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Abstract
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Doctor of Philosophy

by Thomás Fogarty

In this thesis I present the work done during my PhD in the area of low dimensional

quantum gases. The chapters of this thesis are self contained and represent individual

projects which have been peer reviewed and accepted for publication in respected inter-

national journals. Various systems are considered, the first of which is a two particle

model which possesses an exact analytical solution. I investigate the non-classical cor-

relations that exist between the particles as a function of the tunable properties of the

system. In the second work I consider the coherences and out of equilibrium dynamics

of a one-dimensional Tonks-Girardeau gas. I show how the coherence of the gas can

be inferred from various properties of the reduced state and how this may be observed

in experiments. I then present a model which can be used to probe a one-dimensional

Fermi gas by performing a measurement on an impurity which interacts with the gas.

I show how this system can be used to observe the so-called orthogonality catastrophe

using modern interferometry techniques. In the next chapter I present a simple scheme

to create superposition states of particles with special emphasis on the NOON state.

I explore the effect of inter-particle interactions in the process and then characterise

the usefulness of these states for interferometry. Finally I present my contribution to a

project on long distance entanglement generation in ion chains. I show how carefully

tuning the environment can create decoherence-free subspaces which allows one to create

and preserve entanglement.
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Menchón, Chandrashekar Madaiah, Ciaran Phelan, Carlo Di Franco, Bryan Dalton,

Mark Kennedy and Anthony Kiely. Many scones were eaten and coffees drank, and

some physics was done too.

I sincerely thank John Goold for his help and advice during my PhD and for all the work

we did together. He possesses an almost boundless optimism and love for physics which

set the basis for productive arguments which really helped me become the researcher I

am today. Thanks to Dave Rea who taught me a lot through his enthusiasm and passion

for physics, his presence in the office always put a smile on my face in the corner of room

202.

I want to thank some of my closest friends in office over the years, Tadhg Morgan,

Lee O’Riordan and Steve Campbell. Tadhg, we started our PhDs together and I like

to think we drove each other to become better scientists over long discussions and Nic

Cage movies. Lee, your mantra of “Ah sure it’ll be grand” kept me calm through this

process and I hope the next time we meet you will still have functioning feet. Steve, you

were my coach both in terms of academia and fitness, your advice and friendship were

indispensable in and out of the office. The temple is still in progress.

Thanks to my close friends and former housemates Padraic Morrissey, Dave O’Brien
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Chapter 1

Introduction

As the length scales we explore stretch from to the stars to atomic particles the different

worlds we encounter are as varied and exciting as anything imagined through science

fiction. The journey to the microscopic realm has especially brought new insights into

the building blocks of nature through our encounters with the intriguing phenomena

which exist at small length scales. This quantum world has as much an attraction to the

public as it does to physicists, due to its strange dichotomies which speak of a fascinating

land, that exists but is imperceptible in our macro-world. It raises the question of reality,

not only physically but also philosophically, and has enthralled and confused in equal

measure.

It was Albert Einstein’s seminal work in 1905 on the photoelectric effect that introduced

this radical new perception of nature [1]. Einstein said that a light wave of frequency

ν could be described as a localised packet, or quantum, of energy E through the simple

relation

E = hν , (1.1)

in essence a wave can act like a particle. Named after Max Planck, the constant h is the

quantum of action and has the very small value of 6.626× 10−34 J·s [2]. Its existence is

profound and means that physical action cannot take on any indiscriminate value but

instead must be a multiple of Planck’s constant.

If light waves could be described as particles with a well defined energy could matter

be described as a wave? This question was answered in 1924 by Louis de Broglie, who

defined the eponymous wavelength of a particle as

λdB =
h

p
. (1.2)

1
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De Broglie’s wavelength depends on the momentum of the particles p, which if very large

leads to a vanishingly small wavelength and the reason why the wave-nature of particles

is not seen in our macroscopic world [3]. Reducing the momentum of a gas will increase

its average de Broglie wavelength which can be defined in terms of the mean velocity of

the particles in the gas

〈λdB〉 =

√
h2

2πmkBT
, (1.3)

where T is its temperature and kB is Boltzmann’s constant. Therefore as the gas ap-

proaches absolute zero the de Broglie wavelengths of the individual particles increase.

If these wavelengths become larger than the average interparticle distance and begin

to overlap, individual particles cannot be told apart. In this domain the classical de-

scription of the gas fails and one must treat it as a quantum object which can exhibit

different wave phenomena.

An exciting world lay just out of reach as different laboratories around the world im-

proved confining and laser cooling of atomic gases as the trapping and manipulation of

cold gases offers great flexibility in creating new quantum states. Atoms can be trapped

using magnetic fields which exploit the Zeeman splitting of their energy levels and by

using optical fields which induce a dipole moment on the atoms to create a non-zero

force. In recent years the state of the art in atom trapping allows one to localise small

ensembles of particles in single traps or optical lattices [4, 5]. It is no surprise that

this ability to create clean periodic systems, devoid of defects or thermal phonons, has

generated a lot of interest in simulating condensed matter phenomena [6]. Reducing the

dimensionality of these systems can lead to the creation of strongly correlated gases,

such as the Tonks-Girardeau gas of hard core bosons [7, 8, 10]. These lower dimensional

systems have manifestly different physics than their three dimensional counterparts and

provide an exciting testbed for strongly interacting many-body physics. The ability to

isolate single particles [11, 12] which can be manipulated with an incredible degree of

control has afforded us the possibility to accurately study fundamental quantum correla-

tions. These ideal systems allow one to explore concepts in quantum information theory

such as entanglement and non-locality which have long been heralded as resources for

future quantum technologies [13, 14].

The recent experimental advances mentioned above have taken the quantum world from

theory to practicality in what is an exciting time to be in this field. As current technolo-

gies strive to reach smaller and smaller length scales the need for truly quantum tech-

nologies will become essential, the most high profile being the quantum computer[15–17].

However I feel this should not overshadow the work that is being done which explores

fundamental physics, as the ability is now available to truly probe and understand the

quantum world and all its spooky origins.
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In the rest of this chapter I will introduce some core concepts of ultracold physics that

will be assumed throughout this thesis, and then I will discuss some recent experiments

which make low-dimensional physics accessible.

1.1 Ultracold gases

1.1.1 Indistinguishable Particles

In classical physics identical and individual particles can be easily labelled and distin-

guished, however this is not the case with quantum particles. At low temperatures when

the wavefunctions of the particles spread out and overlap an exchange of particles cannot

be detected, as the individual ones are identical and nothing sets them apart. This is

because in quantum mechanics particles only have a finite set of properties, and if they

are the same for all the particles in question there is no way to label and distinguish

them.

Lets us consider a state of two indistinguishable particles, ψ1(x) and ψ2(y). The den-

sity of their two-body state |Ψ(x, y)|2 = |Ψ(y, x)|2 must stay the same under particle

exchange. The way to achieve this is through a symmetric or antisymmetric permu-

tation over all combinations of the single particle states, in this way Ψ(x, y) is written

as

Ψ(x, y) =
∑
x,y

A(x, y)ψ1(x)ψ2(y) , (1.4)

where A(x, y) is the permutation operator. If the wavefunction is symmetric under

particle exchange, A(x, y) = A(y, x), the two-body wavefunction is

Ψ(x, y) =
1√
2

(ψ1(x)ψ2(y) + ψ1(y)ψ2(x)) , (1.5)

and if the wavefunction is antisymmetric under particle exchange, A(x, y) = −A(y, x),

the two-body wavefunction is

Ψ(x, y) =
1√
2

(ψ1(x)ψ2(y)− ψ1(y)ψ2(x)) . (1.6)

This means every time we exchange particles located at x and y the sign of the wave-

function changes, Ψ(x, y) = −Ψ(y, x).

The spin-statistics theorem relates the exchange symmetry of identical particles to their

spin, or intrinsic angular momentum. It states that fermions possess antisymmetric

wavefunctions and have half-integer spin, while bosons possess symmetric wavefunctions

and have integer spin [18].
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1.1.2 Fermions

Fermions, named after Enrico Fermi, are particles such as electrons or quarks, or com-

posite particles such as Lithium-6, with half integer spin. It is easy to see that the

antisymmetric wavefunction Eq. (1.6) vanishes when two indistinguishable particles are

in the same state at the same time. This is known as Pauli’s exclusion principle. Based

on this principle Fermi-Dirac statistics was formulated which describes the statistical

behaviour of a gas of identical non-interacting fermions where the average number of

fermions in a single particle state of energy εi is given by

n̄i =
1

e
εi−µ
kBT + 1

, (1.7)

where T is the temperature, kB is Boltzmann’s constant and µ is the chemical potential

[19, 20]. Due to Pauli’s exclusion principle only a maximum of one identical fermion can

occupy each energy level so 0 ≤ n̄i ≤ 1. At sufficiently low temperatures every energy

state is occupied by one non-interacting fermion up to the Fermi level which is the energy

of the highest excited occupied state. This is known as the Fermi sea. The Fermi-Dirac

statistics helps us describe everything from electrons in metals to the collapse of stars.

1.1.3 Bosons

Bosons have integer spin and multiple bosons are allowed to occupy the same state at the

same time. Bosons obey Bose-Einstein statistics which was first derived by Satyendra

Nath Bose in 1924, who sought to describe the statistics of light quanta, and was later

generalised by Albert Einstein to describe atoms. The Bose-Einstein distribution is

given by

n̄i =
1

e
εi−µ
kBT − 1

, (1.8)

and one of its predictions is that non-interacting bosons will undergo a phase transition

at finite temperature and macroscopically occupy their ground state. This condensation

of the bosons into a common ground state is know as Bose-Einstein condensation and

the resulting state as a Bose-Einstein condensate (BEC). To achieve a BEC a gas of

bosons must be sufficiently cold so that the associated thermal de Broglie wavelength

of the particles Eq.(1.3) becomes larger than the average interparticle distance. At this

point the individual particle wavefunctions begin to overlap and it is not possible to

distinguish individual particles. A condensate is a truly macroscopic quantum state

consisting of degenerate single particle states.
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The first BECs were experimentally created in 1995 by the groups of E. Cornell and

C. Wieman at NIST and W. Ketterle in MIT [21, 22]. Both teams used alkali atoms

of 87Rb and 23Na respectively and cooled them to around 170nK. Since then many

other species have been condensed [23] and a large amount of fundamental physics

has been explored (wave-particle duality, superfluidity, quantized vortices, matter-wave

solitons, slow light to name only a few) [24–29] and connections to many other areas of

physics have been found (simulation of condensed matter phenomena, Mott insulator

and other phase transitions, frustrated magnets, measuring gravitational waves and

modelling black holes) [5, 30–34].

1.2 Optical Trapping

When a neutral atom is under the influence of an external electric field it acquires an

electric dipole. This allows the atom to interact with the field and its interaction can

be described in the dipole approximation by

U(x, t) = −µE(x, t) , (1.9)

where µ is the dipole moment operator of the atom and E(x, t) is the electric field of

the laser [35]. In the case of an off-resonant laser beam the interaction produces a shift

in energy which is referred to as the AC Stark shift. This forms a conservative potential

acting on the atom which depends on the laser intensity and is given by

V (x) = −1

2
α(ω)|E(x, t)|2 , (1.10)

where E(x, t) is the time average of the electric field and α(ω) is the second order

contribution to the dipole moment.

An advantage of optical trapping over magnetic trapping is that the potential experi-

enced by the atoms in their ground state is independent of its magnetic component and

this can allow trapping of atoms with different magnetic states in the same trap. Due

to the high level of versatility that laser sources exhibit today a variety of different trap

geometries can be created, including tightly confined pancake and cigar shaped traps

[36, 37].

The optical trap also allows the ability to add an external magnetic field which can be

used to tune the interaction between atoms. This relies on the existence of Feshbach

resonances which occur when the energy of a bound state of an interatomic potential is

equal to the kinetic energy of a colliding pair of atoms, causing an avoided crossing in
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the scattering spectrum [38] . As the scattering length between two atoms is energy de-

pendent different interaction regimes can be explored from attractive dimers to strongly

repulsive particles.

1.2.1 Optical Lattices

Optical lattices are created from two counter-propagating laser beams described by their

electric field components E(x, t) = E0e
±ikxx, where E0 is the amplitude and kx is the

associated wavevector [5, 39]. The two beams interfere and create an optical potential

of the form V (x) = Vx cos2(kxx), and by adding two extra pair of beams in the y and z

direction a three dimensional periodic potential can be created of the form

V (x, y, z) = Vx cos2(kxx) + Vy cos2(kyy) + Vz cos2(kzz) . (1.11)

These different beams in the x, y and z directions must be distinguishable (e.g. different

polarisations or slightly different wavelengths) in order to prevent interference between

them. Such a potential is periodic in space and is capable of trapping atoms at the

nodes or antinodes depending on the sign of the detuning. If the light is red detuned

(its frequency is smaller than the atomic transition frequency) then the atoms will be

trapped at the maxima of the optical lattice, if it is blue detuned (its frequency is larger

than the atomic transition frequency) then the atoms will be trapped at the minima.

Optical lattices are periodic potentials which can trap single atoms in large arrays and are

used as simulators for condensed matter models. This is due to the ability to manipulate

the periodicity by adjusting the angle at which the laser beams meet, and dimensionality

of the system by tuning the depth of the lattice wells through the individual laser

intensities [40]. It is in this way that low dimensional quantum gases can be realised.

1.2.2 Low Dimensional Quantum Gases

To restrict atoms to propagate along one spatial direction only, control over the external

degrees of freedom of cold gases is needed. This allows us to create trapping geometries

to explore phenomena in a system which is quite different from the three dimensional

case [41, 42]. Let us consider atoms of mass m trapped in three spatial directions in a

harmonic potential given by

V (x, y, z) =
1

2
m
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, (1.12)
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If we choose the x-axis as the axial direction (ωA = ωx) that will define our new one-

dimensional geometry, we want to freeze out oscillations in the transverse directions

(ωT = ωy, ωz). To ensure this we must tighten the trap along the transverse directions

so that ωA � ωT . This ensures that the transverse energy level spacing ~ωT increases

which makes it more difficult for the atoms to gain enough energy to occupy any higher

energy states in these directions. As long as kBT � ~ωT − µ the atoms will stay in

the ground state in the transverse directions. The axial trap in this case is shallower,

ωA � ωT , offering higher order states for the gas to occupy while still populating the

ground state in the transverse directions. This situation necessitates that the atoms can

only freely move in the axial direction and thus form a quasi one-dimensional gas.

These one-dimensional geometries can be created by exploiting the versatility of the

optical lattice potential in Eq.(1.11). A quasi one-dimensional regime can be reached by

increasing the lattice depth in two directions (y and z) by increasing the laser intensity.

Along the third direction (x) the laser intensity is decreased so that the atoms can move

freely and this forms an array of one-dimensional tubes of atoms. By further increasing

the lattice depth in the y and z directions tunneling between adjacent tubes is restricted

ensuring a number of independent systems.

To characterise the different regimes of one-dimensional Bose gases we introduce the

Lieb-Liniger parameter, γ = I/K, which is the ratio of the interaction energy to the

kinetic energy of the particles [43]. For a homogeneous gas I = g1Dn and K = ~2n2/m,

and γ can be expressed as

γ =
mg1D

~2n
, (1.13)

where g1D is the one-dimensional interaction strength, m is the mass of a single atom

and n is the density of the gas. When γ � 1 the interactions between the particles are

in the mean field limit and the gas acts like a 1D fluid. As γ is increased the atoms start

to fermionize (see below), and when γ � 1 the gas enters the so-called Tonks-Girardeau

regime. To induce this strongly interacting regime one must find ways to reduce the

kinetic energy of the gas.

1.2.3 Point-like Interactions

At low temperatures the de Broglie wavelengths of the particles become larger than the

inter-atomic spacing and are large compared to the range of the interaction potential

between two interacting particles. In this low energy regime the scattering between two

atoms may be assumed to be s-wave (angular momentum l = 0) as higher partial waves

do not have enough energy to exceed the centrifugal barrier and enter the scattering

region. The atoms are mostly unaffected by the long range form of the interaction
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potential and only feel the short range part, which may be approximated by a delta

function pseudo-potential [44],

g3DV (|r1 − r2|) ≈ g3Dδ(|r1 − r2|) . (1.14)

Restricting our system to one dimension not only eases calculating the solutions to

the system’s Hamiltonian but also offers very different physics to that seen in three

dimensions. This is due, in large part, to the particles interaction strength, g3D, which

is dependent on the atom’s scattering length, a3D, and in three dimensions the two are

proportional g3D ∝ a3D. However in 1D this is not the case, the scattering length and

interaction strength are inversely proportional to each other

g1D = −2~2/mra1D , (1.15)

where mr=m1m2/(m1+m2) is the reduced atomic mass of the two scattering particles.

The one-dimensional scattering length a1D is related to the actual three-dimensional

one via a1D=− a2
⊥/2a3D(1− Ca3D/a⊥). Here a⊥ is the size of the single-atom ground

state wavefunction in the transversal direction and C ' 1.4603 . . . is a constant [45].

Eq.(1.15) can then be rewritten as

g1D =
4~2a3D

mra2
⊥

1

1− Ca3D
a⊥

. (1.16)

As stated previously interactions can be tuned in atomic ensembles by driving Feshbach

resonances using external magnetic fields [38] and for one-dimensional configurations,

interactions can also be significantly enhanced through so-called confinement-induced

resonances [45].

1.3 Degenerate Fermi Gas

Fermions have been trapped and confined to lower dimensions in two and one dimen-

sional traps [46, 47], typically containing N ≈ 106 atoms. However recent progress

in small Fermi systems has lead to unprecidented control over the number of fermions

which can be trapped in 1D. In the group of S. Jochim at the University of Heidelberg,

ground-states of one to ten atoms are prepared with fidelities of ∼ 90% by using a small

volume optical trap with large level spacing [4]. The trap has axial and radial trapping

frequencies (ωR, ωA) = 2π × (14.0 ± 0.1, 1.487 ± 0.010)kHz and is loaded with a two

component mixture of about 600 6Li atoms. A linear potential is added in the axial

direction by applying a magnetic field gradient which allows higher energy fermions in

the Fermi gas to tunnel from the trap. If the resulting system has ten atoms or less it is
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essentially one-dimensional and one atom of each spin occupies each energy level. The

number of fermions left in the trap can then be measured by recording their flouresence.

This ability to accurately prepare few-body states can lead to experiments exploring

Andersons orthogonality catastrophe in small Fermi gases which will be discussed in

Chapter 4, and also investigating entangled bi-partite states which will be discussed in

Chapter 2.

1.4 The Tonks-Girardeau Gas

The Tonks-Girardeau (TG) gas is a one-dimensional system composed of infinitely re-

pulsive bosons which are commonly refered to as hard-core bosons. Let us consider a

gas of N bosons trapped in a tight atomic trap that restricts the dynamics of the gas

in the transversal directions and can be described as quasi one-dimensional as discussed

previously. The Hamiltonian can be written as

H(x1, . . . , xN ) =

N∑
n=1

[
− ~2

2m

∂2

∂x2
n

+ Vext(xn)

]
+ g1D

∑
i<j

δ(|xi − xj |) . (1.17)

In the limit of infinitely strong repulsion, g1D → ∞, each boson can be thought of as

a hard sphere such that no two particles in the TG gas can occupy the same place at

the same time [48, 49]. This constraint on the allowed wavefunctions of the TG gas is

a bosonic analogy of Pauli’s exclusion principle for fermions, which states that no two

fermions which possess the same spin can occupy the same quantum state simultaneously.

As a result of this, a gas of spinless fermions at T = 0 will singly occupy every energy level

in an external potential up to the Fermi energy, forming the so-called Fermi sea. This

strange equivalence is due solely to the dimensionality of the system - as the repulsive

interactions become stronger, the particles are no longer free to overlap, thus mimicking

the Pauli-exclusion principle in configuration space. To further relate the bosonic and

fermionic systems, M. Girardeau showed how one can mathematically map the strongly

interacting bosons onto a state of ideal fermions, which allows us to describe the full

many-body state of the TG gas [7]. This procedure is known as the Fermi-Bose mapping

theorem and it can be used to show that the local density and correlation functions of

this strongly correlated system are equivalent to the corresponding quantities of a non-

interacting spin polarized Fermi gas. In this mapping the infinite interaction between

the bosons is replaced by a boundary condition on the allowed bosonic wave-function

ΨB(x1, x2, . . . , xn) = 0 if |xi − xj | = 0 , (1.18)
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for i 6= j and 1 ≤ i ≤ j ≤ N . This is simply the hard core constraint which says that

no probability exists for two particles to be at the same point in space, and results in

the following Hamiltonian for a gas of ideal particles

H =
N∑
n=1

[
− ~2

2m

∂2

∂x2
n

+ Vext(xn)

]
. (1.19)

For this fermionic system the many-body wave-function can be calculated using a Slater

determinant

ΨF (x1, x2, . . . , xN ) =
1√
N !

(N−1,N)

det
(n,j)=(0,1)

ψn(xj) , (1.20)

where the ψn are the single particle eigenstates of the system. This, however, leads to

a fermionic rather than bosonic symmetry, which can be corrected by a multiplication

with the appropriate unit antisymmetric function

A(x1, x2, . . . , xN ) =
∏

1≤i<j≤N
sgn(xi − xj) , (1.21)

to give the many-body Tonks-Girardeau state

ΨB(x1, x2, . . . , xN ) = A(x1, x2, . . . , xN )ΨF (x1, x2, . . . , xN ) . (1.22)

The bosonic ground state is always positive and this means the the unit antisymmetric

function A(x1, ..., xN ) must have the same sign as ΨF for all xn, which results in

ΨB(x1, x2, . . . , xN ) = |ΨF (x1, x2, . . . , xN )|. (1.23)

This implies that local properties of the TG gas are the same as a non-interacting

Fermi gas, such as the probability density, |ΨB|2 = |ΨF |2. However the corresponding

correlation functions and momentum distributions differ.

Experiments to create and control the TG gas have seen some exciting breakthroughs in

the past few years and here we will briefly introduce some of the progress in this field.

1.4.1 First Experimental Observation

In 2004 the first TG gas was created by the group of I. Bloch in Mainz, Germany [8].

A 2D optical lattice was formed by superposing two orthogonal standing waves with a

wavelength of 823nm onto a BEC containing approximately 3× 104 87Rb atoms. As the

optical lattice only traps the atoms in the y-z plane, 1D tubes are created. The number

of atoms in each tube was dependent on the position of the tube in the lattice; if it is
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near the edges the atom number was found to be smaller than if it was positioned near

the centre. The maximum number of particles in the centre of the lattice was N ≈ 20.

The depth of this 2D lattice was 27Er, where Er is the recoil energy ~2k2/2m with k

being the wavevector of the lattice laser. This large lattice depth ensured that there was

no tunneling between adjacent tubes. Along the axial direction the atoms were trapped

in a weak harmonic potential of frequency ωa ≈ 2π × 60Hz.

To increase γ a periodic potential along the axial direction was applied where the inter-

action energy of the particles is I = Uν and the kinetic energy is K = Jν, leading to

a Lieb-Liniger parameter γ = U/J . Here ν is the filling factor of the lattice, U is the

on-site energy and J is the tunneling amplitude. By reducing the tunneling between

the sites, γ can be increased to approach the TG regime. This was achieved by increas-

ing the depth of the periodic potential and by using a laser of wavelength 854nm the

lattice depth was slowly increased until a maximum trap depth of 18.5Er was reached.

The momentum distribution of the gas was then measured by removing all trapping

potentials and imaging the gas after it expands, which allowed for comparison of the

momentum profile versus theory. The work confirmed the existence of a TG gas in the

region γ ≈ 5− 200. For finite γ in this range the existence of the TG gas can be verified

by measuring the dynamic structure factor which becomes a step function in the TG

limit γ−1 = 0 [9].

A TG gas can also be created without an additional lattice potential but rather by

reducing the density of the gas along the axial direction of the tube. This was achieved

by the group of D. S. Weiss in the Pennsylvania State University when they observed

the creation of a TG gas also in 2004 [10]. Having created a Bose gas in a lattice of 1D

tubes the transverse trapping frequencies were increased forcing the gas to spread out

along the axial direction. Consequently this reduced the density until the single particle

wavefunctions became localised and a maximum γ = 5.5 was reached. Once deep in the

TG regime any further squeezing of the trap geometry has no effect on the resulting

state which is fully described by an effective 1D Hamiltonian.

1.5 Reduced single particle density matrix

Throughout this thesis the most important tool which will be used is the reduced single

particle density matrix (RSPDM) [50]. The RSPDM is an important quantity when

investigating ultracold gases as many one-particle observables can be derived from it.

