
Title Investigation of numerical atomic orbitals for first-principles
calculations of the electronic and transport properties of silicon
nanowire structures

Authors Sharma, Dimpy

Publication date 2013

Original Citation Sharma, D. 2013. Investigation of numerical atomic orbitals
for first-principles calculations of the electronic and transport
properties of silicon nanowire structures. PhD Thesis, University
College Cork.

Type of publication Doctoral thesis

Rights © 2013, Dimpy Sharma. - http://creativecommons.org/licenses/
by-nc-nd/3.0/

Download date 2024-04-20 07:12:21

Item downloaded
from

https://hdl.handle.net/10468/1136

https://hdl.handle.net/10468/1136


                                                Ollscoil na hỀireann 
NATIONAL UNIVERSITY OF IRELAND 

 

Investigation of numerical atomic orbitals for first-

principles calculations of the electronic and transport 

properties of silicon nanowire structures 

by 

Dimpy Sharma 

January 2013 

Supervisor: Dr. Giorgos Fagas 

Head of Department: Prof. Michael Morris 

A thesis presented to 

The National University of Ireland, Cork 

for the degree of 

‘Doctor of Philosophy’ (Ph.D.) 

in Chemistry 

 

Tyndall National Institute 

University College Cork 

Cork, Ireland 



2 
 

 

Contents 

Acknowledgements ................................................................................................. 4 

Abstract ................................................................................................................... 5 

Dissemination.......................................................................................................... 6 

Chapter 1: Introduction ........................................................................................... 7 

1.1 Semiconductor nanowires as device nanomaterials ................................................. 7 

1.2 State-of-the-art experiments .................................................................................... 8 

1.3 First-principles calculations as a design tool ........................................................... 12 

1.4 Overview of the thesis ............................................................................................ 15 

Chapter 2: Background to methods ....................................................................... 20 

2.1 Chapter introduction .............................................................................................. 20 

2.2 Electronic structure from first-principles ................................................................ 20 

2.2.1 Theoretical foundations of DFT ............................................................................ 22 

2.2.2 Basis sets for solving the Kohn-Sham equations .................................................. 27 

2.2.2.1 Plane wave basis sets .................................................................................................. 28 

2.2.2.2 Numerical atomic orbitals basis sets ............................................................................ 29 

2.3 Quantum theory of transport ................................................................................. 31 

2.3.1 Landauer formalism ....................................................................................................... 32 

2.3.2 S-matrix ......................................................................................................................... 37 

2.3.3 Self-consistency using NEGF ........................................................................................... 40 

2.4 Computational packages......................................................................................... 41 

2.4.1 Quantum Espresso ......................................................................................................... 41 

2.5.2 OpenMX ........................................................................................................................ 42 

2.5.3 TiMeS ............................................................................................................................ 43 

Chapter 3: Structural and electronic properties of hydrogenated and hydroxylated 

SiNWs .................................................................................................................... 46 

3.1 Chapter introduction .............................................................................................. 46 

3.2 Benchmarking of numerical atomic orbitals ........................................................... 48 

3.2.1 Hydrogenated silicon nanowires .................................................................................... 48 

3.2.2 Hydroxylated silicon nanowires ...................................................................................... 56 

3.3 Analysis of band structure properties ..................................................................... 61 

3.4 Transferability of optimised numerical atomic orbitals .......................................... 65 

3.5 Conclusions ............................................................................................................. 67 



3 
 

Chapter 4: Structural, electronic and transport properties of doped silicon 

nanowires.............................................................................................................. 68 

4.1 Chapter introduction .............................................................................................. 68 

4.2 Electronic properties of doped silicon nanowires ................................................... 70 

4.3 Scattering properties of n- and p-type dopants in silicon nanowires ...................... 79 

4.4 Conclusions ............................................................................................................. 85 

Chapter 5: Basis set dependence of transport properties and electrical device 

characteristics in Si nanowire setups..................................................................... 86 

5.1 Chapter introduction .............................................................................................. 86 

5.2 Computational details............................................................................................. 90 

5.3 Transport properties ............................................................................................... 91 

5.4 Electrical characteristics.......................................................................................... 94 

5.5 Conclusions ........................................................................................................... 100 

Chapter 6: Hole mobility in low-doped silicon nanowires ................................... 102 

6.1 Chapter introduction ............................................................................................ 102 

6.2 Electronic structure and transmission properties ................................................. 104 

6.4 Hole mobility ........................................................................................................ 109 

6.5 Conclusions ........................................................................................................... 115 

Chapter 7: Concluding remarks and outlook ....................................................... 116 

8. Bibliography .................................................................................................... 121 

 

  



4 
 

Acknowledgements 
I would like to express my extraordinary gratitude to my supervisor, Dr. Giorgos. 

Fagas, without whom this work would have been impossible. Throughout my PhD 

period, he provided encouragement, sound advice, good teaching, good company, 

and lots of good ideas. His patience, vast knowledge, keen observation and sheer 

enthusiasm were always inspiriting for me. 

I would like to address my special thanks to Dr. Simon D. Elliot, Dr. Justin D. 

Holmes, Dr. Baruch Feldman and Dr. Jim Greer for their helpful discussions during 

my PhD. I am indebted to many members of the Electronics Theory 

Group/Computational Modelling Group for providing a stimulating and fun 

environment in which to learn and grow. 

I also thank all members of IT department of Tyndall National Institute, and their 

help in many occasions are acknowledged. I also thank Irish High End Computing 

Systems and Science Foundation Ireland, for the computational facilities. I 

acknowledge the financial support derived from the Science Foundation Ireland 

grant number 06/IN.1/I857. 

Lastly, and most importantly, I wish to thank my parents Dr. Lakhan. C. Sharma and 

Mrs. Arati Sharma and my brother Apurba. To them I dedicate this thesis. 

