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Abstract    

Increased use of gold nanoparticles (AuNPs) in several applications has led to a rise in 

concerns about their potential toxicity to aquatic organisms. In addition, toxicity of 

nanoparticles to aquatic organisms is related to their physical and chemical properties. In the 

present study, we synthesize two forms of gold octahedra nanoparticles (Au_0.03 and Au_0.045) 

in 1.3-propandiol with polyvinyl-pyrrolidone K30 (PVPK30) as capping agent using a polyol 

process. Shape, size and optical properties of the particles could be tuned by changing the molar 

ratio of PVP K30 to metal salts. The anisotropy in nanoparticle shape showed strong localized 

surface plasmon resonance (SPR) in the near infrared region of the electromagnetic spectrum.  

Environmental impact of Oct-AuNPs was determined in the marine bivalve, Ruditapes 

decussatus exposed to different concentrations of Au_0.03 and Au_0.045. The dynamic light 

scattering showed the stability and resistance of Au_0.03 and Au_0.045 in the natural seawater. 

No significant modification in vg-like proteins, MDA level and enzymatic activities were 

observed in treated clams with Au_0.03 even at high concentration. In contrast, Au_0.045 induced 

superoxide dismutase (SOD), catalase (CAT), glutathione transferase (GST) activities, in a 

concentration dependent manner indicating defense against oxidative stress. Enhanced lipid 

peroxidation represented by malondialdehyde content confirmed oxidative stress of Au_0.045 at 

high concentration.  

These results highlight the importance of the physical form of nanomaterials on their 

interactions with marine organisms and provide a useful guideline for future use of Oct-AuNPs. 

In addition, vitellogenin was shown not to be an appropriate biomarker for Oct-AuNPs 

contamination even at high concentration. We further show that Oct-AuNPs exhibited an 

important antioxidant response without inducing estrogenic disruption. 

 

 

Keywords: gold nano-octahedra; surface plasmon resonance; ecotoxicology, Biomarkers, 

Biomonitoring; Oxidative stress. 

 

 

 

 

 

 

1. Introduction 
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Noble metal nanoparticles (NPs) have attracted increasing research attention in recent 

decades due to their interesting size-dependent optical, magnetic, electronic, and catalytic 

properties (Schmid, 2004; Astruc et al., 2005). The intrinsic properties of a metal nanostructure 

can be tailored by controlling its size, shape, composition and crystallinity. Shape-control has 

proven to be as effective as size-control in fine-tuning the properties and functions of metal 

nanostructures. Gold nanoparticles with their tunable Surface Plasmon Resonance (SPR) are 

popular for their wide range of practical applications such as catalysis, optics, biomedicine, and 

chemical sensing (Daniel and Astruc, 2004). 

Development of simple and versatile synthesis methods for the preparation of AuNPs 

in a size- or shape-selected and controlled manner has been a challenging but intellectually 

satisfying task (Younan et al., 2012). Several published works have reported the synthesis of 

gold nanoparticles with interesting shapes using chemical, biological or physical methods 

(Matthew et al., 2008; Matthew et al., 2008; Vivek et al., 2009; Dreaden et al., 2012). A number 

of anisotropic gold nanostructures have been successfully synthesized on the basis of a polyol 

process in various polyol media (Poul et al., 2001; Sun and Xia, 2002; Guo  et al., 2006 ; Seo 

et al., 2006; Li et al., 2007; Tang and Hamley, 2009). In addition, Li et al. (2008) have 

developed a low cost and straightforward PDDA (poly(diallyldimethylammonium) chloride)-

mediated polyol route for the controllable synthesis of gold octahedral nanoparticles in ethylene 

glycol solution. The synthesis was conducted with a molar ratio of PDDA to AuCl4
- ions of 50 

with addition of HCl. Li et al., 2007 synthesized octahedral Au particles of hundreds of 

nanometers in size by conducting the reaction in polyethylene glycol 600 (PEG 600) in the 

presence of PVP as surfactant and NaBH4 as reducing agent. Triangular and polygonal gold 

