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A collection of Constraint Programming models for the

three-dimensional stable matching problem with cyclic preferences
Supplementary Material

A Example

We present in Figure 1 an example of a 3DSM-CYC instance I for n = 4. This instance was actually
used in our experiments, it comes from the Random dataset. For each agent a; € A, the four agents
in a;’s preference list are listed in decreasing order of preference. The same is true for agents from
B and C'. For example, a1’s most preferred, top-choice agent is bo, her second choice is by, her third
choice is b3, and her least preferred, fourth-choice agent is by.

We give in Figure 2 an example of a matching M for I. Each line in the figure represents a
triple of agents who are assigned to each other in M. For example, a1, b3, and ¢4 are assigned to
each other. We first explain why M is weakly stable. Suppose that there is a strongly blocking
triple (ai,bj,c) for M. According to the definition of weak stability in Section 2.1 in the main
part of the paper, ¢ prefers a; to the agent from A she is assigned to in M. But ¢y, ¢, and ¢4
are assigned in M to their most preferred agent from A (a2, a3, and ay respectively), while c¢3 is
assigned to her second-choice agent. So ¢, must be c3, and a; must be the the agent ranked first
by c3. However, M assigns cg’s first ranked agent a3 to her top choice by. Therefore there can be
no strongly blocking triple for M, meaning that M is weakly stable.

We next show that M is not strongly stable. Indeed, consider the triple ¢ = (a3, b2, c3). While
as is assigned to the same agent from B (b2) in M and in ¢, both by and c3 prefer their assignments
in ¢ (c3 and as are both first-choice agents for by and c3 respectively) over their assignments in M
(co is last in the preference list of b and a4 is second in the preference list of ¢3). Therefore, from
the definition of strong stability in Section 2.1 of the main part of the paper, ¢ is a weakly blocking
triple for M, meaning that M is not strongly stable.

Let us now look at the cost of M according to the fairness notions studied in the paper. Agent
a1 is assigned to her third-choice agent from B, as is also assigned to her third-choice agent, ao
is assigned to her top-choice agent, and a4 is assigned to her last-choice agent, so the sum of the
ranks of the agents from B in the preference lists of the agents from A whom they are assigned to
is3+4+ 34+ 14 4 =11. Similarly, the sum of the ranks of the agents from C' in the preference lists
of the agents from B whom they are assigned tois 1 + 4 + 2 + 1 = 8, and the sum of the ranks of
the agents from A in the preference lists of the agents from C' whom they are assigned to is 1 + 1

ai: by by by by bi: ¢c3 e ¢ c1: az a3 a1 a4
ag: b3 b1 b4 bQ bQ: C3 C1 Cq C2 Co: as as aq aq
ag: by by by by bs: ¢ ¢4 1 c3 c3: a3 a4 a1 G
aq: bg b4 b3 bl b4: C1 (&) Cq4 C3 Cq: al as ay as

Figure 1: A 3DSM-CYC instance I with 4 agents in each agent set.



(a1,b3,c4)
(ag,bs,c1)
(a3, b2, c2)
(a4,b1,c3)

Figure 2: A matching M for I.

4+ 2 + 1 = 5. The egalitarian cost of M is the sum of these three sums, so 11 + 8 + 5 = 24. The
minimum regret cost of M is 4, because at least one agent are assigned the fourth and last ranked
agent in her preference list (a4 are assigned her least preferred agent b;). Finally, the sex-equal
cost of M is the pairwise absolute difference of the sums, so |11 — 8| + [8 — 5| + |5 — 11| = 12.

B Dataset

The compressed directory “Dataset” contains the instances studied in the experiments, as well as
the code used to generate them.

C Heuristic selection

We compared the UNI and DIV models using various built-in search strategies on constraint solvers:
Gecode and Chuffed. The built-in variable choice annotations that we considered from Minizinc
are: input_order, first_fail, smallest; and the variable constraint strategies are: indomain_min,
indomain_median, indomain_max, and indomain_split. These annotations were chosen as their
combinations already exist for both Gecode and Chuffed. In the rest of this section, each strategy
combination is labeled with the identifiers of relevant annotations. For instance, smallestmax
strategy corresponds to a combination of the variable choice annotation smallest and the variable
constraint indomain_max. Similarly, failsplit corresponds to first_fail and indomain_split, etc..