 

 

 



5 
 

Abstract 
This thesis is focused on the application of numerical atomic basis sets in studies of 

the structural, electronic and transport properties of silicon nanowire structures from 

first-principles within the framework of Density Functional Theory. First we 

critically examine the applied methodology and then offer predictions regarding the 

transport properties and realisation of silicon nanowire devices. The performance of 

numerical atomic orbitals is benchmarked against calculations performed with plane 

waves basis sets. After establishing the convergence of total energy and electronic 

structure calculations with increasing basis size we have shown that their quality 

greatly improves with the optimisation of the contraction for a fixed basis size. The 

double zeta polarised basis offers a reasonable approximation to study structural and 

electronic properties and transferability exists between various nanowire structures. 

This is most important to reduce the computational cost. The impact of basis sets on 

transport properties in silicon nanowires with oxygen and dopant impurities have 

also been studied. It is found that whilst transmission features quantitatively 

converge with increasing contraction there is a weaker dependence on basis set for 

the mean free path; the double zeta polarised basis offers a good compromise 

whereas the single zeta basis set yields qualitatively reasonable results. Studying the 

transport properties of nanowire-based transistor setups with p
+
-n-p

+
 and p

+
-i-p

+ 

doping profiles it is shown that charge self-consistency affects the I-V characteristics 

more significantly than the basis set choice. It is predicted that such ultrascaled (3 

nm length) transistors would show degraded performance due to relatively high 

source-drain tunnelling currents. Finally, it is shown the hole mobility of Si 

nanowires nominally doped with boron decreases monotonically with decreasing 

width at fixed doping density and increasing dopant concentration. Significant 

mobility variations are identified which can explain experimental observations. 
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Chapter 1: Introduction 

1.1 Semiconductor nanowires as device 

nanomaterials 

All material properties, e.g., electrical, magnetic and optical properties, are strongly 

influenced by structure and this is even more evident at the nanoscale. As a result 

nanostructured materials have attracted increased interest by the scientific world. 

Specifically, nanowires – defined as one dimensional rods with diameter of 100 

nanometres or less – are the topic of my thesis and these can be metallic, 

semiconducting or insulating depending not only on their composition but also on 

the cross-section size and surface treatment. Because of their two dimensional 

confinement nanowires exhibit intriguing behaviour, e.g., nanowires made of bulk 

semimetals such as Bi or Sn show semiconducting behaviour below a threshold 

diameter.
1,2

  

Herein the focus is on semiconductor nanowires which have been shown to be 

excellent candidates as nanomaterials for electronic devices such as nanowire-based 

solar cells, batteries, biosensors, transistors, and photodiodes (a detailed literature 

review follows below).
3-18

 

In particular, silicon nanowires (SiNWs) with their high surface to volume ratio can 

be fabricated in a CMOS-compatible process
9-11

 and are ideal for integration in “end-

of-roadmap” technologies. Moore’s law implies that the number of transistors on an 

integrated circuit doubles in approximately every two years.
9
 Up to the beginning of 

the 21
st
 century physical scaling was the dominant driver. More recently, increased 

power consumption, technical challenges and cost led to the introduction of 

technology boosters such as strained silicon and high-k dielectric materials to 
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enhance the charge carrier mobility and reduce the gate leakage, respectively. 

However, as aggressive scaling continues the International Technology Roadmap for 

Semiconductors (ITRS) predicts that metal-oxide-semiconductor field-effect-

tansistors (MOSFETs) will reach sub-10 nm dimensions in 2018. Sub-deca 

nanometer devices show short-channel and quantum tunneling effects that degrade 

device performance.
19

 To address these challenges, new transistors use nanowires in 

ultra scaled FET designs.
8,20

 These consist of ultrathin channels surrounded by a gate 

dielectric and allow for better electrostatic control and body inversion.
21

 The Intel 

Corporation has already started utilising multigate fin-like FETs in the design of its 

Ivy Bridge microprocessors which have been in production since 2012. 

1.2 State-of-the-art experiments 

Thanks to advanced growth and fabrication techniques, bottom-up and top-down 

nanowire devices have been miniaturised down to ultrasmall diameters. SiNWs of 

diameter 1-7 nm have been characterised by Ma et al.
22

 and the device characteristics 

of transistors with a gate wrapped around a cylindrical Si core of diameter less than 

5nm have been measured.
23

 Most recently, using undoped SiNW multifunctional 

devices, including Schottky diode and logic gates, have been fabricated and their 

electron transport properties have been studied.
24

  

SiNWs are fabricated by both top down and bottom up approaches. Top-down 

approaches are based on optical
25

 and electron beam lithography,
26

 ion 

implantation,
27

 and etching.
28

 The bottom up approach mostly includes catalyst-

assisted growth
29,30

 using vapor-liquid-solid technique,
31

 laser ablation,
30

 chemical 

vapour deposition (CVD),
32

 plasma CVD,
33

 solution-based
34,35

 and thermal 

evaporator reactor methods.
36

 Top down fabrication can produce SiNWs of any 
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orientation whereas the orientation of catalytically grown wires depends on the 

diameter.  The performance of SiNWs can be enhanced by doping for applications in 

solid-state devices. Experimentally the most common dopants of interest are P and B 

which are found to form n- and p-type active material.
37,38

 The use of doped SiNWs 

has been demonstrated in applications ranging from energy harvesting and storage
36

 

and ultrasensitive low-power sensors
39,40

 to ultrascaled field-effect transistors.
8,41

 

Low cost and high efficiency p-n junction SiNW photovoltaics have been fabricated 

using both simple self-assembly and top-down fabrication. In either case, it has been 

found that there is an enhancement in light trapping due to higher absorption in 

nanowire arrays
42

 and silicon photovoltaic devices that show tuneable characteristics 

have been recently fabricated based on core-shell p-i-n nanowires with different 

cross-sectional morphology.
43

 Solar cells made with radial heterostuctures of 

nanowires show promising performance with power conversion efficiencies at 10% 

(expected to reach as high as 18%).
44

 Recently, significant thermoelectrics efficiency 

was shown in surface-treated silicon nanowires (SiNWs)
3
.
 
