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Ollscoil na hÉireann, Corcaigh

National University of Ireland, Cork

Constant Mean Curvature Surfaces

and Heun’s Differential Equations

Thesis submitted in June 2019 by

Eduardo Mota

in partial fulfillment of the conditions for the award of the

degree

Doctor of Philosophy.

University College Cork

Department of Mathematics

Head of Department: Prof. Bernard Hanzon

Supervisor: Dr. Martin Kilian



Contents

Contents 1

Abstract 8

Introduction 9

1 Preliminaries. The generalised Weierstrass representation 14

1.1 Basics of local surface theory . . . . . . . . . . . . . . . . . . . 15

1.2 Loop groups methods for CMC surfaces . . . . . . . . . . . . 22

1.2.1 Loop groups . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.2 Holomorphic potentials and unitary frames . . . . . . . 24

1.2.3 The Sym-Bobenko formula . . . . . . . . . . . . . . . . 25

1.2.4 The generalised Weierstrass representation . . . . . . . 27

1.2.5 Dressing action . . . . . . . . . . . . . . . . . . . . . . 28

1.2.6 Gauge action . . . . . . . . . . . . . . . . . . . . . . . 29

1.2.7 The monodromy problem . . . . . . . . . . . . . . . . 31

1.3 Delaunay surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.4 The associated second order ODE . . . . . . . . . . . . . . . 40

2 Heun’s Differential Equations 44

2.1 Singularities of 2nd-order differential equations . . . . . . . . . 45

2.2 Heun’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3 Confluent Heun’s equation . . . . . . . . . . . . . . . . . . . . 49

2.4 Double confluent Heun’s equation . . . . . . . . . . . . . . . . 52

1



2.5 Biconfluent Heun’s equation . . . . . . . . . . . . . . . . . . . 53

2.6 Triconfluent Heun’s equation . . . . . . . . . . . . . . . . . . . 53

3 CMC surfaces from Heun’s Differential Equations 55

3.1 4-noids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.1 Assumptions for the Heun equation . . . . . . . . . . . 57

3.1.2 A potential for the Heun equation . . . . . . . . . . . . 57

3.1.3 Regular singular points . . . . . . . . . . . . . . . . . . 59

3.1.4 Exploring symmetries for the monodromies . . . . . . . 60

3.2 Trinoids with two regular ends and one irregular end . . . . . 62

3.2.1 Two Regular Singular Points . . . . . . . . . . . . . . . 62

3.2.2 Prescribing the CHE . . . . . . . . . . . . . . . . . . . 64

3.2.3 Connection matrix . . . . . . . . . . . . . . . . . . . . 65

3.2.4 Unitarisability of the monodromy . . . . . . . . . . . . 67

3.2.5 Construction of new trinoids . . . . . . . . . . . . . . . 70

3.2.6 Formal computation of the end weight at ∞ . . . . . . 77

3.3 Cylinders with two irregular ends . . . . . . . . . . . . . . . . 83

3.3.1 The potential for cylinders . . . . . . . . . . . . . . . . 83

3.3.2 Series expansion of the monodromy and closing conditions 85

3.3.3 Unitarisation of the monodromy . . . . . . . . . . . . . 89

3.3.4 Main theorem. Construction of cylinders . . . . . . . . 90

3.4 Perturbed Delaunay cylinders with one irregular end . . . . . 93

3.4.1 Perturbed Delaunay potential . . . . . . . . . . . . . . 94

3.4.2 Closing periods and main result . . . . . . . . . . . . . 96

3.5 CMC surfaces with the topology of the plane . . . . . . . . . 98

4 Constant mean curvature surfaces with symmetries 102

4.1 Surfaces with a reflectional symmetry . . . . . . . . . . . . . . 103

4.2 Surfaces with a rotational symmetry . . . . . . . . . . . . . . 106

5 Conclusions and future work 108

2



Appendix A Matrix Lie groups and unitarisability 111

A.1 Affine group Aff3(R) . . . . . . . . . . . . . . . . . . . . . . . 111

A.2 Orthogonal and Isometry groups . . . . . . . . . . . . . . . . . 112

A.3 Special linear group SL2(C) . . . . . . . . . . . . . . . . . . . 114

A.4 Special unitary group SU2 . . . . . . . . . . . . . . . . . . . . 117

A.4.1 Unitarisation of SL2(C) . . . . . . . . . . . . . . . . . . 120

Appendix B Geometry of unitarisability 124

B.1 Hyperbolic 3-space . . . . . . . . . . . . . . . . . . . . . . . . 124

B.2 Unitarisability . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

B.3 Eigenlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

B.4 The Klein model of H3 . . . . . . . . . . . . . . . . . . . . . . 127

B.5 The cross ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 128

B.6 Unitarisability of two matrices . . . . . . . . . . . . . . . . . . 129

List of figures i

Bibliography ii

3



This is to certify that the work I am submitting is my own and has not been

submitted for another degree, either at University College Cork or elsewhere.

All external references and sources are clearly acknowledged and identified

within the contents. I have read and understood the regulations of University

College Cork concerning plagiarism.

Signature

Eduardo Mota

Cork, June 2019.



“E sapevo anche un’altra cosa. Che se non fossi andato per il mondo, non
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- Alberto Prunetti
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Abstract

This thesis is concerned with the problem of constructing surfaces of con-

stant mean curvature with irregular ends by using the class of Heun’s Differen-

tial Equations. More specifically, we are interested in obtaining immersion of

punctured Riemann spheres into three dimensional Euclidean space with con-

stant mean curvature. These immersions can be described by a Weierstrass

representation in terms of holomorphic loop Lie algebra valued 1-forms. We

describe how to encode each of the differential equations in Heun’s family in

the Weierstrass representation. Next, we investigate monodromy problems for

each of the cases in order to ensure periodicity of all the resulting immersions.

This allows us to find four families of surfaces with constant mean curvature

and irregular ends. These families can be described as trinoids, cylinders,

perturbed Delaunay surfaces and planes. Finally, we study some symmetry

properties of these groups of surfaces.
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Introduction

The surfaces with non-zero constant mean curvature (CMC) have been of

big interest to mathematicians since the middle of the nineteenth century. An

immersion is of constant mean curvature if it is critical for the first variation

of area under volume constraint. This volume constraint is mathematically

equivalent to a pressure differential across the surface, which in this case

is the boundary between two regions. Thus, CMC surfaces appear in fluid

problems as soap bubbles since they have the curvature corresponding to a

nonzero pressure difference, in the shape of the gas-liquid interface on a su-

perhydrophobic surface, in models for block copolymers where the different

components have a nonzero interfacial energy or tension, or in architecture as

air-supported structures such as inflatable domes and enclosures. Moreover,

CMC surfaces are important mathematical models for the physics of inter-

faces in the absence of gravity, where they separate two different media.

The first class of CMC surfaces was the one of surfaces of revolution,

the Delaunay surfaces. They were found almost 200 years ago by Delaunay

[12], and are still of interest, since every properly embedded annular end of

a CMC surface is asymptotically a Delaunay surface, proved by Korevaar,

Kusner and Solomon in [40].

In the mid twentieth century two important results about the global proper-

ties of CMC surfaces were found by Hopf and Alexandrov. In 1955 Hopf [24]

showed that the only genus-zero closed CMC surfaces in R3 are the round

spheres. Just a few years later, Alexandrov [1] used the maximum principle

to show that the only closed CMC surfaces embedded in R3 are the round

CMC Surfaces and Heun’s Differential Equations 9



spheres.

In the 1980’s this topic regained new interest after the discovery of the first

closed, compact CMC surface different from the round sphere found, by

Wente in [60]. Then, integrable systems methods were first used to study

CMC surfaces by Pinkall and Sterling [44]. Thanks to them, the moduli

space of CMC tori was completely described in terms of hyperelliptic Rie-

mann surfaces (see [44] and also the important work of Bobenko [7]).

It is a well-known fact, proved by Ruh and Vilms in [49], that CMC surfaces

have harmonic Gaus map into the sphere S2, that is, their Gauss map is an

extremal value for the energy functional. In [16], Dorfmeister, Pedit and Wu

showed that such harmonic maps can be obtained as projections of horizon-

tal holomorphic maps from the universal cover of the surface into a certain

loop group. The integrability of the moving frame for CMC surfaces is the

celebrated Gauss equation, which can be seen as an infinite dimensional inte-

grable system (see the book of Hélein [22] for details on these ideas).

Regarding higher genus CMC surfaces, the works of Kapouleas [26, 27, 28]

gave existence results. He used PDEs machinery and gluing techniques. More

recently, Traizet has adapted this approach to the loop groups methods used

in this thesis. In [59], he uses the opening nodes technique in the underlying

Riemann surface to construct CMC surfaces in R3 with no restriction on the

number of ends and with any genus.

The case of simply connected CMC surfaces was studied by Dorfmeister, Pedit

and Wu in [16]. They described them in terms of a meromorphic loop Lie

algebra valued 1-form, giving a Weierstrass-type representation analogous to

the one for minimal surfaces. Their method can be outlined as follows: for a

Riemann surface Σ, take a holomorphic 1-form ξ on its universal cover Σ̃ with

values in the loop Lie algebra of sl2(C), a point z0 ∈ Σ̃ and an element Φ0 in

the loop Lie group of SL2(C). To construct an associated family of (possibly

branched) conformal immersions fλ : Σ̃× S1 → su2
∼= R3 with constant mean

curvature H,

E. Mota 10



• Solve the initial value problemdΦ = Φξ,

Φ(z0) = Φ0

(IVP)

to obtain a map Φ : Σ̃ → ΛSL2(C), that is, a map into the loop group

of SL2(C).

• Compute (pointwise) the Iwasawa decomposition of Φ = F B, which

returns a unique map F : Σ̃ → ΛSU2. This is the extended frame of a

Gauss map of a CMC surface.

• Plug F into the Sym-Bobenko formula

fλ =
−1

2H

(
iλ(∂λF )F−1 + F

(
−i 0

0 i

)
F−1

)
to obtain the associated family of CMC surfaces. For each λ ∈ S1, a

conformal immersion f : Σ̃→ R3 with constant mean curvature H 6= 0

is obtained.

Extending this method to non-simply connected domains makes use of the fact

that holomorphic bundles are trivial over open Riemann surfaces, ensuring

that generally for non-compact CMC surfaces there is a holomorphic potential

on the underlying Riemann surfaces, not just on its universal cover.

Since the construction of the immersion involves solving a differential equation

which has in general monodromy, the difficulty of the construction is solving

period problems in order to close the ends. If λ is the loop parameter and

M is the monodromy representation, the following conditions ensure that the

resulting immersion f : Σ→ R3 lives on the surface for the value λ = 1:

M takes values in the unitary loop group,

M(λ = 1) = ±1,

∂λM |λ=1 = 0

These conditions can be ensured by properties on the Weierstrass data, in

particular in this thesis this amounts to showing that the monodromy repre-

sentation is pointwise simultaneously unitarisable on the unit circle via con-

jugation by a dressing. This approach has been extensively used to construct

E. Mota 11



CMC surfaces with non-trivial fundamental group. We cite among many oth-

ers the works of Bobenko [8, 10], Dorfmeister and Haak [15], Kilian, McIn-

tosh and Schmitt [33], Schmitt [52], Schmitt, Kilian, Kobayashi and Rossman

[54, 32] and Traizet [58]. Different approaches to this one were used to study

CMC surfaces in the works of Korevaar, Kusner, Meeks and Solomon [39] and

Grosse-Brauckmann, Kusner and Sullivan [17].

In this thesis we deal with the construction of CMC surfaces arising from

the family of Heun’s Differential Equations. This is done by identifying the

2 × 2 system in (IVP) with a second order scalar differential equation and

choosing that equation to be a member of that family. This process collects

the singularities’ behaviour of the scalar ODE in the system (IVP). In this

way we have holomorphic data on different punctured Riemann spheres (ac-

cording to the inherited singularities), and we use it to construct trinoids,

cylinders, perturbed Delaunay cylinders and planes with constant mean cur-

vature.

The interesting contribution of Heun’s Differential Equations is that four of

the five ODEs have irregular singularities of some rank. This yields a pole

structure in ξ at the punctures which determines the geometry of the ends

of the surface. The irregular singularities produce non-embeded ends similar

to those in the Smyth surfaces. However, the irregular ends obtained in our

surfaces are not asymptotic to Smyth surfaces because in general they have

nonvanishing end weights, while the end weights of Smyth surfaces always

vanish. Hence, we offer in this thesis a systematic way of producing new

CMC surfaces with a different number of irregular ends arising from Heun’s

Differential Equations.

The structure of this work goes as follows. In chapter 1 we introduce the

topic of CMC surfaces and explain the loop groups methods outlined above

in order to produce immersions in R3. We also give an account of the theory

regarding Delaunay surfaces, to exemplify the loop groups methods as well

as to establish some fundamental results used later. Finally, we explain how

E. Mota 12



to specifically pass from the system of ODEs to a general second order scalar

differential equation and prove results relating the theory of solutions in each

of the situations.

Next, in chapter 2, we give a brief discussion about the family of differential

equations that we will use later on, Heun’s Differential Equations. In there we

introduce each of the members of the family, and discuss the relevant concepts

for us.

Chapter 3 is the central piece of this thesis, where we construct surfaces with

irregular ends, discussing for each of the differential equations what is our

approach to the unitarisation of the monodromy representation. In most of

the cases, some symmetries need to be imposed in order to unitarise, and we

discuss these symmetries in chapter 4.

We explain our conclusions and expose some ideas on how this line work could

be continued in chapter 5.

Lastly, the appendices A and B gather some basic results regarding Lie groups,

hyperbolic geometry and unitarisation that are used without explanation

throughout the thesis.

E. Mota 13



Chapter 1

Preliminaries. The generalised

Weierstrass representation

The first chapter of this work intends to give a mathematical introduction

to the process of finding CMC surfaces from Weierstrass holomorphic data.

For this, we need to present some basic concepts regarding local surface the-

ory and conformal immersions along with setting our notation for the rest

of the text. We do this in the coming section. In section 1.2 we formulate

the generalised Weierstrass representation for CMC surfaces by holomorphic

loop sl2(C)-valued 1-forms. This Weierstrass type representation is due to

Dorfmeister, Pedit and Wu [16], and sometimes is called the DPW method.

This representation involves solving a system of ODEs for which the solution

takes values in a loop group. Thereupon the solution must be split in the

loop groups using the Iwasawa decomposition, obtaining a unitary factor and

a positive factor. The unitary factor is then used to obtain a CMC immersion

by use of the Sym-Bobenko formula for R3, which makes use of the correspon-

dence su2
∼= R3.

The subsequent sections are intended to outline two important group actions,

the dressing action and the gauge action. Then, we carry on with the descrip-

tion of one of the biggest difficulties when using the generalised Weierstrass

representation for CMC surfaces: the monodromy problem. Necessary and

sufficient conditions for the surfaces to close can be given in terms of the

CMC Surfaces and Heun’s Differential Equations 14



CHAPTER 1. PRELIMINARIES. THE GENERALISED WEIERSTRASS
REPRESENTATION

monodromy representation, and in order to prove the existence of our sur-

faces we need to guarantee those conditions. Afterwards, we introduce one of

the most basic examples of CMC surfaces, the Delaunay surfaces and we use

them to exemplify the steps to follow in this construction of CMC surfaces

in R3. Finally, we conclude describing how the step of solving a system of

ODEs in this algorithmic process can be thought instead as solving a 2nd-

order scalar ODE. This will be hugely exploited in the coming chapters.

1.1 Basics of local surface theory

Let Σ be a 2-dimensional orientable manifold and f : Σ→ R3 an immer-

sion. This means f is a mapping for which the differential dfp is injective for

all p ∈ Σ. The Euclidean vector space R3 is endowed with the standard inner

product 〈·, ·〉 and the hereby induced norm || · ||. We can pull this metric back

to a metric 〈·, ·〉Σ on Σ by df , that is,

〈v, w〉Σ = 〈df(v), df(w)〉 (1.1.1)

for any two vectors v, w for any tangent space TpΣ of Σ. Let U ⊂ Σ be an

open set with chart ϕ : V → U with V ⊂ R2, where R2 carries the standard

Euclidean structure.

Since (x, y) is a coordinate for Σ and f is an immersion, a basis for TpΣ can

be chosen as

fx =
∂

∂x
(f ◦ ϕ)p , fy =

∂

∂y
(f ◦ ϕ)p , (1.1.2)

and then the metric ds2 can be represented as the matrix

g =

(
〈fx, fx〉 〈fx, fy〉
〈fy, fx〉 〈fy, fy〉

)
. (1.1.3)

We can choose the coordinates on Σ so that ds2 is a conformal metric. This

means that the vectors fx and fy are orthogonal and of equal length in R3 at

every point f(p). This implies that 〈fx, fy〉 = 〈fy, fx〉 = 0 and that there exists

some smooth function u : U → R, the conformal factor of the immersion,

E. Mota 15



CHAPTER 1. PRELIMINARIES. THE GENERALISED WEIERSTRASS
REPRESENTATION

so that 4e2u = 〈fx, fx〉 = 〈fy, fy〉. Then, the induced metric has the form

ds2 = 4e2u(dx2 + dy2).

Now we come to the extrinsic invariants defined for an immersed surface. We

can define a unit normal vector to the surface on each coordinate chart by

taking the cross product of fx and fy and scaling it to have length equal to

one:

N =
fx × fy
||fx × fy||

. (1.1.4)

This vector is uniquely determined up to sign, which is determined by the ori-

entation of the coordinate chart. We can now define the second fundamental

form of f which can be written using symmetric 2-differentials as

II = Ldx2 + 2M dxdy +N dy2. (1.1.5)

Its matrix representation in the basis fx, fy of TpΣ is

h =

(
L M

M N

)
=

(
〈N, fxx〉 〈N, fxy〉
〈N, fyx〉 〈N, fyy〉

)
. (1.1.6)

Since a conformal immersion induces a conformal structure on the surface,

Σ can be viewed as a Riemann surface. Let z = x + iy be a holomorphic

coordinate and 〈·, ·〉 denote the the bilinear extension of the standard inner

product on R3 to C3 with induced norm || · || and partial derivatives given by

∂z = 1
2
(∂x − i∂y) and ∂z̄ = 1

2
(∂x + i∂y). Then, conformality is given by

〈fz, fz〉 = 〈fz̄, fz̄〉 = 0, 〈fz, fz̄〉 = 2e2u. (1.1.7)

The metric is now ds2 = 4e2udz dz̄. Thus, the second fundamental form can

be written as

II = Qdz2 + H̃ dz dz̄ +Qdz̄2, (1.1.8)

where Q is the complex-valued function

Q :=
1

4
(L−N − 2iM), (1.1.9)

and H̃ is the real-valued function

H̃ :=
1

2
(L+N). (1.1.10)

E. Mota 16



CHAPTER 1. PRELIMINARIES. THE GENERALISED WEIERSTRASS
REPRESENTATION

The symmetric quadratic differential Qdz2 is called the Hopf differential of

the immersion f . The Hopf differential is globally defined and together with

the metric determines f up to rigid motions.

The linear map S : TpΣ → TpΣ defined by S := g−1h is called the shape

operator and it maps a vector v ∈ TpΣ to the vector −DvN ∈ TpΣ, where D is

the directional derivative of R3. The eigenvalues k1, k2 and the corresponding

eigenvectors of S are the principal curvatures and the principal curvature

directions of the surface f(Σ) at the corresponding point. The half-trace of

S, denoted by

H =
1

2
tr(g−1h) =

H̃

4e2u
=

1

8e2u
〈fxx + fyy, N〉 =

1

2
(k1 + k2), (1.1.11)

is the mean curvature of the surface at the corresponding point. The immer-

sion f is CMC if H is constant. From equation (1.1.11) one concludes that

〈fzz̄, N〉 = 2He2u and from equation (1.1.9) we have that Q = 〈N, fzz〉.
A point p ∈ Σ is called umbilic if the two principal curvatures coincide k1 = k2.

Umbilic points are precisely the zeroes of the Hopf differential.

Lemma 1.1. Let Σ be a Riemann surface and f : Σ → R3 be a conformal

immersion. Then a point p ∈ Σ is umbilic if and only if Q = 0.

Proof. The shape operator of f with respect to the basis fx, fy is given by

S = g−1h =
1

4e2u

(
L M

M N

)
=

1

4e2u

(
H̃ +Q+Q i(Q−Q)

i(Q−Q) H̃ −Q−Q

)
. (1.1.12)

The two principal curvatures are the eigenvalues of S and hence are solutions

of equating to zero the expression

det(S − k1) =
1

4e2u

(
(H̃ +Q+Q− k)(H̃ −Q−Q− k) + (Q−Q)2

)
=

1

4e2u

(
(H̃ − k)2 − (Q+Q)2 + (Q−Q)2

)
=

1

4e2u

(
H̃2 − 2H̃k + k2

)
− 1

e2u
|Q|2 (1.1.13)

= 4e2uH2 − 2Hk +
1

4e2u
k2 − 1

e2u
|Q|2.

Thus we obtain

k1 = 2(2e2uH − |Q|), k2 = 2(2e2uH + |Q|). (1.1.14)

E. Mota 17



CHAPTER 1. PRELIMINARIES. THE GENERALISED WEIERSTRASS
REPRESENTATION

Therefore, k1 = k2 if and only if Q = 0.

The fundamental theorem of surface theory, also called Bonnet theorem,

states that the first and second fundamental forms determine a surface in

R3 uniquely up to a rigid motion. More in detail, there exists an immersion

f : U → R3 with first fundamental form I and second fundamental form

II with respect to the chosen coordinates if and only if I and II satisfy the

Gauss-Codazzi equations

4uzz̄ − |Q|2e−2u + 4H2e2u = 0, Qz̄ = 2e2uHz. (1.1.15)

Note that (1.1.15) are the Gauss and Codazzi equations for the ambient space

R3.

We define e1 = e−u(fz + fz̄)/2 and e2 = ie−u(fz − fz̄)/2 so that the Gauss

map N induces a special orthogonal frame F : U → SO3

F = (e1, e2, N) (1.1.16)

of the surface. Then, F−1dF = FUdz + FVdz̄ with U ,V : U → so3 and the

integrability condition is d2F = 0, in other words,

Vz − Uz̄ + [U ,V ] = 0. (1.1.17)

Rather than working with 3 × 3 matrices it is more convenient to use the

spinor representation identifying R3 ∼= su2 and lifting SO3 to its double cover

SU2 (see section A.4 for more details on these arguments). We complexify

suC2 = sl2(C) and fix a basis of sl2(C) as

ε =

(
−i 0

0 i

)
, ε− =

(
0 0

−1 0

)
, and ε+ =

(
0 1

0 0

)
, (1.1.18)

for which the following relations hold

〈ε+, ε+〉 = 〈ε−, ε−〉 = 0, ε∗− = −ε+,

[ε, ε−] = 2iε−, [ε+, ε] = 2iε+, [ε−, ε+] = iε.
(1.1.19)

Let us state the fundamental result in this discussion due to Lax [41], for the

particular case of unitary frames of dimension 2.
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Proposition 1.1. Let U ⊂ C be an open set containing the origin. For

A,B : U → sl2(C), there exists a solution F = F (z, z̄) : U → SU2(C) of the

Lax pair

Fz = FA, Fz̄ = FB (1.1.20)

for some initial condition F (0, 0) ∈ SU2 if and only if d2F = 0, that is, if and

only if

Bz − Az̄ + [A,B] = 0. (1.1.21)

The unitary frame F : U → SU2 of the surface can be chosen so that

fz = ieuFε−F
−1, fz̄ = −ieuFε+F−1, and N =

1

2
FεF−1. (1.1.22)

The differential of F can be then written as dF = Fzdz+Fz̄dz̄ = FAdz+FBdz̄

where A,B : U → sl2(C) work out to be

A =
1

2

(
−uz e−uQ

−2Heu uz

)
, B =

1

2

(
uz̄ 2Heu

−e−uQ −uz̄

)
. (1.1.23)

Note that A = −Bt
. The integrability condition (1.1.21) for the frame splits

into a diagonal condition and an off-diagonal condition giving respectively the

Gauss and the Codazzi equations (1.1.15).

Identifying S2 with CP1 one can see S2 ' SU2/U1 as a homogeneous space,

with U1 the group of 1×1 complex-valued unitary matrices. Fix a base point

z0 ∈ U and consider ϕ : U → S2 with ϕ(z0) = [1]. Let π : SU2 → S2 be the

canonical projection. Then for any such map there exists a lift F : U → SU2

such that F (z0) = 1 with ϕ = π ◦ F . The map F is called the frame of ϕ.

The Maurer-Cartan form α := F−1dF of F is a 1-form over U taking values

in su2, and its integrability condition d2F = 0 is called the Maurer-Cartan

equation and reads

dα + α ∧ α = 0. (1.1.24)

From equations (1.1.15) three important ideas can be concluded for immer-

sions with CMC :
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a) If H = 1/2 and Q = 1 (note that, away from umbilics, one can choose

local coordinates so that this is true), then the Gauss equation in (1.1.15)

becomes the sinh-Gordon equation

2uzz̄ + sinh 2u = 0. (1.1.25)

Thus, away from umbilic points of our CMC surface, the Gauss equation

can be locally viewed as the sinh-Gordon equation and then one can use

integrable systems methods (see the works [3, 10, 8, 7]).

b) The Gauss-Codazzi equations are invariant under Q 7→ λ−2Q for λ ∈
S1. Hence to every solution of equations (1.1.15), the Bonnet theorem

assures that there is an S1-parameter family of CMC surfaces, the so

called associated family. For λ ∈ C∗, consider the loop of frames Fλ.

The map Fλ satisfies that

• for each z ∈ U , λ 7→ Fλ(z) is holomorphic on C∗.
• F |λ=1 ≡ F frames a map ϕ : U → S2.

• F1/λ̄
t

= F−1
λ . In particular, F is SU2-valued for λ ∈ S1.

