score above

95% confidence was obtained (p <0.05) and at least one peptide was identified

with a score above 95% confidence (p <0.05). This analysis was conducted by the

Analytical Services Unit, Instituto de Tecnologia Química e Biológica (ITQB),

New University of Lisbon, Lisbon, Portugal.

2.2.7 Data analysis

Images from 1DE were analysed with the Quantity One software (Bio-Rad) to

obtain a single trace measurement per lane. Fluorescence values were normalised

for loading by dividing them with their trace coomassie value. Statistical analysis

of enzymatic and PTM assays were performed by one-way ANOVA with a Holm-

Sidak post-hoc test (versus control), using the Sigmaplot 10.0 software (Systat

Software, Inc.).

2.2.8 Hypothetical proteins

Hypothetical proteins (HP) identified by MS/MS were studied using bionfor-

matics tools to find their potential function. Blastp (Altschul et al., 1997) and

DELTA-BLAST (Boratyn et al., 2012) from the National Center for Biotechnol-

ogy Information (http://blast.ncbi.nlm.nih.gov/Blast.cgi) were used to

identify sequence similarity with known proteins. In addition, conserved sites,

domains and families present in the HP were studied with Interproscan (Quevil-

lon et al., 2005) from the European Bioinformatics Institute (http://www.ebi.

ac.uk/Tools/pfa/iprscan/). Results shown below include the highest scoring,
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non-hypothetic protein from blastp, as well as the main (non-redundant) domains

and families identified from Interproscan. In the present study, those were always

in accordance with results from DELTA-BLAST, which are not presented.

2.3 Results

2.3.1 Classical endpoints

In order to choose biologically meaningful concentrations for the biomarker and

proteomic measurements, immobilisation assays were performed using neonates.

The calculated EC50 were much higher for paraquat (22.58 mg/L; 95 % CI:

20.27–25.15 mg/L) than for copper chloride (415 µg Cu/L; 95 % CI: 317–544 µg

Cu/L).

From those results, sublethal concentrations were chosen to expose the

daphnids in order to obtain meaningful results from the biochemical measure-

ments. The activity of the enzymes catalase, glutathione transferase (GST) and

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were measured after expo-

sures and effects were observed only in a decrease of catalse activity in daphnids

exposed to 2 and 7 mg/L paraquat (Fig. 2.1). Levels of protein thiols and

carbonyls were also not affected significantly by the treatments (data not shown)

Figure 2.1: Catalase activity of seven days old daphnids after exposure to copper
and paraquat. (One-way ANOVA: *: p < 0.05; **: p < 0.01; ***:p < 0.001)
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2.3.2 2DE

A total of 30 features were significantly modified by copper exposures and showed

a fold change of at least 1.5. With increasing copper concentration, nine showed

an increase in volume at the protein level, 11 a decrease and one a varying pattern

with concentration. Additionnaly, six showed a decrease in carbonylation with

increasing Cu, while 3 showed a decrease in carbonylation concomitant with a

decreased volume of the protein stain for the same feature. Two features presented

an increase of carbonylation (FTC labelling volume) alone and two an increased

carbonylation concomitant with increased volume of protein stain.

In paraquat exposed samples, only two features showed significant changes of

at least 1.5 fold. One was an increase in protein stain volume with concentration

(f26) while the other showed a decrease in carbonyl content with concentration

(f24).

All features of interest (shown in Fig. 2.2) were picked for protein identifica-

tion by MSMS

2.3.3 Protein identification

Of the 32 features of interest found with 2DE, 19 could be successfully identified

by MS/MS analysis (see Table 2.1). Among those, six were identified as proteins

of known function. Of these, actin and an actin related protein were identified,

along with proteins related to protein synthesis (translational elongation factor 2,

TEF-2) and degradation (trypsin), reproduction (vitellogenin fused with SOD)

and glucose metabolism (2-phospho-D-glycerate hydrolase).

In addition to these, 13 proteins were identified as hypothetical or unchar-

acterised, eleven of which were from the recently completed D. pulex genome

(Colbourne et al., 2011). Among these, f3 and f4 contained the same protein,

probably because that they are part of a feature train, leaving twelve sequences

of unknown function. They were analysed with pblast, DELTA-BLAST and In-
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Figure 2.2: 2DE separation of 100 µg of Daphnia magna proteins, colloidal
coomassie stained. Features modified by CuCl2 and paraquat exposures are shown
(p < 0.05 and > 1.5 fold change)

terproscan to identify a putative function for the proteins. The results from this

analysis are shown in Table 2.2. The possible biological functions of those pro-

teins include proteolysis (neural endopeptidase 24.11), reproduction (vitellogenin

fused with SOD), stress response (members of the HSP70 family), actin filament

assembly (alpha actinin), glycolysis (fructose 1,6-biphosphate aldolase), energy

metabolism (arginine kinase) and protein folding (peptidyl-prolyl cis-trans iso-

merase).

Seventeen of the identified features were affected by copper exposures, while

only two were affected by paraquat exposures. Fold changes of the identified

features following treatments are shown in Table 2.3.
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Table 2.1: Proteins affected by prooxidant exposure and identified by LC-MS/MS

Feature Protein Organism Accession
number

MW
(kDa)
(Mea-
sured /
Predicted)

Protein
Scorea/
Protein
C.I. (%)

Total Ion
Score /
Total Ion
C.I. (%)

Sequence
coverage
(%)

Num-
ber of
peptidesb

f2 hypothetical protein DAPPUDRAFT_200882 Daphnia pulex gi|321461668 73/75 362/100 357/100 7 2
f3 hypothetical protein DAPPUDRAFT_213992 Daphnia pulex gi|321465380 69/228 153/100 153/100 10 2
f4 hypothetical protein DAPPUDRAFT_213992 Daphnia pulex gi|321465380 69/228 162/100 144/100 11 2
f6 hypothetical protein DAPPUDRAFT_313764 Daphnia pulex gi|321474716 60/170 244/100 244/100 10 1
f7 uncharacterized protein LOC393586 Danio rerio gi|41055387 57/71 320/100 388/100 27 3
f8 hypothetical protein DAPPUDRAFT_301437 Daphnia pulex gi|321457382 52/56 213/100 208/100 11 1
f10 hypothetical protein DAPPUDRAFT_313359 Daphnia pulex gi|321475312 51/73 160/100 144/100 27 2
f15 hypothetical protein Amblyomma maculatum gi|346468137 48/71 168/100 149/100 5 2
f16 hypothetical protein DAPPUDRAFT_99081 Daphnia pulex gi|321473812 48/105 550/100 448/100 26 3
f21 vitellogenin fused with superoxide dismutase Daphnia magna gi|95113632 41/225 339/100 327/100 15 2
f22 2-phospho-d-glycerate hydrolase Daphnia magna gi|41394397 39/40 746/100 700/100 54 6
f23 actin related protein 1 Acyrthosiphon pisum gi|217330650 39/42 659/100 613/100 54 4
f24 hypothetical protein DAPPUDRAFT_188180 Daphnia pulex gi|321469582 34/39 209/100 209/100 11 1
f25 hypothetical protein DAPPUDRAFT_220693 Daphnia pulex gi|321478205 34/40 915/100 789/100 63 7
f28 trypsin 208, partial Daphnia magna gi|403311427 26/26 551/100 526/100 34 3
f29 translational elongation factor-2 Daphnia magna gi|262303391 25/81 550/100 526/100 22 3
f30 hypothetical protein DAPPUDRAFT_231271 Daphnia pulex gi|321463635 19/23 166/100 151/100 30 1
f31 actin Timema boharti gi|323435224 18/31 502/100 439/100 41 3
f32 hypothetical protein DAPPUDRAFT_230174 Daphnia pulex gi|321478432 17/33 115/100 115/100 4 1

a The protein score probability limit (where p <0.05) is 86.
b Number of MS/MS patterns assigned to peptides with confidence interval above 95 %.
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Table 2.2: Blast and interproscan search of hypothetical proteins modified by copper and paraquat exposures

Feature Accession Number Best hita (protein (species), E-
Value, Identity %)

Families and Domainsb GO functionsb

f2 gi|321461668 Neural Endopeptidase 24.11 (Bombyx
mori) E: 8e-170, Identity: 40%

Peptidase M13 metalloendopeptidase activity; proteolysis

f3,f4 gi|321465380 Vitellogenin fused with superoxide
dismutase (Daphnia magna) E: 0.0,
Identity: 52%

Superoxide dismutase (Cu/Zn)/chaperones;
von Willebrand factor, type D Domain;
Vitellinogen, open beta-sheet; Vitellinogen,
beta-sheet N-terminal

Superoxide metabolic process; Metal ion
Binding; Oxidation-reduction Process; Lipid
transport activity; Lipid transport

f6 gi|321474716 Vitellogenin-like protein (Lepeoph-
theirus salmonis) E: 3e-106, Identity:
24%

von Willebrand factor, type D Domain;
Vitellinogen, superhelical; Vitellinogen, beta-
sheet N-terminal

Lipid transport activity; Lipid transport

f7 gi|41055387 HSC71 (Krypolebias marmotus) E:
0.0, Identity: 95%

Heat shock protein 70 family

f8 gi|321457382 Sb:cb283 protein, partial (Danio
rerio) E: 0.0, Identity: 59%

Leucine aminopeptidase/peptidase B aminopeptidase activity; cytoplasm; metal-
loexopeptidase activity; protein metabolic
process; manganese ion binding

f10 gi|321475312 heat shock protein 70 (Moina mon-
golica) E: 0.0, Identity: 89%

Chaperone DnaK; Heat shock protein 70
family

ATP binding; protein folding; unfolded pro-
tein binding

f15 gi|346468137 heat shock protein 70kDa, partial
(Diguetia signata) E: 0.0, Identity:
81%

Heat shock protein 70 family

f16 gi|321473812 GG12661 (Drosophila erecta) E: 0.0,
Identity: 84%

Alpha-actinin; EF-hand domain actin filament bundle assembly; actin
crosslink formation; calcium ion binding

f24 gi|321469582 fructose 1,6-bisphosphate aldolase
(Bombyx mori) E: 0.0, Identity: 80%

Fructose-bisphosphate aldolase, class-I fructose-bisphosphate aldolase activity; gly-
colysis

f25 gi|321478205 Arginine Kinase (Artemia francis-
cana) E: 0.0, Identity: 79%

ATP:guanido phosphotransferase; Glutamine
synthetase/guanido kinase, catalytic domain

catalytic activity; kinase activity

f30 gi|321463635 fk506-binding protein (Aedes aegypti)
E: 8e-93, Identity: 63%

Peptidyl-prolyl cis-trans isomerase, FKBP-
type; EF-hand domain

protein folding; calcium ion binding

f32 gi|321478432 chymotrypsin-like protein (Daphnia
pulex) E: 3e-75, Identity: 50%

Peptidase S1A, chymotrypsin-type; Trypsin-
like cysteine/serine peptidase domain

serine-type endopeptidase activity; proteoly-
sis

a Best hit results are obtained using a blastp search (Altschul et al., 1997).
b Families, domains and GO functions were obtained using Interproscan (Quevillon et al., 2005).
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Table 2.3: Fold change of feature volumes of identified proteinsa

Cu
(coomassie/fluorescence)

Paraquat
(coomassie/fluorescence)

Protein (feature) 45 µg/L 135 µg/L 270 µg/L 2 mg/L 7 mg/L 13 mg/L

Neural Endopeptidase 24.11 (f2) -1.9/-2.0 -1.6/-1.8 -2.0/-2.5 – / – – / – – / –
Vitellogenin fused with superox-
ide dismutase (f3)

– / 2.2 – / 2.6 – / 2.4 – / – – / – – / –

Vitellogenin fused with superox-
ide dismutase (f4)

– / 2.0 – / 2.3 – / 2.5 – / – – / – – / –

Vitellogenin-like protein (f6) 1.5 / 1.0 1.7 / 1.6 2.1 / 1.6 – / – – / – – / –
HSC71 (f7) -1.2/ – -2.1/ – -2.1/ – – / – – / – – / –
Sb:cb283 protein, partial (f8) -1.3/-1.1 -1.4/-1.3 -1.8/-1.6 – / – – / – – / –
Heat shock protein 70 (f10) – /-1.3 – /-1.4 – /-1.7 – / – – / – – / –
Heat shock protein 70kDa, partial
(f15)

-1.4/ – -2.2/ – -3.0/ – – / – – / – – / –

GG12661 (f16) -1.3/ – -1.8/ – -2.6/ – – / – – / – – / –
Vitellogenin fused with superox-
ide dismutase (f21)

1.2 / – 1.6 / – 1.5 / – – / – – / – – / –

2-phospho-D-glycerate hydrolase
(f22)

– / – – / – – / – – /-1.6 – /-1.4 – /-1.7

Actin related protein 1 (f23) -1.2/ – 1.0 / – 1.4 / – – / – – / – – / –
Fructose 1,6-bisphosphate al-
dolase (f24)

– / – – / – – / – -1.2/ – 1.1 / – 1.4 / –

Arginine Kinase (f25) – /-1.4 – /-1.7 – /-1.6 – / – – / – – / –
Trypsin 208, partial (f28) -1.2/-1.2 -1.7/-1.6 -1.8/-1.9 – / – – / – – / –
Translational elongation factor-2
(f29)

-1.2/ – 1.3 / – 1.5 / – – / – – / – – / –

fk506-binding protein (f30) – /-1.5 – /-1.4 – /-2.0 – / – – / – – / –
Actin (f31) -1.1/ – -1.4/ – -1.9/ – – / – – / – – / –
Chymotrypsin-like protein (f32) – /-1.3 – /-1.4 – /-2.0 – / – – / – – / –
a Fold changes are relative to control and given only for treatment where the feature was
significantly changed (ANOVA p <0.05).

2.4 Discussion

2.4.1 Whole organism Toxicity

The measured EC50 for Cu is relatively high compared to previously published

toxicity values for D. magna (Barata et al., 2005b). This is due to the presence

of EDTA in the M4 medium, a well-known phenomenon that can hamper toxi-

city evaluation of metal containing samples (Guilhermino et al., 1997). As this

study is focused in determining the usefulness of redox-proteomics in studying

the mechanism of toxicity of Cu, it was felt that choosing a copper concentration
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relatively to its biological effect, the observed EC50 in M4 medium, should not

bias results compared to a chelating agent-free medium in which a similar crite-

rion would be used. In the case of paraquat, the measured EC50 conforms well

with previously published data (USEPA, 2013).

2.4.2 Biomarkers

Following exposure to three concentrations of Cu and paraquat, the enzymatic

activity of GST, catalase and GAPDH were measured along with the relative con-

tent of protein carbonyls and thiols. Of these, only catalase activity was affected

by the treatments. Catalase was reduced following paraquat exposures (Fig. 2.1).

It is surprising to find so few effects at the enzymatic level as previous studies

have shown changes in enzymatic activities, although with younger daphnids and

a longer exposure time (Barata et al., 2005b). Catalase and GST have also been

shown to increase in activity following exposure of D. magna to environmental

samples rich in Zn and Cu (Yoo et al., 2013).

As neither the measured enzymatic activities nor oxidative lesions of proteins

were strongly affected by the treatments, we infer that no OS occured during the

treatments. Although surprising from the relatively high exposure concentrations

used and known mechanism of actions of both compounds, this is confirmed by

2DE analysis. At the feature level, a significant reduction in FTC labeling is

more frequent than an increase. Such a reduction indicates that cells managed

to compensate for the likely higher concentrations of ROS resulting from the

exposure to prooxidants. As this lack of OS is common to both toxicants, it is

unlikely to be a result of the chelation of Cu ions by EDTA. A possible explanation

is the use of light bubbling during exposure of the daphnids. As this is not often

reported in the literature, it is not possible to infer its impact on oxidative stress

following toxicant exposure, but as it affects O2 levels, it may impact on cell

respiration, OS generation and anti-oxidant defenses.
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2.4.3 Two-dimensional electrophoresis

A total of 30 features were significantly affected (p <0.05 and 1.5 fold change) by

the copper exposures, while only two were affected by paraquat. Most of these

presented a change only of the protein or carbonyl content, indicating that those

two parameters changed mostly independently. Five features did present parallel

changes of protein and carbonylation levels, meaning that the protein level was

modified while the carbonylation level of individual proteins was not markedly

altered. Nine of the 32 features were detected as modified at the protein carbonyl

level only, increasing by almost a third the number of proteins of interest detected,

without requiring more sample or extra experiments. There is thus a strong gain

in labelling redox-linked PTM in ecotoxicological studies. This is particularly

interesting as no OS was detected in this study, and seven of these nine features

showed a reduction in carbonyl content. The information gained can thus be

more general than an identification of the targets of OS. This is not surprising

as changes in protein carbonyl levels are to be expected in contexts other than

OS. Indeed, carbonylation is specific to certain sites on proteins (Temple et al.,

2006) and there is a growing indication that carbonylation is involved in signal

transduction (Wong et al., 2010).

FTC labelling also enabled us to confirm five of the detected features for

which the carbonyl and protein content were significantly altered and fold changes

presented similar values. This cannot be expected for all features that change

only at the protein level, as many proteins may not be carbonylated (or only

weakly) and thus not detected by FTC. The opposite does not hold in this study,

as features that showed changes at the FTC level but could not be seen with the

colloidal coomassie stain were not considered here, as it was not possible to pick

the feature for MS/MS.
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2.4.4 Protein Functions

Nineteen proteins could be identified by MS/MS from the features of interest. Of

those, 17 were affected by copper, twelve of which were identified as hypothetical

or uncharacterised proteins. Those were further studied with blastp, DELTA-

BLAST and InterproScan to infer their possible biological functions. For all

proteins, the three search engines yielded similar functions, which are detailed in

Table 2.2. The following discussion uses the MS/MS identifications and inferred

biological functions of hypothetical proteins to gain insight into the impact of

copper exposure in D. magna.

The two most represented functional grounps among the identified proteins

are vitellogenins (features f3, f4, f5 and f21) and proteolytic enzymes (f2, f8, f28,

f32). Vitellogenins (vtg) are involved in egg development in oviparous species, in-

cluding the development of parthenogenetic eggs in daphnids (Kato et al., 2004).

Features 3 and 4 appear to be composed of DmaVTG2 (Tokishita et al., 2006)

and feature 21 was identified as DmaVTG1 (Kato et al., 2004). These two vitel-

logenins contain a superoxide dismutase (SOD) domain, though of weak activity

(Kato et al., 2004). Feature 6 is similar to a vitellogenin from the salmon louse

(Table 2.2). Taken together, these four features show an increase at the protein

(f6 and f21) and/or carbonyl level (f3,f4 and f6). The observed results may be

linked to changes in vtg maturation or increased expression (Hannas et al., 2011).

Vitellogenins are extensively modified prior to their uptake by developing eggs

and this maturation process is known to be affected by stressors (Gündel et al.,

2007). The mechanistic significance of changes in vtg expression or maturation

is not known in crustaceans, although it is of interest that the changes in pro-

tein content and carbonylation levels observed in this study vary markedly from

those of a previous study on silver nanoparticles and silver nitrate conducted

in our laboratory (Rainville et al., 2014). This is in agreement with previous

publications indicating that the vitellogenin proteome is an easily accessible and
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specific marker of physiological changes in vertebrates and invertebrates alike

(Gündel et al., 2007; Jubeaux et al., 2012), enabling the identification of protein

expression signatures (PES) with a potential to differentiate stressors.

Another four features were shown to contain proteolytic enzymes (f2, f8, f28,

f32). Two of these are digestive enzymes (trypsin, f28, and chymotrypsin, f32)

normally excreted in the daphnid gut and involved in protein digestion. The

function of the other two enzymes is harder to clarify as they are members of the

peptidase M13 family (f2) and the Leucine aminopeptidase family (f8). Mem-

bers of the M13 family are metalloendopeptidases that cleave small substrates

of up to 40 amino acids, their functions vary from protein digestion in bacte-

ria to cleavage of small signaling peptides in mammals (Rawlings et al., 2012).

Leucine aminopeptidases are cytoplasmic enzymes involved in the degratadion

of intracellular peptides (Rawlings et al., 2012). The feature volume of all four

proteases was reduced with increasing copper concentration, for features 2, 8

and 28, the reduction is observed at the protein and carbonyl level while for f32

(chymotrypsin-like protein) the reduction is only at the carbonyl level.

As a group, proteolytic enzymes have often been detected in omics studies on

daphnids. Using proteomics, Schwerin et al. (2009) found that digestive proteases

were repressed in cold-acclimated D. pulex. In a transcriptomics study on D.

magna, Poynton et al. (2007) found that various proteases were downregulated by

Cd exposure while others were upregulated by Cu or Zn. Interestingly, they found

an upregulation of a trypsin precursor mRNA and an aminopeptidase mRNA

following copper exposure, while we observe a reduction in protein levels for a

trypsin and a leucine aminopeptidase under exposure to the same metal. De Coen

et al. (1998) observed a reduction of trypsin activity in D. magna exposed to

various metals and organic compounds, in close correlation with the measured

EC50 for immobilisation. Digestive enzyme activity is thus known to respond

to toxic stress, although not necessarily by a decrease (De Coen and Janssen,
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1997). Although this also held true in their study for esterase and β-galactosidase

activities, only trypsin was detected as having a reduced protein level in our study.

Three members of the heat shock protein 70 (HSP70) family were found with

the sequence similarity search (f7, f10, f15). HSP70 are chaperones involved in

protein folding and are either constitutively expressed or induced by stress in

order to maintain protein integrity (Mathew and Morimoto, 1998). In D. magna

HSP70 levels have been shown to increase under exposure to diclofenac (Haap

et al., 2008) and cadmium (Haap and Köhler, 2009). In the present study, two of

the identified HSP70s (f7 and f15) showed lower protein levels and the third (f10)

presented lower carbonylation levels. All three were found to have a reduced mass

of about 50 kDa (Table 2.1), which may be a result of proteolytic degradation of

the proteins during sample preparation.

Interestingly, in addition to the three identified HSP70, another protein in-

volved in protein folding was detected as having a reduced carbonyl content (f30).

This protein has a similar sequence to a peptidyl-prolyl cis-trans isomerase (cy-

clophilin). Cyclophilins are known to be involved in the heat shock response along

with HSP and proteases (Mathew and Morimoto, 1998). The observed general

reduction of those three functional catregories of proteins points to a general re-

duction of the heat-shock response in daphnias as a result of copper exposure.

Although surprising at first glance, many studies show that lower basal levels of

HSP and lower induction following stress are linked to better resistance to the

toxicity of metals (Haap and Köhler, 2009). A more in depth study would be

required to elucidate the meaning of the observed results, but it points to the

interesting behaviour of the heat-shock response in daphnids, which is not as

systematically associated to stress as could be expected (Pauwels et al., 2010).

Another three proteins have potential biological functions related to the cy-

toskeleton, all showing changes at the protein level with increasing Cu concen-

trations. The protein content of features 16 and 31 decreased while it increased
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for f23. Features 23 and 31 contain actin-related proteins and f16 contains a

member of the alpha-actinin family. While actins are the basic unit of microfila-

ments (actin filaments), alpha-actinin is involved in cross-linking actin filaments

together or with proteins associated to the cell membrane (Djinović-Carugo et al.,

1999). Actin filaments are one of the main component of the cytoskeleton and the

muscle fiber. They are involved in intracellular trafficking and cellular motility.

Schwerin et al. (2009) have found that many forms of actin are upregulated in

D. pulex acclimated to 10 ℃. Actin expression has been shown to decrease in D.

magna acclimated to the presence of predators at the protein (Pijanowska and

Kloc, 2004) and mRNA level (Schwarzenberger et al., 2009). Actin thus reacts to

different stressors in daphnids, but does present some level of specificity to the

stressor as its mRNA levels were shown not to vary under ibuprofen exposure

(Heckman et al., 2006). Interestingly, the two actins observed to be modified in

this study show opposite expression patterns. The isoforms of actin would need

to be identified to better understand the significance of these changes.

The last two proteins that changed after copper exposure are arginine ki-

nase (f25) and TEF2 (f29). Arginine kinase is the enzyme responsible for the

only phosphagen system found in arthropods (Ellington, 2001). Arginine kinase

enables phosphate, proton and ATP buffering in cells by reversibly transferring

energy-rich phosphate bonds between arginine and ATP, thus contributing to

intracellular energy transport (Ellington, 2001). The observed reduction in car-

bonylation of arginine kinase would indicate that the protein is either cycled at

a higher rate, thus not accumulating as many carbonyls, or somehow protected

from carbonylation. In both cases, this would maintain a higher level of activity.

In another study, arginine kinase mRNA was found to be downregulated in D.

magna exposed to ZnO nanoparticles (Poynton et al., 2011).

Finally, TEF2, a protein involved in protein synthesis at the ribosomal level,

presented an increased coomassie stain level after copper exposure. This is an
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opposite response to that observed by Connon et al. (2008) in D. magna exposed

to Cd. They found an increase of TEF2 mRNA at low concentrations along with

a decrease at high [Cd]. This was concomitant with changes of many ribosomal

proteins mRNA, alhough the direction of change was dependent on the specific

mRNA. Changes in protein systhesis are expected in stressed organisms although,

the impact of a reduction of TEF2 levels in D. magna are not known.

Overall, there are few indications of a specific response to Cu within the

present results. The same functional categories of proteins or genes identified

here have often been found to react to stressors in daphnids (Poynton et al.,

2007; Connon et al., 2008; Poynton et al., 2008a) This points to a relatively

general stress reponse rather than a specific response to copper. As highlighted

by Poynton et al. (2008a), the reduction in proteases may indicate a specific

toxicity to the hepatopancreas but, as we observe an increase in vtg fragments,

also synthetised in the hepatopancreas, a more focused experimental approach

would be required to determine the mode of action of copper in D. magna.

Although disapointing, this result is balanced by the fact that a very different

response was obtained for paraquat in the present experiment. Indeed, no feature

was common to the two toxicants, and as a slight mortality was observed at the

highest concentration for both compounds (results not shown) there was a high

level of physiological stress. Yet, only two features were shown to be modified by

the paraquat exposure, both were identified by MS/MS, one (f22) as 2-phospho-

d-glycerate hydrolase (enolase), the other (f24) as a hypothetical protein from

the D. pulex genome, with a high level of identity with fructose 1,6-bisphosphate

aldolase (aldolase). Both enzymes are part of the glycolytic pathway. Enolase

saw its carbonylation levels decrease significantly upon paraquat exposure, while

aldolase protein levels increased with concentration. In both cases, this would

lead to higher activity of the protein, thus increased glycolysis, indicating higher

energetic demands for the daphnids. Paraquat acts as an electron acceptor in the
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mitochondrion, subsquently leading to superoxide formation and OS (Vicente

et al., 2001). This leads to an increased leaking of protons within the mitochon-

dria, resulting from lipid peroxidation of the mitochondrial membrane (Vicente

et al., 2001). This is in contradiction with our results indicating no significant

amount of OS to the D. magna proteins. Although the slightly decreased cata-

lase activity observed may be linked to increase ROS production (Mayo et al.,

2003), it appears more likely that the cell is trying to circumvent a loss of mi-

tochondrial efficiency by stimulating glycolysis, rather than being under strong

oxidative stress.

2.5 Conclusion

This study was concerned with the impact of copper and paraquat on D. magna

at the protein level. Classical biomarkers and measurement of oxidative lesions

of proteins did not respond significantly to the two prooxidants. Despite the lack

of observed OS, 2DE of samples labelled for protein carbonyls showed markedly

different responses to the two compounds, with no feature being modified by

both. Subsequent mass spectrometry analysis led to the identification of 17

proteins whose abundance and/or carbonylation were affected by copper and

of two proteins affected by paraquat. In copper exposed samples, a reduction

of the heat-shock response was observed (less abundant proteases, HSP70 and

cyclophilin) along with changes in vitellogenins, actin filament-linked proteins,

protein metabolism and the phosphagen system. Following paraquat exposures,

proteins involved in glycolysis were found to be more abundant or less carbony-

lated, indicating a likely increase of glycolysis. Taken together this indicates that

the organisms managed to mitigate the typical prooxidant effect of the toxicants,

but not to the point of avoiding major stress, as mortality was observed at the

highest concentration of both compounds. This study shows the usefulness of
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labelling redox-related lesions in proteins even in the absence of measurable ox-

idative stress, as nine of the features discovered by 2DE showed changes at the

carbonyl level and not the protein abundance. Labelling with FTC also led to

the confirmation of five of the features for which changes were observed at the

protein level, reinforcing their statistical significance.
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Proteomic evaluation of citrate-coated silver
nanoparticles toxicity in Daphnia magna†

Louis-Charles Rainville,*a Darragh Carolan,b Ana Coelho Varela,c Hugh Doyleb

and David Sheehana

Recent decades have seen a strong increase in the promise and uses of nanotechnology. This is correlated

with their growing release in the environment and there is concern that nanomaterials may endanger

ecosystems. Silver nanoparticles (AgNPs) have some of the most varied applications, making their release

into the environment unavoidable. In order to assess their potential toxicity in aquatic environments, the

acute toxicity of citrate-coated AgNPs to Daphnia magna was measured and compared to that of

AgNO3. AgNPs were found to be ten times less toxic by mass than silver ions, and most of this toxicity

was removed by ultracentrifuging. At the protein level, the two forms of silver had different impacts.

Both increased protein thiol content, while only AgNP increased carbonyl levels. In 2DE of samples

labelled for carbonyls, no feature was significantly affected by both compounds, indicating different

modes of toxicity. Identified proteins showed functional overlap between the two compounds:

vitellogenins (vtg) were present in most features identified, indicating their role as a general stress sensor.