Another team of US 

researchers has shown that the use of SiNWs in a lithium rechargeable battery 

doubles the capacity of the battery.
45

 

Nanowires have been proposed with great success as field-effect-transistor (FET) 

devices for highly-sensitive, selective (bio-) chemical sensing with ultra small power 

consumption of the order of a few nanowatts.
46

 SiNW FET-based biosensors have 

been employed in the detection of proteins, DNA sequences, small molecules, cancer 

biomarkers and virus infections.
6
 Using top down fabrication with CMOS 

compatibility, they have been successfully designed for ultra sensitive detection of 

nucleic acids and diagnosis of avian influenza.
47

 In another example, they have been 

used to detect viruses by using antibody functionalized nanowires
48

 and as ultra-
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sensitive label-free biosensor immunodetection.
49,50

 The sensitivity and selectivity of 

the device can be improved by surface functionalisation, dopant type and doping 

level optimisation along with other design such as the nanowire surface-to-volume 

ratio and dual gates.
51

 In one of the recent experiments it has been demonstrated that 

back-gated silicon nanowire FET gives ultrahigh sensitivity and selectivity in 

sensing targeted DNA in biological species. By optimising the sensor at low buffer 

solution, these sensors showed good percentage of current response in the 

subthreshold regime and improved DNA detection.
52

 Also surface modification of 

hydroxylated SiNWs has produced fluorescence sensors for detecting Cu (II), 

thereby establishing a method which can be helpful for optical biochemical sensing 

of different analytes.
53

  

Work performed in the Lieber group has shown the utility of SiNWs in computation 

for digital electronics by demonstration of logical gates.
54

 Nanowires have also been 

used in tunnel FET geometries in order to decrease the subthreshold slope and realise 

low-power electronics with better electronic switches.
15

 However, difficulties are 

associated with low on-currents, abrupt junction fabrication and only local 

improvement of the subthreshold slope over a limited voltage range. On the other 

hand, ultrasmall transistors based on conventional heterojunctions (p
+
-n-p

+
 or n

+
-p-

n
+
 doping profiles) present short channel effects. This led to the proposal of 

multigate MOSFETs nanowire-based transistors since narrow-diameter MOSFETs 

surrounded by gate dielectrics provide the best electrostatic control of the channel.
21

 

For these designs the difficulty to control the dopant profile is another complication 

that needs to be addressed. Recently, a homogeneously doped device (n
+
-n

+
-n

+
 or p

+
-

p
+
-p

+
, i.e., without junctions) has been proposed. This junctionless transistor has 

been shown to yield ideal MOSFET characteristics.
21,55

 The channel length and 
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diameter in these devices are 40 nm and 20 nm, respectively. The question remains 

whether these nanowire-based transistors can be aggressively scaled towards the 

atomic scale. 

              

  

 

Figure 1.2: Schematic of three dimensional back-gated SiNW FET patterned on a 

silicon-on-insulator (SOI) substrate of buried oxide (BOX) (a) lithographically 

fabricated sub-5 nm thick Si nanowire field-effect transistors before oxidation (b) 

after oxidation 
26

. 
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Regarding the electrical performance of SiNWs, it has been found that during the 

fabrication process the removal of surface defects improves and stabilizes the 

electrical conductivity.
56

 Also, highly doped accumulation mode gate all around 

(GAA) SiNW FET of sub-5 nm SiNWs have been fabricated using top-down silicon-

on-insulator (SOI) platform with high tensile strain which boosts the carrier 

mobility.
57

 The current voltage characteristics have been recently studied 

experimentally in silicon nanowire transistors of diameter 3-5 nm (shown in Figure 

1.2). In Ref. 26 it is found that SiNW FETs with sub-5 nm channel width and 

nominally doped with boron (doping density 2x10
15 

cm
-3

) show improvement in 

drive current with high on/off ratio and low drain current leakage. The authors find 

peak mobility of 1200 cm
2
/(Vs) for a channel oriented along the <110> 

crystallographic direction. This is larger than a nanobelt control sample and it is due 

to strong one dimensional quantum confinement in the nanowire FET as compared 

to the two dimensional nanobelt. 

1.3 First-principles calculations as a design tool 

To be able to design better experiments or interpret measured results, a better 

understanding of the materials properties and their relation to measured quantities is 

required. In particular, for the development of electronic devices with improved 

performance the interplay between structural and electronic properties and their 

effect on electron transport behaviour in ultrathin SiNWs are essential to address. 

For the length scales of interest experimental data were difficult to obtain since the 

traditional trial-and-error approach can be challenging, time-consuming and 

expensive. To this end, modelling and device simulations can provide 

complementary guidance by probing yet unexplored regions and phenomena. 
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There have been plenty of theoretical studies on SiNWs that employ a range of 

continuum to atomic-scale models. But as dimensions shrink to the order of the 

Fermi wavelength of the electrons, the effective masses and other properties of the 

materials can change dramatically and interface/surface effects can dominate; hence, 

atomic-scale effects need to be taken explicitly into account. In particular, electronic 

structure calculations from first-principles have become an indispensible tool in the 

analysis of atomic and molecular properties, the design and characterisation of solid-

state (opto-) electronic devices and the search of new materials. The challenge is to 

provide an efficient yet accurate enough answer to predict the materials and device 

properties. 