micro-/nano-plates have been synthesized by Tang and Hamley, 2009 in 1,2-propanediol as 

both medium and reducing agent and PVP as a stabilizer (Tang and Hamley, 2009). Mezni et 

al. (2017) has prepared triangular gold nanoprisms of low dispersity and high crystallinity 

through a one-pot chemical process and using triethylene glycol (TREG) and 

polyvinylpyrrolidone (PVP) as solvent and capping agents, respectively. The triangular gold 

nanoprisms have been synthesized under conventional heating conditions, with the minimum 

amount of surfactant and without addition of any other reagent. Up to now, few have managed 

to obtain octahedral gold nanoparticles of low dispersion and high crystallinity by a simple 

chemical one-pot process without the addition of any other reagent. In this work we report, the 

synthesis of Gold octahedral nanoparticles (Au_0.03 and Au_0.045) in 1.3-propandiol medium as 

both solvent and reducing agent.  The interest of this synthesis lies in the use of small quantity 

of surfactant in 1,3-propanediol medium (R(PVP/Au) << 1).  
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Recently, the synthesis of nanoparticles of various forms has been explored. These are 

expected to interact differently with the marine organisms, affecting their biochemical status 

and biological responses (Canesi et al., 2012; Li et al., 2013; Katsumiti et al 2014; khazri et al., 

2018). Therefore, it is important to understand how the forms of NPs affect their interactions 

with living organisms in the natural environment. Bivalves are candidates for uptake of 

pollutants during environmental contamination scenarios as they are filter-feeders known to 

bioconcentrate pollutants and contaminants very efficiently (Livingstone, 2001). The 

Mediterranean clam, Ruditapes decussatus, is already widely used as a sentinel species in 

aquatic toxicology due to its high tolerance for chemical contaminants (Dellali et al. 2001; 

Sellami et al. 2014). These organisms are abundant and farmed commercially around the 

Mediterranean Sea (Mohamed et al. 2003). They may represent a significant target for NPs in 

the aquatic environment (Canesi et al. 2012). AuNPs can induce reactive oxygen species (ROS) 

production in bivalves triggering oxidative stress and this is recognized as a common effect of 

NPs on marine organisms (Cid et al. 2015).  ROS are normally detoxified by antioxidant 

defenses which include antioxidant enzymes such as superoxide dismutase (SOD), catalase 

(CAT) and glutathione transferase (GST). Levels of antioxidant enzyme activity can provide 

valuable information on effects of NPs on a study organism (Cid et al. 2015). In addition, the 

yolk protein vitellogenin (Vtg) has long been used as a biomarker of feminization in marine 

organisms exposed to oestrogenic compounds (Sumpter and Jobling,1995) and is now used 

extensively as a reliable indicator of reproductive disruption (Matozzo et al., 2005). Despite 

links between NP exposure and adverse environmental effects in sentinel species such as clams, 

relatively little is known about how differing forms of these compounds could influence their 

interaction with bivalves. In addition, coating agents or surfactants are added to NP preparations 

in order to increase the stability of NPs in suspension media. These additives can influence 

significantly the toxicity of Oct-AuNPs, as already previously reported (Mano et al., 2012; 

Katsumit et al., 2014). To our knowledge, no exposure experiments of Oct-AuNPs with 

bivalves have previously been published. The present study aimed to characterize the effects of 

PVP coating Oct-AuNPs on modulation of antioxidant enzyme activities and reproduction in 

R. decussatus.  

 

2. Experimental procedure 

 

2.1. Synthesis of Au_0.03 and Au_0.045  
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 Gold octahedral nanoparticles (Au_0.03 and Au_0.045) were produced by a modified 

polyol process involving a surface regulating polymer, polyvinyl-pyrrolidone (PVP K30). 