Its importance will be discussed separately for two interacting particles in Chapter 2 and

Chapter 5 and for the TG gas in Chapter 3 when quantifying entanglement, superposi-

tions and coherence. The RSPDM is the kernel of the density operator in configuration
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space and for pure states is defined as

ρ1(x, x′) = N

∫ ∞
−∞

Ψ∗B(x, x2, . . . , xN )ΨB(x′, x2, . . . , xN )dx2 . . . dxN , (1.24)

where Ψ(x, x2, . . . , xN ) is a many body wavefunction. The RSPDM is normalised to N

and its trace is given by Tr(ρ1) =
∫
ρ1(x, x)dx = N . Once the RSPDM is calculated

one can extract important single particle information from it such as the single particle

density which is simply the principle diagonal of the RSPDM ρ(x) = ρ1(x, x).

A representation that will be explored continuously in this thesis are the natural orbitals

of the many-body system. The natural orbitals are eigenfunctions of the RSPDM and

are obtained by solving the following integral equation [51]∫
dxρ1(x, x′)φi(x) = λiφi(x

′) , (1.25)

where λi are the corresponding eigenvalues and
∑

i λi = N . The RSPDM can therefore

be written in the basis of the natural orbitals as

ρ1(x, x′) =
∑
i

λiφ
∗
i (x)φi(x

′). (1.26)

The natural orbitals can be thought of as effective single particle states which are occu-

pied by the bosons with λi being the occupancy of each orbital. For the case of a BEC

the lowest orbital is macroscopically occupied λ0 = N0 ∼ N and all other orbitals have

only microscopic occupation. As the BEC is a coherent matter wave with macroscopic

occupation of the ground state an argument can be made which relates the size λ0 to

the coherence of the gas. For a TG gas there is no condensate and the occupation of

the ground state scales with λ0 ∝
√
N [52]. The behaviour of λ0 and its connection to

coherence will be explored in detail in Chapter 3.

The momentum distribution of the gas is an important tool which can be routinely

measured in cold atom experiments and can also be calculated from the RSPDM through

a Fourier transform

n(k) =
1

2π~

∫ ∫
ρ1(x, x′)e

ik(x−x′)
~ dx dx′. (1.27)

By taking the Fourier transform of the natural orbitals φ̃(k) one may also write the

momentum distibution as n(k) =
∑

i λiφ̃i(k)∗φ̃i(k).
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1.6 Summary of work done in the thesis

1.6.1 Chapter 2

A system of two interacting atoms is investigated where the atoms are confined to in-

dividual harmonic traps which are separated by a distance d. The structure of the

Hamiltonian allows one to separate the problem into the centre of mass and relative

coordinate systems. The centre of mass Hamiltonian is that of a single atom in a har-

monic potential and is readily solved analytically. The relative coordinate system takes

the form of a single atom in a harmonic trap which is punctuated by a delta func-

tion potential at a distance d from the centre of the trap. The height of the delta

function relates to the strength of the interaction between the two particles. This

Hamiltonian is also exactly analytically solvable through the use of parabolic cylin-

der functions. With the complete many-body wavefunction solved, a thorough analysis

of the correlations between the two atoms is undertaken. The entanglement of the

atoms is calculated from the von Neumann entropy which shows the existence of trap

induced shape resonances. The non-local behaviour of the continuous variable state

is investigated by calculating the two-mode Wigner distribution of the two particle

state. If the Wigner function is negative there is an indication of the non-classicality

of the state which can be quantified through the violation of a Clauser-Horne-Shimony-

Holt inequality even at finite temperature. Finally with a suitable choice of entan-

glement witnesses we show how inefficient detectors can affect the measured outcome.

Non-locality of two ultracold trapped atoms

T. Fogarty, Th. Busch, J. Goold and M. Paternostro

New Journal of Physics 13 (2), 023016 (2011)

1.6.2 Chapter 3

The problem of a Tonks-Girardeau gas in an asymmetrically split harmonic oscillator

is solved. The trap is split by a δ-function of variable height that can be positioned

at any point along the trap axis. The density and total energy of the gas is inves-

tigated as a function of the position of the δ-function and the coherence of the gas

is examined. This is assessed by calculating the reduced single particle density ma-

trix which contains information about the coherence of the gas in the populations of

the natural orbitals. The height of the central peak of the momentum distribution

can also be used as an indication of the coherence of the gas. The dynamics of the

gas after sudden removal of the delta function potential is investigated which leads to
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comparisons to the Talbot effect in optics and Friedel oscillations of electrons in metals.

An eccentrically perturbed Tonks-Girardeau gas

J. Goold, M. Krych, Z. Idziaszek, T. Fogarty and Th. Busch

New Journal of Physics 12 (9), 093041 (2010)

1.6.3 Chapter 4

The orthogonality catastrophe (OC) is a phenomenon common in solid state physics

where the overlap between two many-body states, which differ through the presence of

an impurity, quickly become orthogonal as the size of the system is increased. P.W.

Anderson’s original work on the OC is discussed along with the time-dependent ap-

pearance of OC in X-ray absorption experiments. The OC is investigated in a non-

interacting gas of fermions after being perturbed by a localised impurity taking the

form of a δ-function or Gaussian potential. As a measure of the irreversibility of a

state the Loschmidt echo is calculated as a function of time after the impurity is sud-

denly immersed in the Fermi gas, the effect of the OC can then be explored in a dy-

namical process. The potential experimental observation of OC by using Ramsey in-

terferometry, by which one can measure the single particle spectrum is also discussed.

Orthogonality catastrophe as a consequence of qubit embedding in an ultracold Fermi gas

J. Goold, T. Fogarty, N. LoGullo, M. Paternostro and Th. Busch

Physical Review A 84 (6), 063632 (2011)

1.6.4 Chapter 5

The creation of superposition states is investigated using the free oscillation atom inter-

ferometer with emphasis on creating a macroscopic superposition state called the NOON

state. The oscillatory motion of two displaced interacting atoms in a harmonic trap are

used as the driving mechanism of the interferometer. Superposition states are created af-

ter the atoms scatter repeatedly off a centrally situated δ-function which acts as a beam-

splitter. The time evolution of the two-body state is exactly calculated for different inter-

action regimes. The usefulness of the state for quantum metrology is assessed by calcu-

lating the quantum Fisher information of the evolving state. The quantum Fisher infor-

mation can quantify if a state exceeds the standard quantum limit, which limits classical
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interferometers, or if it can reach the Heisenberg limit which is the upper bound for quan-

tum interferometers. At the Heisenberg limit the quantum Fisher information is maxi-

mum and the state is in a spatially maximally entangled state, the so-called NOON state.

Finally we propose a way to detect the creation of a NOON state in this setup through

expansion of the de-localised state and measurement of the ensuing interference pattern.

Effect of interparticle interaction in a free-oscillation atomic interferometer

T. Fogarty, A. Kiely, S. Campbell and Th. Busch

Physical Review A 87, 043630 (2013)

1.6.5 Chapter 6

The growth of entanglement mediated by a linear ion chain is considered as a viable

system to create long distance correlations. The ion chain contains two impurity ions

of a different atomic species which are positioned symmetrically around the centre of

the chain and are separated by bath ions. Initially the impurities are prepared in a

squeezed state and the bath is at a finite temperature. Entanglement is generated be-

tween the transverse modes of the impurites which are coupled to the axial modes of

the bath ions by means of an external laser. Bath mediated entanglement is observed

and a decoherence-free subspace is found to exist if the frequencies of the impurities

are carefully tuned to conincide with nodes of the collective dynamics of the bath.

Entangling two defects via the surrounding crystal

T. Fogarty, E. Kajari, B.G. Taketani, A. Wolf, Th. Busch and G. Morigi

Phys. Rev. A 87, 050304(R) (2013)



Chapter 2

Entanglement and non-locality

between two interacting atoms

2.1 Introduction

Quantum correlations are an important resource in quantum information and a lot of

work has been done in the last two decades exploring correlations in simple systems such

as qubits [53–55]. A qubit is a state with a two dimensional Hilbert space (horizontal

and vertical polarisations of a photon, spin 1/2 systems, two outputs of a beamsplitter

to name but a few) and can also be thought of as an approximation of the physical

properties of a quantum system such as two hyperfine levels in an atom [56, 57], two

different spatial modes in a double well potential [58, 59] or two different vibrational

states of a micromechanical oscillator [60, 61]. Approximating complex systems as sim-

pler two-level models can be beneficial as it can lead to analytic models for entanglement

generation between two qubits in a variety of environments and configurations. Even

though qubit systems offer a simplified view of physicial processes they can describe the

basic effects of quantum systems and are convenient to explore new concepts and ideas.

However by taking a simplified view of a particle one can miss out on the interesting

physics which exists by considering unavoidable interactions in atomic ensembles. For

this reason it is rewarding to investigate continuous variable (CV) correlations between

a particle’s conjugate position and momentum coordinates.

I would like to acknowledge the contribution of Dr. Paternostro, who proposed the detection scheme
outlined in Section 2.5.2 and who formulated the dissipation process in Section 2.6.

16
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In this Chapter we will describe the quantum correlations for the fundamental system of

two atoms interacting with a point-like potential. The atoms are confined to individual

harmonic traps which are separated by a finite distance. For mathematical simplicity

the atoms motion is confined to only one dimension which is achieved by tightening the

confining potential in the other two directions. The model is solvable thanks to the abil-

ity to separate the two-body Hamiltonian into two separate single particle Hamiltonians

consisting of the centre of mass and relative motions of the atoms. The centre of mass

motion is that of a single atom in a harmonic trap which can be solved analytically using

Hermite polynomials. The relative motion is more complicated and involves an atom in

a harmonic trap which is perturbed by a δ-function potential. Below we show that the

δ-function’s position is related to the distance between the two traps and its height is

related to the interaction strength between the atoms. This single particle Hamiltonian

is also solvable by using parabolic cylinder functions which will be explored in Section

2.2.

The correlations in this system will be focused on two properties: entanglement and non-

locality. For this we we will briefly introduce ideas from classical information theory,

notably the Shannon entropy and its quantum mechanical analogue, the von Neumann

entropy, non-locality and the CHSH inequality.

2.1.1 Shannon Entropy

In classical information theory if a system A is known to be in one of the following states

a1, a2, ..., an with corresponding probabilities p1, p2, ..., pn then the Shannon entropy [62]

quantifies the amount of information gained in identifying the state

H(p1, p2, .., pn) = −
n∑
i=1

pi log2 pi. (2.1)

Consequently H also quantifies the amount of uncertainty in the state before it is identi-

fied. As an example, if pj = 1 and pi = 0 for all i 6= j, then H = 0 because there is zero

uncertainty in the state. Conversely the maximum information gained in identifying the

state is obtained when the probabilities are all equal, ie. pj = 1/n for all j which results

in H = log2 n.

2.1.2 Von Neumann Entropy

The quantum analogue of Shannon entropy is the von Neumann entropy [63]. As the

Shannon entropy dealt with uncertainty in a classical probability function, the von
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Neumann entropy deals with the uncertainty in the density matrix

ρ̂ =
n∑
i=1

piρ̂i =
n∑
i

pi|ψi〉〈ψi|. (2.2)

As the probabilities must sum to unity,
∑n

i pi = 1, any density matrix has the property

that Tr(ρ̂) = 1. By performing measurements on the unknown state ρ̂ we can then gain

information about the state which is quantified by the von Neumann entropy as

S(ρ̂) = −Tr(ρ̂ log2 ρ̂). (2.3)

If we label the eigenvalues of ρ̂ as λi this can be rewritten as

S(ρ̂) = −
n∑
i

λi log2 λi , (2.4)

[64–67] where 0 log2 0 = 0 which is supported by the fact that limx→0 x log2 x = 0. For

pure product states ρ̂ = ρ̂A⊗ ρ̂B the von Neumann entropy is zero and there is no shared

information between the states A and B. For a pure state the von Neumann entropy is a

good measure of entanglement and is therefore very powerful [68]. However it is difficult

to measure in a laboratory as it requires full reconstruction of the state and is sensitive to

fluctuations due to the dependence on the logarithm. For mixed states the von Neumann

entropy is not an indication of the entanglement of the state but rather a measure of

the mixedness of the state. This can be understood by realising that for pure states

the von Neumann entropy is calculated from the reduced state of the the two particle

system which involves tracing out one subsystem. If the state is not entangled the von

Neumann entropy is zero, as the resulting state is pure and no mutual information has

been lost from tracing out one of the subsystems. However if the state is entangled

the act of tracing out one subsystem discards information that each subsystem shares,

and the reduced state becomes mixed, which is indicated by a non-zero von Neumann

entropy. So if we were to calculate the von Neumann entropy for a mixed state, the

reduced state will have a mixedness both attributed to the mixed full state and also

any entanglement between the subsystems. As one cannot be isolated from the other a

different measure for quantum correlations must be used. For this reason we will now

discuss calculating the non-locality of the state. The set of non-local states is a subset

of the set of entangled states, and therefore non-locality ensures entanglement [69].
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2.1.3 Non-locality and the CHSH inequality

Non-classicality can be evaluated by means of a Bell test which was first postulated by

John Bell in 1964 [70]. Bell’s theorem states that no physical theory of local hidden

variables can ever produce all of the predictions of quantum mechanics. The idea of a

Bell test is to show that physics should possess local realism: Reality - Microscopic ob-

jects have real properties associated with them that determine the outcome of quantum

mechanical experiments, regardless of whether an observer makes a measurement or not;

Locality - that the real properties in one location are not influenced non-relativistically

by measurements performed simultaneously at a distant location [71]. However quantum

mechanics can be shown to violate a Bell test and thus disobey local-realism. In this

work we will show how a certain Bell test, the CHSH inequality named after J. Clauser,

M. Horne, A. Shimony and R. A. Holt [72], is violated by two interacting atoms.

Imagine two particles are prepared and are given to two experimentalists, Alice and Bob.

Once Alice receives her particle she performs randomly one of two different measurements

on her particle, which tell her about two physical properties Pa and Pa′ . Once the

measurement is done Alice has a value a or a′ for property Pa or Pa′ . Bob can also carry

out two measurements to measure b or b′ of Pb or Pb′ . For simplicity we will assume

that the outcomes of a, a′, b and b′ can only take the values +1 or −1. We also assume

that Alice and Bob carry out their measurements at the same time, so that Alice’s

measurement cannot disturb Bob’s and vice versa since super luminal communication is

prohibited.

Let us consider the expression

AB +A′B +A′B′ −AB′ (2.5)

which contains all the possible outcomes from the simultaneous measurements. By

noticing that

AB +A′B +A′B′ −AB′ = B(A+A′) +B′(A′ −A) (2.6)

we find that either B(A + A′) = 0 or B′(A′ − A) = 0 because A,A′ = ±1. This means

that AB+A′B+A′B′−AB′ = ±2, which is easy to see. Let us suppose now that before

the measurements are performed the system is in a state A = a, A′ = a′, B = b and

B′ = b′ with probability p(a, a′, b, b′). If we calculate the average value of this expression



Entanglement and non-locality between two interacting atoms 20

we find

E(AB +A′B +A′B′ −AB′) =
∑

a,a′,b,b′

p(a, a′, b, b′)(ab+ a′b+ a′b′ − ab′)

≤
∑

a,a′,b,b′

p(a, a′, b, b′)× 2

= 2

(2.7)

where
∑

a,a′,b,b′ p(a, a
′, b, b′) = 1. We can also rewrite this expression as

E(AB +A′B +A′B′ −AB′) =
∑

a,a′,b,b′

p(a, a′, b, b′)ab+
∑

a,a′,b,b′

p(a, a′, b, b′)a′b

+
∑

a,a′,b,b′

p(a, a′, b, b′)a′b′ −
∑

a,a′,b,b′

p(a, a′, b, b′)ab′

= E(ab) + E(a′b) + E(a′b′)− E(ab′).

(2.8)

Combining the last two expressions gives us the CHSH inequality

B = E(ab) + E(a′b) + E(a′b′)− E(ab′) ≤ 2. (2.9)

This inequality has to be fulfilled if Alice and Bob carry out the experiment many times

and average over the different pairs of measurement results. It is a consequence of

local-realism and therefore has to be fulfilled by all theories including hidden variables.

Let us now consider the situation using quantum mechanical states. For simplicity we

assume that the particles are qubits prepared in the initial state

|Ψ−〉 =
|01〉 − |10〉√

2
. (2.10)

The first qubit is given to Alice and the second qubit to Bob and they perform mea-

surements of the following observables

A = ZA B = −ZB−XB√
2

A′ = XA B′ = ZB−XB√
2

,
(2.11)

where X and Z are the Pauli operators. The expectation values of the observables can be

easily calculated as 〈AB〉 = 1/
√

2, 〈A′B〉 = 1/
√

2, 〈A′B′〉 = 1/
√

2 and 〈AB′〉 = −1/
√

2,

which results in B = 2
√

2. This violates the inequality in Eq.(2.9), and therefore shows

that quantum mechanics does not obey local realism. In fact here we have used the

maximally entangled state |Ψ−〉, which is one of the Bell states that are known to

maximally violate Bell’s inequality. The CHSH inequality is therefore a good test for
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(a) (b)

Figure 2.1: Panel (a) shows a schematic representation of the system at hand [see the
Hamiltonian model in Eq. (2.12). Panel (b) shows the two-particle probability density
for two different distances d between the traps and two distinct values of the scaled

interaction strength g. The axes are scaled in terms of a as defined in the text.

quantum correlations. Performing Bell tests are a mainstay in quantum optics experi-

ments to test non-locality[73–77], even though loopholes to the test still persist [78–80],

the experimental feasibility will be discussed in Section 2.5.2.

2.2 Model Hamiltonian

We consider two bosonic atoms confined along the x axis (the axial direction) in two

separate, but overlapping harmonic potentials, as shown in Fig. 2.1(a). The atoms are

tightly confined along directions perpendicular to x (the transverse directions) by high-

frequency harmonic trapping potentials. As a result of the large energy level separation

associated with the transverse confinement, at low temperature the transverse motion

is restricted to the lowest mode and the system can be described by the quasi one-

dimensional Hamiltonian

Ĥ = − ~2

2m1
∇2

1 −
~2

2m2
∇2

2 +
m1

2
ω2(x1 − d1)2 +

m2

2
ω2(x2 − d2)2 + g1Dδ(x1 − x2), (2.12)

where m1 and m2 are the masses of the two atoms and x1 and x2 are their respective spa-

tial coordinates. We assume both traps to have the same frequency ω and be displaced

by the distances d1 and d2 from the origin of the coordinate system. By introducing the

centre of mass coordinate X = (x1 + x2)/2 and the relative coordinate x = (x1 − x2)/2,

the two-atom wavefunction can be factorised into φ(X)ψ(x) with φ(X) being the wave-

function for the centre-of-mass dynamics and ψ(x) being the wavefunction of the relative
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motion. In these new variables, the Schrödinger equation decouples as(
− ~2

2M

∂2

∂X2
+

1

2
Mω2X2

)
φ(X) = ~ω

(
n+ 1

2

)
φ(X) , (2.13)(

− ~2

2mr

∂2

∂x2
+

1

2
mrω

2(x− d)2 + g1Dδ(x)

)
ψ(x) = ~ω

(
ν + 1

2

)
ψ(x) , (2.14)

where we have taken m1=m2=m for simplicity, and defined d = d1 − d2, M = 2m and

mr = m/2. The centre-of-mass dynamics has the form of simple harmonic motion which

has the following solution:

φn(X) =
1√

2nn!

(
Mω

π~2

) 1
4

e−
MωX2

2~ Hn

(√
Mω

~
X

)
(2.15)

where Hn are Hermite polynomials and n = 0, 1, 2...

The Hamiltonian for the relative coordinate consists of a displaced harmonic oscillator

subjected to a point-like disturbance at the origin of the coordinate system which is also

analytically solvable [81, 82]. For simplicity of notation we first scale all the lengths in

units of a =
√

~/mω, which is the width of the ground state wavefunction for a single

unperturbed particle of mass m along the axial direction of one of the harmonic traps,

and all energies in units of ~ω.

Eq. (2.14) thus becomes (for x 6= 0)

d2ψ(ξ)

dξ2
+

(
ν +

1

2
− ξ2

4
− g δ(ξ + d)

)
ψ(ξ) = 0 , (2.16)

where g = g1Da/(~ω) is the renormalised strength of the δ-barrier, and ξ = (x− d) is a

shifted spatial coordinate which lets us interpret the system as a harmonic oscillator with

an off-centre δ-function. On either side of the δ-function the solutions of the differential

equation Eq. (2.16) are parabolic cylinder functions Dν(ξ), which vanish for ξ →∞, but

diverge for ξ → −∞, Fig. 2.2. We can therefore write the solution piecewise as

ψ(ξ) = ψl(ξ)θ(d− ξ) + ψr(ξ)θ(ξ − d) , (2.17)

with

ψl(ξ) = N−Dν(−ξ) and ψr(ξ) = N+Dν(ξ) , (2.18)

and θ(ξ) being the Heaviside function. The condition of continuity of these solutions at

the position of the δ-function

N+Dν(−d) = N−Dν(d) , (2.19)
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together with the solution of the Schrödinger equation

−
∫ d+ε

d−ε
ψ
′′
(ξ)dξ +

∫ d+ε

d−ε
V (ξ)ψ(ξ)dξ = εν

∫ d+ε

d−ε
ψ(ξ)dξ , (2.20)

with

V (x) =
1

4
ξ2 + gδ(ξ + d) , (2.21)

leads to a transcendental equation which determines the energy eigenvalues as a function

of both, g and d

N+D
′
ν(−d) +N−D

′
ν(d)− 2gN+Dν(−d) = 0 . (2.22)

The required derivatives of the parabolic cylinder functions can be calculated using the

recurrence relation [83]

D′ν(z) = νDν−1(z)− 1

2
zDν(z) , (2.23)

and for Dν(d) 6= 0 we find from Eq. (2.19) the relation N− = N+Dν(−d)/Dν(d). Sub-

stituting these into Eq. (2.22) we therefore get

ν
[
Dν−1(−d)Dν(d) +Dν−1(d)Dν(−d)

]
= 2gDν(−d)Dν(d) . (2.24)

This equation determines the eigenenergies for the solutions that are nonzero at the

position of the δ-function potential. To find the ones for which Dν(d) = 0 we can see

from Eq. (2.19) that Dν(−d) = 0, provided that N+ 6= 0 and N− 6= 0. Then Eq. (2.22)

reduces to

N+νDν−1(−d) +N−νDν−1(d) = 0, (2.25)

where the derivatives have been determined using Eq. (2.23). The above equation to-

gether with the normalization of the total wave function determines N+ and N− for the

solutions that vanish at the position of the δ-function potential. These solutions are

independent of g, and they correspond to the harmonic oscillator wave functions that

have a node at x = d.

The energy spectrum of the system exhibits trap-induced shape resonances due to

energy-level repulsion and is shown in Fig. 2.3 [81, 82]. Shape resonances occur when a

molecular bound state becomes resonant with higher order trap states at which points

avoided crossings occur. In this case the resonance is a consequence of the δ-function

interaction potential in the relative coordinate around which the relative motion of the

atoms form a nearly stable bound state. This is illustrated in Fig. 2.4 where the relative

wavefunction of the third excited state is plotted against d in the left panel and the

corresponding relative energy is plotted in the centre panel. The wavefunction at the

positions of the resonances are also plotted in the right most panel. Here the δ-function

is positioned at x = 0 and the harmonic trap is centered at x = d. Initially at small d
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Figure 2.2: Parabolic cylinder function Dν(x) plotted in the left panel for ν = 0 (blue
line), ν = 1 (green), ν = 2 (red), ν = 3 (black) which reduce to the solutions of the
harmonic oscillator. Dν(x) plotted in the right panel for ν = 0.5 (blue), 1.5 (green),

2.5 (red), 3.5 (black). Here it is apparent that the functions diverge for x→ −∞.

the energy starts to increase as the origin of the harmonic trap is moved away from the

δ-function, however the wavefunction remains localised to the left of the δ-function. At

the first resonance d = 0.76 the wavefunction becomes degenerate with the next highest

state and has acquired an extra node. Due to the forbidden crossing of the energy levels

the energy decreases after this and the wavepacket is on the right side of the δ-function

and is localised in the trap. After the next resonance at d = 1.74 the δ-function is at a

node of the wavefunction and does not affect it, thus the energy and waveform return to

its undisturbed state. After each successive resonance the average position of the wave-

function changes drastically mirroring the change in energy. After the last resonance the

wavepacket moves out of range of the δ-function and is affected primarilarly by the trap

potential for d > 4. Notably, no resonance is observed in the ground state for g > 0,

however for g < 0 a resonance is present which is due to the existence of a bound state

in this situation (indicated by circle in Fig. 2.3(a)). It is on this bound state which we

will concentrate on in future sections.