In addition to vtg, hemoglobin levels were increased by the AgNP exposure while 14-3-3 protein

(a regulatory protein) carbonylation levels were reduced by AgNO3. Overall, this study confirms the

previously observed lower acute toxicity of AgNPs, while demonstrating that the toxicity of both forms of

silver follow somewhat different biologic pathways, potentially leading to different interactions with

natural compounds or pollutants in the aquatic environment.

1 Introduction

The last decade has seen a sharp increase in the number of
studies concerned with the environmental impact of engineered
nanoparticles (NP). This concern is fueled by the increasing
variety of uses for NP, and their continued development. This is
leading to increased NP usage and release in the environment.1

The novel properties of materials at the nanoscale makes
evaluation of their toxicity particularly challenging. Size, surface
chemistry, coating, method of suspension and composition all
affect the laboratory-based measurement of their toxicity.
Although generation of reactive oxygen species (ROS) is a
frequent component of NP toxicity,2 the impressive range of NP
being manufactured currently means that no general rule can
be used to infer their toxicity.

Silver NP (AgNP) are the most widely used commercial
nanoparticles, with applications in textiles, medical equipment

and household products, mostly involving their antibacterial
properties.3 Their widespread use leads to their release into the
environment through their leakage and disposal.4 Additionally,
their behaviour in the environment and in wastewater treatment
plants is still a subject of study.4,5 There is thus a need to
understand their interaction with biota, especially in the aquatic
environment, where the particles will most likely end up.

As many studies highlight their potential toxicity,6–8 efforts to
discern their mechanism of action are becomingmore frequent.
Yet, the prior knowledge required to properly deploy traditional,
hypothesis-based, biomarkers to study AgNP toxicity is still
lacking. There is thus an interest in exploiting omics-based
tools to gain a better understanding of their toxicity mecha-
nism and to discriminate it from that of their bulk components.
This strategy was used by Poynton et al.8 as they applied tran-
scriptomics to identify changes in gene expression following
exposure to citrate-coated AgNP, PVP-coated AgNP as well as
silver nitrate. This led them to conclude that toxicity of AgNP
differed from that of silver nitrate at the mechanistic level and,
to a lesser extent, varied with different NP coatings.

In addition to knowledge gained from gene expression
studies, the study of proteins is of particular interest in toxi-
cology as they are the principal quantitative targets of toxicity
and their covalent modication can lead to various changes in
metabolism and cell signaling.9 Additionally, proteins are the
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rst targets of the reactive oxygen species (ROS) that accumulate
in cells experiencing oxidative stress (OS). Many of their resi-
dues can be directly oxidised by ROS, thus serving as buffers,
protecting DNA in cells and avoiding irreparable damage.
Redox-proteomics are used to study redox-based changes within
the proteome10 enabling a direct detection of lesions caused by
the toxicant and of responses at the protein level.

Cysteine, tyrosine and methionine are particularly sensitive
to oxidation and their modications are oen measured in
redox-proteomics.11 Protein carbonyls are the most prevalent
oxidative lesion of proteins12 and there is growing evidence of
their involvement in signal transduction.13 They are also
increasingly used as biomarkers of oxidative stress in ecotox-
icological studies.14,15

Despite their advantages, proteomics tools face a major
challenge in ecotoxicology as the lack of genomic data for many
species renders the identication of particular proteins affected
by treatments difficult.9 In this context, daphnids are a prime
choice as the genome of Daphnia pulex has recently been
sequenced,16 opening the door to the application of the omics
toolbox for this group of organisms. Already among the most
widely-studied organisms in ecotoxicology, daphnids are
routinely used to assess the toxicity of effluents and novel
compounds. As the subject of many official protocols,17–19 they
are an excellent model to better understand NP toxicity to the
aquatic environment.

In order to better understand AgNP toxicity to aquatic
organisms, this study applied a redox-proteomics approach to
D. magna. Organisms were exposed to citrate-coated AgNP
and toxicity was evaluated using a whole-organism approach
and biochemical measurements. In addition to classical
biomarkers, we apply for the rst time the toolbox of redox-
proteomics to this model organism by labelling protein
carbonyls with uorescein-5-thiosemicarbazide (FTC) prior to
two-dimensional electrophoresis (2DE).

2 Results
2.1 Characterisation of AgNPs

Fig. S1† shows a low magnication transmission electron
microscope (TEM) image of the AgNPs prepared by room
temperature reduction of AgNO3 by NaBH4 in the presence of
sodium citrate as a stabiliser. The images show that the AgNPs
possess a bimodal size distribution, with approximately equal
numbers of both sizes. Insets to Fig. S1† show histograms of NP
diameters, determined by analysis of TEM images of 300 AgNPs
of each size, all located at random locations on the grid. Fitting
the histogram to a Gaussian model yielded a mean diameter for
the smaller AgNPs of 3.0 � 0.5 nm, while the larger AgNPs were
more polydisperse, with a mean diameter of 11.4 � 2.2 nm.

High-resolution TEM (HR-TEM) imaging was used in
conjunction with selective area electron diffraction (SAED) to
conrm the crystallinity and establish the crystal phase of the
NPs; see Fig. S2(a) and (b)†. HR-TEM imaging (Fig. 2(a)) showed
that the AgNPs are highly crystalline; the lattice fringes
shown in Fig. S2(a)† correspond to a d spacing of 2.36 Å,
closely matching the (111) spacing reported for the (Fm3m)

face-centred cubic lattice of silver. SAED patterns of the AgNPs
(Fig. S2(b)†) showed reections that could be indexed to 2.36 Å
(111), 2.04 Å (200), 1.45 Å (220), 1.18 Å (222) and 1.02 Å (400),
conrming AgNP crystallinity.

Fig. S3† shows the energy dispersive X-ray (EDS) spectrum of
the AgNPs, where the Ag peak corresponding to the presence of
the NPs is evident. Other elemental peaks assigned to Cu are due
to the carbon-coated copper grid support. UV-Vis absorption
spectra of the freshly-prepared AgNPs exhibited a strong peak
centred at 392 nm, with an absorbance (A392) of 0.859 (Fig. S4†).
In comparison, A392 for the SAgNP was less than 0.008, corre-
sponding to a > 100-fold decrease in the concentration of AgNPs
following ultracentrifugation. The red-shi in the residual
absorption band to 407 nm is probably due to the presence of
AgNP aggregates that were temporarily re-suspended while
extracting the supernatant from the centrifuge tube.

2.2 Immobilisation assay

The impact of AgNP, silver nitrate as well as the supernatant of
AgNP was measured as EC50 of immobilisation on Daphnia
magna neonates according to established OECD17 protocols.
Results (Table 1) show a marked difference in toxicity between
AgNPs (47.2 mg L�1) and silver ions (4.5 mg L�1). Additionally,
when particles were removed from the AgNP solution by ultra-
centrifugation, toxicity decreased by a factor of 6.3. Ageing of
the particles in the stock solution in the dark did not signi-
cantly affect their toxicity.

2.3 Molecular biomarkers

Enzymatic assays did not show statistically signicant effects of
exposure to either AgNO3 or AgNP (data not shown) for
concentrations of up to half their respective EC50. In compar-
ison, relative FTC uorescence signicantly increased when
D. magna were exposed to 20 mg AgNP per L (54% increase, p <
0.001) but was not affected by AgNO3 exposure (Fig. 1). A trend
towards an increase of IAF labelling with increasing concen-
trations of either AgNP or AgNO3 was also observed (Fig. 1),
although this increase was only statistically signicant at an
intermediate concentration of AgNP (15 mg AgNPs per L,
62% increase, p < 0.01) and at the highest [Ag+] (2.5 mg L�1 Ag,
63% increase, p < 0.01).

Table 1 EC50 for the immobilisation of Daphnia magna by silver
compounds

Compound EC50 (mg L�1) 95% CI

Fresh AgNP 47.2 43.2–50.5
SAgNPa 298.6 274.2–325.1
Ag+ 4.5 2.7–7.4
6 m.o. AgNPb 50.2 39.4–64.0
10 m.o. AgNPb 50.2 45.2–55.8
10 m.o. SAgNPa,b 429.9 376.1–491.3

a Supernatant obtained by ultracentrifugation of the AgNP stock,
toxicity is in nominal [Ag] pre-centrifugation. b Toxicity of AgNP was
tested aer 6 and 10 months of ageing, and aer 10 months for the
supernatant.
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2.4 2DE

On 2DE analysis of proteins from samples exposed to AgNP, a
total of 10 unique features showed signicant volume change of
at least 1.5-fold, while 7 were signicantly altered in silver
nitrate-exposed samples, either at the protein or FTC labelling
level (features are shown in Fig. 2). With increasing [AgNP], ve
features showed an increase of volume of protein stain, one
showed decreasing protein stain volumes, two features showed
increased carbonyl stain volumes and four showed decreasing
carbonyl volumes. Two features (5 and 9) showed signicant
volume changes both for coomassie stain and FTC labelling.
Under increasing [Ag+], one feature showed an increase in
protein stain volume and one a decrease, while one showed
increasing carbonyl stain volumes, one a decreasing carbonyl

stain volume and three showed a variable response with
concentration (e.g.: decrease followed by an increase).

2.5 Protein identication

Of the 17 features of interest revealed by 2DE, eight were
successfully identied by MS/MS analysis (Table 2). Among
these, four different hypothetical proteins from the recent
Daphnia pulex genome16 were found. In order to gain insight
into the potential function of these proteins, bioinformatics
tools were used to nd similar proteins and the families to
which those proteins could be related. The results of these
analyses are shown in Table 3. The three bioinformatic tools
used (blastp, DELTA-BLAST and InterproScan) were in good
agreement as to the type of protein identied here. For brevity,
only the best results from the blastp search and the families and
main domains found in InterproScan are included in Table 3.

Among the eight identied features, four were annotated as
vitellogenin fused with superoxide dismutase (SOD), two as a
vitellogenin-like protein, one as hemoglobin and one as the
regulatory protein 14-3-3 epsilon. The fold change of the feature
volumes from which the above proteins were identied is
shown in Table 4 while the features are shown on the reference
image of the analysis (Fig. 2).

3 Discussion
3.1 Whole organism toxicity

Results obtained from the immobilisation assay show a clear
difference in toxicity between silver nitrate and nanoparticulate
silver, with the latter appearing to be 10 times less toxic
(considering Ag concentration). As many studies relate AgNP
toxicity to their slow dissolution we removed the nanoparticles
from solution by ultracentrifugation to determine whether the
observed toxicity was a product of dissolved silver, as shown by
Kittler et al.,22 or if the particles were responsible for the
observed toxicity. As the supernatant was 6.3 times less toxic (as
measured by EC50) than the nanoparticle suspension, the
observed toxicity of the AgNP is thus associated with the parti-
cles themselves and their behaviour in the medium and in
contact with the organisms. The present experiment does not
control for dissolution of the nanoparticles in the test medium,
but the results below indicate that the nanoparticles have a
different toxicity mechanism than silver nitrate.

3.2 Biomarkers

Surprisingly few effects were observed with classical biomarkers,
even though exposure concentrations went as high as half the
EC50 and mortality (less than 20%) was observed at the highest
concentrations. Few studies have looked at the impact of AgNP or
Ag+ on daphnid enzymatic activities, but the lack of observed
effects of Ag+ may be linked to the fact that disturbances in
osmoregulation are the mainmechanism of toxicity of silver ions
in these organisms.23 In addition, Poynton et al.8 did not nd an
impact of Ag+ or AgNP on GST mRNA levels.

Although the measured enzymatic activities were not affected
by the treatments, the thiol content of proteins from daphnids

Fig. 1 Measurement of protein carbonyl and thiol content using
fluorescent labels on samples exposed to silver nitrate and AgNP:
fluorescent values were normalised upon total protein stain to obtain
relative fluorescence. (*: p < 0.05; **: p < 0.01; ***: p < 0.001).

Fig. 2 2DE separation of 100 mg of Daphnia magna proteins showing
features modified (p < 0.05 and >1.5-fold change) by AgNP or AgNO3

exposure.
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was increased by AgNO3 and AgNP (Fig. 1). Thismay represent an
attempt by the animals to decrease the toxicity of silver ions
(which are also likely to be present in small concentrations in the
AgNP exposures) as thiols are known to react with silver ions.24

The increase of the thiol content following AgNP exposures is not
expected when the usual link between AgNPs and OS is consid-
ered. Protein thiols are easily oxidised when the redox balance of
the cell is disturbed, as they act both as buffers and sensors of
oxidative stress in cells. The observed increase, if not linked to
silver dissolved from the AgNPs, may be a result of the cell
restoring its redox balance to counteract the stress of exposure.
This is reinforced by the fact that there is an increase in the
carbonyl content of the proteins in daphnids exposed to AgNPs
but not silver nitrate (Fig. 1). Protein carbonyls are the main

lesion found in proteins, as they are generated by the oxidation of
various amino acids.25 The increase in protein carbonyls indi-
cates that some level of oxidative stress was caused by the AgNP,
although not enough to also oxidise the protein thiols. In
contrast, the lack of change of the level of protein carbonyls in
the exposures to silver nitrate suggests that signicant OS did not
occur in the daphnids, perhaps as a result of the increasing thiol
content with increasing silver concentration.

3.3 Proteomics approach

The number of features evident in 2DE separations as signi-
cantly affected by both treatments was similar (10 and 7), and
no feature was commonly modied by both treatments. This

Table 2 Identified proteins using LC-MS/MS

Feature Protein Organism
Accession
number

MW (kDa)
(measured/
predicted)

Protein scorea/
protein C.I.
(%)

Total ion score/
total ion C.I.
(%)

Sequence
coverage
(%)

Number
of
peptidesb

f1 Hypothetical protein
DAPPUDRAFT_318420

Daphnia pulex gi|321469729 98/171 362/100 289/100 17 3

f3 Hypothetical protein
DAPPUDRAFT_213992

Daphnia pulex gi|321465380 68/228 153/100 153/100 10 2

f4 Hypothetical protein
DAPPUDRAFT_213992

Daphnia pulex gi|321465380 68/228 162/100 144/100 11 2

f5 Hypothetical protein
DAPPUDRAFT_213992

Daphnia pulex gi|321465380 68/228 205/100 162/100 16 2

f7 Hemoglobin Daphnia magna gi|2105139 66/38 319/100 301/100 19 2
f10 Hypothetical protein

DAPPUDRAFT_313764
Daphnia pulex gi|321474716 16/170 283/100 283/100 12 2

f15 Vitellogenin fused with
superoxide dismutase

Daphnia magna gi|39979307 40/225 559/100 485/100 14 2

f18 Hypothetical protein
DAPPUDRAFT_326737

Daphnia pulex gi|321460806 19/29 447/100 381/100 52 4

a The protein score probability limit (where p < 0.05) is 86. b Number of MS/MS patterns assigned to peptides with condence interval above 95%.

Table 3 Blast and interproscan search of hypothetical proteins

Feature Accession number
Best hita (protein (species),
E-value, identity %) Families and domainsb Go functionsb

f1 gi|321469729 Vitellogenin-like protein
(Lepeophtheirus salmonis) E: 3
� 10�106, identity: 24%

von Willebrand factor,
type D domain; vitellinogen,
superhelical; vitellinogen,
beta-sheet N-terminal

Lipid transport activity; lipid
transport

f3, f4, f5 gi|321465380 Vitellogenin fused with
superoxide dismutase
(Daphnia magna) E: 0.0,
identity: 52%

Superoxide dismutase
(Cu/Zn)/chaperones; von
Willebrand factor, type D
domain; vitellinogen, open
beta-sheet; vitellinogen,
beta-sheet N-terminal

Superoxide metabolic
process; metal ion binding;
oxidation-reduction process;
lipid transport activity; lipid
transport

f10 gi|321474716 Vitellogenin-like protein
(Lepeophtheirus salmonis) E: 3
� 10�106, identity: 24%

von Willebrand factor, type
D domain; vitellinogen,
superhelical; vitellinogen,
beta-sheet N-terminal

Lipid transport activity; lipid
transport

f18 gi|321460806 14-3-3 Protein epsilon
(Schistocerca gregaria) E: 2 �
10�170, identity: 91%

14-3-3 protein protein domain specic
binding

a Best hit results are obtained using a blastp search.20 b Families, domains and GO functions were obtained using Interproscan.21
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again suggests different toxicity pathways or mechanisms
between the two forms of silver tested. When comparing the
results from the protein-stained and FTC-labelled gels though,
two of the modied features (f5 and f9) showed changes at the
protein and carbonyl content level. This most likely means that
they both contained a protein whose expression was modied,
rather than carbonylation as, in both cases, the change in
protein and carbonyl stain volume followed the same trend with
similar fold-changes. In the case of features where a change was
observed only for carbonyls or protein abundance, it is likely
one was modied and not the other. More in depth analysis is
required for those features in order to determine the exact level
of carbonylation of the proteins concerned.

Identication of the features led to the realisation that a lot
of the proteins modied showed overlap between the two
compounds, as two features modied by ionic silver annotated as
a vitellogenin-like protein (f1 and f10) and one as a vitellogenin
fused with SOD (f3); while three features modied by AgNP
contained a protein annotated as a vitellogenin fused with SOD
(f4, f5 and f15). This strong overlap between the two treatments is
partly a result of some features being part of the same “train”
(a chain of features showing similar shape and MW, but slightly
different pI). As amatter of fact, features 3, 4 and 5 were identied
as the same protein and are part of the same train. It should be
noted that, in the case of those features, the repetitionmay be due
to the extensive maturation process of vitellogenins (see below).

3.4 Role of modied proteins

Mass spectrometric analysis of the signicant features led to the
identication of two proteins from D. magna: hemoglobin (f7)
and vitellogenin fused with SOD (f15). All other features that
yielded results from this analysis were identied as hypothetical
proteins from the recently completed D. pulex genome (Table
2).16 In order to gain insight into the role of those proteins,
blastp,20 DELTA-BLAST26 and InterproScan21 were used to nd
sequence similarity with known proteins or protein domains. In
all cases, a clear result was obtained, with the three search
engines yielding similar results and agreeing on the likely

function of the hypothetical protein. Table 3 shows the result of
this analysis. As features 3, 4 and 5 contain the same protein,
three different functions were found for the hypothetical
proteins. Features 1 and 10 appear to be vitellogenin-like
proteins (although of different mass and pI), features 3, 4 and
5 are a vitellogenin fused with SOD and feature 18 has high
sequence identity with members of the 14-3-3 protein family of
regulatory proteins.

Overall, six identied features out of eight appear to be either
vitellogenin-like or vitellogenin fused with SOD. At present,
studies have shown the presence of two isoforms of vitellogenin
fused with SOD in D. magna, both of which were also found here.
DmagVTG127 was identied from feature 15, while DmagVTG228

was found in features 3, 4 and 5. A literature search did not
enable the nding of other vitellogenins in D. magna, but two of
the hypothetical proteins appear to be vitellogenin-like proteins.
This would not be surprising considering the high rate of gene
duplication found in the D. pulex genome.16

In oviparous species, vitellogenins are known to be differen-
tially regulated at the gene level under many stress circum-
stances, and normally undergo major PTM due to their
involvement in the egg maturation process.27 In the case of
daphnids, this is also true during parthenogenetic reproduction,
as the main product of DmagVTG1 is gradually cleaved during
egg maturation.27 There is no known direct association of vitel-
logenin expression in crustaceans to a particular stressor-type or
environmental factor, in contrast to sh where it is related to
oestrogenic compounds when found in males.29 Yet work has
been completed to establish vitellogenins as an easily applicable
biomarker between invertebrate species, including daphnids.30

In correspondence to this, vitellogenin has been proposed as a
marker of general stress in the zebra sh, especially when egg or
embryo development is followed rather than adults.31 Unsur-
prisingly, all the features from which vitellogenins were identi-
ed here showed much lower masses than predicted from the
whole-protein sequence. This is consistent with their function
and with previous results from Kato et al.,27 who showed that the
220 kDa protein DmagVTG1 was gradually cleaved into different
proteins of smaller size. As vitellogenin maturation is thought to

Table 4 Fold change of feature volumes of identified proteinsa

Protein (feature)

AgNP (coomassie/uorescence) Ag+ (coomassie/uorescence)

5 ppb 15 ppb 20 ppb 30 ppb 0.4 ppb 1.2 ppb 2.5 ppb

Vitellogenin-like protein (f1) —/— —/— —/— —/— —/�1.3 —/�1.7 —/�1.1
Vitellogenin fused with superoxide
dismutase (f3)

—/— —/— —/— —/— �1.1/— 1.1/— 1.8/—

Vitellogenin fused with superoxide
dismutase (f4)

1.1/— 1.5/— 1.4/— 1.5/— —/— —/— —/—

Vitellogenin fused with superoxide
dismutase (f5)

1.1/�1.1 �1.1/�1.4 �1.6/�1.7 �1.4/�1.6 —/— —/— —/—

Hemoglobin (f7) 1.0/— 1.4/— 1.3/— 1.6/— —/— —/— —/—
Vitellogenin-like protein (f10) —/— —/— —/— —/— —/�1.4 —/1.0 —/1.4
Vitellogenin fused with superoxide
dismutase (f15)

—/�1.2 —/�1.5 —/�1.8 —/�1.7 —/— —/— —/—

14-3-3 Protein epsilon (f18) —/— —/— —/— —/— —/�1.1 —/�2.0 —/�2.0

a Fold changes are relative to control and given only for treatment where the feature was signicantly changed (ANOVA p < 0.05).
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be a highly regulated process affected by stressors and develop-
ment stages,31,32 variations in the maturation process could be
used as indicators of toxic stress. Gel-based proteomics would
thus be an interesting method to study differences in cleavage-
site and PTMs (i.e. phosphorylation, glycolysation, lipidation)
of vitellogenins in daphnids.

Another point of interest concerning this protein is that
vitellogenins fused with SOD were only found in daphnids28 and
in Artemia.32 The presence of a SOD domain may indicate a link
with oxidative stress. Hannas et al.29 found that many of the
stressors that upregulate DmagVTG2 are also linked to OS while
Kato et al.27 showed that the SOD domains present some,
although weak, SOD activity. Since oxidative stress is a likely
candidate for the toxicity mechanism of AgNP, this could
explain the impact of those compounds on vitellogenins.

Exposure to AgNP led to an increase in hemoglobin, the
main oxygen carrier in daphnids. Hemoglobin expression is
known to be highly variable in daphnids, with its levels
increasing when oxygen levels are low or temperature changes
rapidly,33,34 and in response to toxic stress.35 In both cases, an
increase in ROSmay result in increased hemoglobin expression,
as in D. magna, hemoglobin expression is under the control of
hypoxia-inducible-factor-1 (HIF-1).34 The observed increase is
thus a likely sign of OS, as oxygenation was maintained
throughout the 24 h exposures. This also agrees with the
observed increase in protein carbonylation discussed above.

Exposure to silver nitrate led to a 2-fold decrease in the level
of carbonylation of a likely member of the 14-3-3 protein family.
Although no studies have been published on 14-3-3 proteins in
daphnids, this family of proteins is well-studied elsewhere.
They have diverse roles including control of the cell cycle and
apoptosis, signal transduction and regulation of the subcellular
localisation of proteins. They are found in all eukaryotes.36 In
shrimps, they have been shown to be up-regulated during viral
infection37 and microbial challenge.38 The fact that the 14-3-3
protein observed here showed a lower level of carbonylation
following ionic silver exposure as well as a mass almost half that
expected from the gene sequence may either indicate proteo-
lytic cleavage of the protein (with loss of carbonylation) or a
higher turnover rate, both potentially leading to changes in cell-
signalling following exposure.

Globally, the response from the two forms of silver shown
here is quite distinct. Although no clear conclusion can be drawn
concerning the mechanism of action of AgNP, its effect seems to
be quite different from that of AgNO3. With the exception of
features 3 and 4 (both containing DmagVTG2 and increasing in
volume with exposure concentration), all features were modied
by only one of the two forms of silver tested. In addition to the
fact that toxicity of the AgNP preparation was strongly reduced
following centrifugation, we propose that the particles present a
toxicity different from that of silver ions, albeit at a lower level.
This is in contradiction to previous studies and the general
understanding that a major portion of AgNP toxicity originates
from their dissolution.22 Yet this is in agreement with other
studies in daphnids where particles were found to be less toxic
than silver nitrate7 and where particle toxicity did not follow the
same mechanism as silver nitrate toxicity.8 Although our results

do not give clear insight into the mechanism of toxicity of AgNP,
the difference observed between the effects of AgNP and Ag+ at
the molecular level indicate that the two species of silver affect
daphnids differently. Whether this is an effect of whole particles
acting directly at the cellular level as is known for metal NPs of
similar sizes or from the particles acting as “delivery” vehicles for
ionic silver to specic parts of the daphnid cannot be concluded
from the present study.

4 Experimental
4.1 Chemicals

The protein assay dye reagent concentrate was obtained from
Bio-Rad (CA, USA). Unstained protein molecular weight
markers for SDS-PAGE were from Thermo Scientic (Rockford,
IL, USA). Immobiline drystrips and IPG buffer were obtained
from GE Healthcare (UK). All other chemicals were sourced
from Sigma-Aldrich Ireland Ltd. (Arklow, Co. Wicklow) and
used as received.

4.2 Synthesis and characterisation of AgNPs

Nanopure H2O (18.2 MU cm), puried using an Elgastat Prima
purication system, was employed during all experiments. All
synthetic glassware was rst cleaned with aqua regia (3 HCl : 1
HNO3), and then thoroughly rinsed with deionised water. In a
typical synthesis, 12 mL of a 0.2% solution of silver nitrate
was added to 488 mL of deionized water and heated to 100 �C.
11.6 mL of a 1% solution of sodium citrate in deionised water
was added, followed 30 s later by the quick injection of 5.5 mL of
a freshly prepared, ice-cold solution of 0.038 g sodium boro-
hydride and 0.5 g sodium citrate in 50 mL deionised water. The
solution was stirred for two minutes, aer which it was cooled
to room temperature, and stored in the dark.

UV-Vis absorption spectra were recorded using a Shimadzu
UV PC-2401 spectrophotometer equipped with a 60 mm inte-
grating sphere (ISR-240A, Shimadzu). Spectra were recorded at
room temperature using a quartz cuvette (1 cm) and corrected
for the solvent absorption. AgNP and SAgNP samples were
diluted 1 : 5 in deionised water for spectroscopic comparison.
TEM images and SAED patterns were acquired using a high-
resolution JEOL 2100 electron microscope, equipped with a
LaB6 thermionic emission lament and Gatan DualVision
600 Charge-Coupled Device (CCD), operating at an accelerating
voltage of 200 keV. EDS were recorded using an Oxford INCA x-
sight detection spectrometer. Spectra were obtained from an
area of the grid where there was a large amount of NPs. A
process time of 3–4 seconds was used and the spectra obtained
using an integration time of 40 s. TEM samples were prepared
by depositing a small aliquot of the AgNPs onto a carbon-coated
copper grid (Agar Scientic), which was allowed to evaporate
under ambient conditions. Data for size distribution histo-
grams were acquired by analysis of TEM images of NPs
randomly located at different regions of the grid. NP diameter
was determined by manual inspection of the digital images; in
the case of anisotropic structures, the diameter was determined
using the longest axis.
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4.3 AgNP supernatant

To remove particles from solution, the AgNP solution was
centrifuged at 100 000g for 30 min. Supernatants were then
used in the same way as the particle suspension. In order to
better illustrate the impact of particle removal on toxicity,
supernatant “concentration” is noted in [Ag] equivalents: the
nominal concentration of Ag the solution would contain if
particles had not been removed. Before use, supernatants were
kept in the dark at room temperature.

4.4 Daphnia magna culture

A clonal culture of D. magna was maintained in Elendt M4
medium39 in plastic aquaria at 20� 1 �C with a 16 : 8 light–dark
cycle and constant bubbling. D. magna were fed live Chlorella
vulgaris to a concentration of 50 000 cells per mL at least 4 times
per week. Brood stocks were maintained at 50 females per 4 L.
Half the medium was renewed two or three times per week.
Neonates were removed at least three times per week. Prior to
exposures, neonates were kept for 7 days (in 10 mL of medium
per neonate), with daily feed of C. vulgaris, in order to obtain
enough tissue for biochemical assays.

4.5 Immobilisation assay

All assays were performed according to OECD17 recommenda-
tions. At least 30 neonates were exposed, in 4 mL M4 per
neonate, in glass beakers at 20 � 1 �C under a 16 : 8 light–dark
cycle. Immobilisation was observed aer 24 and 48 hours.
Results were tted with a two-parameter log-logistic model
using the dcr package in R40,41 in order to estimate EC50 values.
Unless stated otherwise, assay to AgNP and their supernatants
were conducted within a week of AgNP synthesis.

4.6 Exposures

All exposures for biochemical measurements were performed
for 24 h using 7 days old D. magna in 1 L glass beakers at 100
daphnids per beaker in the same conditions as culture. Daph-
nids were exposed to four concentrations of AgNP (5, 15, 20 and
30 mg Ag L�1) and three concentrations of AgNO3 (0.4; 1.2
and 2.5 mg Ag L�1). All exposures were repeated four times and
control exposures were ran in parallel. Exposures to AgNP were
conducted within a week of synthesis. At the end of the expo-
sure, live daphnids were sieved and blotted dry before transfer
to a microcentrifuge tube and ash freezing in liquid N2, they
were then kept at �80 �C until homogenisation.