The differential of this loop of frames is dFλ = FλAλdz + FλBλdz̄ with

Aλ =
1

2

(
−uz e−uλ−2Q

−2Heu uz

)
,

Bλ =
1

2

(
uz̄ 2Heu

−e−uλ2Q −uz̄

)
.

(1.1.26)

A map Fλ as above is called extended or unitary frame if its Maurer-

Cartan form αλ satisfies the Maurer-Cartan equation dαλ +αλ∧αλ = 0

for all λ ∈ S1. Using suC2 = sl2(C) we can split sl2(C)-valued 1-forms

into the (1, 0) part α′ and the (0, 1) part α′′ writing α = α′+α′′. Thus,

for αλ we have that

αλ = α′λ +α′′λ = (α′1 + λ2α′′1)ε−+ (λ−2α′2 +α′′2)ε+ + (α′3 +α′′3)ε, (1.1.27)

where none of the α′j, α
′′
j depends on λ. This decomposition will be used

later on.
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c) Since Hz = 0, the Codazzi equation implies that

Qz̄ = 0, (1.1.28)

that is, that the function Q in the Hopf differential is holomorphic and

hence locally it is of the form Q = azk with a non-negative integer k ≥ 0

and a complex number a ∈ C. By a theorem of Ruh and Vilms [49] f

is CMC if and only if its Gauss map is harmonic.

Putting together a), b) and c), one can prove the following

Theorem 1.1. Let f : Σ→ R3 be a conformal immersion with metric ds2 =

4e2udzdz̄, Hopf differential Q, mean curvature H and Gauss map N : Σ→ S2.

Then, the following are equivalent:

(1) H is constant.

(2) Q is holomorphic.

(3) N is harmonic.

(4) There exists an unitary frame Fλ, and its Maurer-Cartan form αλ =

F−1
λ dFλ satisfies the Maurer-Cartan equation dαλ + αλ ∧ αλ = 0 for all

λ ∈ S1.

If H = 1/2 and Q = 1 then the function u solves the sinh-Gordon equation

2uzz̄ + sinh 2u = 0. (1.1.29)

We have already explained why (1) and (2) are equivalent. That (1)

and (3) are equivalent is known as a theorem of Ruh and Vilms [49]. The

integrability condition of Fλ is necessary and sufficient for the map F = F1

to be a lift of a harmonic Gauss map N : U → S2 of a CMC surface, due

to a result of Pohlmeyer [45], proving that (3) and (4) are equivalent. Let

us also note that F can be viewed either as the unitary frame of N or the

unitary frame of the immersion f , depending on whether one’s interest is in

harmonic maps or in the CMC immersion. Our objective is to construct from

holomorphic data with non-trivial topology unitary frames of harmonic maps

that are the Gauss map of a CMC surface.

E. Mota 21



CHAPTER 1. PRELIMINARIES. THE GENERALISED WEIERSTRASS
REPRESENTATION

1.2 Loop groups methods for CMC surfaces

1.2.1 Loop groups

Next we introduce various loop groups and state the Iwasawa and Birkhoff

decompositions for this setup. A loop is a smooth map from the unit circle

S1 to a matrix group. The circle variable is denoted λ and called the spectral

parameter.

For each 0 < r ≤ 1, the circle, open disk (interior) and open annulus are

denoted respectively by

Cr = {λ ∈ C : |λ| = r},

Dr = {λ ∈ C : |λ| < r},

Ar = {λ ∈ C : r < |λ| < 1/r}.

(1.2.1)

For r = 1, we will omit the subscript. On Ar given a map F : Ar → SL2(C)

there is the map F ∗ : Ar → SL2(C) defined by

F ∗ : λ 7→ F (1/λ̄)
t
. (1.2.2)

Below we define the (untwisted) loop groups and algebras that we need:

• ΛrSL2(C) is the set C∞(Cr, SL2(C)), that is, smooth maps Φ : Cr →
SL2(C).

• The Lie algebras of these groups are Λrsl2(C) = C∞(Cr, sl2(C)).

• Λ+
r SL2(C) ⊂ ΛrSL2(C) is the set of smooth maps B ∈ ΛrSL2(C) which

extend analytically to maps B : Dr → SL2(C).

• Λ−r SL2(C) ⊂ ΛrSL2(C) is the set of smooth maps B ∈ ΛrSL2(C) which

extend analytically to maps B : Ĉ\Dr → SL2(C) and such that B(∞) =

1.

• Λ+R
r SL2(C) ⊂ Λ+

r SL2(C) is the set of smooth maps B ∈ ΛrSL2(C) which

extend analytically to maps B : Dr → SL2(C) and such that B(0) is

upper triangular with positive real elements on the diagonal. We call

these r-positive loops.
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• Λ∗rSL2(C) ⊂ ΛrSL2(C) is the set of smooth maps F ∈ ΛrSL2(C) that

can be analytically extended to maps F : Ar → SL2(C) and satisfy the

reality condition

F ∗ = F−1. (1.2.3)

Note that since these are maps into some subgroup of SL2(C) for each

λ ∈ S1, they have pointwise inverses. Also, note that F ∈ Λ∗rSL2C
implies F |S1 ∈ SU2. We call these r-unitary loops.

Sometimes the loop group Λ∗rSL2 is equivalently defined with the notation

ΛrSU2 ⊂ ΛrSL2(C) being the set C∞(Cr, SU2), that is, smooth maps F :

Cr → SU2. This notation will be used later on in this work for the sake of

simplicity. The loop group ΛSL2(C) is the infinite-dimensional analogues of

SL2(C) and is the object to be split by Iwasawa decomposition, analogous to

the QR-decomposition of SL2(C) explained in lemma A.3 of the appendix.

On the other hand, Λ∗SL2(C) and Λ+RSL2(C) are the infinite-dimensional

analogue of SU2 and B that appear in the finite-dimensional splitting. Now

we come to the splitting theorems.

Theorem 1.2 (Iwasawa decomposition). The multiplication Λ∗rSL2(C)

×Λ+R
r SL2(C)→ ΛrSL2(C) is a real-analytic diffeomorphic map onto. We call

Iwasawa (or r-Iwasawa) decomposition to the unique splitting of an element

Φ ∈ ΛrSL2(C)

Φ = FB, (1.2.4)

where F ∈ Λ∗rSL2(C) is called r-unitary part of Φ and B ∈ Λ+R
r SL2C is called

positive part of Φ.

Note that since SU2 ∩ B = {1} in the finite-dimensional splitting in

lemma A.3, also Λ∗rSL2(C)∩Λ+R
r SL2(C) = {1}. The condition on Λ+R

r SL2(C)

of having positive real elements on their diagonals is a choice to ensure unique-

ness of this factorization. Proofs of theorem 1.2 can be found in the book of

Pressley and Segal [46] and in the work of McIntosh [42]. It is also important

to say that, in general, this splitting is not explicit.

Theorem 1.3 (Birkhoff decomposition, [6, 5]). The multiplication map

Λ−SL2(C) × Λ+SL2(C) → BC is a complex-analytic diffeomorphism onto an
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open dense subset, called the big cell, of ΛSL2(C). The unique splitting of an

element Φ ∈ BC
Φ = B−B+, (1.2.5)

where B− ∈ Λ−SL2(C) and B+ ∈ Λ+SL2(C) is called the Birkhoff decomposi-

tion.

Let us point out that when Φ depends complex-analytically on z, it does

not follow that F and B in (1.2.4) will do so too. However, the two elements

B− and B+ in (1.2.5) will depend complex-analytically on z when Φ does

so. On the other hand, the Iwasawa decomposition can be performed on

any Φ ∈ ΛSL2(C) whereas Birkhoff is only possible for those Φ lying in BC.
Similar arguments are exposed for the analogue finite-dimensional splittings

in section A.4.

1.2.2 Holomorphic potentials and unitary frames

The generalised Weierstrass representation for producing CMC surfaces

works with the so-called holomorphic potentials. Consider ξ = ξ(z, λ) a sl2(C)-

valued holomorphic 1-form on Σ, depending on the spectral parameter λ ∈ S1.

A holomorphic potential ξ can be written in terms of a local coordinate z on

Σ as

ξ(z, λ) =
∞∑

j=−1

ξj(z)λj dz, (1.2.6)

where each ξj(z) ∈ sl2(C) depends holomorphically on z and the elements of

ξ−1(z) are all zero except that one in the upper right position.

Recall from equation (1.1.27) that replacing Q 7→ λ−2Q in the Maurer-

Cartan form α = F−1dF gives a Λsl2(C)-valued 1-form with decomposition

αλ = (α′1 + λ2α′′1)ε− + (λ−2α′2 + α′′2)ε+ + (α′3 + α′′3)ε. (1.2.7)

The smooth maps Fλ : Σ→ Λ∗rSL2(C) for which αλ = F−1
λ dFλ is of the form

(1.2.7) will be called r-unitary frames. Let us recall in lemma 1.2 the method
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of Dorfmeister, Pedit and Wu [16] to generate r-unitary frames. Define

Λ−1
r sl2(C) =

{
ξ ∈ Λrsl2(C) : ξ =

∑
j≥−1

ξjλ
j, ξ−1 ∈ C⊗ ε+

}
(1.2.8)

and denote the holomorphic 1-forms on Σ with values in Λ−1
r sl2(C) by

ΛrΩ(Σ) = Ω1
(
Σ,Λ−1

r sl2(C)
)
. (1.2.9)

Lemma 1.2 ([16]). Let Σ be a simply connected Riemann surface, ξ ∈ ΛrΩ(Σ)

and Φ be the solution of dΦ = Φξ with initial condition Φ0 ∈ ΛrSL2(C) at

z0 ∈ Σ. Then the r-unitary part of Φ obtained by r-Iwasawa decomposing

Φ = FB pointwise on Σ is an r-unitary frame.

1.2.3 The Sym-Bobenko formula

Given an r-unitary frame, an immersion can be obtained by formulas

first found by Sym [57] for pseudo-spherical surfaces in R3 and extended by

Bobenko [8] for CMC immersions in the three space forms. Our formula

differs from this, since we work in untwisted loop groups. Denote ∂λ = ∂/∂λ,

and let f be the CMC immersion from section 1.1 with u and Q satisfying

the Gauss-Codazzi equations (1.1.15) and Aλ, Bλ as in (1.1.26).

Theorem 1.4. Let Σ be a simply connected Riemann surface and H ∈ R∗.
Consider the CMC immersion f with u and Q satisfying the Gauss-Codazzi

equations and F an r-unitary frame for some r ∈ (0, 1] with Aλ, Bλ its Lax

pair. The map f̂λ defined by

f̂λ =
−1

2H

(
iλ(∂λF )F−1 + F εF−1

)
(1.2.10)

is a (possibly branched) conformal immersion with metric 4e2u(dx2 +dy2) and

Hopf differential λ−2Q that differs from f only by a rigid motion. For each

λ ∈ S1, f̂λ : Σ→ su2
∼= R3 has constant mean curvature H.

Proof. Since F is an r-unitary frame for some r ∈ (0, 1] its Maurer-Cartan

form αλ = F−1dF satisfies (1.1.27). Denoting (1, 0) parts and (0, 1) parts
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with ′ and ′′ respectively, and recalling the relations in (1.1.19) we compute

f̂z = df̂ ′= −1
2H

(iλ(∂λdF )F−1 − iλ(∂λF )F−1 dF F−1 + dF εF−1 − F εF−1 dF F−1)

= −1
2H

(iλ(∂λF α
′
λ)F

−1 − iλ(∂λF )α′λ F
−1 + F α′λ ε F

−1 − F εα′λ F−1)

= −1
2H

(iλ(∂λF )α′λ F
−1 + iλ F (∂λα

′
λ)F

−1 − iλ(∂λF )α′λ F
−1 + F [α′λ, ε]F

−1)

= −1
2H

(iλ F (∂λα
′
λ)F

−1 + F [α′λ, ε]F
−1)

= −1
2H

(−2iλ−2 F α′2 ε+ F
−1 − 2iF α′1 ε− F

−1 + 2iλ−2 F α′2 ε+ F
−1)

=
1

H
iF α′1 ε− F

−1 (1.2.11)

=
1

H
i(euH)F ε− F

−1

= ieuF ε− F
−1

= fz.

Analogously one can check that f̂z̄ = fz̄ proving that f̂ and f are the same

surfaces up to rigid motion. Thus, we can use the identities for f in section 1.1

for f̂ .

Therefore

f̂x = euF

(
0 −i
−i 0

)
F−1, f̂y = euF

(
0 −1

1 0

)
F−1 (1.2.12)

since f̂x = f̂z + f̂z̄ and f̂y = i(f̂z − f̂z̄). Then N̂ = f̂x×f̂y
||f̂x×f̂y ||

= 1
2
FεF−1. Now

using the metric of R3 in the su2 matrix formulation (see section A.4) we

obtain

〈f̂x, f̂x〉 = 〈f̂y, f̂y〉 = 0, 〈f̂x, f̂y〉 = 4e2u. (1.2.13)

which gives the conformality for the metric 4e2u(dx2 + dy2). Let Q̂ and Ĥ be

the Hopf differential and the mean curvature of f̂ respectively. Then

Q̂ = 〈f̂zz, N̂〉 = ieu tr [(−uzε− + [ε−, Aλ]) ε] = λ−2Q, (1.2.14)

using the form of Aλ, so λ−2Q is the Hopf differential of f̂ . Finally, using the

form of Bλ,

Ĥ =
1

2e2u
〈f̂zz̄, N̂〉 = ie−u tr [(−uz̄ε− + [ε−, Bλ]) iε] = H, (1.2.15)

the mean curvature of f , completing the proof.
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Theorem 1.4 shows how to retrieve the CMC immersion f . Let us remark

the following:

• Using different spectral parameters λ in the Sym-Bobenko formula (1.2.10)

yield different associated surfaces with the same metric and mean cur-

vature but different Hopf differentials.

• Given the frame F we have the means to find fz and fz̄, so one would

expect to need integration in order to know f . Formula (1.2.10) avoids

integration using the derivative with respect to λ of F instead.

• When the domain is not simply connected, it is not clear whether the

surface f will be well-defined on that domain, as the frame F might not

be well-defined there either.

1.2.4 The generalised Weierstrass representation

Summarising the above, by combining lemma 1.2 and theorem 1.4, a con-

formal CMC immersion from a simply connected Riemann surface Σ can be

constructed. The original construction in the work of Dorfmeister, Pedit and

Wu [16] was restricted to simply connected domains, but Dorfmeister and

Haak in [14] managed to generalised it for arbitrary domains. Let ξ be an

holomorphic potential on Σ, z0 a base point in Σ and Φ0 an initial condition

in ΛrSL2(C). Given this data, the construction comprises the following three

steps: let Σ̃ be the universal cover of Σ and z̃0 ∈ Σ̃ be an arbitrary element

in the fiber of z0.

Step 1 Solve on Σ̃ the initial value problem with parameter λ ∈ CrdΦ = Φξ,

Φ(z0) = Φ0.
(1.2.16)

to obtain a solution Φ : Σ̃ → ΛrSL2(C), frequently called the holomor-

phic frame of the surface. Note that in general Φ is only defined on the

universal cover Σ̃ of Σ.

Step 2 Compute for each z ∈ Σ̃, that is, pointwise, the r-Iwasawa decompo-

sition of Φ = F B, which returns a unique r-unitary frame F . Both F
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and B are real-analytic in z.

Step 3 Plug F into the Sym-Bobenko formula of equation (1.2.10) to obtain

the associated family of CMC surfaces. Unless otherwise stated, the

induced CMC surface will be the one obtained for λ = 1.

The theory of these methods (see [54, 16]) states that every conformal im-

mersion in R3 with constant mean curvature H 6= 0 can be locally obtained

in this way, but note that in general Step 2 is not explicit.

An element ξ ∈ ΛrΩ(Σ) has an expansion of the form

ξ = (β + O(λ))ε− + (λ−1α + O(1))ε+ + O(1)ε. (1.2.17)

with α, β ∈ Ω1(Σ,C). The metric of f is a non-vanishing multiple of |α|2

and its Hopf differential is a multiple of αβ. To avoid branch points in our

construction, we choose a closed form α ∈ Ω1(Σ,C∗).
We thus have a map (ξ,Φ0, z̃0) 7→ fλ and the triple (ξ,Φ0, z̃0) is called the

Weierstrass data of a CMC immersion. The correspondence between the

Weierstrass data and its resulting immersion is still not well understood, since

both the integration in Step 1 and the subsequent Iwasawa decomposition are

generally not explicit.

1.2.5 Dressing action

The dressing action of Λ+R
r SL2(C) on Λ∗rSL2(C) is the composition of left

multiplication and r-Iwasawa decomposition. For a loop h ∈ Λ+R
r SL2(C)

and a solution Φ ∈ ΛrSL2(C) to dΦ = Φξ, we define the dressing as the

multiplication on the left of Φ by h,

Φ̂ := h(λ) Φ, (1.2.18)

It is clear that Φ̂ also satisfies dΦ̂ = Φ̂ξ, since

ξ = Φ̂−1dΦ̂ = (hΦ)−1 d(hΦ) = Φ−1 dΦ, (1.2.19)

and moreover dressing does not change the potential ξ.

By a result due to Burstall and Pedit [11, Proposition 2.9], the dressing ac-

tion descends to the set of r-unitary frames on Σ, and in this context is the
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variation of the initial condition in equation (1.2.16) by left multiplication

of ΛrSL2(C), that is, dressing is equivalent to a modification of the initial

condition Φ0.

Consider the r-Iwasawa decompositions of Φ = F B and Φ̂ = F̂ B̂. To see

how the surface f is changed by h one can write

F̂ B̂ = Φ̂ = hΦ = hF B = (FhBh)B, (1.2.20)

where Fh and Bh are the elements of the Iwasawa decomposition of hF . It is

not trivial to understand the change in the frame F to Fh, hence the change

in the surface f is also not trivial. The method of dressing has been used to

produce bubbletons (one can see the works of Kilian, Schmitt, Sterling and

Kobayashi [31, 37, 38]) from cylinders and Delaunay surfaces (see section 1.3).

Suppose that we consider the particular case of h ∈ ΛSU2. Then F̂ = hF and

the resulting surface in the Sym-Bobenko formula (1.2.10) evaluated at λ = 1

f̂ = h(1) f h−1(1)− i(∂λh(λ))|λ=1h
−1(1) (1.2.21)

is a rigid motion of f in R3 which can be written explicitly in terms of the

entries of h(λ).

1.2.6 Gauge action

Consider the elements of the group

Gr(Σ) = {g : Σ→ Λ+R
r SL2(C) holomorphic}, (1.2.22)

that is, holomorphic maps g on z ∈ Σ such that g(z, ·) ∈ Λ+R
r SL2(C). Such

maps are called gauges and Gr(Σ) is the gauge group.

If we define Ψ := Φg, then Φ and Ψ lead to the same immersion f . This

operation is called gaugeing and unlike dressing it changes the potential since

it depends on z. If Ψ is a solution of dΨ = Ψη, then

η = Ψ−1dΨ = (Φg)−1d(Φg) = g−1ξg + g−1dg. (1.2.23)
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Therefore, on the potential level one defines the gauge action ΛrΩ(Σ) ×
Gr(Σ)→ ΛrΩ(Σ) by

ξ.g := g−1ξg + g−1dg. (1.2.24)

Let us prove that ξ and ξ.g produce the same immersion.

Lemma 1.3. Let ξ ∈ ΛrΩ(Σ), Φ be the solution of the initial value problem

(1.2.16) with Weierstrass data (ξ, Φ0, z̃0) and let g ∈ Gr
(
Σ̃
)

with g0 = g(z̃0).

Then the CMC surface induced by (ξ, Φ0, z̃0) is the same as the one con-

structed by (ξ.g, Φ0g0, z̃0).

Proof. If Φ solves (1.2.16) with data (ξ, Φ0, z̃0), then Ψ = Φg solves dΨ =

Ψ(ξ.g) with initial condition Ψ(z̃0) = Φ(z̃0)g(z̃0) = Φ0g0. This initial condi-

tion ensures that the resulting unitary frames are the same, since if the r-

Iwasawa splitting of Φ is Φ = F B then Ψ splits Ψ = Φg = (F B)g = F (B g)

where B g ∈ Λ+R
r SL2(C) since both B, g ∈ Λ+R

r SL2(C).

We therefore conclude that the resulting CMC surface only ‘sees’ g(z̃0) of

the map g ∈ Gr(Σ). Note that since Gr(Σ) acts by right multiplication on the

fibers of the map (ξ, Φ0, z̃0) 7→ F , the map is surjective ([16]).

Gaugeing is a useful tool in reducing potentials to simpler form without chang-

ing the immersion and it will be used widely throughout this work. In partic-

ular, let us show that a potential can be assumed to be off-diagonal by finding

the right gauge.

Lemma 1.4. For ξ ∈ ΛrΩ(Σ) there exists a gauge g ∈ Gr(Σ) such that ξ.g is

off-diagonal.

Proof. Consider some matrix g = diag(g1, g2) and let us write the potential

ξ =

(
ξ11 ξ12

ξ21 −ξ11

)
with respect to its components. A straightforward calcu-

lation gives ξ.g =

(
ξ11 + g−1

1 g′1 ξ12g
−1
1 g2

ξ21g
−1
2 g1 −ξ11 + g−1

2 g′2

)
. The gauged potential ξ.g is

off-diagonal if and only if ξ11 +g−1
1 g′1 = −ξ11 +g−1

2 g′2 = 0, which have solutions

g1 = exp(−
∫
ξ11) and g2 = exp(

∫
ξ11). The form of g guarantees that it is a

positive loop, that is, g ∈ Gr(Σ).
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Therefore, to produce our immersion f we may assume that the holo-

morphic potential ξ is off-diagonal, since we can find a gauge that changes ξ

appropriately.

1.2.7 The monodromy problem

Consider a CMC immersion f constructed from some Weierstrass data

defined on a simply connected domain. One can uniquely extend the domain

of definition of f to a larger non-simply connected domain, but the extended

immersion will not be necessarily well-defined. The extended immersion being

well-defined on the larger domain is equivalent to being well-defined on every

closed loop γ there. To more directly see this relationship, consider Φ a solu-

tion of dΦ = Φξ and let us analytically continue the solution along a closed

loop. We follow Φ around a closed loop γ in Σ, denoting the result Φγ. The

analytically continued solution Φγ must again be a fundamental matrix for

the ODE, however it need not be equal to Φ: given one fundamental solution,

we can always multiply it from the left by a constant matrix (with respect to

z) to obtain another. This notion is called monodromy.

Let Σ be a connected Riemann surface of genus zero with universal cover

Σ̃ and let us denote by Deck(Σ̃/Σ) the group of deck transformations. We

identify the fundamental group π1(Σ) with Deck(Σ̃/Σ). For the closed loop

γ, there is a deck transformation τ associated to γ on Σ̃. Let ξ ∈ ΛrΩ(Σ)

be a holomorphic potential on Σ. The potential being holomorphic imples

ξ(τ(z), λ) = ξ(z, λ) for all τ ∈ Deck(Σ̃/Σ). Let Φ be a solution of the

ODE dΦ = Φξ. Note that Φ is only defined on Σ̃. We define the monodromy

matrix Mτ (λ) ∈ ΛrSL2(C) of Φ with respect to τ by

Mτ (λ) = Φ(τ(z), λ) Φ(z, λ)−1. (1.2.25)

By definition, if our loop γ does not enclose any puncture then Mτ = 1, so

Mτ is a measure of the lack of meromorphicity of Φ. In particular, if one

can find a gauge for which ξ has no poles enclosed by γ, then Mτ = 1. In

this way, poles of ξ that cannot be removed by gauge transformations are
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associated with non-trivial monodromy matrices. Once a base point z0 has

been picked, the monodromy is independent of the choice of loop within the

homotopy class of γ, and this is why sometimes Mτ might be referred to as

the monodromy along γ. This has an important implication. Let z = zk,

for k ∈ {1, . . . , n}, be the locations of all the poles of ξ, and let Mτk be the

monodromy matrix associated with a loop that encloses only the point zk. If

we follow Φ around a path enclosing all punctures, the other side of the loop

encloses no puncture and so the monodromy around that loop must be trivial.

In other words,

Mτ1Mτ2 · · ·Mτn = 1. (1.2.26)

This relation is interesting because when the conjugacy class of each individual

Mτk can be computed from local information of the ODE, equation (1.2.26)

represents a piece of global information.

Moreover, changing the initial condition used to determine Φ results in a con-

jugation of Mτ . If Φ̂ is another solution of the Cauchy problem and M̂τ (λ) =

Φ̂(τ(z), λ) Φ̂(z, λ)−1, then there exists a constant element C ∈ ΛrSL2(C) such

that Φ̂ = CΦ. Hence M̂τ = CMτC
−1 and different solutions give rise to

mutually conjugate monodromy matrices. A choice of base point z̃0 ∈ Σ̃ and

initial condition Φ0 ∈ ΛrSL2(C) removes this ambiguity and gives the mon-

odromy representation M : Deck(Σ̃/Σ) → ΛrSL2(C) of a holomorphic frame

Φ ∈ ΛrSL2(C). In this way, when we refer to the monodromy representation

we are making the assumption that it was induced by a triple (ξ, Φ0, z̃0). Note

that the invariance ξ(τ(z), λ) = ξ(z, λ) for all τ ∈ Deck(Σ̃/Σ) is equivalent to

dMτ = d(Φ(τ(z))Φ(z)−1)

= Φ(τ(z))ξ(τ(z))Φ(z)−1 − Φ(τ(z))ξ(z)Φ(z)−1

= 0,

(1.2.27)

ensuring that the monodromy is z-independent and thus well-defined. It is

shown by Dorfmeister and Haak [15] that CMC immersions of open Riemann

surfaces Σ can always be generated by such invariant holomorphic potentials.