The ground-state wavefunction can be obtained as Ψ0(x1, x2) = φ(X)ψ(x) and on the

right-hand side of Fig. 2.1 we show its two particle probability density, |Ψ0(x1, x2)|2. The

repulsive interaction between the particles is evident as a zero line along the diagonal

in the probability density when x1 = x2. For a finite trap separation the particles

become localised in their respective traps and the two particle probability density moves

to occupy the upper left-hand side quadrant.
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Figure 2.3: Energy versus distance d between the traps for different values of the
scaled interaction strength (a) g = −1.5, (b) g = 1 and (c) g = 10. For large values of
g the energy levels become degenerate at d = 0. For finite distances between the traps
resonances appear whenever two levels approach each other. For a repulsive interac-
tion, the ground state is not affected by such resonances, however, for an attractive

interaction, a resonance can be observed (red circle in panel (a)).

2.3 Entanglement

In the case of the two interacting atoms at zero temperature one can calculate the

reduced single-particle density matrix (RSPDM) ρ1(x, x′), which is determined as the

kernel of the reduced density operator in configuration space

ρ1(x, x′) =

∫ ∞
−∞

Ψ0(x, x2)Ψ∗0(x′, x2)dx2 . (2.26)

The RSPDM contains important information about the correlations and coherences

present in the system through its off diagonal terms. This can be seen in Fig. 2.5 where

the RSPDM is plotted for two atoms with interaction strength g = 10. The first panel

depicts the situation for perfectly overlapping traps and the presence of the off-diagonal

terms shows the existing correlations stemming from the overlap of the individual single

particle states. In the second panel in Fig. 2.5 the two traps are separated by d = 0.5

which breaks the symmetry in the RSPDM and results in a visible reduction of the

off-diagonal long range order. The diagonal of the RSPDM represents the single particle

density profile of the system and its eigenvectors are the natural orbitals of the composite

state. In order to evaluate the von Neumann entropy Eq.(2.3) we need the eigenvalues

λi of ρ1(x, x′), which are found by numerically solving the integral equation∫ +∞

−∞
ρ1(x, x′)φi(x

′)dx′ = λiφi(x) , (2.27)

where the φi(x) are the eigenstates associated with the λi. The von Neumann entropy

follows as S = −
∑

i λi log2 λi. In Fig. 2.6 we show S as a function of both the trap
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Figure 2.4: The relative wavefunction of the third excited state is plotted as a function
of d in the left-hand side panel, where blue is negative intensity, red is positive intensity
and yellow is zero. The solid line represents the centre of the harmonic trap as a function
of d, and the dashed lines indicate the positions of the trap induced shape resonances.
The energy εν corresponding to the wavefunction is plotted in the middle panel, where
the trap-induced shape resonances are visible as stationary points. In the right-most
panel the wavefunction is plotted when the δ-function is at the origin of the harmonic
trap, d = 0, and at the trap induced shape resonances, d = 0.76, 1.74 and 2.38. In the
top-most figure the trap is moved far from the δ-function at d = 4. The height of the

barrier is g = 10 in all cases.

distance d and the interaction strength g. For the case of a repulsive interaction, it

can be seen from panel (a) that the von Neumann entropy decreases with increasing

trap separation. This should be expected as the short range interaction becomes less

important and the state of the system tends towards the product state of two non-

interacting particles. Panel (b) shows the behaviour of S as a function of the interaction

strength, revealing that, after an initial rise, S saturates to an asymptotic value that

decreases as d grows. This is again due to the short-range nature of the interaction

potential: as the interaction is ineffective for large d, the steady value of S would be

smaller for increasing values of the separation. For attractive interactions the situation

is slightly different and local maxima and saddle points in S can be observed at certain

values of the trap separation [see Figs. 2.6(c) and (d)]. A comparison between Figs. 2.3

and 2.6(c) shows the correspondence of the appearance of these stationary points and

the existence of the above-mentioned trap induced shape resonances for bound states in
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Figure 2.5: The RSPDM is plotted for d = 0 and d = 0.5 for g = 10. Even at small
separation the off diagonals of the RSPDM are reduced indicating the short distance

nature of entanglement.

the energy spectrum. In Fig. 2.7 the two particle wavefunction across this trap induced

resonance is shown in the top row of figures. Around the resonance at d = 3.25 the state

is seen to be localised by the strong attraction between the two traps and at d = 3.75

the particles are localised in their respective traps. However at the resonance at d = 3.5

the two particle state is spread between the two individual traps with a significant

probability still in the centre of the system. This spatial uncertainty leads to the peak

of von Neumann entropy in Fig. 2.6(c). Note that, for a given value of d, comparatively

smaller absolute values of g are required in the g < 0 case than in the repulsive one in

order to achieve large values of S.

2.4 Calculation of the Wigner function and assessment of

its negativity

We will now investigate the non-classical nature of the two-atom state in a much broader

range of operative conditions, including finite temperature. In these situations the von

Neumann entropy is not a good indicator of the correlations present as we are no longer

dealing with pure states. For this reason, the main tool in our study will be the Wigner

function [85] which is a quasi-probability distribution in phase space. The Wigner func-

tion describes the motion of a particle as it “jumps” from position x1 to x2, and much
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Figure 2.6: Von Neumann entropy of the ground state for repulsive [panels (a) and
(b)] and attractive interaction [panels (c) and (d)]. Plots are shown for the von
Neumann entropy versus trap separation, (a) and (c), and von Neumann entropy
versus particle interaction strength, (b) and (d). The local maxima visible in (c) and
(d) for certain values of d are connected to the appearance of shape induced resonances

in the energy spectrum, as seen in Fig. 2.3(a) for d ≈ 3.5.

like a quantum jump in the energy levels of an atom we can define the strength of this

transition by 〈x1|ρ̂|x2〉 where ρ̂ is the density operator. Let us now introduce new co-

ordinates, the centre of mass x = (x1 + x2)/2 and the distance between the jump as

ξ = x1 − x2. The motion of the atom is given by 〈x + 1
2ξ|ρ̂|x −

1
2ξ〉 and to construct

the full motion of the atom in phase space we have to connect the momentum p with ξ

which is achieved by a Fourier transform with respect to the jump distance. The result

is the Wigner distribution function for a single atom:

W (x, p) =
1

2π~

∫ ∞
−∞

dξ e(−
i
~pξ)

〈
x+

1

2
ξ

∣∣∣∣ ρ̂ ∣∣∣∣x− 1

2
ξ

〉
. (2.28)
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Figure 2.7: Top panels: the two particle wavefunction is plotted for different trap
distances for g = −1.5. The strong attractive interaction between the particles ensures
that they stay bonded even with the traps separated by d = 3.25. At d = 3.5 the von
Neumann entropy peaks at a local maximum caused by trap induced shape resonances.
At this point the particles begin to become localised in their respective wells, however
due to the attractive interaction there is still a density peak between the separate traps.
At d = 3.75 the force from the trapping potential overcomes that of the interaction the
particles are more likely found in their respective traps where the overlap between the
two particles is low and the von Neumann entropy approaches zero. Bottom panels:

The corresponding RSPDM is plotted at each distance.

which has the property ∫ ∞
−∞

dx

∫ ∞
−∞

dp W (x, p) = 1 . (2.29)

The Wigner function is therefore a Fourier transform which maps phase-space functions

to Hilbert space operators [84]. Also by integrating out the momenta or positions one

can calculate the marginal spatial or momentum distributions of the state, respectively.

In the case of a pure state ρ̂ = |ψ〉〈ψ| the Wigner function reduces to

W (x, p) =
1

2π~

∫ ∞
−∞

dξ e(−
i
~pξ)ψ∗

(
x− 1

2
ξ

)
ψ

(
x+

1

2
ξ

)
, (2.30)

where 〈x + 1
2ξ|ψ〉 = ψ(x + 1

2ξ) is the state |ψ〉 projected onto the position coordinate.

Hence the Wigner function is the Fourier transform of the shifted position wave functions
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Figure 2.8: Wigner function for an interaction strength of g = 1 and g = 10 at trap
separations d = 0 and d = 1. A quadrant is removed from the plot to show the negative
parts of the Wigner distribution which is symmetric about p = 0. For g = 1 a reduction
in the negative part of the Wigner function is evident for d = 1 compared to d = 0.
For g = 10 the large negative contribution and sharp peak are indicative of the larger

interaction strength at d = 0. For d = 1 the negative volume is significantly less.

of the state |ψ〉.

For the specific case of two particles, the Wigner function depends on the position and

momentum variables xj and pj (j = 1, 2) and is defined as [85]

W (x1, p1;x2, p2)=

∫
dξdς e

− i~ p1ξ−
i
~ p2ς

4π2~2 ρ
(
x1+ ξ

2 , x2+ ς
2 , x1− ξ

2 , x2− ς
2

)
. (2.31)

It is straightforward to include the effects of a non-zero temperature by weighting the

higher-order states of the two-atom spectrum with the appropriate Boltzmann factors,

Pn,σ = 1
Z e
−En,σ
kBT , where the En,σ are the energies of the atomic eigenstates identified by

the centre-of-mass and relative-motion quantum numbers n and σ, respectively. More-

over, we have introduced the equilibrium temperature of the system T , the Boltzmann

constant kB and the partition function Z. We thus get

W (α;β) =
∞∑
n

∞∑
σ

Pn,σWn,σ(α;β), (2.32)

where, for easiness of notation, we have written the Wigner function in terms of the two

quadrature variables α = (x1 + ip1)/
√

2 and β = (x2 + ip2)/
√

2.
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Figure 2.9: Panel (a) shows the negative volume of the complete Wigner distribution
at zero temperature as a function of d. The inset shows NV when only considering the
contribution to the Wigner function associated with the relative part of the problem.
Panel (b) shows the negative volume against increasing temperature (measured in units
of ~ω/kB) for the relative part of the Wigner distribution with an interaction strength

of g = 10.

2.4.1 Negative volume of the Wigner function

The appearance of negative values in the Wigner function of a system is a strong in-

dication of non-classicality of the associated state, since in this case W (α;β) cannot

be interpreted as a classical probability distribution describing a state in the phase

space. Starting from such premises, Kenfack and Zyczkowski have proposed to use

the volume occupied by the negative regions of W (α;β) as a quantitative indicator for

non-classicality [86]. Such a (dimensionless) figure of merit can be evaluated as

NV =
1

2

(∫
Ω
|W (α;β)|dΩ− 1

)
, (2.33)

with Ω being the whole phase-space and dΩ = dx1dx2dp1dp2. Note that in our case

the centre-of-mass part of the wavefunction does not depend on the interaction between

the particles. Therefore, it does not contribute to the degree of non-classicality and

in Fig. 2.8 we show the Wigner functions associated with only the relative part of our

problem for two different values of g and d. Negative parts are clearly visible for small

values of d and become more prominent for increasing interaction strength. This is

also visible in Fig. 2.9(a), where NV is plotted against d. However, the degree of non-

classicality decreases faster for a larger interaction strength when the traps are moved

apart. The temperature dependence of the negative volume is displayed in Fig. 2.9(b),

where one can see a very fast decrease once the system is able to access states beyond

the ground state.
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2.5 Testing non-locality in phase space

The results of the previous Section indicate that a considerable degree of non-classicality

might be set in the state of the external degrees of freedom of the two trapped atoms,

resilient to some extent to the effects of finite temperature. Moreover, as it should also

be clear from Eq. (2.12), our study has shown the evident non-Gaussian nature of the

atomic state (as witnessed by the features of the Wigner function). While correlations

in Gaussian states are well and easily characterized, we face the lack of necessary and

sufficient criteria for the quantification of entanglement in non-Gaussian states [87]. In

fact, the available entanglement measures for CV states are based on the use of the

negativity of partial transposition criterion formulated in terms of covariance matrices,

which carry exact information on the state of a system only in the Gaussian scenario [88].

As we would like to provide a feasible test for entanglement in the state of the system

at hand we will in the following assess non-classicality in terms of non-locality probed

in the phase-space of the system studied here.

We thus consider the CV version of CHSH inequality developed in Ref. [90] and will

explore the key points for completeness. It is well known that the Wigner function

calculated at the origin of phase space is equivalent to the expectation value W (α =

0;β = 0) = 4
π2 〈Π̂1 ⊗ Π̂2〉, where Π̂j is the parity operator for mode j = 1, 2 [89]. The

total Wigner function can therefore be written by using displaced parity operators as [89]

W (α;β) =
4

π2
〈D̂1(α)Π̂1D̂

†
1(α)⊗ D̂2(β)Π̂2D̂

†
2(β)〉, (2.34)

where D̂j(α) is a displacement operator for mode j of amplitude α [88]. A CHSH-like

function can then be built starting from the above as

B =
π2

4
[W (0; 0) +W (

√
J ; 0) +W (0;−

√
J )−W (

√
J ;−

√
J )] (2.35)

with J a positive constant. As shown above, local realistic theories impose |B| ≤ 2 [90]

and any value outside this range indicates non-local behaviour.

Equipped with these tools, we can now quantitatively study the non-locality in the

state of our system. Using the Wigner function calculated in Sec. 2.4, we determine

the violation of the CHSH inequality optimised over J and study the behaviour of

B against the interaction strength between the particles and the distance between the

traps. In Fig. 2.10(a) we show the numerically optimised values of B against d for various

interaction strengths g and at zero temperature. Clearly, for short distances the violation

of the local realistic bound is larger for strong interactions. The situation is somehow

reversed at large distances, where weakly interacting atomic pairs appear to violate the
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Figure 2.10: The violation of the CHSH inequality at T = 0 is shown in panel
(a) against trap separation for various interaction strengths and in (b) versus g, for

increasing trap separations.

CHSH inequality more significantly. Such an apparently counterintuitive result can be

understood by reminding one that the one-dimensional interaction strength is inversely

proportional to the one-dimensional scattering length (see Sec. 2.2): a lower value of

g corresponds to a larger scattering length. This means that while the correlations

stemming from the reduced dimension decay with increasing distance, the influence of

the scattering length persists for larger values of d. Comparing these results to the

von Neumann entropy shown in Fig. 2.6 it is evident that achieving a non-zero von

Neumann entropy does not necessarily correspond to the violation of CHSH inequality,

in qualitative agreement with the findings of Ref. [64]. In Fig. 2.10(b) we show B
as a function of the interaction strength. The non-monotonic behaviour of the CHSH

function against the interaction strength, as well as the disappearance of any violation

at finite values of g and for d 6= 0, are striking. It can be understood by realising that

the offset between the traps breaks the symmetry of the system and a large repulsive

interaction between the particles results in less overlap and therefore less correlations in

the phase space. Noticeably, although the CHSH inequality is only violated for d . 0.08,

recent experiments involving optical lattices have demonstrated the possibility to off-set

atomic trapping potentials with an accuracy of exactly this order of magnitude [91].

2.5.1 Finite Temperature

For the case of non-zero temperature we plot the violation of the CHSH inequality for two

values of interaction strengths (g = 1, 10) in Fig. 2.11. The plot shows general trends of

decay of the correlations with increasing temperature and distance, however one can note
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Figure 2.11: Degree of CHSH violation against trap-separation and temperature
(in units of ~ω/kB) for interaction strengths of g = 1 and g = 10. The change in
temperature has a greater impact on the two particles at greater interaction energies

(note the different scalings in the two plots).

that for g = 1 the system is more resilient to the effects of an increasing temperature than

in the stronger-interaction case because the separations between neighbouring energy

levels is larger at low δ-barrier (i.e. small g’s). At large g, this implies a greater

probability to excite higher-energy modes at small temperature. Evidently, the violation

of CHSH inequality becomes very sensitive to temperature variations once the thermal

energy is comparable to the energy-level separation.

2.5.2 Detection Scheme

We now propose a strategy for the reconstruction of the atomic Wigner function for a

non-locality test following the approach suggested by Lutterbach and Davidovich [92].

The key is mapping the information encoded in the external degree of freedom of one

of the trapped atoms into a specific internal state of the atom itself, which can then be

efficiently read out. For the sake of argument, let us for the moment address the case

of a single atom and label the logical states of the qubit as {|↑〉, |↓〉}. Physically, they

could be two quasi-degenerate metastable ground states of a three-level Λ-like model

and transitions from each ground state to the excited level of the Λ model will induce

motional state-dependent sidebands on |↑〉 and |↓〉. The transition between different

motional states of the atom can thus be induced by properly tuned stimulated Raman

passages connecting two different sidebands of the ground-state doublet, as described

in [93], in a way so as to mimic the dynamics intertwining motional degrees of freedom

and internal ones in trapped ions. Such processes can be performed with an almost ideal

efficiency. Working in an appropriate Lamb-Dicke limit (where the recoil energy due to

the kicks induced by the coupling between atomic levels and light is much smaller than
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the ground-state energy of the motional mode), it is possible to relate the difference

P↑ − P↓ between the probability of finding the atom in |↑〉 or |↓〉, respectively, to the

expectation value of the displaced parity operator and thus, in turn, to the value of the

Wigner function at a given point of the phase space [92]. Such a difference in probability

can be effectively measured by means of routinely implemented high-efficiency fluores-

cence light-based detection methods which is outlined in [94]. In order to reconstruct

the two-atom Wigner function, it would be sufficient to collect signals from both the

atoms undergoing similar reconstruction protocols and appropriately putting together

the statistical data gathered. By using fluorescence cycles of different frequencies for

each particle one can distinguish the signals collected, without the need of separating

the corresponding traps by a large distance.

2.6 Effects of dissipation

Let us finally discuss the influence of a general loss mechanisms, one per atomic mode,

that may affect the two-atom state due to finite-time coherence of the external degrees

of freedom. Such a lossy process can be effectively modelled considering each atomic

vibrational mode as in contact with a background bath of bosons (due, for instance,

to mode-mode coupling induced by an-harmonicity of the traps or position-to-electric-

field coupling induced by stray electromagnetic fields in the proximity of the trapped

particles) [95]. Here we consider a simple beam-splitter model which mimics the losses

in the detector as a result of mixing the individual modes of the two particle state with

the bosonic bath. Assuming low temperature environments this allows us to describe

them as two independent zero-T bosonic baths, each prepared in its collective vacuum

state. We call A the environmental bath affecting mode 1 and B affecting mode 2. The

Wigner function of the vacuum state of each is

W0(µk) =
2

π
e−2|µk|2 (k = A,B), (2.36)

where µk = xk+ipk√
2

are the quadrature variables of the environmental modes. The

interaction between the signal mode j and its environment is modelled as a mixing at a

beam splitter having reflectivity ηk. For simplicity and without affecting the generality

of our discussions, we assume the reflectivity to be equal in both modes, ηk = η. In

phase space, the state of the signal mode after the interaction and after tracing over the

environmental degrees of freedom is described by the convolution

W η(x1, x2, p1, p2) =
∫
dxAdxBdpAdpBW (x̃1, p̃1, x̃2, p̃2)

×W0(x̃A, p̃A)W0(x̃B, p̃B), (2.37)
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Figure 2.12: Plots of CHSH violation and entanglement witness for interaction
strengths of g = 1 (panel (a)) and g = 10 (panel (b)) with inefficiency η. The vi-
olation of CHSH is seen to decay quickly as the detection becomes inefficient (blue
lines), however the entanglement witness (green lines) shows the existence of entangle-
ment for greater inefficiencies, with the lower value of g having more resilience to the

losses.

where we have introduced the transformed variables

x̃j =
√
η xj −

√
1− η xk, x̃k =

√
η xk +

√
1− η xj , (2.38)

p̃j =
√
η pj −

√
1− η pk, p̃k =

√
η pk +

√
1− η pj (2.39)

and one should take k = A (B) if j = 1 (2). Eq. (2.37) is evaluated numerically and used

to test violation of the CHSH inequality against η. Needless to say, the effect of losses (or

detection inefficiencies) is to reduce the degree of violation of the CHSH inequality, as

shown by the solid blue lines in Fig. 2.12. The same trend highlighted before regarding

resilience of non-locality properties for lower values of g is retrieved here.

It is therefore desirable to design viable strategies for a more robust analysis of non-

locality. A step in this direction has been recently performed in Ref. [96] with the

proposal of a robust entanglement witness based on a CHSH-like inequality that shows

resilience with respect to losses/detection inefficiencies of the form considered here. Fol-

lowing the derivation provided by Lee et al. [96], one can see that for separable bipartite
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states and loss rate/detection inefficiency η, the following inequalities hold

| 〈Wη> 1
2
〉 | =| π2

4η2
[W η(0, 0)+W η(0,−

√
J )+W η(

√
J , 0)−W η(

√
J ,−

√
J )]

+π(η−1)
η2

[W η
α(0) +W η

β (0)] + 2(1− 1
η )2| ≤ 2,

| 〈Wη≤ 1
2
〉 | =|π2[W η(0, 0) +W η(0,−

√
J ) +W η(

√
J , 0)−W η(

√
J ,−

√
J )]

−2π[W η
1 (0) +W η

2 (0)] + 2| ≤ 2. (2.40)

Here, W η(a, b) is the two-mode Wigner function calculated in Eq. (2.37) and W η
1,2 are

its single-mode marginals. For the case of perfect detectors (η = 1) the inequality

becomes equivalent to Eq. (2.35). It is apparent that any violation of this inequality

for η < 1 ensures the violation of the CHSH-inequality in the presence of the unitary

case as well, thus such witnesses can be used effectively for detecting entanglement in

the presence of noise. From the results shown in Fig. 2.12 one can see that, while the

CHSH inequality violation is lost for η = 0.98 at g = 10, the entanglement witness still

violates it at η ' 0.95, which is a small yet significant improvement. It is important

to notice that current avalanche photodiodes used to collect fluorescence have quantum

efficiencies exactly in this range. Interestingly the entanglement witness for g = 1 is

violated for smaller η, echoing the trend noticed for the CHSH at zero and non-zero

temperature: lower interaction strengths give rise to states more resilient to influences

from the environment.

2.7 Conclusions

We have investigated the non-classical correlations of two interacting bosons in differ-

ent trapping potentials. The advantage of this model is the analyticity of the solution

which is readily obtained through factorising the Hamiltonian and solving for the indi-

vidual Hamiltonians. In this system the role of trap-induced shape resonances play an

important role in the energy spectra and the entanglement properties of the composite

system. We have found that the von Neumann entropy shows strong correlations at zero

temperature for a variety of interaction strengths and trap displacements. We have also

shown the violation of local realistic theories and an interesting and rather counterintu-

itive behavior has been observed, even at non-zero temperature, for the whole range of

interaction strengths analysed. We have related the multiple facets of both the revealed

non-locality and the von Neumann entropy to the details of the coupling model used in

this work and the corresponding spectrum of the system.

Finally, we have included the effects of general non-idealities (such as dissipative losses

affecting the motional degrees of freedom of the trapped atoms or inefficient detectors),
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demonstrating the fragility of the atomic non-locality. In order to circumvent such a

hindrance, we have shown that some improvements can come from the use of a recently

proposed entanglement witness that fits very well with the general approach put forward

here.

2.8 Outlook

Further studies on non-classical correlations in two particle systems in higher dimensions

would be fruitful as the relation between the scattering length and interaction strength

changes and trap induced shape resonances are still present. Furthermore, the effect of

angular momentum on the bipartite correlations would be an interesting extension to

this study especially when one considers using an asymmetric three dimensional trap.



Chapter 3

Coherence and dynamics of a

Tonks-Girardeau gas

3.1 Introduction

Strong interactions entail strong correlations which have been discussed in Chapter 2

in terms of entanglement and non-locality of a bi-partite system. In this Chapter we

will look at the collective excitations of a gas of more than two atoms and will describe

the many-body phenomena which are present. We will concentrate on the effect that

an impurity has on a Tonks-Girardeau (TG) gas, which has been the focus recently

of interesting theoretical [97, 98] and experimental work [99]. A number of studies in

this direction already exist in the literature, in which the impurity is modelled using

a δ-function pseudo-potential [97, 100–104]. These studies have primarily focused on

perturbations fixed at the origin and here we introduce a versatile analytical model

which can be used to describe the TG gas in the presence of a perturbation of arbitrary

strength at any position in a harmonic trap. In addition to describing a static impurity,

this model can be interpreted as the limiting case of a split, asymmetric double well

trap which may be realized using a sharply focused laser beam detuned from the atomic

transition. The ability to position the impurity at any point in the harmonic trap allows

us to probe the TG gas and study the spatial properties of the gas such as its coherence.

Following recent experimental studies focusing on the absence of thermalisation due to

the integrability of the underlying Hamiltonian [105] we investigate the dynamics of the

I would like to acknowledge the contribution of Dr. Krych and Dr. Idziaszek, who derived the
solutions for the Hamiltonian in Section 3.2.1.
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TG gas after sudden removal of the impurity and we are able to observe periodic revivals

of a local density dip.