4.7 Homogenisation and enzymatic assays

Nitrogen bubbled homogenisation buffer (10 mM Tris–HCl, pH
7.2, 0.5 M sucrose, 0.15 M KCl, 1 mM EDTA and 1 mM PMSF)
was added to frozen daphnids (300 mL for one hundred 7 days
old daphnids) in a glass-teon homogeniser, prior to motor-
driven homogenisation for one minute. Homogenates were
then centrifuged at 14 000g for 1 h, pellets were discarded and
supernatants were aliquoted for biochemical assays. These were
either performed on the day of homogenisation or aliquots were
frozen at �80 �C immediately.

Protein concentrations were assessed by a Bradford assay42

in microtiter plates as per manufacturer’s instructions (Bio-Rad
Protein Assay Dye Reagent).

Catalase assays were performed according to the method of
Beers and Sizer.43 Briey, 5 mg protein was added to 16.7 mM
phosphate buffer, pH 7.0, containing 19.7 mM hydrogen
peroxide. A240 was measured immediately for 3 minutes using a
dual-beam spectrophotometer and a quartz cuvette. One unit of
activity was dened as the decomposition of one micromole of
peroxide per minute in the assay conditions used. Glutathione
transferase activity was assessed using the conjugation of
1-chloro-2,4-dinitrobenzene (CDNB) with reduced glutathione,
according toHabig et al.44 using a protocolmodied formicrotiter
plates. Briey, 8 mg protein was added to a nal reaction mixture
of 75 mM phosphate buffer, pH 6.5, 1 mM CDNB and 5 mM
reduced glutathione (added last to initiate the reaction). Activity
was followed by the increase of A340 and one unit is dened as the
production of one micromole of conjugate per minute.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity was
measured in microtiter plates by following the reduction of NAD
in the presence of glyceraldehyde-3-phosphate.45 Five mg protein
was added to a reaction mixture containing 15 mM sodium
pyrophosphate buffer, pH 8.5, 30 mM sodium arsenate, 0.25 mM
NAD, 3.25 mM dithiothreitol and 12.5 mM DL-glyceraldehyde-3-
phosphate (added last to initiate the reaction). Activity was fol-
lowed as an increase in A340 and one unit is dened as the
reduction of one micromole of NAD per minute.

4.8 PTM labelling and one-dimensional electrophoresis

In order to estimate protein thiol content, 100 mg protein was
labelled with 5-(iodoacetamido)uorescein (IAF). IAF was added to
homogenates from a 20 mM stock in DMSO to a nal concentra-
tion of 0.2mM, and incubated at 4 �C for 2 h in the dark.46 Proteins
were then precipitated by adding trichloroacetic acid (TCA) to a
nal concentration of 10% w/v, incubated on ice for 5 min and
centrifuged at 11 000g for 3 min. The pellet was resuspended in
40 mL of water, and 500 mL of acetone was added to remove
unbound IAF. Samples were then kept at �20 �C for at least one
hour. Before electrophoresis, proteins were centrifuged at 11 000g
for 3min, acetone was removed, and pellets were dried in the dark.
Sample buffer was added to solubilise the proteins and those were
run on 10%polyacrylamide gels, at a loading of 20 mg per lane, with
four replicate lanes per sample, as per Laemmli.47 Aer electro-
phoresis, gels were scanned using a Typhoon scanner, model 9410
(Amersham Biosciences), with an excitation wavelength of 488 nm
and emission light of 520 � 20 nm (bandpass lter). Aer acqui-
sition of the uorescence image, gels were stained with colloidal
coomassie,48 and gel images were acquired with a GS-800 Cali-
brated Densitometer (BioRad, Hercules, CA, USA).

Protein carbonyls were labelled by adding (FTC) to tissue
homogenates (100 mg) to a nal concentration of 1 mM (adapted
from Chaudhuri et al.49). Samples were incubated for 2 h in the
dark at 4 �C before precipitation of proteins with a nal
concentration of 10% w/v of TCA. Pellets were washed twice
with 500 mL of ice cold 1 : 1 ethanol–ethylacetate. Prior to
resuspension and electrophoresis as above, pellets were
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centrifuged and dried to make sure no solvent remained in the
samples. Gels containing FTC labelled samples were scanned
for uorescence and protein content as described above.

4.9 Two-dimensional electrophoresis and protein
identication

Aliquots of freshly prepared homogenates containing 500 mg
protein were labelled with FTC as above, with the exception that
rehydration buffer (5Murea, 2M thiourea, 2%w/v CHAPS, 2% IPG
buffer) was used to resuspend the pellets. Of this, 125 mL, con-
taining 125 mg protein, were loaded unto an Immobiline DryStrip
(pH 3-10 NL, 7 cm, GE Healthcare), which was rehydrated over-
night in the dark. Isoelectric focusing was performed on a
PROTEAN IEF system (Bio-Rad), according to the strip manufac-
turer’s recommendation. Strips were reduced in equilibration
buffer (6 M urea, 0.375 M Tris, pH 8.8, 2% w/v SDS, 20% v/v
glycerol) containing 2% w/v DTT for 20 min and thiols were then
blocked with equilibration buffer containing 2.5% w/v iodoaceta-
mide for 20 min. Aer focusing, strips were loaded unto 10%
polyacrylamide gels for SDS-PAGE separation. Gels were scanned
for uorescence and then stained with colloidal coomassie as for
1DE. Image analysis was performed using the Progenesis SameS-
pots soware (Nonlinear Dynamics Limited, UK). Experiments
were dened by compound, with the exposure concentrations
representing treatments. Spots were considered of interest when
showing a 1.5-fold change between treatments as well as having a p
< 0.05 in ANOVA. Signicant, well resolved spots of sufficient
intensity were then selected for mass spectrometric analysis.

Selected spots were excised manually using clean pipette tips
and in-gel digested with trypsin according to Almeida et al.50

Extracted peptides were loaded onto a R2 micro column (RP-C18
equivalent) where they were desalted, concentrated and eluted
directly onto aMALDI plate using a-cyano-4-hydroxycinnamic acid
as the matrix solution in 50% acetonitrile and 5% formic acid.
Mass spectra of the peptides were acquired with positive reectron
MS and MS/MS modes using a MALDI-TOF/TOF MS instrument
(4800 plus MALDI TOF/TOF analyzer) with exclusion list of the
trypsin autolysis peaks (842.51, 1045.56, 2211.11 and 2225.12). The
collectedMS andMS/MS spectra were analysed in combinedmode
by using the Mascot search engine (version 2.2; Matrix Science,
Boston, MA) and the NCBI database restricted to 50 ppm peptide
mass tolerance for the parent ions, an error of 0.3 Da for the
fragments, one missed cleavage in peptide masses, and carbami-
domethylation of Cys and oxidation of Met as xed and variable
amino acid modications, respectively. No taxonomy restrictions
were applied. The identied proteins were only considered if a
MASCOT score above 95% condence was obtained (p < 0.05) and
at least one peptide was identied with a score above 95% con-
dence (p < 0.05). This analysis was conducted by the Analytical
Services Unit, Instituto de Tecnologia Qúımica e Biológica (ITQB),
New University of Lisbon, Lisbon, Portugal.

4.10 Data analysis

Images from 1DE were analysed with the Quantity One soware
(Bio-Rad) to obtain one trace measurement per lane. Fluores-
cence values were normalised for loading by dividing them with

the trace coomassie value for the same lane. Statistical analysis
of enzymatic and PTM assays were performed by one-way
ANOVA with a Holm–Sidak post-hoc test (versus control),
using the Sigmaplot 10.0 soware (Systat Soware, Inc.).

4.11 Hypothetical proteins

Hypothetical proteins (HP) identied by MS/MS were studied
using bioinformatics tools to gain insight into their possible
biological functions. This was achieved using blastp20 and
DELTA-BLAST26 from the National Center for Biotechnology
Information (http://blast.ncbi.nlm.nih.gov/Blast.cgi) to identify
sequence similarity with known proteins. In addition,
conserved sites, domains and families present in the HP were
studied using the Interproscan tool21 from the European Bio-
informatics Institute (http://www.ebi.ac.uk/Tools/pfa/iprscan/).
Results include the highest-scoring, non-hypothetical, protein
from blastp, as well as the domains and families identied from
Interproscan. In the present study, those were always in accor-
dance with results from DELTA-BLAST.

5 Conclusions

This study compared the toxicity of citrate-coated AgNP and silver
nitrate to D. magna at the organism level, using biochemical
biomarkers and with redox-proteomic tools. AgNP were found to
be about ten times less toxic than silver nitrate. Although
measured enzymatic activities (GST, catalase and GAPDH) were
not affected by the treatments, an increase of protein carbonyl-
ationwas observed following AgNP exposure, indicating OS, while
no sign of OS was found for AgNO3 exposure. Proteins identied
following 2DE separation showed signs of general stress, with
most of the features modied by the treatments containing
vitellogenins, indicating that the maturation process or expres-
sion of vitellogenins is affected, in different ways, by silver nitrate
as well as AgNP. Hemoglobin was also increased by AgNP treat-
ment, which may be linked to disruption of cellular respiration.

Overall, different molecular responses were found for the
two forms of silver. Althoughmore studies are required to better
understand AgNP toxicity, the lower toxicity of AgNP oen
reported relative to silver ions6,7 does not warrant its relative
innocuity, as different toxicity mechanisms may mean different
toxic interactions or lead to population effects that cannot be
predicted by the relative EC50 of the two forms of silver.
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Proteomics, 2010, 7, 1–4.
11 M. Bruschi, G. Candiano, L. D. Ciana, A. Petretto,

L. Santucci, M. Prunotto, R. Camilla, R. Coppo and
G. M. Ghiggeri, J. Chromatogr., B: Anal. Technol. Biomed.
Life Sci., 2011, 879, 1338–1344.

12 E. R. Stadtman, Free Radical Res., 2006, 40, 1250–1258.
13 C. M. Wong, L. Marcocci, L. Liu and Y. J. Suzuki, Antioxid.

Redox Signaling, 2010, 12, 393–404.
14 B. C. Almroth, J. Sturve, E. Stephensen, T. F. Holth and

L. Förlin, Mar. Environ. Res., 2008, 66, 271–277.
15 B. Ching, S. F. Chew,W. P. Wong and Y. K. Ip, Aquat. Toxicol.,

2009, 95, 203–212.
16 J. K. Colbourne, M. E. Pfrender, D. Gilbert, W. K. Thomas,

A. Tucker, T. H. Oakley, S. Tokishita, A. Aerts, G. J. Arnold,
M. K. Basu, et al., Science, 2011, 331, 555–561.

17 OECD, Daphnia sp., Acute Immobilisation Test, Organisation
for Economic Cooperation and Development, 2004.

18 EC, Biological test method: test of reproduction and survival
using the cladoceran Cerodaphnia dubia, Environment
Canada, 2nd edn, 2007.

19 USEPA, Short-term methods for estimating the chronic toxicity of
effluents and receiving waters to freshwater organisms, United
States Environmental Protection Agency, 4th edn, 2002.

20 S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang,
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Chapter 4

Solid-Phase Hydrazide

enrichment of carbonylated

proteins

4.1 Introduction

Protein carbonylation is widely used as an indicator of oxidative stress and has

been related to ageing (Stadtman, 2006) and many diseases (Sultana et al., 2010).

Arising from the direct oxidative modification of amino acids or the conjugation

of lipid oxidation products or reducing sugars and their derivatives (Stadtman

and Levine, 2000), protein carbonyls present an important structural diversity

coupled to a low abundance (Stadtman and Levine, 2000; Madian and Regnier,

2010b). Generally considered irreversible, carbonylation affects enzyme activity

and protein stability. There is now evidence that protein carbonylation may also

be involved in cell signaling, marking specific proteins for degradation by the

proteasome, as observed for annexin A1 in pulmonary artery smooth muscle cells

following treatment with endothelin-1 (Wong et al., 2010). There is also recent

evidence of the presence of enzymatic mechanisms enabling decarbonylation of
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some proteins (Wong et al., 2013).

Traditionally, protein carbonyls are studied through their derivatisation with

dinitrophenylhydrazine (DNPH) in acidic conditions. The carbonyl content can

then be measured spectrophotometrically, by ELISA or through immunoblot (Fe-

dorova et al., 2013). The validity of this method comes from the relatively high

specificity of the reaction of hydrazine with the carbonyl of ketones and alde-

hydes, chemical groups rarely found in biological macromolecules. Most of the

signal measured by DNPH is thus linked to the presence of protein carbonyls.

Based on this specificity of hydrazines, and the related hydrazides, many new la-

bels are now used to detect protein carbonyls. These enable the linking of biotin

(Madian and Regnier, 2010a), fluorophores (Chaudhuri et al., 2006) or iTRAQ

labels (Palmese et al., 2012) to the carbonyls of proteins. As mass spectrometry

is the method of choice to detect carbonylation sites, there is a need to develop

tags that enable better detection of carbonylation sites, although there is also an

interest in using label-free approaches for some forms of protein carbonyl (Guo

and Prokai, 2011).

The instability of the hydrazones formed between hydrazines and carbonyls

often leads researchers to reduce the hydrazone to an amine in order to ensure

a stable labelling of carbonyls (Fedorova et al., 2013). Although problematic for

labelling, this reversibility led to the development of a covalent chromatography

method for 4-hydroxy-2-nonenal (HNE) modified peptides, enabling purification

of carbonyl-containing peptides and recuperation of the unmodified carbonyls

(Roe et al., 2007). This approach is based on the use of solid-phase hydrazide

(SPH) to trap carbonylated peptides, enabling their enrichment before further

analysis by MS.

We here expand the application of SPH to the study of whole proteins mod-

ified by metal catalysed oxidation (MCO), thus showing that primary carbonyls

can be studied by SPH and not only adducts of lipid oxidation products. This
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covalent chromatography is based on the commercially available Affi-Gel® Hz hy-

drazide beads (Bio-Rad) and relies on the stability of hydrazone bonds at alkaline

pH along with their reversibility in acidic conditions, as initially demonstrated

for peptides by Roe et al. (2007). We chemically oxidised bovine serum albumin

(BSA) by MCO and demonstrate the possibility to enrich and label the puri-

fied carbonylated proteins with fluorescein-5-thiosemicarbazide (FTC) prior to

electrophoretic analysis.

4.2 Material & Methods

4.2.1 Chemicals

Affi-Gel® Hz hydrazide beads and Protein Assay Dye Reagent concentrate were

sourced from Bio-Rad (CA, USA). Guanidine-HCl was from Fisher Scientific

(Dublin, Ireland). All other chemicals were bought from Sigma-Aldrich Ireland

Ltd. (Wicklow, Ireland).

4.2.2 Metal catalysed oxidation

BSA was oxidised by metal catalysed oxidation (MCO) following the protocol

of Maisonneuve et al. (2009). Briefly, ascorbic acid and FeCl3 were added to 10

mg/mL BSA in oxidation buffer (50 mM HEPES, pH 7.4, 100 mM KCl and 10

mM MgCl2). The concentration of ascorbic acid and FeCl3 was varied to obtain

different levels of oxidation. Sample 1 contained 25 µM ascorbic acid and 0.1 µM

FeCl3, each subsequent sample contained ten times more of the MCO reagents,

so that sample 4 contained 25 mM ascorbic acid and 100 µM FeCl3. The samples

were then incubated at 37 ℃ for 14 h under gentle agitation. Oxidation was

stopped by adding EDTA to a final concentration of 1 mM.

Prior to analysis and isolation, the MCO reagents and EDTA were removed by

ultrafiltration using Amicon® Ultra-4 (Millipore) centrifugal filter devices with a
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3 kDa molecular weight cut-off. Oxidised protein solution (2 mL) was made up to

5 mL with oxidation buffer, centrigued in a swinging bucket rotor at 4 000 g until

the volume was reduced to 0.5 mL and oxidation buffer was added to make up

the volume to 5 mL. This was repeated three times to remove the MCO reagents.

Proteins were quantified post-oxidation by Bradford assay (Bradford, 1976) as

per manufacturer’s instructions (Bio-Rad Protein Assay Dye Reagent). Aliquots

were immediately labelled for carbonyls before electrophoretic characterisation

(see below) and 5 mg protein was added to SPH beads immediately for carbonyl

isolation.

4.2.3 Carbonylated protein isolation

In order to isolate carbonylated proteins, 0.5 mL of hydrazide bead slurry per

sample (equivalent to 0.3 mL of compacted beads) were washed thrice by adding

a large excess of coupling buffer (6 M guanidine-HCl, 100 mM acetate buffer, pH

4), decanting and removing the supernatant. After the final wash, beads were

resuspended in coupling buffer to their initial slurry volume. Slurry (0.5 mL) was

transferred to 2 mL microcentrifuge tubes, 5 mg oxidised BSA was added and

the volume was made up to 2 mL with coupling buffer. Samples were stirred on

a rotating shaker at 4 ℃ for 20 h. After coupling, tubes were centrifuged at 11

000 g for 3 min to pellet the beads, the supernatant was removed and 1.5 mL of

buffer A (6 M guanidine HCl, 0.4 M ammonium carbonate, pH 8.3 ) was added.

Tubes were inverted to resuspend the beads. The procedure was repeated a total

of 6 times with buffer A to remove unbound proteins. To avoid interference from

guanidine in future steps and removing any remaining unbound protein, beads

were washed 6 times with 1.5 mL of buffer B (20 mM ammonium carbonate,

adjusted to pH 8.3 with formic acid or ammonia)

After the last wash, the beads were resuspended in 0.5 mL 10 % (v/v) formic

acid and incubated for 2h under gentle agitation at room temperature. Beads
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were then centrifuged, the supernatant was retained and another 0.5 mL of formic

acid solution was added. Tubes were inverted to resuspend the beads and cen-

trifuged. The supernatant was then pooled with the previous one forming the

released fraction. Proteins were quantified as previously and labelled for carbonyl

detection (see below).

4.2.4 Relative carbonyl content

Protein carbonyls were labelled by adding FTC to 40 µg oxidised BSA or released

proteins to a final concentration of 1 mM (Chaudhuri et al., 2006). Samples were

incubated for 2h in the dark at 4 ℃ before precipitation of proteins to remove

unbound FTC. Precipitation was performed by addition of trichloroacetic acid

(TCA) to a final concentration of 10 % w/v and 0.02 % sodium deoxycholate fol-

lowed by incubation on ice for 5 min and centrifugation at 11 000 g for 3 min. Pel-

lets were washed twice with 500 µL of ice cold solvent (1:1 ethanol:ethylacetate)

and centrifuged at 11 000 g for 3 min before solvent removal and drying. Sample

buffer was added to solubilise the proteins and those were then electrophoresed

on 12 % polyacrylamide gels as per Laemmli (1970), in non-reducing conditions.

Five micrograms were loaded per lane, with four replicates per sample. After

electrophoresis, gels were scanned using a Typhoon scanner, model 9410 (Amer-

sham Biosciences), with an excitation wavelength of 488 nm and emission light of

520 ± 20 nm (bandpass filter). After acquisition of the fluorescence image, gels

were stained with colloidal coomassie (Dyballa and Metzger, 2009), and images

were acquired with a GS-800 Calibrated Densitometer (BioRad, Hercules, CA,

USA).

Gel images were analysed using the Quantity One software (Bio-Rad) to ob-

tain a single trace measurement per BSA band. Relative fluorescence values were

calculated by dividing the trace fluorescence by the trace coomassie value of the

corresponding band.
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4.3 Results

4.3.1 Metal catalysed oxidation

Colour was observed in the two most oxidised samples (3 and 4) while the first two

samples did not show significant colour. This colour was linked to the proteins

as they were found in the retentate after ultrafiltration. Additionally, sample 4

presented a small precipitate when concentrated by ultrafiltration, this precipi-

tation was observed in previous experiments and only found in highly oxidised

samples. The precipitate could always be re-solubilised by mixing so that no vis-

ible particles were left in the samples. In addition to these macroscopic signs of

oxidation, samples were analysed by one-dimensional electrophoresis (1DE) after

labelling with FTC to determine the relative carbonyl content of the samples.

The 1DE profiles show a clear change as the oxidation level of samples increases

(Fig. 4.1 A and B). Sample 1 presents a profile similar to that of the untreated

BSA (not shown), with a main band at 48.3 kDa (non-reducing conditions), and

a few minor bands of higher mass, with the band of an apparent mass of 84 kDa

likely being a multiplet of BSA. The fluorescence image shows a similar profile.

Interestingly sample 4 presented many minor bands of lower mass, indicating a

breakdown of BSA under greater oxidation, and that the fragments contained

carbonyls.

A clear increase in the intensity of the fluorescence bands is observed with

increasing levels of oxidation. This was quantified by dividing the fluorescence

signal of the BSA band by the coomassie signal, in order to obtain a relative

fluorescence. This is known to be related to the carbonyl content of the proteins

(Chaudhuri et al., 2006). The carbonyl content increases between samples 1 and

4, as the relative fluorescence goes from 167 to 7075 arb. unit. (Fig. 4.2).
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Figure 4.1: Representative gel images from 1DE of MCO treated BSA. Coomassie
stain (A) and fluorecence image (B) of BSA after oxidation. Coomassie stain (C)
and fluorescence image (D) of oxidised BSA after purification of carbonylated
proteins by SPH. Pairs of images (AB and CD) were taken for the same gel.
Lane numbers refer to sample number, 1 being the least oxidised and 4 the most
oxidised.

Proteomic approach to oxidative stress in
Daphnia magna

60 Louis-Charles Rainville



4. Solid-Phase Hydrazide enrichment
of carbonylated proteins 4.3 Results

Figure 4.2: Relative carbonyl content of BSA prior to and after SPH isolation.
Ratio is the fluorescence intensity of FTC labelled BSA divided by the coomassie
intensity

4.3.2 Carbonylated protein isolation

In 1DE, the proteins released from SPH beads present a profile similar to that

of the oxidised BSA (Fig. 4.1, C and D). There is an increase of the relative

importance of the 84 kDa band and a presence of the same lower mass bands in

the most oxidised sample. Relative fluorescence of isolated BSA was in the range

of 3000 arb. unit up to sample 3, after which it drastically increased to 7024

arb. unit, a value equivalent to the one observed before SPH purification for this

sample (Fig. 4.2).
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4.4 Discussion and Conclusion

4.4.1 Metal catalysed oxidation

Prior to purification by SPH, BSA was oxidised by MCO. In the present proto-

col, ascorbic acid reduces Fe(III) and molecular oxygen to Fe(II) and peroxide,

which then yields hydroxyl and superoxide radicals, two potent reactive oxygen

species (Stadtman, 1991). This MCO reaction has often been used to carbony-

late proteins in order to understand the mechanism and specificity of amino acid

oxidation, particularly by the mixed-function oxidation system (Stadtman, 1991;

Maisonneuve et al., 2009). The level of oxidation was controlled by varying the

quantity of ascorbic acid and FeCl3 and carbonylation was measured by labelling

with FTC and subsequent 1DE. There was a clear increase in the relative car-

bonyl content of BSA as oxidation progressed (Fig. 4.2). The increase in carbonyl

content was not linear, most likely because carbonylation altered the secondary

structure of the protein, facilitating further carbonylation (Maisonneuve et al.,

2009).

4.4.2 Carbonylated protein isolation

In order to study the redox-proteome, there is a strong interest in developping

direct purification methods for carbonylated proteins in order to enrich those

biologically significant targets of oxidative stress (Fedorova et al., 2013). To

this end, we used a SPH based method to purify whole carbonylated proteins.

The present results show that BSA oxidised to different levels by MCO could be

enriched in carbonyl content. Interestingly, the relative carbonyl content of the

purified proteins was the same for all samples except the most oxidised (Fig. 4.2).

This indicates that BSA oxidises up to a certain level before carbonylation renders

more sites available, leading to another level of oxidation. This is confirmed by

the fact that the relative carbonyl content of sample 4 was the same before and
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after SPH purification, indicating that it was not possible to enrich the sample in

carbonyls further, most likely because all proteins were carbonylated to a similar

extent. These results are only from the analysis of whole BSA, and do not take

into account fragments or multiplexes of the protein. Fragments and multiplexes

are present, especially in the most oxidised sample, but do not seem to form a

major portion of the sample when considering their relative intensity in the 1DE

profile (Fig. 4.1).

In conclusion, this study demonstrates the first application of SPH to pu-

rify whole proteins containing primary carbonyls generated by MCO. While SPH

has been used on peptides previously (Roe et al., 2010; Rauniyar and Prokai,

2011; Han et al., 2012), it was always to study secondary carbonyls, HNE mod-

ified samples or with a specific interest for oxylipid protein conjugates. The

present approach yields MCO carbonylated proteins in an unlabelled state, en-

abling direct analysis by mass spectrometry or future labelling prior to gel based

separations, as was demonstrated here with FTC and 1DE. The use of covalent

chromatography also enables washing the proteins in denaturing conditions, thus

removing any interference from non-oxidised proteins bound to carbonylated pro-

teins, as is the case with immunoaffinity or biotin-avidin based systems. However

this method was only tested on simple, chemically oxidised, samples and tests

with more complex mixtures of biological origin are in order to demonstrate its

validity.
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Chapter 5

Discussion

5.1 Measurement of biochemical parameters

The bulk of this thesis is concerned with the study of the toxicity of prooxi-

dant compounds to the cladoceran D. magna. To this effect, toxicity of CuCl2,

paraquat, AgNO3 and AgNP was first measured at the organism level using a

standard immobilisation assay (OECD, 2004). As this was run as a preparatory

step for further experiments, the results (p.27, 44) were not unexpected, except

for the noteworthy fact that AgNP are less toxic than silver ions in the standard

conditions used. The measured copper toxicity is lower than expected, which

is due to the presence of EDTA in the medium, a known issue with chelator-

containing media (Guilhermino et al., 1997).

Following the immobilisation assays, three concentrations were chosen for each

compound (four for AgNP), going from one tenth to half the measured EC50. This

was done in order to put the organisms under significant oxidative stress, while

avoiding excessive mortality. Some mortality was still observed for exposures at

the highest concentration of all compounds, but immobile organisms were not

sampled for biochemical measurements. Mortality was under 10 % except for

two of the AgNO3 and one of the AgNP exposures, where it reached about 30 %.

64



5. Discussion 5.1 Measurement of biochemical parameters

In order to link the proteomics results to standard biochemical measures of

oxidative stress and oxidative lesions, the activity of the enzymes catalase, GST

and GAPDH was measured. These enzymes are often associated with oxidative

stress. This was combined with the measurement of the carbonyl and thiol con-

tent of proteins using fluorescent dyes and 1DE. Although not directly suitable

for absolute measurements, gel-based fluorescent detection of protein thiols (Baty

et al., 2002) and carbonyls (Chaudhuri et al., 2006) is a good way to compare rel-

ative modification content and it is possible to achieve quantitative measurement

for purified proteins, thus indicating that only an appropriate (however complex)

control is required to enable quantification.

The measurement of the enzymatic activities only yielded one significant re-

sult: a reduction of catalase activity at low and intermediate paraquat concen-

trations (Fig. 2.1). Neither of the measured enzyme was thus affected by copper,

AgNP and silver ions. Although unexpected, this result shows how using an-

tioxidant systems to detect OS can be problematic. Indeed, antioxidant defenses

can be overwhelmed in conditions of oxidative stress and show very different pat-

terns of response over time, making the interpretation of the measure of a few

antioxidant systems difficult (Regoli et al., 2002). To circumvent this problem

and obtain a better picture of the redox status of a cell, measures of oxidative

lesions – which are “metabolic endpoints” of OS – enable the integration of the

redox status by detecting the level at which cellular components are exposed to

ROS. In the case of proteins, carbonylation is the main product of ROS expo-

sure, and it presents the advantage of being mainly irreversible. Although this

simplistic view presents many caveats and is challenged (Wong et al., 2013), the

fact remains that measurement of lesions through which cells detect oxidative

stress is of high physiological significance to the organism, being of the level of

the metabolome. Another protein modification which fulfills, although not as

well, this requirement is oxidation of thiols. Thiols are readily oxidised by vari-
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ous oxidants (Eaton, 2006) and act both as sensors and buffers of ROS in cells.

Changes in the protein thiol content can thus be seen as a measure of the level

of oxidative stress, although the “picture” is a more instantaneous one than with

carbonyls, as the reversibility of most thiol oxidations means that changes in their

redox state integrate a shorter time-scale than those of protein carbonyls.

The measured PTM did yield more significant results than the enzymatic

activities. In samples exposed to AgNP, thiol and carbonyl content were both

significantly increased (Fig. 3.1). This is surprising as oxidative stress normally

leads to a decrease in protein thiols, and the increase in carbonylation is a clear

sign of ROS damage. As protein thiols also increased after treatment with AgNO3,

the increase of protein thiols observed in both treatments is likely a response to

the silver exposure, and potentially a sign of increased antioxidant defenses (which

will tend to maintain thiols in a reduced state). Yet, the significant increase of

the carbonyl content after AgNP exposure indicates an increased production of

ROS, which was sufficient to overwhelm the cellular defences and cause protein

oxidation. It would be expected in such a scenario that thiols would also be

oxidised, as they are sensitive to the same ROS that generate carbonyls, but the

oxidation of thiols is reversible, it is thus possible that thiols were indeed oxidised,

but not to the point of overloading the repair machinery.

Generation of oxidative stress is a widely accepted mechanism of toxicity for

nanoparticles of all types, and finding more signs of OS for AgNP rather than

silver ions is not surprising, silver acting mostly through other means (Bianchini

and Wood, 2003). It is much more surprising to find no sign of change for the mea-

sured enzymes or protein PTM following the exposure to copper and paraquat,

two known prooxidants actually used in this study as model prooxidants. This

lack of response, while the same enzymes have been shown to respond to those

compounds in D. magna cannot be explained by the present experiments. Poten-

tial explanations may be linked to a different bubbling regime between laborato-
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ries, as bubbling affects oxygen levels in the tanks, potentially affecting oxidative

stress. It could also be a result of different resistances between the daphnia

strains.