Briefly, 25 ml of 1.3-propandiol (ACROS Organics, 98%) solution, containing 0.038 mmol of 

hydrogen tetrachloroaurate (III) trihydrate (HAuCl4·3H2O) (from Sigma-Aldrich), and a given 

amount of PVP (K30, Sigma-Aldrich) are mixed and heated to 100°C. The mixture was kept at 

this temperature for 30 min under continuous mechanical agitation. The molar ratio of PVP to 

HAuCl4 (R(PVP k30/Au)) was fixed at 0.03 and 0.045. Gold particles formed within minutes, and 

the final colloidal solution had a blue color. The product was separated by centrifugation, 

washed several times with ethanol/acetone solution and dispersed in ethanol. 

 

2.2. Characterization  

 

 Morphological details of the synthesized gold particles were characterized by 

transmission electron microscopy (TEM)(JEOL-JFC 1600). Energy-dispersive X-ray 

spectrograph (EDX) attached to the TEM was used for elemental analysis. Selected area 

electron diffraction (SAED) was also conducted on the microscope, JEOL-JFC 1600. Optical 

absorption spectra of diluted AuNPs solution were acquired on a Perkin-Elmer Lambda 11 

UV/VIS spectrophotometer. Raman experiments were performed using a Horiba-Jobin-Yvon 

XY spectrophotometer. The excitation laser beam was focused onto the sample through the 

100X objective of a confocal microscope. The laser spot size was diffraction limited at the 633 

nm excitation wavelength. The time evolution of the Raman spectra has been recorded with a 

time step of 0.5 s and an accumulation time of 0.5s. Dynamic light scattering (DLS) of gold 

octahedral nanoparticles (Au_0.03 and Au_0.045) in the seawater after 14 days of exposure was 

measured using an Amtec SM 200 Zetasizer operating with a He–Ne laser (632.8 nm). 

 

2.3. Effects of Au_0.03 and Au_0.045 on Ruditapes decussatus 

 

Clams Ruditapes decussatus were purchased from a site in Bizerte lagoon, Tunisia 

(37°13́16.05́ ́ N, 9°56́ 04.58́́ ́ E). Animals were distributed in 3L glass tanks and acclimated for 

a week on a 12 h light/dark cycle prior to exposure. After the acclimation, five experimental 

conditions were set up in triplicate of 10 individual clams per tank: Control, 0.1 and 1 mg/L 

Au_0.03 ([Au_0.03]1 = 0.1 mg/L and [Au_0.03]2 = 1 mg/L) and 0.1 and 1 mg/L Au_0.045 ([Au_0.045]1 

= 0.1 mg/L and [Au_0.045]2 = 1 mg/L)). Control clams were not exposed to stressor (Au_0.03 and 
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Au_0.045). Exposed clams were subjected to daily concentrations of Au_0.03 and Au_0.045 set at 

0.1 and 1 mg L−1 in seawater for a period of 14 days.  

After 14 days of exposure, no evident mortality was observed and all animals were seen 

to be feeding normally. During the experimental period, salinity, temperature, dissolved oxygen 

and pH were measured daily with a thermo-salinity meter (LF 196; WTW, Weilheim, 

Germany), an oximeter (OXI 330/SET, WTW) and a pH meter (pH 330/SET-1, WTW), 

respectively. Temperature was maintained at 19 ± 2 °C, oxygen at 6.2 mg/L and the salinity 

was 32‰. Tanks were filled with natural sea water changed every 48 h and the environmental 

parameters were the same as those used for the acclimation period. 

 

2.3.1. Determination of Vg-like proteins 

 

Alkali-labile phosphates (ALP) levels were measured in cell-free haemolymph from 

clams (n = 10) exposed to Au_0.03 and Au_0.045 for 14 days. We selected this exposure period 

because this is an adequate time to induce variations in Vg levels in bivalves (Ricciardi et al., 

2008. ALP levels were determined following the method of Blaise et al. [1999]. This approach, 

based on the determination of labile phosphates released by Vg after hydrolysis with alkali, was 

shown to be well correlated with the other direct assays. Five hundred mL of cell free 

haemolymph were mixed with 500 mL of t-butyl methyl ether (Sigma) for 30 min at room 

temperature. These emulsions were mixed by a Vortex agitator at least 3 times during the 

extraction period. A 400-mL sample of the ether phase was then mixed with 100 mL of 2 M Na 

OH for 60 min at 50 °C, to allow hydrolysis of bound phosphates. Levels of free phosphates 

were determined in the aqueous phase according to the phosphomolybdenum method of Stanton 

[1968]. A standard curve of known concentrations of inorganic phosphate was prepared. Results 

were expressed as mg ALP/mg proteins. 