3.2 The Tonks-Girardeau gas

In Chapter 1 the ability to reduce the dimensions of ultracold gases in optical lattices was

discussed [8, 10, 105, 106], and the strongly interacting TG regime was introduced. This

topic will be briefly discussed again here. A gas of N bosons in a quasi one-dimensional

potential can be approximated by the Hamiltonian

H =

N∑
n=1

[
− ~2

2m

∂2

∂x2
n

+ Vext(xn)

]
+ g1D

∑
i<j

δ(|xi − xj |) , (3.1)

where m is the mass of the particles, Vext is the trapping potential and g1D is the 1D

interaction strength [107]. This Hamiltonian describes an inhomogeneous Lieb-Liniger

gas, which in the strongly repulsive limit g1D → ∞, can be solved by using the Fermi-

Bose mapping theorem [7], thereby mapping it to a system of spinless fermions. The

basic idea is to replace the interaction term in Eq. (3.1) with a boundary condition on

the allowed bosonic wave-function

ΨB(x1, x2, . . . , xn) = 0 if |xi − xj | = 0 , (3.2)

for i 6= j and 1 ≤ i ≤ j ≤ N . Such a constraint is automatically fullfilled by calculating

the wave-function using a Slater determinant

ΨF (x1, x2, . . . , xN ) =
1√
N !

(N−1,N)

det
(n,j)=(0,1)

ψn(xj) , (3.3)

where the ψn are the single particle eigenstates of the system. Since the wave-function

resulting from the process is anti-symmetric (fermionic), one has to finally symmetrise

it using [7]

A(x1, . . . , xN ) =
∏

1≤i<j≤N
sgn(xi − xj) , (3.4)

which gives

ΨB(x1, . . . , xN ) = A(x1, . . . , xN )ΨF (x1, . . . , xN ) . (3.5)

For the ground state, which will be the focus of this Chapter, the mapping simply reduces

to the absolute value of the fermionic wavefunction

ΨB(x1, . . . , xN ) = |ΨF (x1, . . . , xN )| . (3.6)
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3.2.1 Single particle solutions

To apply the mapping mechanism and calculate the Slater determinant, Eq. (3.3), one

needs to know the single particle eigenstates of the system under consideration. Here

we will investigate a TG gas trapped in a harmonic trap potential of frequency ω, that

is split asymmetrically by a tunable δ-perturbation of strength γ at a distance d from

the centre of the trap,

Vext(x) =
1

2
mω2x2 + γδ(x− d) . (3.7)

The limit d = 0 for this model is well known and has been studied extensively in recent

years [67, 100, 102, 103].

The single particle Schrödinger equation for the potential Eq. (3.7) is(
−~2

2m

d2

dx2
+

1

2
mω2x2 + γδ(x− d)

)
ψ(x) = ενψ(x) , (3.8)

where the energies are given by εν = (ν + 1
2)~ω. Let us rescale all of the units in terms

of the undisturbed (γ = 0) trap length a =
√

~
mω and energy ~ω. In this way Eq. (3.8)

can be rewritten as (
d2

dx2
+ ν +

1

2
− x2

2
− κδ(x− d)

)
ψ(x) = 0, (3.9)

where κ = γa/(~ω) is the re-normalised strength of the δ-barrier. The solutions of

Eq.(3.9) are parabolic cylinder functions which must obey continuity conditions at the

position of the δ-function and are equivalent to those used for the relative coordinate of

two interacting particles in separate traps treated in Chapter 2,

ψ = N
(
Dν(−x)θ(d− x) +

Dν(d)

Dν(−d)
Dν(x)θ(x− d)

)
. (3.10)

Here N is the normalisation constant and θ(x) is the Heaviside step function. The

associated energies are found by solving the transcendental equation

ν
[
Dν−1(−d)Dν(d) +Dν−1(d)Dν(−d)

]
= 2κDν(−d)Dν(d) , (3.11)

for the solutions that are non-zero at the δ-potential and

Dν(d)

Dν(−d)
νDν−1(−d) + νDν−1(d) = 0 , (3.12)

for solutions that are zero at the δ-function. The solutions of the latter are simply the

harmonic oscillator wavefunctions that vanish at x = d. This system and its solution
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Figure 3.1: The energy spectrum of a harmonically trapped particle in the presence
of δ-like perturbation at position d = 1 and d = 4, as a function of the strength of the

perturbation κ.
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Figure 3.2: The energy spectrum of a harmonically trapped particle in the presence
of δ-like perturbation with strength κ = 1 and κ = 10, as a function of d. Trap induced
shape resonances exist at the positions of avoided crossings in the energy spectrum.

have been extensively discussed already in Chapter 2 and we refer the reader to Section

2.2 for a detailed explanation.

In Figs. 3.1 and 3.2 we show the energy spectrum as a function of d and κ, respectively.

The presence of the perturbation introduces a non trivial structure and in general leads

to an increase of the state’s energy for κ > 0. In Fig. 3.1 it can be seen that the

energy approaches a constant value at sufficiently large κ and in Fig. 3.2 a number of

oscillations are observed which increase in number for higher order states. The four
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Figure 3.3: The four lowest energy eigenfunctions of a particle in a harmonic potential
with a repulsive δ-function located at d = 0.5 of strength κ = 10

lowest lying eigenfunctions for d = 0.5 and κ = 10 are shown in Fig. 3.3. It can be seen

that the presence of the delta potential results in an abrupt change in the slope of the

wavefunction at the position of the δ-function and that the states are already highly

localised on one side of the impurity for κ = 10.

3.3 Static and Dynamic Properties

3.3.1 Single Particle Density Profile

The single particle density is one of the most important observables for ultracold quan-

tum gases. In the TG regime one can obtain it, even time-dependently, from the spec-

trum of underlying single particle Hamiltonian as [108]

ρ(x, t) = N

∫ +∞

−∞
|ΨB(x, x2, . . . , xN ; t)|2dx2 . . . dxN

=

N−1∑
n=0

|ψn(x, t)|2 ,
(3.13)

where we have adopted the convention of labeling the first N eigenfunctions as n =

0, 1, 2, . . . (N − 1).

In Fig. 3.4 we show the ground state density for a gas of 20 particles in a trap with an

impurity of strength κ = 10 at three different positions in the trap. As expected, the

δ-impurity creates a significant local dip in the density and has only minimal effect at
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Figure 3.4: The ground state density of a harmonically trapped TG gas with 20
particles in equilibrium with a barrier of strength κ = 10, located at positions d =

0, 3,−6.

larger distances. The enhanced oscillations present around the position of the impurity

are analogous to the Friedel oscillations which occur around an impurity in the surface

charge density of a homogeneous electron gas [109]. As the electron gas obeys Fermi-

Dirac statistics each state of the system can only be doubly occupied with electrons

of opposite spin up to the Fermi level which is occupied by the most excited electron.

When the electron gas encounters the impurity only electrons near the Fermi level can

scatter as there are higher empty energy levels that they can occupy. This leads to a

density modulation around the impurity which has the form ρ(x) ≈ sin(2kF x+φd)
x , where

kF is the Fermi wavevector and φd is a dimensionally-dependent phase [110].

In the following we investigate the dynamical properties of the TG gas in a split potential

by examining a non-equilibrium situation created by the sudden removal of the impurity.

In order to compute the time-dependent density of Eq. (3.13) one needs to employ a time

dependent basis. We obtain this basis numerically by using the split operator method

in the unperturbed harmonic trap [111]. Alternatively, one may simply employ the well

known propagator for the harmonic oscillator to get the time dependent basis [112].

This can then be used to calculate the single particle density of Eq. (3.13).

In Fig. 3.5 we show ρ(x, t) following the sudden removal of an impurity of strength

κ = 10 located at d = −6. Time is scaled with respect to the inverse of the trap

frequency ω. One can see that the density dip formed by the impurity vanishes almost

instantaneously, however a mirror image of the dip appears after half a trap period,

t = π, and then again disappears followed by a complete revival after one trap period,
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Figure 3.5: The time dependent single particle density of a harmonically trapped TG
gas following the sudden removal of a δ barrier of strength κ = 10, located at position

d = −6.

t = 2π. This effect is analogous to the Talbot effect from classical optics where periodic

refocusing of a diffraction grating is expected to occur in the near field of a transmitted

wave. In our situation the δ-function represents the most trivial form of a diffraction

grating. The Talbot effect is a coherent single particle effect however here the effect

occurs in a strongly correlated many-body system. This is because the system can be

mapped onto free fermions, for which the single particle density is simply the sum of the

squares of the single particle eigenfunctions, with each one undergoing its own coherent

unitary evolution. In this picture, the occurrences can be explained by noting that all

N eigenfunctions superimpose in phase again after every trap period and one finds that

the density profile at odd multiples of π is a mirror image of the initial density profile

at t = 0. It is also worth noting that in between these revivals the density exhibits an

interesting fine structure. This is shown in a close up of the density for the time period

0 ≤ t ≤ π in Fig. 3.6. When the impurity is removed, the matter wave readjusts to

the profile of a harmonically trapped gas by a relaxation of the Friedel oscillations. At

t = π/2 there is complete relaxation of the oscillations, followed by a complete revival
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Figure 3.6: Detailed view of the time evolution of the single particle density for half
a trap period.

at t = π. This is precisely the fine structure we see in between revivals of the density

dip in Fig. 3.5.

3.3.2 Energy profile

It is interesting to consider the energy of the system as a function of the position of the

impurity. Due to the Fermi-Bose duality, this can simply be calculated by adding the

eigenenergies of the single particle states up to the Fermi energy

ETG =

N−1∑
i=0

εi . (3.14)

The energy profile for a gas of thirty particles for different δ-perturbation strengths

as a function of the position of the perturbation is shown in Fig. 3.7. One can see a

series of lobes (the plot is symmetric for d < 0), which become more pronounced as the

strength of the perturbation is increased, but whose position is independent of κ. The

position of these local maxima correspond to the positions in which the amplitudes for

the single particle wavefunctions peak, highlighting the crystal structure of the ground



Coherence and dynamics of a Tonks-Girardeau gas 47

0 3 6 9
436

438

440

442

444

446

448

d

E

 

 

κ=1

κ=2

κ=5

κ=10

Figure 3.7: The energy of a harmonically trapped TG gas of N=30 particles as a
function of the position of the δ-perturbation. The position of the lobes are independent
of the strength of the δ-function and originate from the crystalline structure of the TG

gas.

state. The increase in energy, due to the impurity, is largest when it is located at the

centre of the cloud. In fact, one can view the perturbation as a probe which, when

dragged adiabatically through a TG gas, makes it possible to gain information on the

crystal structure of the state through an energy measurement. In the next section we

will look at non-local properties of the ground state, which can be calculated from the

reduced single particle density matrix.

3.3.3 Reduced single particle density matrix

The calculation of the reduced single particle density matrix (RSPDM),

ρ1(x, x′, t) = N

∫ ∞
−∞

Ψ∗B(x, x2, . . . , xN , t)ΨB(x′, x2, . . . , xN , t)dx2 . . . dxN , (3.15)

and related observables for an ultracold gas is, in general, a difficult feat. The dimension

of the integral in Eq. (3.15) increases with particle number and this is very demanding
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on computer memory resources. For a TG gas in a harmonic potential, studies have

therefore mainly used numerical methods such as Monte-Carlo integration to calculate

the RSPDM [48], but some analytic work has also been done in this direction [49]. An

exceptionally efficient algorithm for calculating the RSPDM of a TG gas in an arbitrary

external potential has been presented by Pezer and Buljan [113]. This algorithm allows

for a numerically exact calculation of the RSPDM for a large number of particles with

limited memory resources and at a rapid computational speed. The algorithm works

for both time dependent and time independent potentials. The essential idea is that

ρ1(x, x′, t) can be expressed in terms of the dynamically evolving single particle energy

eigenbasis, ψi(x, t), as

ρ1(x, x′, t) =
N∑
i,j

ψ∗i (x, t)Aij(x, x
′, t)ψj(x

′, t) , (3.16)

where the N ×N matrix, A(x, x′, t), is given by

A(x, x′, t) = (P−1)T det P , (3.17)

and the entries of the matrix P are computed as

Pij(x, x
′, t) = δij − 2

∫ x′

x
dξψ∗i (ξ, t)ψj(ξ, t) , (3.18)

where δij is the Kronecker delta. Given a pair of points (x, x′) and the single particle

basis functions ψi(x, t) one can calculate the RSPDM of a TG gas by merely calculating

the N × N matrix P , its inverse and its determinant, which is a significant saving on

computational resources.

We show the effect of the δ-function potential on the many-body correlations in the

RSPDM in Fig. 3.8 for the two cases of d = 0.5 and d = 1 for a gas of N = 10 particles.

At d = 0.5 the δ-function is positioned at the closest intensity maximum from the origin

of the unperturbed single particle density. The RSPDM shows prominent off-diagonal

terms as the δ-function effectively splits a hard-core boson and creates a superposition

state. At d = 1 the δ-function is positioned at the closest intensity minimum from the

origin of the unperturbed single particle density. In this case the off-diagonal terms are

reduced as the δ-function is located between two hard-core bosons and splits the gas

into two separated subsystems.
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Figure 3.8: The RSPDM is calculated for a gas of N = 10 particles for two different
positions of the δ-function of strength κ = 10. In the left-hand side panel the δ-function
is positioned at d = 0.5, at the first intensity maximum of the unperturbed density. In
the right-hand side panel the δ-function is positioned at d = 1, at the first intensity
minimum of the unperturbed density. The contrast in the off-diagonal implies that the

state at d = 0.5 has a greater coherence than the state at d = 1.

3.3.4 Natural orbitals

The RSPDM can be written in terms of its natural orbitals φi(x) as shown in Eq. (1.26)

where λi are the associated occupation numbers. The expansion in Eq. (1.26) is ex-

tremely useful for understanding the ground state properties of cold atomic gases, as

the natural orbitals are defined not only for an ideal gas but also for interacting, thermal

and non-uniform gases. The fraction of particles that are in the lowest lying orbital φ0(x)

is the largest eigenvalue λ0 of the RSPDM. Therefore, in analogy to the macroscopic

occupation of a single eigenstate in a Bose-Einstein condensate, this orbital is sometimes

referred to as the BEC state and the quantity λ0 can act as a measure of the coherence

in the system, which we will discuss in the next section.

In Fig. 3.9 the three natural orbitals with the lowest energy for a gas of 20 particles

are shown. In the we top row the δ-function coincides with a position of a maxima in

coherence at d = 0.22. In the bottom row the δ-function is at a position of a minima

of coherence at d = 0.42. Even though the difference in the position of the δ-funcion is

quite small compared to the size of the gas this has a profound effect on the lowest energy

orbital. As this orbital is occupied by a large fraction of the gas it plays a significant

role in the coherence of the system.
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Figure 3.9: The three lowest energy orbitals are shown for a gas of N = 20 particles
for two different positions of the δ-function of strength κ = 10. In the top row the
δ-function is positioned at a maximum of coherence (d = 0.22) and in the bottom row

the δ-function is positioned at a position of minimum coherence (d = 0.42).

3.3.5 Momentum distribution

Another important measure of coherence can be inferred from the momentum distri-

bution of the gas, which is derived from the RSPDM in Eq. (1.27). For a homoge-

nous, non-interacting Bose gas at zero temperature the momentum distribution is a

δ-function, reflecting the macroscopic occupation of the lowest natural orbital, whereas

in the strongly interacting TG gas in equillibrium, the momentum distribution is com-

prised of a non-trivial distribution of quasi-momenta. The amplitude of the peak of

the momentum distribution at k = 0 can therefore also be used to measure the spatial

coherence present in the system. It is well known that this quantity does not follow a

trivial behaviour in a disturbed, strongly interacting gas and that in particular, it can

show a dependence on the parity of the number of particles [102, 114–117].

In Fig. 3.10 the momentum distribution for a gas of 10 particles is shown with the

δ-function barrier located at d = 0.5 (solid line) and d = 1 (dashed line) which are

the positions of an intensity maximum and minimum of the unperturbed single particle

density respectively. In each case the barrier splits the gas into two almost separate wells.

At d = 0.5 the barrier is positioned at a maximum of the unperturbed single particle

density which is the probable position of a hard-core boson. This particle is split into a
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Figure 3.10: The momentum distribution of a gas of 10 particles punctuated with a
δ-barrier of height κ = 10 is shown. At the point of high coherence (solid line, d = 0.5)
the momentum distribution has secondary peaks caused by an interference effect. At
the point of low coherence (dashed line, d = 1) the momentum distribution is broadened

as the barrier separates the gas into two localised wells.

superposition state to the left and right-hand side of the barrier thus connecting the two

localised gases. This results in interference between these separate gases which causes

the appearance of the secondary peaks in the momentum distribution. At d = 1 the

barrier is positioned between two particles and localises the gas almost completely into

the two separate wells consequently broadening the momentum distribution. It should

also be noted that there is a large difference in the heights of the respective momentum

peaks indicating a difference in the coherence of these two situations.

In Fig. 3.11 we show the occupation of the lowest orbital, λ0, in the left-hand panel and

the peak of the momentum distribution, n(k = 0), in the right-hand side panel. Both

quantities are plotted as a function of distance of the perturbation from the trap centre

for gas ofN = 10 particles. As expected, they exhibit similar features that are dominated

by an oscillatory structure which becomes more pronounced as the strength of the δ-

perturbation increases. As in the interpretation of the energy oscillations, the maxima

correspond to positions where the single particle eigenstates have large probabilities,

i.e. where the position of the δ-potential corresponds to a lattice point of the underlying

crystal structure of the TG gas. For comparison in Fig. 3.12 we show the same quantities
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Figure 3.11: The largest eigenvalue of the RSPDM λ0 and the peak of the momentum
distribution n(k = 0) as a function of eccentricity d for perturbation strengths κ =

1, 5, 10 for a TG gas of N = 10 particles.
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Figure 3.12: The largest eigenvalue of the RSPDM λ0 and the peak of the momentum
distribution n(k = 0) as a function of eccentricity d for perturbation strengths κ =

1, 5, 10 for a TG gas of N = 11 particles.

for the N = 11 case. In this case we see a maximum of coherence at d = 0, as symmetry

reasons require a single particle to sit in the centre of the trap for odd particle numbers

[102].
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3.4 Free expansion

This dependence of the coherence on the position of the disturbance can be experimen-

tally observed by measuring the visibility in an interference experiment. To simulate

this, we calculate the time evolution of the single particle density ρ(x, t) as the gas is

allowed to expand in free space. This was calculated numerically using the split operator

method [111] but one may also employ a scaling transformation [114]. Initially at t = 0

the gas is confined in the harmonic trap where the δ-function is positioned at d = 0.5

and d = 1 for a gas of N = 10 atoms and κ = 10 (same situation as in Fig. 3.8). For

t > 0 the trapping potential and the δ-function are removed and the two parts of the gas

are allowed to overlap and interfere. In Fig. 3.13 the single particle density is plotted

and the difference in the visibility of the interference fringes is clearly observable for a

gas with large coherence (left-hand side panel) and a gas with low coherence (right-hand

side panel).

Figure 3.13: Single particle density of the free evolution of the gas after realease
from the trapping potential. Left-hand side: the δ-barrier is positioned at d = 0.5
corresponding to a maximum coherence. Right-hand side: the δ-barrier is positioned
at d = 1 corresponding to a minimum coherence. Interference fringes indicate greater

spatial coherence which confirms the results from Fig. 3.11.

3.5 Conclusions

We have discussed a model describing a harmonically trapped TG gas in the presence

of a δ-perturbation of arbitary strength and eccentricity. We have taken advantage of

the exact solution of the fundamental single particle problem and shown how it can be

used in combination with known techniques to describe the ground state properties of



Coherence and dynamics of a Tonks-Girardeau gas 54

the gas. It should be emphasised that this is a suitable model to test concepts in exactly

solvable systems due to the current experimental feasibility of embedding impurities in

ultracold gases [118, 119].

We have calculated the energy profile of the gas in the presence of the impurity and

found an undulating profile as the perturbation is displaced through the gas, which

highlights the crystal structure of the TG ground state. In addition, we have calculated

the momentum distribution and largest eigenvalue of the RSPDM as a function of both

the eccentricity and strength of the perturbation which is an indication of the coherence

of the gas. Again, we have found that these properties reflect the highly localised nature

of the particles in the TG gas.

Furthermore as a novel application of our model we have investigated the time density

dynamics after a sudden removal of the perturbation. We find that the gas exhibits

the classical Talbot effect with the image of the impurity reappearing at multiples of

the inverse trap frequency. Finally we simulated the ballistic expansion of the gas and

showed the presence of interference fringes which exist when the gas is split at the

position of a particle in the gas. This is a readily achieveable experiment which can be

used to explore the coherence properties of the TG gas.

3.6 Outlook

As discussed previously, experiments have been carried out embedding ions in ultracold

gases [120] and recently theoretical work has described the effect of the ions micromotion

on a neutral atom [121]. It would be an interesting extension of this work to investigate

the effect of this micromotion on the TG gas.



Chapter 4

The orthogonality catastrophe in

a Fermi gas

4.1 Introduction

In the past decade ultracold quantum gases have emerged as ideal candidates for design-

ing controllable experiments to simulate effects in condensed matter physics [6]. The

advantage of using ultracold gases lies in their ability to create clean systems such as

atomic lattices without impurities and defects. Also in the ground state of the gas there

are no phonons so the system is free of thermal fluctuations. When one has the ability to

create such ideal systems the pertinent course of action is to study how impurities play

a role in the dynamics of the system by means of a quantum quench. If we take a state

|Ψ〉 which is an eigenstate of the Hamiltonian Ĥ a quench is the result of the sudden

application of a different Hamiltonian, Ĥ ′ = Ĥ + λV , which forces the system under

study out of equilibrium. These quenches can be global, such as a change of trapping

frequency or interaction strength, or they can be local, like the effect of an impurity

which interacts with a subset of the system thus allowing detailed investigations into

the theory of quantum interactions and decoherence.

We will concentrate on studying a local quench in this Chapter and will explore a hy-

brid system in which two separate, ultra-cold atomic systems are combined in such

a way that their coupling can be externally controlled and their states independently

I would like to acknowledge the contribution of Dr. Lo Gullo, who derived the many-particle overlap
for thermal states in Section 4.7.
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measured. Existing examples of such systems are single spin impurities embedded in

ultracold Fermi gases [122, 123] and the combination of neutral [124, 125] or charged sin-

gle atoms [119, 126] with Bose-Einstein condensates. The impurity we consider consists

of a two-level system which interacts via a δ-function potential with an environment

of one-dimensional, non-interacting, spinless fermions. This choice of environment is

particularly interesting as it allows us to study a quantum many-body effect which has

been observed in solid state systems, the Anderson orthogonality catastrophe (OC).

4.1.1 Orthogonality Catastrophe

4.1.1.1 Time independent case

Let us discuss the original idea of Anderson [127] by considering the ground state of a

non-interacting, spin-polarized Fermi gas in a hard-wall, spherically-symmetric box of

radius R at zero temperature. The many-particle wave-function of the gas is given by

the Slater determinant of the radial single-particle eigenstates ψn(kj , xj) as

Ψ(r1, r2, . . . , rN ) =
1√
N !

(N−1,N)

det
(n,j)=(0,1)

ψn(kj , rj) , (4.1)

where rj (kj) is the coordinate (wavenumber) of the jth particle. For spherical symmetry

(l = 0) the eigenstates are given by the Bessel functions

ψn(kj , rj) =
sin(kjrj)

kjrj
, (4.2)

where kj = πn/R and the energy of the single particle states are Ej = ~2k2
j /2m. For sim-

plicity only the l = 0 scattering states are presumed here, however this does not alter the

result as the inclusion of higher angular momenta will act to increase the orthogonality

[127]. Consider now the same system, but in the presence of a static perturbation. Intu-

itively, the single-particle states are deformed and if the perturbation is highly localised,

the new states can be written asymptotically as ψ
′
n(kj , rj)∼

sin(kjrj+δ(1−
rj
R

))

kjrj
, where δ is

an s-wave phase shift which leads to a modified state of the Fermi sea |Ψ′〉.

The idea behind the OC is to see under which conditions the respective many-body

states become orthogonal, ie. 〈Ψ|Ψ′〉 → 0. For this the overlap between two many-

body wavefunctions needs to be calculated which is no easy task for states with a large

number of particles. Fortunately the many-body overlap may be calculated by only

considering the single particle states of the systems being studied which we will now

outline. Consider the single particle Hamiltonians ĥ and ĥ
′

and their respective single
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particle eigen-equations

ĥ|ψm(x)〉 = εm|ψm(x)〉 ,

ĥ
′ |ψ′n(x)〉 = ε

′
n|ψ

′
n(x)〉 .

(4.3)

For fermions the many-body wavefunctions are easily obtained as Slater determinants

Ψi(x1, ..., xN ) =
1

N

∑
P

sgn(P ) ψP (1)(x1) · · ·ψP (N)(xN ) ,

Ψ
′
j(x1, ..., xN ) =

1

N

∑
P ′

sgn(P ′) ψ
′

P ′(1)(x1) · · ·ψ′P ′(N)(xN ) ,
(4.4)

where P (P ′) is the permutation over the indices labeling the occupied states. The

overlap between any two many-body wavefunctions can then be calculated as

Λi,j = 〈Ψ′j(x1, ..., xN )|Ψi(x1, ..., xN )〉

=

∫
(Ψ
′
j(x1, ..., xN ))∗Ψi(x1, , ..., xN )dx1 · · · dxN

=
∑
P,P ′

sign(P )sign(P ′)
∏
l

∆P (l),P ′(l) ,

(4.5)

where ∆m,n =
∫
dx(ψ

′
n(x))∗ψm(x) is the overlap between two single particle states.