In the exposition to copper and paraquat, no sign was observed in the mea-

sured PTM, indicating that no major OS was present. The slight reduction of

catalase activity by paraquat may be a result of oxidative damage (Mayo et al.,

2003), but it could not be observed at the protein level nor in the subsequent

proteomic study. More measurements, with a focus on time and dose-response

would be required to obtain a clearer picture of the induction of OS by those two

compounds. They were found to be prooxidants in D. magna in a previous study,

though younger organisms were used and the exposure was longer (Barata et al.,

2005b).

As the above biochemical assays were performed to compare the proteomic

results to more standard biomarker measurements, this portion of the experiment

was not as fruitful as hoped. It does help to highlight the complexity of biochem-

ical responses, even to simple one-compound exposures. Yet, they do shed a light

on the proteomic results below in indicating that a priori molecular markers may

sometimes lack the sensitivity to demonstrate the presence of a response, while

hypothesis-free approaches can demonstrate a specific response, even if it may be

difficult to link it with the mechanism of action of the toxicant with the current

knowledge.

5.2 Gel-based redox-proteomics

In order to better compare results between the experiments and enable easier

linking of features with proteins identified in different experiments, all gel images

obtained with one stain were aligned to a single reference gel image, which was

chosen for practical and image quality reasons within the controls of the AgNP
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exposure. The same gel was used to align the coomassie and fluorescence image,

thus making it easier to link results from both stains after analysis. It is thus

possible to confirm that very few features were common between the experiments.

It is of note that, for the sake of publication, features were renumbered separately

for chapters 2 and 3. For the present discussion, feature numbers will be kept as

for the above chapters, with a prefix added to the feature number. Thus features

of interest from Chapter 2 are marked 2.fxx and those from Chapter 3 as 3.fxx.

All features of interest are listed in Table 5.1, not just those which were identified

by MS but all those answering the significance criteria of a fold change > 1.5 and

p < 0.05 in ANOVA.

Including all exposures, there were 32 cases of changing protein volumes (16

decreases and 17 increases), 24 cases of FTC fluorescence volume changes (16

decreases, 6 increases and one showing a decrease followed by an increase), in-

cluding seven cases where both protein and fluorescence volumes changed. Forty

nine features thus presented change when all the treatments are considered, and

only four features changed following exposure to more than one of the compounds

tested, showing the specificity of the observed responses and leaving 45 unique

features presenting change in at least one treatment.

The use of a redox-proteomics approach, in this case labelling with FTC,

has enabled the detection of 17 more changes of interest, an increase of almost

40 % from the results obtained by coomassie. Considering the usual difficulty

to identify proteins from environmentally relevant species, the possibility to in-

crease by such an extent the number of detected changes is not to be overlooked.

Especially since this approach fits easily within a normal gel-based proteomics

workflow, with the main hurdle being the availability of a fluorescence scanner.

The actual labelling and washing of unbound labels requries about two hours

more of waiting time before rehydration of the Immobilised pH gradient (IPG)

strips.
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Table 5.1: Features of interest found in two-dimensional electrophoresisa

Proteinb (featurec) CuCl2 Paraquat AgNO3 AgNP

Vitellogenin-like protein (3.f1) – / – – / – – /-1.7 – / –
Unidentified (3.f2) – / – – / – – / – 1.9 / –
Unidentified (2.f1) – /-1.8 – / – – / – – / –
Neural Endopeptidase 24.11 (2.f2) -2.0/-2.5 – / – – / – – / –
Vitellogenin fused with superoxide dismutase ( 2.f3, 3.f3) – / 2.6 – / – 1.8 / – – / –
Vitellogenin fused with superoxide dismutase (2.f4, 3.f4) – / 2.5 – / – – / – 1.5 / –
Vitellogenin fused with superoxide dismutase (3.f5) – / – – / – – / – -1.6/-1.7
Unidentified (3.f6) – / – – / – – / – – /-2.6
Hemoglobin (3.f7) – / – – / – – / – 1.6 / –
Unidentified (3.f8) – / – – / – – / 2.0 – / –
Unidentified (2.f5, 3.f9) 2.3 / 2.0 – / – – / – 2.0 / 1.7
Vitellogenin-like protein (2.f6) 2.1 / 1.6 – / – – / – – / –
Vitellogenin-like protein (3.f10)d – / – – / – – / 1.4 – / –
HSC71 (2.f7) -2.1/ – – / – – / – – / –
Unidentified (3.f12) – / – – / – -1.8/ – – / –
Unidentified (3.f13) – / – – / – – / – 2.2 / –
Unidentified (3.f14) – / – – / – -1.6/ – – / –
Sb:cb283 protein, partial (2.f8) -1.8/-1.6 – / – – / – – / –
Unidentified (2.f9) -1.7/ – – / – – / – – / –
Heat shock protein 70 (2.f10) – /-1.7 – / – – / – – / –
Unidentified (2.f11) -1.5/ – – / – – / – – / –
Unidentified (2.f12) -1.6/ – – / – – / – – / –
Unidentified (2.f13) -1.5/ – – / – – / – – / –
Unidentified (2.f14) -1.5/ – – / – – / – – / –
Heat shock protein 70kDa, partial (2.f15) -3.0/ – – / – – / – – / –
GG12661 (2.f16) -2.6/ – – / – – / – – / –
Unidentified (2.f17) 1.8 / – – / – – / – – / –
Unidentified (2.f18) 1.9 / – – / – – / – – / –
Unidentified (2.f19) -1.5/ – – / – – / – – / –
Unidentified (2.f20) 2.8 / – – / – – / – – / –
Vitellogenin fused with superoxide dismutase (3.f15) – / – – / – – / – – /-1.8
Vitellogenin fused with superoxide dismutase (2.f21) 1.6 / – – / – – / – – / –
2-phospho-D-glycerate hydrolase (2.f22) – / – – /-1.7 – / – – / –
Actin related protein 1 (2.f23) 1.4 / – – / – – / – – / –
Unidentified (3.f16) – / – – / – – / – – /-2.0
Fructose 1,6-bisphosphate aldolase (2.f24) – / – 1.4 / – – / – – / –
Arginine Kinase (2.f25) – /-1.7 – / – – / – – / –
Unidentified (2.f26, 3.f17) 2.0 / – – / – – / – 1.6 / –
Unidentified (2.f27) – /-2.3 – / – – / – – / –
Trypsin 208, partial (2.f28) -1.8/-1.9 – / – – / – – / –
Translational elongation factor-2 (2.f29) 1.5 / – – / – – / – – / –
14-3-3 protein epsilon (3.f18) – / – – / – – /-2.0 – / –
fk506-binding protein (2.f30) – /-2.0 – / – – / – – / –
Actin (2.f31) -1.9/ – – / – – / – – / –
Chymotrypsin-like protein (2.f32) – /-2.0 – / – – / – – / –
a Highest significant fold change relative to control, values are Coomassie/Fluorescence
b The proteins are presented in the same order as the numbering withing the Samespot software,
which reflects position on the gel (numbers increase from the top left corner to the bottom right
corner, following horiztonal lines)

c The feature numbers refer to previous chapters and are of the form : Chapter.fxx
d The change for this feature was in both directions, a decrease at low concentration and an
increase at high concentration

Proteomic approach to oxidative stress in
Daphnia magna

69 Louis-Charles Rainville



5. Discussion 5.2 Gel-based redox-proteomics

In addition to the discovery of 17 new changes, labelling with FTC allowed

us to confirm with a second dye seven of the changes observed with colloidal

coomassie staining. Indeed, seven features showed significant changes at the pro-

tein and carbonyl level, and in every case the changes were parallel and of similar

intensity, indicating that both dyes measured the same change, that of protein

quantity, and that the protein maintained a similar level of carbonylation. For

the other 38 detected changes, only protein or carbonylation changed. Although

it is not possible to conclude for every feature that proteins and carbonylation

level changed independently from one another (due to technical limitations), it

is more than likely that many features presented changes at the carbonyl level

without changing at the protein level, and vice-versa. A more complete picture

could be reached if fluorescence levels were normalised by protein stain levels for

each features, but this is technically complex due to the different sensitivity and

linear ranges of both dyes, along with the fact that carbonylation is not uni-

form between different proteins. The best way to obtain such a picture is likely

through mass spectrometry, and there is no standard method available at the

moment to detect carbonyls and determine carbonylation levels (Fedorova et al.,

2013), especially since quantification of carbonyls requires previous quantification

of proteins, something not yet easily achieved in proteomics.

5.2.1 Protein identifications

Gel plugs from the 45 features discussed above were sent for identification by

MALDI-TOF/TOF at the Instituto de Technologica Química e Biológica (Uni-

versidade Nova de Lisboa, Portugal). Twenty-five (56 %) features could be iden-

tified (Tables 2.1 and 3.2), of which seven idenfications were redundant (2.f3,

2.f4, 3.f3, 3.f4 and 3.f5 were the same protein, as well as 2.f6 and 3.f10), giving

a total of 20 unique identifications. Six of the identified proteins were from D.

magna sequences and 12 were identified as hypothetical proteins from the D.
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pulex genome. The other four proteins were identified as coming from arthro-

pods (3) or fish (1, from Danio rerio). As no function was directly known for

the D. pulex hypothetical proteins as well as for feature 2.f7 (an uncharacterized

protein), bioinformatics tools were used to infer putative biological functions for

the proteins. All sequences were studied for similarity with known proteins us-

ing blastp (Altschul et al., 1997) and DELTA-BLAST (Boratyn et al., 2012) as

well as for the presence of conserved sites and domains and sequence similarity

to protein families with DELTA-BLAST and the Interproscan tool (Quevillon

et al., 2005). Although annotations are available for the D. pulex hypotheti-

cal proteins, this approach was chosen to remain consistent with the analysis

of the uncharacterised protein (2.f7) which also required a more in depth func-

tional study. Annotations of the hypothetical proteins are available from the JGI

Genome Portal (http://www.Jgi.doe.gov/Daphnia/) for the D. pulex gene anno-

tations. The approach followed here yielded similar results to the annotations

found on the JGI website. Results of the bioinformatics analysis are presented in

Tables 2.2 and 3.3 and the protein names presented in Table 5.1 stem from the

MS identification and following bioinformatics analysis.

A first glance at Table 5.1 reveals that some features that are nearby on the gel

contain the same protien. Indeed, all the redundant protein identifications listed

above are found within two protein trains. Interestingly, as discussed in Chap-

ter 3, all these features were identified as vitellogenins. These trains are likely

formed of various vitellogenin maturation products, the presence of “vitellogenin

trains” is expected as vitellogenin is known to be heavily modified during its

maturation, notably through cleavage and multiple phosphorylation (Kato et al.,

2004), which will affect its molecular weight and pI. Also, the direction of change

and fold changes of vitellogenin-containing features within a train did not behave

uniformly, with one feature being found to be significantly altered by one treat-

ment and not the other (e.g. 3.f3-5). In addition to the two vitellogenin trains,
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features 2.f21 and 3.f15 are neighbours and both contain a vitellogenin fused with

SOD (Tables 2.1 and 3.2), although the proteins were identified as two different

vitellogenin-SOD. It is not possible to determine wether they are actually the

same or different proteins, as DmagVTG1 and DmagVTG2 (the two genes the

proteins were identified as) present a high sequence similarity (Tokishita et al.,

2006), and the low sequence converage (14 and 15 %) is not sufficient to dis-

criminate between the two proteins. Thus, not all the vitellogenin identifications

are redundant, and there is a high presence of vitellogenins within the identified

proteins, with eight features spread over most of the gel, and representing ten of

the 49 observed feature changes (20 %).

This corroborates the idea presented above (page 45). Indeed, the PES of

vitellogenins appears from the present results to be specific to the stressor. There

would thus be an interest in studying further the applicability of the vitellogenin

proteome as a stress biomarker. Although already considered by Jubeaux et al.

(2012), there is a clear advantage in working with a gel-based approach as much

more information can be gleaned from the maturation process of various vitel-

logenins rather than only their expression level. In this matter the present re-

sults are in agreement with the conclusions of Gündel et al. (2007) that present

lipovitelin derivatives as sensitive stress indicators in zebra fish enbryos.

When looking at all the exposures together, vitellogenin is the only functional

category of proteins to be significantly affected by more than one compound. Even

though the PES of vitellogenins is unique to each compound, it demonstrates that

the sensitivity of vitellogenin responses is in no way specific to a compound, in

agreement with the conclusions of Hannas et al. (2011), who showed that changes

in vitellogenin gene expression are not linked to a specific category of toxicants.

Although this is a statement against the specificity of changes in vitellogenin

maturation, this also means that the other functional categories observed were

observed only for a single tested compound, indicating a measure of specificity in
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the present exposure regimen.

Thus, hemoglobin protein levels were only modified (increased) by the expo-

sure to AgNP. This is also the only compound for which a clear sign of OS was

present, i.e.: increased carbonylation levels as measured by 1DE. There may be

a mechanistic link between those two observations as hemoglobin expression is

under control of the hypoxia-inducible factor 1 and ROS can induce its activity

(Becker et al., 2011).

Following AgNO3 exposures, the carbonylation level of a 14-3-3 protein family

member was reduced. This was the only response specific to the treatment (all

other modified features containing vitellogenins) and it is difficult to link it to the

mechanism of action of silver ions as 14-3-3 proteins are regulatory proteins with

very diverse functions (van Hemert et al., 2001). One possible, highly speculative,

functional link between changes in 14-3-3 proteins and silver toxicity may be

derived from the fact that, in a euryhaline crab, the sodium pump (Na+/K+-

ATPase) α-subunit presents a variant containing a 14-3-3 binding site, which is

likely involved in the transfer of the sodium pump from the endoplasmic reticulum

to the cell membrane thus activating the sodium pump (Jayasundara et al., 2007).

As the main mechanism associated with silver toxicity is known to be disruption

of osmoregulation (Bianchini and Wood, 2003), the change in the 14-3-3 protein

may be linked to the toxic effects of silver or to an adaptative mechanism from

the daphnid. This is, of course, highly speculative as no functional information

is available on the 14-3-3 proteins and its potential link to osmoregulation in

daphnids.

Only two features were significantly modified by the paraquat exposures, and,

luckily, both were identified. In this case, none of them contained a vitellogenin,

indicating that vitellogenin was not responsive to paraquat exposures. The two

responsive proteins (2-phospho-d-glycerate hydrolase – 2.f22 – and fructose 1,6-

bisphosphate aldolase – 2.f24) are involved in glycolysis, a result in accordance
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with the known mechanism of toxicity of paraquat, as it impedes cellular respi-

ration by accepting electrons from the electron transport chain (Vicente et al.,

2001), thus reducing mitochondrial efficiency and leading to ROS production.

The activity of both enzymes was likely increased by exposure to paraquat (eno-

lase protein levels increased and aldolase carbonylation decreased), those activi-

ties would warrant measuring directly for a more in depth study of paraquat in

daphnids. As discussed earlier (p. 39) it is likely that the changes in glycolytic

enzymes represent a sign of higher ATP requirements, and thus an increase in

glycolysis. The apparent lack of oxidative stress following paraquat exposure and

absence of changes of the measured enzymes (especially catalase) is in contradic-

tion with the results of Barata et al. (2005b). The discrepancy between the two

studies cannot be easily explained with the present results as, at the organism

level (EC50), the observed toxicities were similar. It is probable though that the

differences in biochemical measurements stem from the different exposure times

(24h vs 48h) and age of the exposed daphnids (7 days old vs neonates).

Although the results obtained here for the copper exposures disagree signifi-

cantly from those of Barata et al. (2005b) – i.e.: lack of response of the measured

enzymes and absence of oxidative stress – the proteomic study yielded much more

diverse and interesting results for this compound than for the other three tested.

Indeed, on top of vitellogenins (of which four features were affected, always with

an increase in protein and/or carbonylation), three other functional protein cat-

egories were significantly affected : Proteolytic enzymes, chaperones and actin

filament proteins.

Four chaperones saw their protein expression level (2.f7, 2.f15) or carbonyla-

tion (2.f10, 2.f30) reduced by copper exposures. Of these, three are HSP70 family

members, and one is a cyclophilin (peptidyl-prolyl cis-trans isomerase). It is sur-

prising to see the expression of two HSP70s being reduced under metal stress,

as this family of proteins is linked to the heat-shock response (HSR), which is
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normally induced by metal stress (Feder and Hofmann, 1999). Yet, it has been

observed in daphnids that a reduced HSR is associated with increased resistance

to cadmium (Haap and Köhler, 2009). As cyclophilins are also associated with

the HSR (Mathew and Morimoto, 1998), the detection of a less carbonylated cy-

clophilin may be linked to the response of HSP70, potentially indicating higher

turnover of the protein. A second functional category linked to the HSR is also

strongly represented in this study. Indeed, four proteolytic enzymes were affected

by copper, all of them presenting a decrease in protein level and/or carbonyl

content. Two are well known digestive enzymes in daphnids (trypsin 2.f28 and

chymotrypsin 2.f32), one is a member of the peptidase M13 family (2.f2) and the

last is a leucine aminopeptidase family member (2.f8), both enzymes whose func-

tion in daphnids is not known, but is likely more related to intracellular protein

metabolism than to digestion. Proteases are usually upregulated under the HSR

(Mathew and Morimoto, 1998), and three of the proteases found in this study

present reduced protein levels (as well as carbonyl levels) while one shows only a

reduction of carbonylation.

Taken together, the response of the chaperones and proteolytic enzymes indi-

cate that the HSR is likely inhibited by the copper exposures. Although no report

of such an inhibition could be found in the literature following metal exposure,

it may be linked to the fact that lower basal levels and lower induction of the

HSR have been associated with increased resistance to metals (Haap and Köhler,

2009) though the mechanistic link between reduced HSR and increased resistance

is not known, and counterintuitive.

The other functional group of proteins found to be modified was that of

actin-filament related proteins. Indeed, two actins (2.f23 and 2.f31) and one

alpha-actinin (2.f16) saw their protein levels affected by the copper exposure.

Actin filaments are a fundamental component of the cytoskeleton and, as such,

are involved in cell structure, motility, division and in cellular trafficking. Alpha-
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actinin, showing reduced expression following exposure, cross-links actin filaments

together or with membrane-bound proteins (Djinović-Carugo et al., 1999). In-

terestingly, one of the actin proteins found here (2.f23) is downregulated while

the other (2.f32) is upregulated by the exposures, likely indicating a change in

the types of actin expressed, a possible adaptative mechanism to the presence of

high copper concentrations. The specific isoform of the detected actins cannot

be inferred from the results obtained here, the sequence of daphnid actins being

too similar (Schwerin et al., 2009). Lack of information on daphnid actins and

more precise identifications prevents giving a mechanistic explanation for their be-

haviour, although they are known to be affected by cold acclimatation (Schwerin

et al., 2009) and predator-stress (Pijanowska and Kloc, 2004; Schwarzenberger

et al., 2009).

Aside from the above-described groups of proteins, arginine kinase (2.f25)

and TEF-2 (2.f29) were also affected by copper. Arginine kinase is the main

enzyme of the only phosphagen system of arthropods (Ellington, 2001) and is

thus an important part of the energy metabolism of the organism. The lowered

carbonylation level may indicate an increase of its activity or a higher turnover

rate of this enzyme. As most of the features showing a significant change in

carbonylation levels showed a reduction following copper exposures (nine out of

13), it is possible that overall protein turnover was increased by the exposure.

This may be linked to increased expression of TEF-2 observed. As protein car-

bonylation is generally irreversible, the only way that carbonylation levels can be

reduced is through degradation of oxidised protein and synthesis of new proteins

to replace them. If turnover is indeed increased (as the carbonyl reduction is

not associated with a protein level reduction), this could lead to changes in the

expression of the translation machinery, of which TEF-2 is a part. Important

changes in the expression of mRNA involved in protein synthesis has already

been observed for daphnids exposed to cadmium (Connon et al., 2008), although
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they observed a reduction for TEF-2 at high concentrations while here a slight

reduction is observed at the lowest concentration followed by an increase with

higher concentrations (Table 2.3).

Taken together, the observed response for the copper exposure does not

present signs of OS, nor insight into the mechanism by which it exerted toxicity on

the daphnids, but presents a potentially interesting (adaptative?) response to the

stress by a reduction in proteins from the heat-shock response, a counter-intuitive

response warranting further studies as it does seem selected in arthropods living

in metal-contaminated environments (Haap and Köhler, 2009).

5.2.2 Conclusion of the proteomics studies

The results from the biochemical measurements and proteomic studies clearly dif-

ferentiate between the four compounds tested, indicating that the PES is indeed

specific to the toxicant. This is true even if only vitellogenins are considered, even

though they are widely represented in the response of three of the compounds

(AgNO3, AgNP and CuCl2) both as a functional group and at the level of some

features. For all other proteins identified, each responded only to one stressor.

The validity of PES has often been demonstrated (Bradley et al., 1994; Kimmel

and Bradley, 2001; Silvestre et al., 2006), even in field studies (Vioque-Fernández

et al., 2009) and it is one of the most promising applications of proteomics in

ecotoxicology. The specificity of the responses observed in this study confirms

this evaluation.

Identification of the differentially expressed proteins, as a subsequent step to

PES determination, has not brought much insight into the toxicity mechanism

of the tested compounds. Indeed, very little can be told from the present results

about the toxicity mechanisms of AgNP and AgNO3, and only general reactions

of the organisms to copper and paraquat toxicity were observed. Although the

understanding of the biochemical responses of daphnids in answer to chemical
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stressors is of interest and important to elucidate, the often presented promise of

biomarker discovery from omics cannot be fulfilled by the present study. Indeed,

although results such as those for copper above open the door to more in depth

studies of toxicity which may lead to finding a sensitive and specific protein to

detect the presence of the compound, this requires much more efforts than was

deployed here, or in most omics studies.

This issue is actually wider than proteomics, as “the extent to which biomark-

ers are able to provide unambiguous and ecologically relevant indicators of expo-

sure to or effects of toxicants remains highly controversial” (Forbes et al., 2006).

There are thus still many questions, and doubts, concerning the usefulness of

biomarkers in ecological risk assessment. Although approaches based on PES

(e.g.: Vioque-Fernández et al., 2009), and machine learning (Bradley, 2012) could

lead to a gain in sensitivity and specificity, this gain would have to be impressive

to balance the increased cost and complexity of a proteomics-based environmen-

tal monitoring program. The suggestion of Jemec et al. (2010) to redefine the

role of biomarkers to hazard identification rather than exposure assessment or

risk management thus seems appropriate. Forbes et al. (2006) highlight that in

order to better interpret and validate biochemical measurements, and link them

to population level-responses, mechanistic links between the levels of organisa-

tion must be known. This is in line with the suggestion of van Straalen (2003) to

shift towards stress ecology in the future of ecotoxicological research. Increased

mechanistic understanding is also clearly within the scope of omics approaches,

and although not giving rise to clear understanding of toxicity pathways, some

of the results presented here (especially for copper), could give rise to more in

depth studies to better understand the response of daphnids to toxicants.

The results presented in Chapter 3 demonstrate a place for proteomics in

hazard identification. Indeed, the present study demonstrates that even though

the immobilisation test would have discarded AgNP as less toxic than silver
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ions, their toxicity follows a different mode of action, and more studies are thus

required to evaluate potential interactions and environmental impacts of AgNP. It

also highlights the fact that a simple measurement of silver concentration within

an organism or environmental sample may miss the contribution of AgNP to

contamination and toxicity. This is also confirmed by the transcriptomics study

of Poynton et al. (2012), who demonstrate different modes of action for silver

ions and AgNP, as well as an impact of the NP coating on gene responses of D.

magna.

5.3 SPH enrichment of carbonylated proteins

The results presented in Chapter 4 demonstrate the potential of SPH to isolate

whole proteins oxidised by MCO. Although the method requires further testing

with more biologically-significant samples, there is promise in the use of a batch

method to purify carbonylated proteins. Indeed, the low abundance of any single

carbonylated species in the proteome means that their identification is difficult,

especially against the background of more abundant non-carbonylated proteins.

In line with results obtained in our laboratory with the thiol proteome (Hu et al.,

2010), much can be hoped for the carbonyl proteome. The possibility of trapping

carbonylated proteins directly from a homogenate and subsequent release of un-

labelled carbonyls is likely to facilitate gel-based studies or direct MS detection

and characterisation. The use of carbonyl tags could also be considered in order

to facilitate release of the proteins along with subsequent analysis.

Beyond the possibility of its application to complex samples, many questions

are still left considering this protocol. Indeed, as it is based on a chemical equi-

librium, it is pertinent to wonder how much of the carbonylated proteins are

released from the resin, and how this could be affected by using derivatisation

agents to favour release. Also, the specificity and efficiency of binding of different
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carbonyl moieties are worth characterising, as is the case for derivatisation agents

(Bollineni et al., 2013).
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Chapter 6

Conclusion

The technologies and industries that make modern society possible are altering

the biosphere in many ways. Chemically this is done through the mobilisation of

metals by mining and production of novel compounds. Ecotoxicology attempts to

measure and predict the impact of the increased concentrations of xenobiotics on

ecosystems, in the hope of mitigating the impact of xenobiotics on ecosystems and

minimising future effects. In order to do so, a mechanistic understanding of the

impact of pollutants is required and biochemical tools have been increasingly used

to decipher the cellular effects of pollutants on ecologically-relevant organisms.

Following advances in genomics, proteomics were developed, enabling the

study of the protein complement of cells. This opened the door to hypothesis-free

approaches to hazard identification. As the methods were refined, the interest

in subproteomes grew in order to obtain more specific responses and circumvent

technical limitations. In ecotoxicology, the redox proteome is of particular inter-

est. Not only are changes in the redox balance of cells often observed following

exposure to toxicants, they are also associated with many natural environmental

conditions (Lushchak, 2011). Redox-proteomics can thus help understand the

interaction between environmental factors and anthropogenic perturbations.

Among ecologically relevant organisms, daphnids stand out because of the
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amount of literature on their ecology, evolution, behaviour and, increasingly,

subcellular responses. Indeed, the recent sequencing of the D. pulex genome

(Colbourne et al., 2011) demonstrates the interest in daphnid biochemistry and

opens the door to the application of omics tools to study members of this taxa.

This thesis expands on this interest by presenting the first application of

redox-proteomics to study a daphnid (Daphnia magna). Fluorescent labelling of

protein carbonyls prior to 2DE was used to quantify changes in the proteome fol-

lowing exposure to model prooxidants copper and paraquat. This demonstrated

that both compounds affected daphnids differently, copper causing a reduction

of the heat shock response and paraquat affecting the level and carbonylation of

glycolytic enzymes.

Once applied to well known compounds, the approach was used to gain insight

into the mechanism of toxicity of the emerging pollutant AgNP, in comparison

with that of silver nitrate. We found a clear difference between the impacts of

AgNP and silver ions on the daphnid proteome. This implies that both com-

pounds follow different toxicity mechanisms, and thus that AgNP toxicity is not

only a product of silver dissolution. There is cause for concern over the environ-

mental release of AgNP, as environmental conditions and other pollutants will

likely impact their toxicity differently than that of silver ions.

One element of particular interest is the fact that 20 % of the proteins iden-

tified in this project are vitellogenins. This indicates the high sensitivity of this

oogenesis-linked protein, but also its lack of specificity to stressors. Yet, this

means vitellogenins could be used to detect and differentiate stressors, as the

PES of vitellogenins was unique to each of the materials studied. Another point

of note is the reduction in the heat shock response following exposure to copper.

As HSP70 are known to present lower basal levels in arthropods from metal-

contaminated environments (Haap and Köhler, 2009), this appears to be more

frequent than would be expected and warrants further study as an increased
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resistance to metals following a decreased heat-shock response deserves studying.

This thesis demonstrates the usefulness of redox-proteomics to obtain more

information from gel-based proteomics (increase of 40 % in the number of fea-

tures of interest), even if no clear sign of oxidative stress was observed in the

organism. Even though there can be doubts about the capacity of proteomics

to lead to biomarker discovery, its usefulness in expanding our understanding of

toxicity mechanisms and exploring the risk associated to novel contaminants is

undeniable.

In order to expand on available methodologies to study protein carbonylation,

we also demonstrate the possibility of using solid-phase hydrazide to enrich car-

bonylated proteins. BSA oxidised to various degrees by MCO could be purified by

covalent chromatography and the underivatised carbonylated proteins could be

released and studied by 1DE. The development of this approach could facilitate

analysis of the carbonylated proteome and thus of the mechanisms of oxidative

stress and redox homeostasis.
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Appendix A

Collaborations

In the course of my PhD, I contributed to different projects centered on the use of

gel-based redox-proteomics, mostly by sharing the methods used in the laboratory

with collaborators. From this, two articles have been published to date. One is a

review written by Prof. Sheehan and previous PhD students from the laboratory

(Sheehan et al., 2012) to which I mainly contributed figures and tables. The

other is the product of a collaboration with Dr. Wiebke Schmidt and Dr. Brian

Quinn from the Galway-Mayo Institude of Technology (Schmidt et al., 2013). I

took part in the 2DE experiments (though I did not perform most of them), data

analysis and the writing process.
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Redox Proteomics in Study of Kidney-Associated
Hypertension: New Insights to Old Diseases

David Sheehan,1 Louis-Charles Rainville,1 Raymond Tyther,1 and Brian McDonagh2

Abstract

Significance: The kidney helps to maintain low blood pressure in the human body, and impaired kidney
function is a common attribute of aging that is often associated with high blood pressure (hypertension). Kidney-
related pathologies are important contributors (either directly or indirectly) to overall human mortality. In
comparison with other organs, kidney has an unusually wide range of oxidative status, ranging from the well-
perfused cortex to near-anoxic medulla. Recent Advances: Oxidative stress has been implicated in many kidney
pathologies, especially chronic kidney disease, and there is considerable research interest in oxidative stress
biomarkers for earlier prediction of disease onset. Proteomics approaches have been taken to study of human
kidney tissue, serum/plasma, urine, and animal models of hypertension. Critical Issues: Redox proteomics, in
which oxidative post-translational modifications can be identified in protein targets of oxidative or nitrosative
stress, has not been very extensively pursued in this set of pathologies. Future Directions: Proteomics studies of
kidney and related tissues have relevance to chronic kidney disease, and redox proteomics, in particular,
represents an under-exploited toolkit for identification of novel biomarkers in this commonly occurring
pathology. Antioxid. Redox Signal. 17, 1560–1570.