There are numerous first-principles studies on the electronic structure of 

semiconductor nanowires made of various materials. Due to the increased surface to 

volume ratio, significant variations are expected in the electronic properties 

depending on the geometrical shape of the cross-section and growth orientation of 

the nanowire axis,
58-61

 defects and surface roughness,
62-64

 passivation and surface 

termination by different functional groups.
65-67

 The effect of electron-phonon 

coupling has been investigated 
68,69

 and found to give rise to anisotropic deformation 

potentials.
69

 Below, a brief presentation on the theoretical results obtained for very 

small diameter SiNWs (typically of the order of 5 nm and smaller) are given. 

SiNWs can be found in different preferential orientations <100>, <110>, <111>, 

<112> based on their fabrication technique. For catalytically grown nanowires it has 

been experimentally demonstrated that SiNWs with <110> orientation are 

favourably grown at smaller diameter (3 to 10-15 nm) while at diameters larger than 

30 nm <111> is the most stable orientation.
70

 In theoretical studies from first 

principles it was found that the stability of SiNWs at different orientations varies 



14 
 

depending on their surface passivation as well as diameter. For example the <111>-

orientation has been shown to be the most stable orientation for unpassivated SiNWs 

at diameter 6 nm.
67

 However, the <110>-orientation was most stable for non-

hydrogenated SiNWs of diameter 2-5 nm.
71

 Theoretically it was found that 1.2 nm 

diameter of  <110> oriented SiNWs with hydrogen passivation are the most stable 

structures.
72

 A strong dependence of the band gap on surface functionalization group 

in SiNWs has been identified using first-principles. Surface terminating groups cause 

strong hybridization effects in the valence band which yield band gap changes of up 

to 1 eV for a fixed diameter.
65

  

The presence of dopants has a huge impact on the electronic properties not only by 

tuning the Fermi energy but also as a source of resonant scattering. The effect of 

doping in the electronic and transport properties of silicon nanowires has been 

discussed both theoretically and experimentally. Different behaviour can be seen 

depending on the radial distribution of the dopants along the nanowire cross-section. 

For example if the dopant is located in the body of the nanowire it can cause back 

scattering. This is absent if the dopant is located near the surface while it couples to 

dangling bonds at the surface.
73,74

 A recent experiment reveals different segregation 

behaviour of B and P dopants which resulted in varying radial distributions in 

SiNWs.
75

 Nevertheless, the carrier mobility in SiNWs is expected to be affected by 

different scattering mechanisms including acoustic phonon scattering,
76

 neutral 

dopant scattering, ionised impurity scattering
77

 and surface roughness scattering. 

Electron-phonon scattering depends on the nanowire and device dimensions as well 

as the nanowire axis.
61,76,78

 It has been confirmed that when quantum confinement 

was not significant in SiNWs of diameter 30-50 nm, scattering from ionised dopants 

or phonons limited  the carrier mobility.
78

 In ultrascaled devices the interplay 
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between the various scattering mechanisms is expected to depend on orientation and 

cross-section and surface properties. 

The effect of surface confinement on the low-field mobility of <110> p-type Si 

nano-channels has been reported. Using first-principles and the Boltzmann transport 

method was found that <110> and <110> channels show a significant enhancement 

in hole mobility compared to  the  <100> channel.
79

 In some recent theoretical work, 

the current in a SiNW transistor has been shown to improve. By suppressing the 

quantum mechanical coupling between heavy and light holes in p-type SiNWs 

doubling of the current is observed in devices with channel width at 5 nm.
80

 It has 

also been shown that SiNWs oriented along the <110> direction support more 

efficient current processes
76,81

 and longer scattering lengths.
82

 Previously, transistor 

behavior in junctionless nanowire-based gate-all-around (GAA) setups with just a 3 

nm gate length was predicted.
83,84

 The excellent device characteristics at such 

ultrascaled dimensions have been recently confirmed.
153

 

1.4 Overview of the thesis 

Herein  first-principles methods were employed in the Density Functional Theory 

(DFT) framework
85 

to calculate the electronic structure of nanowires and extract a 

Hamiltonian matrix description for charge carrier transport studies. The aim is to: 

- Critically examine the use of numerical atomic basis sets in studies of the 

structural, electronic and transport properties of silicon nanowire materials 

- Establish the basis set dependence in obtaining electrical devices 

characteristics 

- Apply finally the computational tools in predictive simulations. 
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DFT, despite the limitations of its various approximations, is by now a fairly well-

established tool in electronic structure calculations. The use of a proper basis set has 

always been a most basic issue as well as challenging from the viewpoint of 

accuracy and computational cost. The details of Plane waves have been discussed in 

latter part of the thesis, which is at section 2.2.2.1. Plane waves (PWs) provide stable 

convergence and may be very accurate and efficient for various systems up to 1000 

electrons.
86,87

 But they present serious limitations when considering larger systems 

as PW basis sets tend to be large, thereby, needing very high memory for storage as 

well as calculation time for matrix operations. Also, plane waves are extended in 

space and are not well suited for transport calculations where the open boundary 

conditions are better captured by localised basis functions. An alternative is to use 

orbitals localised at the various atomic sites. Such atomic orbital (AO) basis sets 

have been extensively studied in Quantum Chemistry and used to investigate the 

properties of atoms and molecules. Their use in solid state has been more recent in 

linear-scaling implementations.
88-91

 The drawback is that AOs are more difficult to 

improve systematically for quantitative predictions. However, their transferability in 

a different environment cannot be guaranteed. The construction of numerical atomic 

orbitals (NAOs) and their on-the-fly optimisation promises a remedy. Several 

schemes exist to obtain NAOs. These have been shown to be relatively accurate and 

extremely efficient in various materials applications but additional studies are 

required to reach the same level of confidence as for PW predictions.
92

  