We assume that only N1 and N2 single particle states can be occupied by the two sets

{|ψm(x)〉} and {|ψ′n(x)〉} respectively where N1 ≥ N and N2 ≥ N . The elements of the

matrix Λ are the minors of order N of the N2×N1 matrix ∆m,n made of all the possible

occupied single particle state’s overlaps.

For the ground state this result is identical to that in Anderson’s original paper [127],

ν = Λ0,0 = 〈Ψ′ |Ψ〉 = det[∆m,n] , (4.6)

This result shows that to calculate the many-body overlap one must only take the

determinant of the matrix of single particle states ∆m,n. When evaluating the overlap

for Anderson’s original situation with fermions in a spherically symmetric box, one finds

ν∝N−
α
2 with α = 2δ2

π2 . Therefore the overlap goes rapidly towards zero for N and/or δ

sufficiently large [127].

It is interesting to note that this calculation of the many body overlap for fermionic states

can be straightforwardly applied to a Tonks-Girardeau gas which has been discussed in

Chapter 3. To calculate the many-body overlap for this situation the appropriate unit

anti-symmetric function has to be applied to the fermionic wavefunction ΨB = AΨF ,
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A =
∏

1≤i<j≤N sgn(xi − xj) which gives

ν =

∫
(ΨB(x1, ..., xN ))∗Ψ

′
B(x1, ..., xN )dx1 · · · dxN

=

∫
(AΨF (x1, ..., xN ))∗AΨ

′
F (x1, ..., xN )dx1 · · · dxN

=

∫
A2(ΨF (x1, ..., xN ))∗Ψ

′
F (x1, ..., xN )dx1 · · · dxN

=

∫
(ΨF (x1, ..., xN ))∗Ψ

′
F (x1, ..., xN )dx1 · · · dxN .

(4.7)

As A can only have values ±1 its square is always positive and the overlap for two

systems of strongly interacting bosons is equivalent to that of the corresponding system

of non-interacting fermions in Eq. (4.5).

4.1.1.2 Time dependent case

While Anderson’s original work involved stationary states, the creation of a perturbed

many-body state is, in general, a time-dependent process. The dynamical theory of

the OC was developed by Nozières and De Dominicis [128] who described the effects

appearing in X-ray absorption spectroscopy in metals. An incident X-ray is absorbed by

the metal and the photon energy is used to promote an electron from the core level to

an unoccupied state in the conduction band. At zero temperature the only unoccupied

states lie above the Fermi-energy and for this absorption process to be possible the

energy of the incident X-ray must be at least ~ωT = Eb +EC where ωT is the threshold

frequency for the creation of the hole, Eb is the width of the occupied conduction band

and EC is the binding energy of the core-level. The ejected electron leaves behind a

hole in the core level which is seen as an impurity by the electron gas. The core-hole

can decay in several possible ways, but two processes dominate. The first decay is an

Auger process which involves an electron from a higher state falling into the core-hole

while its energy is transferred to another electron whose energy is then increased. By

using Auger spectroscopy the electron which gains this energy can be measured [129].

The second process results in the emission of an X-ray photon by the electron which

falls into the core-hole and this provides a measurement over the occupied states in the

ground state of the Fermi sea.

The question is what impact does the sudden appearance of the core-hole have on the

N ≈ 1023 conduction electrons in the metal and how does this affect the single particle

spectrum of the Fermi sea? Nozières and De Dominicis calculated the transient response

of a Fermi sea after the sudden switching on of a core-hole in a metal where a direct

manifestation of the OC can then be observed in the single-particle spectrum of the
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Fermi gas

A(ω)=2<
∫ ∞
−∞
dt ei(ω−ωT )tν(t) , (4.8)

here ν(t) = 〈Ψ|eiĤte−iĤ
′
t|Ψ〉 is the propagator of the core hole’s retarded Green’s func-

tion at zero temperature

G(t) = −ie−itωTΘ(t)〈Ψ|eiĤte−iĤ
′
t|Ψ〉. (4.9)

Here Θ(t) is the Heaviside step function, |Ψ〉 is the initial equilibrium state of the Fermi

system, governed by the Hamiltonian Ĥ, and the subsequent evolution of the Fermi

sea in the presence of the impurity is given by Ĥ
′

[130]. In the absence of the core-

hole, the single-particle spectrum of the homogeneous non-interacting Fermi gas is a

Dirac δ-function peaked at the Fermi energy. However due to the interactions inside the

electron gas within the OC regime the spectral function broadens and turns into a power

law distribution which eliminates any δ- function character. In real systems where the

number of electrons is N ∼ 1023, typically α is found to be in the region 0.1 → 0.2.

Relating this to Anderson’s many-body overlap, ν = N−α/2, the values lie in the range

of 0.1→ 0.01.

The evaluation of the Green’s function in Eq. (4.9) now amounts to calculating the

overlap ν(t) between the perturbed and unperturbed time-dependent many-body wave-

functions. However, given that

ν(t) = 〈Ψ|eiĤte−iĤ
′
t|Ψ〉

=
∑
j

|Λ0,j |2e−i(E
′
j−E0)

= det[An,m(t)] ,

(4.10)

with An,m(t)=
∫

(ψ
′
n(x, t))∗ψm(x, t)dx, this reduces to calculating the overlap of the time-

dependent single-particle states and Eq. (4.10) can be therefore evaluated by simple

knowledge of the relevant quenched single-particle states, ψ′n(x, t).

4.2 Loschmidt Echo

A powerful tool to study the sensitivity of quantum evolutions due to perturbations is

the Loschmidt echo [131]. It is a measure of the reversibility of a quantum state when

an imperfect time-reversal procedure is applied to it and can be written as

L(t) = |〈Ψ|eiĤ1te−iĤ2t|Ψ〉|2 , (4.11)
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where |Ψ〉 is the initial state evolved under two different Hamiltonians Ĥ1 and Ĥ2. In

the case where |Ψ〉 is an eigenstate of Ĥ1 and Ĥ2 = Ĥ1 + λV is the same Hamiltonian

with a perturbation of strength λ the Loschmidt echo is a measure of the sensitivity of

the evolution of the initial state to a perturbation. In this case the Loschmidt echo can

also be referred to as the fidelity of the state and is the squared norm of Eq. (4.10)

L(t) = |ν(t)|2. (4.12)

The Loschmidt echo has a broad scale of interest in different scientific communities and

is used in studying quantum phase transitions, quantum criticality, quantum chaos, spin

echo in NMR and decoherence in open quantum systems [132, 133]. For this last area the

application of the Loschmidt echo is particularly exciting as it is clear that decoherence

limits the implementation of quantum computers as one scales up the number of qubits

and increases the complexity of the system. The Loschmidt echo is thus a powerful tool

to examine the noisy effects of the environmental degrees of freedom and allows one to

quantify decoherence.

The Loschmidt echo usually is a decaying function of time and the rate of decay depends

on the classical dynamics of the system, the choice of initial state and more importantly

the form and strength of the perturbation applied to the system [134–136]. If we study

the Loschmidt echo averaged over an ensemble of initial states it will initially embark on

parabolic decay L(t) ' 1 − (ηt/~)2 where η is an average dispersion based on the type

of perturbation used. However, the parabolic decay only holds for short times when the

propagators of the individual Hamiltonians can be approximated by their second order

Taylor expansions, ie. exp(−iHt/~) = 1− iHt/~− (Ht)2/(2~2).

After the initial parabolic decay the asymptotic decay is dependent on the strength

of the perturbation κ and can generally be classified into two regimes: Gaussian and

exponential. In the Gaussian regime the Loschmidt echo decays as L(t) ' exp(−(ηt/~)2);

this applies to the situation where the perturbation is weak compared to the mean energy

level spacing of the unperturbed Hamiltonian. In the exponential regime the Loschmidt

echo decays as L(t) ' exp(−Γt) which holds when the perturbations are large on the

scale of the mean energy level spacing. Here Γ is a function κ and at long times the

Loschmidt echo saturates as L(t) ∼ N−1 where N is the size of the Hilbert space.

4.3 Impurity in an Harmonic Trap

Since all that is needed to construct the overlaps between the many-body wavefunctions

are the eigensolutions of the corresponding single particle problems the δ-split harmonic
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trap offers an exactly solvable model in which to investigate the effects of the OC on

a large Fermi gas. The model and its solutions have been discussed in Chapter 3 and

here we consider the initial state |Ψ〉 to be given by Fermi gas of N particles at zero

temperature trapped in a simple harmonic oscillator potential. The perturbed state

|Ψ′〉 is the harmonically trapped gas punctuated by a δ-function potential of height κ

situated at a distance d from the trap centre. The respective Hamiltonians Ĥ and Ĥ ′

are scaled as described previously (Sec. 3.2.1) and are presented here in that form

Ĥ =
N∑
n=1

[
− ∂2

∂x2
n

+
1

2
x2
n

]
, (4.13)

Ĥ ′ =
N∑
n=1

[
− ∂2

∂x2
n

+
1

2
x2
n + κδ(xn − d)

]
. (4.14)

The magnitude of κ is related to the scattering phase shift δ explained in Anderson’s

work [127].

In the left panel of Fig. 4.1 the overlap for an infinite δ-function positioned at the origin

is plotted versus total particle number N . If the δ-function has infinite height this means

that every even eigenstate is degenerate with the next highest odd eigenstate and can

be easily written as

ψn(x) =

 Cne
−x

2

4 Hn(x), n odd ,

Cn+1e
−x

2

4 Hn+1(|x|), n even ,
(4.15)

with the normalisation Cn = (
√
π/2a⊥2nn!)−

1
2 where a⊥ =

√
~
mω [137]. As N increases

the overlap between |Ψ〉 and |Ψ′〉 decreases as prescribed by the OC. The δ- function

only affects the even eigenstates which means that ν(2N) = ν(2N + 1) which results

in a step pattern visible in the right-hand side panel of Fig. 4.1. Interestingly, and in

contrast to Anderson’s finding that the states become orthogonal for increasing N we

find that the many-body overlap begins to increase again after an initial decrease at a

certain N , which is dependent on the strength of the impurity κ. From the right-hand

side panel of Fig. 4.1 this increase can be seen to appear for N > κ. Even though

this contradicts Anderson’s original treatise it is not in conflict with his original result

as the effect the scattering potential has on the Fermi gas is different in each case. In

Anderson’s system only states near the Fermi surface are taken into account, meaning

that the highest states are affected by an approximately equal scattering phase shift

δ. In our case the impurity acts at the bottom of the Fermi sea and affects each state

though an energy dependent phase shift δ(E). So for higher lying states the effect of

the impurity is diminished and eventually, as the size of the system is increased, the

presence of the impurity is negligible and ν → 1. This does not mean that we cannot
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adequately study the orthogonality catastophe in our system, however we are limited to

look at the situation of κ quite large compared to the Fermi energy. This ensures that

in the system we are studying the overlap does not begin to increase again for N large

but not infinite.
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Figure 4.1: Overlap, ν, as a function of total particle number N . Left panel: δ-
function on the origin of the harmonic trap with κ → ∞. Right panel: δ-function of
variable height κ = 5, 10, 15 and 20. For comparison κ→∞ is also shown (squares).

The left-hand side panel of Fig. 4.2 shows the time-independent overlap, ν, as a function

of the position of the δ-function, d, for a constant height κ = 1. It is apparent that
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Figure 4.2: Left panel: The time-independent overlap, ν, is plotted versus the position
d of the δ-function of height κ = 1 for N = 1 (blue line), 10 (green line), 20 (red line),
50 (cyan line) and 100 (black line). Right panel: The position of the δ-function when ν
is a minimum is plotted versus N (solid black line). For comparison the position of the
largest critical point of the highest single particle state of the Fermi sea |ψN 〉 is shown

(blue dashed line) and its width ∆x =
√

(2n+ 1) (red dot-dashed line).
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as the total number of particles in the trap N is increased the number of troughs also

increases, which highlights the crystaline nature of the Fermi-gas which is equivalent to

that of the Tonks-Girardeau gas that was discussed in Chapter 3. This is because the

number of nodes of the single particle states increases linearly for increasing N . What

is interesting is that as the δ-function is moved from the origin of the harmonic trap the

effect of the impurity potential is being moved away from the bottom of the Fermi-sea

exclusively towards the Fermi surface where the overlap, ν, reaches its minimum. In the

right panel of Fig. 4.2 it is shown that the minimum of ν (solid black line) follows the

maximum of the probability density of the highest state in the Fermi sea, |ψN 〉. This

point lies at the edge of the single particle density of the gas which means that the

impurity only disturbs a small number of particles at the Fermi edge.

The OC also manifests itself in a time evolving system which can be observed in the

Loschmidt echo L(t). The echo corresponding to Fermi gases for different N and κ=200

is shown in Fig. 4.3. As expected from our previous considerations, it decreases rapidly

once the system size is above a moderate number. As we are creating an out of equi-

librium state through the application of a sudden perturbation the minimum value of

the Loschmidt echo far exceeds that which is calculated for the time-independent case.

However if one was to undertake this process adiabatically the form of the overlap would

be identical to that in Fig. 4.1. The revivals seen in the echo are located at the time cor-

responding to the inverse of the particle-hole resonances E
′
j −E0 in the Fermi gas which

are apparent from Eq. (4.10). For small particle numbers the magnitude of the revival

is quite large and shows an almost complete reformation of the initial state. However

for large particle numbers the OC diminishes the strength of these revivals until they

are eventually no longer observable.

Conversely, if one were to consider the reverse case of starting at t = 0 with a gas split

by a δ-function, which is then suddenly removed, one would expect perfect refocusing of

the state at the revival times. This is a result of the fact that the new basis in this case

is the harmonic oscillator and the evolution of all the single particle states are in phase.

4.3.1 Finite sized impurity

The impurity discussed so far has been a δ-function which is a mathematical construct

of zero width and is assumed here to represent a highly localised atom or laser beam.

However in reality this may not be the case due to the finite size of the particle and

the beam waist of the laser. To investigate the effect of a finite sized impurity one can

replace the δ-like interaction in Eq. (4.18) with a Gaussian potential with a characteristic
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Figure 4.3: Loschmidt echo L(t) as a function of the particle number N for κ = 200.
After an initial decay revivals are seen at longer times.

width σ and height κ given by

V (x) = κe
−
(

x√
2σ

)2

. (4.16)

Since the δ-like interaction only affects the even parity wavefunctions of the system,

leaving the odd parity ones unchanged [138], the main effect of a finite width is a modi-

fication of all eigenstates of the system which hastens the appearance of the othogonality

catastrophe. In the top row of Fig. 4.4 the overlap is calculated for a centrally placed

Gaussian potential of width σ = 0.01 (left-hand side) and 0.1 (right-hand side) as a func-

tion of the total particle number N . As N is increased the overlap decays highlighting

the presence of the orthogonality catastrophy. The width of the Gaussian has a strong

effect on the rate of decay stemming from the odd states of the harmonic oscillator being

affected to a greater extent. Similar to the case of the δ-function the overlap starts to

increase again after the system reaches a certain size.

It is interesting to investigate the Loschmidt echo of this system for two points which

have the same value of ν in the time independent case. The points chosen are shown

in Fig. 4.4 as circles at N = 23 and N = 293 for σ = 0.01 and N = 13 and N = 163

for σ = 0.1 with κσ = 15 in each case. The decay of the respective Loschmidt echoes

are plotted in the second row of Fig. 4.4 and one can see that for σ = 0.01 the rate of

the decay is greater for the state with the larger particle number. For σ = 0.1 the large
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Figure 4.4: Time independent overlap, ν, of two many-body states of the harmonic
oscillator. The perturbed state has a repulsive Gaussian barrier placed in the centre of
the trap. In the top row ν is plotted versus N for defects of width σ = 0.01 and σ = 0.1
for different heights of the barrier κ. In the bottom row the Loschmidt echo is plotted
for parameters which result in equal values of ν for differnt N as indicated by the grey

circles in the upper row plots.

width of the Gaussian creates a lobe at short times in L(t) for N = 13 which is washed

out for larger particle numbers. In both cases the initial decay of the echo is strongly

reliant on the number of particles in the state, however at long times the values of the

echoes become equivalent.

4.4 System and Environment Model

In what follows we demonstrate how the physics of the OC influences the dynamics of

a single auxiliary two-level system which is coupled to a non-interacting Fermi gas in a

harmonic trap. As our system we choose a highly localised neutral atom [139, 140], whose

relevant two levels, |g〉 and |e〉, are assumed to be separated by the energy ~Ω, so that
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the Hamiltonian reads Hs=
~Ω
2 (|e〉〈e| − |g〉〈g|). The environment of the non-interacting

Fermi gas is described by

Ĥ =

∫
Ψ̂†(x)

(
− ~2

2m

d2

dx2
+

1

2
mω2x2

)
Ψ̂(x)dx, (4.17)

where Ψ̂†(x) is the fermionic field creation operator. At low enough temperatures, s-

wave scattering is the dominating interaction process between the Fermi gas and the

atom. For simplicity but without affecting the generality of our discussion, we assume

that only |e〉 has a finite (positive) s-wave scattering length, while |g〉 does not inter-

act with the environment. This does not restrict the generality of our approach as the

inter-particle interactions can be tuned to any desireable value by exploiting the appro-

priate Feshbach resonances. Assuming that a confining potential strongly localizes the

impurity’s wave-function, so that its kinetic energy can be neglected, we are led to the

following interaction Hamiltonian between the impurity and the Fermi gas

ĤI = κ

∫
Ψ̂†(x)V (x)Ψ̂(x)dx, (4.18)

where V (x) = δ(x) which is the standard δ-function pseudo-potential approximation for

the scattering interaction unless otherwise stated.

The analogy with the situation typically considered in the context of Anderson’s OC

theory should now be apparent: the localised spatial interaction of the impurity with

the ultra-cold gas plays a role synonymous to the interaction of the core hole with the

rest of the electrons in a metal. A key point to stress is that here, in contrast to the

case of a metal, we have typically a far smaller number of particles in the environment,

which could in principle compromise the observability of the OC effects. However, as

noted in Sec. 4.1.1.1 the OC can be observed in the mesoscopic domain for large κ.

Let us start by assuming that, at time t < 0, the atom is prepared in |g〉 with the Fermi

gas in its ground state |Ψ〉. The collective state of the hybrid system can be written as

|Φ〉 = |g〉 ⊗ |Ψ〉. At t = 0, a properly set interaction between the atom and a classical

laser field prepares the two-level state in (|g〉 + |e〉)/
√

2 and the perturbed Fermi sea

evolves according to Ĥ + ĤI , driving the overall system into a correlated state of the

form

|Φ′〉 =
(
|g〉 ⊗ e−iĤt|Ψ〉+ |e〉 ⊗ e−i(Ĥ+ĤI)t|Ψ〉

)
/
√

2. (4.19)

The state of the environment now comprises the atomic states |Ψ′g(t)〉 = e−iĤt|Ψ〉,
associated with the non-interacting microscopic state |g〉, and |Ψ′e(t)〉 = e−i(Ĥ+ĤI)t|Ψ〉,
which results from the scattering mechanism. The time-dependent density matrix of the
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entire system is

|Φ′〉〈Φ′ | = 1

2

(
|g〉〈g| ⊗ |Ψ′g(t)〉〈Ψ

′
g(t)|+ |g〉〈e| ⊗ |Ψ

′
g(t)〉〈Ψ

′
e(t)|+

|e〉〈g| ⊗ |Ψ′e(t)〉〈Ψ
′
g(t)|+ |e〉〈e| ⊗ |Ψ

′
e(t)〉〈Ψ

′
e(t)|

)
,

(4.20)

and the time dependent density matrix of the impurity can be calculated by tracing out

the environment ρs(t) = Tr|Ψ〉|Φ
′〉〈Φ′ | which leads to

ρs(t) =
1

2

(
|g〉〈g|〈Ψ′g(t)|Ψ

′
g(t)〉+ |g〉〈e|〈Ψ′e(t)|Ψ

′
g(t)〉+

|e〉〈g|〈Ψ′g(t)|Ψ
′
e(t)〉+ |e〉〈e|〈Ψ′e(t)|Ψ

′
e(t)〉

)
.

(4.21)

Taking into account the normalisation condition 〈Ψ′i(t)|Ψ
′
i(t)〉 = 1 for i = {g, e} and

noting that the coherences of the reduced state are proportional to the scalar product

〈Ψ′g(t)|Ψ
′
e(t)〉 = 〈Ψ|eiĤte−i(Ĥ+ĤI)t|Ψ〉 = ν(t), (4.22)

the reduced state can be written as

ρs(t) =
1

2

(
|g〉〈g|+ |g〉〈e| ν∗(t) + |e〉〈g| ν(t) + |e〉〈e|

)
. (4.23)

The equivalence with the time-propagator ν(t) highlighted in Eq. (4.10) proves a di-

rect link between the decoherence of an impurity in a fermionic environment and the

phenomenon of Anderson OC.

4.5 Entanglement

Given the formal connection between ν(t) and the impurity’s dynamics, we can quantify

the degree of entanglement within the state in Eq. (4.19) by means of the von Neumann

entropy S(t)= −
∑

i λi(t) log2 λi(t), where λi(t) are the time-dependent eigenvalues of

ρs(t), the reduced state of the impurity only. The time-dependent von Neumann entropy

is shown in Fig. 4.5 for systems with different particle number and two different values of

the interaction strengths. If the interaction energy is at or above the Fermi energy, as in

Fig. 4.5(a), it can be seen that after the interaction is switched on, the coupled system

evolves into a fully entangled state (S = 1). This indicates that the many-particle state,

created after the disturbance is switched on, almost immediately becomes orthogonal

to the initial equilibrium state, as demanded by the catastrophe effect. It is remarkable

to note that, already for a small number of particles, the state of the atomic gas is not

separable at any time following the quench. The inset of Fig. 4.5(a) shows the entropy
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Figure 4.5: (Color online)(a) Time-dependent von Neumann entropy as a function
of the particle number for κ = 200. The inset shows a time slice at t = π/2. (b)
Time-dependent von Neumann entropy as a function of the particle number for κ = 50.

at a fixed moment in time, clearly indicating that the orthogonal state is already reached

for a mesoscopic number of particles [N ≈ 15 in Fig. 4.5(a)]. An interesting point to

make is that, provided one has the ability to tune the coupling to a large value, the

qualitative features shown above remain similar for even smaller Fermi environments.

This is in contrast to the case of a metal where large particle numbers and relatively

weak scattering strengths are in order. Fig. 4.5(b) shows the von Neumann entropy for

the weaker value κ = 50 of the scattering strength. In this case, full orthogonality is

established only for larger particle numbers and a maximally entangled state is achieved

at N = 50. For N > 125 the strength of the perturbation is too weak to greatly disturb

the higher states and the effect of the OC is seen to diminish.

4.6 Detection

Let us now show how the properties of our complex system-environment state can be

directly inferred by looking at the system state only [141]. In particular, we suggest

to use Ramsey interferometry on the atom to measure the time-dependent overlap ν(t)

and, from it, the single-particle spectrum of the Fermi gas. As discussed previously, this

spectrum is known to be strongly affected by the OC [130]. Spectral information will
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therefore provide a definite signature of OC which can be easily compared to the original

experiments in metals. Our scheme is based on a protocol put forward in Ref. [142]:

after the creation of the entangled atom-environment state, we allow the hybrid system

to freely evolve for a time t. During this time, a phase-shift gate is applied to the atom,

such that |g〉 → |g〉 and |e〉 → eiφ|e〉, giving the state of the overall system as

|Ψ(t)〉=(|g〉 ⊗ e−iĤt|Ψ〉+ eiφ|e〉 ⊗ e−i(Ĥ+HI)t|Ψ〉)/
√

2. (4.24)

Using again a classical field, the state of the atom can be changed as

|g〉→(|g〉+|e〉)/
√

2 ,

|e〉→(|g〉−|e〉)/
√

2.
(4.25)

We finally measure the probability for the atom to be found in |g〉, which reads

Pg(t, φ) = [1 + cos(φ)νR(t)− sin(φ)νI(t)]/2, (4.26)

where ν(t) = νR(t)+iνI(t) is the overlap entering the OC theory in Eq. (4.22). Eq. (4.26)

is plotted for various different total particle numbers in Fig. 4.6. After the initial switch-

ing on of the qubit Pg(t) starts to oscillate with a constant amplitude about Pg(t) = 0.5.

The amplitude of these oscillations depends on the total particle number N and as with

the Loschmidt echo it decreases for N large. Using, for example, resonance fluorescence

techniques, Pg(t, φ) can be measured for various values of the phase φ and thus fitted to

Eq. (4.26), from which the overlap function ν(t) can be extracted as a fitting parameter.