Introduction

The kidney performs crucial physiological roles,

including removal of nitrogenous waste materials (e.g.,
urea and uric acid), control of water, electrolyte, and acid-base
balance in blood, and retention of useful components (e.g.,
glucose and amino acids). Plasma is filtered by kidneys (350–
400 ml/100 g tissue per min), generating 150–180 liters/day
ultrafiltrate, of which > 99% is reabsorbed (69). Important
renal pathologies include primary glomerular disease, dia-
betic nephropathy, renal allograft rejection, lupus nephritis,
Fanconi syndrome, renal cell carcinoma, chronic kidney dis-
ease, and acute kidney injury. Definitive diagnosis of the
underlying cause of disease can be difficult, so proteomics
represent a promising novel diagnostic approach (53, 69).
Chronic kidney disease affects some 11% of the general pop-
ulation and is evident when renal glomerular filtration rates
are reduced (12, 17, 20). It is a significant risk factor in pre-
disposition to cardiovascular illness and also in patients with
pre-existing cardiovascular disease (20). Chronic kidney dis-
ease can progress to end-stage kidney disease, both of which
are quantitatively important contributors to overall human
mortality (72).

A key physiological consequence of kidney pathology is
elevated blood pressure (hypertension) that can result in

stroke and cardiac disease (20). Oxidative stress (Fig. 1) arises
when levels of reactive oxygen or nitrogen species (ROS or
NOS) exceed the cell/tissue’s antioxidant capacity and has
consistently been associated with hypertension (51, 60) and
stage of renal malfunction (15). ROS/RNS can interact di-
rectly with important cell components such as lipids, nucleic
acids, and proteins (82), and lead in particular to glomerular
filtration barrier injury (52).

In comparison with other organs, the kidney has an un-
usually wide range of oxidative status, ranging from the well-
perfused cortex to near-anoxic medulla (Fig. 2). The medulla
and cortex also fulfill distinct functions. In the cortex, fluids
and electrolytes are filtered from proteins at the glomeru-
lus, and glucose, electrolytes, and water are reabsorbed along
the nephron. The medulla, on the other hand, is almost an-
oxic and has the principal function of concentrating urine.
Oxidative/nitrosative stress arising from ROS/RNS is
thought to be differentially regulated in the cortex and
medulla (55). NO-mediated signaling is more important in
medulla, but cortex may be more liable to ROS-induced
damage (60). Onset of kidney dysfunction seems to arise from
progressive loss of redox homeostasis associated with over-
production of ROS/RNS, with consequent effects on renal
proinflammatory/proapoptotic/profibrotic pathways. These
lead to changes in vascularization, fibrosis, and diminished
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kidney function (51, 52, 60). Proteins are key quantitative
targets for ROS/RNS; many proteins are known biomarkers
of kidney pathology (17). This review focuses on redox-
related proteomic studies of chronic kidney disease and
related conditions. We will describe general approaches taken
in human samples and associated model systems and assess
the potential of redox proteomics to contribute new insights to
chronic kidney disease.

Triggers for Oxidative/Nitrosative
Stress in Kidney Disease

Physiological factors external to kidney are capable of
triggering events within the organ, resulting in excess pro-
duction of ROS/RNS and causing oxidative/nitrosative
stress (Fig. 3). This can affect proteins, and oxidative stress
increases with the stage of chronic kidney disease (15). Re-
gardless of the initial cause, fibrosis is a common proximate

cause for end-stage kidney disease, and proteomic profiling
may provide novel early biomarkers with sufficient predictive
power for clinical outcomes (32, 59). Hyperglycemia due to
diabetes mellitus is commonly associated with onset of hy-
pertension; this is the most common clinical cause of chronic
kidney disease (12). Chronic kidney disease represents a per-
sistently inflamed state often associated with pro-inflammatory
stimuli such as interleukins-1, - 6, - 18, tumor necrosis factor
alpha (TNF-alpha), and other cytokines (49). This inflamma-
tion contributes to progression of the disease by increased
activity and production of adhesion molecules that contribute
to adhesion of T cells and their migration into the interstitium,
leading to attraction of profibrotic factors (78). Growth factors
external to kidney contribute to the process of scarring or
fibrosis which features excessive deposition of extracellular
matrix causing loss of renal function (38). Fibrosis has been
suggested to be a process of phenotypic transition from epi-
thelium to mesenchyme (1), although the definitiveness of this
has recently been questioned (34). The role of the endocrine or
circulating renin–angiotensin–aldosterone system (RAAS) in
stimulating fibrosis during chronic kidney disease is well es-
tablished (52, 83). Decreased renal perfusion causes secretion
of renin from the juxtaglomerular apparatus of the kidney.
This cleaves circulating angiotensinogen from liver to form the
ten-residue peptide hormone angiotensin I. This, in turn, is
cleaved by removal of two C-terminal residues catalyzed by
angiotensin-converting enzyme (ACE) from lung, to form
angiotensin II. This binds to angiotensin receptors, triggering
effects within the kidney, including reabsorption of sodium
and protein. Angiotensin II also triggers release of aldoste-
rone from adrenal glands and has increasingly been associated
with numerous other proinflammatory functions (5). Over-
expression of angiotensinogen attenuates apoptosis in model
animals (21). Overstimulation of the RAAS cascade leads to
kidney damage, resulting in diminished function (52, 83). All
RAAS components are also produced locally in kidney, and it

FIG. 2. Blood flow and oxygenation in the kidney. The cortex is well-perfused with high levels of oxygen. The medulla has
a lower blood flow-rate with correspondingly lower oxygen levels (adapted from Ref. 76).

FIG. 1. Oxidative/nitrosative stress. Under conditions of
redox homeostasis, antioxidant defenses exceed ROS/RNS
concentrations. When this balance tilts, so that ROS/RNS
exceed antioxidant defenses, a situation of oxidative/
nitrosative stress ensues.
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is thought that a local renal RAAS contributes to hyperten-
sion (52). RAAS inhibitors have protective effects on kidney
in diabetics, most probably through reduction of blood
pressure (85).

These triggers activate proinflammatory, profibrotic, and
proapoptotic pathways, with consequent changes at the level
of the proteome, the total protein complement of kidney cells
and related tissues. Thus, proteomics has become a popular
approach to explore these processes further (reviewed in Refs.
10, 32, 59, 64). Since proteins absorb the bulk of ROS/RNS,
redox proteomics in particular offer opportunities to follow
redox-mediated post-translational modification of proteins
(73–75). A fundamental difference between the traditional
proteomics and redox proteomic approaches is that reversible
redox modifications can alter protein activity even in cases
where the relative protein abundance may not necessarily
change. Given the importance of oxidative stress in kidney
pathology, it is intriguing that redox proteomics have not
been applied more extensively to its investigation.

Kidney Proteomics

A range of experimental approaches are used in proteomic
studies. These include two-dimensional electrophoresis (2DE)
that combines isoelectric focusing with orthogonal sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS
PAGE). Individual proteins are separated from complex
mixtures based on differing isolectric point (pI) and Mr (32,
73–75). When combined with immunodetection, it is often
possible to find redox modifications to proteins in 2DE sep-
arations such as carbonylation and nitration (73, 75). Quan-
titative data can be obtained from 2DE using difference gel
electrophoresis (DIGE) with DeCyder software (77). This has
allowed differential identification of several proteins in ani-
mal models (6) and in human urine (56). Mass spectrometry

(MS) approaches have also proved useful in research on
kidney diseases (53) (Fig. 4). As with DIGE, quantitative MS is
increasingly being used (80). This may exploit labeling (either
chemical or metabolic) or label-free methods. Labeling ap-
proaches include isotope-coded affinity tags (ICAT), stable-
isotope labeling of amino acids in cell culture (SILAC), and
isobaric tags for relative and absolute quantification (iTRAQ).
Thiol-specific ICAT reagents have been exploited to measure
oxidation of cysteines in the total proteome (18). SILAC offers
a potentially powerful tool in the quantification of redox
proteomic targets and their modification in kidney samples
(35). iTRAQ has only yet been used in a few studies such as
alteration of the phosphoproteome in the epithelial-to-
mesenchymal transition induced in HK-2 cells by transcrip-
tion growth factor-beta-1 (11). As of yet, ICAT is a relatively
under-exploited approach in kidney proteomics.

Once potential redox-modified proteins have been detected
within samples by a discovery approach, they can be vali-
dated and quantified by selective reaction monitoring (SRM)
(13). This selects proteotypic peptides of the protein of interest
and specific fragment ions (or transitions) upon fragmenta-
tion of the parent ion. This is the most sensitive proteomic
quantification method available and detects low-abundance
proteins with a dynamic range of up to 4–5 fold (13). SRM has
potential in the quantification of redox protein biomarkers but
is not ideal for the quantification of a specific redox modifi-
cation within proteins. Peptides containing redox modifica-
tions are not suitable as proteotypic peptides as they can
decrease or eliminate the signal of the corresponding pre-
cursor ion. Nevertheless, this approach has potential for
quantification of redox-responsive proteins.

In addition to the two ‘‘workhorse techniques’’ of classi-
cal proteomics (2DE and MS), novel selection/screening
methods are being used, sometimes in conjunction with MS.
Surface-enhanced laser desorption ionization (SELDI) uses

FIG. 3. Triggers for oxida-
tive/nitrosative stress in kid-
ney disease. A variety of
factors external and internal to
kidney can trigger oxidative/
nitrosativeeffectswithinkidney.
These include the circulating/
renal RAAS systems, pro-
inflammatory stimuli, hyper-
glycemia, and growth factors.
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functionalized chips (carrying affinity or ion exchange groups)
to select subproteomes. Large numbers of samples can be ana-
lyzed quickly, which is ideal for screening of clinical samples.
For example, this has been used in studies of interstitial fluid of
kidney biopsy material (41). A disadvantage of SELDI is that it
only allows Mr determination rather than specific protein
identifications. A novel recent selection approach has involved
the use of aptamers, random libraries of single-stranded oligo-
nucleotides which can adopt an enormous number of structural
conformations with protein-binding properties. This selected 60
proteins in the serum of patients with chronic kidney disease,
many of which were low Mr proteins often observed in this
pathology (22). Fractionation of serum samples on magnetic
beads allows MALDI-MS analysis (67). Another approach is to
use protein microarrays; a recent study of serum revealed an-
giotensinogen and PRKRIP1 as novel autoantibody targets in
kidney (9).

Sample preparation is a key aspect of proteomics experi-
ments and it is increasingly evident that this step needs to be
standardized for discovery of reproducible biomarkers (80).
Traditional diagnosis of kidney disease often depends on
performance of a biopsy. However, this may not always be
possible for clinical (e.g., obesity, severe hypertension, or
bleeding disorders) or ethical reasons and could result in a
poorly defined sample. Proteins are well represented amongst
extant biomarkers of chronic kidney disease (17). Therefore,
many proteomic studies relevant to kidney disease focus on
plasma or serum, tissues (e.g., from animal models), and urine
(66). In particular, there have been major developments in
studies of urine because of the sample quantity, possibility of
repeat sampling, and its noninvasive nature (10, 48). A public
domain proteomic database for kidney-associated proteomes
is curated by an international consortium (Human Kidney
and Urine Proteome Project, HKUPP; http://www.hkupp
.org/) and this includes standardized protocols for urine
sample preparation. The reader is also referred to the website
of the European Consortium on kidney and urine proteomics
(http://www.eurokup.org). Such databases may eventually
facilitate comparisons between proteomes of healthy and
diseased kidneys.

Studies on Human Kidney Tissue

Difficulties inherent in human kidney tissue proteomics
have been eloquently described (59). Samples must be ob-
tained invasively (e.g., by percutaneous biopsy) which yields
small amounts of material, making comparison with healthy
tissue ethically and logistically problematic. Such biopsies
may not faithfully reflect the differing compartments/cell
types in the composition of kidney. It has recently been
pointed out that proteomic study of renal structures and
compartments offer many opportunities for insights to kidney
pathologies (10). A key technique is microdissection of de-
fined kidney compartments such as glomeruli (87). This ap-
proach successfully identified autoimmune antigens in
patients suffering from membranous glomerulonephritis, and
suggested that oxidative stress in this pathology may drive
superoxide dismutase 2 expression (58). An alternative is to
prepare glomeruli by sieving. Using tissue from healthy cor-
tex of four patients undergoing nephrectomy for renal tumors
(renal cell carcinoma), this approach allowed proteome pro-
filing by PDQuest� image analysis and protein identification
by 2DE and MS (88). Including novel pre-fractionation by one
dimensional electrophoresis and solution-phase isoelectric
focusing coupled with SDS PAGE, these workers identified
more than 3500 proteins with at least two tryptic peptides
(28). Using ‘‘microsieving,’’ it has even proved possible to
isolate whole glomeruli from single needle biopsy samples
suitable for protein profiling (33).

Podocytes are kidney epithelial cells that wrap around the
capillaries of the glomerulus which have been implicated in
the early stages of kidney disease. MS analyses on five sepa-
rate MS instruments identified a profile of 332 distinct pro-
teins in a 1 lg biopsy sample of human glomerulus, including
podocyte-essential proteins such as podocin and nephrin (89).
Expression profiling of podocytes exposed to high glucose as
a model for diabetic nephropathy identified up-/down-
regulated genes including biomarkers of chronic kidney dis-
ease such as neutrophil gelatinase-associated lipocalin (26). A
recent proteomic study of cultured podocytes revealed that
RAAS activation caused downregulation of the antioxidant

FIG. 4. Work-flows in kid-
ney proteomics. Kidney pro-
teomics studies have focused
on kidney tissue, plasma/
serum, or urine of patients or
animal models. These can be
further subfractionated to sub-
proteomes to simplify sample
complexity. Selected MS, elec-
trophoresi,s and other methods
are listed.
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protein peroxiredoxin 2. This led to production of ROS, pro-
tein oxidation, inhibition of the Akt pathway, and onset of
apoptosis (25). This is consistent with the observation in bi-
opsy samples that SOD 2 is induced by oxidative stress in
membranous nephropathy (58).

Studies on Blood Plasma/Serum

Plasma and serum samples derived from patient blood
provide a less invasive sample source for proteomics that is
also amenable to re-sampling. A particular problem with
blood-derived samples is the broad dynamic range of blood
protein concentration, with some proteins being very abun-
dant whilst others are rare. The most abundant proteins
can be depleted by immunoaffinity fractionation. After im-
munodepletion for the six most abundant proteins (albumin,
transferrin, IgG, IgA, haptoglobulin, and antitrypsin), pro-
teomic comparison of serum from diabetic nephropathy
identified two biomarkers (selenium-containing extracellular
glutathione peroxidase and apolipoprotein E) which were
downregulated in this pathology (31). Both of these proteins
are implicated in antioxidant defense (31). An alternative to
immunodepletion involves use of a library of hexameric
peptides that allows selection of the total proteome, including
very low abundance proteins. This is based on creating at
random an enormous repertoire of protein-binding sites which
makes possible identification of a greater number of urinary

proteins. Chronic kidney disease patients have a higher risk of
premature atherosclerosis. An MS-based approach combining
capillary electrophoresis (CE) coupled to MS analysis of
serum of chronic kidney disease patients identified protein
biomarkers for cardiovascular disease (62). 2DE of non-
immunodepleted serum also identified four proteins (alpha-1-
microglobulin, apolipoprotein A-IV, gamma-fibrinogen, and
haptoglobin) associated with atherosclerosis in patients with
chronic kidney disease (39). Chronic kidney disease is a com-
mon feature in patients after liver transplant, and proteomic
analysis of serum has been reported using a commercial ELI-
SA-based technology [multi-analyte panels (MAPs)] of 188
serum proteins and a kidney MAP of 14 kidney-associated
proteins, which was predictive of later onset of disease, even in
patients with only mildly diminished glomerular filtration rate
at the time of transplant (36). A protein microarray study of
serum recently discovered angiotensinogen and PRKRIP1 as
novel autoantibody targets (9).

Advanced oxidation protein products are oxidized variants
mainly of albumin and fibrinogen that have been identified in
plasma/serum and are elevated in chronic kidney disease
(63). More than 70% of the free radical-trapping capacity of
serum is attributed to albumin. The oxidation status of serum
proteins correlates with systemic inflammation during
chronic kidney disease (43). Redox-induced post-translational
modifications (PTMs) of protein residues include thiol oxi-
dation and carbonylation (formation of aldehyde or ketone

Table 1. Redox Proteomic Studies of Kidney Disease

Modification Sample
Proteins identified

(unique*) Method References

3NT Plasma and hemodialysates from
uremic patients

15 (7) 2DE followed by WB for 3NT 57

Kidney medulla of spontaneously
hypertensive rats (SHR)

20 (13) 2DE followed by WB for 3NT 73

Kidney mitochondria of diabetic rats
(diet induced)

none 2DE followed by WB for 3NT 30

Plasma of long term hemodialysis
patients

1 (0) Immunoprecipitation of 3NT
containing proteins followed by
WB for specific proteins

45

Sulfenic acid Kidney medulla of SHR 39 (36) Biotin labeling of sulfenic acids, 2DE
followed by WB

76

Free thiols Plasma of glomerulosclerosis patients 26 (15) Labeling of free thiols with cyanines
followed by DIGE

8

Carbonylation Kidney medulla of SHR 11 (3) DNPH labeling of protein carbonyls,
2DE followed by WB

74

Plasma of healthy donors { Biotin labelling of protein carbonyls
followed by affinity
chromatography and MS analysis

40

*Denotes proteins only identified in one study presented in this table.
{As only healthy subjects were used in this study, no protein can be associated to kidney disease. Carbonylated proteins, as well as many

other OS-related PTMs, were present in the subjects, many of kidney origin.
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groups in side-chains) (43, 82). Redox proteomics approaches
can identify oxidized proteins in serum/plasma. An elegant
approach to profiling of carbonylated proteins in human
plasma involved trapping this subproteome on hydrazine-
biotin with avidin selection (40). A combination of MALDI-TOF-
TOF and electrospray-tandem MS identified 65 carbonylated
proteins, many of which were from kidney. Interestingly,
several of these proteins carried multiple redox lesions and
oxidation of methionine was the most commonly found
modification. In studies of this type, kidney is consistently one
of the largest contributors of plasma proteins (40).

Another category of redox modification found in proteins
(Table 1) is nitration, in particular, modification of tyrosine to
3-nitrotyrosine (73, 76). Increased 3-nitrotyrosine in both
chronic and end-stage kidney disease patients was found in
serum proteins by both immunoblotting and LC-tandem MS
(57). Cysteine, the second least abundant residue in proteins,
is also subject to extensive redox modification and (with
methionine) contributes the bulk of antioxidant activity of
human serum albumin. Cysteine can exist in a variety of
disulfide-bridged (e.g., homocysteinylated, glutathionylated),
nitrosylated, and other oxidized variants (e.g., sulfenic, sul-
finic, and sulfonic acids) (82). Serum proteins such as low
density lipoproteins have been reported to have elevated
homocysteinylation in chronic kidney disease patients (90),
whilst irreversible oxidation of Cys-34 of serum albumin and
increase in albumin carbonylation correlates with increasing
stage of chronic kidney disease (43). Given the availability of
ready methods for detecting redox lesions at methionine (40)
and thiols (75), it is surprising how few studies exploit such
approaches in serum proteins. Iodoacetamido-substituted
cyanine labels are a possible route to profiling of cysteine-
containing proteins in serum (8).

Studies on Urine

Kidney disease is commonly diagnosed by albuminuria,
reflecting diminished retention of protein by the kidney.
Urine therefore offers potential as ‘‘readout’’ for diminished
kidney function, which is also available noninvasively and

may be repetitively sampled. Recent proteomic research in
kidney disease has accordingly focused on urine (reviewed in
Refs. 2, 46). In particular, small peptides, the peptidome,
consisting of peptides largely of extracellular matrix origin are
informative about the onset of chronic kidney disease (2).
Considerable progress has been made in standardizing sam-
ple preparation and data analysis protocols for the kidney
peptidome and proteome (44). Comparison of the plasma and
urine proteomes revealed that the average Mr of the urine
proteome is indeed smaller than that of plasma (27). This
arises from the filtration and secretion activities of kidney plus
proteins secreted or shed from downstream glands and the
urinary tract. The analysis identified 2280 plasma proteins
that were blocked by kidney, 394 proteins were common to
plasma and urine (suggesting kidney allows them to pass
through), while 1128 proteins were unique to urine, including
proteins secreted/shed by kidney, downstream glands, and
the urinary tract (27). Abundant plasma proteins can enter the
urine once the glomerular filtration barrier is altered in
chronic kidney disease, making fibrosis-associated proteins
difficult to detect (32).

A significant body of literature has arisen on exosomes in
urine (79). These are small (40–100 nm) endocytic vesicles
originating from a range of cell types and secreted into body
fluids (including urine) or the extracellular space. Exosomes
carry proteomes reflecting their cells of origin and provide a
ready means of profiling urine in a range of kidney patholo-
gies (79). A compendium of exosome proteins is now avail-
able online (http:/exocarta.ludwig.edu.au; 42).

As with serum/plasma, virtually no systematic investigation
of redox protein variants has been performed on the proteomes
of either urine or exosomes. Given that these sources frequently
contain proteolyzed and otherwise modified proteins, it would
seem that redox PTMs would offer a fruitful comparator across
samples from differing kidney pathologies.

Studies in Animal Models

An alternative to human renal tissue is offered by animal
models that are widely used in kidney disease research

Table 2. Selected Animal Models Used in Proteomic Research in Kidney Disease

Pathology Model Cause References

Chronic kidney disease Spontaneously
hypertensive rat

Spontaneous 73–75

Chronic hypoxia Rat Surgical (stenosis) 65
Diabetes Rat Streptozotocin-induced 6, 61
Acidosis Rat Induced with ammonium chloride

via drinking water
14

Passive Heymann nephritis Rat Induced with antibodies 50
Nephrectomy Rat Surgical 86
Ischemic-reperfusion injury Rat Surgical 16
Sepsis Rat Surgical (cecal ligation and puncture) 24
Adriamycin-nephropathy Rat Induced with adriamycin 81
Membrane proliferative glomerulonephritis Mouse Knockout (complement regulatory

protein factor H (FH-/-)
7

Hypokalemic nephropathy Mouse Diet 70
Diabetes Mouse Knockout (db/db diabetic) 4
Immune nephritis Mouse Induced with antibodies to glomerular

basement membrane
84

Nephritis Dog Inherited 47
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(reviewed in Ref. 32). These often allow detection of events
on a relatively short time scale that might take years to de-
velop in humans. In general, animal models are genetic, may
have arisen spontaneously, or else are caused surgically or
by drug treatment (Table 2). The spontaneously hyperten-
sive rat (SHR), originally developed from Wistar rats by
selective breeding, spontaneously displays hypertension
emerging in weeks 12–14 and persisting for more than a
month (54). The SHR lifespan (1.5–2.5 years) is significantly
less than that of normotensive rats (2.5–3 years), but this
difference makes life-long studies feasible in a practical time-
frame. SHRs do not absolutely mirror hypertension in hu-
mans (e.g., onset is in the equivalent of young adulthood in
SHRs but in middle age in humans). Nevertheless, SHRs are
a sufficiently good animal model for the testing of novel
antihypertensives (37). Redox proteomics studies have been
performed in SHR kidney tissues, including identification of
kidney proteins containing 3-nitrotyrosine (73), sulfenic acid
(75), and carbonylation (74).

Other animal models for kidney disease research in
which proteomics have featured include diabetic rats (6, 61),
acidotic rats (14), passive Heymann nephritis rats (50), ne-
phrectomized rats (86), ischemic-reperfusion injury in rat
kidneys (16), sepsis in rats (24), stenosis in rats (65), geneti-
cally-modified mice (7), mice with hypokalemic nephropathy
(70), diabetic mice (4), mice with immune nephritis (84), and
dogs with inherited nephropathy (47). These studies often
point to oxidative stress as a key feature of chronic kidney
disease and agree well with knowledge of disease progression
in humans. For example, downregulation of superoxide dis-
mutases (58) and upregulation of the NAD(P)H oxidase
(NOX) family (19), a ubiquitous source of superoxide, are
found both in animal models and humans. An elegant illus-
tration of the power of animal models in the study of kidney
pathology is the overexpression of catalase along with an-
giotensinogen in a double-transgenic mouse (21). Catalase
overexpression in renal proximal tubules resulted both in
decreased oxidative stress and decreased fibrosis, albumin-
uria, and hypertension (21).

Future Directions

Proteomics is now an established route to study of im-
portant kidney pathologies (10, 32, 59, 64). Some proteins are
oxidized due to oxidative/nitrosative stress associated with
kidney disease (43, 57). However, this review documents
that redox proteomics is a heretofore relatively under-
utilized approach which nonetheless has enormous poten-
tial to offer insights to kidney pathology. Oxidative stress is a
key factor in many kidney pathologies, especially chronic
kidney disease (15, 60), and reversal of oxidative stress often
alleviates clinical manifestations such as hypertension (21,
37). Interception of routes to oxidative stress has been sug-
gested as a novel drug therapy approach for chronic kidney
disease (68), and beneficial results have recently been found
in a rat diabetic nephropathy model with the oral hypogly-
cemic drugs metformin (3) and pioglitazone (71). These
drugs also have beneficial effects in human diabetics (29). As
redox proteomics now allows routine fingerprinting of oxi-
dative PTMs, there is potential here for early-stage detection
of disease onset in complex samples such as plasma/serum
and urine. Kidney proteins are particularly well represented

in serum/plasma proteomes (40), and appearance of pro-
teins in urine is an early indicator of chronic kidney disease,
making urine a key sample source for kidney proteomics (2,
46). Amongst proteins found to be modulated by pathology
within kidney tissues, antioxidant proteins are often pro-
minent (25). These findings suggest that analyses of urine
and exosome proteomes may be especially informative in the
future.

A number of recent technical developments could under-
pin systematic redox proteomic study of clinical samples such
as plasma/serum and urine. Standardized protocols for
sample preparation, especially from urine, are now available
(see: http://www.hkupp.org/; http://www.eurokup.org).
Selection of subproteomes such as those of exosomes (42, 79)
or carrying specific PTMs such as carbonylation (40) can be
used to simplify complex samples, select for low-abundance
proteins, or identify modified variants within separations
(Fig. 5). There is also growing interest in gel-free proteomics
approaches including quantitative MS (e.g., ICAT, SRM) that
have not yet been applied extensively to kidney proteomics.
Moreover, availability of new high-speed/high-resolution
MS platforms such as the Orbitrap Elite ETD and Triple TOF
5600, when combined with two-dimensional liquid chroma-
tography and nano-HPLC systems, make feasible high

FIG. 5. Selection and identification options for oxida-
tively-modified proteins in redox proteomics. Redox lesions
can provide means for readily enriching or detecting sub-
proteomes of modified proteins. Relatively common modi-
fications include carbonylation or methionine oxidation to
sulfoxides/sulfones. Rarer modifications include tyrosine
nitration and formation of sulfenic acid from cysteine thiols.
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sample throughput and accurate PTM identification. This
would make feasible mapping of redox lesions to specific
residues within target proteins. Thus, redox proteomics offers
a technologically feasible route to more detailed character-
ization of complex proteomes in kidney pathology with po-
tential for insight to disease onset (including novel early
biomarkers), assessing new drugs, understanding biochemi-
cal mechanisms, and fingerprinting of variation within pa-
tient populations.
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SDS PAGE¼ sodium dodecyl sulfate polyacrylamide
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SELDI¼ surface-enhanced laser desorption ionization
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SRM¼ selective reaction monitoring
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A proteomic evaluation of the effects of the
pharmaceuticals diclofenac and gemfibrozil
on marine mussels (Mytilus spp.): evidence
for chronic sublethal effects on
stress-response proteins
Wiebke Schmidt,a* Louis-Charles Rainville,b Gillian McEneff,a,c

David Sheehanb and Brian Quinna,d

Human pharmaceuticals (e.g. the lipid regulator gemfibrozil and the non-steroidal anti-inflammatory drug diclofenac) are an
emerging environmental threat in the aquatic environment. This study aimed to evaluate sublethal effects of these two com-
monly found pharmaceuticals on the protein profiles of marine mussels (Mytilus spp.). Mytilus spp. was exposed to environ-
mentally relevant and elevated concentrations (1 and 1000mg/l respectively) of both drugs for 14days. In addition, mussels
were maintained for seven days post treatment to examine the potential of blue mussels to recover from such an exposure.
Differential protein expression signatures (PES) in the digestive gland of mussels were obtained using two-dimensional gel elec-
trophoresis after 7, 14, and 21days of exposure. Twelve spots were significantly increased or decreased by gemfibrozil and/or
diclofenac, seven of which were successfully identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analy-
sis. These proteins were involved in energy metabolism, oxidative stress response, protein folding, and immune responses.
Changes in the PES over time suggested that mussels were still experiencing oxidative stress for up to seven days post exposure.
In addition, a suite of biomarkers comprising glutathione transferase, lipid peroxidation, and DNA damage were studied. An
oxidative stress response was confirmed by biomarker responses. To our knowledge, this is the first investigation using proteo-
mics to assess the potential effects of human pharmaceuticals on a non-target species in an environmentally-relevant model. The
successful application of this proteomic approach supports its potential use in pollution biomonitoring and highlights its ability to
aid in the discovery of new biomarkers. Copyright © 2013 John Wiley & Sons, Ltd.