 

2.3.2. Determination of Superoxide dismutase (SOD), catalase (CAT), glutathione 

transferase (GST) activities and lipid peroxidation 

 

Male and female clams selected from each treatment were homogenised by a polytron 

homogenizer in 10 mM Tris/HCl, pH 7.2, containing 500 mM sucrose, 1mM EDTA and 1 mM 

PMSF, supernatants were collected by centrifugation at 20.000 × g (4°C for 30 min). 

Antioxidant enzymatic activities were measured in the cytosolic fraction of 15 clams from 

controls and groups exposed to Au_0.03 and Au_0.045. Changes in optical density were quantified 



7 
 

using a Beckman DU500 spectrophotometer. Protein content was estimated by the method of 

Bradford (1976) using bovine serum albumin (BSA) as a standard. SOD activity was assessed 

by the ability of the enzyme to inhibit auto-oxidation of pyrogallol. We used 0.2 mM pyrogallol 

in air-equilibrated 50 mM Tris- buffer pH 8.20, containing 1 Mm EDTA (Marklund and 

Marklund, 1974) and is expressed in µmol/min/mg of total protein. CAT activity was measured 

by the decrease in absorbance at 240 nm due to H2O2 consumption (Aebi, 1979). The reaction 

volume and reaction time were 1 mL and 1min, respectively. The reaction solution contained 

80 mM phosphate buffer, pH 6.5 and 50mM H2O2 and CAT activity was determined as 

nmol/min/mg protein. GST activity was measured by a modification of the method of Habig et 

al. (1974). There reaction mixture contained 200 μL supernatant, 2 mL phosphate buffer (0.125 

M, pH 7.7, containing Na2 EDTA, 0.05 M, 2–4 °C), H2O 400 μL, 200 μL 15mM 1-chloro-2, 4- 

dinitrobenzene (CDNB) dissolved in 95% ethanol and 200 μL 15 mM of reduced glutathione 

(GSH). GST activity was determined following the conjugation of GSH with CDNB at 340 nm. 

A unit of GST activity was defined as the amount of glutathione conjugate formed using 1nM 

GSH and CDNB/min per mg protein (nM 2, 4-dinitrophenyl glutathione/mg protein/min). 

Lipid peroxidation was estimated in terms of thiobarbituric acid reactive species 

(TBARS), using MDA as standard by the method of Buege and Aust (1978). One milliliter of 

the sample extract was mixed with 2 mL of the TCA-TBA-HCl reagent (15% (w/v) TCA, 

0.375% (w/v) TBA and 0.25 N HCl). The contents were boiled for 15 min, cooled and 

centrifuged at 10.000 ×g to remove the precipitate. The absorbance was read at 535 nm and the 

MDA concentration of the sample was calculated using an extinction coefficient of 1.56 × 105 

M−1/cm. Lipid peroxidation was expressed as nmol of MDA/mg protein. 

 

2.4. Statistical analyses 

 

Statistical analysis was carried out using a statistical package (STATISTICA 8.0). 

Results of Vg like protein, MDA level and enzymatic activities were reported as mean ± 

standard deviation. The variation of each parameter among concentration was tested by one-

way ANOVA (p < 0.05). Previously we tested the prerequisites for analysis of variance 

(normality and homogeneity of variances).When significant differences were found, Tukey’s 

test was applied to determine which values differed significantly. 

 

3. Results 

3.1. Au_0.03 and Au_0.045 Characterization 
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 The UV-visible spectra of the Au_0.03 and Au_0.045 solutions are shown in Figure 1a. This 

two solutions were prepared to study the effect of PVPK30 concentration on the shape of the 

resulting NPs and consequently on the variation of the plasmonic band as a function of each 

elaborated form. The two UV-visible spectra of the colloidal preparations show two plasmonic 

bands, which we attribute to the appearance of non-spherical particles.  