The single-particle spectrum A(ω) can then be obtained from the Fourier transform on

the time-dependent overlap ν(t), according to Eq. (4.8). A typical spectrum is shown in

Fig. 4.7 and one can see that A(ω) exhibits almost identical features to those observed

via X-ray absorption of metals [130]. First of all, the main peak has a finite height at

the Fermi energy, which implies that the transition probability is not diverging anymore.

Moreover, the spectrum is asymmetric with respect to the mean peak, showing that the

‘emission’ and ‘absorption’ rates are different at ω and −ω, respectively. Physically, this

means that the system is out of equilibrium and is trying to settle into a new state.

Fig. 4.7 (b) shows that the logarithm of the tails of the spectrum decay following a

power law (continuous blue line) instead of an exponential one (dashed red line), as it

would be expected for a system at equilibrium.

The effect of a finite size impurity on the spectral function has also been explored, some

results of which are presented in the left panel of Fig. 4.8, where a Gaussian potential

is used with height κ = 5000 and widths σ = 0.001 and σ = 0.01 for a gas of N = 100

particles. In both cases the asymmetric broadening of the spectral function is preserved,
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Figure 4.6: The probability for the qubit to be measured in the ground state Pg(t)
is plotted in the LHS panel for different particle numbers, N = 50, 100, 150. The inset
shows the mean amplitude of the oscillations in the time period π/2− 0.25, π/2 + 0.25
and how this changes with particle number showing the onset of the OC. The RHS
panel is a magnification of Pg(t) around t = π/2 which shows the change in amplitude

of the oscillating probability for different particle numbers.

however the magnitude of the main peak is reduced as the width of the impurity is

increased. The finite sized impurity excites not only the even but also the odd states of

the harmonic trap, which leads to an increased number of peaks in the spectral function

at large frequencies. Numerically this makes it difficult to capture all the excitation

frequencies for N > 50 and σ ≥ 0.05.

Modern experimental techniques allow for the opportunity to observe the OC in cold

atoms highlighted by a recent experiment which has demonstrated a species-selective

dipole potential trapping geometry that tightly localised an individual impurity (40K)

in a quasi-one-dimensional gas of on average 180 atoms (87Rb) [143]. Although the atoms

used in this specific experiment are bosonic, there is no reason such a setup cannot be

used for fermionic samples. Alternatively, one can use a confinement-induced resonance

to drive the atoms into the fermionized Tonks-Girardeau regime, where the Loschmidt

echo is equivalent to that of non-interacting fermions [144].

4.7 Finite Temperature

The above argument holds for situations in which the Fermi gas is initially prepared in

a pure state. However it is often the case that the gas has a thermal component and its



The orthogonality catastrophe in a Fermi gas 71

−400 −300 −200 −100 0
0

200

400

600

800

1000

ω

A
(ω

)

−400 −300 −200

2

3

4

5

ω

lo
g(

A
(ω

))

(b)(a)

Figure 4.7: Spectral function. (a) The spectral function A(ω) for N = 100 and
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Figure 4.8: Left Panel: The spectral function A(ω) for N = 100. A Gaussian of
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quantum state is mixed. The overlap for mixed states is given by

ν(t) = Tr(Û
′
(t)ρ̂Û(−t)) , (4.27)

where Û(t) = e−iĤt and Û
′
(t) = e−iĤ

′
t are the corresponding unitary evolution oper-

ators which generate the dynamics in the unperturbed and perturbed system. In the

case of an initial pure state one recovers Tr(Û
′
(t)|Ψ〉〈Ψ|Û(−t)) = 〈Ψ|Û(−t)Û ′(t)|Ψ〉 =
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〈Ψ(t)|Ψ′(t)〉. Using the generalised overlaps in the previous section one may derive a

formula which holds for a general class of initial mixed states,

Tr(Û
′
(t)ρ̂(0)Û(−t)) =

∑
i

〈Ψi(X)|Û ′(t)ρ̂(0)Û(−t)|Ψi(X)〉

=
∑
i

〈Ψi(X)|
(∑

j

|Ψ′j(X)〉〈Ψ′j(X)|
)
Û
′
(t)ρ̂(0)Û(−t)|Ψi(X)〉

=
∑
i,j

〈Ψn(X)|Ψ′j(X)〉〈Ψ′j(X)|Û ′(t)ρ̂(0)Û(−t)|Ψi(X)〉

=
∑
i,j

e−ı(E
′
j−Ei)t〈Ψi(X)|Ψ′j(X)〉〈Ψ′j(X)|ρ̂(0)|Ψi(X)〉 .

(4.28)

Let us assume that the initial state of the gas is in thermal equilibrium, and can be

described in the framework of the canonical ensemble, such that

ν(t) = Tr(Û
′
(t)ρ̂Û(−t)) =

∑
i,j,l

ClΛ
∗
j,iΛj,l e

−ı∆j,it , (4.29)

with Cl = eEl/kBT /Z where Z =
∑

j e
−Ej/kBT and we have set ∆j,i = E

′
j − Ei. In the

limit kBT � µF where µF is the chemical potential, we get

ν(t) = Tr(Û
′
(t)ρ̂(0)Û(−t)) =

∑
j

|Λj,0|2e−ı∆j,0t, (4.30)

as in Eq. (4.10). We note that the Loschmidt echo is given by

|ν(t)|2 =
∑
j,i

|Λj0|2|Λi0|2e−ı∆
′
j,it , (4.31)

where ∆
′
j,i = E

′
j −E

′
i is the energy difference among the fermion-hole pairs as measured

from the new Fermi energy E
′
0.

The influence of a finite temperature can lead to a blurring of the OC effect. One

can see from Eq. (4.29) that its effect is two-fold: on the one hand it introduces new

frequencies to the system, since now ∆m,n 6= 0 even for n 6= 0, which is manifested in

a broadening of the spectrum. On the other hand exponential factors are introduced,

namely Cn = e−En/kBT /Z, so that the heights of the peaks are exponentially suppressed

(see right panel Fig. 4.8). This leads to a loss of the characteristic power law for the

spectrum tails and therefore requires us to work at temperatures which are well below

the Fermi energy in order to observe the OC effects.
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4.8 Conclusions

In summary we have investigated the occurance of the OC in a system of ultracold

fermions which can also describe the Tonks-Girardeau gas. For a time-independent

system the catastrophe has been numerically observed for a harmonically trapped gas

of fermions under the influence of a δ- function perturbation. We have shown that the

OC plays an important role in the dynamics of coupled systems consisting of an ultra-

cold atomic gas interacting with a single two-level system. In this respect, we have

quantitatively linked the OC to the mechanism of decoherence undergone by the two-

level system and signaled by the Loschmidt echo. The occurance of OC has also shown

to be robust for mixed states at finite temperature and for impurities of finite width.

It should be stressed that, beside pointing out the exciting possibility to explore the

OC in a realistic set-up radically different to the one originally envisaged by Anderson,

the scenario addressed here demonstrates that the measurement of a single impurity

allows one to obtain highly nontrivial information about the behaviour of a complex

environment. Such information is invaluable for tasks of environmental characterization

and interaction-identification, thus suggesting an ideal probe for testing ultracold atomic

gases. In this sense, this work stands as the ultra-cold counterpart of the hallmark

experiments in the X-ray absorption spectrum of metals while demonstrating, at the

same time, the appropriateness of auxiliary quantum systems as probes for ultra-cold

quantum gases.

4.9 Outlook

The behaviour of the overlap in many-body systems under the effect of both global and

local perturbations of different forms is an interesting area which has been previously

un-explored. The sudden change of the trapping frequency on the state can lead to

intriguing results about the time evolving state of the system. The question would then

be twofold: when does the average of the time evolving state reach its time average and

does this give a good description of the out-of-equilibrium dynamics of the state?



Chapter 5

Effect of interparticle interaction

in a free-oscillation atomic

interferometer

5.1 Introduction

In all scientific pursuits accurate measurements are crucial, however measurements are

beset by noise and uncertainty in the measurement apparatus. Interferometry is a

powerful measurement technique which exploits wave phenomena to accurately mea-

sure distances and forces by measuring the phase difference that a wave has aquired

after travelling along two different paths. However the precision of an interferometer

to measure this phase is limited. In optical interferometry the number of photons, N ,

is the resource that is used to to increase the precision of an experiment. Classically

the uncertainty in the measured phase δϕ scales as 1/
√
N and this is called the stan-

dard quantum limit (SQL). However interferometry using non-classical states (squeezed

states and other strongly correlated states) can do much better than this and allows

the uncertainty to scale with 1/N , which is known as the Heisenberg limit. Optical

interferometers, in comparison to their atomic counterparts, have been widely explored

and can generate a wide range of entangled states, such as the NOON state [145–148].

The NOON state is a maximally entangled many-body state of the form

|ψNOON 〉 =
1√
2

(|N〉a|0〉b + |0〉a|N〉b) , (5.1)

and is a superposition of N particles in mode a with zero particles in mode b and zero

particles in mode a with N particles in mode b. By using NOON states in interferometry

74
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the uncertainty in parameter estimation can be minimized and the Heisenberg limit is

reached. However a major drawback in optical setups is their short coherence times

especially when compared to atomic ensembles [149]. As exploiting entanglement in

order to enhance the measurement precision is the goal, maximizing coherence times is

of paramount importance.

While making use of atomic ensembles can enhance the lifetime of a generated state there

is an experimental cost, as such systems are often more difficult to control given current

technologies [149]. Recently proposals using the strongly correlated Tonks-Girardeau

gas to create macroscopic superpositions have emerged [150, 151] and some remarkable

advances have been made by using Bose-Einstein condensates (BECs) as resources [152,

153]. Compared with thermal atoms, the ultra-cold atoms in BECs offer a greater

control and can, for example, form atomic solitons whose non-dispersive properties can

be exploited to create macroscopic superposition states for interferometry [154–157]. The

established creation of BECs in harmonic traps has led to new interferometry designs

which exploit the periodic dynamics of the particles to create Michelson and Mach-

Zehnder interferometers [158–161]. Such schemes, which present a viable approach to

atomic interferometry are referred to as free oscillation atom interferometers.

In this Chapter we take a similar approach. We start with two bosonic atoms held on

one side of a harmonic trap split by a δ-potential. The atoms are then released and

allowed to scatter off the barrier twice, thus realizing a Michelson type interferometer.

By employing numerical diagonalization techniques we are able to exactly solve the

model and show that by adjusting the height of the barrier one can generate a range of

spatially entangled states of the atoms. While some studies have explored how different

trapping geometries affect the performance of an interferometer, we rigorously assess the

effects different interaction regimes have on the value of the states created. We measure

this value by calculating the quantum Fisher information (QFI)[162], and show that for

certain interaction strengths this simple setup can generate NOON states.

5.1.1 Quantum Fisher Information

In interferometry the goal is to estimate accurately a phase ϕ by minimizing the uncer-

tainty of the estimated value ϕest [162],

δϕ =

〈(
ϕest

∣∣∣∣δ〈ϕest〉δϕ

∣∣∣∣−1

− ϕ

)2〉 1
2

. (5.2)
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The Cramér-Rao inequality gives a lower bound on this uncertainty

δϕ ≥ 1√
F
, (5.3)

where F is the Fisher information which is defined as

F =

∫ (
∂

∂ϕ
log pϕ(ϕest)

)2

pϕ(ϕest) dϕest . (5.4)

The function pϕ(ϕest) is a probability function for ϕest which depends on the chosen

ϕ. By replacing the probability function with the density operator ρ(ϕ) the quantum

Fisher information (QFI) can be obtained as

FQ = Tr[ρ(ϕ)A2] , (5.5)

where A is a Hermitian operator known as the symmetric logarithmic derivative and

defined by
∂ρ(ϕ)

∂ϕ
=

1

2
[Aρ(ϕ) + ρ(ϕ)A] . (5.6)

It can be written in the eigenbasis of ρ(ϕ) as

(A)ij =
2

λi + λj
[ρ
′
(ϕ)]ij , (5.7)

where λi are the eigenvalues of ρ(ϕ) and we have labelled ρ
′
(ϕ) = ∂ρ(ϕ)

∂ϕ . For the case of

λi + λj = 0 we define (A)ij = 0 [150, 163].

The quantum Cramér-Rao bound can now be defined in term of the QFI as

δϕ ≥ 1√
F
≥ 1√

FQ
, (5.8)

indicating that the QFI defines the amount of information an observable knows about

an unknown parameter. A state with maximal QFI will minimize δϕ and will allow us

the most sensitive measurement.

For a pure state ρ(ϕ) = |ψ(ϕ)〉〈ψ(ϕ)| the symmetric logarithmic derivative takes the

form of

A = 2
(
|ψ(ϕ)〉〈ψ′(ϕ)|+ |ψ′(ϕ)〉〈ψ(ϕ)|

)
, (5.9)

from which the QFI follows

FQ = 4 Tr
(
|ψ(ϕ)〉〈ψ′(ϕ)|2 + |ψ(ϕ)〉〈ψ′(ϕ)|ψ′(ϕ)〉〈ψ(ϕ)|+

|ψ(ϕ)〉〈ψ(ϕ)|ψ′(ϕ)〉〈ψ(ϕ)|2 + |ψ(ϕ)〉〈ψ(ϕ)|ψ′(ϕ)〉〈ψ′(ϕ)|
)
.

(5.10)
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Performing the trace results in

FQ = 4
(
|〈ψ′(ϕ)|ψ(ϕ)〉|2 + 〈ψ′(ϕ)|ψ′(ϕ)〉+

|〈ψ(ϕ)|ψ′(ϕ)〉|2 + 〈ψ(ϕ)|ψ′(ϕ)〉〈ψ′(ϕ)|ψ(ϕ)〉
)
,

(5.11)

and using 〈ψ(ϕ)|ψ′(ϕ)〉 = −〈ψ′(ϕ)|ψ(ϕ)〉 the quantum Fisher information for a pure

state is

FQ = 4
(
〈ψ′(ϕ)|ψ′(ϕ)

〉
− |〈ψ′(ϕ)|ψ(ϕ)

〉
|2
)
. (5.12)

For separable states the maximum QFI is N , which is the number of particles (or quanta)

we are using in our interferometer and this corresponds to the standard quantum limit,

given by δϕ = 1/
√
N . However we can go beyond this limit by using entangled particles

which can yield a maximum QFI of N2, which is the Heisenberg limit, δϕ = 1/N . As

mentioned previously this limit is reached by one particularly important class of states,

the NOON state,

|ψNOON 〉 =
1√
2

(|N〉a|0〉b + |0〉a|N〉b) . (5.13)

In our scheme we will consider two particles only and we are interested in spatial cor-

relations of this two-particle state. The system we are investigating is a harmonic trap

which is separated into two distinct regions by a barrier which is placed at its origin.

In this case the NOON state corresponds to both particles being simultaneously on the

left-hand side (LHS)
[
|2〉L|0〉R

]
, or |20〉, and right-hand side (RHS)

[
|0〉L|2〉R

]
, or |02〉,

of the barrier. After colliding with the barrier the state can then be described as

ψ = a|20〉+ b|11〉+ c|02〉 (5.14)

where a, b and c are the weights of the different components and a2 + b2 + c2 = 1.

Consider an interferometry experiment where one adds a phase ϕ to one arm of the

interferometer. This yields

ψ(ϕ) = a|20〉+ b|11〉eiϕ + c|02〉e2iϕ (5.15)

with the derivative given by

ψ′(ϕ) = ib|11〉eiϕ + 2ic|02〉e2iϕ. (5.16)

This allows one to calculate the QFI by simply multiplying sections of the two-body

wavefunction by a complex factor. The final result for the QFI is real and does not

depend on ϕ and is given by

FQ = 4
(
b2 + 4c2 − |b2 + 2c2|2

)
. (5.17)
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5.1.2 Von Neumann Entropy

As the NOON state is a bi-partite entangled state we will also make use of the von Neu-

mann entropy (vNE) to quantify the entanglement of the atoms. Recall from Chapter 2

that it is defined by the entropy of the reduced single particle density matrix, ρ, as

S(ρ) = Tr[ρ log2 ρ] = −
∑
i

λilog2λi (5.18)

where the λi are the eigenvalues of the single particle density matrix,∫
ρ(x1, x2)χi(x2)dx2 = λiχi(x1) . (5.19)

The vNE will measure the total entanglement present, accounting for both inter-particle

and spatial entanglement, and as such will present some qualitative differences to the

QFI.

Due to the indistinguishability of bosons one must be careful when dealing with the vNE

as an entanglement measure in certain situations. As noted by Murphy et al [164] for

two strongly repulsive trapped bosons, a value of vNE ≈ 1 does not imply any genuine

entanglement to be present. The seemingly large vNE can be attributed as a patho-

logical occurrence due to exploiting the Bose-Fermi mapping and treating the atoms as

non-interacting fermions in this regime which requires anti-symmetrization of the wave

function. The stationary situation considered by Murphy et al [164], in which a barrier

splits the trap and the indistinguishability of bosons results in the situation of one boson

occupying each side of the trap, gives rise to a non-zero vNE. However in our case, the

dynamical scattering process and constant interaction between the particles ensures the

generated state is genuinely entangled and not a by-product of indistinguishability.

5.2 Preliminaries

5.2.1 The Model

The atomic interferometer we consider is a harmonic trap punctuated centrally by a

δ-function potential of variable height. The δ-function barrier will act as a beam splitter

for the interacting atoms, and for numerical simplicity we restrict our investigation to

the case of two particles. We assume the trap is such that only longitudinal motion is
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

d

x

0

Figure 5.1: Schematic of the atom interferometer. The two atoms are initially trapped
in a separate harmonic potential (indicated by the red line) at a distance d from the
barrier of height κ0. They are then released from this preparatory trap and are allowed
to evolve in the new trap gaining velocity and colliding with the barrier. This motion

is repeated cyclically due to the harmonicity of the trap.

permitted and transverse motion is tightly restricted, thus forming an effectively one-

dimensional system. The Hamiltonian is then given by

HΩ =

2∑
n=1

(
− ~2

2m

∂2

∂x2
n

+
1

2
mΩ2x2

n + κ0δ(xn)

)
+ V (|x1 − x2|) , (5.20)

with m being the mass of each particle, Ω the harmonic potential frequency of the

interferometry trap and κ0 is the height of the δ-function barrier. The boson-boson

interaction, V , can be well approximated by a point-like potential [165], which is given

by

V (|x1 − x2|) = g1D δ (|x1 − x2|) , (5.21)

with g1D the one-dimensional coupling constant between the particles defined in terms

of the three-dimensional scattering length as discussed previously in Section 1.2.3. This

parameter will be central in our analysis of different regimes and can be experimentally

tuned by applying a Feshbach resonance, a powerful technique that is well established

in cold atomic physics [166].

Initially the two atoms are prepared in a seperate tight harmonic trap a distance d from

the centre of the interferometer trap (see Fig. 5.1) with the Hamiltonian given by

Hω =

2∑
n=1

(
− ~2

2m

∂2

∂x2
n

+
1

2
mω2(xn − d)2

)
+ g′1D (|x1 − x2|) . (5.22)
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Figure 5.2: Single particle density versus time for two attractive (left-hand side panel)
and two repulsive atoms (right-hand side panel). The barrier is positioned at x = 0 and
the two particles are initially trapped at d = 6 with ε = 5.164. At time ts the particles
scatter off the barrier and come to rest at time tA at the first turning point. At time
3ts the atoms recombine and scatter a second time and come to rest again at time tB .

Here ω is the trap frequency of the preparatory trap and the interaction strength g
′
1D

is modified from g1D to reflect this. In the following we will make use of scaled units

such that the coordinates are rescaled with respect to the ground state of the harmonic

oscillator of the interferometer trap, x̃n = xn/a⊥ and the energy is scaled in units

Ẽn = En/(~Ω). Thus,

H̃Ω =

2∑
n=1

(
−1

2

∂2

∂x̃2
n

+
1

2
x̃2
n + κδ (x̃n)

)
+ g δ (|x̃1 − x̃2|) , (5.23)

H̃ω =

2∑
n=1

(
− 1

2ε

∂2

∂x̃2
n

+
1

2
ε
(
x̃n − d̃

)2
)

+ g δ (|x̃1 − x̃2|) , (5.24)

where ε = ω/Ω is the ratio of the frequencies of the preparatory trap and the interfer-

ometer trap and g = g1Da⊥ = g
′
1Da⊥/ε

2 and κ = κ0a⊥.

In order to solve the Hamiltonians, H̃Ω and H̃ω, we must determine the single particle

eigenstates and associated energies. For the time-independent Schrödinger equation for

the preparatory trap is

H̃ωψ(x̃1, x̃2) = Ẽ
′
nψn(x̃1, x̃2) . (5.25)

This can be solved by taking advantage of the separability of the hamiltonian into centre

of mass and relative coordinate systems, for which the solutions are known [137].
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The time-independent Schrödinger equation for the interferometer trap,

H̃Ωφn(x̃1, x̃2) = Ẽnφ(x̃1, x̃2) , (5.26)

does not allow for factorisation due to the interaction term and we solve it numerically

using the discrete variable representation (DVR) method [167, 168].

5.2.2 Discrete Variable Representation (DVR)

The DVR method allows to exactly diagonalize a many body Hamiltonian and scales as

Np
N2

, where Np is the number of grid points taken in configuration space. While this is

numerically intensive for the large values of N it is possible for small numbers of particles

and we restrict ourselves here to N = 2. In the DVR the two-particle wavefunction is

represented by the direct product [167, 168]

φ(x1, x2) =

Np∑
i,j=1

φijfi(x1)fj(x2) , (5.27)

where φij is the value of the two-body wavefunction at the mesh points x1 = qi and

x2 = qj with i, j = 1, 2, ..., Np which are restricted by arbitrary boundaries a and b in

(x1, x2) such that

a < qi < b. (5.28)

The fi(q) are a set of Np Langrange functions which satisfy the following interpolation

and orthogonality conditions

fi(qj) = δij ∀ i, j, (5.29)∫ b

a
f∗i (q)fj(q)dq = λiδij , (5.30)

where the λi are the generalised Christoffel numbers associated with the mesh, in this

case λi = 1 ∀ i. Using this technique it is possible to rewrite the time-independent

Schrödinger equation as a set of discretised linear simultaneous equations given by

Np∑
k,l=1

(Tikδjl + Tjlδik + [Vk + Vl] δikδjl + g1Dδilδjlδkl+)φkl = E φij , (5.31)

where Vi = 1
2q

2
i + κδ(qi) and Tij is the kinetic energy matrix defined as

Tij = (λiλj)
−1/2

∫ b

a
f∗i (q)

[
−1

2

d2

dq2

]
fj(q)dq. (5.32)
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As we are using a Cartesian mesh the Lagrange functions are given by

fi(q) =
1

Np

sin[π(q − qi)]
sin[π(q − qi)/Np]

, (5.33)

and the kinetic energy matrix elements reduce to

Tij =


π2

6

(
1− 1

N2
p

)
, if i = j ,

(−1)i−j π
2

N2
p

cos[π(qi−qj)/Np]

sin2[π(qi−qj)/Np]
, if i 6= j .

(5.34)

This allows one to numerically diagonalize Eq. (5.31) and directly find the two-particle

eigenfunctions and energies.

5.2.3 Time Evolution

Time evolution is achieved by constructing the time dependent wave function in terms

of the eigenstates of the Hamiltonian H̃Ω

ψm(x̃1, x̃2, t) =

∞∑
n=0

amnφn(x̃1, x̃2)e−iẼnt , (5.35)

where

amn =

∫
ψm(x̃1, x̃2)φn(x̃1, x̃2)dx̃1dx̃2 , (5.36)

is the overlap of the individual solutions to the Hamiltonians. Due to the atoms’ ini-

tial potential energy they will gain velocity, scatter at the barrier at time ts = π/2Ωδ

(scattering A) and return to the classical turning points of the trap at tA = π/Ωδ (see

the dynamics of the single particle density in Fig. 5.2). Here Ωδ ≤ Ω is an effective

trap frequency adjusted to the presence of the δ-function barrier. At time 3ts = 3π/2Ωδ

the atoms scatter a second time (scattering B) and again return to the classical turning

points at tB = 2π/Ωδ. This setup resembles an atomic Michelson interferometer. While

the following analysis can easily be performed by describing the barrier with a well lo-

calised potential of any shape, the choice of a δ-function is done to clearly isolate the

interesting physical effects and does not constitute any loss of generality. A δ-function

potential is a good approximation to a localised laser potential or an interaction with an

atomic impurity fixed at x = 0 [82]. In the first case the barrier height κ can be exper-

imentally tuned by changing the laser intensity, whereas in the second case a Feshbach

resonance can be employed. This, coupled with the capacity to alter the inter-particle

interaction, means we have a highly adaptable system with which to create superposition

states.
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: Contour plots for the (a) QFI, (b) vNE, (c) transmission coefficient (T ),
and population coefficients for states (d) |20〉, (e) |11〉 and (f) |02〉 plotted against
attractive interaction strength g and barrier height κ at time tA. At this time the
atoms have reached the classical turning point after scattering once off the barrier

(Scattering A). The ratio of trapping frequencies is chosen to be ε = 5.164.