In order to control the periodicity of the resulting CMC immersion, we need
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to study the monodromy representation MF
τ = F (τ(z))F−1 for the unitary

frame F via analytic continuation along generators τ ∈ Deck(Σ̃/Σ), but in

principle we are not assured that this monodromy is z-independent for all

τ ∈ Deck(Σ̃/Σ). Consider the pointwise r-Iwasawa decomposition Φ = F B

of Φ : Σ̃→ ΛrSL2(C) and note that F as well is generally only defined on Σ̃.

One way to avoid this problem is ensuring that Mτ (λ) is ΛrSU2-valued.

Lemma 1.5 ([29]). Let Mτ be the monodromy of a solution Φ of dΦ = Φξ

with respect to τ ∈ Deck(Σ̃/Σ). If Mτ ∈ ΛrSU2 then Mτ = MF
τ and so in

particular the monodromy of the unitary frame F does not depend on z and

is well-defined.

Proof. From Φ = F B one gets that Mτ F B = F (τ(z))B(τ(z)) for all

τ ∈ Deck(Σ̃/Σ). Since we have assumed that Mτ is ΛrSU2-valued, by unique-

ness of the r-Iwasawa decomposition, we have that

F (τ(z))−1Mτ F = B(τ(z))B−1 = 1. (1.2.28)

Therefore, MF
τ = Mτ and is well-defined.

The converse of lemma 1.5 also holds in the presence of umbilics (see

Kilian’s PhD thesis [29]). The next result characterises the well known closing

conditions for the periods in the monodromy problem.

Theorem 1.5. Let Φ be a solution of the ODE dΦ = Φξ with Φ(z̃0) = 1

and ΛrSU2-valued monodromy Mτ . Let fλ be as in equation (1.2.10). There

is some λ0 ∈ C1 such that fλ0(τ(z)) = fλ0 for all τ ∈ Deck(Σ̃/Σ) if and only

if Mτ (λ0) = ±1 and ∂λMτ |λ0 = 0 for all τ ∈ Deck(Σ̃/Σ).

Proof. Assume that Mτ (λ0) = ±1 and ∂λMτ |λ0 = 0 for all τ ∈ Deck(Σ̃/Σ).

The necessary and sufficient condition for f to be well-defined along the loop

γ associated to τ , that is, for f(τ(z)) = f(z), is that

fλ0 =

[
− iλ

2H
(∂λMτ )M

−1
τ +MτfM

−1
τ

]
λ=λ0

. (1.2.29)

Hence fλ0 : Σ→ R3 lives on Σ.

Conversely, suppose that equation (1.2.29) holds. This equation can be thought

E. Mota 33



CHAPTER 1. PRELIMINARIES. THE GENERALISED WEIERSTRASS
REPRESENTATION

of as analytic continuation, resulting in a rigid motion of R3, where the ro-

tational part is given by the adjoint action of the unitary element Mτ on f ,

and the translation corresponds to the element − iλ
2H

(∂λMτ )M
−1
τ evaluated at

λ = λ0. A rigid motion that fixes three linearly independent vectors is a

constant multiple of the identity. If three points on the surface form a basis

(e1, e2, e3) of R3 this means

ei =

[
− iλ

2H
(∂λMτ )M

−1
τ +MτeiM

−1
τ

]
λ=λ0

, (1.2.30)

for i = 1, 2, 3, forcing Mτ (λ0) = ±c1 and
[
− iλ

2H
(∂λMτ )M

−1
τ

]
λ=λ0

= 0 and the

initial condition ensures c = 1. Thus, Mτ (λ0) = ±1 and ∂λMτ |λ0 = 0.

In our construction of CMC surfaces we will work in the Riemann sphere

with punctures. The monodromy problem can be now reformulated in the

following way: let γk be a loop around one of the punctures zk, and Mτk(λ)

the monodromy of Φ(z, λ) along this loop. The monodromy problem, which

guarantees that fλ0 defined by formula (1.2.10) factors through the funda-

mental group π1(Σ) and thus descends to a CMC immersion f : Σ → R3,

amounts to satisfying the following three conditions:

Mτk(λ) ∈ ΛrSU2, (1.2.31a)

Mτk(λ0) = ±1, (1.2.31b)

∂λMτk(λ)|λ=λ0
= 0 (1.2.31c)

Condition (1.2.31a) is the intrinsic closing condition, while conditions (1.2.31b)

and (1.2.31c) are the extrinsic closing conditions, taking care of the rotational

and the translational periods respectively.

Note that (1.2.31a) can be ensured if the initial condition Φ0 in (1.2.16) is

unitary and the potential ξ is chosen to be skew hermitian along τ ∈ π1(Σ)

passing through z̃0. Also, note that forcing (Mτ , ∂λMτ )|λ=λ0 ∈ SU2 × su2 to

be (up to sign) the identity element is a six dimensional period problem, as

the real dimension of SU2×su2 is equal to six. Instead, we will use a different

approach: we will ensure (1.2.31b) and (1.2.31c) with our choice of potentials
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and then condition (1.2.31a) will need to be ensured. The following lemma

shows that a certain choice of potentials satisfies automatically the closing

conditions for the monodromy.

Lemma 1.6. Let α, β ∈ Ω1 (Σ,C) be holomorphic 1-forms on Σ and t =

−1/4λ−1(λ− 1)2. Let

ξ =

(
0 α

tβ 0

)
. (1.2.32)

Let z̃0 ∈ Σ̃ and Φ be the solution todΦ = Φξ,

Φ(z̃0, t) = 1.
(1.2.33)

Let τ ∈ Deck(Σ̃/Σ) and M̂(t) := Φ(τ(z̃0), t). Suppose that
∫ τ(z̃0)

z̃0
α|t=0 = 0.

Then M(λ)|λ=1 = 1 and ∂λM(λ)|λ=1 = 0, where M(λ) = M̂(t).

Proof. At t = 0 we can explicitly integrate to obtain that

Φ(z̃0, 0) =

(
1
∫ τ(z̃0)

z̃0
α

0 1

)
. (1.2.34)

Hence Φ(τ(z̃0), 0) = 1, and so M(1) = 1.

Differentiating dΦ = Φξ and Φ(z̃0, t) = 1 and evaluating at t = 0 yields

d (∂tΦ|t=0) = (∂tΦ|t=0) ξ|t=0 (1.2.35)

with ∂tΦ(z̃0, t)|t=0 ≡ 0. Since Ψ ≡ 0 is also a solution, by uniqueness of initial

value problems, this implies

∂tΦ(z̃, 0) ≡ 0. (1.2.36)

Differentiating Φ(τ(z̃0), t) = M̂(t) yields ∂tΦ(τ(z̃0), t) = ∂tM̂(t) which evalu-

ated at t = 0 gives ∂tM̂(0) = ∂tΦ(τ(z̃0), 0) = 0 by equation (1.2.36), conclud-

ing the proof.

As noted in section 1.2.5, the dressing hΦ generally results in a highly

nontrivial relation between the unitary frame of Φ and that of hΦ. However,
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it is easier to understand the relation between their monodromies. Denoting

by Mτ and M̂τ the monodromies of Φ and hΦ respectively, we see that

M̂τ = hMτ h
−1. (1.2.37)

Then, encoding conditions (1.2.31b) and (1.2.31c) in the potential, one might

be able to solve (1.2.31a) by applying equation (1.2.37). This procedure is

called unitarisation (see section A.4.1) and it will be our main concern when

constructing new families of CMC surfaces.

1.3 Delaunay surfaces

In 1841 Delaunay proved that the only surfaces of revolution with con-

stant mean curvature are the surfaces obtained by rotating the roulettes of

the conics. These are the cylinders, spheres, the catenoids (H = 0), the un-

duloids and the nodoids. We will define Delaunay surfaces as CMC surfaces

of revolution about a geodesic in the ambient space form. These surfaces

have been widely investigated in space forms [40, 39, 56] and in the context of

loop groups [29, 30, 35]. Additionally, Kapouleas [26] constructed embedded

CMC surfaces by gluing round spheres and pieces of unduloids and nodoids,

using PDEs techniques. See also the work of Eells [18]. We use this section to

introduce these surfaces, that are central in the study of CMC surfaces and in

particular when constructing new examples, and also to exemplify the usage

of the methods explained so far.

Let us set Σ = C∗, the complex plane with a puncture at 0, and define

ξD = D
dz

z
, with D =

(
c aλ−1 + b̄

āλ+ b −c

)
, (1.3.1)

with

a, b ∈ C∗, c ∈ R and c2 + |a+ b̄|2 =
1

4
. (1.3.2)

Sometimes it is convenient to normalise the potential (1.3.1) by gaugeing so

that a, b ∈ R∗ and c = 0. The initial value problem

dΦ = ΦξD, Φ(1) = 1, (1.3.3)
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has an explicit solution

Φ = exp(D log z) = zD, (1.3.4)

which allows one to construct explicitly the monodromy matrix. For a loop

circling counterclockwise once about z = 0 in Σ, the monodromy matrix M

of Φ is

M(λ) = exp(2πiD) = cos(2πµ)1 +
1

µ
sin(2πµ)D, (1.3.5)

where ±µ are the eigenvalues of D, given by

µ(λ)2 = − detD = c2 + |a|2 + |b|2 + abλ−1 + abλ. (1.3.6)

Figure 1.1: The first surface is a Delaunay unduloid and the second surface is

a Delaunay nodoid cut away to show the internal structure. The parameters

used to construct them are a = 1/16, b = 7/16 and a = −3/4, b = 1/4

respectively.

The above ξD and Φ produce Delaunay surfaces via the Sym-Bobenko

formula (1.2.10). The conditions (1.3.2) are taken since thus M(1) = −1 and

∂λM |λ=1 = 0, and so the second (1.2.31b) and third (1.2.31c) parts of the
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monodromy problem are solved. Also (1.2.31a) is satisfied since 2πiD ∈ su2

for all λ ∈ S1 and therefore the monodromy in equation (1.3.5) is in SU2 for

all λ ∈ S1, that is, the monodromy problem is fulfilled. In this way f closes

and becomes homeomorphic to a cylinder. An unduloid is produced when

ab > 0, a nodoid when ab < 0, a twice punctured round sphere when ab = 0

and a round cylinder when |a| = |b|.
We now describe the weight of a Delaunay surface, a quantity that determines

the surface up to rigid motion, as defined by Schmitt, Kilian, Kobayashi

and Rossman in [54]. Let δ be an oriented loop about an annular end of

a CMC surface in R3 with mean curvature H, and let D be an immersed

disk with boundary δ. Let κ be the unit conormal of the surface along the

loop δ and let ν be the unit normal of D, with their signs determined by the

orientation of δ. Then the flux of the end with respect to a Killing vector field

Y is

w(Y ) =
2

π

(∫
δ

〈κ, Y 〉 − 2H

∫
D
〈ν, Y 〉

)
. (1.3.7)

The flux is a homology invariant, proved by Korevaar, Kusner, Meeks III

and Solomon [40, 39], that is, it changes sign when the orientation of δ is

switched, but otherwise it is independent of the choices of δ and D. In the

case that the end is asymptotic to a Delaunay surface with axis ` and Y is

the Killing vector field associated to unit translation along the direction of `,

we abbreviate w(Y ) to w and say that w is the weight of the end. In the case

of Delaunay surfaces the weight is given by

w =
16ab

|H|
. (1.3.8)

The necksize n of the end is the minimum radius of the foliating circles,

taken to be negative in the case of nodoids. The weight then can be written

w = 4n(1 − nH). In the case H = 1, the round cylinder has weight 1 and

necksize 1/2, the unduloids have weights in (0, 1) and necksizes in (0, 1/2),

the round sphere has weight and necksize 0, and the nodoids have weights

and necksizes in (−∞, 0).
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Figure 1.2: Limiting cases of Delaunay surfaces: a twice punctured round

sphere and a round cylinder. Here a = 1/2, b = 0 and a = 1/4, b = 1/4,

respectively.

A perturbed Delaunay potential is a potential ξ on Σ = C∗ of the form

ξ = Az−1 dz + O
(
z0
)
dz. (1.3.9)

with A a Delaunay residue, that is, of the same form as D in (1.3.1). Lemma

2.3 due to Kilian, Rossman and Schmitt [35] allows one to find a solution of

dΦ = Φξ when ξ is a perturbed Delaunay potential. Let r ∈ (0, 1) and suppose

that ξ = Az−1 dz + O (z0) dz has a simple pole at z = 0 and A is a Delaunay

residue. A standard result in the theory of ODEs [21, Theorem 10.1] states

that under certain conditions on the eigenvalues of A, there exists a solution

of the form Φ = zAP = exp (A log z)P , where P extends holomorphically to

z = 0. Lemma 1.7 summarizes these ideas for our context.

Lemma 1.7 (The zAP decomposition). Consider a potential ξ = Az−1 dz +

O (zn) dz with Delaunay residue A for which the eigenvalues are ±µ(λ). Let

SA be the discrete set of resonance points of A given by SA = {λ ∈ C∗ :
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2µ(λ) ∈ Z∗}. Then, for each λ ∈ Σ \ SA, there exists a map P (z, λ) in a

neighbourhood of z = 0 such that the ODE dΦ = Φξ has general solution

Φ = C(λ) exp (A log z)P, (1.3.10)

for some analytic map C and where P extends holomorphically to z = 0 and

such that P (0, λ) = 1. Also, since Φ = C exp (A log z)P , the monodromy of

Φ around z = 0 is M = C exp (2πiA)C−1.

1.4 The associated second order ODE

Let us then consider a potential ξ of the form

ξ =

(
0 ν(z, λ)

ρ(z, λ) 0

)
dz. (1.4.1)

Every 2 × 2 system of ODEs has an associated 2nd-order scalar differential

equation. Thus, it will be convenient for us to think of (1.2.16) in terms of its

corresponding scalar ODE in order to introduce particular attributes of such

equations in the Weierstrass data used to construct CMC surfaces. Denoting

by ′ the derivative with respect to z, the relation between dΦ = Φξ and its

associated scalar ODE is given by the following straightforward result.

Lemma 1.8. The solutions Φ to dΦ = Φξ are of the form

Φ =

(
y′1/ν y1

y′2/ν y2

)
(1.4.2)

where y1 and y2 form a set of fundamental solutions of the scalar ODE

y′′ − ν ′

ν
y′ − ρ ν y = 0. (1.4.3)

Proof. Write a solution to dΦ = Φξ as

Φ =

(
Φ11 Φ12

Φ21 Φ22

)
. (1.4.4)

Then, dΦ = Φξ can be written in matrix form as follows:(
Φ′11 Φ′12

Φ′21 Φ′22

)
=

(
Φ11 Φ12

Φ21 Φ22

)(
0 ν

ρ 0

)
. (1.4.5)
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The last expression is equivalent to

Φ′11 = ρΦ12,

Φ′12 = ν Φ11,

Φ′21 = ρΦ22,

Φ′22 = ν Φ21.

(1.4.6)

Hence, computing second derivatives and using relations in (1.4.6), one ob-

tains Φ′′12 = ν ′Φ11 + ν Φ′11 = ν′

ν
Φ′12 + ρ ν Φ12,

Φ′′22 = ν ′Φ21 + ν Φ′21 = ν′

ν
Φ′22 + ρ ν Φ22.

(1.4.7)

Therefore, Φ12 and Φ22 are solutions of the second order ODE y′′ − ν′

ν
y′ −

ρ ν y = 0. On the other hand, using again (1.4.6), we see that Φ11 = Φ′12/ν

and Φ21 = Φ′22/ν, completing the proof.

Remark 1.1. The dependence on z and λ has been omitted in the proof above,

but note that y1 and y2 in lemma 1.8 depend on the parameter λ since (1.4.2)

is a solution with values in the loop group ΛSL2(C). We also omit this de-

pendence in the discussion below.

It seems from lemma 1.8 that fundamental solutions of equation (1.4.3)

might be of interest. Specifically, we will need in section 3.2 to find explicit

connection relations between the local solutions at two different points z0 and

z1 of a linear equation of the form (1.4.3). That is what one usually calls a

two point connection problem. Suppose that an equation of the form (1.4.3),

that is,

y′′(z) + P (z) y′(z) +Q(z) y(z) = 0, (1.4.8)

has the following sets of fundamental solutions fixed by its behaviour in the

vicinities of two points z0 and z1,(
y01(z)

y02(z)

)
,

(
y11(z)

y12(z)

)
. (1.4.9)
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If we perform the analytical continuation of the fundamental pair

(
y01(z)

y02(z)

)
into the vicinity of the point z1, then we can express the result of this proce-

dure as a linear combination of the fundamental solutions, namely(
y01

y02

)
= C

(
y11

y12

)
. (1.4.10)

The corresponding matrix C is called the connection matrix. In our setup, this

matrix depends only on the spectral parameter λ. To finish this chapter, let

us prove that the matrix C in the scalar scheme is the same as the connection

matrix for the linear system dΦ = Φξ with ξ as in (1.4.1).

Lemma 1.9. Let C be the connection matrix between two sets of local solu-

tions (y01(z), y02(z))t and (y11(z), y12(z))t of

y′′ − ν ′

ν
y′ − ρ ν y = 0 (1.4.11)

at two points z0 and z1 respectively. Then, the connection matrix Ĉ ∈ ΛSL2(C)

of two local solutions Φ0 and Φ1 of dΦ = Φξ at z0 and z1 with ξ off-diagonal

satisfies Ĉ = C.

Proof. The linear connection (1.4.10) of the scalar solutions is equivalent to

y01(z) = c11 y11(z) + c12y12(z)

y02(z) = c21 y11(z) + c22y12(z),
(1.4.12)

where cij are the entries of the matrix C. Similarly, using equation (1.4.2) to

write the local solutions Φ0 and Φ1, we write two of the equations (there is a

total of four) relating these solutions:

y01(z) = ĉ11 y11(z) + ĉ12y12(z)

y02(z) = ĉ21 y11(z) + ĉ22y12(z),
(1.4.13)

where ĉij are the entries of the matrix Ĉ. Subtracting equations in (1.4.12)

and those in (1.4.13) one gets

0 = (c11 − ĉ11) y11(z) + (c12 − ĉ12) y12(z)

0 = (c21 − ĉ21) y11(z) + (c22 − ĉ22) y12(z),
(1.4.14)
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but (y11(z), y12(z))t is set of fundamental solutions, so by linear independence

cij − ĉij = 0 (1.4.15)

for all i, j ∈ {1, 2}. Therefore, Ĉ = C.
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Chapter 2

Heun’s Differential Equations

By virtue of lemma 1.8, second order ODEs can be used to better un-

derstand the solutions of (1.2.16) in the general Weierstrass representation

for CMC surfaces. In particular, well known facts about solutions of scalar

ODEs and their connection problems can be translated to our setup. In that

sense, we aim to use the class of ODEs called Heun’s Differential Equations

and its features to construct new families of surfaces with constant mean cur-

vature.

In this chapter we will pay attention to the relevant theory of the different

cases of Heun’s Differential Equations. The first part is devoted to explain

the types of singularities found in these scalar ODEs and what is the effect

of them when used to construct CMC surfaces. Then, we introduce the gen-

eral Heun’s equation and afterwards explain how the process of confluence

of two (or more) singularities create new equations. These equations will be

used ultimately to construct new families of constant mean curvature surfaces

with one, two or three end(s). As stated in chapter 1, the main issue in our

construction is the monodromy problem, for which we will employ different

approaches depending on the number of singularities.
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2.1 Singularities of 2nd-order differential equa-

tions

Let us start by giving a brief explanation of some technical terms from the

general theory of linear differential equations which will be used later in this

chapter and the remaining ones.

We refer to the second order linear homogeneous equation

y′′(z) + p(z)y′(z) + q(z)y(z) = 0, (2.1.1)

where z is regarded as a complex variable, and p, q are rational functions.

1. Ordinary points and singularities.

A point z0 is said to be ordinary if p and q are both holomorphic at z0.

Any other point is singular or a singularity of the equation (2.1.1).

2. Regular and irregular singularities.

Let z0 be a singularity, then if at z0 the function p is regular or has a

pole of order 1 and q is regular or has a pole of order not exceeding

2, we say that the singularity is regular. Otherwise the singularity is

irregular. Thus, at a regular singularity z0,

lim
z→z0

(z − z0)p(z) = P and lim
z→z0

(z − z0)2q(z) = Q (2.1.2)

both exist.

3. Indicial equation and characteristic exponents.

The equation

r2 + (P − 1)r +Q = 0 (2.1.3)

is called the indicial equation at the regular point z0. Its roots r1, r2 are

the characteristic exponents at z0. When the difference between r1 and

r2 is not an integer, then in a neighbourhood of z0 equation (2.1.1) has

linearly independent solutions of the form

(z − z0)ri
∑
n≥0

cn(z − z0)n, i ∈ {1, 2}. (2.1.4)
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These solutions are called Frobenius solutions and they converge (at

least) in a disc centered at z0 for which the nearest other singularity

occurs on its boundary. However, if r1 − r2 ∈ Z, then one of the series

is replaced by a solution involving log(z − z0).

4. Point at infinity.

When the substitution z = 1/w is made in equation (2.1.1) it becomes

y′′(w) +

(
2

w
− 1

w2
p

(
1

w

))
y′(w) +

1

w4
q

(
1

w

)
y(w) = 0. (2.1.5)

In the cases of equation (2.1.5) having an ordinary point or a singularity

at w = 0, we say that equation (2.1.1) has the corresponding feature

at z = ∞. If z = ∞ is a regular singularity of equation (2.1.1), its

characteristic exponents are defined as those of equation (2.1.5) at w =

0. From now on in this chapter, we stop writing the z-dependence of y

in the ODEs to be considered.

5. Rank.

When dealing with irregular singularities, it is convenient to have an

index to measure its degree of irregularity, that is, the extent to which

it departs from being regular. In this work we use for this matter the

Poincaré rank or just rank. Suppose that z = ∞ is an irregular singu-

larity of equation (2.1.1) and that, as z →∞,

p(z) = O
(
zk1
)
, q(z) = O

(
zk2
)
. (2.1.6)

Since p and q are rational functions, k1 and k2 are integers, and in the

case of one of them being identically zero, we take the corresponding ki

as −∞. Defining

g := max

(
k1,

k2

2

)
, (2.1.7)

the Poincaré rank is defined by

h := g + 1. (2.1.8)

Note that if one computed the rank of a regular singularity, it would be

0.
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Therefore, when using lemma 1.8, we might consider differential equations

with regular or irregular singularities. A very important result was proved

by Kilian, Rossman and Schmitt in [35] regarding the asymptotic behaviour

of constant mean curvature surfaces that arise locally from an ODE with

a regular singularity. They proved that a holomorphic perturbation of an

ODE that represents a Delaunay surface generates a CMC surface which has

one end that is asymptotically Delaunay.

Theorem 2.1 (Theorem 5.9, [35]). Let A be a Delaunay residue and µ : C∗ →
C an eigenvalue of A and suppose that

max
λ∈Cr

Reµ(λ) <
n+ 1

2
. (2.1.9)

On D∗ = {z ∈ C : 0 < |z| < 1}, let ξ be a perturbed Delaunay potential

of the form (1.3.9). Let f0 and f be the immersions of D∗ induced by the

generalised Weierstrass representation at λ = 1 by Az−1 dz and ξ dz respec-

tively, so f0 is a Delaunay immersion. Assume also that f is obtained from

a holomorphic r-frame whose monodromy at z = 0 is in Λ∗rSL2(C). Then f

is C∞-asymptotic to a Delaunay immersion R ◦ f0 ◦ ψ, where R is a rotation

and ψ is a diffeomorphism.

Henceforth, if the differential equation to be considered has regular singu-

larities and we transform our potential via gauges into a perturbed Delaunay

potential at those points, theorem 2.1 guarantees that the ends corresponding

to those regular singularities will be half-Delaunay surfaces. Otherwise, when

the singularities are irregular, we will obtain surfaces with irregular ends, as

those found by Kilian and Schmitt in [36] for the case of two ends.

Thus, to construct surfaces with irregular ends, it is natural to look at Heun’s

differential equations, since in this family the most general case of second

order ODE with four regular singularities is considered and, out of that one,

differential equations with different number of irregular singularities are de-

rived.

E. Mota 47



CHAPTER 2. HEUN’S DIFFERENTIAL EQUATIONS

2.2 Heun’s equation

Heun’s equation is a natural extension of the Riemann hypergeometric

differential equation, which is a Fuchsian differential equation, that is, a dif-

ferential equation with all singularities being regular. In particular, the hy-

pergeometric equation has three regular singularities located at z = 0, z = 1

and z =∞ and any second order differential equation with three regular sin-

gularities can be reduced to it by suitable transformations of the dependent

and independent variables. In this sense, the next second order differential

equation of Fuchsian type is Heun’s, first written in [23], which has four regu-

lar singularities and also any second order Fuchsian differential equation with

four singularities can be transformed into the ‘canonical’ Heun equation. The

process is slightly different according as to whether the four singularities all

lie in the finite part of the plane or whether one of them is already at infinity.

For more on these transformations, see [47, Addendum, Chapter 3].

The occurrence of the extra singularity introduces a qualitative complication:

the powerful methods used to investigate the hypergeometric equation no

longer work. For example, one can still obtain power series solutions, but

they are governed by three-term recursion relations between successive coef-

ficients, making it impossible in general to write down such series explicitly

and yielding problems over their convergence.

Heun’s equation has, however, a compensating richness because it generates

the so-called confluent equations with irregular singularities by the coalescence

of singularities - that is, by making one or more of the singularities coincide

with another, to be discussed in the next sections. A very rigorous treatment

of confluence processes and their proofs are given in [47, Part A, 2.3].

In this work, the canonical form of Heun’s equation will be taken as

y′′ +

(
γ

z
+

δ

z − 1
+

ε

z − a

)
y′ +

αβz − q
z(z − 1)(z − a)

y = 0. (2.2.1)

In this, z is regarded as a complex variable and α, β, γ, δ, ε, q, a are parameters,

generally complex and arbitrary, except that a 6= 0, 1 and further restrictions
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to be taken later. The first five parameters are linked by the relation

γ + δ + ε = α + β + 1, (2.2.2)

and the equation is thus of Fuchsian type, with regular singularities at z =

0, 1, a,∞, the characteristic exponents at these singularities being respectively

{0, 1− γ}, {0, 1− δ}, {0, 1− ε} and {α, β}. According to the general theory

of Fuchsian differential equations, the sum of these characteristic exponents

must take the value 2, which yields the relationship in equation (2.2.2).