 Figure1.b shows Raman scattering spectra of the samples prepared in 1.3-propandiol 

obtained with the laser line of wavelength  λ = 633 nm and acquisition time of 3 min. The two 

samples had a high Raman scattering intensity at this wavelength. This important enhancement 

of Raman scattering for an excitation close to the plasmon resonance of the samples is what is 

called exalted surface Raman (SERS). The vibration lines are related to the intermolecular 

vibrations of surfactant molecules on the surface Au-NPs. The line observed at 1480 Cm-1 can 

be attributed to the C-N group of polyvinylpyrrolidone K30. The presence of the CH2 = CH 

group at 1473 Cm-1 is noted. The appearance of a line at 1294 cm -1 is the result of the group 

CH2 attached to CN. The lines observed successively around 1065, 987.925 and 853Cm-1 are 

due to the CH2 alkyl groups of the ring. The line which appears towards 525 Cm-1 is due to the 

group N-C = O. 

 Figure 2 (a and b) shows typical TEM images of Au_0.03 and Au_0.045 colloidal solutions 

at different molar ratio of PVP/Au. In this case, Au particles with different morphologies were 

obtained (rod-like, triangular nanoplates, cubiques nanoplates,). The size of the 2D gold objects 

was about 10 to 200 nm. When the molar ratio is 0.03, equilateral gold cubes nanoparticles with 

an average edge length of 25 nm were formed (Fig. 2a). This indicates that the appropriate 

molar ratio is vital for the formation of Oct-AuNPs. When the molar ratio was greater than 0.03 

(Au_0.045), the AuNP became much thicker and agglomerated. We also observe a mixture of 

shape (triangular particles, octahedral and other). 

 Energy dispersive spectrum (EDX) analysis for such as-prepared sample confirms that 

the Oct-AuNPs consist of only gold (Fig. 2c, the copper element came from copper grid). The 

inset to Fig.2c, gives typical selected area electron diffraction (SAED) patterns obtained by 

directing the electron beam perpendicular to a single gold nanoplate deposited flat on the TEM 

grid. 

 

3.2. Behaviour of gold Octahedra NPs in seawater and effects on clams Ruditapes decussatus 

 
3.2.1. Physico-chemical evolution of Octahedra AuNPs in SW media  
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Dynamic light scattering analysis (DLS) of Au_0.03 and Au_0.045 in natural seawater 

demonstrates a monomodal scattered intensity distribution with a major maximum at about 45 

nm. According to the DLS data (Fig. 3), the Z-average particle diameter of Au_0.03 and Au_0.045 

in natural seawater after 14 days of exposure is dav = 45 ± 1 nm and 50 ± 1 respectively. The 

position of the major peak of the scattered intensity distribution ((d ≈ 45 nm (Au_0.03) and 50 

nm (Au_0.045) exceeds the size dispersion obtained from TEM images (Oct-AuNPs with an 

average size around 20 and 40 nm). From DLS we obtain the hydrodynamic diameter of the 

particle, defined as a sphere with the same translational diffusion coefficient as the particle 

being measured (assuming a hydration layer surrounding the particle or molecule). This small 

difference between the sizes of Oct-AuNPs is related to the hydrodynamic diameter measured 

and added by DLS. According to DLS and TEM data, Au_0.03 and Au_0.045 are stable in seawater 

and no agglomeration or aggregation was observed. 

 

3.2.2. Hemolymph Vg-like protein levels response to Octahedra AuNPs exposure 

 

Difference of Vg-like protein means levels were recorded in females and males 

hemolymph. Thus, female controls exhibited approximately two-fold higher values than those 

of male controls (Figure 4). However, exposure to different Oct-AuNPs forms (Au_0.03 and 

Au_0.045) and concentrations (0.1 and 1 mg/L) did not result in any significant alteration (p > 

0.05) in Vg-like protein levels in the hemolymph of males and females compared to control. 