In Figure 3 and Figure 4 we observe the total time and failure performances of each model,
i.e. DIV-agents, DIV-ranks, HS, UNI-agents, UNI-ranks, when solving the satisfiability problem under
strong stability using Gecode. On these plots and also by our observation on larger instances, we
confirm that failmin and nonemin strategies perform well on the DIV models. Similarly, failsplit
strategy performs well on the UNI models. Furthermore, Figure 5 and Figure 6 present the same
information when the tests are performed using the Chuffed solver. In Figure 5 and Figure 6 we
can also infer that failmin and nonemin strategies perform well for DIV, and failsplit performs well
for UNI. Note that the HS model is not included in Chuffed plots as this model has been directly
implemented in Gecode. The performances of the heuristics show a similar trend for both weak and
strong stability, and also the optimisation variants i.e. minimum regret, sex-equal, egalitarian. We
do not add the remaining plots here considering that adding the alternative plots is not interesting as
the observation on the search strategies is the same. Hence, we selected a subset of well performing
strategies and some contrasting ones to perform tests on larger instances. The strategies that
we selected are: failmin, nonemin, nonemax for DIV models; failsplit, nonemin, nonemax for UNI
models; and nonemin and nonemax for the HS model.



gecode, total time, grouped by=['model’, 'method’, 'heuristic']

strong stability, satisfiability, solver:

——— -
o oan—pi-+
—
— D
ol
o— P+
——
——
o
o—i—
— e
— D
———
— e
B
o —
—
— -
—
—
——
—
o— il
o
4
¢
o0
oo
oo
™
o0
o0
oo
@
®o
o
o
™
=t
=t
o
=
A
i+
=L
HILH
—a+
i+
o
I
5 % % 3% 8 5 3 3
awl]l|ejoy

(31dsasejews ‘syued ‘lun)
(ulwisa|jews ‘s)ues ‘lun)
(uelpawisajews ‘syued ‘lun)
(xews3sajjews ‘syued ‘lun)
(31dsauou ‘syjueus ‘un)
(ulwauou ‘syuel ‘un)
(uelpawauou ‘syuel ‘lun)
(xewauou ‘s3uel ‘lun)

1B} ‘syjued ‘lun)

(uiwiey ‘syues ‘jun)
(uelpawiiey ‘syues ‘lun)
(xew|iey ‘sjues ‘lun)
(ydsisajjews ‘syusbe ‘lun)
(uluasajews ‘syuabe ‘lun)
(uelpawisajews ‘syuabe ‘lun)
(xeuwnssjjews ‘syuabe ‘lun)
(ydsauou ‘syusbe ‘lun)
(ulwiauou ‘syuabe ‘lun)
(uelpawauou ‘syuabe ‘lun)
(xewsuou ‘syuabe ‘lun)

1e} ‘syuabe ‘un)

(uwyrey ‘syuabe ‘lun)
(uelpawiiey ‘syuabe ‘lun)
(xewiey ‘syuabe ‘lun)
(ulwauou “1abed ‘sy)
(xewauou ‘1abed ‘sy)

(3dsisajjews ‘syuel ‘AIp)

(ulwisa|jews ‘syuel ‘Al
(uelpawisajjews ‘syuet ‘Alp)
(xewysa||ews ‘s)uel ‘Alp)
(dsauou ‘syjues ‘Alp)
(ulwauou ‘s)uels ‘AIp)
(uelpswauou ‘s)uel ‘AIp)
(Xxewsauou ‘syuel ‘Alp)

1B} ‘Syued ‘AIp)

(uytey ‘syuel “AIp)
(ueipawiiey ‘syues ‘Ap)
(xewiiey ‘syuel ‘Alp)
(1ds3sajjews ‘syuabe ‘Alp)
(ulsajjews ‘syuabe ‘Ap)
(uelpawnisa|ews ‘syuabe ‘Alp)
(xewnss|jews ‘syuabe ‘AIp)
(ydsauou ‘syusbe ‘Alp)
(utwauou ‘syuabe ‘Alp)
(uelpswsauou ‘syusbe ‘AIp)
(xewsuou ‘syuabe ‘AIp)

‘syuabe ‘AIp)

(uiwiiey ‘syusbe ‘Alp)
(ueipawiiey ‘syuabe ‘Ap)

(xewiiey ‘syuabe ‘AIp)

Grouping categories

A comparison of total time of each model solving the satisfiability 3DSM-CYC problem

Figure 3

Gecode with different search strategies for n = 5 under strong stability for the entire dataset.
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Figure 4

Gecode with different search strategies for n = 5 under strong stability for the entire dataset.
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A comparison of total time of each model solving the satisfiability 3DSM-CYC problem

Chuffed with different search strategies for n

Figure 5

5 under strong stability for the entire dataset.
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Chuffed with different search strategies for n = 5 under strong stability for the entire dataset.

Figure 6



We performed further tests comparing the selected heuristics on n € {6,7,8}. From these plots,
we present Figure 7 and Figure 8 as they are interesting for UNI models since we can clearly observe
the performances of different search strategies. From these plots, we infer that failsplit is the best
performing heuristic among the selected ones for larger instances, where n = 8. Additionally,
Figure 9 and Figure 10 demonstrate the same metrics on the sex-equal variant of the 3DSM-CYC
problem. One can easily observe that the comparison of strategy performances across different
variants have similar results.

strong stability, satisfiability, solver=gecode, total time, grouped by=['model’, 'method, *heuristic'] strong stability, satisfiability, solver=gecode, failures, grouped by=['model’, 'method", ‘heuristic']
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Figure 7: A comparison of total time of
UNI solving the satisfiability 3DSM-CYC us-
ing Gecode with selected strategies for n = 8
under strong stability for the entire dataset.
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UNI solving the sex-equal 3DSM-CYC using
Chuffed with selected strategies for n = 8
under strong stability for the entire dataset.