Keywords: Diclofenac; gemfibrozil; Mytilus spp.; biomarkers; proteomics

Introduction

In recent decades the amount of human and veterinary pharma-
ceuticals produced, consumed, and ultimately released into the
aquatic environment has consistently increased.[1,2] Pharmaceuti-
cal substances are designed for a specific mode of action and
often remain biologically active during their passage through
an organism’s body.[1] While therapeutically active, many drugs
are resistant to degradation.[2] Therefore pharmaceuticals and
their metabolites often have the ability to bioconcentrate and
bioaccumulate in the environment and could potentially pose a
toxic threat to a wide range of non-target organisms.[2] In addition
to their persistence, these novel contaminants are being constantly
released into the environment, mainly through the release of efflu-
ents from municipal wastewater treatment plants.[3,4] Concentra-
tions of individual pharmaceuticals in marine surface waters, rivers,
and lakes throughout North America, continental Europe, the UK,
and Ireland have been found to be in the high ng/l to the low
mg/l range.[3,5–7] In particular, two commonly used drugs, the non-
steroidal anti-inflammatory (NSAID) drug diclofenac and the lipid-
lowering agent gemfibrozil (GEM), are often found in receiving
waters worldwide, including Ireland.[5–7]

With its analgesic, anti-inflammatory, and antipyretic properties,
diclofenac is commonly prescribed to treat acute and chronic pain
as well as inflammatory conditions.[8] Its mode of action includes
the inhibition of prostaglandin synthesis by inhibiting both
cyclooxygenase-1 and�2 (COX-1 and COX-2).[8] In wildlife, diclofe-
nac has been shown to cause lethal effects: vultures in Asia which
scavenged on diclofenac-treated livestock died from acute renal
failure.[1,9] In addition, studies have demonstrated sublethal adverse
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effects and bioaccumulation potential in aquatic organisms, such as
fish, under environmentally relevant concentrations.[10–12]

GEM, a lipid-lowering fibrate, is used by humans to decrease
plasma triglyceride and cholesterol concentrations. In general,
fibrates induce fatty acid uptake, which are then converted to
acyl-CoA derivatives and finally catabolized by b-oxidation.[13]

These actions are mediated by the peroxisome proliferators-
activated receptors (PPARs). GEM can induce peroxisome prolifer-
ation by binding to the PPAR a, b and g.[13] In addition, GEM has
potential to bioaccumulate and was found to reduce the plasma
testosterone concentration in male goldfish.[14,15]

The widespread use of pharmaceutical products and their con-
tinuous release into the aquatic environment means that there is
a need for assessment of their possible ecotoxicological effects
on non-target organisms.[1] Currently, standard toxicity tests and
a wide range of molecular biomarkers are used. Previously, biomar-
kers such as glutathione transferase (GST) activity, metallothionein,
lipid peroxidation (LPO), DNA damage, and vitellin-like proteins
have demonstrated that exposure to both pharmaceuticals signifi-
cantly affects detoxification and defense systems of blue mus-
sels.[16] However, these tests are either based on short-term acute
toxicity, which is only relevant when accidental discharge of the
drug occurs,[2] or cover only particular aspects of a general stress
response, making them unsuitable to identify potential effects of
pharmaceuticals. Furthermore, many biomarkers are influenced
by multiple confounding factors, which may limit their transfer
from laboratory to field studies.[17] With a proteomic approach, a
more detailed understanding of the toxicology of the compounds
can potentially be achieved since a relatively large number of pro-
teins can be analyzed simultaneously.[18] Changes in the protein ex-
pression signature (PES) of an organism or tissue can help identify
specific responses to a stressor, such as pharmaceuticals.[19] This
could help not only in the understanding of the mechanisms of
action, but also in the recognition of novel, specific biomarkers. In
the past, various laboratory and field studies have demonstrated
successful application of a proteomic approach in a range of organ-
isms, including bivalves.[20–24] Marine bivalves, such as bluemussels
(Mytilus spp.) are a popular bioindicator species, widely used in
environmental monitoring programmes such as the Mussel Watch
Programme.[25] Due to their sessile life style, worldwide distribution
and filter-feeding behaviour, they are a widely used model bioindi-
cator species for pollution in estuaries and marine waters.[26]

This study aimed to investigate the potential effects of two com-
monly found human pharmaceuticals, diclofenac and GEM, on ma-
rine mussels (Mytilus spp.) exposed for 14days to environmentally
relevant and elevated concentrations of the compounds (1mg/l and
1000mg/l, respectively). In addition, mussels were maintained for an
extra week to investigate the potential for recovery from exposure
to pharmaceuticals. Chronic sublethal effects in the digestive gland
of Mytilus spp. were examined by investigating PES as well as by
the determination of three biomarkers. This work could give
insights into mechanisms involved in the response of aquatic
non-target organisms to these two drugs. To our knowledge, this
is the first study using proteomics to assess chronic sublethal
effects of diclofenac and gemfibrozil in blue mussels.

Material and methods

Sampling and experimental design

Blue mussels (Mytilus spp.) were collected in June 2010 from a
pristine site in the west of Ireland (Lettermullan, Co. Galway;

53�1403800N 9�4303400W). The coastline of Ireland is included in
the large mussel hybrid zone of M. edulis and M. galloprovincialis.
This zone contains a mixture of pure, hybrid and introgressed
individuals.[27] Since there is no single morphological charac-
teristic that can be reliably used to separate this mixed popula-
tion, we were not able to classify the exact species used in this
study. However, all mussels sampled came from the same popu-
lation from a specific location. Mussels (4–5 cm) were trans-
ported to the laboratory, cleaned and acclimatized for 7 days in
dechlorinated artificial sea water (ASW) at 13 �C (� 1 �C) with a
12-h light/dark regime. Water temperature (in �C), pH, oxygen
and nutrients (ammonia (NH4

+ in mg/l), nitrate (NO3 in mg/l),
and nitrite (NO2 in mg/l)) were measured at the study site
and twice a week during exposures. Mussels were fed daily with
a commercial solution containing Isochrysis algae at the
recommended 2% maximum feed conversion rate during accli-
matization and exposure. Individuals were exposed to two
concentrations of GEM and diclofenac (1 mg/l and 1000 mg/l,
respectively) under semi-static conditions with daily water
change. The drugs were dissolved in dimethyl sulphoxide
(DMSO) and added to the tanks after each water change, with
a final DMSO concentration of 0.001% (v/v). Mussels in control
(ASW) and solvent control (ASW+ 0.001% DMSO) tanks were
included in the experimental design. Separate exposures to
either drug were run simultaneously. In order to minimize expo-
sure via food, mussels were fed 3 h before the water was
changed and fresh contaminant added. To evaluate the poten-
tial change in concentration of the compound over a 24-h period,
the actual concentration of each compound was monitored on
three separate occasions (days 7, 10, and 14) during the
experiment. To do this, 500-ml water samples were taken at 0
and 24 h for each concentration of each drug. All treatments,
as well as control and solvent control groups, consisted of 3 rep-
licate tanks. The exposure lasted for 14 days; additionally mus-
sels were left for another 7 days without any treatment. After 7,
14, and 21 days, the visceral mass was dissected and frozen at
�80 �C for further analysis. To determine the Fulton condition
factor (CF = ((W/L*10)) the total weight (W in g) and the shell
length (L in cm) of each mussel was determined.

Tissue preparation

For each of the three sampling times (days 7, 14, 21), there
were four treatments (control, solvent control, concentration
1 (1 mg/L), concentration 2 (1000 mg/L)) with each treatment
containing three treatment tanks as replicates. Three mussels
were taken from each treatment tank, the digestive gland
dissected over ice and pooled together, resulting in a sample
size of 72. The samples were homogenized in a Tris–HCl
buffer containing 10mM Tris–HCl, 0.5M sucrose, 0.15M potas-
sium chloride (KCl), 1mM Ethylenediaminetetraacetic acid
(EDTA) and 1mM Phenylmethanesulfonyl fluoride (PMSF) with
a pH of 7.2 at a weight: volume ratio of 1:4. Subsamples of
the homogenate were frozen at �80 �C for later analysis of
lipid peroxidation (LPO) and DNA damage. The remaining
homogenate was centrifuged at 15 000 g for 1 h at 4 �C and
the supernatant (S15) was separated from the pellet, frozen
at �80 �C until required. These were used to analyze the
soluble protein fraction by two-dimensional electrophoresis
(2-DE) and to determine glutathione transferase (GST) activity.
The total protein content in the supernatant and homogenate
was evaluated by the Bradford method.[28]
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Biomarker assessment

Glutathione transferase (GST) activity

GST activity was determined using the method of Habig et al.[29]

Fifty microlitres of S15 from digestive gland was added to 200 ml
of 1mM reduced glutathione (GSH) and 200ml of 1mM 1-chloro-
2, 4-dinitrobenzene in a buffer of 10mM Hepes-NaOH containing
125mM NaCl, pH 7.2. Absorbance at 340 nm was read spectro-
photometrically after 0, 1, 5, 10, and 20min and data were
expressed as mmoles GSH transferase activity/ min/ mg protein.

Lipid peroxidation (LPO)

Lipid peroxidation was measured by the thiobarbituric acid method
adapted fromWills.[30] One hundred and fiftymicrolitres of digestive
gland homogenate was added to 300 ml 10% trichloroacetic acid
(TCA) containing 1mM iron sulfate (FeSO4) and 150 ml 0.67%
thiobarbituric acid (TBA). After heating for 10min, samples were
centrifuged for 5 s at 10 000g to remove precipitate. Two hundred
microlitres of sample was added to a black 96-well microtitre plate
and fluorescencewasmeasured at 515 excitation/ 545nm emission.
Blanks and standard solutions of tetramethoxypropane were
prepared in homogenate buffer. Thiobarbituric acid reacting
substances (TBARS) were expressed as mmoles/mg protein.

DNA damage (strand break)

DNA damage was assessed by adapting the method of Olive.[31]

Twenty five microlitres of digestive gland extract was added to
200ml 2% sodium dodecyl sulfate (SDS) containing 10mM EDTA,
10mM Tris–base and 40mM sodium hydroxide (NaOH). After
1min, 200ml of 0.12M potassium chloride (KCl) was added and
the solution was heated for 10min at 60 �C. After 30min cooling
at 4 �C, samples were centrifuged at 8000 g for 5min at 4 �C.
Fifty microlitres homogenate was added to 150ml of Hoescht
(bisBenzimide) containing 0.4M NaCl, 4mM sodium cholate and
0.1M Tris–acetate, pH 8.5–9. After 5min mixing fluorescence at
360 nm excitation/450 nm, emission was determined. Homogeni-
zation buffer was used as a blank. Salmon sperm DNA standards
(Sigma Aldrich) were added to a buffer solution containing
50mM Tris–acetate and 1mM EDTA, pH 8, and the formation of
DNA strand breaks were expressed as mg/mg protein.

Proteomic analyses

Two-dimensional gel electrophoresis (2-DE) and staining

A volume of S15 containing 85 mg protein was precipitated with a
final concentration of 10% TCA and centrifuged at 11 000 g for
3min at 4 �C. Resultant protein pellets were resuspended in
40ml water and precipitated with ice-cold acetone to wash away
traces of TCA. Samples were then centrifuged at 11 000 g for
3min at 4 �C. The protein pellet was resuspended in 125ml rehy-
dration buffer (7M urea, 2M thiourea, 2% CHAPS, 1.2% bis
(2-hydroxyethyl)-disulfide, 4% ampholytes (3–10 for IEF, GE
Healthcare) and a trace of bromphenol blue) prior to rehydration
of 7 cm IPG strips, pH 3–10 (GE Healthcare), for 18 h using an
Ettan IPGphor III machine (Amersham Bioscience) according to
the manufacturer’s guidelines. Focused strips were equilibrated
in 2% D/L-dithiothreitol for 20min followed by 2.5% iodoaceta-
mide for 20min, both in equilibration buffer (6M urea, 2% SDS,
20% glycerol and 0.375M tris-buffer, pH 8.8). The equilibrated
strips were placed on top of a 12% SDS-PAGE gel and proteins
were separated. Protein spots were stained with colloidal

coomassie.[32] The stained gels were then scanned using an Al-
pha Innotech scanner. To take biological variation into account
three biological replicates were used (a total of 72 gels).

Protein spot analysis and in-gel digestion of proteins from 2-DE gels

Progenesis SameSpot proteomic analysis software (Non Linear
Dynamics) was used to identify significant changes in protein spot
intensity. Statistically significant different spots were identified
according to their alteration in response to each treatment
(i.e. GEM or diclofenac) at each exposure time (days 7, 14, or 21).
Alterations were considered statistically significant when p≤0.05
according to ANOVA and a fold change of≥1.5 relative to both con-
trol and solvent control was observed. In addition to statistical signif-
icance, principal component analysis (PCA- performed using all the
spots present on the gel) was used to choose among significantly
different spots for protein identification, keeping only the spots that
contributed most to the difference between treatment and control.

Selected spots were manually excised using a clean scalpel and
used for in-gel digestion with trypsin according to PO 25MS. The
extracted peptides were loaded onto a R2 micro column (RP-C18
equivalent) where they were desalted, concentrated, and eluted
directly onto a MALDI plate using a-ciano-4-hydroxycinamic acid
(5mg/ml, CHCA) as the matrix solution in 50% acetonitrile and
5% formic acid. Mass spectra of the peptides were acquired with
positive reflectron MS and MS/MS modes using a MALDI-TOF/
TOF MS instrument (4800 plus MALDI TOF/TOF analyzer). The
collected MS and MS/MS spectra were analyzed in combined
mode by using the Mascot search engine and the NCBI database
restricted to 50 ppm peptide mass tolerance and no taxonomy
restrictions (PO 25MS).

Chemical analyses

Methods for extraction and analysis of GEM and diclofenac were
adapted from those described by Lacey et al.[6] Briefly, water
samples were first filtered through Whatman glass fibre filters
(1.2mm) and adjusted to pH4 using sulphuric acid. Pharmaceuticals
were extracted from water samples using Phenomenex Strata-X
solid phase extraction cartridges (200mg, 6ml). After cartridge con-
ditioning, samples (500ml) were loaded, rinsed with 6ml water,
dried for 30min, eluted with 9ml ethyl acetate/acetone (50:50)
and reconstituted in 0.25ml of 13mM ammonium acetate with
20% acetonitrile. Separations were carried out with an Agilent
1200 LC system (Agilent Technologies, Palo Alto, CA, USA) using a
Waters Sunfire C18 column (3.5mm 150 x 2.1mm I.D.). Gradient elu-
tion of 13mM ammonium acetate with 20% acetonitrile (A) and
100% acetonitrile (B) was carried out at a flow rate of 0.3ml/min
over a total run time of 30min including 15min re-equilibration
time. Sample injection volume was 10ml. Mass spectrometry was
performed using a Bruker Daltonics HCT ion trap MS with an
electrospray ionization interface at atmospheric pressure (Bruker
Daltonics, Coventry, UK). The LC-ESI-MS/MS system was controlled
using Bruker Compass HyStar version 3.2. Multiple reaction moni-
toring (MRM) was employed for mass spectrometric analysis of
GEM and diclofenac in negative mode.

Data analyses

For statistical analysis of the condition factor, nine individual mus-
sels per treatment and time-point were taken. Data are expressed
as mean� standard deviation (stdev). A one-way ANOSIM
using PRIMER (version 6) was performed to evaluate differences
between the combination of treatment groups and sampling time.
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A two-way ANOVA with the factors time, treatment and interaction
‘time x treatment’ as variables using STATISTICA was used. The
Shapiro-Wilk test and the Levene’s test were used to assure normal
distribution and homogeneity of the variances of the data. In cases
where significance differences between the factors were detected,
the Bonferroni test was used as a post hoc test. The level of signifi-
cance differences were set at p≤ 0.05.

Results

Throughout the exposure time all mussels appeared to be in
good health with their siphons fully extended indicating normal
feeding by filtration. The CF of the mussels did not change signif-
icantly over the experimental time or between different treat-
ments (Figure 1). During exposure, a mortality rate of only
0.84% was observed, with one fatality found after 9, 10, and
18 days and three fatalities after 19 days. These fatalities occurred
in or after diclofenac exposure. Temperature, salinity, oxygen, pH
and nutrients (NH4

+, NO3 and NO2) were controlled over the
experimental time. Average water temperature in each exposure
was 13 �C (� 0.5) and 13.4 �C (� 1.5) for GEM and diclofenac ex-
posure, respectively. Between the two simultaneous experiments
a slight difference in water temperature was observed, however
the largest difference in temperature was only 2.4 �C. No differ-
ence for the other parameters (salinity, pH, oxygen and nutrients

(NH4
+, NO3 and NO2)) were observed within each exposure or

between both experiments.

Chemical analyses

Pharmaceutical concentrations were determined for each expo-
sure tank (Table 1) at time 0 h, on three separate occasions during
the experiment (days 7, 10, and 14) and after 24 h. No pharma-
ceutical residues were detected in any of the control or solvent
control tanks. Recoveries for the solid-phase extraction of GEM
and diclofenac in artificial seawater were 63% (RSD 6.8%, n = 6,
spiking level 1mg/l) and 44.7% (RSD 2.4%, n =6 spiking level
1mg/l), respectively. For the environmentally relevant concentra-
tion of 1mg/l GEM a reduction in actual concentration over 24 h
was observed (Table 1). Similarly, a reduction of 1mg/l diclofenac
was observed at days 10 and 14. However, at day 7, the actual
concentration measured after 24 h exposure was higher than
the actual concentration measured at 0 h when the chemical
was initially added to the tanks. This was also observed for the
elevated concentration of 1000mg/l of GEM and diclofenac, with
the exception of day 14 where a reduction of 1000mg/l diclofenac
was observed.

Biomarker analyses

GST activity, a biomarker for stress,[33] was significantly increased
at day 21, a week after GEM exposure. In addition, GST expression

Figure 1. CF (mean� stdev) of blue mussels (Mytilus spp.) exposed to 1mg/l and 1000mg/l gemfibrozil (grey bars) and diclofenac (white bars).

Table 1. Measured concentrations of GEM and diclofenac. Water samples were taken three times during the experiment after adding the chemical
to the water column (0 h) and after 24 h immediately before the water change. Concentrations are shown in mg/L as mean� standard error

7 days 10 days 14 days

GEM 0h 24 h 0 h 24 h 0 h 24 h

1 mg/L 0.59� 0.04 0.13� 0.05 1.00� 0.04 0.68� 0.04 0.75� 0.04 0.32� 0.04

1000mg/L 290.43� 44.11 383.46� 42.87 270.79� 41.93 358.26� 40.73 251.07 �42.22 357.76� 40.74

7 days 10 days 14 days

Diclofenac 0 h 24 h 0 h 24 h 0 h 24 h

1 mg/L 0.65� 0.07 0.87� 0.08 0.75� 0.06 0.60� 0.06 0.78� 0.06 0.65� 0.06

1000mg/L 111.14� 73.68 241.14� 68.47 80.80� 69.21 409.99� 61.48 340.32� 62.76 102.06� 59.95
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was significantly increased in mussels previously exposed to
1mg/l and 1000mg/l of GEM as well as in the solvent control in
comparison to control mussels at day 21 (Figure 2). However,
no significant changes were observed for both biomarkers of
damage, LPO and DNA damage, during GEM exposure (Figure 3).
In contrast, GST expression was significantly decreased at day 21
after diclofenac exposure (Figure 4) with a significant decrease in
mussels exposed to 1000 mg/l at day 14 in comparison with
control and solvent control mussels. In addition, decreased levels
of LPO after 21 days of diclofenac exposure were observed
(Figure 5). Similarly, significantly lower DNA damage was
measured at days 14 and 21 (Figure 6). Significantly lower DNA
damage at day 14 was also measured in mussels exposed to
1mg/l and 1000mg/l diclofenac in comparison with solvent
control. In contrast, significantly higher DNA damage was found
in mussels exposed previously to 1000mg/l diclofenac at day 21
when compared to control and solvent control animals.

Proteomic analyses

Proteins were separated in well-defined spots, as seen with colloi-
dal coomassie staining (Figure 7). A total of 266 spots per 2-DE
gel were analyzed using the Progenesis software.

In total, 12 spots were found to be significantly increased or
decreased by diclofenac and/or GEM treatment (ANOVA
p ≤ 0.05). All spots showed a ≥ 1.5-fold change for at least one
condition relative to control as well as grouping with the treatment
in PCA. Four spots were found to be regulated specifically by diclo-
fenac, one of which was up-regulated at both concentrations and
over the full experimental time (Table 2). Two of three spots specif-
ically modified by GEM exposure showed an up-regulation after 14
and 21days of treatment. Five spots were shown to be significantly
up and down-regulated by both pharmaceuticals.

Among the spots of interest, seven, including up- and down-
regulated spots were successfully identified using liquid
chromatography-tandem mass spectrometry (LC-MS/MS) analysis
(Table 3). Identified spots belonging to various functional groups
could be related to general stress response, oxidative stress and
protein folding. Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH; id: 0155), aconitase 1 (eID: 0005), and class 1 alcohol
dehydrogenase (ADH), beta subunit (id: 0169) often implicated in
oxidative stress responses were identified. The metabolic enzyme

GAPDH (id: 0155) was significantly down-regulated at both concen-
trations by the 14-day diclofenac exposure. Aconitase 1 (eID: 0005)
was also significantly down-regulated by diclofenac after 7 and
14days of exposure. In addition it was significantly up-regulated
at 1mg/l GEM after 21 days. The class 1 ADH, beta subunit
(id: 0169) showed a significant up-regulation at both concentrations

Figure 2. GST activity (mean� stdev) of bluemussels exposed to 1mg/l and
1000mg/l GEM. Significance set at p≤0.05 with (a) indicating differences to
day 7, (b) to day 14 and (*) significant to control within the day.

Figure 3. Expression of lipid peroxidation (LPO) and DNA damage
(mean� stdev) of blue mussels exposed to 1mg/l and 1000mg/l GEM.
Significance set at p ≤ 0.05.

Figure 4. Expression of GST activity (mean� stdev) of blue mussels
exposed to 1mg/l and 1000mg/l diclofenac. Significance set at p≤ 0.05
with (a) indicating differences to day 7, (b) to day 14 and (*) significant
to control within the day.
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Figure 5. Expression of lipid peroxidation (LPO) (mean� stdev) of blue
mussels exposed to 1mg/l and 1000mg/l diclofenac. Significance set at
p≤ 0.05 with (a) indicating differences to day 7 and (b) to day 14.

Figure 6. Expression of DNA damage (mean� stdev) of blue mussels
exposed to 1mg/l and 1000mg/l diclofenac. Significance set at p≤ 0.05
with (b) indicating differences to day 14, (c) to day 21 and (*) significant
to control and (#) within the sampling day.

Figure 7. Annotated 2-DE image with the seven spots identified by LC-
MS/MS (marked with their id number). The annotated spots were selected
by combined PCA and ANOVA (p ≤ 0.05 and with a fold change> 1.5).
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after 21days pf GEM and diclofenac exposure. In addition it was
significantly up-regulated after 7 days of diclofenac exposure. The
two peptidyl prolyl isomerases (PPIase), peptidyl prolyl cis-trans
isomerase B (id: 0250) and peptidyl-prolyl cis-trans isomerase 5
precursor (id: 0265), showed a difference in their expression during
exposure to diclofenac and GEM. While peptidyl prolyl cis-trans
isomerase B was significantly up-regulated at both concentrations
of GEM after 21days, peptidyl-prolyl cis-trans isomerase 5 precursor
showed a significant down-regulation at 1000mg/l after 14 and
21days of diclofenac exposure. An imaginal disk growth factor
(IDGF) precursor (id: 0112) showed a significant up-regulation after
21days to both concentrations of both pharmaceuticals while a
significant up-regulation by both concentrations over the entire
exposure to diclofenac was seen for the hypothetical protein
BRAFLDRAFT_282392 (id: 0229) (Figure 8).

Discussion

In the current study no negative effects of CF were observed and
animals showed a generally healthy and unstressed behaviour,
with their siphons extended indicating filtering. In addition CF
values were in the same range as those previously published
for wild animals taken from the same mussel population.[34]

Chemical analyses

Selection of suitable chemical concentrations for exposure is a
crucial aspect of experimental design. In this study, a nominal
environmentally relevant concentration (1mg/l) was chosen as well
as an elevated concentration of 1000mg/l. Both concentrations of
the pharmaceuticals have been previously shown to induce oxida-
tive stress as well as damage in tissues of the blue mussel.[16]

Chemical analysis of the pharmaceuticals during the exposure
showed the actual concentration of the nominal 1 mg/l concen-
trations at time 0 varied from 0.59–1mg/l and 0.65–0.78 mg/l for
GEM and diclofenac, respectively. This is within the range found
in the aquatic environment.[6] Similarly, for the 1000mg/l exposed
mussels, the actual concentrations for both drugs at time 0 was
around two-thirds lower than the nominal concentration. In addi-
tion it was observed that for the 1000mg/l mussels exposed to
both drugs (except diclofenac, 14 day), a higher actual concentra-
tion of the drug was found after 24 h than initially measured at
time 0. This result was unexpected as most studies report a
decrease in actual concentration over time, as was observed at

Table 3. Identified protein spots using LC-MS/MS

Spot ID Protein Acession number/
Mw (kDa)

Protein Scorea /
Protein Confidence

Interval (%)

Total Ion Score/
Total Ion Confidence

Interval (%)

Sequence
Coverage

(%)

Number of MS/MS
patterns assigned

to peptidesb

eID:0005 Aconitase 1, soluble gi|213982963/ 9.144 188/ 100 188/ 100 12 2

[Xenopus (Silurana)

tropicalis]

ID:0229 Hypothetical protein

BRAFLDRAFT_282392

gi|260831810/ 26.970 262/ 100 238/ 100 24 2

[Branchiostoma floridae]

ID:0169 Class I alcohol dehydrogenase,

beta subunit

gi|58332712/ 40.149 201/ 100 191/ 100 21 2

[Xenopus (Silurana) tropicalis]

ID:0112 IDGF precursor gi|274327724/ 48.622 93/ 99 86/ 100 16 1

[Acyrthosiphon pisum]

ID:0155 GAPDH gi|34329029/34.115 144/ 100 121/ 100 18 1

[Plectospira myriandra]

ID:0265 Peptidyl-prolyl cis-trans

isomerase 5 precursor

gi|225717940/ 17.942 446/ 100 390/ 100 42 5

[Caligus clemensi]

ID:0250 Peptidyl prolyl cis-trans

isomerase B

gi|289064185/ 22.600 138/ 100 103/ 100 53 1

[Conus novaehollandiae]

aThe protein score probability limit (where p< 0.05) is 85.
bPeptides with confidence interval above 95% were considered.

Figure 8. Representative 2-DE image of the spot (id: 0229) in the
digestive gland of Mytilus spp. exposed to diclofenac. This spot was
identified by LC-MS/MS as Hypothetical protein BRAFLDRAFT_282392
[Branchiostoma floridae].
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the 1mg/l exposure concentration, resulting from photodegrada-
tion, adsorption onto surfaces within the tank and absorption by
the animal. A study by Cope et al.[35] showed that freshwater
mussels of the superfamily Unionoidae successfully avoided
exposure to the highest cadmium concentration tested by clos-
ing their valves. However this toxicant avoidance response was
only maintained for the first 24 h of the exposure[35] and it can
be assumed that such a response could be excluded in long-term
exposures. Compounds with a log Kow higher than or equal to
three are considered to have the potential to bioaccumulate in
biological tissue.[36] This is dependent on several other factors,
however, such as uptake and depuration kinetics as well as differ-
ent rates of metabolism in various organisms.[37] With a log Kow of
4.77, it was assumed that GEM has the potential to bioaccumu-
late and or bioconcentrate in mussel tissue as has previously
shown in goldfish.[15] In the current study, the possibility cannot
be excluded that mussels may have reached their uptake capac-
ity during the first week of exposure at this high concentration
and, once saturated, subsequently may have begun to release
the excess drug back into the water. This might, conceivably,
provide a second route of exposure under high-dose conditions.
Although mussels were fed before the water change at 24 h to try
to reduce the influence of feeding on drug uptake, this may be a
factor contributing to these results by offering a second route of
exposure for the mussels. As there has been a general lack of
data investigating the fate, uptake and effects of pharmaceuticals
in aquatic organisms, this hypothesis is currently speculative.