Each singularity is regular, so by the usual theory of linear ODEs, in the neigh-

bourhood of any singularity there exist two linear independent solutions, one

corresponding to each of the characteristic exponents there. These solutions

are normally valid only in a disc which excludes any other singularity.

There is a set of 24 substitutions each of which produces another equation of

Heun type. For later use, we only consider the transformation given by

z 7→ z

a
. (2.2.3)

Under this transformation, the singularities are mapped as follows:

0 7→ 0

1 7→ 1/a

a 7→ 1

∞ 7→ ∞.

(2.2.4)

If the reader is interested, much more can be found about this family of

equations in [47]. Next, we discuss the confluent cases obtained from this

equation.

2.3 Confluent Heun’s equation

As outlined in the previous section, the confluent Heun equation (CHE)

arises as a result of the confluence of two regular singular points in Heun’s

equation. In this way, one regular singular point (and one parameter) is lost
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but the point at infinity now becomes irregular. In particular, the parameter a

is sent to a 7→ ∞. The CHE in its non-symmetrical canonical form is written

as

y′′ +

(
4p+

γ

z
+

δ

z − 1

)
y′ +

4pαz − σ
z(z − 1)

y = 0 (2.3.1)

where the parameters p, γ, δ, α, σ can be in general complex. In this equation

the points z = 0 and z = 1 are regular singularities while z =∞ is an irregular

singular point of rank 1. However, for the purpose of this work we are going

to consider the CHE written as in the work of Schäfke and Schmidt [50], that

is,

y′′+
(
2a+ 1−µ0

z
+ 1−µ1

z−1

)
y′

+
(
z[a(2−µ0−µ1)−(r0+r1)]+ 1

2
(µ0µ1−2a(1−µ0)−(µ0+µ1)+2r0+1)

z(z−1)

)
y = 0.

(2.3.2)

The parameters µ0, µ1, a, r0, r1 are again complex, but we will need to restrict

our choices later on in order to unitarise the monodromy.

As is well known, solutions of the hypergeometric equation can be constructed

as series with explicit coefficients. In the case of solutions of Heun’s equation

and its confluent forms, the best results would be three-term recurrence rela-

tions for the power series expansion coefficients. We start with power series

in a vicinity of the regular singular point z = 0. Let D = {z ∈ C : |z| < r},
the open disk where 1 < r ≤ ∞. No further singularity of equation (2.3.2)

can be found within D apart from 0 and 1. Let

y0(z) = Γ(1− µ0)
∞∑
k=0

ckz
k (2.3.3)

be the series expansion of the unique solution to equation (2.3.2) which is

holomorphic in D \ [1, r) and satisfies y0(0) = 1. Here, Γ represents the usual

gamma function. By standard methods of power series solutions (see [47,

Part B, 2.2]), the sequence {ck}∞k=0 of coefficients defined by equation (2.3.3)

satisfies the 3-term recurrence

U(k)ck+1 = V (k)ck +W (k)ck−1, c−1 = 0, c0 =
1

Γ(1− µ0)
(2.3.4)
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where
U(k) := (1 + k)(1 + k − µ0),

V (k) := k(k + 1− 2a− µ0 − µ1)

+
1

2
(µ0 − 1)(µ1 − 1) + a(µ0 − 1) + r0,

W (k) := a(2k − µ0 − µ1)− (r0 + r1).

(2.3.5)

We deduce from (2.3.4) that in general

ck
ck+1

= 1 + O

(
1

k

)
, (2.3.6)

and therefore the radius of convergence of the series in (2.3.3) is 1, which is

quite natural since that is the distance between z = 0 and the other regular

singular point at z = 1. Other kinds of solutions of the CHE can be found,

such as solutions in terms of hypergeometric functions, but for the purpose

of our study only power series solutions are considered.

It is shown by Schäfke and Schmidt in [50] that, using the solution in (2.3.3),

one can construct two sets of Floquet solutions of equation (2.3.2) at z = 0

and at z = 1, respectively. Basically, these are sets of linearly independent

solutions (y01, y02) and (y11, y12) at each of the singularities. An introduction

to Floquet theory can be found in, among others, the book of Hartman [21,

Part IV, Chapter 6].

The aim of the second part of [50] is to obtain explicit connection relations be-

tween the sets of solutions (yj1, yj2), for j = 0, 1 (the so-called two-connection

problem). They do so in [50, Proposition 2.14], obtaining in particular that

for k = 1, 2

1

Γ(µ1)Γ(1− µ1)
y0k = q(±µ0,−µ1) y11 − q(±µ0, µ1) y12, (2.3.7)

with + for k = 1 and − for k = 2, where q is a function that can be calculated

explicitlty by an asymptotic formula in terms of the parameters µ0, µ1 and

the coefficients ck of the power series solution in (2.3.3).

The recurrence in (2.3.4), its polynomials (2.3.5), along with the function

q for the two-connection problem by Schäfke and Schmidt will be used in
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section 3.2.4 in order to guarantee unitarisability of the monodromy of the

solution of the CHE.

2.4 Double confluent Heun’s equation

In this part, we introduce the double confluent Heun equation (DCHE),

the linear second order ODE that appears when the two finite singularities in

the CHE coalesce. The DCHE therefore has two irregular singularities and it

can be written in its symmetric canonical form as

y′′ + α
(
1 + 1

z2

)
y′ +

((
β1 + 1

2

)
α
z

+
(
α2

2
− γ
)

1
z2

+
(
β−1 − 1

2

)
α
z3

)
y = 0. (2.4.1)

The independent variable z is regarded as a complex variable and the quanti-

ties α, β1, β−1 and γ are complex parameters, and the solutions y are analytic

functions of z. Equation (2.4.1) is a linear ordinary differential equation of

second order with meromorphic coefficients. The points 0 and∞ are irregular

singular points of rank 1, and there are no other singularities in C∗. Therefore,

all the solutions can be continued analytically within C∗. Since C∗ is not sim-

ply connected, the resulting global solutions are in general not single valued

on C∗ but on the universal cover C. By the general theory of meromorphic

ODEs, there exist uniquely defined fundamental sets of solutions about each

singularity. The leading coefficients of the asymptotic series at 0 and at ∞
depend on α, β1 and β−1, called accordingly ‘singular parameters’. Instead,

the parameter γ has only secondary influence on the asymptotic behaviour

and it is therefore called the ‘accessory parameter’.

Although there is a rich theory regarding this equation, such as analytic the-

ory of solutions, asymptotic solutions and two-connection problem, for our

application none of this will be needed. We encourage the curious reader to

consult [47, Part C] where all these topics are covered.
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2.5 Biconfluent Heun’s equation

This part deals with the so-called biconfluent Heun’s equation (BHE),

which is obtained from the CHE when one of the two finite singular points

joins the singular point at infinity. Although there exist several forms for the

BHE, we choose its canonical form according to [47, Part D], which reads

y′′+

(
α + 1

z
− β − 2z

)
y′+

(
γ − α− 2− 1

2z
(β(α + 1) + δ)

)
y = 0. (2.5.1)

The linear differential equation (2.5.1) has one regular singularity at the origin

and one irregular singularity at infinity of rank 2. One interesting fact is that

many Schrödinger equations can be solved using the BHE. In our setup, since

equation (2.5.1) counts with one regular singularity, by the general theory of

ODEs and theorem 2.1, we expect to construct surfaces with one Delaunay

end. The monodromy problem in this case will be automatically solved using

the well known theory regarding these surfaces. Despite that, we remark that

regarding the theory of equation (2.5.1) a lot is known about fundamental

solutions at the origin and at infinity, as well as integral relations between pairs

of solutions. We refer the reader to [47, Part D] for a systematic treatment

of these subjects.

2.6 Triconfluent Heun’s equation

The last possible process of confluence brings together the two finite sin-

gular points of the CHE to the existing irregular singularity to generate a

higher rank irregular singularity at infinity. In this triconfluent Heun equa-

tion (THE), all finite points are ordinary points and only three parameters

remain.

Our choice of THE is in canonical form, that is,

y′′ −
(
γ + 3z2

)
y′ + (α + (β − 3)z) y = 0. (2.6.1)

The irregular singularity is located at z =∞ and has rank 3, the highest we

can get out of the process of confluence in the Heun equation. Since no other
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singularity exists in C, the monodromy is trivial and thus we will not require

any condition on the parameters or the solutions in order to construct new

CMC planes (surfaces with the topology of the plane).
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Chapter 3

CMC surfaces from Heun’s

Differential Equations

In this chapter we employ all the theory explained in the previous two

chapters in order to construct new families of CMC surfaces using the family

of ODEs given by Heun (see chapter 2), with special attention on the conflu-

ent cases, since those allow us to find new families of surfaces with irregular

ends in a systematic way.

The structure of the chapter is as follows: in each of the sections we focus on

one of the differential equations, finding the appropriate functions that pre-

scribe it in the initial value problem (1.2.16). Once this is done, our focus will

be to solve the monodromy problem. Depending on the number of punctures,

this will require different approaches. This step usually means that we need to

restrict the range of parameters to consider in Heun’s Differential Equations,

which in principle are all complex values without restriction. Lastly, the the-

oretical content is supported by numerical solutions of each of the cases, and

images are produced using the software CMCLab [51] developed by Nicholas

Schmitt, to whom we are grateful for publishing the software he developed

with the GANG group.

Thus, each of the subsequent sections refers to the CMC surfaces that have

been found for each of the representatives of the family of Heun’s Differential

Equations.
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3.1 4-noids

Although the main goal of this thesis is to construct surfaces with irregular

ends, which is done in the subsequent sections of this chapter, we first look in

this section at the general Heun equation

y′′ +

(
γ

z
+

δ

z − 1
+

ε

z − a

)
y′ +

αβz − q
z(z − 1)(z − a)

y = 0 (3.1.1)

and point out the steps we have followed trying to construct CMC surfaces

with 4 Delaunay ends from this equation. This equation has 4 regular singu-

larities at z = 0, 1, a,∞, so as stated in theorem 2.1, one might be able to

construct families of surfaces with four Delaunay ends for it. The obstacle is

of course the pointwise simultaneously unitarisation of the monodromy ma-

trices.

Constructing CMC surfaces with at least 4 ends is in general more compli-

cated using the classical approaches for unitarisation than the lower ends

cases. Some of these approaches involve imposing full symmetries on the sur-

face, such as the work by Rossman and Schmitt [48] with n-noids. A similar

but more general approach was used by Schmitt in his work [53], where he

reduces the unitarisation problem to that one of a trinoid by constructing a

rational map which is an invariant of a finite group of Möbius transforma-

tions that lowers the number of poles of the potential ξ to 3. Also, Kapouleas

in [26] constructed embedded CMC surfaces with no limitation on the num-

ber of ends by gluing round spheres and pieces of Delaunay surfaces, using

PDEs techniques. Recently, Traizet [59] has been able to adapt the gluing

techniques of Kapouleas to the loop groups methods by opening nodes in

the underlying Riemann surface, which is a model for Riemann surfaces with

small necks. In this way Traizet can construct CMC surfaces in R3 with no

restriction on the number of ends and with any genus.

The appearance of the Heun equation as a way to generalise the construc-

tion of trinoids with Delaunay ends is already present in the literature. In

particular, the problem of unitarising the monodromy was studied for a very

particular case by Dorfmeister and Eschenburg in [13]. Their approach is
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based on the classical spherical inequalities for spherical n-gons, that is, loops

of geodesic segments on a 2-sphere, each of whose side lengths is between 0

and the semicircumference inclusively. It is known that these inequalities do

not give a sufficient condition for the unitarisation when n ≥ 4, but under a

sufficient ‘simplification’ of the equation (3.1.1) the unitarisation problem is

asserted to be solved in this paper.

3.1.1 Assumptions for the Heun equation

In what follows, we discuss the approach followed in [13], writing the

ODE and the resulting potential for the specific choices that they do and show

the obstructions in order to get a proof. The first assumption to be made is

to fix the fourth regular singularity at a = −1. Next, all the parameters in

the differential equation (3.1.1) are considered to be real. Also, we force the

parameters δ and ε to be equal. These are the characteristic exponents of the

singularities at z = 1 and z = −1. Making them equal, we force a symmetry

between the two corresponding ends. We finally eliminate the last parameter

in equation (3.1.1), that is, we make q = 0. In this way, we work with the

ODE

y′′ +

(
γ

z
+

δ

z − 1
+

δ

z + 1

)
y′ +

αβ

(z − 1)(z + 1)
y = 0, (3.1.2)

for γ, δ, α, β ∈ R, which is invariant under the transformation z 7→ z̄ of the

domain, and also under z 7→ −z, which fixes 0 and ∞ and interchanges

1 and −1. Note that this transformation corresponds to the one given in

equation (2.2.3) for a = −1, which then gives another equation of Heun type.

Also, recall the link between the parameters in equation (2.2.2), which now

reads

γ + 2δ = α + β + 1. (3.1.3)

3.1.2 A potential for the Heun equation

Let us write an off-diagonal holomorphic potential associated to equa-

tion (3.1.2) on Σ = C \ {0, 1,−1}. We proved in lemma 1.4 that, for such
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an off-diagonal potential, the associated scalar ODE is of the form (1.4.3),

where the two functions involved in the ODE are those in the off-diagonal

potential. It is easy then to find functions ν, ρ so that the associated second

order ODE becomes the Heun equation in (3.1.2). In particular, let us take

ν := z−γ
(
1− z2

)−δ
, and

ρ := −αβz
γ−1 (1− z2)

δ

(z − 1)(z + 1)
.

(3.1.4)

Note that these two functions seem to depend only on z, but this is just

because the dependence on λ is in the parameters of the equation. Therefore,

later on, we will write explicitly those relations.

Hence, our off-diagonal potential that encodes the Heun’s equation (3.1.2) is

ξ1 =

 0 z−γ (1− z2)
−δ

−αβzγ−1(1−z2)
δ

(z−1)(z+1)
0

 dz. (3.1.5)

Lastly, let us consider the gauge

g1 =


(
z−γ (1− z2)

−δ
)1/2

0(
δz
z2−1

+ γ
2z

) (
z−γ (1− z2)

−δ
)−1/2 (

z−γ (1− z2)
−δ
)−1/2

 (3.1.6)

with which we obtain ξ := ξ1.g1, where

ξ =

(
0 1

γ2−2γ
4z2

+ 2αβ−2γδ−δ2
4(z+1)

+ δ2+2γδ−2αβ
4(z−1)

+ δ2−2δ
4(z−1)2

+ δ2−2δ
4(z+1)2

0

)
dz. (3.1.7)

This is the simplest potential in which we can encode the equation (3.1.2).

Now we take parameters in order to write a potential that might be used to

construct CMC surfaces with four Delaunay ends.

For t := −1
4
λ−1(λ− 1)2, let us consider the maps

γ := 1−
√

1− rt,

δ := 1−
√

1− st,

α :=
1

2

(
2−
√

1− rt− 2
√

1− st−
√

1− t(r + 2s− 4u)
)
,

β :=
1

2

(
2−
√

1− rt− 2
√

1− st+
√

1− t(r + 2s− 4u)
)
.

(3.1.8)

E. Mota 58



CHAPTER 3. CMC SURFACES FROM HEUN’S DIFFERENTIAL
EQUATIONS

Note that, writing λ = eiθ with θ ∈ [0, 2π], the value of t = −1
4
λ−1(λ− 1)2 =

sin2 θ
2
∈ [0, 1]. In particular, t is real. Thus, as long as r, s, u ∈ R, all the

parameters in equation (3.1.2) are real, as imposed earlier. With the maps in

(3.1.8) and using Λ := diag(λ1/2, λ−1/2), the gauged potential

ξN := ξ.Λ =

(
0 1/λ

λQt 0

)
dz, (3.1.9)

can be used in the generalised Weierstrass representation for CMC surfaces,

where

Qt := t

(
− r

4z2
− s

4(z − 1)2
− s

4(z + 1)2
+

u

2(z − 1)
− u

2(z + 1)

)
. (3.1.10)

3.1.3 Regular singular points

The function Qt has double poles at z = 0, z = 1, z = −1 and at z = ∞
(the ends of the surface) and no other poles. Note that the potential ξN can

be gauged to a perturbed Delaunay potential using

g2 =

(
(z − 1)1/2 0

−λ (z−1)−1/2

2
(a+ bλ) (z − 1)−1/2

)
, (3.1.11)

with a = 1
4

(
1 +
√

1− s
)

and b = 1
4

(
1−
√

1− s
)
, obtaining

ξN .g2 = A1
dz

z − 1
+ O

(
(z − 1)0

)
dz, (3.1.12)

where A1 is a Delaunay residue as in (1.3.1) with c = 0.

Thus the ODE dΦ = ΦξN , Φ(z0) = 1 has a solution in a neighbourhood of

z = 1 containing z0 which is of the form Φ1 = (z − 1)A1P (recall the zAP

lemma 1.7).

A set of generators of the monodromy representation of the potential ξN is

defined as follows. Choose closed curves γ0, γ1, γ−1, γ∞ based at z0 which re-

spectively wind around each of the singularities once and not around any other

of them, satisfying γ0γ1γ−1γ∞ = 1. Define M0,M1,M−1,M∞ : C∗ → SL2(C)

as the monodromies of the solution Φ to the equation dΦ = Φξ, Φ(z0) = 1
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along γ0, γ1, γ−1 and γ∞ respectively. This choice gives M0M1M−1M∞ = 1.

As a consequence of the remarks above regarding Φ1, the monodromy around

the singularity at z = 1 can be written as M1 = exp(2πiA1). In particular

M1 is unitary.

3.1.4 Exploring symmetries for the monodromies

Let us define the trnasformation κ(z) = −z. Thanks to the assumptions

made in section 3.1.2, the function Qt satisfies that κ∗Q = Q. This gives our

potential ξN a special symmetry that could be exploited. It holds that

κ∗ξN = h ξN h
−1, (3.1.13)

where h =

(
i 0

0 −i

)
. Naturally, the transformation κ∗Φ1 defines a solution

to the differential equation d (κ∗Φ1) = (κ∗Φ1) (κ∗ξN), which using (3.1.13) is

the same as d (κ∗Φ1) = (κ∗Φ1) (h ξN h
−1), that is,

d (κ∗Φ1 h) = (κ∗Φ1 h) ξN . (3.1.14)

It is clear that two solutions of this equation differ by a factor that does

not depend on z, in other words, by a matrix T ∈ ΛSL2(C). Therefore, the

solution Φ1 has the symmetry

TΦ1 = κ∗Φ1 h. (3.1.15)

Suppose that we choose the base point z0 to be a fixed point of the trans-

formation κ. Then, by evaluating at this point, one gets a useful symmetry

for the solution from equation (3.1.15). In particular, if κ(z0) = z0, we would

obtain that T = h using Φ1(z0) = 1 and then the symmetry of the solution

would be

κ∗Φ1 = hΦ1 h
−1. (3.1.16)

With symmetry (3.1.16), the monodromy matrices would satisfy that

M−1 = hM1 h
−1. (3.1.17)
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Similar techniques are used to construct n-noids, see for instance the sym-

metric n-noids by Rossman and Schmitt in [48].

The unitarisation problem consists on the pointwise simultaneously unitari-

sation of the monodromies M0, M1, M−1 (recall the relation (1.2.26)) which,

in view of equation (3.1.17), amounts to simultaneously unitarise the triple(
M0,M1, hM1 h

−1
)
. (3.1.18)

Note that the last monodromy to be unitarised is written as a conjugation

by a unitary matrix of another monodromy. This means that a simultaneous

unitariser for M0 and M1 would also unitarise M−1 as a consequence of the

symmetries. In order to unitarise two monodromies, we have derived criteria

that uses the connection coefficients between solutions (this theory is fully

explained and used in section 3.2.4). We could expect to solve the unitari-

sation for M0 and M1 using the connection matrix between solutions given

in the work of Williams and Batic [61]. For the same ‘reduced’ equation as

in (3.1.2), they worked out these connections coefficients which are given in

terms of quotients of the Gamma function Γ(x).

The problem, however, is that the only fixed point of the transformation κ is

0, which is one of the singularities, so it can not be chosen, losing thus all the

symmetries. We tried overcoming this difficulty by finding a suitable Möbius

transformation that fixes our base point and interchanges 1 and −1. This, of

course, breaks the symmetry for the potential in (3.1.13), and so it is not a

solution.

The above explains why we could not prove the existence of CMC surfaces

arising from this sub-class of the Heun equation. One possible explanation

is that the usual techniques to unitarise monodromies when constructing

CMC surfaces or, in particular, n-noids involve imposing symmetries to re-

duce the complexity of the problem. It might be that in the case of the Heun

equation the freedom to impose symmetries is lost as a consequence of having

already fixed three of the singularities.

However, another solution could be found with different techniques. A very

similar unitarisation problem for the Heun equation is solved without the
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presence of the spectral parameter by Eremenko, Gabrielov and Tarasov in

[19], and our experimental graphics suggest that this could be successfully

applied to our setup.

3.2 Trinoids with two regular ends and one

irregular end

The present section is devoted to prove the existence of a family of trinoids

with two asymptotically Delaunay ends and one irregular end, constructed

using the CHE presented in section 2.3. The content of this section is the

core of our joint work with Kilian and Schmitt in [34].

As pointed out in chapter 1, the main difficulty is unitarising the monodromy

group. This will be done using the connection matrix for the CHE, found

by Schäfke and Schmidt. Our potential for the trinoids will also satisfy the

closing conditions (see lemma 1.6), so that the monodromy problem will be

fully solved.

3.2.1 Two Regular Singular Points

Let Σ be the thrice-punctured Riemann sphere with punctures z0 = 0, z1 =

1 and z∞ = ∞. Since our goal is to construct CMC trinoids for which two

ends are regular and one end is irregular, we will assume that at the two ends

z0 and z1, the potential is a holomorphic perturbation of a Delaunay poten-

tial, and hence regular singular there. In addition, our potentials will have

a singularity of rank 1 at z∞, making it an irregular end. These choices will

determine the form of the associated scalar ODE in (1.4.3).

Note that in this and the following sections, we omit the dependence on the

spectral parameter λ. Let ϑ0, ϑ1 ∈ C \ 1
2
Z be parameters, and a and b func-

tions on Σ such that a is holomorphic at z0 and z1, and b is allowed to have
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simple poles at z0 and z1. Define

ξ0 :=

(
0 1

Q(z) 0

)
dz,

Q(z) :=
ϑ0(ϑ0 − 1)

(z − z0)2
+
ϑ1(ϑ1 − 1)

(z − z1)2
+ b(z).

(3.2.1)

The points z0 and z1 are regular singular points of ξ0. These double poles can

be gauged to simple poles by

g0 :=

(
1 0

G 1

)
, where G(z) =

ϑ0

z − z0

+
ϑ1

z − z1

+ a(z), (3.2.2)

to obtain

η := ξ0.
(
g−1

0

)
= A0

dz

z − z0

+ A1
dz

z − z1

+B dz (3.2.3)

where B is holomorphic at z0 and z1 and

Ak := HkJkH
−1
k ,

Jk := diag(−ϑk, ϑk),

Hk :=

(
1 0

hk 1

)
,

(3.2.4)

for k ∈ {0, 1}. Here, h0 = a+ ϑ1
z0−z1 −

b0
2ϑ0

and h1 = a+ ϑ0
z1−z0 −

b1
2ϑ1

, where bk

is the part of b that has a simple pole at zk.

Suppose dΦ = Φη for which η = Ak
dz
z−zk

+ O (z0) dz has a simple pole at

z = zk and Delaunay residue Ak. Let us prove in lemma 3.1 a version of the

zAP lemma for this context.

Lemma 3.1. For k ∈ {0, 1}, the ODE dΦ = Φξ0 has solutions

Φk = exp
(
Jk log

(
(−1)k(z − zk)

))
Pk(z)g0(z), (3.2.5)

at zk, where Pk(z) is holomorphic at z = zk and Pk(zk) = H−1
k .

Proof. The potential η has a simple pole at zk with residue Ak. Since ϑk /∈
1
2
Z \ {0}, by the theory of regular singular points, there exists a solution to

the ODE dΨ = Ψη of the form

Ψk(z) = exp (Ak log (z − zk))Rk(z), (3.2.6)
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where Rk(z) is holomorphic at z = zk and Rk(zk) = 1. Since ξ0 = η.g0, then

Φ̂k(z) = H−1
k exp (Ak log (z − zk))Rk(z)g0(z) (3.2.7)

is a solution of the ODE dΦ = Φξ0. Since AkHk = HkJk, then

Φ̂k(z) = exp (Jk log (z − zk))H−1
k Rk(z)g0(z). (3.2.8)

The result follows with Pk := H−1
k Rk, Φ0 := Φ̂0 and

Φ1 := diag
(
(−1)−ϑ1 , (−1)ϑ1

)
Φ̂1.

3.2.2 Prescribing the CHE

In this part we find a potential associated to the CHE of the form

y′′+
(
2a+ 1−µ0

z
+ 1−µ1

z−1

)
y′

+
(
z[a(2−µ0−µ1)−(r0+r1)]+ 1

2
(µ0µ1−2a(1−µ0)−(µ0+µ1)+2r0+1)

z(z−1)

)
y = 0.

(3.2.9)

This is our choice of ODE with two regular singular points at z = 0 and

z = 1, and one irregular singularity at z =∞, so the correspondence with the

parameters and functions used in section 3.2.1 is as follows: set z0 = 0 and

z1 = 1 and for k ∈ {0, 1} let

ϑk :=
1− µk

2
,

a(z) := a,

b(z) :=
r0

z
+

r1

z − 1
+ a2.