5.3 Analysis of different interaction regimes

5.3.1 Attractive Interactions

5.3.1.1 Scattering A

Let us discuss the case of an attractive dimer scattering once off the δ-barrier. In Fig. 5.3

(a) the QFI against attractive interaction strength, g, and barrier height κ is shown.

The thick bold line signifies the classical shot noise limit FQ = N = 2 of the QFI,

which is attainable for separable states. Interestingly one can see that even for a weakly

interacting dimer this bound can be exceeded. As the attractive interactions between

the atoms are increased, the QFI grows to its maximal obtainable value of FQ = N2 = 4

for a barrier height of κ ≈ 1. In panel (b) we see that the behavior of the vNE is

qualitatively in agreement, although more complex. The small scale details are due to

the interaction leading to a constantly varying inter particle entanglement, which is not

captured in the calculation of the QFI. Looking at the transmission coefficient T , Fig. 5.3

(c), it can be seen that the parameters giving T = 0.5 are the same ones that give the

maximum of the QFI, which corresponds to the density profile in which the atoms are

split equally by the scattering process. We can confirm that the state generated in
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(d) (e) (f)

Figure 5.4: Contour plots for the (a) QFI, (b) vNE, (c) transmission coefficient (T ),
and population coefficients for states (d) |20〉, (e) |11〉, and (f) |02〉 plotted against
attractive interaction strength g and barrier height κ at time tB . At this time the atoms
have reached the classical turning point after scattering twice off the barrier (Scattering

B). The ratio of trapping frequencies is chosen to be ε = 5.164.

this situation is the NOON state 1√
2
(|20〉 + |02〉) by looking at the various population

coefficients, Figs. 5.3 (d)-(f). The region in which the QFI is maximized corresponds

to the one where the |11〉 state is surpressed and the |20〉 and |02〉 states are equally

populated. This can be explained by the relatively strong attractive interaction within

the dimer. In this region the bonds cannot be broken and hence the pair of atoms does

not split into one atom on the left and one on the right. This situation is analogous

to atomic solitons which have been studied extensively in the literature [154, 157], and

where it was shown that macroscopic superposition states can be created by moving

an atomic soliton through a barrier of finite width. Due to the attractive interactions

between the constituent atoms the soliton is known to retain its density profile and atom

number after collision with the barrier and thus allow for creation of NOON states.

5.3.1.2 Scattering B

After the second scattering process the dynamics becomes more complex for an attractive

dimer. Examining the QFI (see Fig. 5.4 (a)) it can be seen that even for weakly attractive

particles we can attain FQ ≈ 4. As the interaction strength is increased the QFI peaks

at two values of barrier height, κ. The behavior of the vNE is shown to be qualitatively

similar in panel (b). This behavior is also mirrored in the dynamics of the transmission
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Figure 5.5: The first four orbitals of an attractive dimer are plotted at times tA [top
panel] and tB [bottom panel]. At tA three orbitals occupy the LHS of the trap and one
on the RHS. Due to the strong attractive interaction the dimer is tightly bound and
cannot be split, hence there is only a reflection probability of 0 or 1 for each orbital
for large negative g. At tB the orbitals pair up due to the double degeneracy and two

orbitals occupy the LHS and RHS of the trap with similar density profiles.

coefficient, T [cfr. panel (c)], and we find that T = 0.5 corresponds to a maximum in

the QFI. The most striking feature is clearly the intricate series of maxima appearing in

all panels. These stem from the phase accumulated by the atoms due to their attractive

interaction and for increased interaction the phase of the dimer oscillates faster which

results in the interference pattern. We see the same qualitative behavior in the various

population coefficients shown in Fig. 5.4 (d)-(f), where the maximum QFI corresponds,

as expected, to a suppression of the |11〉 state. Interestingly the value of κ which resulted

in a maximum QFI for Scattering A results in a minimum in QFI for Scattering B for

the same value of interaction strength. This can be explained by studying the behaviour

of the atomic orbitals for the parameter values concerned.

For the maximum achieved QFI in this regime, corresponding to g = −5 and κ ≈ 1.5,

Fig. 5.5 shows the four lowest energy atomic orbitals obtained by diagonalizing the

RSPDM, χ, to confirm if a superposition is created at times tA [top panel] and tB [bottom

panel]. At tA three orbitals can be seen occupying the LHS of the trap, which stems from

the large attractive interaction leading to the transmission coefficient becoming T = 0

or 1. Even though each orbital occupies separate sides of the trap this is not a NOON

state as explained by the orbital occupation numbers in Fig. 5.6 (a) which shows that

at tA the lowest orbital is still maximally occupied and all higher orbitals have lower

occupation. At time tB (see the bottom panel of Fig. 5.5) the two orbitals can be seen

to each occupy a separate side of the trap. The occupation numbers of these orbitals

start to become doubly degenerate leading to a QFI of FQ = N2, see Fig. 5.6 (b). This
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(a) (b)

tA

tB

tA
tB

Figure 5.6: (a) The orbital occupation numbers are plotted versus time for an attrac-
tive interaction. At time tB the orbitals become doubly degenerate meaning that both
particles are in an equal superposition of being on the LHS and RHS of the trap simul-
taneously. (b) The behaviour of the Fisher information (solid) and entropy (dashed)
are plotted versus time. The maximum FQ reached is N2 meaning a NOON state is

created.

(a) (b)

Figure 5.7: Contour plots for the (a) QFI and (b) vNE plotted against repulsive
interaction strength g and barrier height κ at time tA, corresponding to the classical

turning point after scattering once off the barrier (Scattering A).

degeneracy of eigenvalues of the density matrix indicates that two equal sub-states exist

in this case, which makes the overall state 1√
2

(|20〉+ |02〉). In Fig. 5.6 (b) the dashed

line shows the dynamically changing vNE, which has two pronounced dips exactly at tA

and tB. This is due to the fact that the vNE measures the total entanglement. At these

classical turning points the relative inter-particle interaction is at its weakest and thus

the drop in the entanglement.
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(a) (b)

Figure 5.8: Contour plots for the (a) QFI and (b) vNE plotted against repulsive
interaction strength g and barrier height κ at time tB , corresponding to the classical

turning point after scattering twice off the barrier (Scattering B).

5.3.2 Repulsive Interactions

5.3.2.1 Scattering A

We now turn our attention to the case of repulsive interaction between the atoms.

This regime gives rise to behaviours that do not promote the generation of spatial

entanglement easily as the repulsive nature prefers a situation in which one atom occupies

each side of the trap. Fig. 5.7 (a) shows that the QFI remains below 2 for the whole

range of parameter space considered. After the first scattering event examining the vNE

(see Fig. 5.7 (b)) we see it attains a maximum of approximately 1, reached only for

strongly repulsive atoms. The maximum FQ = 2 occurs for a barrier height κ ≈ 1.5

regardless of the interaction strength g, reaching the classical limit for a transmission

coefficient of T = 0.5.

5.3.2.2 Scattering B

Similar to the attractive interaction case the dynamics becomes much richer after the

second scattering process due to the phase acquired by the various components of the

two-particle state. It is now possible to generate states with FQ > 2, however it is within

a much more restricted area of the parameter space when compared to the attractive

interaction. In Fig. 5.8 it can be seen that for small repulsive interactions a QFI of

FQ > 3.5 can be reached and the vNE shows qualitatively similar behaviour. As the

interaction strength g is increased the particles enter the Tonks-Girardeau (TG) regime

and for strongly repulsive atoms the QFI approaches its classical limit of 2 corresponding

to the state |ψ〉 = 1
2 |20〉+ 1√

2
|11〉+ 1

2 |02〉 resulting from a 50/50 splitting.
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Figure 5.9: Atomic orbitals of the reduced single particle density matrix at times tA
[top panel] and tB [bottom panel] with a repulsive interaction. At tA each orbital has
equal probability to be in the LHS or RHS of the trap. At tB each orbital is at opposite

sides of the trap, indicating a highly entangled quasi-NOON state.

For the optimal case, g = 1.5, we examine the first two atomic orbitals to determine

the type of state generated in Fig. 5.9 at tA [top panel] and tB [bottom panel]. At tA

each orbital occupies both sides of the trap with nearly equal probability due to the

50/50 splitting at the barrier and corresponds to FQ ≈ N . At tB the orbitals almost

fully occupy different sides of the trap and their occupation numbers approach double

degeneracy indicating the presence of a superposition state which leads to FQ = 3.883

(see Fig. 5.10).

5.3.3 Case ε = 1

The behaviour of the vNE, S(t), shown in Fig. 5.6 can be further understood by consider-

ing the case where the initial preparatory potential for the atoms has the same trapping

frequency as the interferometer trap, i.e. ε = 1. In this case no relative motion between

the atoms exist in the interferometer and one can expect the von Neumann entropy to

be constant whenever the particles are far from the barrier. This is illustrated in the

right-hand side panel of Fig. 5.11 where the QFI and von Neumann entropy are plotted

versus time for ε = 1. It is clear that whenever the QFI increases an increase in the

entanglement of the state has to be found in the von Neumann entropy as well. However

far from the barrier the overall entanglement of the state remains constant as do the

eigenvalues of the RSPDM, λi(t) (see left-hand side panel of Fig. 5.11). Before time ts

the von Neumann entropy is constant which one would expect from unitary evolution.
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(a) (b)

tA

tB

Figure 5.10: (a) Orbital occupation numbers versus time for repulsive interaction
between the atoms. At time tB the orbitals nearly become doubly degenerate meaning
that both particles are in an equal superposition of being on the LHS and RHS of the
trap simultaneously. (b) The behaviour of the Fisher information (solid) and entropy

(dashed) are plotted versus time. The maximum FQ reached is 3.883.

Figure 5.11: In the left panel the lowest four associated eigenvalues of the RSPDM
are plotted. The right panel shows the quantum Fisher information (solid black line)

and the von Neumann entropy (dashed red line) as a function of time.

After scattering with the barrier at ts the evolution of the entanglement is not perfectly

flat which can be attributed to the slight change in oscillation frequency Ωδ caused by

the inclusion of the barrier which becomes more pronounced after repeated collisions.
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Figure 5.12: The beamsplitter is removed from the interferometer and the bi-localized
system is allowed to recombine. Due to the coherent superposition an interference
pattern is observed for FQ ≈ 2 (red dashed line) and FQ ≈ 4 (black solid line). The

difference in fringe contrast is apparent.

5.4 Experimental Realization

Evidently the scheme presented here has an immediate experimental appeal as it is

readily implementable. When a coherent bilocalised gas is created the detection of its

state can be achieved by measuring the fringe visibility of the two particle interference

[156, 169] and the interference fringe contrast is known to be maximal in the presence of a

NOON state. A simulation of the interference fringes can be performed by numerically

evolving the state in the basis of the free space solutions or by employing a scaling

transformation [114]. This is shown in Fig. 5.12 where the solid line shows the pattern

associated with the generated NOON state and the dashed line shows what one would

obtain for a state at the shot noise limit, FQ = 2. The difference in the fringe contrast

is clearly visible.

5.5 Conclusions

We have presented a comprehensive analysis of a two particle interferometry procedure in

a harmonic potential with a δ-barrier in the centre. We have shown that the inter-particle

interaction has a large influence on the state created in such scattering experiments and

therefore holds the potential to create metrologically useful states. By employing exact

numerical diagonalization methods we were able to study the type of states dynamically

created and we assessed the value of the states by studying both the entanglement

content, via the von Neumann entropy, and the quantum Fisher information at the
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classical turning points. The former is a useful metric for determining good states to

use in metrology. Two scattering schemes were presented: after scattering from the

barrier once attractively interacting particles were found to form a NOON state and

for repulsively interacting particles the classical limit could not be exceeded. After a

second scattering from the barrier, thus realizing a Michelson interferometer, NOON

states could again be created and an interesting series of maxima and minima appeared

due to an accumulated phase. When the interaction was repulsive this interferometer

scheme was only successful in breaking the shot noise limit, and creating strongly non-

local states with the possibility of creating NOON states, for a very restrictive range

of parameters. This differs to the studies of [150] were it was shown strongly repulsive

atoms could create a NOON state, as well as other useful states, in a stirred ring trap. As

previously noted, although our work explicitly considers a δ-function barrier, the same

results hold if one replaces it with a Gaussian barrier of finite width. In this instance

the exact values of interaction strength and barrier height for optimal state generation

will be slightly different to those found here, however the qualitative conclusions remain

unaffected.

5.6 Outlook

The process of creating the NOON state in this system relied on imparting some initial

momentum to the particles which allowed them to scatter from the barrier into a super-

position state. This proceedure may be difficult to achieve in a realistic experimental

setup, however one can consider a technologically slightly less complicated situation, in

which both particles are initially located in an eigenstate of one half of a double well

trap. Subsequent tunneling into the other well will depend on the interaction strength

and the height of the barrier separating both wells. It would then be interesting to study

what effect the interaction has on the tunnelling and if NOON states can possibly be

created.



Chapter 6

Long distance entanglement in a

linear ion chain

6.1 Introduction

The development of ultracold trapped ion systems has in recent decades led to experi-

mental setups that allow one to carry out quantum mechanical experiments with high

accuracy. Due to the intrinsic charge of the ions, systems with small numbers of particles

form a crystalline structure at low energies, allowing for high fidelity laser addressing

due to good spatial localisation. Ion chains are now a fore-runner for future quantum

technologies and have also been proposed as the basis for quantum simulators. In fact,

ion chains can be controlled in such a way, that their dynamics can be mapped onto

other systems such as dipolar gases in optical lattices [6, 170], optomechanical arrays

[171] and cavity arrays in circuit-QED [172].

Recently the idea of quantum reservoir engineering was introduced where, for properly

designed couplings, interaction with an environment can be used to control a system

and, for example, drive it into non-classical states [173–176]. These ideas have been

successfuly applied to create entangled atomic ensembles [177], to perform quantum

simulations with trapped ions [178] and they have been shown to provide a basis for

protocols for quantum networks [179] and quantum metrology [180].

This work is the result of a collaboration during a three month research visit to the group of Prof.
Morigi at the Universität des Saarlandes in Saarbrücken, Germany. I contributed to a project which
was based on the knowledge of coupled oscillators and ion chains present in the group and an existing
theoretical framework. I wrote and implemented code which modelled the entanglement dynamics in a
linear chain of ions and this chapter represents an overview of the model and the results I contributed.

92
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Phenomenological models describing two oscillators coupled to a common environment

have shown that bath-induced entanglement generation can occur in cases where the

bath is characterized by specifically designed spectra [181, 182]. An intrinsic assump-

tion in these models is that the entangled systems are locally coupled to the same bath

constituent within a microscopic description of the bath and subsequent works investi-

gating the distance dependence of bath induced entanglement found that entanglement

could only be created between neighbouring particles [183, 184]. These and similar pa-

pers have led to the belief that bath-induced entanglement generation between distant

particles could not be achieved in continuous-variable systems, thereby restraining the

scope of this approach. To circumvent this limitation, non-scalable strategies were de-

veloped that use finite-size effects to mediate long-distance entanglement (LDE) [185]

between the end particles of one dimensional chains. Additionally, Prof. Morigi and co-

workers showed that careful tuning of the systems’ frequencies may lead to steady-state

LDE in a chain of harmonic oscillators [186, 187] .

In this Chapter we will investigate the generation of long-distance entanglement in a

physically realistic system of a linear chain of ions. Embedded in the ion chain are two

defect ions of a different atomic species which are positioned symmetrically about the

centre of the chain. We are interested in the entanglement generated in the continuous

variable degrees of freedom of the impurities, specifically in the directions orthogonal to

the axis of the ion chain. Our system of interest is therefore the transverse motion of the

impurities which is subject to two environments: the transverse and axial modes of the

ion chain. Due to the heavier mass of the impurities their transverse component will be

only weakly coupled to the transverse motion of the ion chain and this degree of freedom

will therefore only mediate a low amount of entanglement. However, for a large enough

impurity mass their transverse modes can overlap with the band of axial vibrations of

the rest of the ion chain and we show that by applying a standing laser field these two

degrees of freedom can be coupled. The decisive ingredient for the predicted dynamics

is the engineering of the defects-environment coupling, responsible for the establishment

of a decoherence-free subspace. This is an area of the system’s Hilbert space which

is decoupled from the environment and therefore its evolution is completely unitary,

allowing entanglement to be created and protected. This proposal is a completely new

approach and the correlations arising from the described evolution do not a consequence

of finite-size effects and are argued to occur even in the thermodynamic limit.
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Figure 6.1: Sketch of the setup used for the long distance entanglement generation
between the two impurities (blue) embedded in the ion chain (green). The trapping
potential in the transverse directions is a lot tighter than in the axial direction ensuring

a linear chain of ions.

6.2 Model

The model consists of a linear chain of 2N − 2 ions of mass m, and two impurity ions of

mass M at positions −n and n. The total number of ions in the chain is N = 2N and

they all have the same charge Q and interact via Coulomb repulsion. As the Coulomb

force is long ranged we cannot assume only nearest neighbour coupling. The ions are

confined harmonically in the axial and transverse directions with frequencies ω‖ and ω⊥

respectively and assuming that the transverse confinement is sufficiently large compared

to the axial confinement the ions will form a linear chain along the x-axis.

The Hamiltonian of the ion chain can be written as

H0 =
∑
j

p2
j

2mj
+ U(r−N , ..., rN ) , (6.1)

where rj = (xj , yj , zj) and pj are the positions and conjugate momenta. Here U accounts

for the oscillators potential and the Coulomb repulsion between the ions,

U =
∑
j

mj

2

[
ω2
‖x

2
j + ω2

⊥,j(y
2
j + z2

j )
]

+
Q2

8πε0

∑
j 6=i

1

|ri − rj |
.

where mj = [m+ (M −m)(δj,n + δj,−n)] and the sums run from −N to N . Throughout

this chapter we will assume µ = M/m ≈ 2.87, corresponding to In+ ions embedded

in a Ca+ chain [188]. Based on the standard configuration of a Paul trap [189], the

axial trap frequency ω‖ depends on the static quadrupole potential and the transverse

trap frequency ω2
⊥,j = (ωrj )

2 − 1
2ω

2
‖ on the radio frequency potential which creates the

transverse confinement. The term ωrj depends on the frequency of the RF field and

the ions mass, so at the positions of the impurities the transverse confinement will

be different. The trap aspect ratio is given by ε =
√

(ω⊥/ω‖)2 + 1/2. The classical
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equilibrium positions of the ions along the axial direction can be computed by minimizing

the Hamiltonian (6.2) which leads to the set of equations

∂U

∂xj
= mjω

2
‖xj +

Q2

4πε0

 j−1∑
i=−N

1

(xi − xj)2
−

N∑
i=j+1

1

(xi − xj)2

 = 0, j = −N, ..., N ,

(6.2)

which can be re-written by scaling all lengths as ujl = −xj+qj with l3 = Q2/(4πε0mω
2
‖).

This gives

uj −
j−1∑
i=−N

1

(ui − uj)2
−

N∑
i=j+1

1

(ui − uj)2
= 0 . (6.3)

To avoid any finite size effects from the edges of the chain, we require the distance

between the defects to be much smaller than the chain size (x−n − xn) � 2N and

their positions to be far away from the chain edges, −N � x−n < xn � N . For

simplicity we also assume that the equilibrium positions of the ions are equally-spaced

with interparticle distance a = uj+1−uj , which is dependent on the total number of ions

N as a = 2.29N−0.596 [190]. Such a situation can be realised in optical lattices and also

exists in the central region of long ion chains [191] and in anharmonic axial potentials

[192]. The distance separating the impurities will be an integer multiple of this length

such that un − u−n = da, and in all further discussions involving the distance between

the impurities the dimensionless parameter d will be used.

Introducing small oscillations around the equilibrium positions, qj , and assuming these

to be small enough to allow for linearisation of all forces, we find the Hamiltonian [193]

H =
m

2

N∑
j=−N
j 6=−n,n

q̇2
j +

M

2
q̇2
−n +

M

2
q̇2
n +

1

2

N∑
i,j=−N

∂2Ux
∂xi∂xj

∣∣∣∣∣
{qi}=0

qiqj , (6.4)

=
m

2

N∑
j=−N
j 6=−n,n

q̇2
j +

M

2
q̇2
−n +

M

2
q̇2
n +

1

2
Q

N∑
i,j=−N

A
′
ij

∣∣∣∣∣
{qi}=0

qiqj , (6.5)

where

A′ij =


1 + 2

N∑
k=−N
k 6=i

1
|ui−uk|3

, j = i ,

−2 1
|ui−uj |3 , j 6= i .

(6.6)
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In the transverse direction the resulting Hamiltonian is

H =
m

2

N∑
j=−N
j 6=−n,n

ż2
j +

M

2
ż2
−n +

M

2
ż2
n +

1

2
Q

N∑
i,j=−N

B
′
ij

∣∣∣∣∣
{zi}=0

zizj , (6.7)

where B′ describes ∂2Uz
∂zi∂zj

∣∣∣
{zi}=0

B′ij =



ε2 − 1
2 −

N∑
k=−N
k 6=i

1
|ui−uk|3

, j = i, j 6= −n 6= n ,

ε2

µ −
1
2 −

N∑
k=−N
k 6=i

1
|ui−uk|3

, j = i = −n or j = i = n ,

1
|ui−uj |3 , j 6= i .

(6.8)

The above Hamiltonian also holds for the y-direction, however from this point on we

will only be concerned with the transverse motion of the ions in the z-direction without

loss of generality. At the positions of the impurities these matrix elements are modified

by the mass ratio µ and for the diagonal elements, i = j, at {−n,−n} or {n, n} we get

Aii = A′ii/µ . (6.9)

For the off diagonal terms, i 6= j the following holds for {−n, j 6= n}, {n, j 6= −n},
{i 6= n,−n} and {i 6= −n, n}

Aij = A′ij/
√
µ . (6.10)

And finally for the cross terms of both impurities {−n, n} and {n,−n} we have

Ai,−i = A′i,−i/µ . (6.11)

The separate dynamics described by the above Hamiltonians allow us to study, inde-

pendently, axial and transverse spectra by diagonalizing A and B respectively. Fig.6.2

shows the mode spectra for a distance d = 17 between the defects. The two degener-

ate normal mode frequencies of the transverse modes are separate from the continuum.

These frequencies correspond to normal modes localized around the position of the two

defects and appear due to the mass dependence of the transverse, radio-frequency po-

tential. By varying the mass ratio µ = M/m or the trap aspect ratio ε, these localized

frequencies can be tuned. For large enough separations from the continuum part of the

transverse spectrum, the dynamics of these two modes decouple from the rest of the
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Figure 6.2: Transverse modes (solid line) and axial modes (dashed line) of N =
800 ions with impurities separated by d = 17. The discrete wavevector is defined as
kj = jπ/(a(N + 1)) where j ∈ {1, ...,N}. Due to the heavier mass of the impurities
their corresponding transverse modes (circled) are decoupled from the transverse band

and now lie deep in the axial band.

transverse chain. In this situation when these frequencies are tuned to coincide with

the axial band, we can use a standing-wave laser field to couple axial and transverse

motions. Thermalization of the localized modes would then be expected due to their

interaction with the axial bath.

6.2.1 Initial state preparation

At this point it is useful to introduce dimensionless coordinates such that all positions

are scaled in terms of the size of the ground state x0 =
√
~/mω‖,

x̄i =
xi
x0

, (6.12)

z̄i =
zi
x0

, (6.13)

p̄i =
pi
p0

, (6.14)
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and p0 = ~/x0. Our goal now will be to entangle the two defects’ transverse modes

through their interaction with the chain reservoir. With the defects’ transverse modes

decoupled from both the axial and transverse bath, the initial state of the bath can be

prepared by laser cooling it to a thermal state at temperature T ,

ρth(0) = exp(−HR/T )/Z , (6.15)

where HR is the reservoir Hamiltonian and Z = Tr[exp(−HR/T )] it’s partition function.

The initial covariance matrix of the thermal state at t = 0 can be written as

σxx(0) = 〈x̄⊗ x̄T 〉 − 〈x̄〉 ⊗ 〈x̄〉T , (6.16)

σpp(0) = 〈p̄⊗ p̄T 〉 − 〈p̄〉 ⊗ 〈p̄〉T , (6.17)

σxp(0) =
1

2
〈x̄⊗ p̄T + p̄⊗ x̄T 〉 − 〈x̄〉 ⊗ 〈p̄〉T , (6.18)

with the explicit expressions given as

σxx(0) =
1

2
(V̄ )−

1
2 coth

(
β̄

2
(V̄ )

1
2

)
, (6.19)

σpp(0) =
1

2
(V̄ )

1
2 coth

(
β̄

2
(V̄ )

1
2

)
, (6.20)

and σxp(0) = 0. The potential matrix V̄ is constructed from the matrices A and B such

that

V̄ =
1

mω2
‖

(
A 0

0 B

)
, (6.21)

and β̄ = ~ω‖/(kBT ), where T is the temperature of the bath, and kB is Boltzmann’s

constant. We have assumed that the first moments 〈x̄〉 = 0 and 〈p̄〉 = 0 vanish for the

initial thermal state.