Biomarker and proteomic responses

Exposure to GEM and diclofenac, respectively, induced oxidative
stress in mussels, indicated by GST as an enzymatic biomarker of
stress. A significant reduction of GST activity in mussels at day 21,
previously exposed to diclofenac, was found. In addition, lower
levels of LPO and DNA damage at day 21 suggest potential recov-
ery from diclofenac exposure. These results confirm that diclofenac
potentially induces oxidative stress and cellular damage at environ-
mentally (1mg/l) and elevated (1000mg/l) concentrations as seen in
a previous study.[16] In contrast to diclofenac exposure, mussels
showed a higher GST level at day 21, after a 7-day recovery phase
from GEM but no significant changes in the antioxidant system
(LPO and DNA damage) were evident.
Environmental proteomics is a potentially robust and powerful

tool for identification of mechanisms of interaction between
toxicants and proteins.[38] Several studies have shown successful
application of environmental proteomics after exposure to a vari-
ety of environmental contaminants (PCBs, PAH, heavy metal, and
crude oil) using bivalve molluscs.[39] To our knowledge, this is the
first proteomic study showing effects of the commonly found
pharmaceuticals (diclofenac and GEM) over the course of a
14-day exposure, followed by a 7-day recovery phase.
Twelve spots were observed to be significantly changed by

exposure to one and/ or both of the pharmaceuticals. Of these,
seven proteins were successfully identified by LC-MS/MS and
these belong to several protein families with different physiolog-
ical functions. One of the proteins is GAPDH (id: 0155), an enzyme
catalyzing the sixth step of glycolysis.[24] However, in addition to
its role in glucose metabolism it carries out other functions in
cellular processes.[24] Under oxidative stress a higher amount of
the antioxidant cofactor NADPH is required, which is produced
mainly by the pentose phosphate pathway.[40] Inactivation of
GAPDH allows glucose metabolism to be diverted temporally to

the pentose phosphate pathway, enabling the cell to generate
more NADPH.[40] In the present study, GAPDH was significantly
down-regulated at both concentrations of diclofenac after
14days of exposure, suggesting oxidative stress due to the treat-
ment with diclofenac. A hypothetical protein, BRAFLDRAFT_282392
(id: 0229), was significantly up-regulated at both concentrations
of diclofenac exposure. This protein contains a domain (cd00311)
that is linked to triose-phosphate isomerase (TIM), also a glycolytic
enzyme, which catalyzes the interconversion of the triose
phosphate isomerase dihydroxyacetone phosphate (DHAP) and
D-glyceraldehyde-3-phosphate (http://www.ncbi.nlm.nih.gov/gene/
7248006). DHAP can be used to form fructose bis-phosphate, which
is also required for the pentose phosphate pathway in order to
activate NADPH formation. A further indicator of oxidative stress is
the significant up-regulation of the class 1 ADH, beta subunit
(id: 0169). The ADH protein superfamily catalyzes oxidation of vari-
ous xenobiotics and endogenous alcohols to aldehydes. ADH1 is
the classic liver enzyme responsible for ethanol metabolism[41] and
has been shown to be induced by di(2-ethylhexyl) phthalate (DEHP)
in Chironomus.[42] In addition, the Krebs cycle enzyme acotinase is a
sensitive and specific marker for oxidative stress.[43] The identified
aconitase 1 (eID: 0005) was significantly down-regulated during
diclofenac exposure at 1000mg/l at 14 and 21days as well at 1mg/l at
14days. A decrease in its activity indicates oxidative stress due to
elevated production of reactive oxygen species (ROS).[43] This has
been previously shown to be also a sensitive marker for temper-
ature and heavymetal stress in oysters.[43] These results suggest that
mussels may still experience oxidative stress, even after termination
of exposure.

While both peptidyl prolyl cis-trans isomerase 5 precursor
(id: 0265) and peptidyl prolyl cis-trans isomerase B (id: 0250)
belong to an enzyme family of folding catalysts, the PPIases,[44]

they were differently expressed during exposures to diclofenac
and GEM. PPIases are structurally conserved throughout evolu-
tion and commonly found in prokaryotes and eukaryotes.[44] With
their chaperone-like activity they catalyze isomerization of
proline peptide bonds from cis to trans, a process which is not
only important for de novo protein folding, but also during the
assembly of multidomain proteins.[44] In addition, PPIases show
an affinity to the immunosuppressive drug cyclosporine A (CsA),
which is widely used in prophylaxis and in treatment of allograft
rejection following human organ transplants.[45] Furthermore,
several cyclophilins, one of the PPIase family, have shown an
extension of their role as molecular chaperones. Some of them
have been identified as stress-inducible proteins which interact
with heat shock proteins (hsps) in response to environmental
stress, like thermal stress, ultraviolet irradiation and changes in
the cell environment pH.[46] It is known that, in stressed cells, the
level of unfolded, partially aggregated proteins increases and
therefore also the need of hsps and other molecular chaperones
in order to correct folding or prevent aggregation.[46] A significant
induction of peptidyl prolyl cis-trans isomerase B after GEM expo-
sure may indicate a role in repairing damage caused by protein
misfolding. However, peptidyl prolyl cis-trans isomerase 5 precur-
sor showed a different expression pattern, being down-regulated.
It is possible that the peptidyl prolyl cis-trans isomerase 5 precursor
has been modified to another form of the protein in response to 14
and 21days of exposure to 1000mg/l diclofenac, but this question
will require further study. In the past, PPIase have been successfully
identified in response to diseases and contamination (like PAHs) in
bivalve molluscs which supports an important role for them in
stress response.[47–49]
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An IDGF, the IDGF precursor (id: 0112), was found to be signif-
icantly up-regulated after 21 days at both concentrations in both
exposures of GEM and diclofenac. IDGFs have been previously
identified and characterized in the Ecdysozoan model organism
Drosophila melanogaster, which includes at least five family
members and their characterization showed a high similarity to
chitinase enzymes.[50] Furthermore it has been shown that IDGFs
belong to a protein family which includes mammalian secreted
glycoproteins of ill-defined function.[50] The human homolog
HC gp-39 (16–23% identical with IDGFs) has been identified as
a secretory product of articular chondrocytes and synovial cells
from patients with arthritis.[51] It is also one of the antigens stim-
ulating the autoimmune response in rheumatoid arthritis.[52]

From day 14 to day 21 mussels were left without treatment in
order to investigate their potential for recovery. Up-regulation
of the IDGF precursor in Mytilus spp. at day 21 may possibly
indicate an immune response to an inflammatory state triggered
by both pharmaceuticals at both concentrations.

In conclusion, this study demonstrates use of an environmental
proteomic approach in order to detect a unique PES for blue
mussels in response to exposure to two commonly used human
pharmaceuticals. This approach reveals potential toxicity mechan-
isms for both diclofenac and GEM in a non-target organism. Both
drugs induced oxidative stress, involved molecular chaperones
and seem to have had negative effects on the immune response
of blue mussels. Oxidative stress was also observed at the
enzymatic level as evidenced by GSTs. In addition, changes in the
PES over time suggested thatmussels were still partially experiencing
oxidative stress for up to seven days post exposure.

Acknowledgements

The authors thank the Irish environmental protection agency
(EPA) for funding this research under the NDP funded STRIVE
programme. Additionally the authors would like to thank Dr. Ana
Maria Varela Coelho from the Mass Spectrometry Laboratory,
ITQB-UNL, Portugal for her contribution to protein identification
and Dr. Eugene McCarthy, from the Proteomics Centre, GMIT,
Ireland for his advice during the experimental and proteomic work.

References
[1] EEA. Pharmaceuticals in the Environment, EU Environment Agency,

Copenhagen, Vol. 1, 2010, pp. 34.
[2] L.H.M.L.M. Santos, A. Fachini, A. Pena, C. Delerue-Matos, M.C.Montenegro.

Ecotoxicological aspects related to the presence of pharmaceuticals in
the aquatic environment. J. Hazard. Mater. 2010, 175, 45.

[3] C.G. Daughton, T.A. Ternes. Pharmaceuticals and personal care pro-
ducts in the environment: Agents of subtle change? Environ. Health
Perspect. 1999, 107, 907.

[4] K. Fent, A.A. Weston, D. Caminada. Ecotoxicology of human pharma-
ceuticals. Aquat. Toxicol. 2006, 76, 122.

[5] B. Halling-Sørensen, S. Nors Nielsen, P.F. Lanzky, F. Ingerslev, H.C.
Holten Lützhøft, S.E. Jørgensen. Occurrence, fate and effects of phar-
maceutical substances in the environment - a review. Chemosphere
1998, 36, 357.

[6] C. Lacey, G. McMahon, J. Bones, L. Barron, A. Morrissey, J.M. Tobin. An
LC–MS method for the determination of pharmaceutical
compounds in wastewater treatment plant influent and effluent
samples. Talanta 2008, 75, 1089.

[7] C.D. Metcalfe, X.S. Miao, B.G. Koenig, J. Struger. Distribution of acidic
and neutral drugs in surface waters near sewage treatment plants
in the lower Great Lakes, Canada. Environ. Toxicol. Chem. 2003,
22, 2881.

[8] T.J. Gan. Diclofenac: An update on its mechanism of action and
safety profile. Curr. Med. Res. Opin. 2010, 26, 1715.

[9] J.L. Oaks, M. Gilbert, M.Z. Virani, R.T. Watson, C.U. Meteyer, B.A. Rideout,
et al. Diclofenac residues as the cause of vulture population decline in
Pakistan. Nature 2004, 427, 630.

[10] B. Hoeger, B. Köllner, D.R. Dietrich, B. Hitzfeld. Water-borne diclofenac
affects kidney and gill integrity and selected immune parameters in
brown trout (Salmo trutta Fario). Aquat. Toxicol. 2005, 75, 53.

[11] J. Schwaiger, H. Ferling, U. Mallow, H. Wintermayr, R.D. Negele. Toxic
effects of the non-steroidal anti-inflammatory drug diclofenac. Part I:
histopathological alterations and bioaccumulation in rainbow trout.
Aquat. Toxicol. 2004, 68, 141.

[12] R. Triebskorn, H. Casper, A. Heyd, R. Eikemper, H.R. Köhler, J. Schwaiger.
Toxic effects of the non-steroidal anti-inflammatory drug diclofenac.
Part II: Cytological effects in liver, kidney, gills and intestine of rainbow
trout (Oncorhynchus mykiss). Aquat. Toxicol. 2004, 68, 151.

[13] B. Staels, J. Dallongeville, J. Auwerx, K. Schoonjans, E. Leitersdorf, J.-C.
Fruchart. Mechanism of action of fibrates on lipid and lipoprotein
metabolism. Circulation 1998, 98, 2088.

[14] C. Mimeault, V.L. Trudeau, T.W. Moon. Waterborne gemfibrozil chal-
lenges the hepatic antioxidant defense system and down-regulates
peroxisome proliferator-activated receptor beta (PPARb) mRNA
levels in male goldfish (Crassius auratus). Toxicology 2006 228, 140.

[15] C. Mimeault, A.J. Woodhouse, X.S. Miao, C.D. Metcalfe, T.W. Moon, V.
L. Trudeau. The human lipid regulator, gemfibrozil bioconcentrates
and reduces testosterone in goldfish, Carassius auratus. Aquat. Toxicol.
2005, 73, 44.

[16] W. Schmidt, K. O’Rourke, R. Hernan, B. Quinn. Effects of the pharmaceu-
ticals gemfibrozil and diclofenac on the marine mussel (Mytilus spp.)
and their comparison with standardized toxicity tests.Mar. Pollut. Bull.
2011, 62, 1389.

[17] T. Monsinjon, T. Knigge. Proteomic applications in ecotoxicology.
Proteomics 2007, 7, 2997.

[18] B.P. Bradley, E.A. Shrader, D.G. Kimmel, J.C. Meiller. Protein expression
signatures: An application of proteomics. Mar. Environ. Res. 2002,
54, 373.

[19] J.L. Shepard, B. Olsson, M. Tedengren, B.P. Bradley. Protein expression
signatures identified in Mytilus edulis exposed to PCBs, copper and
salinity stress. Mar. Environ. Res. 2000, 50, 337.

[20] H. Amelina, I. Apraiz, W. Sun, S. Cristobal. Proteomics-based method
for the assessment of marine pollution using liquid chromatography
coupled with two-dimensional electrophoresis. J. Proteome Res. 2007,
6, 2094.

[21] S. Chora, M. Starita-Geribaldi, J.-M. Guigonis, M. Samson, M. Roméo,
M.J. Bebianno. Effect of cadmium in the clam (Ruditapes decussatus)
assessed by proteomic analysis. Aquat. Toxicol. 2009, 94, 300.

[22] H.Manduzio, P. Cosette, L. Gricourt, T. Jouenne, C. Lenz, O.-K. Andersen,
et al. Proteome modifications of blue mussel (Mytilus edulis L.) gills as
an effect of water pollution. Proteomics 2005, 5, 4958.

[23] M.J. Rodríguez-Ortega, B.E. Grøsvik, A. Rodríguez-Ariza, A. Goyr,
J. López-Barea. Changes in protein expression profiles in bivalve
molluscs (Chamaelea gallina) exposed to four model environmental
pollutant. Proteomics 2003, 3, 1535.

[24] A. Romero-Ruiz, M. Carrascal, J. Alhama, J.L. Gómez-Ariza, J. Abian,
J. López-Barea. Utility of proteomics to assess pollutant response of
clams from the Doñana bank of Guadalquivir Estuary (SW Spain).
Proteomics 2006, 6, S245.

[25] K.L. Kimbrough, W.E. Johnson, G.C. Lauenstein, J.D. Christensen, D.A.
Apeti. An assessment of two decades of contaminant monitoring in
the nation’s coastal zone, Technical Memorandum 74. NOAA Silver
Spring, MD, 2008, pp. 1–105.

[26] A. Viarengo, L. Canesi. Mussels as biological indicators of pollution.
Aquaculture 1991, 94, 225.

[27] B. Coghlan, E. Gosling. Genetic structure of hybrid mussel populations
in the West of Ireland: Two hypotheses revisited. Mar. Biol. 2007,
150, 841.

[28] M.M. Bradford. A rapid and sensitive method for the quantitation of
microgram quantities of protein utilizing the principle of protein-dye
binding. Anal. Biochem. 1976, 72, 248.

[29] W.H. Habig, M.J. Pabst, W.B. Jakoby. Glutathione S-transferase. J. Biol.
Chem. 1974, 249, 7130.

[30] E.D. Wills. Evaluation of lipid peroxidation in lipids and biological
membranes, in Biochemical Toxicology: A Practical Approach, (Eds:
K. Snell, B. Mullock). IRL Press, Washington, USA, 1987.

[31] P. Olive. DNA precipitation assay: A rapid and simple method for
detecting DNA damage in mammalian cells. Environ. Mol. Mutagen.
1988, 11, 487.

A proteomic evaluation of the effects of the pharmaceuticals diclofenac and gemfibrozil on marine
mussels (Mytilus spp.)

Drug Testing

and Analysis

Drug Test. Analysis (2013) Copyright © 2013 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/dta

A. Collaborations

A.2 A Proteomic evaluation of the effects of
the pharmaceuticals diclofenac and

gemfibrozil on marine mussels

Proteomic approach to oxidative stress in
Daphnia magna

104 Louis-Charles Rainville



[32] D. Kang, Y.S. Gho, M. Suh, C. Kang. Highly sensitive and fast protein
detection with coomassie brilliant blue in sodium dodecyl sulfate-
polyacrylamide gel electrophoresis. Bull. Korean Chem. Soc. 2002,
23, 1511.

[33] F. Gagné, C. Blaise. Review of biomarkers and new techniques for in
situ aquatic studies with bivalves, in Environmental Toxicity Testing,
(Eds: K.C. Thompson, K. Wadhia, A. Loibner). Blackwell Publishing
Ltd, Oxford, 2005, pp. 408.

[34] W. Schmidt, T. O’Shea, B. Quinn. The effect of shore location on bio-
marker expression in wild Mytilus spp. and its comparison with long
line cultivated mussels. Mar. Environ. Res. 2012, 80, 70.

[35] W.G. Cope, R.B. Bringolf, D.B. Buchwalter, T.J. Newton, C.G. Ingersoll,
N. Wang, et al. Differential exposure, duration, and sensitivity of
Unionoidean bivalve life stage to environmental contaminants. J.
N. Am. Benthol. Soc. 2008, 27, 451.

[36] B. Huerta, S. Rodríguez-Mozaz, D. Barceló. Pharmaceuticals in biota
in the aquatic environment: Analytical methods and environmental
implications. Anal. Bioanal. Chem. 2012, 404, 2611.

[37] R. van der Oost, J. Beyer, N.P.E. Vermeulen. Fish bioaccumulation and
biomarkers in environmental risk assessment: A review. Environ.
Toxicol. Pharmacol. 2003,13, 57.

[38] A. Campos, S. Tedesco, V. Vasconcelos, S. Cristobal. Proteomic re-
search in bivalves. Towards the identification of molecular markers
of aquatic pollution. J. Proteomics 2012, 75, 4346.

[39] B.C. Sanchez, K. Ralston-Hooper, M.S. Sepúlveda. Review of recent
proteomic applications in aquatic toxicology. Environ. Toxicol. Chem.
2011, 30, 274.

[40] K. Bernard, T. Parkes, T. Merritt. A model of oxidative stress man-
agement: Moderation of carbohydrate metabolizing enzymes in
SOD1-Null Drosophila melanogaster. PLoS One 2011, 6, e24518.

[41] A.K. Dasmahapatra, H.L. Doucet, C. Bhattacharyya, M.J. Carvan.
Developmental expression of alcohol dehydrogenase (ADH3) in
zebrafish (Danio rerio). Biochem. Biophys. Res. Commun. 2001,
286, 1082.

[42] K. Park, I.-S. Kwak. Alcohol dehydrogenase gene expression in Chirono-
mus riparius exposed to di(2-ethylhexyl) phthalate. Comp. Biochem.
Physiol. C 2009,150, 361.

[43] A.A. Cherkasov, R.A. Overton, E. Sokolov, I.M. Sokolova. Temperature-
dependent effects of cadmium and purine nucleotides on mito-
chondrial aconitase from marine ecotherm, Crassostrea virginica: A
role of temperature in oxidative stress and allosteric enzyme regula-
tion. J. Exp. Biol. 2007, 210, 46.

[44] P. Wang, J. Heitman. The cyclophilins. Genome Biol. 2005, 6, 226.
[45] S.F. Göthel, M.A. Marahiel. Peptidyl-prolyl cis-trans isomerase, a super-

family of ubiquitous folding catalysts. Cell. Mol. Life Sci. 1999, 55, 423.
[46] L. Andreeva, R. Heads, C.J. Green. Cyclophilins and their possible role

in the stress response. Int. J. Exp. Pathol. 1999, 80, 305.
[47] G. Chen, C. Zhang, C. Li, C. Wang, Z. Xu, P. Yan. Haemocyte

protein expression profiling of scallop Chlamys farreri response to acute
viral necrosis (AVNV) infection. Dev. Comp. Immunol. 2011, 35, 1135.

[48] J. Letendre, M. Dupont-Rouzeyrol, A.-C. Hanquet, F. Durand, H.
Budzinski, P. Chan, et al. Impact of toxicant exposure on the proteomic
response to intertidal condition in Mytilus edulis. Comp. Biochem.
Physiol. D 2011, 6, 357.

[49] B. Morga, T. Renault, N. Faury, I. Arzul. New insights in flat oyster
Ostrea edulis resistance against the parasite Bonamia ostreae. Fish
Shellfish Immunol. 2012, 32, 958.

[50] K. Kawamura, T. Shibata, O. Saget, D. Peel, P.J. Bryant. A new family of
growth factors produced by the fat body and active on Drosophila
imaginal disc cells. Development 1999, 126, 211.

[51] B.E. Hakala, C. White, A.D. Recklies. Human cartilage gp-39, a major
secretory product of articular chondrocytes and synovial cells, is a
mammalian member of a chitinase protein family. J. Biol. Chem.
1993, 268, 25803.

[52] G.F.M. Verheijden, A.W.M. Rijnders, E. Bos, C.J.J. Coenen-de Roo, C.J. Van
Staveren, A.M.M. Miltenburg, et al. Human cartilage glycoprotein-39 as
a candidate autoantigen in rheumatoid arthritis. Arthritis Rheum. 1997,
40, 1115.

W. Schmidt et al.

Drug Testing

and Analysis

wileyonlinelibrary.com/journal/dta Copyright © 2013 John Wiley & Sons, Ltd. Drug Test. Analysis (2013)

A. Collaborations

A.2 A Proteomic evaluation of the effects of
the pharmaceuticals diclofenac and

gemfibrozil on marine mussels

Proteomic approach to oxidative stress in
Daphnia magna

105 Louis-Charles Rainville



Bibliography

Aebersold, R., Burlingame, A. L., and Bradshaw, R. A. (2013). Western blots

versus selected reaction monitoring assays: Time to turn the tables? Molecular

and Cellular Proteomics, 12:2381–2382.

Almeida, A. M., Campos, A., Francisco, R., van Harten, S., Cardoso, L. A., and

Coelho, A. V. (2010). Proteomic investigation of the effects of weight loss in

the gastrocnemius muscle of wild and nzw rabbits via 2D-electrophoresis and

MALDI-TOF MS. Anim. Genet., 41:260–272.

Almroth, B. C., Sturve, J., Berglund, Å., and Förlin, L. (2005). Oxidative damage

in eelpout (Zoarces viviparus), measured as protein carbonyls and TBARS, as

biomarkers. Aquatic Toxicology, 73:171–180.

Almroth, B. C., Sturve, J., Stephensen, E., Holth, T. F., and Förlin, L. (2008).

Protein carbonyls and antioxidant defenses in corkwing wrasse (Symphodus

melops) from a heavy metal polluted and a PAH polluted site. Marine Envi-

ronmental Research, 66:271–277.

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W.,

and Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation

of protein database search programs. Nucleic Acids Research, 25:3389–3402.

Atamaniuk, T. M., Kubrak, O. I., Storey, K. B., and Lushchak, V. I. (2013).

Oxidative stress as a mechanism for toxicity of 2,4-dichlorophenoxyacetic acid

(2,4-D): studies with goldfish gills. Ecotoxicology, 22:1498–1508.

106



BIBLIOGRAPHY

Barata, C., Navarro, J. C., Varo, I., Riva, M. C., Arun, S., and Porte, C. (2005a).

Changes in antioxidant enzyme activities, fatty acid composition and lipid

peroxidation in Daphnia magna during the aging process. Comparative Bio-

chemistry and Physiology, Part B, 140:81–90.

Barata, C., Varo, I., Navarro, J. C., Arun, S., and Porte, C. (2005b). Antioxidant

enzyme activities and lipid peroxidation in the freswater cladoceran Daphnia

magna exposed to redox cycling compounds. Comparative Biochemistry and

Physiology, Part C, 140:175–186.

Baty, J. W., Hampton, M. B., and Winterbourn, C. C. (2002). Detection of

oxidant sensitive thiol proteins by fluorescence labeling and two-dimensional

electrophoresis. Proteomics, 2:1261–1266.

Becker, D., Brinkmann, B. F., Zeis, B., and Paul, R. J. (2011). Acute changes in

temperature or oxygen availability induce ROS fluctuations in Daphnia magna

linked with fluctuations of reduced and oxidized glutathione, catalase activity

and gene (haemoglobin) expression. Biology of the Cell, 103:351–363.

Bianchini, A. and Wood, C. M. (2003). Mechanism of acute silver toxicity in

Daphnia magna. Environtal Toxicology and Chemistry, 22:1361–1367.

Bollineni, R. C., Fedorova, M., and Hoffman, R. (2013). Qualitative and quanti-

tative evaluation of derivatization reagents for different types of protein-bound

carbonyl groups. Analyst, 138:5081–5088.

Boratyn, G. M., Schaffer, A. A., Agarwala, R., Altschul, S. F., Lipman, D. J.,

and Madden, T. L. (2012). Domain enhanced lookup time accelerated BLAST.

Biology Direct, 7:12.

Borgeraas, J. and Hessen, D. O. (2000). UV-B induced mortality and antioxidant

enzyme activities in Daphnia magna at different oxygen concentrations and

temperatures. Journal of Plankton Research, 22:1167–1183.

Proteomic approach to oxidative stress in
Daphnia magna

107 Louis-Charles Rainville



BIBLIOGRAPHY

Borgeraas, J. and Hessen, D. O. (2002). Variations of antioxidant enzymes in

Daphnia species and populations as related to ambient UV exposure. Hydro-

biologia, 477:15–30.

Braconi, D., Bernardini, G., Possenti, S., Laschi, M., Arena, S., Scaloni, A.,

Geminiani, M., Sotgiu, M., and Santucci, A. (2009). Proteomics and redox-

proteomics of the effects of herbicides on a wild-type wine Saccharomyces cere-

visiae strain. Journal of Proteome Research, 8:256–267.

Braconi, D., Bernardini, G., and Santucci, A. (2011). Linking protein oxida-

tion to environmental pollutants: redox proteomics approaches. Journal of

Proteomics, 74:2324–2337.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of

microgram quantities of protein utilizing the principle of protein-dye binding.

Analytical Biochemistry, 72:248–454.

Bradley, B. P. (2012). Finding biomarkers is getting easier. Ecotoxicology, 21:631–

636.

Bradley, B. P., Gonzalez, C. M., Bond, J.-A., and Tepper, B. E. (1994). Complex

mixture analysis using protein expression as a qualitative and quantitative tool.

Environtal Toxicology and Chemistry, 13:1043–1050.

Bunescu, A., Garric, J., Vollat, B., Canet-Soulas, E., Graveron-Demilly, D., and

Fauvelle, F. (2010). In vivo proton HR-MAS NMR metabolic profile of the

freshwater cladoceran Daphnia magna. Molecular BioSystems, 6:121–125.

Buss, H., Chan, T. P., Sluis, K. B., Domigan, N. M., and Winterbourn, C. C.

(1997). Protein carbonyl measurement by a sensitive ELISA method. Free

Radical Biology & Medicine, 23:361–366.

Proteomic approach to oxidative stress in
Daphnia magna

108 Louis-Charles Rainville



BIBLIOGRAPHY

Chaudhuri, A. R., de Waal, E. M., Pierce, A., Remmen, H. V., Ward, W. F., and

Richardson, A. (2006). Detection of protein carbonyls in aging liver tissue: A

fluorescence-based proteomic approach. Mechanisms of Ageing and Develop-

ment, 127:849–861.

Ching, B., Chew, S. F., Wong, W. P., and Ip, Y. K. (2009). Environmental

ammonia exposure induces oxidative stress in gills and brain of Boleophtalmus

boddarti (mudskipper). Aquatic Toxicology, 95:203–212.

Colbourne, J. K., Pfrender, M. E., Gilbert, D., Thomas, W. K., Tucker, A.,

Oakley, T. H., Tokishita, S., Aerts, A., Arnold, G. J., Basu, M. K., et al.

(2011). The ecoresponsive genome of Daphnia pulex . Science, 331:555–561.

Connon, R., Hooper, H. L., Sibly, R. M., Lim, F.-L., Heckman, L.-H., Moore,

D. J., Watanabe, H., Soetaert, A., Cook, K., Maund, S. J., Hutchinson, T. H.,

de Coen, W., Iguchi, T., and Callaghan, A. (2008). Linking molecular and

population stress responses in Daphnia magna exposed to cadmium. Environ-

mental Science and Technology, 42:2181–2188.

Corthals, G. L., Wasinger, V. C., Hochstrasser, D. F., and Sanchez, J.-C. (2000).

The dynamic range of protein expression: A challenge for proteomic research.

Electrophoresis, 21:1104–1115.

Croxton, A. N., Wikfors, G. H., and Schulterbrandt-Gragg, R. D. (2012). Im-

munomodulation in eastern oysters, Crassostrea virginica, exposed to a PAH-

contaminated, microphytobenthic diatom. Aquatic Toxicology, 118–119:27–36.

Davies, M. J. (2005). The oxidative environment and protein damage. Biochimica

et Biophysica Acta, 1703:93–109.

De Coen, W. M. and Janssen, C. R. (1997). The use of biomarkers in Daphnia

magna toxicity testing II. digestive enzyme activity in Daphnia magna exposed

Proteomic approach to oxidative stress in
Daphnia magna

109 Louis-Charles Rainville



BIBLIOGRAPHY

to sublethal concentrations of cadmium, chromium and mercury. Chemosphere,

35:1053–1067.

De Coen, W. M., Vangheluwe, M. L., and Janssen, C. R. (1998). The use of

biomarkers in Daphnia magna toxicity testing. III. rapid toxicity testing of

pure chemicals and sediment pore waters using ingestion and digestive enzyme

activity. Chemosphere, 37:2677–2694.

Devillers, J., editor (2009). Ecotoxicology Modeling, volume 2 of Emerging Topics

in Ecotoxicology - Principles, Approaches and Perspectives. 423 pages. Springer,

London.

Djinović-Carugo, K., Young, P., Gautel, M., and Saraste, M. (1999). Structure

of the α-actinin rod: Molecular basis for cross-linking of actin filaments. Cell,

98:537–546.

Dowling, V. A., Hoarau, P. C., Romeo, M., O’Halloran, J., van Pelt, F., O’Brien,

N., and Sheehan, D. (2006). Protein carbonylation and heat shock response in

Ruditapes decussatus following p,p’-dichlorodiphenyldichloroethylene (DDE):

A proteomic approach reveals that DDE causes oxidative stress. Aquatic Tox-

icology, 77:11–18.

Dowling, V. A. and Sheehan, D. (2006). Proteomics as a route to identification

of toxicity targets in environmental toxicology. Proteomics, 6:5597–5604.