(3.2.10)

Consider an off-diagonal holomorphic potential ξ1 on Σ = C \ {0, 1}. We just

need to find functions ν, ρ so that the associated second order ODE becomes

equation (3.2.9). This is done by taking

ν :=zµ0−1(z − 1)µ1−1 e−2az, and

ρ :=− e2azz−µ0(z − 1)−µ1 [z(a(2− µ0 − µ1)− (r0 + r1))

+
1

2
(µ0µ1 − 2a(1− µ0)− (µ0 + µ1) + 2r0 + 1)].

(3.2.11)
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Note that these functions depend on λ, which is encoded in the parameters

of the equation. In this way, an off-diagonal potential prescribing the CHE is

given by ξ1 =

(
0 ν

ρ 0

)
.

In order to simplify the potential that will be used to construct trinoids, we

gauge by

g1 =

 (zµ0−1(z − 1)µ1−1 e−2az)
1/2

0
2az2−z(2a+µ0+µ1−2)+µ0−1

2z(z−1)(zµ0−1(z−1)µ1−1 e−2az)
1/2 (zµ0−1(z − 1)µ1−1 e−2az)

−1/2

 . (3.2.12)

This gives a very simplified potential,

ξ = ξ1.g1 =

(
0 1

µ20−1

4z2
+

µ21−1

4(z−1)2
+ r0

z
+ r1

z−1
+ a2 0

)
dz. (3.2.13)

Before writing the constructing potential, we proceed with the unitarisation

of the monodromies using the connection matrix for two solutions at regular

singular points.

3.2.3 Connection matrix

Schäfke and Schmidt give in [50] an asymptotic formula for the connection

coefficients between a set of two solutions of equation (3.2.9) around z = 0

and another set of two solutions of equation (3.2.9) around z = 1, in terms

of their power series expansion coefficients. The main results to be used

from [50] are Proposition 2.14 and Theorem 2.15. In the first of them, the

connection coefficients between a set of fundamental solutions (y01, y02) at

z = 0 and a set of fundamental solutions (y11, y12) at z = 1 are given, in

terms of a function q. Then, in the second result, they provide an asymptotic

expression for this function. Thus, computing this function one can obtain

the connection coefficients between two sets of fundamental solutions of the

CHE. With lemma 1.9, it is straightforward to obtain the connection matrix

for our 2 × 2 setup. Our connection matrix C is a λ-dependent matrix such

that two local solutions Φ0, Φ1 of dΦ = Φξ at z = 0 and at z = 1 respectively,

are related by Φ0 = CΦ1.
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From the two equations appearing in [50, Proposition 2.14], we only need the

first one in order to write down our matrix relationship C = Φ0Φ−1
1 , as in

what follows we will only consider the unique solution at z = 0 introduced in

equation (2.3.3). These connection coefficients can be written in a matrix form

allowing us to define the connection matrix between the two local solutions

Φ0 and Φ1.

Theorem 3.1 ([50]). The connection matrix C := Φ0Φ−1
1 is

C =

(
Γ(µ0)

Γ(1−µ0)
0

0 1

)(
q(µ0,−µ1) q(µ0, µ1)

q(−µ0,−µ1) q(−µ0, µ1)

)(
1 0

0 Γ(µ1)
Γ(1−µ1)

)
, (3.2.14)

where the asymptotic formula from which q can be calculated explicitly is

q(µ0, µ1) = Γ(1− µ0)Γ(1− µ1) lim
k→∞

Γ(k + 1)

Γ(k − µ1)
ck. (3.2.15)

Proof. The proof amounts to converting the notation of Schäfke-Schmidt to

our notation. For k ∈ {0, 1}, define

Dk := diag
(
Γ(µk), (−1)kΓ(1− µk)

)
,

w(z) := z(µ0−1)/2(1− z)(µ1−1)/2e−a(z−1).
(3.2.16)

Then, the relation between our solutions and those in [50] is

Φ̂k = wD−1
k Φk g

−1
0 . (3.2.17)

By [50, Proposition 2.14, Theorem 2.15], the connection matrix Ĉ = Φ̂0Φ̂−1
1 ∈

GL2(C) is

Ĉ = Γ(µ1)Γ(1− µ1)

(
q̂(µ0,−µ1) −q̂(µ0, µ1)

q̂(−µ0,−µ1) −q̂(−µ0, µ1)

)
, (3.2.18)

where

q̂(µ0, µ1) = lim
k→∞

Γ(k + 1)

Γ(k − µ1)
ck. (3.2.19)

The theorem follows by the relations between our notation and that of [50]:

q(µ0, µ1) = Γ(1− µ0)Γ(1− µ1)q̂(µ0, µ1) and C = D0ĈD
−1
1 . (3.2.20)

The function q will be used in the next sections to find conditions for the

unitarisability of two monodromies.
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3.2.4 Unitarisability of the monodromy

In this part, we assume that all the definitions and results explained in

section A.4.1 regarding the unitarisability of matrices in SL2(C) are known.

In our context, the two matrices to be unitarised are of the form M̂0 and

CM̂1C
−1, where M̂0 and M̂1 can be chosen to be diagonal as they are the

local monodromies of two solutions at regular singular points, and C is the

connection matrix between those two local solutions.

The proof of the next proposition is deferred to the appendix, in B.10.

Proposition 3.1. Let M0,M1 ∈ SL2(C)\{±1} be irreducible and individually

unitarisable. Let ϕ, ϕ′ ∈ CP1 and ψ, ψ′ ∈ CP1 be the respective eigenlines of

M0 and M1. Then M0 and M1 are simultaneously unitarisable if and only if

the cross-ratio

[ϕ, ψ, ϕ′, ψ′] ∈ R−. (3.2.21)

The unitarisability criterion in proposition 3.1 for this case can be ex-

pressed as follows.

Proposition 3.2. Consider two matrices M0 := M̂0 and M1 := CM̂1C
−1,

where M̂0, M̂1 ∈ SL2(C) \ {±1} are diagonal matrices and

C =:

(
a b

c d

)
∈ SL2(C). (3.2.22)

(i) M0 and M1 are irreducible if and only if a, b, c and d are non-zero.

(ii) If M0 and M1 are irreducible and individually unitarisable, then M0 and

M1 are simultaneously unitarisable if and only if the ratio bc
ad
∈ R−.

Proof. For (i), since M0 is diagonal and not ±1, then M0 and M1 are reducible

if and only if M1 is upper or lower triangular. Writing M̂1 = diag(β, β−1),

compute

M1 = CM̂1C
−1 =

(
adβ − bcβ−1 −ab(β − β−1)

cd(β − β−1) adβ−1 − bcβ

)
. (3.2.23)

Then M1 is upper or lower triangular if and only if at least one of a, b, c or d

vanishes.

E. Mota 67



CHAPTER 3. CMC SURFACES FROM HEUN’S DIFFERENTIAL
EQUATIONS

We now prove (ii). We note first that a diagonal matrix is unitarisable if

and only if it is already unitary, because the eigenvalues of a unitary matrix

are unitary complex numbers. Since M0 is diagonal, its eigenlines in CP1 are

ϕ1 = 0 and ϕ2 = ∞. Since M1C = CM̂1, the eigenlines of M1 in C2 are the

columns of C, so its eigenlines in CP1 are ψ1 = a/c and ψ2 = b/d. Then

[ϕ1, ψ1, ϕ2, ψ2] =
ψ2

ψ1

=
bc

ad
. (3.2.24)

By proposition 3.1, M0 and M1 are simultaneously unitarisable if and only if

this cross ratio is in R−.

We will apply the above criterion to the monodromy of an ODE as follows.

Consider a potential ξ with singularities at z0 and z1. Let τ0 and τ1 be the deck

transformations corresponding to closed paths around z0 and z1 respectively,

not enclosing the other singularity. Let Φ0 and Φ1 be local solutions to the

ODE dΦ = Φξ chosen so that their respective monodromies

M̂0 := Φ0(τ0(z))Φ−1
0 and M̂1 := Φ1(τ1(z))Φ−1

1 (3.2.25)

are diagonal. Let C = Φ0Φ−1
1 be the connection matrix between these two

solutions with entries as in (3.2.22). The monodromies of Φ0 at z0 and z1 are

respectively

M0 = M̂0 and

M1 = Φ0(τ1(z))Φ−1
0 = CΦ1(τ1(z))Φ−1

1 C−1 = CM̂1C
−1.

(3.2.26)

Suppose M0 and M1 are irreducible and individually unitarisable. By propo-

sition 3.2, M0 and M1 are simultaneously unitarisable if and only if

bc

ad
∈ R−. (3.2.27)

For the remainder of the paper we choose all parameters in the CHE to be

real. Also, we assume that the CHE parameter a is positive. It is easy to

check that the coefficients U(k), V (k) and W (k) of the CHE recurrence (2.3.4)

are positive for all sufficient large k. Under this assumption, the signs of the

entries of the connection matrix C in (3.2.14) can be computed as follows.
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Proposition 3.3. Suppose µj < 1 for j ∈ {0, 1} and that there exists k0 ∈ N
such that U(k) > 0, V (k) > 0 and W (k) > 0 for all k ≥ k0. If ck0−1 > 0

and ck0 > 0, then q defined in equation (3.2.15) satisfies q ≥ 0. Similarly, if

ck0−1 < 0 and ck0 < 0, then q ≤ 0.

Proof. Since µj < 1 for j ∈ {0, 1} and the function Γ(x) > 0 for all x > 0, we

have that Γ(1− µj) > 0 for j ∈ {0, 1}, Γ(k+ 1) > 0 and Γ(k− µ1) > 0 for all

k ≥ k0.

By hypothesis U(k), V (k) and W (k) are positive for all k ≥ k0. Hence,

in the case of ck0−1 > 0 and ck0 > 0, the third term ck0+1 must be positive as

well. Then, by induction, {ck}∞k=k0−1 are all positive coefficients. This implies

that q ≥ 0.

Similarly, if ck0−1 < 0 and ck0 < 0 the coefficients {ck}∞k=k0−1 are negative and

therefore q ≤ 0.

The criterion for unitarisability in proposition 3.2, the asymptotic formula

for the connection matrix in theorem 3.1, and the recurrence relation for the

CHE solution in equation (2.3.4) yield the following sufficient condition for

the unitarisability of the monodromy.

Let us write the parameters for the CHE as a 5-tuple χ := (µ0, µ1, r0, r1, a) ∈
R5. Define the finite integer

m(χ) := min
k0∈N
{U(k, χ) > 0, V (k, χ) > 0 and W (k, χ) > 0 ∀ k ≥ k0}, (3.2.28)

and the sets

S+ := {χ ∈ R5 | ∃ ` ≥ m(χ) such that c`−1 > 0 and c` > 0},

S− := {χ ∈ R5 | ∃ ` ≥ m(χ) such that c`−1 < 0 and c` < 0}.
(3.2.29)

Proposition 3.4. If each of the four 5-tuples (±µ0,±µ1, r0, r1, a) ∈ R5 lies

in S+ ∪ S−, then the monodromy is unitarisable if and only if an odd number

of these tuples lie in S+.

Proof. By Proposition 3.3, if χ ∈ S+ then q(χ) ≥ 0, and if χ ∈ S− then

q(χ) ≤ 0. An odd number of the tuples lie in S+ if and only if

q(µ0, µ1)q(−µ0,−µ1)

q(µ0,−µ1)q(−µ0, µ1)
∈ R−, (3.2.30)
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that is, by Proposition 3.2 and the remarks thereafter, if and only if the

monodromy is unitarisable.

With this criteria we are ready to construct new trinoids.

3.2.5 Construction of new trinoids

The trinoid potential

To construct trinoids we choose the potential

ξT =

(
0 λ−1

λQt 0

)
dz, (3.2.31)

where

Qt := t

(
− w0

4z2
− w1

4(z − 1)2
+
r̂0

z
+

r̂1

z − 1
+ p2

)
,

t := −1

4
λ−1(λ− 1)2,

(3.2.32)

and w0, w1, r̂0, r̂1, p ∈ R are free parameters. The parameters w0 and w1

will be the asymptotic end weights of the Delaunay ends at 0 and 1. The

parameters r̂0 and r̂1 affect the weight of the irregular end, and p the shape

of the trinoid.

With Λ := diag(λ1/2, λ−1/2), the gauged potential

ξT .(Λ
−1) =

(
0 1

Qt 0

)
dz (3.2.33)

has the form of the CHE potential defined in (3.2.13), where the coeffi-

cients (µ0, µ1, r0, r1, a) in the CHE equation are related to the parameters

(w0, w1, r̂0, r̂1, p) in the potential ξT by

µk =
√

1− wkt, rk = r̂kt, a2 = p2t, k ∈ {0, 1}. (3.2.34)

The monodromy of the trinoid potential is unitarisable along S1 if and only

if that of the gauged potential ξT .(Λ
−1) is.
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Figure 3.1: Trinoids with one irregular end and two Delaunay ends. Graphics were produced with

CMCLab [51]. The regular end weights are either 1
2

or − 1
2

while the irregular end weights vary. The pa-

rameters (w0, w1, r̂0, r̂1, p) used to construct each of them are
(
1
2
, 1
2
,− 1

8
, 1
8
, 1
8

)
, and

(
1
2
,− 1

2
,− 1

8
, 1
8
, 1
8

)
.
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Trinoids construction

Theorem 3.2. Let ξT be a potential with unitarisable monodromy on S1 mi-

nus a finite set. Let Φ be a solution of dΦ = ΦξT . Then there exists

a positive dressing h such that the CMC immersion induced by hΦ via the

generalized Weierstrass representation on the universal cover descends to the

three-punctured sphere. The ends at z = 0 and z = 1 are asymptotic to

Delaunay surfaces.

Proof. By [54], there exists a positive loop h : D1 → GL2(C) such that the

monodromy of hΦ is unitary. The local unitary monodromies M0 and M1

satisfy the closing conditions Mk(0) = ±1 and M ′
k(0) = 0, for k ∈ {0, 1}.

Hence hΦ induces an immersion of the three-punctured sphere via the GL2(C)

version of the generalised Weierstrass representation. The ends at z = 0 and

z = 1 are asymptotic to Delaunay cylinders with respective weights w0 and

w1 by [35, Theorem 5.9].

Remark 3.1. Due to the structure of ξT , any trinoid T constructed from ξT in

fact lies in a one-parameter family of trinoids Tκ with monotonically varying

Delaunay end weights. If (µ0, µ1, r0, r1, a) are the parameters for T , then the

parameters for the family of trinoids Tκ are (κw0, κw1, κr̂0, κr̂1,
√
κp) with κ

ranging over the interval (0, 1].

Unitarisability conditions for the parameters

It remains to find values of the 5 parameters in ξT so that the monodromy

is unitarisable. An algorithm to test the hypotheses of proposition 3.4 is as

follows. For a 5-tuple χ = (µ0, µ1, r0, r1, a), consider the (k + 1)-coefficient of

the recurrence in (2.3.4), which is given by

ck+1(χ) =
V (k, χ)ck(χ) +W (k, χ)ck−1(χ)

U(k, χ)
. (3.2.35)

The radicals appearing in c`+1(χ) can be eliminated, reducing the problem to

showing that a polynomial is positive in an interval. Let Θ = (w0, w1, r̂0, r̂1, p) ∈
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R5 be a choice of parameters for ξT . Note that c`+1(y0, y1, r̂0x
2, r̂1x

2, px) de-

fines a rational function

P`+1(y0, y1, r̂0x
2, r̂1x

2, px)

Q`+1(y0, y1, r̂0x2, r̂1x2, px)
(3.2.36)

for some polynomials P`+1,Q`+1 ∈ R[x, y0, y1] depending on ` and Θ. Define

the polynomial functions Fk, Gk ∈ R[x, y0, y1]

Fk(x, y0, y1) := Pk(y0, y1, r̂0x
2, r̂1x

2, px), (3.2.37)

Gk(x, y0, y1) := Fk(x, y0, y1)Fk(x, y0,−y1)Fk(x,−y0, y1)Fk(x,−y0,−y1).

Since Gk is even in y0 and in y1, then the function fk depending on k and Θ

fk(x) := Gk

(
x,
√

1− w0x2,
√

1− w1x2
)

(3.2.38)

is in R[x].

Proposition 3.5. Let Θ := (w0, w1, r̂0, r̂1, p) ∈ R5 be a choice of parameters

for the trinoid potential ξT and let

χ±± := (±µ0,±µ1, r0, r1, a)

=
(
±
√

1− w0t,±
√

1− w1t, r̂0t, r̂1t, p
√
t
)
.

(3.2.39)

Let k0 ∈ N be such that for each of the four choices of signs, U(k, χ±±) > 0,

V (k, χ±±) > 0 and W (k, χ±±) > 0 for all k ≥ k0. Suppose

(i) fk0−1(x) 6= 0 and fk0(x) 6= 0 along x ∈ (0, 1),

(ii) for each of the four choices χ±±, and some t0 ∈ (0, 1),

sign ck0−1(χ±±(t0)) = sign ck0(χ±±(t0)), (3.2.40)

(iii) of the four signs in (ii) an odd number are + and an odd number are −.

Then, the monodromy with parameters Θ is unitarisable.

Proof. By its definition, f`+1(x) has a zero along x ∈ (0, 1) if and only if

at least one of the four functions c`+1(χ±±(t)) has a zero along t ∈ (0, 1).

Thus by (i), none of the eight functions ck0−1(χ±±(t)) and ck0(χ±±(t)) has a

zero along t ∈ (0, 1). By (ii) and continuity, all χ±± ∈ S+ ∪ S−, where S+

and S− are the sets defined in (3.2.29). The monodromy is unitarisable by

proposition 3.5(iii) and proposition 3.4.
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Figure 3.2: Trinoids with one irregular end and two Delaunay ends. The regular end weights are

either 1
2

or − 1
2

while the irregular end weights vary. The parameters (w0, w1, r̂0, r̂1, p) used to construct

each of them are
(
− 1

2
,− 1

2
, 1
8
,− 1

8
, 1
8

)
, and

(
1
2
,− 1

2
,− 1

8
, 1
4
, 1
8

)
.
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The examples in figures 3.1, 3.2 and 3.3 were computed by theorem 3.2

and the unitarisability criterion in proposition 3.5.

Proposition 3.6. The conditions of proposition 3.5 are satisfied for the choice

of parameters

Θ =

(
1

2
,
1

2
,−1

8
,
1

8
,
1

8

)
. (3.2.41)

Proof. For this choice of Θ, we compute

f1(x) = x4
(
393216− 245760x+ 243712x2 − 57856x3+

26368x4 − 5120x5 + 1008x6 − 252x7 + 27x8
)

×
(
−1179648 + 1032192x− 2260992x2 − 61440x3+ (3.2.42)

1267968x4 − 241088x5 + 189328x6 − 41116x7 + 6859x8
)

f2(x) = x4
(
21743271936− 6794772480x+ 6455033856x2 − 2021916672x3+

762642432x4 − 174735360x5 + 41717760x6−

5871616x7 + 1031424x8 − 109248x9 + 12240x10 − 1512x11 + 81x12
)

×
(
−79725330432 + 37144756224x− 24310185984x2+

358612992x3 + 24553881600x4 − 9189408768x5+ (3.2.43)

7316135936x6 − 1422535168x7 + 570771456x8−

78774080x9 + 16092368x10 − 1562408x11 + 130321x12
)

The Sturm chain of a polynomial P (x) with real coefficients is the sequence

of polynomials P0, P1, . . . , such that

P0 = P,

P1 = P ′, (3.2.44)

Pi+1 = − rem(Pi−1, Pi),

for i ≥ 1, where P ′ is the derivative of P , and rem(Pi−1, Pi) is the remainder of

the Euclidean division of polynomials of Pi−1 by Pi. Sturm’s theorem expresses

the number of distinct real roots of P located in an interval in terms of the

number of changes of signs of the values of the Sturm sequence at the bounds

of the interval. This result can be applied to f1 and f2 to show that these two

E. Mota 75



CHAPTER 3. CMC SURFACES FROM HEUN’S DIFFERENTIAL
EQUATIONS

polynomials have no zero on the interval (0, 1]. The computations are easy

but lengthy, so we omit them. This verifies proposition 3.5(i). The conditions

(ii) and (iii) are verified by computing at t0 = 4
5
, for k ∈ {1, 2}, yielding

ck(χ++(t0)) < 0, ck(χ+−(t0)) > 0, ck(χ−+(t0)) > 0 and ck(χ−−(t0)) > 0. In

particular, the numerical results of the computation of these coefficients are

c0(χ++(4/5)) = −0.016346 < 0, c1(χ++(4/5)) = −0.016346 < 0

c0(χ+−(4/5)) = 0.755228 > 0, c1(χ+−(4/5)) = 2.07486 > 0

c0(χ−+(4/5)) = 0.0202225 > 0, c1(χ−+(4/5)) = 0.0454555 > 0

c0(χ−−(4/5)) = 3.79543 > 0, c1(χ−−(4/5)) = 7.49907 > 0.

(3.2.45)

Theorem 3.3. There exists a five parameter family of CMC trinoids with

two Delaunay ends and one irregular end.

Proof. The coefficients U(k), V (k) and W (k) of the recurrence in (2.3.4) de-

pend holomorphically on the parameters of the choice Θ. Each term of the

sequence ck+1(χ) is a rational function Pk(χ)
Qk(χ)

, where Pk and Qk are polynomi-

als in W (0), . . . ,W (k) and in V (0), . . . , V (k) and U(0), . . . , U(k) respectively.

Thus they also depend holomorphically on the parameters. Note that under

the assumptions made for the CHE parameters, in particular µ0 < 1, the

polynomial U(k) is never zero. Therefore, the function fk defined in (3.2.38)

also depends holomorphically on the parameters. Let Θ be as in proposi-

tion 3.6, for which we have checked that the conditions of proposition 3.5 are

satisfied. The polynomials f1 and f2 have a zero of order 4 at x = 0. A

calculation shows that this order is preserved under a small perturbation of

Θ ∈ R5. For i ∈ {1, 2}, let us denote f := fi. We have that f(x) = x4g(x),

where g has no zeros on [0, 1], that is, ε := infx∈[0,1] |g(x)| > 0. We can make a

small perturbation of g by choosing g̃ such that |g− g̃|[0,1] < ε. If we consider
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f̃(x) := x4g̃(x), then we obtain that

|f̃(x)| = x4|g̃(x)| = x4|g(x)− (g(x)− g̃(x))|

≥ x4 ||g(x)| − |g(x)− g̃(x)|| (3.2.46)

> x4|ε− ε| = 0.

Hence, f̃ has no zeros on (0, 1]. It is also easy to check that x = 0 is not a

zero of the perturbation g̃:

|g̃(0)| = |g(0)− (g(0)− g̃(0))| ≥ ||g(0)|− |g(0)− g̃(0)|| > |ε−ε| = 0. (3.2.47)

It follows that the condition in proposition 3.5(i) is preserved under small

perturbations of Θ. Also conditions (ii) and (iii) are trivially preserved un-

der such perturbations. Hence by proposition 3.5, the monodromy of ξT is

unitarisable in a small neighborhood of Θ ∈ R5. Theorem 3.2 constructs a

five parameter family of trinoids with one irregular end.

3.2.6 Formal computation of the end weight at ∞

We conclude by formally computing the weight at the irregular end of our

trinoids. For our computations now, and also to use it in the next section, it is

convenient to compute the series expansion of the monodromy at λ = 1. We

do this in a general way in the next result. Let Φ be the solution of dΦ = Φξ,

Φ(z0) = 1 and M its monodromy with respect to the curve γ(s) = z0 e
is, with

s ∈ [0, 2π].

Proposition 3.7. Suppose there exists a gauge g with monodromy ±1 for

which

ξg = ξ.g = ξ0 + tξ1, ξ0 =

(
0 α

0 0

)
, ξ1 = β

(
a b

c d

)
, (3.2.48)

where

α = dz, β = h(z) dz t = −1

4
λ−1(λ− 1)2 = sin2 θ

2
(3.2.49)
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and the matrix in ξ1 is constant. Then, the series expansion of M with respect

to λ at 1 is of the form

M = ±1 +M2(λ− 1)2 + O
(
(λ− 1)3

)
, (3.2.50)

where M2 can be explicitly computed in terms of the coefficients of the series

expansion of h.

Proof. In order to find the monodromy series of M , we first consider Ψ =

Ψ0 + Ψ1t+ O (t2), the solution to the initial value problemdΨ = Ψξg,

Ψ(z0) = 1 ,
(3.2.51)

and let P = P0 +P1t+O (t2) be the monodromy of Ψ. From equation (3.2.51)

we obtain the expression

dΨ0 + dΨ1t+ O
(
t2
)

=
(
Ψ0 + Ψ1t+ O

(
t2
))

(ξ0 + ξ1t) , (3.2.52)

which allows us to find P0 and P1 by comparing the coefficients of t. Equa-

tion (3.2.52) yields

dΨ0 = Ψ0ξ0, Ψ0(z0) = 1, (3.2.53a)

d
(
Ψ1Ψ−1

0

)
= Ψ0ξ1Ψ−1

0 , Ψ1(z0) = 0, (3.2.53b)

where equation (3.2.53b) is found using equation (3.2.53a) in dΨ1 = Ψ0ξ1 +

Ψ1ξ0. The solution to (3.2.53a) is given by

Ψ0 =

(
1
∫
α

0 1

)
, (3.2.54)

where the integral goes along a path based at z0. Since
∫
α = z − z0, then∫

γ
α = 0 for γ(s) = z0 e

is, s ∈ [0, 2π]. Hence we find that P0 = 1. Equa-

tion (3.2.53b) can be solved by integrating

Ψ1Ψ−1
0 =

∫
Ψ0ξ1Ψ−1

0

=

∫
βΨ0

(
a b

c d

)
Ψ−1

0

=

∫
β

(
a+ c(z − z0) b− (z − z0)(a− d+ c(z − z0))

c d− c(z − z0)

)
.