The above issues touched upon the first part of this thesis where it was focused on 

basis set investigation in an effort to identify the most appropriate atomic basis set 

for studies of silicon nanowires based on a compromise between computational 

demands and predictability. Atomic basis sets have been commonly used in studies 
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of electronic structure and transport properties of SiNWs and the size of the basis set 

were ranged typically from a minimal to a double zeta polarised basis set. However, 

there has been no report that compares variations between the various expansions 

and that benchmarks results against plane wave calculations. The systematic 

improvement of atomic orbitals with respect to the basis size or optimisation has not 

been studied. In addition, the basis set dependence on transport properties has 

attracted little attention with relatively few exceptions.
94,95

 

Herein, the first systematic validation of numerical atomic orbitals for SiNWs with 

oxygen and dopant impurities and the results are used to study charge-carrier 

scattering from impurity atoms and the transport characteristics of ultrascaled 

junctioned nanowire-based transistors. Variations of the mobility by neutral impurity 

scattering are discussed as a function of dopant position and nanowire diameter. It is 

also found that charge self-consistency affects the device characteristics more 

significantly than the choice of the basis set. Junctioned transistor designs would 

likely fail to keep carriers out of the channel as these devices yield source-drain 

tunneling currents of the order of 0.5 nA and 2 nA for p-n-p junction and p-i-p 

junction, respectively. 

The rest of the thesis is divided into the following chapters, which is briefly 

described here: 

- In Chapter 2, the theoretical background on calculation methodologies of 

electronic structure and electron transport properties is provided followed by   

a short description of the computational implementations have been used. 

- In Chapter 3, numerical atomic orbital basis sets are benchmarked against 

plane waves and an extensive comparison between various contraction 
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schemes are given. The aim is to build a solid background for calculations on 

SiNWs using numerical atomic orbitals. Results on total energy calculations 

and electronic structure properties of various ideal structures including 

hydrogenated and hydroxylated SiNWs are presented in detail followed by 

band structure analysis to obtain the effective mass and group velocity of 

subbands. 

- In Chapter 4, the results of Chapter 3 is used and is extended to first-

principles calculations of doped silicon nanowires. Boron, phosphorous, 

gallium and arsenic atoms were used as dopants. Structural and electronic 

properties are studied and the performance of optimised basis sets is 

benchmarked. The transferability of numerical atomic orbitals for studies of 

silicon nanowires is tested by applying in nanowires with different 

orientations. In this chapter, we also provide a first discussion on the generic 

effect of n-and p-type dopants on the transport properties of electrons and 

holes. 

- In Chapter 5, the studies of chapter 3 is extended to discuss the basis set 

dependence on the transport properties of non-ideal nanowire structures and 

the device characteristics of conventional transistor setups based on nanowire 

structures. The basis set dependence was compared against the effect of 

charge self-consistency on the device characteristics. Finally, predictions 

regarding the performance of ultrascaled (3 nm length) nanowire-based 

transistors with p-i-p and p-n-p doping profiles are given. 

- In Chapter 6, motivated by the recent results of Ref. 26 we study in detail the 

scattering by boron impurities in SiNWs. By placing the dopant in different 

positions on the cross-section and varying the nanowire width, firstly the 
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transmission properties across single impurities is calculated. Then these 

results were used and an approximate method based on scattering from 

independent impurities and the relaxation-time to predict variations in the 

mobility. 

- The thesis is concluded in Chapter 7 with a discussion of the findings and the 

outlook of this PhD work. 
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Chapter 2: Background to methods 

2.1 Chapter introduction 

This chapter provides the theoretical background to the computational 

methodologies employed later in the thesis. The chapter consists of three parts. In 

Section 2.2, the first-principles approach for structural and electronic structure 

calculations was described. These are applied throughout the core chapters of the 

thesis where new results are presented (Chapters 3-6). Following a brief introduction 

to the DFT framework, the particular focus is on the distinction between plane wave 

and numerical atomic basis sets. In the second part (Section 2.3), the theoretical 

approach to studies of electron transport properties (applied in Chapters 4-6) and the 

relation to current-voltage characteristics are discussed (applied in Chapter 5). The 

chapter concludes with Section 2.4 where the computational implementations that 

have based our results are described in more detail. 

2.2 Electronic structure from first-principles 

The many body Hamiltonian that governs the behaviour of interacting electrons and 

nuclei is given as follows 

    
  

   
   

 
   

   
 

          
 

 

     
  

         
     

  

   
   

  
 

 
 

     
 

           
      2.1 

where summations over i and j correspond to electrons and I, J correspond to nuclei. 

The first term is the kinetic energy of the electrons followed by the attractive 

electron–nuclei interaction, the electron-electron repulsive interaction, the kinetic 

energy of the nuclei, and the nuclei–nuclei repulsive interaction. The above equation 

defines   ,   ,   ,      and     as charge on nuclei, mass of electrons, mass of nuclei, 
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position coordinates of nuclei and electrons respectively. The above equation can be 

written in more compact form as follows 

                                                                 2.2 

where the kinetic operator    and potential operator    depend on the position of 

electron and nuclei,    and     respectively. Also, assuming that the electrons move in 

the environment of fixed atomic nuclei and denoting the first three terms as     yields 

the electronic part of the Hamiltonian. The total energy      is obtained by adding 

the nuclei contribution                   to the electronic energy. The 

minimisation of       yields the optimised geometry of the nuclei. Many different 

schemes have been developed to predict from first-principles the electronic structure 

for many-electron systems. The most advanced methods are based on controlled 

approximations of the explicit solution of the many-body Schrödinger equation for 

    .
96

 However, while these methods are well suited for a limited number of particles 

interacting with external fields, the enormous number of electrons in solids restricts 

the applicability of these methods in solid state physics to model systems with many 

levels of approximations. 