Dyballa, N. and Metzger, S. (2009). Fast and sensitive colloidal coomassie G-250

staining for proteins in polyacrylamide gels. Journal of Visualized Experiments,

30: http://www.jove.com/index/Details.stp?ID=1431. doi: 10.3791/1431.

Eaton, P. (2006). Protein thiol oxidation in health and disease: Techniques for

measuring disulfides and related modifications in complex protein mixtures.

Free Radical Biology & Medicine, 40:1889–1899.

Proteomic approach to oxidative stress in
Daphnia magna

110 Louis-Charles Rainville



BIBLIOGRAPHY

Ebert, D. (2005). Ecology, epidemiology, and evolution of parasitism

in Daphnia [Internet]. Bethesda (MD): National Library of Medicine

(US), National Center for Biotechnology Information. Available from:

http://www.ncbi.nlm.gov/entrez/query.fcgi?db=Books.

EC (2000). Biological test method: Reference method for determining acute lethal-

ity of effluents to Daphnia magna. Environment Canada, second edition.

EC (2007). Biological test method: test of reproduction and survival using the

cladoceran Cerodaphnia dubia. Environment Canada, second edition.

Elendt, B.-P. and Bias, W. (1990). Trace nutrient deficiency in Daphnia magna

cultured in standard medium for toxicity testing. effects of the optimization of

culture conditions on the life history parameters of D. magna. Water Research,

24:1157–1167.

Ellington, W. R. (2001). Evolution and physiological roles of phosphagen systems.

Annual Review of Physiology, 63:289–325.

Feder, M. E. and Hofmann, G. E. (1999). Heat-shock proteins, molecular chaper-

ones and the stress response: Evolutionary and ecological physiology. Annual

Review of Physiology, 61:243–282.

Fedorova, M., Bollineni, R. C., and Hoffman, R. (2013). Protein carbonylation as

a major hallmark of oxidative damage: update of analytical strategies. Mass

Spectrometry Reviews, IN PRESS: doi: 10.1002/mas.21381.

Forbes, V. E., Palmqvist, A., and Bach, L. (2006). The use and misuse of biomark-

ers in ecotoxicology. Environmental Toxicology and Chemistry, 25:272–280.

Fröhlich, T., Arnold, G. J., Fritsch, R., Mayr, T., and Laforsch, C. (2009). LC-

MS/MS-based proteome profiling in Daphnia pulex and Daphnia longicephala:

Proteomic approach to oxidative stress in
Daphnia magna

111 Louis-Charles Rainville



BIBLIOGRAPHY

the Daphnia pulex genome database as a key for high throughput proteomics

in Daphnia. BMC Genomics, 10:171.

Guilhermino, L., Diamantino, T. C., Ribeiro, R., Gonçalves, F., and Soares, A.

M. V. M. (1997). Suitability of test media containing EDTA for the evaluation

of acute metal toxicity to Daphnia magna Straus. Ecotoxicology and Environ-

mental Safety, 38:292–295.

Gündel, U., Benndorf, D., von Bergen, M., Altenburger, R., and Küster, E.

(2007). Vitellogenin cleavage products as indicators for toxic stress in zebra

fish embryos: A proteomic approach. Proteomics, 7:4541–4554.

Guo, J. and Prokai, L. (2011). To tag or not to tag: A comparative evaluation

of immunoaffinity-labeling and tandem mass spectrometry for the identifica-

tion and localization of posttranslational protein carbonylation by 4-hydroxy-2-

nonenal, an end-product of lipid peroxidation. Journal of Proteomics, 74:2360–

2369.

Haap, T. and Köhler, H.-R. (2009). Cadmium tolerance in seven Daphnia magna

clones associated with reduced hsp70 baseline levels and induction. Aquatic

Toxicology, 94:131–137.

Haap, T., Triebskorn, R., and Köhler, H.-R. (2008). Acute effects of diclofenac

and DMSO to Daphnia magna: Immobilisation and hsp70-induction. Chemo-

sphere, 73:353–359.

Han, B., Hare, M., Wickramasekara, S., Fang, Y., and Maier, C. S. (2012). A

comparative ’bottom up’ proteomics strategy for the site-specific identification

and quantification of protein modifications by electrophilic lipids. Journal of

Proteomics, 75:5724–5733.

Hannas, B. R., Wang, Y. H., Thomson, S., Kwon, G., Li, H., and Leblanc, G. A.

Proteomic approach to oxidative stress in
Daphnia magna

112 Louis-Charles Rainville



BIBLIOGRAPHY

(2011). Regulation and dysregulation of vitellogenin mRNA accumulation in

daphnids (Daphnia magna). Aquatic Toxicology, 101:351–357.

Heckman, L.-H., Connon, R., Hutchinson, T. H., Maund, S. J., Sibly, R. M.,

and Callaghan, A. (2006). Expression of target and reference genes in Daphnia

magna exposed to ibuprofen. BMC Genomics, 7:175.

Hu, W., Tedesco, S., Faedda, R., Petrone, G., Cacciola, S. O., O’Keefe, A., and

Sheehan, D. (2010). Covalent selection of the thiol proteome on activated thiol

sepharose: A robust tool for redox proteomics. Talanta, 80:1569–1575.

Ideker, T., Galitski, T., and Hood, L. (2001). A new approach to decoding life:

Systems biology. Annual Review of Genomics and Human Genetics, 2:343–372.

Jansen, M., Vergauwen, L., Vandenbrouck, T., Knapen, D., Dom, N., Spanier,

K. I., Cielen, A., and Meester, L. D. (2013). Gene expression profiling of three

different stressors in the water flea Daphnia magna. Ecotoxicology, 22:900–914.

Jayasundara, N., Towle, D. W., Weihrauch, D., and Spanings-Pierrot, C. (2007).

Gill-specific transcriptional regulation of Na+/K+-ATPase α-subunit in the eu-

ryhaline shore crab Pachygrapsus marmoratus: sequence variants and promoter

structure. The Journal of Experimental Biology, 210:2070–2081.

Jemec, A., Drobne, D., Tišler, T., and Sepčić, K. (2010). Biochemical biomarkers

in environmental studies — lessons learnt from enzymes catalase, glutathione S-

transferase and cholinesterase in two crustacean species. Environmental Science

and Pollution Research, 17:571–581.

Johnston, E. L. and Roberts, D. A. (2009). Contaminants reduce the richness and

evenness of marine communities: A review and meta-analysis. Environmental

Pollution, 157:1745–1752.

Proteomic approach to oxidative stress in
Daphnia magna

113 Louis-Charles Rainville



BIBLIOGRAPHY

Jones, D. P. (2008). Radical-free biology of oxidative stress. American Journal

of Physiology: Cell Physiology, 295:C849–C868.

Jørgensen, S. E. (1998). Ecotoxicological research — historical development and

perspectives. In Schüürmann, G. and Markert, B., editors, Ecotoxicology, chap-

ter 1, pages 3–16. John Wiley & Sons, Inc, New York.

Jubeaux, G., Audouard-Combe, F., Simon, R., Tutundjian, R., Salvador, A.,

Geffard, O., and Chaumot, A. (2012). Vitellogenin-like proteins among inverte-

brate species diversity: potential of proteomic mass spectrometry for biomarker

development. Environmental Science and Technology, 46:6315–6323.

Kato, Y., ichi Tokishita, S., Ohta, T., and Yamagata, H. (2004). A vitellogenin

chain containing a superoxide dismutase-like domain is the major component

of yolk proteins in cladoceran crustacean Daphnia magna. Gene, 334:157–165.

Kimmel, D. G. and Bradley, B. P. (2001). Specific protein responses in the

calanoid copepod Eurytemora affinis (Poppe, 1880) to salinity and temperature

variation. Journal of Experimental Marine Biology and Ecology, 266:135–149.

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of

the head of bacteriophage T4. Nature, 227:680–685.

Lam, P. K. (2009). Use of biomarkers in environmental monitoring. Ocean &

Coastal Management, 52:348–354.

Lay, Jr, J. O., Borgmann, S., Liyanage, R., and Wilkins, C. L. (2006). Problems

with the “omics”. Trends in Analytical Chemistry, 25:1046–1056.

Le, T.-H., Lim, E.-S., Hong, N.-H., Lee, S.-K., Shim, Y. S., Hwang, J. R., Kin,

Y.-H., and Min, J. (2013). Proteomic analysis in Daphnia magna exposed to

As(III), As(V) and Cd heavy metals and their binary mixtures for screening

potential biomarkers. Chemosphere, 93:2341–2348.

Proteomic approach to oxidative stress in
Daphnia magna

114 Louis-Charles Rainville



BIBLIOGRAPHY

Lemos, M. F. L., Soares, A. M. V. M., Correia, A. C., and Esteves, A. C. (2010).

Proteins in ecotoxicology — how, why and why not? Proteomics, 10:873–887.

Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent, I., Lenz, A.-

G., Ahn, B.-W., Shaltiel, S., and Stadtman, E. R. (1990). Determination of

carbonyl content in oxidatively modified proteins. Methods in Enzymology,

186:464–478.

Livingstone, D. R. and Goldfarb, P. S. (1998). Biomonitoring in the aqueous

environment: use of cytochrome P450IA and other molecular biomarkers in

fish and mussels. In Lynch, J. M. and Wiseman, A., editors, Environmen-

tal Biomonitoring: The biotechnology ecotoxicology interface, Biotechnology

Research Series, chapter 6, pages 101–132. Cambridge University Press, Cam-

bridge.

Lowe, D. M., Fossato, V. U., and Depledge, M. H. (1995). Contaminant-induced

lysosomal membrane damage in blood cells of mussels Mytilus galloprovincialis

from the Venice Lagoon: An in vitro study. Marine Ecology Progress Series,

129:189–196.

Lushchak, V. I. (2011). Environmentally induced oxidative stress in aquatic

animals. Aquatic Toxicology, 101:13–30.

Madian, A. G. and Regnier, F. E. (2010a). Profiling carbonylated proteins in

human plasma. Journal of Proteome Research, 9:1330–1343.

Madian, A. G. and Regnier, F. E. (2010b). Proteomic identification of carbony-

lated proteins and their oxidation sites. Journal of Proteome Research, 9:3766–

3780.

Maisonneuve, E., Ducret, A., Khoueiry, P., Lignon, S., Longhi, S., Talla, E., and

Dukan, S. (2009). Rules governing selective protein carbonylation. PLoS ONE,

4:e7269.

Proteomic approach to oxidative stress in
Daphnia magna

115 Louis-Charles Rainville



BIBLIOGRAPHY

Marnett, L. J. (2002). Oxy radicals, lipid peroxidation and DNA damage. Toxi-

cology, 181–182:219–222.

Marsano, F., Boatti, L., Ranzato, E., Cavaletto, M., Magnelli, V., Dondero, F.,

and Viarengo, A. (2010). Effects of mercury on Dictyostelium discoideum:

Proteomics reveals the molecular mechanisms of physiological adaptation and

toxicity. Journal of Proteome Research, 9:2839–2854.

Martyniuk, C. J. and Denslow, N. D. (2009). Towards functional genomics in

fish using quantitative proteomics. General and Comparative Endocrinology,

164:135–141.

Massey, R. and Jacobs, M. (2013). Trends and indicators. In Global Chemicals

Outlook, chapter 1. United Nations Environmental Programme.

Matés, J. M., Pérez-Gómez, C., and de Castro, I. N. (1999). Antioxidant enzymes

and human diseases. Clinical Biochemistry, 32:595–603.

Mathew, A. and Morimoto, R. I. (1998). Role of the heat-shock reponse in the life

and death of proteins. Annals of the New York Academy of Sciences, 851:99–

111.

Mayo, J. C., Tan, D.-X., Sainz, R. M., Lopez-Burillo, S., and Reiter, R. J. (2003).

Oxidative damage to catalase induced by peroxyl radicals: functional protec-

tion by melatonin and other antioxidants. Free Radical Research, 37:543–553.

McDonagh, B. and Sheehan, D. (2007). Effect of oxidative stress on protein

thiols in the mussel Mytilus edulis: Proteomic identification of target proteins.

Proteomics, 7:3395–3403.

McDonagh, B., Tyther, R., and Sheehan, D. (2005). Carbonylation and glu-

tathionylation of proteins in the blue mussel Mytilus edulis detected by pro-

Proteomic approach to oxidative stress in
Daphnia magna

116 Louis-Charles Rainville



BIBLIOGRAPHY

teomic analysis and Western blotting: Actin as a target for oxidative stress.

Aquatic Toxicology, 72:315–326.

Medvedev, A., Kopylov, A., Buneeva, O., Zgoda, V., and Archakov, A. (2012).

Affinity-based proteomic profiling: Problems and achievements. Proteomics,

12:621–637.

Monsinjon, T. and Knigge, T. (2007). Proteomic applications in ecotoxicology.

Proteomics, 7:2997–3009.

Nagato, E. G., D’eon, J. C., Lankadurai, B. P., Poirier, D. G., Reiner, E. J.,

Simpson, A. J., and Simpson, M. J. (2013). 1H NMR-based metabolomics

invertigation of Daphnia magna responses to sub-lethal exposure to arsenic,

copper and lithium. Chemosphere, 93:331–337.

Nicholls, C., Li, H., and Liu, J.-P. (2012). GAPDH: A common enzyme with

uncommon functions. Clinical and Experimental Pharmacology and Physiology,

39:674–679.

OECD (2004). Daphnia sp., Acute Immobilisation Test. Organisation for Eco-

nomic Cooperation and Development.

OECD (2008). Daphnia magna reproduction test. Organisation for Economic

Cooperation and Development.

Osburn, B. C., Stockwin, L. H., and Newton, D. L. (2011). Challenges in plasma

membrane phosphoproteomics. Expert Rev. Proteomics, 8:483–494.

Palmese, A., Rosa, C. D., Chiappetta, G., Marino, G., and Amoresano, A. (2012).

Novel method to investigate protein carbonylation by iTRAQ strategy. Ana-

lytical and Bioanalytical Chemistry, 404:1631–1635.

Proteomic approach to oxidative stress in
Daphnia magna

117 Louis-Charles Rainville



BIBLIOGRAPHY

Pauwels, K., Stoks, R., and Meester, L. D. (2010). Enhanced anti-predator de-

fence in the presence of food stress in the water flea Daphnia magna. Functional

Ecology, 24:322–329.

Peakall, D. B. (1992). Animal Biomarkers as Pollution Indicators. Chapman &

Hall ecotoxicology series, 291 pages. Chapman & Hall, London.

Persoone, G. and Janssen, C. R. (1993). Freshwater invertebrate toxicity tests.

In Calow, P., editor, Handbook of Ecotoxicology, volume 1, chapter 4, pages

51–65. Blackwell Scientific Publications.

Picotti, P. and Aebersold, R. (2012). Selected reaction monitoring-based pro-

teomics: workflows, potential, pitfalls and future directions. Nature Methods,

9:555–566.

Pijanowska, J. and Kloc, M. (2004). Daphnia response to predation threat in-

volves heat-shock proteins and the actin and tubulin cytoskeleton. Genesis,

38:81–86.

Poynton, H. C., Lazorchak, J. M., Impellitteri, C. A., Blalock, B. J., Rogers,

K., Allen, H. J., Loguinov, A., Heckman, J. L., and Govindasmawy, S. (2012).

Toxicogenomic responses of nanotoxicity in Daphnia magna exposed to silver

nitrate and coated silver nanoparticles. Environmental Science and Technology,

46:6288–6296.

Poynton, H. C., Lazorchak, J. M., Impellitteri, C. A., Smith, M. E., Rogers, K.,

Patra, M., Hammer, K. A., Allen, H. J., and Vulpe, C. D. (2011). Differen-

tial gene expression in Daphnia magna suggests distinct modes of action and

bioavailability for ZnO nanoparticles and Zn ions. Environmental Science and

Technology, 45:762–768.

Poynton, H. C., Loguinov, A. V., Varshavsky, J. R., Chan, S., Perkins, E. J.,

and Vulpe, C. D. (2008a). Gene expression profiling in Daphnia magna part

Proteomic approach to oxidative stress in
Daphnia magna

118 Louis-Charles Rainville



BIBLIOGRAPHY

I: Concentration-dependent profiles provide support for the no observed tran-

scriptional effect level. Environmental Science and Technology, 42:6250–6256.

Poynton, H. C., Varshavsky, J. R., Chang, B., Cavigliolio, G., Chan, S., Holman,

P. S., Loguinow, A. V., Bauer, D. J., Komachi, K., Theil, E. C., Perkins,

E. J., Hughes, O., and Vulpe, C. D. (2007). Daphnia magna ecotoxicogenomics

provides mechanistic insights into metal toxicity. Environmental Science and

Technology, 21:1044–1050.

Poynton, H. C., Zuzow, R., Loguinov, A. V., Perkins, E. J., and Vulpe, C. D.

(2008b). Gene expression profiling in Daphnia magna, part II: validation of a

copper specific gene expression signature with effluent from two copper mines

in California. Environmental Science and Technology, 42:6257–6263.

Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R.,

and Lopez, R. (2005). InterProScan: protein domains identifier. Nucleic Acids

Research, 33:W116–W120.

R Core Team (2013). R: A language and Environment for Statistical Computing.

R Foundation for Statistical Computing, Vienna, Austria.

Rainville, L.-C., Carolan, D., Varela, A. C., Doyle, H., and Sheehan, D. (2014).

Proteomic evaluation of citrate-coated silver nanoparticles toxicity in Daphnia

magna. Analyst, 139:1678–1686.

Rauniyar, N. and Prokai, L. (2011). Isotope-coded dimethyl tagging for differen-

tial quantification of posttranslational protein carbonylation by 4-hydroxy-2-

nonenal, an end-product of lipid peroxidation. Journal of Mass Spectrometry,

46:976–985.

Rauniyar, N., Prokai-Tatrai, K., and Prokai, L. (2010). Identification of car-

bonylation sites in apomyoglobin after exposure to 4-hydroxy-2-nonenal by

Proteomic approach to oxidative stress in
Daphnia magna

119 Louis-Charles Rainville



BIBLIOGRAPHY

solid-phase enrichment and liquid chromatography-electrospray ionization tan-

dem mass spectrometry. Journal of Mass Spectrometry, 45:398–410.

Rauniyar, N., Stevens, Jr., S. M., Prokai-Tatrai, K., and Prokai, L.

(2009). Characterization of 4-hydroxy-2-nonenal-modified peptides by liquid

chromatography–tandem mass spectrometry using data-dependent acquisition:

neutral loss-driven MS3 versus neutral loss-driven electron capture dissociation.

Analytical Chemistry, 81:782–789.

Rawlings, N., Barrett, A., and Bateman, A. (2012). MEROPS: the database of

proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research,

40:D343–D350.

Regoli, F., Gorbi, S., Frenzilli, G., Nigro, M., Corsi, I., Focardi, S., and Winston,

G. W. (2002). Oxidative stress in ecotoxicology: from the analysis of individual

antioxidants to a more integrated approach. Marine Environmental Research,

54:419–423.

Ritz, C. and Streibig, J. C. (2005). Bioassay analysis using R. Journal of statistical

Software, 12:1–22.

Roe, M. R., McGowan, T. F., Thompson, L. V., and Griffin, T. J. (2010). Tar-

geted 18O-labeling for improved proteomic analysis of carbonylated peptides

by mass specrometry. Journal of the American Society for Mass Spectrometry,

21:1190–1203.

Roe, M. R., Xie, H., Bandhakavi, S., and Griffin, T. J. (2007). Proteomic map-

ping of 4-hydroxynonenal protein modification sites by solid-phase hydrazide

chemistry and mass spectrometry. Analytical Chemistry, 79:3747–3756.

Schiess, R. (2008). Will biomarkers take off at last? Science, 321:1760.

Proteomic approach to oxidative stress in
Daphnia magna

120 Louis-Charles Rainville



BIBLIOGRAPHY

Schmidt, W., Rainville, L.-C., McEneff, G., Sheehan, D., and Quinn, B. (2013).

A proteomic evaluation of the effects of the pharmaceuticals diclofenac and

gemfibrozil on marine mussels (Mytilus spp.): evidence for chronic sublethal

effects on stress-response proteins. Drug Testing and Analysis, IN PRESS: doi:

10.1002/dta.1463.

Schüürmann, G. and Markert, B. (1998). Preface. In Schüürmann, G. and Mark-

ert, B., editors, Ecotoxicology, pages vii – xii. John Wiley & Sons, New York.

Schwarzenberger, A., Courts, C., and von Elert, E. (2009). Target gene ap-

proaches: gene expression in Daphnia magna exposed to predator-borne

kairomones or to microcystin-producing and microcystin-free Microcystis

aeruginosa. BMC Genomics, 10:527.

Schwerin, S., Zeis, B., Lamkemeyer, T., Paul, R. J., Koch, M., Madlung, J.,

Fladerer, C., and Pirow, R. (2009). Acclimatory responses of the Daphnia

pulex proteome to environmental changes. II. chronic exposure to different tem-

peratures (10 and 20℃) mainly affects protein metabolism. BMC Physiology,

9:8–25.

Shaw, J. R., Colbourne, J. K., Davey, J. C., Glaholt, S. C., Hampton, T. H.,

Chen, C. Y., Folt, C. L., and Hamilton, J. W. (2007). Gene response profiles

for Daphnia pulex exposed to the environmental stressor cadmium reveals novel

crustacean metallothioneins. BMC Genomics, 8:477–496.

Shaw, J. R., Pfrender, M. E., Eads, B. D., Klaper, R., Callaghan, A., Colson, I.,

Jansen, B., Gilbert, D., and Colbourne, J. K. (2008). Daphnia as an emerg-

ing model for toxicological genomics. In Hogstrand, C. and Kille, P., editors,

Comparative Toxicogenomics, 2, Advances in Experimental Biology, chapter 6,

pages 165–220. Elsevier, Oxford.

Proteomic approach to oxidative stress in
Daphnia magna

121 Louis-Charles Rainville



BIBLIOGRAPHY

Sheehan, D., McDonagh, B., and Bárcena, J. A. (2010). Redox proteomics. Expert

Rev. Proteomics, 7:1–4.

Sheehan, D., Meade, G., Foley, V. M., and Dowd, C. A. (2001). Structure, func-

tion and evolution of glutathione transferases: implications for classification of

non-mammalian members of an ancient enzyme superfamily. The Biochemical

Journal, 360:1–16.

Sheehan, D., Rainville, L.-C., Tyther, R., and McDonagh, B. (2012). Redox

proteomics in study of kidney-associated hypertension: new insights to old

diseases. Antioxidant and Redox Signaling, 17:1560–1570.

Shugart, L. R. (2000). DNA damage as a biomarker of exposure. Ecotoxicology,

9:329–340.

Silvestre, F., Dierick, J.-F., Dumont, V., Dieu, M., Raes, M., and Devos, P.

(2006). Differential protein expression profiles in anterior gills of Eriocheir

sinensis during acclimation to cadmium. Aquatic Toxicology, 76:46–58.

Stadtman, E. R. (1991). Ascorbic acid and oxidative inactivation of proteins.

American Journal of Clinical Nutrition, 54:1125S–1128S.

Stadtman, E. R. (2006). Protein oxidation and aging. Free Radical Research,

40:1250–1258.

Stadtman, E. R. and Levine, R. (2000). Protein oxidation. Annals of the New

York Academy of Sciences, 899:191–208.

Sultana, R., Perluigi, M., Newman, S. F., Pierce, W. M., Cini, C., Coccia, R., and

Butterfield, D. A. (2010). Redox proteomics analysis of carbonylated brain pro-

teins in mild cognitive impairment and early Alzheimer’s disease. Antioxidant

and Redox Signaling, 12:327–336.

Proteomic approach to oxidative stress in
Daphnia magna

122 Louis-Charles Rainville



BIBLIOGRAPHY

Taylor, N. S., Weber, R. J. M., Southam, A. D., Payne, T. G., Hrydziuszko, O.,

Arvanitis, T. N., and Viant, M. R. (2009). A new approach to toxicity testing

in Daphnia magna: application of high throughput FT-ICR mass spectrometry

metabolomics. Metabolomics, 5:44–58.

Taylor, N. S., Weber, R. J. M., White, T. A., and Viant, M. R. (2010). Discrim-

inating between different acute chemical toxicities via changes in the daphnid

metabolome. Toxicological Sciences, 118:307–317.

Tedesco, S., Doyle, H., Blasco, J., Redmond, G., and Sheehan, D. (2010a).

Exposure of the blue mussel, Mytilus edulis, to gold nanoparticles and the

pro-oxidant menadione. Comparative Biochemistry and Physiology, Part C,

151:167–174.

Tedesco, S., Doyle, H., Blasco, J., Redmond, G., and Sheehan, D. (2010b). Ox-

idative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquatic

Toxicology, 100:178–186.

Tedesco, S., Doyle, H., Redmond, G., and Sheehan, D. (2008). Gold nanoparticles

and oxidative stress in Mytilus edulis. Marine Environmental Research, 66:131–

133.

Tedesco, S., Jaafar, S. N. T., Coelho, A. V., and Sheehan, D. (2012). Protein

thiols as novel biomarkers in ecotoxicology: A case study of oxidative stress in

Mytilus edulis sampled near a former industrial site in Cork Harbour, Ireland.

Journal of Integrated Omics, 2:39–47.

Temple, A., Yen, T.-Y., and Gornert, S. (2006). Identification of specific protein

carbonylation sites in model oxidations of human serum albumin. Journal of

the American Society of Mass Spectrometry, 17:1172–1180.

Thompson, E. L., Taylor, D. A., Nair, S. V., Birch, G., Haynes, P. A., and Raftos,

Proteomic approach to oxidative stress in
Daphnia magna

123 Louis-Charles Rainville



BIBLIOGRAPHY

D. A. (2012). Proteomic discovery of biomarkers of metal contamination in

Sydney Rock oysters (Saccostrea glomerata). Aquatic Toxicology, 109:202–212.

Tokishita, S.-i., Kato, Y., Kobayashi, T., Nakamura, S., Ohta, T., and Yamagata,

H. (2006). Organization and repression by juvenile hormone of a vitellogenin

gene cluster in the crustacean, Daphnia magna. Biochemical and Biophysical

Research Communications, 345:362–370.

USEPA (2002). Short-term methods for estimating the chronic toxicity of effluents

and receiving waters to freshwater organisms. United States Environmental

Protection Agency, fourth edition.

USEPA (2013). Ecotoxicology database system. version 4.0.

Valavanidis, A., Vlahogianni, T., Dassenakis, M., and Scoullos, M. (2006). Molec-

ular biomarkers of oxidative stress in aquatic organisms in relation to toxic en-

vironmental pollutants. Ecotoxicology and Environmental Safety, 64:178–189.

van Hemert, M. J., Steensma, H. Y., and van Heusden, G. P. H. (2001). 14-3-3

proteins: key regulators of cell division, signalling and apoptosis. BioEssays,

23:936–946.

van Straalen, N. M. (2003). Ecotoxicology becomes stress ecology. Environmental

Science & Technology, 37:324A–330A.

Vicente, J. A. F., Peixoto, F., Lopes, M. L., and Madeira, V. M. C. (2001). Differ-

ential sensitivities of plant and animal mitochondria to the herbicide paraquat.

Journal of Biochemical and Molecular Toxicology, 15:322–330.

Vioque-Fernández, A., de Almeida, E. A., and López-Barea, J. (2009). Assess-

ment of Doñana National Park contamination in Procambarus clarkii: integra-

tion of conventional biomarkers and proteomic approaches. Science of the Total

Environment, 407:1784–1797.

Proteomic approach to oxidative stress in
Daphnia magna

124 Louis-Charles Rainville



BIBLIOGRAPHY

von Delius, M., Geertsema, E. M., and Leigh, D. A. (2010). A synthetic small

molecule that can walk down a track. Nature Chemistry, 2:96–101.

Wetzel, A. (1998). Advances in biomonitoring: sensitivity and reliability in PAH-

contaminated soil. In Lynch, J. M. and Wiseman, A., editors, Environmental

Biomonitoring: The biotechnology ecotoxicology interface, Biotechnology Re-

search Series, chapter 3, pages 27–45. Cambridge University Press, Cambridge.

Wong, C. M., Marcocci, L., Das, D., Wand, X., Luo, H., Zungu-Edmonson, M.,

and Suzuki, Y. J. (2013). Mechanism of protein decarbonylation. Free Radical

Biology & Medicine, 65:1126–1133.

Wong, C. M., Marcocci, L., Liu, L., and Suzuki, Y. J. (2010). Cell signaling by

protein carbonylation and decarbonylation. Antioxidant and Redox Signaling,

12:393–404.

Yoo, J., Ahn, B., Oh, J.-J., Han, T., Kim, W.-K., Kim, S., and Jung, J. (2013).

Identification of toxicity variations in a stream affected by industrial efflu-

ents using Daphnia magna and Ulva pertusa. Journal of Hazardous Materials,

260:1042–1049.

Zeis, B., Becker, D., Gerke, P., Koch, M., and Paul, R. J. (2013). Hypoxia-

inducible haemoglobins of Daphnia pulex and their role in the response to acute

and chronic temperature increase. Biochimica et Biophysica Acta, 1834:1704–

1710.

Zeis, B., Lamkemeyer, T., Paul, R. J., Nunes, F., Schwerin, S., Koch, M., Schütz,

W., Madlung, J., Fladerer, C., and Pirow, R. (2009). Acclimatory responses

of the Daphnia pulex proteome to environmental changes. I. chronic exposure

to hypoxia affects the oxygen transport system and carbohydrate metabolism.

BMC Physiology, 9:7.

Proteomic approach to oxidative stress in
Daphnia magna

125 Louis-Charles Rainville