(3.2.55)
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Suppose that the curve γ encloses a finite number of punctures z1, . . . , zn of

Σ. Then, by the Residue theorem,

P1 =

(∫
γ

(
Ψ0ξ1Ψ−1

0

))
P0 (3.2.56)

= 2πi

(∑
Res(β(a+ c(z − z0)), zk)

∑
Res(β(b− (z − z0)(a− d+ c(z − z0))), zk)∑

Res(βc, zk)
∑

Res(β(d− c(z − z0)), zk)

)
.

The series for M in equation (3.2.50) follows from the monodromy of g being

±1 and thus the relation between M and P given by M = ±g(z0)Pg−1(z0).

The last equation guarantees that Ψ(z0) = 1. Since the series expression for

P is in terms of t, one needs to use the relation between t and λ in order to

obtain the specific form of M2.

Let

ξ =

(
0 1

tQ 0

)
dz (3.2.57)

be a potential where Q is holomorphic on the circle |z| = 2 with Laurent series

Q =
∑∞

k=−∞ akz
k. The first few terms of the series of the monodromy M of

the solution of dΦ = Φξ, Φ(2) = 1 along the circle |z| = 2 are as follows.

Corollary 3.1. Let M be the monodromy of Φ with respect to the curve

γ(s) = 2 eis, s ∈ [0, 2π] for the trinoid potential ξT . Define λ = eiθ and let∑∞
k=0Mkθ

k be the series expansion of M along |z| = 2. Then M0 = 1, M1 = 0

and

M2 = 2πi

(
a−2

4
− a−1

2
a−2 − a−1 − a−3

4
a−1

4
a−1

2
− a−2

4

)
. (3.2.58)

Proof. By the gauge Λ := diag(λ1/2, λ−1/2) we obtain

ξ = ξT .(Λ
−1) = ξ0 + tξ1, ξ0 =

(
0 α

0 0

)
, ξ1 = β

(
0 0

1 0

)
, (3.2.59)

where

α = dz, β = Qt dz and t = −1

4
λ−1(λ− 1)2 = sin2 θ

2
. (3.2.60)

The proof follows by applying proposition 3.7 with z0 = 2 and the 1-forms

ξ0, ξ1 above. To obtain the explicit P1 from proposition 3.7, we integrate

E. Mota 79



CHAPTER 3. CMC SURFACES FROM HEUN’S DIFFERENTIAL
EQUATIONS

along the path γ enclosing the two regular singular points so, by the residue

theorem, we obtain

P1 =

(∫
γ

(
Ψ0ξ1Ψ−1

0

))
P0

= 2πi

(
a−2 − 2a−1 4a−2 − 4a−1 − a−3

a−1 2a−1 − a−2

)
.

(3.2.61)

The series for the monodromy M of Φ follows from Λ not having monodromy

and expressing the series in terms of θ as defined above.

The force associated to an element in the fundamental group [40, 9, 17] is

the matrix A ∈ su2 in the series expansion of the monodromy

M = 1 + Aθ2 + O
(
θ3
)

(3.2.62)

where λ = eiθ. The force is a homomorphism from the fundamental group to

su2
∼= R3. Its length |A| =

√
detA is the weight of the end.

Proposition 3.8. The weights of a trinoid constructed from ξT with param-

eters (w0, w1, r̂0, r̂1, p) at z = 0, 1,∞ are respectively w0, w1, w∞ where

w∞ =
π

8

√
(w0 + w1)2 + 8r̂0(w1 − 2r̂1)− 8r̂1w0. (3.2.63)

Proof. By corollary 3.1, the weight of the irregular end of a trinoid constructed

using its potential (3.2.31) is given by

π

2

√
a2
−2 − a−1a−3 (3.2.64)

where ak are the Laurent coefficients of Qt as before. The result follows by a

computation of these coefficients.

Remark 3.2. The three weights (lengths of the weight vectors) determine

the three weight vectors. In the case of all three ends being regular, a nec-

essary condition for the unitarisability of the monodromy comes from the

balancing formula [17, 54]: if the monodromy is unitary, the weight vectors

W0,W1,W∞ ∈ R3 satisfy W0+W1+W∞ = 0. The weights are wk = ±|Wk|. It

follows that |wi| ≤ |wj|+ |wk| for all permutations of (0, 1,∞). A counterex-

ample can be found in the presence of one irregular end: for the parameters

E. Mota 80



CHAPTER 3. CMC SURFACES FROM HEUN’S DIFFERENTIAL
EQUATIONS

(w0, w1, r̂0, r̂1, p) =
(

1
2
, 1

4
, 1

4
, 17

128
, 1

8

)
the resulting monodromy is unitarisable,

but the balancing formula does not hold for all permutations of (0, 1,∞).

This counterexample means that the relation between the weight and the

monodromy only holds for regular ends and so equation (3.2.63) just gives a

formal way of computing the end weight at ∞.

However, Smyth and Tinaglia showed in [55] a very general computation of

the force and torque 1-forms on an immersed CMC surface. If ω is the 1-form

defined on Σ by

ω = (H f +N)× df, (3.2.65)

where H is the mean curvature, f is the immersion with differential df and

N its oriented normal, then one can check that ω is a closed 1-form on Σ. By

Stokes’ theorem one obtains that

Wi =

∫
γi

ω (3.2.66)

with γi the oriented loop around one of the punctures. This is the force of

the component γi defined in [55] that corresponds to the general definition of

an end weight of a CMC surface. One can check also by Stokes’ theorem that

with this definition the balancing
∑
Wi = 0 holds.
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Figure 3.3: Trinoids with one irregular end and two Delaunay ends. The first surface has equal

regular ends, while the second one has two different regular end weights. The parameters (w0, w1, r̂0, r̂1, p)

used to construct each of them are
(

1√
2
, 1√

2
,− 1

6
, 1
6
, 1
6

)
, and

(
1
2
, 1
4
, 1
4
, 17
128

, 1
8

)
.
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3.3 Cylinders with two irregular ends

In the present section we show how the DCHE can be used to construct

CMC cylinders. In order to unitarise the monodromy matrix, we identify one

symmetry in our potential and we impose a second symmetry by eliminat-

ing one of the parameters inherited from the DCHE. These symmetries yield

symmetries in the monodromy that happens to have equal real elements on

its diagonal. This allows us to define a diagonal unitariser on all of S1, by a

theorem in the paper of Schmitt, Kilian, Kobayashi, and Rossman [54]. In

the work of Kilian and Schmitt [36], similar techniques are used to construct

CMC cylinders with two irregular ends parametrized by a holomorphic func-

tion. Our cylinders are the subclass of these that emerge from the DCHE.

Let us recall the form of the DCHE,

y′′ + α
(
1 + 1

z2

)
y′ +

((
β1 + 1

2

)
α
z

+
(
α2

2
− γ
)

1
z2

+
(
β−1 − 1

2

)
α
z3

)
y = 0. (3.3.1)

First, let us find a suitable potential for this ODE which has irregular sin-

gularities at z = 0 and z = ∞ and no other singularities. Setting Σ = C∗,
we can choose functions ν and ρ for an off-diagonal potential so that the

DCHE becomes the associated ODE for the initial value problem (1.2.16). In

particular, taking the functions

ν := e
α
z
−αz and

ρ :=
eαz−

α
z (2γz − α(2β−1 + z(α + 2β1z + z)− 1))

2z3
,

(3.3.2)

and plugging them into equation (1.4.3), one obtains the DCHE and thus

prescribes this ODE in the algorithm for CMC surfaces seen in section 1.2.

In particular, the potential we are going to work with is

ξ1 =

(
0 e

α
z
−αz

eαz−
α
z (2γz−α(2β−1+z(α+2β1z+z)−1))

2z3
0

)
dz. (3.3.3)

3.3.1 The potential for cylinders

Next let us introduce our choice of holomorphic potential to construct

CMC cylinders from the DCHE. The form of the potential guarantees that
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the extrinsic closing conditions equation (1.2.31b) and equation (1.2.31c) for

the immersion will be satisfied, as we will show in the next part of this chapter.

The unitarisation of the monodromy that solves equation (1.2.31a) is deferred

to section 3.3.3.

The potential for our construction on C∗ is of the form

ξC =

(
0 λ−1

1
4
λ+ (λ− 1)2Q(z) 0

)
dz

z
, (3.3.4)

where

Q(z) =

(
rz2

4
+

s

2z
+ u+

wz

2
+

r

4z2

)
. (3.3.5)

The 4 umbilic points of the resulting surfaces will be located at the zeroes of

Q(z).

Next we show how to obtain the potential in (3.3.4) from the potential ξ1

above.

Note that for

g1 =

 (
e
α
z
−αz)1/2

0
α(z2+1)

2z2(e
α
z −αz)

1/2

(
e
α
z
−αz)−1/2

 , g2 =

(
z1/2 0

−1
2
z−1/2 z−1/2

)
. (3.3.6)

the gauge ξ1.(g1g2) gives

ξ =

(
0 1

α2+α2z4−2z3(2αβ1+α)+(4γ+1)z2−2z(2αβ−1+α)
4z2

0

)
dz

z
. (3.3.7)

Setting α :=
√
r
√
τ , β1 := −

√
r+w
√
τ

2
√
r

, β−1 := −
√
r+s
√
τ

2
√
r

and γ := uτ for

τ = λ−1(λ− 1)2 (note that the parameters must depend on λ) and using the

gauge Λ = diag(λ1/2, λ−1/2) we obtain the potential ξC in (3.3.4).
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Figure 3.4: Cylinders with two irregular ends. The parameters r, s, u used to construct

each of them are
(

1
25 , 0,

1
16

)
, and

(
1
32 ,

1
12 ,−

1
8

)
.

3.3.2 Series expansion of the monodromy and closing

conditions

Let Φ be the solution of dΦ = Φξ, Φ(1) = 1 and M its monodromy with

respect to the curve γ(s) = eis, with s ∈ [0, 2π]. The first terms of the series

expansion of M at λ = 1 can be computed in terms of the parameters r, s, u, w

of the potential (3.3.4) as follows.
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Corollary 3.2. The series expansion of M with respect to λ at 1 is given by

M = −1 +M2(λ− 1)2 + O
(
(λ− 1)4

)
, (3.3.8)

with

M2 =
πi

2

(
1 −1

1/2 1/2

)(
−4u 2s

−2w 4u

)(
1 −1

1/2 1/2

)−1

. (3.3.9)

Proof. Consider the gauge

g :=

(
λ−1/2 0

0 λ1/2

)(
z−1/2 0

0 z1/2

)(
1 0

1/2z 1

)(
1 −1

0 1

)
. (3.3.10)

This gauge transforms the potential ξC into

ξg = ξC .g = ξ0 + tξ1, ξ0 =

(
0 α

0 0

)
, ξ1 = β

(
1 −1

1 −1

)
, (3.3.11)

where

α = dz, β = −4Q(z)

z2
dz and t = −1

4
λ−1(λ− 1)2 = sin2 θ

2
. (3.3.12)

The proof follows by applying proposition 3.7 with z0 = 1 and the 1-forms

ξ0, ξ1 above. To obtain the explicit P1 from proposition 3.7, we integrate along

the path γ enclosing 0 so, by the residue theorem, we conclude that

P1 =

(∫
γ

(
Ψ0ξ1Ψ−1

0

))
P0 = 2πi

(
−4u 2s

−2w 4u

)
. (3.3.13)

The series for M in equation (3.3.8) follows from g having monodromy −1,

the relation M = −g(1)Pg−1(1) and using the relation between t and λ.

Corollary 3.2 solves the closing conditions in equation (1.2.31b) and equa-

tion (1.2.31c). It turns out that in order to unitarise, we will need a Taylor

series expansion for the trace of the monodromy. We compute it in the next

result.

Theorem 3.4. The trace of the monodromy has a Taylor expansion about

λ = 1 of the form

trM = −2− ζ(λ− 1)4 + O
(
(λ− 1)6

)
. (3.3.14)
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Proof. For the potential ξC , let us replace Q with xQ for x > 0 and consider

the gauge

ξ = ξC .g =

(
0 1

λ−1(λ− 1)2 x Q
z2

0

)
dz (3.3.15)

where

g :=

(
λ−1/2 0

0 λ1/2

)(
z−1/2 0

0 z1/2

)(
1 0

1/2z 1

)
. (3.3.16)

Consider M̂ the monodromy associated to dΦ = Φξ, and note that M = −M̂
due to the monodromy of g being −1. To obtain the Taylor series of M̂

at λ = 1 we differentiate dΦ = Φξ with respect to λ and arrive at the

inhomogeneous equation dΨ = Ψξ+Φ∂λξ for Ψ := ∂λΦ. The ansatz Ψ = C Φ

and variation of parameters gives

C(z̃, λ) =

∫ z̃

0

Φ ∂λξ Φ−1 = x (1− λ−2)

∫ z̃

0

Φ

(
0 0

Q/z2 0

)
dzΦ−1. (3.3.17)

Consequently ∂λΦ(z̃, λ) = C(z̃, λ) Φ(z̃, λ). Since M̂ = Φ(2π, λ) we obtain

∂λM̂ = C(2π, λ) M̂. (3.3.18)

Clearly C(z̃, 1) ≡ 0 and from tr C(z̃, λ) = 0 it follows that tr ∂nλ C(z̃, λ) = 0

for all n ∈ N. The coefficients of the quadratic and cubic terms in the Taylor

series have no trace since

∂2
λM̂
∣∣∣
λ=1

= ∂λC(2π, λ)|λ=1 and ∂3
λM̂
∣∣∣
λ=1

= ∂2
λC(2π, λ)

∣∣
λ=1

. (3.3.19)

Computing the fourth derivative gives

∂4
λM̂
∣∣∣
λ=1

= ∂3
λC(2π, λ)

∣∣
λ=1

+ 3 (∂λC(2π, λ)|λ=1)2 (3.3.20)

Hence the trace in ∂4
λM̂
∣∣∣
λ=1

comes from (∂λC(2π, λ)|λ=1)2, which we compute

next. The n-th derivative with respect to λ for n ≥ 2 of the potential is

∂nλξ = (−1)nxn!λ−n−1

(
0 0

Q/z2 0

)
dz (3.3.21)
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and

∂λC(2π, λ) =

∫ 2π

0

∂λΦ ∂λξ Φ−1 + Φ ∂2
λξ Φ−1 − Φ ∂λξ Φ−1∂λΦ Φ−1 (3.3.22)

Using ∂λξ|λ=1 = 0 and Φ(z̃, 1) =

(
1
∫ z̃

0
dz

0 1

)
gives

∂λC(2π, λ)|λ=1 =

∫ 2π

0

Φ ∂2
λξ Φ−1

∣∣
λ=1

= 2x

∫
2π

0

 Q
z2

∫ z̃
0
dz − Q

z2

(∫ z̃
0
dz
)2

Q
z2

− Q
z2

∫ z̃
0
dz

 dz

(3.3.23)

and consequently ζ := tr ∂4
λM̂
∣∣∣
λ=1

= tr (∂λC(2π, λ)|λ=1)2, using the Cayley-

Hamilton theorem, is given by

ζ = 8x2

[(∫ 2π

0

[
Q

z2

∫ z̃

0

dz]dz

)2

−
(∫ 2π

0

Q

z2
dz

)(∫ 2π

0

[
Q

z2
(

∫ z̃

0

dz)2]dz

)]
.

(3.3.24)

Thus, using equation (3.3.24), corollary 3.2 and the fact that M = −M̂ , the

trace of the monodromy M has a Taylor series expansion about λ = 1 of the

form trM = −2− ζ(λ− 1)4 + O ((λ− 1)6), completing the proof.

A simple calculation gives the value of ζ in terms of the parameters in Q,

obtaining that

trM = −2 +
(
8x2π2(4u2 − sw)

)
(λ− 1)4 + O

(
(λ− 1)6

)
. (3.3.25)

A condition on the parameters appearing in equation (3.3.25) will be imposed

later in order to guarantee unitarisability.

It is straightforward to check that the closing conditions are preserved by

dressing, so they are still satisfied after unitarisation. Thus, it remains only

to solve the unitarisation in equation (1.2.31a), which we do in the next

sections.
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3.3.3 Unitarisation of the monodromy

For the CMC immersion to close, it is left to show how to solve the uni-

tarisation problem in equation (1.2.31a). Employing similar techniques as

those in [36, 54] we construct a diagonal unitariser for M smooth on all S1.

Once the monodromy is pointwise unitarisable on S1 then our unitariser can

be constructed. In order to use this unitarisation criteria, we will need to

impose a condition on our potential, which will give us an extra symmetry in

the resulting surface.

We will use without proof (see section A.4.1 for a proof) the well-known fact

that a matrix M ∈ SL2(C)\{±1} is unitarisable if and only if trM ∈ (−2, 2).

We give now conditions for an element M ∈ SL2(C)\{±1} being unitarisable

by a diagonal element of SL2(C) (see also lemma A.8 for a non-loop version

of the result).

Proposition 3.9. M =

(
a b

c d

)
∈ C∞ (Ar, SL2(C)) is unitarisable for some

r ∈ (0, 1] by a diagonal matrix if and only if d = ā and |a|2 ≤ 1.

Proof. Let D = diag(ρ, ρ−1) such that DMD−1 =

(
a ρ2b

ρ−2c d

)
is unitary.

Then d = ā and ρ−2c = −ρ2b. As both summands in detM = aā+(ρρ̄)2bb̄ = 1

are non-negative and real, we conclude aā = |a|2 ≤ 1.

Conversely, let d = ā and aā ≤ 1. Then detM = 1 implies that bc ∈ [−1, 0]

and hence
√
bc ∈ i[0, 1]. Thus

√
bc = −

√
bc or equivalently

√
c̄/b = −

√
c/b̄.

Setting ρ =
(
−c/b̄

)1/4
, then ρ̄ = −ρ and D = diag(ρ, ρ−1) unitarises M away

from the set I = {λ ∈ Ar : M(λ) = ±1}.

If under certain conditions a monodromy representation of an ODE is

unitarisable pointwise on S1, then by [54, Theorem 4] the monodromy is

unitarisable by a dressing matrix on an r-circle, which is analytic in λ. Hence,

using proposition 3.9, we deduce the following result.

Proposition 3.10. If M : S1 → SL2(C) is pointwise unitarisable by a diag-

onal element except at finitely many points on S1, then there exists a holo-

morphic map D defined in the open disk D1 with values in the subgroup of
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diagonal elements of SL2(C), which r-unitarises M for every r ∈ (0, 1).

3.3.4 Main theorem. Construction of cylinders

With this section we conclude the construction of cylinders with irregular

ends from the DCHE. To do so, we will apply the unitarisation theory shown

in section 3.3.3, and for this we need to impose the condition s = w in the

parameters of the potential (3.3.4). Under this assumption, for σ(z) = z̄ and

χ(z) = 1/z̄, we have that

Q = σ∗Q and Q = χ∗Q. (3.3.26)

Note that the second symmetry in equation (3.3.26) would not hold without

the assumption of s = w, so henceforth we only consider these two parameters

being equal. With these symmetries, we will show that the monodrmy has

real trace along S1 and furthermore, under the condition 4u2 − s2 > 0, the

trace of M along S1 will be shown to be increasing from −2 at the point

λ = 1. Note that this condition comes from our computation of the trace of

M in equation (3.3.25) and that the parameters in figures 3.4 and 3.5 satisfy

it. Then, a technique used in [32] and [36], that consists of re-scaling the

potential

ξx =

(
0 λ−1

1
4
λ+ (λ− 1)2 xQ(z) 0

)
dz

z
(3.3.27)

by some small enough x > 0, ensures that the trace of M remains in [−2, 2]

for all λ ∈ S1. In this way, M is pointwise unitarisable by a diagonal matrix

and proposition 3.10 gives a smooth unitariser for M .

Theorem 3.5. Assume that 4u2− s2 > 0. For a small enough x > 0, ξx con-

structs via the generalised Weierstrass representation a family of CMC cylinders

with irregular ends arising from the DCHE with four umbilic points located at

the roots of Q.
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Figure 3.5: Cylinders with two irregular ends. The parameters r, s, u used to construct

each of them are
(
− 1

64 ,−
1
2 ,−

1
2

)
, and

(
1
64 ,−

1
12 ,

1
2

)
.

Proof. Consider Φx a solution of dΦx = Φxξx, Φx(1, λ) = 1, and let Mx be its

monodromy matrix along the circle |z| = 1. By corollary 3.2 the conditions

Mx|λ=1 = ±1 and d
dλ
Mx

∣∣
λ=1

= 0 for the resulting surfaces to close are satis-

fied for all x > 0.

Let Λ = diag(λ, 1/λ) and h = (i,−i). The symmetries on Q given in equa-

tion (3.3.26) imply that our scaled potential has the symmetries

ξx = Λ−1σ∗ξx(1/λ̄)Λ and ξx = Λ−1hχ∗ξx(1/λ̄)h−1Λ. (3.3.28)

Naturally, the transformation σ∗Φx(1/λ̄) =: Ψ defines a solution to the dif-
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ferential equation dΨ = Ψ
(
σ∗ξx(1/λ̄)

)
, which in view of the first symmetry

in (3.3.28) reads dΨ = Ψ (Λ ξx Λ−1), that is,

d (ΨΛ) = (ΨΛ) ξx. (3.3.29)

Since any two solutions of this equation differ by a factor that is constant in

z, that is by a matrix R in the loop group of SL2(C) we conclude that Φx has

the symmetry

RΦx = σ∗Φx(1/λ̄)Λ, (3.3.30)

where R does not depend on z. Similarly, using the second symmetry in

(3.3.28), we obtain that

SΦx = χ∗Φx(1/λ̄)h−1Λ, (3.3.31)

for some z-independent S. Evaluation at the fixed point z = 1 of σ and χ

gives R = Λ and S = h−1Λ. These symmetries induce symmetries on the

monodromy, namely

Mx(λ) = Λ−1Mx(1/λ̄)
−1

Λ, (3.3.32a)

Mx(λ) = Λ−1hMx(1/λ̄)h−1Λ, (3.3.32b)

where equation (3.3.32a) is deduced using that, for a deck transformation on

the universal cover C, its composition with σ is equal to the composition of

σ with the opposite deck transformation and that monodromies with respect

to opposite deck transformations are inverses of each other.

Putting together the symmetries in equations (3.3.32) one gets that Mx has

real diagonal elements on S1 which are equal to each other, and thus it has

real trace on S1.

Let M = M1 and t = −1/4λ−1(λ−1)2 as before. The assumption 4u2−s2 > 0

together with theorem 3.4 implies that t = 0 is a local minimum of trM .

Hence, there exists x0 ∈ (0, 1] such that trM ≤ 2 for t ∈ [0, x0). It follows

that trMx0 ∈ (−2, 2) for λ ∈ S1 \ {1} and is therefore unitarisable there.

Note that, since the diagonal elements of M are equal and real on S1 and

trM ∈ (−2, 2) for λ ∈ S1 \ {1}, then their product is less than 1. Hence by
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proposition 3.9 and proposition 3.10 there exists a mapD such thatDMD−1 is

unitary in all S1. The closing conditions are still satisfied after unitarising.

Very similar computations as those in section 3.2.6, allow one to find the

weight at ∞ for the cylinders constructed in theorem 3.5, which is given by

w∞ = 2π
√

4u2 − s2. (3.3.33)

As already discussed in section 3.2.6, these are just formal computations that

are valid only in the case of regular ends.

3.4 Perturbed Delaunay cylinders with one

irregular end

In the spirit of the recent work [43], our goal is to employ a second or-

der ODE, the BHE, to find a new family of perturbed Delaunay cylinders

with constant mean curvature. In [43], the differential equation considered is

the Bessel equation, which shares with the BHE the singularities’ behaviour:

they both have one regular singularity at z = 0 and one irregular singular-

ity at z = ∞ of rank 2. Thus, we aim to find a family of CMC surfaces

with one asymptotically Delaunay end and one irregular end, corresponding

respectively to the regular and irregular singularities in the BHE. The first

step in the construction, as in the previous sections, is to write down a suit-

able potential ξ. The fact that one of the ends of the surfaces is asymptotic

to half a Delaunay surface follows because at this end ξ is a perturbation of

the potential of a Delaunay surface, which is proved in the work of Kilian,

Rossman and Schmitt [35].

Since our Riemann surface Σ will be now the twice-punctured Riemann sphere,

it will be enough to guarantee closing conditions at the Delaunay end in order

to solve the period problem.

Let us first show how the BHE can be encoded in our potential. Let Σ = C∗

be the punctured complex plane. We want to find functions ν and ρ so that
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the BHE

y′′ +

(
α + 1

z
− β − 2z

)
y′ +

(
γ − α− 2− 1

2z
(β(α + 1) + δ)

)
y = 0 (3.4.1)

appears in a holomorphic off-diagonal potential in Σ. With this purpose we

pick

ν := z−α−1ez(z+β) and

ρ :=
1

2
zαe−z(z+β) (2z(α− γ + 2) + αβ + β + δ) .

(3.4.2)

Plugging ν and ρ into equation (1.4.3), one obtains the BHE and, in particular,

prescribes this ODE in the initial value problem of the generalised Weierstrass

representation for CMC surfaces. For later use, we consider an off-diagonal

potential with ν and ρ the entries of the secondary diagonal,

ξ0 =

(
0 z−α−1ez(z+β)

1
2
zαe−z(z+β) (2z(α− γ + 2) + αβ + β + δ) 0

)
dz. (3.4.3)

3.4.1 Perturbed Delaunay potential

Constructing CMC surfaces with two ends via the BHE is done in the

following two steps:

• Write down a potential on C∗ which prescribes the BHE as associated

ODE and which is locally gauge-equivalent to a perturbation of a De-

launay potential at z = 0.

• Solve the period problem for the monodromy representation M (to be

done in section 3.4.2).

Let us begin by writing down the potential which will be used to produce

cylinders with one irregular end and one asymptotic Delaunay end. Near the

puncture z = 0 the potential is a local perturbation of a Delaunay potential

via gauge equivalence.