Grouping categories

Figure 8: A comparison of failures of UNT solv-
ing the satisfiability 3DSM-CYC using Gecode
with selected strategies for n = 8 under strong
stability for the entire dataset.
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Figure 10: A comparison of failures of UNI
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with selected strategies for n = 8 under strong
stability for the entire dataset.

In addition to the plots of UNI models, one can observe in figures from Figures 11, 12, 13, and 14
the time performance of DIV models under different strategies when n = 8. Note that, as mentioned
previously, the set of strategies have similar performances for different problem variants. In order
to demonstrate the performance of different strategies on DIV models, in Figure 11 and Figure 12
we present the time performance of DIV models with selected strategies for the minimum regret



problem under weak stability using Gecode and Chuffed, respectively. Similarly, in Figure 13 and
Figure 14 we present the results of the same setting under strong stability. Note that, the plots for
DIvV-ranks models under strong stability in Gecode are not interesting when n = 8 as a solution is
found very quickly for DIv-ranks, and time-limit is met for DIv-agents. From these tests, one can
observe that the failmin strategy is the best one for DIV models.

weak stability, minregret, solver=gecode, total time, grouped by=['model', 'method’, 'heuristic']
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We compare the nonemax and nonemin strategies for the HS model when solving 3DSM-CYC
variants. Figure 15 presents a comparison of these strategies on HS when using strong stability
for each problem variant. Similarly, Figure 16 presents the same information under weak stability.
As one may observe, the strong stability plots are not as informative as the weak stability ones.
From these two figures, we infer that nonemax and nonemin strategies are very competitive on HS.
Our experiments on n € {5,...,11} confirm that nonemax and nonemin strategies do not cause a
significant difference in the performance. Therefore, we pick one of them for Hs, i.e. the nonemax
strategy, which seems to have slightly better median performance on the average.
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Figure 15: A comparison of total time required for HS solving 3DSM-CYC for egalitarian, minimum
regret, satisfiability, and sex-equal versions in order using Gecode with selected strategies for n = 11
under strong stability for the entire dataset.
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Figure 16: A comparison of total time required for HS solving 3DSM-CYC for egalitarian, minimum
regret, satisfiability, and sex-equal versions in order using Gecode with selected strategies for n = 11
under weak stability for the entire dataset.



D Model Comparison in terms of the number of failures

In this section we look at the number of failures that the different models have when using the two
solvers under the two notions of stability considered (Figures 17, 18, 19 and 20). In general, there
is a correlation between the number of failures and the total run time. However it is important
to remark that the ratio of the number of failures per unit of time (i.e., speed of exploration) is
not the same for all models. One remarkable example has to do with the UNI model. The number
of failures obtained with this model is very low in most of the cases (in particular when we use
Gecode (see Figures 17 and 18). However, we end up running out of time with this model since
propagation is very expensive, which leads to a very low speed of exploration. This situation is not
only observed in UNI but also in DIV-agents.
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Figure 17: A comparison of the number of failures under weak stability on small instances using
Gecode.



I Random [ ML_oneset B ML_1swap B ML_2swaps
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Figure 18: A comparison of the number of failures under strong stability on small instances using
Gecode.

As expected, for those cases where the time limit has been reached, there is an inverse correlation
between the number of failures and the size of the instances. The bigger the instance the more
expensive propagation is. This is why, for instance, we observe that for weak stability, HS reports
more failures in the egalitarian cases for n = 9 than for n = 11 (see Figure 17).

We found a dependency between the number of failures and the solver used. For instance if we
look at the number of failures of DIV-ranks and UNI-ranks when using Gecode on the weak stability
instances, we observe that DIv-ranks tends to fail more than UNI-ranks. However, in Chuffed, we
observe the opposite situation. Our guess is that, some how Chuffed is able to take more advantage
of the way how constraints are modelled in UNI-ranks for the generation of nogoods. However, this
certainly needs further investigation.

In the plot reporting the scalability (with respect to the number of failures) of DIv-ranks in the
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Figure 19: A comparison of the number of failures except HS under weak stability on small instances

using Chuffed.

different scenarios (Figure 21), we observe more clearly how easy ML instances are under strong
stability. From Lemma 1, we know that the satisfiability problem can be solved in polynomial
time for ML_oneset. This also means that the problem can be solved in polynomial time when the
objective is min-regret. We can observe in Figure 21 that we are able to solve these instances almost
without failing. The complexity of the other two optimisation cases still remains open. However,
we can see that the behaviour is pretty much the same. In fact. the same observation holds for
ML_1swap and ML_2swaps.
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I Random [0 ML_oneset N ML_1swap N ML_2swaps
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Figure 20: A comparison of the number of failures except HS under strong stability on small
instances using Chuffed.
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Figure 21: An overview of the number of failures of DIv-ranks using Chuffed under both weak and
strong stability when solving problem instances of different sizes for each dataset.
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