 

3.2.3. Biomarker responses to Oct-AuNPs exposure 

 

SOD, CAT and GST activities of clams treated with Au_0.03 and Au_0.045 for 14 days, were 

determined (Fig. 5). Au_0.045 induced concentration-dependent increase in antioxidant enzyme 

activity in both male and female. Indeed, SOD activity in female exposed to [Au_0.045]1= 0.1 

mg/L and [Au_0.045]2 = 1 mg/L increased after 14 days of exposure by 26% and 28% 

respectively, compared to controls and by about 41% and 47% respectively in male (Fig. 5). In 

contrast, no effect in SOD activity (p > 0.05) was observed after 14 days exposure to [Au_0.03]1= 

0.1 mg/L and [Au_0.03]2 = 1 mg/L in females and males compared to control.  

A similar pattern of variation in CAT activity was observed between males and females 

after 14 days exposure (Fig. 5). Exposure to [Au_0.045]1= 0.1 mg/L and [Au_0.045]2 = 1 mg/L 

caused a significant (p < 0.05) increase by approximately 29% and 43% in females and by about 
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30% and 50% in males respectively, compared to control group. No significant modification 

was observed in females and males CAT activities after exposure to Au_0.03. 

Females GST activity increased from 32.2 ± 0.31 nmol/min/mg protein to 45.23 ± 0.18 

nmol/min/mg protein in [Au_0.045]2-treated groups but no effects were evident on [Au_0.045]1-

treatment (p > 0.05). Males GST activity increased also after exposure to [Au_0.045]2 by 

approximately 27%. Lipid peroxidation determined by measuring MDA content of clams 

exposed to [Au_0.03] were similar to the control after 14 days of exposure (Fig. 5). In contrast, 

[Au_0.045] = 1 mg/L increased MDA levels significantly (p < 0.05) for both sexes after 14 days 

of exposure. 

 

4. Discussion  

4.1. Oct-AuNPs stability 

PVP could act not only as a stabilizer layer to prevent the aggregation of the particles 

but also as a shape-controller to assist the formation of anisotropic metal nano-structures (Seo 

et al., 2006 ; Xiong et al., 2006 ; Li et al., 2007). At a lower molar ratio of PVP to gold, the 

nucleation and growth of gold nanoparticles were subjected to kinetic control. In this case, gold 

atoms would preferentially add to facets of the seeds with higher surface energy. We believe 

that PVP preferentially adsorbs on the {111} planes of Au nuclei and consequently the growth 

rate along the <111> direction is reduced while the growth rate along the <110> and <100> 

direction is enhanced, leading to the highly anisotropic growth of nuclei into nanostructure 

(Xiong et al., 2006; Xia et al., 2012). PVP can therefore play an important role in controlling 

the shape and monodispersity of gold nanoparticles but it cannot produce such shape-controlled 

uniform gold nanoparticles by itself without cooperation of polyol solvent. Indeed, the 1,3-

propanediol can act not only as a solvent but also as a capping/stabilizing agent (Mezni et al., 

2014). The 1,3-propanediol molecules are also adsorbed on the {111} oriented planes and thus 

contribute to slow down their growth, which explains the formation of gold nano-octahedral 

with a small PVP/Au molar ratio R=0.03 (Au_0.03).  

 The hexagonal symmetrical spots of the SAED pattern reveal clearly that these gold 

nanoplates are single crystals and the incident electron beam is perpendicular to {111} facet of 

the tested plate. 
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4.2. Effect of Oct-AuNPs contamination on Vitellogenins level and biochemical status 

 

Vitellogenins (Vg) are the major precursor of the egg yolk proteins in oviparous 

organisms (Wallace, 1985). They have been proposed as useful biomarkers in evaluating 

estrogenic effects of various chemicals including metals.  In the present study, higher Vg-like 

protein levels in control females are attributed to the spawning phase of clams used in the 

investigation. Clams were collected during prespawning when the Vg levels are highest in 

females due to their natural sex hormones. These observations are in agreement with those 

reported for other bivalves (Gagné et al., 2005; Marin et al., 2003). No alterations were observed 

in both sexes after exposure to Oct-AuNPs. This could be related to the fact that Oct-AuNPs 

has not estrogenic effect, at least in clams. Additionally, the Oct-AuNPs may not interact with 

cellular estrogen receptors as observed for other chemicals (Matozzo et al., 2005). We can also 

hypothesize that Vitellogenin is not an appropriate biomarker of Oct-AuNPs contamination 

even at high concentration.  