Let Σ = C∗ and let r ∈ (−∞, 1) \ {0}, and s, u, w ∈ R. Define the sl2(C)-

valued potential by

ξPD =

(
0 λ−1

λz2 + λQt 0

)
dz, (3.4.4)
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where

Qt = t
(
− r

4z2
+

s

2z
+
w

4
+
uz

2

)
(3.4.5)

and t := −1/4λ−1(λ− 1)2, for all λ ∈ S1.

Let us show now that the potential in (3.4.3) with associated second order

ODE the BHE, is gauge-equivalent to the potential ξPD defined above. Then,

we will also prove that ξPD is a perturbed Delaunay potential.

Note that for

g0 =

(z−α−1ez(z+β)
)1/2

0
1+α−z(2z+β)

2z(z−α−1ez(z+β))
1/2

(
z−α−1ez(z+β)

)−1/2

 . (3.4.6)

the gauge ξ0.g0 gives the simple potential

ξ =

(
0 1

α2−1
4z2

+ δ
2z

+ 1
4

(β2 − 4γ) + zβ + z2 0

)
dz. (3.4.7)

Defining

α :=
√

1− rt, δ := st, β :=
u

2
t and γ :=

1

16

(
u2t− 4w

)
t, (3.4.8)

and using the gauge Λ = diag(λ1/2, λ−1/2) we obtain the constructing potential

ξPD in (3.4.4).

Lemma 3.2. Let ξPD be the potential defined above. Then there exists a

neighbourhood U of z = 0 and a positive gauge g such that the expansion of

ξPD.g is

A
dz

z
+ O

(
z0
)
dz, (3.4.9)

for A a Delaunay residue. That is, ξPD is gauge-equivalent to a perturbed

Delaunay potential.

Proof. Let

gz =

(
z1/2 0

0 z−1/2

)
, gr =

(
1 0

−1
2
λ a+ bλ

)
. (3.4.10)

For the real values a = 1
4

(
1 +
√

1− r
)

and b = 1
4

(
1−
√

1− r
)
, one gets that

the gauged potential ξPD.(gzgr) has a simple pole at z = 0 and is of the form(
1/2 1/λ

−λ
4
(aλ+ b)(a+ bλ) −1/2

)
dz

z
+ O

(
z0
)
dz. (3.4.11)
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Note that, since r ∈ (−∞, 1) \ {0}, both a, b ∈ R and also a + b = 1/2.

Thus, the last potential can be easily gauged to obtain a Delaunay residue

by considering gab =

(
1 0

−λ/2 a+ bλ

)
. Therefore, ξPD is gauge-equivalent to

the perturbed Delaunay potential(
0 1

4

(
1 +
√

1− r
)
λ−1 + 1

4

(
1−
√

1− r
)

1
4

(
1 +
√

1− r
)
λ+ 1

4

(
1−
√

1− r
)

0

)
dz
z

+ O (z0) dz, (3.4.12)

for the gauge g = gzgrgab.

Figure 3.6: Perturbed Delaunay surfaces with one Delaunay end and one

irregular end. The parameters r, s, u, w used to construct each of them are(
1
2 ,

1
2 ,−

1
8 ,

1
8

)
, and

(
− 1

4 ,−
1
8 ,

1
2 ,

1
5

)
.

3.4.2 Closing periods and main result

Since the fundamental group of the twice-punctured Riemann sphere has

only 1 generator, we just need to solve the monodromy problem at z = 0.

Consider the differential equation dΦ = ΦξPD. Since ξPD is a perturbed

Delaunay potential, the zAP lemma 1.7 assures that under certain conditions

on the eigenvalues of A, there exists a solution in a neighbourhood of z = 0 of
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the form Φ0 = zAP with A the Delaunay residue of the perturbed potential,

such that P (0, λ) = 1. It is easy to check that, restricting our choice of r to

r ∈ (−∞, 1) \ Z≤0, we avoid the resonance points of A (see lemma 1.7).

Then, Φ0 = zAP and taking as initial value Φ(1) = P (1), the monodromy of

Φ0 around z = 0 is given by

M(λ) = exp(2πiA) = cos(2πµ)1 +
1

µ
sin(2πµ)A, (3.4.13)

where ±µ are the eigenvalues of A, whose squares are given by

µ(λ)2 = − detA = a2 + b2 + abλ−1 + abλ =
r

16
λ+

2− r
8

+
r

16
λ−1. (3.4.14)

Thus, since a + b = 1
4

(
1 +
√

1− r
)

+ 1
4

(
1−
√

1− r
)

= 1/2, M is unitary

for all λ ∈ S1 and (1.2.31a) is solved. As a consequence, also the closing

conditions (1.2.31b) and (1.2.31c) hold, so the immersion will factor through

the fundamental group.

Theorem 3.6. Let Σ = C∗ and let r ∈ (−∞, 1) \ Z≤0. Then, there exists

a conformal CMC immersion f : Σ → R3 with one end asymptotic to half a

Delaunay surface and one irregular end.

Proof. Let ξPD be a potential as in (3.4.4). A local solution Φ in a neigh-

bourhood of z = 0 of the initial value problem dΦ = ΦξPD, Φ(1) = P (1)

can be found with the zAP lemma. Let M be the monodromy of Φ around

the puncture z = 0. By equation (3.4.13) and the subsequent remarks, M

is unitary for all λ ∈ S1, M(1) = −1 and ∂λM |λ=1 = 0, so the monodromy

problem is solved.

Then, the general Weierstrass representation constructs a CMC immersion f

in R3 which has two ends corresponding to the singularities from the BHE. By

lemma 3.2, the potential is locally gauge-equivalent to a Delaunay potential

and thus, by the asymptotics theorem of Kilian, Rossman and Schmitt, [35,

Theorem 5.9], the end at z = 0 is asymptotic to half a Delaunay surface.
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Figure 3.7: Perturbed Delaunay surfaces with one Delaunay end and one

irregular end. The parameters r, s, u, w used to construct each of them are(
1
3 ,

1
3 ,

1
3 , 0
)
, and

(
− 1

2 ,
1
2 , 0,

1
2

)
.

3.5 CMC surfaces with the topology of the

plane

We finish this chapter constructing the last family of CMC surfaces for

Heun’s Differential Equations. The last equation to consider in our pro-

gramme is the THE. Recall that this equation is defined in Σ = C and is

of the form

y′′ −
(
γ + 3z2

)
y′ + (α + (β − 3)z) y = 0. (3.5.1)

This equation can be encoded in a potential by finding the appropriate func-

tions ν and ρ such that equation (1.4.3) turns into the THE. By easy compu-

tations we get a potential that encodes this second order differential equation.

Pick
ν := ez

3+γz and

ρ := −e−z(z2+γ) (α + (β − 3)z) ,
(3.5.2)
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Figure 3.8: CMC surfaces with the topology of the plane. The parameters r, s, u used

to construct each of them are
(
1
3 ,

1
3 ,

1
3

)
, and

(
− 1

3 ,
1
3 ,

1
8

)
.
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so that

ξ0 =

(
0 ez

3+γz

−e−z(z2+γ) (α + (β − 3)z) 0

)
dz (3.5.3)

is a potential that carries the THE.

Consider now the loop

g0 =


(
ez

3+zγ
)1/2

0

− 3z2+γ

2(ez3+zγ)
1/2

(
ez

3+zγ
)−1/2

 . (3.5.4)

We can simplify ξ0 by employing this gauge, obtaining

ξ = ξ0.g0 =

(
0 1

1
4

(9z4 + 6γz2 − 4βz + γ2 − 4α) 0

)
dz. (3.5.5)

Let us pick now the following correspondences for the parameters in the THE,

in order to have a constructing potential:

α :=
1

36

(
u2t2 − 9st

)
, β := −rt, and γ :=

u

3
t, (3.5.6)

where t := −1/4λ−1(λ− 1)2 for λ ∈ S1.

With these choices, and transforming ξ by the gauge Λ = diag(λ1/2, λ−1/2),

a potential for the THE is obtained which can be used in the generalised

Weierstrass representation. The potential is

ξP =

(
0 λ−1

9
4
z4λ+ λQt 0

)
dz, (3.5.7)

where

Qt = t
(u

2
z2 + rz +

s

4

)
. (3.5.8)

Consider a solution on Σ = C to dΦ = ΦξP , with Φ(0) = 1. Since C is

contractible, any loop can be contracted into a point, so the monodromy is

trivial. In other words, the only singularity of the system lives at ∞, so

every solution Φ can be analytically continued along any path on Σ, and the

immersion f induced by it will be well-defined on every closed loop in Σ.
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Theorem 3.7. Let Σ = C and let r, s, u ∈ C not all of them zero. Then,

the potential ξP constructs via the generalised Weierstrass representation a

CMC plane arising from the Triconfluent Heun Equation.

Figure 3.9: CMC surfaces with the topology of the plane. The parameters r, s, u used

to construct each of them are
(
1
4 ,−

1
3 ,

1
8

)
, and

(
1
4 , 0,

1
32

)
.
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Constant mean curvature

surfaces with symmetries

Throughout this chapter we explore some symmetries appearing in the

surfaces constructed in chapter 3. We prove that these symmetries in the

resultant surfaces can be tracked to the level of the potentials, which are

transformed under automorphisms on the domain.

First we prove results that allow us to identify these symmetries in the sl2(C)

potentials, and then we investigate which of our potentials from chapter 3

that construct CMC surfaces satisfy them.

Let Iso3(R) denote the isometry group of R3, that is, the group of all bijective,

distance-preserving maps of R3 with respect to the standard Euclidean metric.

The elements of this group, also referred to as Euclidean motions on R3, are

of the form

x 7→ φ(x) := Ax+ b, (4.0.1)

where A denotes a real orthogonal 3×3 matrix, and b denotes a vector in R3.

Thus, the elements of Iso3(R) are composed of an orthogonal transformation

(which describe rotations in the space, see chapter A), and a translation.

Moreover, the isometries preserve orientation on R3 if and only if the matrix

A has detA = 1, that is, when A ∈ SO3. On the other hand, an isometry φ

reverses orientation if and only if detA = −1, i.e., if and only if A ∈ O3 \SO3.

Given a conformal CMC immersion f : Σ→ R3 we define the symmetry group
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of f by

S(f) := {φ ∈ Iso3(R) | φ(f(Σ)) = f(Σ)}. (4.0.2)

The immersion f is said to be symmetric with respect to the Euclidean motion

φ ∈ Iso3(R) if and only if φ ∈ S(f). In other words, we say that φ is a

symmetry of the CMC immersion f .

A transformation φ is an involution if φ2 = id but φ 6= id. The following

proposition holds for elements of Iso3(R) that are involutions.

Proposition 4.1. The involutory isometries are the reflections and the half-

turns (rotations by π) and the central symmetry with respect to the origin.

In what follows, to lighten notation, we may denote the dependence on

λ at the different levels of the generalised Weierstrass representatoin with a

subscript, that is,

ξλ = ξ(z, λ),

Φλ = Φ(z, λ),

Fλ = F (z, λ).

(4.0.3)

Also, in order to simplify computations, let us consider the Sym-Bobenko

formula of a immersion induced by a frame F given by

Sym[Fλ] =
−1

2H
iλ(∂λF )F−1. (4.0.4)

We are omitting the normal term of the formula, which gives the parallel

CMC surface.

4.1 Surfaces with a reflectional symmetry

Consider the orientation reversing automorphism of Σ given by σ(z) = z̄.

It defines a symmetry that reflects the domain across the real axis. We prove

the following

Theorem 4.1. Consider a Λ−1sl2(C)-potential ξ that generates via the Weier-

strass representation a CMC family of immersions fλ. Suppose that ξ satisfies

the symmetry

σ∗ξλ̄ = ξλ. (4.1.1)

E. Mota 103



CHAPTER 4. CONSTANT MEAN CURVATURE SURFACES WITH
SYMMETRIES

Then, the induced immersion σ∗fλ̄ possesses a reflective symmetry by a plane.

Proof. Let Φλ be the solution of the initial value problem dΦλ = Φλξλ, with

Φλ(z0) = Φ0 and let us assume that z0 is a fixed point of σ and that Φ0 ∈
Λ∗SL2(C). The transformation σ∗Φλ̄ =: Ψ defines a solution to the differential

equation dΨ = Ψ
(
σ∗ξλ̄

)
, which in view of the symmetry in (4.1.1) reads

dΨ = Ψξλ. (4.1.2)

Since any two solutions of this equation differ by a factor that is constant in

z, that is by a matrix Rλ ∈ ΛSL2(C), we see that Φλ has the symmetry

RλΦλ = σ∗Φλ̄, (4.1.3)

for some z-idependent Rλ.

Evaluation at the fixed point z0 of σ, using equation (4.1.3), yields

Rλ = Φ0(λ̄) Φ0(λ)−1. (4.1.4)

Since Φ0 ∈ Λ∗SL2(C), then one gets that Rλ is unitary for all λ ∈ S1.

Let us write the Iwasawa splittings Φλ = FλBλ and

σ∗Fλ̄ σ
∗Bλ̄ = σ∗Φλ̄ = RλΦλ = RλFB. (4.1.5)

The uniqueness of this splitting allows us to identify unitary and positive

parts respectively, giving

σ∗Fλ̄ = RλFλ. (4.1.6)

This implies that, using the generalised Weierstrass representation, σ∗ξλ̄ pro-

duces on the one hand the family of immersions given by plugging σ∗Fλ̄ in the

Sym-Bobenko formula (4.0.4) and on the other hand the one obtained using

RλFλ in equation (4.0.4). Consequently, these two surfaces coincide.

At the level of the immersion f := Sym[Fλ] = −1
2H
iλ(∂λF )F−1, the symmetry
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(4.1.6) of the unitary frame appears in the Sym-Bobenko formula as follows:

Sym
[
σ∗Fλ̄

]
=
−1

2H
iλ
(
∂λσ∗Fλ̄

) (
σ∗Fλ̄

)−1

=
−1

2H
iλ (∂λ(RF )) (RF )−1

=
−1

2H
iλ
(
R′R−1 +RF ′F−1R−1

)
=
−1

2H
iλ
(
R′R−1 +Rf R−1

)
,

(4.1.7)

where in the last steps of (4.1.7) we introduce the prime notation for the

derivative ∂λ.

The right hand side of equation (4.1.7) has the form of a rigid motion of

f . It is left to prove that this symmetry is a reflection. To do so, we show

that the transformation is an involution. That is, if we started again from

the level of the potential applying all the above symmetries at each step, we

would recover again the immersion f . This follows from the fact that all

three transformations λ 7→ λ̄, σ and conjugation are involutions. Therefore

reapplying them again at the level of the potential, that is in equation (4.1.1),

gives the same relation, meaning that we recover the surface produced by the

potential ξλ, which is f . That is, this symmetry is an involution. Since it is

orientation reversing, by proposition 4.1, this symmetry must be a reflection

which fixes the ends at z = 0 and z =∞.

In the light of theorem 4.1, we obtain as direct consequence symmetries in

surfaces constructed in chapter 3. Consider a solution Φ of the initial value

problem dΦ = Φξ, with Φλ(z0) = Φ0 and Φ0 ∈ Λ∗SL2(C) diagonal. Under

this assumption, we conclude the following

Corollary 4.1. For ξ = ξT , the surfaces constructed in theorem 3.2 have a

reflection plane that fixes the ends at 0 and ∞.

Corollary 4.2. For ξ = ξC, the surfaces constructed in theorem 3.5 have a

reflection plane that fixes the ends at 0 and ∞.

Corollary 4.3. For ξ = ξPD, the surfaces constructed in theorem 3.6 have a

reflection plane that fixes the ends at 0 and ∞.
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Corollary 4.4. For ξ = ξP with parameters r, s, u ∈ R, the surfaces con-

structed in theorem 3.7 have a reflection plane that fixes the ends at 0 and

∞.

The proofs follow straightaway by checking for each potential that sym-

metry in (4.1.1) holds.

4.2 Surfaces with a rotational symmetry

In this part we look at the automorphism of Σ given by µ = 1/z, which is

an inversion followed by a reflection through the real axis. In a similar way

as with the other symmetry in theorem 4.1, we prove the following

Theorem 4.2. Consider a Λ−1sl2(C)-potential ξ that generates via the Weier-

strass representation a CMC family of immersions fλ. Suppose that ξ satisfies

the symmetry

hξ h−1 = µ∗ξ, (4.2.1)

where h = diag(i,−i). Then, the induced immersion µ∗fλ has a rotational

symmetry.

Proof. Let Φ be the solution of the initial value problem dΦ = Φξ, with

Φ(z0) = Φ0 and let us assume that z0 is a fixed point of µ and that Φ0 is

diagonal. Since the potential ξ has the symmetry hξ h−1 = µ∗ξ, then the

solution Φ has the symmetry

SΦ = µ∗Φh, (4.2.2)

for some z-independent S. Evaluating at the fixed point z0, we find that

S = Φ0 hΦ−1
0 = h, which is a unitary matrix. Then, Iwasawa decomposition

gives

µ∗F µ∗B = µ∗Φ = hΦh−1 = hFh−1 hBh−1 (4.2.3)

Identifying unitary parts and translating to the immersion µ∗f := Sym[µ∗F ]
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one gets

Sym[µ∗F ] =
−1

2H
iλ(∂λhFh

−1)(hFh−1)−1

=
−1

2H
iλ(h∂λFF

−1h−1)

= h f h−1.

(4.2.4)

Equation (4.2.4) represents a rotation by π which interchanges the ends at

z = 0 and z =∞.

Thanks to theorem 4.2 we obtain as direct consequence that

Corollary 4.5. The surfaces constructed in theorem 3.5 have a rotation that

interchanges the ends at 0 and ∞.

As with the other symmetry, the proof follows easily just by checking the

symmetry in the potential.
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Conclusions and future work

The appearance of the class of Heun’s Differential Equations in the con-

struction of CMC surfaces with different topology has been proved to be

interesting. It gives an structured way of constructing the surfaces with the

presence of at least one irregular end.

The fact that we are dealing with a (relatively) well known class of linear dif-

ferential equations, allows us to employ the theory that has been developed

for those equations regarding their sets of local solutions, power series expan-

sion solutions and asymptotics or connection problems between solutions. All

this has been already fruitful in our work, but could be also extended to other

cases.

In the same way as the hypergeometric equation is generalised by the Heun

equation to obtain a Fuchsian ODE with four regular singularities, it might be

interesting to increase the number of regular singular points to five, obtaining

the next Fuchsian differential equation in terms of number of singularities.

Presumably, this would lead to similar processes of confluence of singularities

as those seen for Heun’s equation in chapter 2, which may give the possibility

to obtain CMC surfaces in a very similar way as in this work, but with more

irregular ends than those obtained here.

Another conceptually simple extension of this work leads to construct-

ing CMC surfaces in other spaces such as space forms or product spaces.
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Although we have not mentioned this yet in the thesis, the generalised Weier-

strass representation for CMC surfaces also works in the three-sphere S3 and

in the hyperbolic space H3. Of course if one wants to obtain conformal immer-

sions in S3 or H3, it is necessary to adapt some of what is done in chapter 1,

such as the expression of the mean curvature, the Sym-Bobenko formula, the

monodromy problem conditions, etc. However, it is common to find papers

where the theory that is developed is applied to several space forms at the

same time, such as in [54]. In this sense, it should be relatively easy (and

maybe natural) to adapt the constructions done in this thesis to those in S3

and H3. To the best knowledge of the author, nothing has been said yet about

irregular ends in those spaces.

Another interesting idea would be using the generalised Weierstrass repre-

sentation to analyse the asymptotics of the irregular ends of the CMC surfaces

construcuted in this thesis, that is, ends of surfaces that arise locally from

ODEs with an irregular singularity. Initially, it could be thought that these

ends are asymptotic to Smyth surfaces but, as pointed out in the introduction,

in general our surfaces have nonvanishing end weights at the irregular ends,

while the end weights of Smyth surfaces vanish. Therefore, there might be

room to study if there is some common asymptotic behaviour between these

ends, probably depending in some way on the rank of the singularity.

Another possible line of continuity for this work would be generating

CMC surfaces with bubbletons and irregular ends. The bubbletons are sur-

faces of constant mean curvature made from Bäcklund transformations of

round cylinders. They are shaped like cylinders with attached ‘bubbles’.

Therefore, if for instance we are able to construct a trinoid with one irregular

end and (at least) one round cylinder in the regular ends, we might use the

known techniques to add bubbles there. In particular the case of our trinoids

would be probably more difficult because the monodromy representation is

only known asymptotically.
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Lastly, another problem to continue our work was suggested recently by

Martin Traizet, for what we are very grateful. He argued that, since irregular

singularities appear from a process of confluence of two regular singularities

in Heun’s equation, one could study the limiting cases in the surfaces. That

is, study the process of variation of the singularity that is merged and use this

to deduce how the two ends are combined together and, from being Delaunay

ends, how they become irregular. This might be somewhat related with the

study of the asymptotics of the irregular ends suggested above or, in other

words, could give a great insight into it.
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Appendix A

Matrix Lie groups and

unitarisability

In this section we present some matrix Lie groups and summarise very well-

known facts about them. Of particular interest are the Lie groups SL2(C) and

SU2, and their Lie algebras sl2(C) and su2, as the matrices we deal with in

the construction of CMC surfaces belong to their loop groups. We also prove

some technical results regarding the unitarisability of matrices in SL2(C). For

the most basic material on Lie theory, its notation and some proofs that we

do not include, we refer the reader to [2] and [20].

A.1 Affine group Aff3(R)

The 3-dimensional affine group over R is defined as

Aff3(R) =

{(
A t

0 1

)
| A ∈ GL3(R), t ∈ R3

}
. (A.1.1)

This is a subgroup of GL4(R). If we identify v ∈ R3 with

(
v

1

)
∈ R4, then we

obtain an action of Aff3(R) on R3 as a consequence of the formula(
A t

0 1

)(
v

1

)
=

(
Av + t

1

)
. (A.1.2)
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Transformations of R3 with the form v 7→ Av + t with A invertible are

called affine transformations and they preserve lines, i.e., translates of 1-

dimensional subspaces of R3. The associated geometry is affine geometry and

it has Aff3(R) as its symmetry group. The vector space R3 can be viewed as

the translation subgroup of Aff3(R),

Trans3(R) =

{(
I3 t

0 1

)
| t ∈ R3

}
. (A.1.3)

There is also the subgroup{(
A 0

0 1

)
| A ∈ GL3(R)

}
, (A.1.4)

which we will identify with GL3(R). We state the following

Proposition A.1. Aff3(R) can be expressed as the semi-direct product of

Trans3(R) and GL3(R),

Aff3(R) = GL3(R) n Trans3(R) = {AT | A ∈ GL3(R), T ∈ Trans3(R)},
(A.1.5)

with GL3(R) ∩ Trans3(R) = {1}.

A.2 Orthogonal and Isometry groups

A 3×3 real matrix M for which M tM = 1 is called an orthogonal matrix.

The set

O3(R) = {O ∈ M3(R) | OtO = OOt = 1} (A.2.1)

is a subgroup of GL3(R) and is called the 3× 3 (real) orthogonal group.

Consider the determinant function restricted to O3(R), det : O3(R) → R∗.
For O ∈ O3(R),

(detO)2 = detOt detO = det(OtO) = det1 = 1, (A.2.2)

which implies that detO = ±1. Thus we have

O3(R) = O3(R)+ ∪O3(R)−, (A.2.3)
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where

O3(R)+ = {O ∈ O3(R) | detO = 1}, O3(R)− = {O ∈ O3(R) | detO = −1}.
(A.2.4)

A very important subgroup is

SO3(R) = O3(R)+ � O3(R), (A.2.5)

that is,

SO3(R) = {O ∈ M3(R) | OtO = OOt = 1, detO = 1} (A.2.6)

the 3× 3 (real) special orthogonal group.

One of the reasons for the study of the orthogonal groups is their relationship

with isometries of R3, that is, distance-preserving bijections. If such f fixes

the origin then it is actually a linear isometry, and so with respect to the

standard basis it corresponds to a matrix A ∈ GL3(R).

Proposition A.2. If A ∈ GL3(R), then the following are equivalent.

• A is a linear isometry.

• Av · Aw = v · w for all vectors v, w ∈ R3.

• AtA = 1, that is, A is orthogonal.

Elements of SO3(R) are called direct isometries or rotations, while those

in O3(R)− are called indirect isometries. We also define the isometry group

of R3,

Iso3(R) = {f : R3 → R3 | f is an isometry}, (A.2.7)

which contains the subgroup of translations. In fact, Iso3(R) ≤ Aff3(R) and

it is also a matrix subgroup. We have the semi-direct product decomposition

Iso3(R) =

{(
O t

0 1

)
| O ∈ O3(R), t ∈ R3

}
. (A.2.8)

In other words, we have

Proposition A.3. Iso3(R) can be expressed as the semi-direct product of

O3(R) and Trans3(R),

Iso3(R) = O3(R) n Trans3(R) = {OT | O ∈ O3(R), T ∈ Trans3(R)}. (A.2.9)
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Lemma A.1. For a plane Π ⊂ R3, the reflection across Π is an indirect

isometry of R3, i.e., is a linear transformation that belongs to O3(R)−.

Proposition A.4. Every element O ∈ O3(R) is a product of plane reflections.

The number of these is even if O ∈ SO3(R) and odd if O ∈ O3(R)−.

A.3 Special linear group SL2(C)

The matrix group SL2(C) is called Complex Special Linear Group of order

2. The word ‘special’ in this context means that the matrices in this group

have unit determinant. Hence, this group can be written as

SL2(C) = {A ∈ M2(C) | detA = 1}. (A.3.1)

For later use, let us also define ∆ ⊂ SL2(C) the subgroup of diagonal ele-

ments, which sometimes we denote as diag(ρ, 1/ρ).