A breakthrough in the treatment of the many-body problem was provided by the 

advancement of density functional theory by Hohenberg and Kohn. They proved that 

the ground state density uniquely determines the potential and thus all properties of 

the system, including the many-body wave functions (that is, it reduces the problem 

of finding the 3N degrees of freedom of an N-body system to the 3 spatial 

coordinates of the density). They also showed that the calculation of the ground state 

energy for the many-body problem can be replaced by the minimization of an energy 

functional of the density.
96

 Later, Kohn and Sham used the latter theorem to derive a 

tractable set of single-particle equations by replacing the intractable many-body 
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problem of interacting particles (electrons for the problems tackled in this thesis) in a 

static external potential with a fictitious system of non-interacting particles that 

generate the same density as any given system of interacting particles
85

 This has 

made the problem computationally very attractive, thereby establishing DFT as the 

cornerstone of modern practical numerical methods that describe solids at an ab 

initio level, i.e., without using external parameters. 

2.2.1 Theoretical foundations of DFT 

The conceptual root of DFT can be traced back to Thomas-Fermi-Dirac model. 

Based on a classical approximation for the electrostatic interaction and the kinetic 

and exchange energy of the homogeneous electron gas, this model expresses the total 

energy of a many-electron system in terms of the electron density.
97

 However, the 

fundamentals of DFT were put on a firm basis by the two Hohenberg-Kohn 

theorems.  

The first theorem states that the ground state electronic density determines the 

external potential          to within an additive constant. This implies that the ground 

state electron density uniquely determines the Hamiltonian operator; hence the 

ground state properties of N electrons can be found by reducing the 3N spatial 

coordinates required for the description of the N-electron wavefunction    

                    to just the 3 spatial coordinates of the density 

                                
                     2.3 

The second Hohenberg-Kohn theorem states that the ground state energy functional 

E[ρ] is minimized by the ground state electron density ρ0, that is             for 

every (positive definite) trial electron density. Figure 2.1 demonstrates graphically 

the Hohenberg–Kohn theorems. 
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Figure 2.1: Visualising the implications of the Hohenberg-Kohn theorems 
156

. The 

single arrows indicate the common solution of the Schrödinger equation where the 

potential determines all the states including the ground state            . The double 

arrow denotes the first Hohenberg-Kohn theorem. 

The practical application of DFT owes to the work of Kohn and Sham and their 

independent particle model.
85

 They stated that the many-body problem of interacting 

electrons in a static external potential can be reduced to a problem of non-interacting 

electrons moving in an effective potential. The Kohn-Sham mapping (visualised in 

Figure 2.2) of the density and ground state energy of the fictitious system consisting 

of non-interacting electrons to the real many-body system described by the many-

electron Schrödinger equation allows writing independent particle equations as 

shown below. 

  
  

  
                              2.4 

The method introduced by Kohn and Sham is based on the Hohenberg-Kohn 

theorem that enables the ground state to be found by minimising the functional 

         by varying       over all densities containing N electrons. The Lagrange 

multiplier   is chosen to introduce this constraint so that 

            2.5 

and from the minimisation of the energy functional 
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                       2.6 

 
         

        
 =   2.7 

Kohn and Sham separate         into the following parts  

                   
 

 
 

              

             
                                     2.8 

where           is the kinetic energy of the independent particle system with density 

      and is given as  

           
  

  
      

           2.9 

and                   
 

  2.10 

where    is the occupation of the one-electron wavefunctions. 

Substituting Equations 2.9 and 2.8 in 2.7,   can be rewritten in terms of the effective 

potential         as 

 
       

     
            2.11 

and solves to find the ground state energy   , and density        in a system 

containing non-interacting electrons moving in an external potential. All one has to 

do is to solve the one-electron equation 2.4 self consistently with       since from 

Equation 2.11 

  
  

  
                                          2.12 
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Equation 2.4 is called the Kohn-Sham equation and has the form of a Schrödinger 

equation in which the Kohn-Sham potential          forms an effective potential for 

non-interacting particles. From Equations 2.7, 2.8 and 2.11          includes the 

external potential and the effect of interactions between the electrons by considering 

the classical electrostatic (Hartree) potential and an implicit definition of an 

exchange-correlation potential. The latter derives from the non-classical electrostatic 

interaction energy and the difference between the kinetic energies of the interacting 

and non-interacting systems.  

 

 

 

  

 

 

Figure 2.2: Visualizing the implications of the Kohn-Sham model. The white left 

boxes represent the application of the Hohenberg-Kohn theorems (see caption of 

Figure 2.1). The shaded left boxes (marked with HK0) indicated the application of 

the theorems to the non-interacting Kohn-Sham system
156

 KS indicates the mapping 

of the many interacting electrons in a static external potential to a problem of non-

interacting electrons moving in an effective potential. 

                

 

                  

         

           

           

         

 

        
HK KS HK

0 
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The implicit definition of the exchange-correlation potential is given by the 

functional derivative of the exchange-correlation energy functional 

         
       

       
    2.13 

 

While the exact exchange-correlation energy functional is not known, several 

approximations exist for its explicit form. The most common approximation assumes 

that the contribution to the exchange-correlation energy from each infinitesimal 

volume in space     is that of a homogeneous electron gas with the same density 

                           2.14 

where            is the exchange-correlation energy per electron in a homogeneous 

electron gas of density      . This is the local density approximation (LDA) in which 

the exchange-correlation potential         then takes the form  

        
           

      
                 

       

  
        2.15 
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There are well-known parameterisations for           .
98

 The LDA applies well if 

the density variations are small in the length scale of the Fermi wavelength λF, 

namely, 
         

                
, where      

               
   
  is the Fermi wavevector. 