Induction of SOD, CAT and GST enzyme activities and MDA content are consistent 

with production of ROS in response to Au_0.045 exposure since it is known that NPs are capable 

of crossing cell membranes, leading to cell damage (Li et al. 2013). However, lack of effects of 

Au_0.03 form on oxidative parameters suggest that nanoparticles form represents an important 

variable in the interaction between NPs and living cells. Our results are dependent to the 

amounts of PVP K30 adsorbed to the surface of the Oct-AuNPs and also with the shape of the 

particles obtained. Coating agents or surfactants are added to NP preparations in order to 

increase the stability in suspension media. These additives can influence significantly the 

toxicity of Oct-AuNPs, as already reported by other authors (Mano et al., 2012; Katsumit et al., 

2014).Similar results were demonstrated in Crassostrea virginica exposed to PVP coated 

AgNPs (McCarthy, 2011). 

The form-dependent uptake of Au observed in the present study may be related to 

effective mechanisms for particle sorting in bivalves (Dai et al., 2013). In addition, interactions 

and internalization of nanomaterials within cells is dependent to the shape and size (Nambara 

et al., 2016). In the present study, the form Au_0.045 generates oxidative stress at high 

concentration and modulates the oxidative stress response in clams. This concentration 

dependent response is in agreement with previous studies related to environmental impact of 

nanomaterials on invertebrates (Canesi et al., 2012; Garcia-Negrete et al., 2013; Katsumit et al., 

2014; Khazri et al., 2018).  
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5. Conclusion 

In summary, single-crystalline Oct-AuNPs were successfully synthesized with well-

defined shape and tunable size (~25 nm) by a modified polyol process in a 1.3-propanediol 

solution. This synthetic strategy provided an effective route for selective production of Oct-

AuNPs. Under these conditions, functionalization of the Oct-AuNPs by other ligands of 

biological interest or by antibodies is directly possible and does not require any further 

purification. Besides our novel chemistry results, an environmental investigation using a multi-

biomarker approach confirmed that Oct-AuNPs ecotoxicity to clams depends on NP form and 

concentration. No effect of the two considered nanosized materials on Vg-like proteins were 

found suggesting that Oct-AuNPs are not estrogenic disruptors.  
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Figures legend: 

 

Figure 1: (a) UV-visible spectra of Au_0.03 and Au_0.045 colloidal solutions prepared in the 1.3-

propandiol at T = 100 °C, (b) Raman spectra of various samples prepared in 1.3-propandiol, 

excited with a laser source of wavelength λ = 633 nm for an acquisition time of 3 min.  

Figure 2: TEM images of gold nanoparticles (a) Au_0.03, (b) Au_0.045 and (c) EDX spectrum of 

octahedra gold nanoparticles, the inset in fig. shows typical selected area electron diffraction 

(SAED) pattern from single nano-octahedra. 

Figure 3: Dynamic light scattering (DLS) of Au_0.03 and Au_0.045 nanoparticles dispersed in 

natural seawater. 

Figure 4: Vg-like protein levels expressed as µg ALP/mg proteins, in male haemolymph (A) 

and female (B) from control and treated clams with different form and different concentration 

of Oct-AuNPs. Values are means ± SD. Different letter: significant results: p < 0.05. 

Figure 5: Superoxide dismutase (SOD), catalase (CAT), glutathione transferase (GST) 

activities and malondialdehyde content, in male and female from control and treated clams with 

different form and different concentration of Oct-AuNPs. Values are means ± SD. Different 

letters: significant results: p < 0.05. 
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