Take a matrix

A =

(
a b

c d

)
(A.3.2)

in SL2(C), which means that ad − bc = 1. Its characteristic polynomial is

given by

det

(
a− µ b

c d− µ

)
= µ2 − (a+ d)µ+ 1. (A.3.3)

Then, the eigenvalues of A are

µ± =
trA±

√
(trA)2 − 4

2
, (A.3.4)

and it holds that µ+ = 1/µ−. We also have that

trA = µ+ + µ−. (A.3.5)

Note that if µ+ 6= µ−, then A is diagonalisable, while if µ+ = µ− (then ±1 is

the unique eigenvalue of A) then A is diagonalisable if and only if

A = SDS−1 = S(µ+1)S−1 = µ+SS
−1 = ±1. (A.3.6)
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In relation with the diagonalisability, the elements of SL2(C) can be classified

up to conjugation. An element A ∈ SL2(C) may be associated with a Möbuis

transformation, that is, a rational function of the form

hA(z) =
az + b

cz + d
, (A.3.7)

of one complex variable z; here the coefficients a, b, c, d are complex numbers

satisfying ad−bc = 1 (in general, Möbius transformations satisfy that ad−bc 6=
0). Consider the surjective map A ∈ SL2(C) 7→ hA ∈ M(2). One can check

that this map has kernel {±1} so that SL2(C)/{±1} is isomorphic to the

subgroup of the Möbius groupM(2) of transformations satisfying ad−bc = 1.

Non-trivial elements of SL2(C) can be classified into three types depending

on their Jordan normal form. Note that these types can be distinguished by

looking at the trace trA = a + d, which is invariant under conjugation, that

is, trGAG−1 = trA.

(i) Elliptic elements. They have two distinct eigenvalues µ± 6= ±1 (that

is, these matrices are diagonalisable) with modulus 1, so that these

elements are conjugate to (
α 0

0 1/α

)
(A.3.8)

with α 6= 0 and |α| = 1. It holds that 1
2

trA ∈ (−1, 1) for every elliptic

element.

(ii) Loxodromic elements. Just like in the previous case, these have two

distinct eigenvalues µ± 6= ±1 (diagonalisable) but the modulus is not

equal to 1. The subclass of real trace with absolute value greater than

2 is called hyperbolic.

(iii) Parabolic elements. In this case diagonalisation is not possible. These

elements are conjugate to (
±1 1

0 ±1

)
. (A.3.9)

For a parabolic element A the quantity 1
2

trA is equal to ±1.
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Following these ideas, we prove the following

Lemma A.2. Let M1,M2 ∈ SL2(C) \ {±1}. Then,

trM1 = trM2 ⇐⇒M1 and M2 are conjugate.

Proof. Suppose that M1 and M2 are conjugate, then there exist T ∈ SL2(C)

such that TM1T
−1 = M2, and therefore trM2 = tr(TM1T

−1) = tr(M1T
−1T ) =

trM1.

Suppose now that the traces are equal. Assume that M1 and M2 are diagonal,

then they are conjugate if and only if M1 = M2 or M1 = M−1
2 . In either case,

trM1 = trM2. Now we distinguish two cases:

If M1 and M2 are diagonalisable, then both are conjugate to a diagonal ma-

trix and trM1 = trM2 using the previous assumption. Hence, M1 and M2 are

conjugate. If one of them is not diagonalisable, say M1, then its eigenvalues

satisfy µ+ = µ− = ±1 and therefore, since trM1 = µ+ + µ−, we have that
1
2

trM1 = ±1 and also 1
2

trM2 = ±1 by hypothesis. Therefore, both M1 and

M2 are triangular. And also in this case they are conjugate, finishing the

proof.

Summarizing, the conjugacy classes in SL2(C) are represented by the ma-

trices (
α 0

0 α−1

)
, α 6= 0,

(
1 1

0 1

)
,

(
−1 1

0 −1

)
. (A.3.10)

It will be clear later why we are interested in matrices of SL2(C) associated

to elliptic elements of M. They represent rotations - writing α = eiθ for

θ ∈ [0, 2π), they are conjugate to(
eiθ 0

0 e−iθ

)
. (A.3.11)

We shall give a brief definition of the Lie algebra of SL2(C), which is a complex

vector space made up of traceless complex matrices of order 2, that is,

sl2(C) = {X ∈ M2(C) | trX = 0}. (A.3.12)
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The exponential map exp : sl2(C)→ SL2(C) is not surjective, but misses only

one conjugacy class in SL2(C), namely the one represented by(
−1 1

0 −1

)
. (A.3.13)

A.4 Special unitary group SU2

The special unitary group denoted SU2 is the Lie group of matrices U

with determinant 1 that are unitary, that is, such that U∗U = UU∗ = 1. A

representation of this group is

SU2 =

{(
a −b̄
b ā

)
| a, b ∈ C, |a|2 + |b|2 = 1

}
. (A.4.1)

A diffeomorphism with S3 can be established. If we write a = x1 + iy1 and

b = x2 + iy2 then |a|2 + |b|2 = 1 is equivalent to x2
1 + y2

1 + x2
2 + y2

2 = 1, the

equation of the 3-sphere. The map ϕ : C2 → M2(C) given by

(a, b) 7→

(
a −b̄
b ā

)
(A.4.2)

is an injective real map (by considering C2 diffeomorphic to R4 and M2(C) to

R8). Hence, the restriction of ϕ to the 3-sphere (since the modulus is 1) is an

embedding of S3 onto a compact submanifold of M2(C), namely ϕ(S3) = SU2.

The discussion done in section A.3 gives a picture of the decomposition of

SL2(C) into its conjugacy classes, but there is another point of view in the

decompositions of this group that is interesting for us.

Lemma A.3 (QR decomposition). Let K = SU2 and let B be the subgroup

of SL2(C) of upper triangular matrices with determinant 1 and positive real

diagonal entries, that is, the subgroup of matrices of the form(
α β

0 α−1

)
, α ∈ R>0, β ∈ C. (A.4.3)

Then, SL2(C) admits a decomposition SL2(C) = KB in the sense that every

element A ∈ SL2(C) can be uniquely written as A = UB with U ∈ SU2 and
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B ∈ B. In particular, the unique splitting can be written(
a b

c d

)
=

(
a√

aā+cc̄
−c̄√
aā+cc̄

c√
aā+cc̄

ā√
aā+cc̄

)(√
aā+ cc̄ āb+c̄d√

aā+cc̄

0 1√
aā+cc̄

)
. (A.4.4)

Thus, topologically, SL2(C) looks like S3×R×C. The Iwasawa decompo-

sition presented in section 1.2.1 is similar in spirit to the above splitting, but

is done on infinite-dimensional loop groups that depend on a spectral param-

eter. We also consider Birkhoff splitting on loop groups in section 1.2.1, so let

us describe its finite-dimensional analog here, which is the LU decomposition.

Consider for all z ∈ C, |z| < 1, a holomorphic SL2(C) matrix

(
a(z) b(z)

c(z) d(z)

)
with a(z) having only isolated zeroes. Then, one LU decomposition is(

a b

c d

)
=

(
1 0

c/a 1

)(
a b

0 1/a

)
. (A.4.5)

This splitting has the advantage over the QR decomposition that the two

resulting matrices are holomorphic in z (away from a = 0). However, it has

the drawback of not being globally defined, unlike (A.4.4). Let us also set

su2 = {X ∈ M2(C) | trX = 0, X∗ = −X}. (A.4.6)

This is a real vector space of matrices (not a complex space) closed under the

bracket operation. The real Lie algebra su2 has a basis given by

u1 =
1

2

(
0 −i
−i 0

)
, u2 =

1

2

(
0 1

−1 0

)
, u3 =

1

2

(
i 0

0 −i

)
, (A.4.7)

which satisfy

[u1, u2] = u3, [u2, u3] = u1, [u3, u1] = u2. (A.4.8)

In other words, every element of su2 may be written in the form

X =
−i
2

(
−x3 x1 + ix2

x1 − ix2 x3

)
. (A.4.9)
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With such a matrix we associate the vector x = (x1, x2, x3) ∈ R3. In this way

we identify R3 ∼= su2 via x←→ x1u1 + x2u2 + x3u3 = X. For X, Y ∈ su2, the

inner product, norm and cross-product in this Lie algebra are given by

〈X, Y 〉 = −2 tr(XY ),

||X|| =
√

4 detX,

X × Y = [X, Y ],

(A.4.10)

where [·, ·] represents the Lie bracket on su2. The Lie algebra sl2(C) is the

complexified Lie algebra su2, denoted suC2 = su2 + isu2
∼= sl2(C). As long as

one is working with representations over C this passage from real to complex-

ified Lie algebra is harmless. A reason for passing to the complexification is

that it allows one to construct a basis of a type that does not exist in the real

Lie algebra su2. The complexified Lie algebra is spanned by three elements

ε−, ε+, and ε. Thus we fix the following basis of sl2(C) as

ε =
1

i
(−2iu3) =

(
−i 0

0 i

)
,

ε− =
1

i
(u1 + iu2) =

(
0 0

−1 0

)
,

ε+ =
1

i
(−u1 + iu2) =

(
0 1

0 0

)
,

(A.4.11)

which satisfy the relations

〈ε+, ε+〉 = 〈ε−, ε−〉 = 0, ε∗− = −ε+,

[ε, ε−] = 2iε−, [ε+, ε] = 2iε+, [ε−, ε+] = iε.
(A.4.12)

SU2 operates on su2 through the adjoint action AdU X = UXU−1. For U ∈
SU2, consider the linear transformation p(U) of R3 corresponding to the linear

transformation AdU of su2.

Lemma A.4. The homomorphism p that maps SU2 onto SO3 with kernel

{±1} is a covering.

In particular, the Lie group SU2 is a double cover of SO3, and also AdSU2
∼=

SO3: the adjoint actions of SU2 become the usual rotation action of SO3 on
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R3. A rigid motion in R3 given by x 7→ Ox + b with O ∈ SO3 and b ∈ R3

corresponds to X 7→ AdU X + B where U ∈ SU2 is a lift of O and B ∈ su2

corresponds to b ∈ R3 under the above isomorphism.

SU2 may also be realised as the group of quaternions. Recall that quater-

nions H are expressions of the form

q = a1 + bi + cj + dk, a, b, c, d ∈ R, (A.4.13)

added and multiplied in the obvious way subject to

i2 = j2 = k2 = ijk = −1. (A.4.14)

Identify C with quaternions of the form a+ ib. Any quaternion of norm 1 can

be uniquely written as α + βj with α, β ∈ C. The map

α + βj ←→

(
α −β̄
β ᾱ

)
(A.4.15)

sets up a bijection between the subgroup of H with norm 1 and SU2.

A.4.1 Unitarisation of SL2(C)

In what follows, we explore the relevant definitions and results about uni-

tarisation, that are used without further explanation in the different chapters

of this thesis.

Definition A.1. A matrix A ∈ SL2(C) is unitarisable if there exists T ∈
SL2(C) such that TAT−1 ∈ SU2. The matrix T is called unitariser. On

the other hand, matrices A1, . . . , An ∈ SL2(C) are individually unitarisable

iff Ak is unitarisable for k = 1, . . . , n. We say that they are simultaneously

unitarisable iff there exists T ∈ SL2(C) such that TAkT
−1 ∈ SU2 for all

k = 1, . . . , n.

Definition A.2. A matrix A ∈ SL2(C) is irreducible if it cannot be conju-

gated to upper triangular matrices.

Let us state a lemma that allows one to find a unitariser.
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Lemma A.5. Let A1, . . . , An ∈ SL2(C). The following are equivalent:

(i.) T ∈ SL2(C) simultaneously unitarises A1, . . . , An ∈ SL2(C).

(ii.) T ∗T is in the kernel of the linear operators defined by

X 7→ XAk − A∗−1
k X, ∀k. (A.4.16)

Remark A.1. Thus to construct the simultaneous unitariser of A1, . . . , An ∈
SL2(C), let X be a Hermitian positive-definite element in the kernel. Then

X factors into X = T ∗T , and T is a simultaneous unitariser.

We conclude this exposition by giving two results that allow us to charac-

terise matrices that are unitarisable.

Lemma A.6. For a matrix U ∈ SU2 it holds that
∣∣1

2
trU

∣∣ ≤ 1 and if 1
2

trU =

±1 then U = ±1 respectively.

Proof. Let us write U =

(
a −b̄
b ā

)
∈ SU2. We have that trU = 2 Re(a). On

the other hand, |a|2 + |b|2 = 1, which is equivalent to

Re(a)2 + Im(a)2 + Re(b)2 + Im(b)2 = 1. (A.4.17)

This implies for the real part of a that −1 ≤ Re(a) ≤ 1 and therefore,

− 1 ≤ 1

2
trU ≤ 1. (A.4.18)

If 1
2

trU = ±1, we equivalently have that Re(a) = ±1 and then, using equa-

tion (A.4.17), one gets

Re(b)2 + Im(b)2 = − Im(a)2. (A.4.19)

The left hand side of equation (A.4.19) is non-negative while the right hand

side is not positive, therefore both are equal to 0. Hence, Im(a) = 0 and b = 0

which implies that U = ±1.

Lemma A.7. A matrix A ∈ SL2(C) is unitarisable if and only if 1
2

trA ∈
(−1, 1) or A = ±1.
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Proof. Suppose that A is unitarisable. Then, there exists T ∈ SL2(C) such

that TAT−1 =: U ∈ SU2. Then, by lemma A.6, either

(−1, 1) 3 1

2
trU =

1

2
trA, (A.4.20)

or

± 1 = U = TAT−1 ⇐⇒ A = ±1. (A.4.21)

If A = ±1, A is already unitary.

On the other hand, suppose that 1
2

trA ∈ (−1, 1) and A 6= ±1. By lemma A.6,

every matrix in SU2 has trace in (−2, 2) and, since all possible values are

attained, we can pick U ∈ SU2 with equal trace as A. We may use now

lemma A.2 to argue that A and U are conjugate, completing thus the proof.

Lemma A.8. An element M ∈ SL2(C) \ {±1} is unitarisable by an element

of ∆ if and only if its diagonal elements are complex conjugates of each other,

and their product is less than 1.

Proof. Assume first that M =

(
a b

c d

)
is unitarisable by T = diag(ρ, 1/ρ).

Then,

TMT−1 = U ∈ SU2. (A.4.22)

Write U =

(
z −w̄
w z̄

)
, then M = T−1UT =

(
z −w̄/ρ2

wρ2 z̄

)
. Therefore

one has that a = z and d = z̄, so the diagonal elements of M are complex

conjugates of each other. Also, b = −w̄/ρ2 and c = wρ2. Then, zz̄ = ad =

1 + bc = 1− ww̄ = 1− |w|2, and it follows that ad < 1, since |w|2 > 0. Note

that |w|2 6= 0 for otherwise M = ±1.

Assume now that |a| < 1. For any ρ 6= 0,(
ρ 0

0 1/ρ

)(
a b

c ā

)(
1/ρ 0

0 ρ

)
=

(
a bρ2

c/ρ2 ā

)
. (A.4.23)

Since we want this matrix to be unitary, we multiply it by its conjugate
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transpose, obtaining(
a bρ2

c/ρ2 ā

)∗(
a bρ2

c/ρ2 ā

)
=

(
|a|2 + |c|2/|ρ|4 ā(bρ2 + c̄/ρ̄2)

a(b̄ρ̄2 + c/ρ2) |a|2 + |b|2|ρ|4

)
. (A.4.24)

For the latter matrix to be the identity, we need bρ2 + c̄/ρ̄2 = 0. Multiplying

by ρ̄2, we obtain that 0 = b|ρ|4 + c̄, so

|ρ|4 = −c̄/b = −(|a|2 − 1)/b̄

b
=

1− |a|2

|b|2
. (A.4.25)

Also,

|a|2 + |c|2/|ρ|4 = |a|2 + |c|2/(−c̄/b) = |a|2 − bc = 1 (A.4.26)

and

|a|2 + |b|2|ρ|4 = |a|2 + |b|2(−c̄/b) = |a|2 − bc = |a|2 − bc = 1. (A.4.27)

So any ρ ∈ C with

|ρ| =
(

1− |a|2

|b|2

)1/4

(A.4.28)

allows us to define an element T ∈ ∆ which makes TMT−1 in SU2.
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Geometry of unitarisability

We expose in what follows some results regarding the hyperbolic space and

cross ratios that allow us to give a criterion for the simultaneous unitarisability

of two matrices in SL2(C) in terms of their eigenlines. This section is inspired

by an unpublished work of Nicholas Schmitt, to whom we are grateful.

B.1 Hyperbolic 3-space

Hyperbolic 3-space H3 can be identified with the quotient SL2(C)/SU2.

For X ∈ SL2(C), let [X] ∈ H3 denote the left coset

[[X]] := {XU | U ∈ SU2}. (B.1.1)

M ∈ SL2(C) acts isometrically on the hyperbolic 3-space H3 by

[[X]] 7→ [[MX]] . (B.1.2)

The fixed point set of this action is

fix(M) = {[[X]] ∈ H3 | X−1MX ∈ SU2}. (B.1.3)

The fixed point set fix(M), if non-empty, is the axis of M .

Hyperbolic 3-space can be extended to include the sphere at infinity as follows.

Let

GU2 := {X ∈ M2(C) | XX∗ = x1, x 6= 0} (B.1.4)
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be the group of unitary similitudes. Let N := M2(C∗) and Ξ := N/GU2. Then

Ξ = A tB where

A := {[[X]] ∈ Ξ | detX 6= 0}, B := {[[X]] ∈ Ξ | detX = 0} (B.1.5)

Then A = GL2(C)/GU2 = SL2(C)/SU2 = H3.

To show B = CP1, note that any X ∈ N with detX = 0 can be written in

the form

X =

(
x

y

)(
a b

)
(B.1.6)

with (x, y)t, (a, b) ∈ C2 \ {0}. The first factor (x, y)t is unique up to multipli-

cation by an element of C∗, so the map φ : B → CP1 given by[[(
x

y

)(
a b

)]]
7→ [x, y] (B.1.7)

is well defined.

Proposition B.1. GU2 acts transitively on C2 \ {0}.
Proof.

U =

(
a b

−b a

)
∈ GU2 (B.1.8)

satisfies (a, b) = (1, 0)U . Hence (1, 0) can be mapped to any element of

C2 \ {0} via an element of GU2. Likewise, (1, 0) = (a, b)U−1, so any element

(a, b) ∈ C2 \ {0} can be mapped to (1, 0) via an element of GU2. Hence, any

element of C2 \ {0} can be mapped to any other element via an element of

GU2.

Proposition B.2. The map φ : B → CP1 is a bijection.

Proof. The map is clearly surjective. To show injectivity, suppose φ([[X]]) =

φ([[Y ]]). Then

X =

(
x

y

)(
a b

)
, Y =

(
x

y

)(
c d

)
(B.1.9)

for some (x, y)t, (a, b) (c, d) ∈ C2 \ {0}. Since by proposition B.1 GU2 acts

transitively on C2 \ {0}, there exists U ∈ GU2 such that(
a b

)
=
(
c d

)
U. (B.1.10)
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Hence X = Y U , so [[X]] = [[Y ]].

B.2 Unitarisability

For the final proof of this section, we will need some characterizations

regarding the unitarisability of matrices in SL2(C).

Proposition B.3. M ∈ SL2(C) is unitarisable if and only if it has an axis.

Proof. This is immediate from equation (B.1.3).

Proposition B.4. Individually unitarisable matrices M1, . . . ,Mn ∈ SL2(C)

are simultaneously unitarisable if and only if their axes intersect in a common

point.

Proof. M1, . . . ,Mn ∈ SL2(C) are simultaneously unitarisable if and only if

there exists X ∈ SL2(C) such that

X−1MkX ∈ SU2, k ∈ {1, . . . , n}. (B.2.1)

This is if and only if

X ∈ fix(Mk), k ∈ {1, . . . , n}. (B.2.2)

B.3 Eigenlines

The fixed point set fix(M) of M ∈ SL2(C) \ {±1} is a disjoint union of a

(possibly empty) component in H3 and a component on the sphere at infinity:

fix(M) = (fix(M) ∩ A) t (fix(M) ∩B). (B.3.1)

The part in H3, if non-empty, is the axis of M . The part on the sphere at

infinity is the set of eigenlines of M , as the following proposition shows. Note

that this part consists of exactly one or two points, since M has one or two

eigenlines.
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Proposition B.5. For M ∈ SL2(C) \ {±1}, the set φ(fix(M) ∩B) ⊂ CP1 is

the set of eigenlines of M .

Proof. Note that fix(M)∩B is the set of elements X ∈ M2(C) with detX = 0

such that [[MX]] = [[X]]. Since detX = 0, X is of the form equation (B.1.6)

with (x, y)t, (a, b) ∈ C2 \ {0}. By proposition B.2, [[MX]] = [[X]] if and only

if φ([[MX]]) = φ([[X]]). That is, if and only if in CP1[
M

(
x

y

)]
=

[(
x

y

)]
. (B.3.2)

That is, if and only if (x, y)t is an eigenline of M .

B.4 The Klein model of H3

The Klein model of H3 is the unit ball in R3

B = {x ∈ R3 | ||x|| ≤ 1}. (B.4.1)

The sphere at infinity is its boundary

∂B = {x ∈ R3 | ||x|| = 1}. (B.4.2)

The map K : H3 → B is defined as the map [[X]] 7→ XX∗ followed by the

map (
a+ b c+ id

c− id a− b

)
=

1

a
(b, c, d). (B.4.3)

We need some well-known results about this model. For details, see [25,

Sections II.5, VIII] and [4, Sections A.4, A.5].

Non-trivial isometries in H3 are identified with elements of SL2(C)\{±1}. In

particular, we have the following

Proposition B.6. M ∈ SL2(C) \ {±1} is unitarisable if and only if M is

elliptic as isometry of H3.

Proposition B.7. The geodesics in the Klein model of H3 are the Euclidean

straight line segments in B.
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Proposition B.8. If M ∈ SL2(C) \ {±1} is unitarizable, then the axis of M

in the Klein model of H3 is a Euclidean straight line segment in B with two

distinct endpoints on ∂B.

Proof. Since M ∈ SL2(C) is unitarisable, by proposition B.3, fix(M) 6= ∅.
Following [25, Section VIII.11], M has two fixed endpoints on ∂B and the

axis through these is a geodesic. It is a well-known result proposition B.7

that geodesics are straight line segments. Hence the axis of M is a straight

line segment.

B.5 The cross ratio

The cross ratio of four distinct points in CP1 = C∪{∞}, taking values in

C∗, is

[a, b, c, d] :=
(b− c)(d− a)

(b− a)(d− c)
. (B.5.1)

The cross ratio is chosen so that [0, 1,∞, x] = x. The cross ratio is invariant

under Möbius transformations. The cross ratio [a, b, c, d] of four distinct points

is in R \ {0} if and only if the points lie on a circle C.
Proposition B.9. Let a, b, c and d be distinct points in CP1, and suppose

[a, b, c, d] ∈ R \ {0}, so a, b, c, d lie on a circle C.

1. [a, b, c, d] ∈ R+ if and only if b and d lie in the same connected component

of C \ {a, c}.
2. [a, b, c, d] ∈ R− if and only if b and d lie on different connected compo-

nents of C \ {a, c}.
Proof. There exists a unique Möbius transformation taking a, b and c to 0, 1

and ∞ respectively, taking circles to circles, and preserving or reversing the

order of a, b, c and d on the circle. Thus we may assume a = 0, b = 1, c =∞.

Then

[a, b, c, d] = [0, 1,∞, d] = d ∈ R \ {0, 1}. (B.5.2)

Then a, b, c and d lie on the circle C = R∪{∞}, and the two connected com-

ponents of C \ {a, c} are R− and R+. The theorem follows by an examination

of the two cases d ∈ R+ \ {1} and d ∈ R−.
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B.6 Unitarisability of two matrices

We finish this part giving a characterization for the unitarisability of two

matrices in SL2(C).

Proposition B.10. Let M0,M1 ∈ SL2(C)\{±1} be irreducible and individu-

ally unitarisable. Let ϕ, ϕ′ ∈ CP1 and ψ, ψ′ ∈ CP1 be the respective eigenlines

of M0 and M1. Then M0 and M1 are simultaneuosly unitarisable if and only

if

[ϕ, ψ, ϕ′, ψ′] ∈ R−. (B.6.1)

Proof. SinceM0 andM1 are individually unitarisable then, by proposition B.3,

fix(M0) 6= ∅ and fix(M1) 6= ∅. By proposition B.4, M0 and M1 are simultane-

uosly unitarisable if and only if fix(M0) ∩ fix(M1) 6= ∅.
First suppose that fix(M0) ∩ fix(M1) 6= ∅. By proposition B.8, fix(M0) and

fix(M1) are straight line segments. And since they intersect, they lie in a

unique Euclidean plane P ⊂ R3. Then C := P ∩ ∂B is a circle. By proposi-

tion B.5, the endpoints of fix(M0) and fix(M1) are ϕ, ϕ′ and ψ, ψ′ respectively.

Since fix(M0) and fix(M1) intersect at a point inside the disk P∩B bounded by

C, it follows that ψ and ψ′ lie in different connected components of C \{ϕ, ϕ′}.
By proposition B.9, [ϕ, ψ, ϕ′, ψ′] ∈ R−.

Conversely, suppose [ϕ, ψ, ϕ′, ψ′] ∈ R−. By proposition B.9 ϕ, ψ, ϕ′ and ψ′

lie on some circle C ⊂ ∂B, and ψ and ψ′ lie on different connected compo-

nents of C \ {ϕ, ϕ′}. Let P be the unique Euclidean plane containing C. By

proposition B.5 and proposition B.8, fix(M0) is the straight line segment with

endpoints ϕ and ϕ′, and fix(M1) is the straight line segment with endpoints

ψ and ψ′. Hence fix(M0) and fix(M1) lie on P and intersect in the disk P ∩B
bounded by C. Hence fix(M0) ∩ fix(M1) 6= ∅.

Remark B.1. Similar criteria exist for the simultaneous unitarisability of n

matrices in SL2(C) in terms of cross ratios of their eigenlines, generalizing

proposition B.10. Other criteria exist in terms of the eigenvalues of the ma-

trices and certain of the products.
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