To account for density variations the generalised gradient approximation (GGA) is 

commonly used in which the exchange-correlation energy functional depends on 

both the density and its gradient, symbolically 

            ),      )] 2.16 

 

2.2.2 Basis sets for solving the Kohn-Sham equations 

The Kohn-Sham equations are typically solved numerically on a computer after they 

are expressed in a specific basis. In performing electronic structure calculations for 

studies of the ground state and other physical properties there is always a 

compromise between accuracy and efficiency. One such basic choice involves the 

selection of the basis set. Plane waves, real-space grids and atom-centred orbitals are 

most commonly used. Convergence of physical properties with plane waves (PWs) 

and real-space grids are well controlled by increasing the size of the basis, hence, 

providing a benchmark for state-of-the-art electronic structure calculations. This is at 

the expense of computational time and memory requirements.
99,100

 On the other 

hand, basis sets made of atomic orbitals (AOs) can be much smaller; for comparison, 

a dozen of AOs is required per atom instead of hundreds of PWs per atom for a 

similar quality calculation.
86,87

 In addition, the localisation of AOs has motivated 

their development for large-scale order-N calculations
99,101,102

 and simulations of 
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charge-carrier transport.
76,94,95

 However systematic improvements of AOs for 

quantitative predictions are more challenging.
103

 

Atomic orbitals are routinely employed in calculations of atomic and molecular 

spectra since it is a reasonable starting point.  Their convergence properties have 

been intensively studied in quantum chemistry for decades.
103,104

 Implementations 

also exist for extended solid-state systems
102,105-109

 but by comparison the use of AOs 

is less established. The transferability of tabulated AOs in different chemical 

environments is an old problem which the construction of numerical atomic orbitals 

(NAOs) promises to remedy,
92,102,110

 in particular under various schemes of on-the-

fly optimisation.
107,111

 After a brief introduction to PWs a scheme of generating 

NAOs is explained below. 

2.2.2.1 Plane wave basis sets 

Traditionally plane waves have been used in electronic structure calculations of 

solids where the underlying lattice provides periodicity to the Kohn-Sham wave 

function. To use these implementations in more general cases where periodicity does 

not apply (or exists only in certain directions), a repeating unit (supercell) can be set 

up with sufficient vacuum to make the interaction between repeated atoms, 

molecules or finite clusters negligible. In any case, the Kohn-Sham wave function    

can be expanded in plane waves  

                                                        
               2.17 

Where      and     are plane waves and reciprocal lattice vector that satisfies the 

periodicity imposed to the supercell. Systematic convergence can be achieved by 

increasing the number of plane waves, that is, increasing       . To allow for that, 



29 
 

one sets a single variational parameter, that is, the maximum kinetic energy 

        
  

  
      

  of the plane waves. However, converged sets of plane waves 

are computational demanding. On the other hand, numerical atomic orbitals (NAOs) 

can be computationally very efficient but more approximate. A handful of NAOs are 

required per atoms compared to the hundreds of plane waves. 

2.2.2.2 Numerical atomic orbitals basis sets 

Herein, the scheme to generate numerical atomic orbitals as developed by Ozaki
92 156 

has been described. Other proposals follow the same spirit. The method builds on 

expressing the Kohn-Sham wavefunction    as a linear combination of atomic-like 

basis functions    located at the various atomic sites 

                 
 
             ; { μ; μ =1, 2…K} 2.18 

where n is the site index and μ includes the angular momentum l, magnetic quantum 

number m and the multiplicity index  , namely,        . The { μ} basis is 

obtained by the eigenvectors of the Schrödinger equation for an atom in a slightly 

modified environment that accounts to some extent for the orbital relaxation when 

bonding. A confinement barrier added to the atomic potential at a radius rc, beyond 

which the wavefunction vanishes, defines the pseudoatom. The obtained 

pseudoatomic wavefunctions are referred as primitives, e.g., the notation smpm'dm'' 

indicates that m, m' and m'' such functions are used to expand s, p, and d orbitals, 

respectively. Their properties have been studied in detail for a range of atoms.
92

 In 

analogy to Quantum Chemistry, basis sets are denoted as single-zeta, double-zeta 

and so on, depending on the number of primitives per valence state. 
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In spite of their success in describing structural and electronic properties, NAOs 

require more inbuilt flexibility for optimal numerical efficiency and 

accuracy.
90,92,112,114

 This implies introducing an additional degree of freedom and can 

be achieved by further expressing the NAOs { μ} as a linear combination of 

pseudoatomic orbitals with the same (l,m) index pair, namely, 

                   2.19 

with         and        . This leads to contracted or optimised numerical 

atomic orbitals similar to the Gaussian contractions.
103

 The notation snmpn'm'dn'' is 

used to indicate abbreviation of basis sets, e.g., s32p32d1 means that two optimised 

orbitals are constructed from three primitive functions to describe s and p electrons 

respectively, while one primitive is employed for the d orbitals. 

The above scheme of contracted numerical atomic orbitals expresses the functions of 

the { μ} basis as a functional of the primitive orbitals     allowing for their 

optimisation in a given chemical environment. In addition to the expected better 

accuracy there are other benefits to this approach. First, instead of increasing the 

number of primitives and their angular momentum to achieve convergence, a much 

smaller basis set can be used that yields results of similar quality. This is 

demonstrated in the next Chapter. Orbital optimisation does not only decrease the 

computational cost by reducing the size of the basis. It makes also highly likely to 

avoid the issue of basis sets overcompleteness. However, there are associated 

drawbacks as the optimised contractions for a chemical environment are not a priori 

known. Despite the development of optimisation schemes
92,103,110,112

 the 

computational overhead  leads to very often adopting in practice atomic basis sets 

(pre-)optimised for generic environments.
92,111

 In either case, that is, of pre-
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optimised or fully optimised orbitals, their make-up and transferability still needs to 

be established for the system at hand. This is discussed in Chapters 3 and 4 for the 

case of SiNWs with different surface terminations and dopant impurities. 