The covariance matrix elements of the defects are given explicitly by

Σ11 = 〈Z2〉 − 〈Z〉2 , (6.22)

Σ22 = 〈P 2〉 − 〈P 〉2 , (6.23)

Σ12 =
1

2
〈ZP + PZ〉 − 〈Z〉〈P 〉 . (6.24)

Again we assume initially that the first moments 〈Z〉 and 〈P 〉 are zero. The defects

transverse modes are prepared in identical, separable, pure squeezed states, ρ−n(s) and

ρn(s), with squeezing parameter s. A state is squeezed if its uncertainty in position and

momentum are unequal thus forming an ellipse in phase space. The elements of the
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covariance matrix for the impurities are [194]

Σ11(s) =
x2

0

2
e−2s (6.25)

Σ22(s) =
p2

0

2
e2s (6.26)

Σ12(s) = 0 . (6.27)

The total initial state of the system is then,

ρ(0) = ρn(0)⊗ ρ−n(0)⊗ ρth(0). (6.28)

The defects’ state is Gaussian and is, therefore, fully characterized by their first mo-

ments and covariance matrix [195]. The entanglement between the defects can thus be

quantified by the logarithmic negativity as

EN = max{0,− ln(2ν̃−)} , (6.29)

where ν̃− is the smallest symplectic eigenvalue of the partial transpose of the covariance

matrix Σ [196, 197].

6.2.2 Coupling of transverse and axial directions

At time t = 0, with the inital state Eq. (6.28) prepared, a standing-wave laser field on

the x−z plane is applied to couple the transverse modes of each defect to the axial mode

spectrum. The laser is set to off-resonantly address an optical transition of the defect

ions, whose equilibrium positions lay at the antinodes of the standing-wave. The laser

induced coupling between the ion’s internal states and its motional states is sufficiently

small so that transitions that change the motional state by more than one quanta are

negligible, which corresponds to the so called Lamb-Dicke regime [198]. The dynamics

of the chain is then given by H = H0 +HI(t), where

HI(t) =
γ̄(t)

2

[
(z̄−n − x̄−n)2 + (z̄n − x̄n)2

]
, (6.30)

with γ̄(t) = γ
mω2
‖

Θ(t) being an effective coupling strength and Θ(t) the Heaviside func-

tion. The potential energy of the impurities will be modified by the laser coupling so

the matrix elements of the impurities in Eq. (6.6) and Eq. (6.8) must be altered by the

addition of γ such that Aγi,i = A′i,i + γ for i ∈ {n,−n} and similarly for B′i,i. Due to this

local coupling, an excitation in the defects’ transverse modes will lead to an excitation in

their axial direction which, coupled to the rest of the axial chain, generates a phononic
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excitation in the chain. The coupling of the laser must also be included in the off di-

agonal terms at the positions of the impurities in the matrix V̄ thereby coupling the

axial and transverse potential matrices A and B. We then label this amended potential

matrix under the influence of the laser as V̄ γ .

6.2.3 Dynamics

The time evolution of the ion chain can now be described as a system of coupled oscilla-

tors [199]. No special assumptions are made about the interactions of the oscillators and

we only require that the potential matrix has no negative eigenvalues. The canonical

equations of motion can be written as

ẋ = p and ṗ = −V̄ γx , (6.31)

and their solutions will have the form(
x(t)

p(t)

)
=

(
W cos(Ωt)W ′ WΩ−1 sin(Ωt)W ′

WΩ sin(Ωt)W ′ W cos(Ωt)W ′

)(
x(0)

p(0)

)
. (6.32)

Here W is a matrix of the eigenvectors and Ω = diag(ω̄1, . . . , ω̄N ) is a matrix of the

eigenfrequencies of the potential matrix V̄ γ . We label the block matrix as T (t) and

apply it to the initial covarinace matrix at V(t = 0) such that V(t) = T (t)V(0)T T (t).

The initial covariance matrix is also in block form and can be written as

V(0) =

(
σxx 0

0 σpp

)
. (6.33)

6.2.4 Spectral Density

Since the defects are placed symmetrically with respect to the trap centre, the Hamil-

tonian H is invariant under the exchange of the j-th and the (2N − j + 1)-th ion

(j ∈ {1, · · · , 2N}) and a description in terms of centre of mass (COM) and relative

coordinates for pairs of ions is well suited.

The centre of mass and relative coordinate of the impurities in the transverse direction

is given by

Z̄± =
z̄−n ± z̄n√

2
, (6.34)

and similarly the centre of mass and relative coordinates of the bath particles in the

axial direction are

x̄i± =
x̄i ± x̄−i√

2
(6.35)
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For brevity both of these can be written in matrix form

x± = Sx with S =
1√
2

(
1 1

1 −1

)
= S−1 , (6.36)

and an analogous transformation for the momentum operator vectors yields p± = Sp.

Accordingly we obtain the following transformation of the potential part of the bath

Hamiltonian

xT Ā(γ)x = xT±(ST Ā(γ)S)x± = xT±Ā
(γ)
± x± , (6.37)

where Ā(γ) is the potential matrix in the axial direction under the influence of the

coupling laser. If the COM and relative coordinates are decoupled, we expect to find

the following block structure of the transformed potential matrix

Ā
(γ)
± = ST Ā(γ)S =

(
Ā

(γ)
+ 0

0 Ā
(γ)
−

)
. (6.38)

The full Hamiltonian of the transverse motions of the impurities and their coupling to

the bath is then given by

H =
1

2
(p̄z

2
−n + p̄z

2
n + z̄2

−n + z̄2
n) +

p2

2m
+

1

2
xT Ā(γ)x− γ̄

2
(z̄−nx̄−n + z̄nx̄n) , (6.39)

and inserting the new coordinates and using S±x± = x, we can write it in COM and

relative coordinates as

H =
1

2
(P̄ 2
− + P̄ 2

+ + Z̄2
− + Z̄2

+) +
p2
−

2m
+

p2
+

2m
+

1

2
(xT±Ā

(γ)
± x±)− γ̄

2
(Z̄+x̄

b
+ + Z̄−x̄

b
−) , (6.40)

where b = (d+1)/2 is the position of the single impurity in the COM and relative chain.

In these coordinates the action of the bath on the dynamics of the defect’s collective

variables can be explored through the spectral density of the environment. The spectral

density informs one about the frequency weighted coupling of the COM and relative

coordinates of the impurities to the environment and by diagonalizing the potential

matrix Ā
(γ)
± such that OT±Ā

(γ)
± O± = diag((ω̄±1 )2, . . . , (ω̄±N )2) the eigenvalues ω̄± can be

used to calculate the spectral density as

J̄±(ω̄) =
π

2

N∑
j=1

(γ̄±j )2

ω̄±j
δ(ω̄ − ω̄±j ), (6.41)

where γ̄± = OT±γ̄. In this case one can ensure that either the COM or relative motion

is decoupled from the environment by suitably tuning ε from Eq. (6.8) to coincide with
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Figure 6.3: Left panel: The spectral density for 800 ions and impurities separated
by d = 7 with laser coupling γ̄ = 0.2 is plotted for the COM (red line) and relative
(black line) coordinates with time in units of ω−1‖ . The impurities’ transverse modes are

tuned to coincide with the first node of the relative spectral density J−(ω) indicated
by the arrow. Right Panel: Second moments of the impurities position versus time
for d = 7 with the relative coordinate decoupled (black line) and the COM coupled
to the environment (red line). The COM motion of the impurity quickly decays as it
is strongly coupled to the environment while the decoupled relative motion oscillates

undamped.

a node in the spectral density, ω̄0, such that

ε =

√√√√√√√µ

µω̄2
0 + γ̄ +

1

2
+

N∑
k=−N
k 6=i

1

|ui − uk|3

. (6.42)

Conversely this will result in the other motion to be coupled to the environment and

undergo thermalization. This can be observed in the second moments of the impurity

ions after being coupled to the environment. In the left panel of Fig. 6.3 the spectral

density for two impurites separated by d = 7 is plotted. There are three nodes in the

spectral density for each motion, and without loss of generality the first node of the

relative motion is chosen. The trap aspect ratio is then tuned so that the transverse

modes of the impurities coincide with this chosen frequency. In this case the relative

motion of the impurities is decoupled from the bath and its motion does not decay

over time. This is shown in the right-hand side panel of Fig. 6.3 where the second

moments of the impurities are plotted. The black line is the relative motion, and the

red line is the COM motion which is coupled to the enviroment and thus thermalizes.

In this regime part of the initial squeezing is stored in the relative motion, whilst the

long distance entanglement generation is mediated by the COM motion until the steady

state is reached at the thermalization point.
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Figure 6.4: Left panel: Entanglement versus time for initial squeezing s = −1 and
T ≈ 0 for different separations between the impurities with time in units of ω−1‖ . The

solid lines are the situation where the coupling laser is used to create the bath induced
entanglement, γ̄ = 0.2, the dashed lines are the situation where no coupling laser
is used, ie. γ̄ = 0. Right panel: Impurities are separated by d = 7 for squeezings
of s = −0.5, 0, 0.5 at a temperature of T = 5mK. For low finite temperatures the
engineered environment (solid lines) far exceeds the situation without any laser coupling

(dashed line).

6.3 Entanglement generation in a short ion chain

The current state of the art in ion trapping two different species is for chain lengths of

about 10 ions, and for single species chains the lengths can be longer ≈ 50 [188, 200].

The rather small size of these chains means that finite size effects due to reflections from

the end of the chain will destroy the decoherence free subspace created in our system,

and therefore an entanglement steady state will not be achieved. However the effect

of the coupling laser can significantly enhance the generation of entanglement between

the impurities on very short timescales. In the following a chain of length N = 50 ions

is simulated with impurities symmetrically placed around the centre of the ion chain

at different distances from each other. In the left panel of Fig. 6.4 the negativity as

a function of time is plotted for various separations of the impurities. Time is scaled

in terms of the inverse axial trap frequency ω−1
‖ . The solid lines represent the effect

of the environment engineering through the coupling laser which has the value γ̄ = 0.2

and the dashed lines represent the case for no coupling laser, γ̄ = 0. One can see that

for d = 3 the coupling laser did not produce any increase in entanglement compared

to the system without the laser interaction. However at larger distances the effect

of the laser becomes more apparent and enhanced entanglement generation mediated

through the bath becomes visible. In the right-hand side panel of Fig. 6.4 the case of
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Figure 6.5: Entanglement versus time at d = 7 and for γ̄ = 0.2 for squeezings of
s = −0.5, 0, 0.5 at temperatures of (a) 10mK (b) and 20mK. The dashed lines are the

situation where no coupling laser is used, ie. γ̄ = 0.

d = 7 is explored for different strengths of the initial squeezing s = −0.5, 0 and 0.5 at

a finite temperature T = 5mK. One can see that there is a significant increase in the

entanglement generated for finite values of s, which makes the squeezing of the impurities

an important entanglement resource in this scheme. It is also interesting to note that

entanglement is even created for an initial squeezing of s = 0 which is contrary to the

case if there were no ion chain between the defects.

In realistic experimental setups the temperatures reached by the ions can be higher and

this must be taken into account when discussing this system. In Fig. 6.5 the effect of

higher temperatures on the entanglement is investigated at T = 10mK and T = 20mK.

Even though finite temperatures diminish the amount of entanglement generated the

enhancement due to the coupling laser can still be observed.

6.4 Entanglement generation in a long ion chain

To investigate the creation of long distance entanglement and an entangled steady state

the size of the ion chain must be quite large. This is because finite size effects occur

caused by reflections from the edge of the ion chain. To negate these effects and to ensure

the steady state is reached the size of the ion chain used in the following simulations is

N = 800 and γ̄ = 0.25. However the average entanglement reached during the steady

state can be shown to be independent of the exact number of ions in the environment

and this is shown in Fig. 6.6 where we plot the negativity for N = 600 (red line),
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Figure 6.6: The negativity versus time is plotted for N = 600 (red line), 800 (blue
line) and 1000 (green line). For each curve the time is in units of ω‖(N )−1 where
ω‖(N ) = ωref

√
logN/N and the reference frequency is ωref = 2π × 659.6 kHz. As can

be seen the evolution of the entanglement is irrespective of chain size up until the trap
revival which cause the finite size effect which is present for N = 600 at times t > 3.

N = 800 (blue line) and N = 1000 (green line). The entanglement can be seen to reach

a steady state for t > 2 regardless of the number of ions in the bath, and it oscillates

about a (quasi) stationary state. For t > 3 the finite size effect can again be observed

for N = 600 as large oscillations in the negativity. This is due to reflections from the

end of the ion chain which shortens the lifetime of the steady state but can be delayed

by increasing the size of the chain.

In the left-hand side panel of Fig. 6.7 the negativity versus time is plotted for d = 11

(blue), 13 (green) and 15 (red). In this case the relative motion is decoupled and the

second node of the spectral density is chosen. An entangled steady state is reached in

all cases, however at different times dependent on the value of d. The mean value of the

steady state averaged over the time in which it regularly oscillates also changes with d

and this is shown in the right-hand side panel of Fig. 6.7 for the 2nd to the 6th node.

There is no steady state reached for the first node and optimal entanglement can be

achieved by tuning the frequency of the impurity so that it matches the frequency of a

node which maximises the amount of entanglement generated.

The results for the decoupled COM motion is qualitatively equivalent to the case dis-

cussed above for the decoupled relative motion and are shown in Fig. 6.8. The frequencies

of the nodes of the spectral density differ and this results in a different range of accessible

nodes, 1st to 5th, to reach the steady state.



Long distance entanglement in a linear ion chain 106

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t

E
N

 

 

d=11

d=13

d=15

0 10 20 30 40 50 60
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

d

E
N

 

 

6
th

5
th

4
th

3
rd2

nd

Figure 6.7: Entanglement between the two defects in a bath of N = 800 ions for
an initial squeezing of s = 0.5 and γ̄ = 0.25 at temperature T ≈ 0. Left panel:
Negativity versus time for d = 11 (blue), 13 (green) and 15 (red). The second node
of the relative spectral density has been chosen in each case. Right Panel: The mean
entanglement of the steady state is plotted as a function of d for different nodes of the
relative coordinate’s spectral density. The nodes are labelled from the 2nd to the 6th.

No steady state is reached for the first node.

6.5 Conclusions

Bath mediated entanglement was investigated for the system of two impurity ions em-

bedded in a linear ion chain. The transverse degrees of freedom of the impurities were

coupled to the axial environment by a laser which stimulated the creation of entangle-

ment. By choosing the correct trap aspect ratio the environment could be engineered to

allow the existence of a decoherence free subspace by which entanglement between the

impurities could reach a steady state. It was shown that for short ion chains the steady

state was not reached but entanglement creation was enhanced by the coupling laser.

This is promising for recent experiments which can create two-species ion chains using a

small number of ions, N < 20. Also the system is robust against environmental effects

such as finite temperature.

The appearance of the entangled steady state could only be achieved for long ion chains

N > 500 due to finite size effects caused by the ends of the chain. However it was shown

that the number of ions used in the chain does not change the mean value of the steady

state.

Contrary to previous works which report that bath mediated generation of long distance

entanglement could not be achieved in continuous-variable systems [183, 184], we have
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Figure 6.8: Entanglement of the two defects in a bath of N = 800 ions for an initial
squeezing of s = 0.5 and γ̄ = 0.25 at temperature T ≈ 0. Left panel: Negativity versus
time for d = 15 (blue), 17 (green) and 19 (red). The second node of the COM spectral
density has been chosen in each case. Right Panel: The mean entanglement of the
steady state is plotted as a function of d for different nodes of the COM coordinate’s

spectral density. The nodes are labelled from the 1st to the 5th.

shown that this is not the case and that suitable environment engineering can promote

robust entanglement creation.

6.6 Outlook

It would be interesting to study the phase transition in the ion chain as it goes from

linear to zig-zag configuration. This suddenly occurs as the trap aspect ratio is decreased

past some critical point. The location of this critical point could be inferred through

the entanglement or quantum discord between two ions of the chain.



Chapter 7

Conclusions and Outlook

In this thesis I have described varied topics in low dimensional ultracold atomic systems.

In Chapter 2 I discussed in detail a problem of two bosons trapped in individual harmonic

traps. In Chapter 3 the Tonks-Girardeau gas was introduced and the specific case

of the gas under the influence of an impurity potential was solved. In Chapter 4 a

scheme was presented to probe a Fermi gas with an impurity qubit and thereby observe

the orthogonality catastrophe. In Chapter 5 the creation of coherent superpositions

of many-body states was undertaken with an emphasis on creating useful states for

interferometry experiments. Finally in Chapter 6 I introduced some work which I have

contributed to concerning the problem of generating long distance entanglement in ion

chains. In these works special emphasis was placed on their experimental realisation

in modern laboratories and their tunability through the adjustable parameters of their

respective Hamiltonians, something which is desirable for quantum engineering. For

completeness, I briefly summarise those topics and the relevant results here.

7.1 Entanglement and non-locality between two interact-

ing atoms

The correlations of two interacting atoms was investigated where the atoms are trapped

in individual harmonic traps which are separated by a distance d. In this case the form

of the Hamiltonian permitted the separation of the problem into the centre of mass and

relative coordinate systems. The centre of mass Hamiltonian was that of a single atom

in a harmonic potential and could be readily solved analytically. The relative coordinate

system took the form of a single atom in a harmonic trap which was punctuated by a δ-

function potential at a distance d from the centre of the trap. The height of the δ-function

is related to the strength of the interaction between the two particles. This Hamiltonian

108
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was shown to be exactly analytically solvable through the use of parabolic cylinder

functions. The solutions of this system contained an interesting physical effect which

was the existence of trap induced shape resonances, which appear as avoided crossings

in the energy spectrum at specific distances between the traps. At these points the von

Neumann entropy was shown to exhibit sudden increases in entanglement even for large

distances between the individual traps. Consequently the non-local behaviour of the

continuous variable state was calculated using the two-mode Wigner distribution. The

negative volume of the Wigner function indicated the non-classicality of the state which

was subsequently quantified by the non-locality as calculated by the CHSH inequality.

The inequality was violated for finite trap separations, however the length scale of the

observed correlations were far less than observed in the von Neumann entropy. This

perceived fragility of the non-locality led to an investigation of a suitable entanglement

witness under the influence of a dissipative process, and it was found that using modern

detection techniques the non-classical nature of the system can be observed. Finally

at finite temperature the non-classicality of the state was found to be more robust

for the cases of lower interaction strengths and consequently lower non-locality. This

was explained by examining the energy difference between the ground and first excited

state of the system, which is larger for weakly interacting atoms and smaller for strong

interactions. As the gap between these energy levels decreases the probability for the

atoms to be excited to higher modes is increased, which leads to larger temperature

sensitivity. This work has been published in New Journal of Physics 13 (2), 023016

(2011).

Further studies on non-classical correlations in two particle systems in higher dimensions

would be fruitful, as the relation between the scattering length and interaction strength

changes and trap induced shape resonances are still present. Also, the effect of angular

momentum on the bipartite correlations would be an interesting extension to this study.

By using an asymmetric three dimensional trap in this case one can study the effect that

reducing dimensionality has on the state.

7.2 Coherence and dynamics of a Tonks-Girardeau gas

The Tonks-Girardeau gas was introduced and solved in an asymmetrically split harmonic

oscillator. The trap was split by a δ-function of variable height that could be positioned

at any point along the trap axis. The effect of the position of the δ-function on the total

energy of the gas was investigated and was found to contain lobes at the locations of

the hard-core bosons. This crystaline structure was also evident in the occupation of

ground state orbital and height of the central peak of the momentum distribution. Both
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of these quantities were argued to be an indication of the coherence of the gas, which

was justified by carrying out a time of flight calculation of the interference fringes. The

dynamics of the gas was also examined after sudden removal of the δ-function potential,

which led to the disappearance and revival of the impurity’s density dip. This is the

matter wave analogy of the Talbot effect in optics by which the initial density of the

gas is repeated at regular intervals. This work has been published in New Journal of

Physics 12 (9), 093041 (2010).

Recent experiments have successfully embedded ions in ultracold gases and it would be

worthwhile to investigate the effect of the ion’s micromotion on the surrounding gas

[118, 120]. Significant progress has been made to theoretically describe the effect of

micromotion of a trapped ion on a neutral atom [121] and a logical extension would be

to study the many-body response of the TG gas to such an interaction.

7.3 The orthogonality catastrophe in a Fermi gas

The effect of an impurity on the overlap between two non-interacting Fermi gases was

thoroughly examined in the harmonic trap. The results showed signs of the orthogo-

nality catastrophe (OC) in which the overlap between two many-body states becomes

orthogonal as the size of the system was increased. It was found that the strength of

the scattering potential set a limit on the range of the OC, with respect to the number

of particles in the state. It was then proposed that by using an impurity qubit the

irreversibility of a quenched Fermi gas could be calculated using the Loschmidt echo.

This time dependent process is analogous to X-ray absorption experiments in solid state

physics, in which one observes the OC as a power law broadening of the single particle

spectral function. To witness the OC in this case the experimental procedure of Ramsey

interferometry was considered, by which the probability of the impurity qubit to be in

its ground state can be measured as a function of time. One can then infer from this

measurement the single particle spectrum of the perturbed Fermi gas and observe the

characteristic signs of the OC. This work has been published in Physical Review A 84

(6), 063632 (2011).

The behaviour of the overlap in many-body systems under the effect of both global and

local perturbations of different forms is an intriguing area which has been previously

un-explored. The sudden change of the trapping frequency on the state can lead to in-

teresting results about the time evolving state of the system. One could then investigate

how long it takes for the state to reach its time averaged state and if this is effected by

the OC. Also it would be worth investigating does the time averaged state give a good

description of the out-of-equilibrium dynamics of the system.
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7.4 Effect of interparticle interaction in a free-oscillation

atomic interferometer

The creation of superposition states was investigated using the free oscillation atom

interferometer, which exploits the oscillatory motion of particles displaced in a harmonic

trap. Atoms scatter repeatedly off a tunable barrier at the centre of the trap which acts

as a beamsplitter. For the case of two atoms the system was solved using a combination

of analytical solutions and the discrete variable representation method. The interaction

strength between the two particles and the height of the barrier were tuned to find

the optimal state for use in metrology, the so-called NOON state. The output states

were assessed by calculating the quantum Fisher information (QFI) which is related to

the variance of a measured interferometric phase. At the Heisenberg limit the QFI is

maximum and this signifies the creation of a NOON state. For a large range of attractive

interactions the NOON state was found to be created, however when the interactions

were repulsive this parameter space was significantly reduced. The detection of NOON

states was proposed by observing the interference fringes of the freely expanding state.

The greater fringe visibility of the NOON state is noticable when compared to states

with a lower QFI. This work has been published in Physical Review A 87, 043630 (2013).

It is unclear if the situation in which both particles are initially located in an eigenstate

of one half of a double well trap will lead to similar results. Subsequent tunneling into

the other well will depend on the interaction strength and the height of the barrier

separating both wells. It would then be interesting to study what effect the interaction

has on the tunnelling and if NOON states can possibly be created also in this situation.

7.5 Long distance entanglement in a linear ion chain

In this Chapter the growth of entanglement mediated by a linear ion chain was intro-

duced and the significant results discussed. The environment was engineered by a careful

tuning of the trap aspect ratio, and the two impurity ions were coupled to it via a laser.

By initially preparing the impurities in a squeezed state, entanglement can be generated

between the transverse modes of the impurites. For small ion chains the engineered

environment enhanced significantly the entanglement created between the impurities.

For large chains a decoherence free subspace was found to exist if the frequencies of the

impurities were tuned to coincide with the nodes of the bath’s spectral function. This

entangled steady state was observed at both short and large impurity distances using

a variety of environmental settings. The system was also shown to be resilient against
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temperature and should allow observation of bath mediated entanglement in modern

experiments. This work has been published in Physical Review A 87, 050304(R) (2013).

It would be interesting to study the phase transition in the ion chain as it goes from

linear to zig-zag configuration. This occurs as the trap aspect ratio is decreased past

some critical point. By calculating the entanglement or quantum discord between two

ions of the chain the location of this critical point could be inferred.
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[100] Th. Busch and G. Huyet, J. Phys. B: At. Mol. Opt. 36, 2553 (2003).

[101] H. Fu and A.G. Rojo, Phys. Rev. A 74, 013620 (2006).

[102] J. Goold and Th. Busch, Phys. Rev. A 77, 063601 (2008).

[103] J. Goold, D. O’Donoghue and Th. Busch, J. Phys. B: At. Mol. Opt. 41, 215301

(2008).

[104] J. Goold, H. Doerk, Z. Idziaszek, T. Calarco and Th. Busch, Phys. Rev.A 81,

041601 (2010).

[105] T. Kinoshita, T. Wenger and D.S. Weiss, Nature 440, 900 (2006).
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