2.3 Quantum theory of transport 

Different levels of theories and within varying degrees of approximation have been 

applied to study the electronic transport in solids starting from classical drift-

diffusion equations and the semi-classical Boltzmann transport method to Kubo’s 

formalism and the explicit solution of the Schrödinger equation. In the meso- and 

nano- scale of materials and as devices scale down, the Fermi wavelength λF of 

charge carriers (1 Å in highly conductive metals to tens of nm in low-dimensional 

semiconductors) becomes comparable to other characteristic length scales defined by 

geometric and materials features. It is therefore essential to account for the quantum 

mechanical nature of charge carriers in order to get reliable predictions about 

transport properties of materials and electrical device characteristics. 

Two methods have been most commonly used for studying quantum transport. These 

are the Landauer scattering matrix approach
114

 and the non-equilibrium Green’s 

function technique (NEGF).
155

 The Landauer approach has been considered very 

successful due to its simplicity in explaining conductance quantisation and other 

mesoscopic interference effects in low-dimensional systems.
114

 It is mostly applied 

in studies of coherent charge transport, that is, it does not take into account inelastic 

processes (for example from electron-phonon and electron-electron interactions). 

There have been generalisations to include these effects but based on perturbation 

techniques the NEGF framework offers a solid foundation to extend its applicability 

beyond coherent transport.
156

 NEGF also readily accounts for self-consistency of the 

potentials induced by non-equilibrium charges when external bias is applied. In this 
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thesis, the Landauer approach was applied to calculate the effect of scattering from 

impurities in silicon nanowires (Chapters 4, 5 and 6). In Chapter 6, such calculations 

of the mean free path are combined with a semi-classical approach to derive the 

mobility dependence on nanowire diameter and dopant position. The NEGF method 

is applied in Chapter 5 to study the interplay between basis set dependence and 

charge self-consistency. 

2.3.1 Landauer formalism 

The Landauer formalism relates the current across a nanostructure with the 

transmission of charge carriers through the material channel in terms of scattering 

theory. Sometimes it is referred to as describing ballistic transport since it does not 

take into account inelastic processes such as electron-phonon or electron-electron 

interaction beyond an effective mean-field potential. This implies that it is applicable 

when the corresponding mean free path of inelastic processes is much larger than the 

device dimensions. Nevertheless, the Landauer formalism can always be used to 

extract physical information about scattering of charge carriers with impurities as 

well as surface and interface boundaries, allowing for size-quantisation, quantum 

confinement, quantum interference and quantum diffusion. 

Let us consider a central channel region L of a wire with finite crossection contacted 

by two leads which act as ideal reservoirs. For simplicity, we assume that the leads 

are identical and that they are ideal (uniform along the current direction). The 

chemical potential of the left and right reservoirs are denoted by  
 

 and  
 

 

respectively. A typical setup is shown in Figure 2.3. 
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Figure 2.3: A ballistic conductor is sandwiched between two contacts across which 

an external bias is applied. Electrons can flow into conductor from the contacts 

without any reflection, that is, the contacts are assumed to be ideal or reflectionless. 

When a source-drain bias voltage is applied the conducting channel region L remains 

in a non-equilibrium state as it tries to equilibrate with each of the two chemical 

potentials of the reservoirs. The left reservoir pushes electrons in the channel while 

the right reservoir draws away electrons, thus the channel region remains in a 

balancing act between the source and drain. The difference in chemical potentials 

gives rise to two different quasi-Fermi levels at the interface with the source and 

drain. The imbalance in the occupancy of electrons is responsible for electron flow 

across the material channel.  
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Figure 2.4: Occupancy of electrons occurring after applying bias V in a ballistic 

conductor. The variation in the electrochemical potential has been shown by        

for flow of electrons from left to right contacts. 

The quantum mechanical solution of the Schrödinger equation in the periodic leads 

yields propagating plane waves along the wire axis. These are so-called channel 

eigenstates or modes which for the n
th 
–subband can be expressed as 

          
 

  
    

                       2.20 

Assuming simple one-dimensional parabolic sub-bands, the occupancy of electrons 

occurring after applying bias V is shown in Figure 2.4. Prior to Eq. 2.20 x should be 

defined as the transport direction, y,z as perpendicular. Electrons originating from the 

left lead occupy the     states having positive group velocity in the x direction and 

their occupation probability is given by the Fermi-Dirac distribution       . The 

states with negative group velocity (   ) are occupied by electrons originating from 

the right lead and are occupied according to the distribution      . Given the 

Left contact Right contact 
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electron density of single transverse mode occupying +   states is 
 

 
 where L is the 

length of the conductor, the current carried by the     states is given by 

    
   

 

 
      

       
       2.21 

or 

    
   

 

 
 

 

   

  

   
        2.22 

         
 

 

  

   
 

An incident flux of charge carriers from the left lead would scatter at the scattering 

region and out flux would transmit into the right lead or reflect back at the left. The 

total current can be obtained by taking into account the probability of electrons to 

cross the channel along with summation of all subbands, that is, the transmittance. 

Thus, after considering also the spin of the electron, the total current flowing from 

the left to right reservoir is given as  

    
              

 

 
    

    
        

      
   

 
    2.23 

   
 

 
 

 

 

 

 
    
  

     
    

        
     2.24 

                                    
   

  

 
            
  

  
 2.25 

 Where        2.26 

Similarly the current flow from right to left reservoir is given by 

    
   

  

 
            
  

  
 2.27 

The net current is obtained by subtracting     
 from     
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 2.28 

   
  

 
                  
  

  
 2.29 

In the last expression the dependence of the distribution function on the chemical 

potential and the electronic temperature     is restored as well as the dependence of 

the transmittance to the applied potential (if the calculation is performed self-

consistently). 

However, at low-bias (linear response)  

            2.30 

the difference in the Fermi-Dirac distributions can be expressed as 

      
            

   
      

            

  
     2.31 

thereby yielding 

   
   

 
          

            

   

  

  
 2.32 

after substitution to Equation 2.33. This implies the definition of the conductance at 

linear response as 

   
 

         
 

 

 
  2.33 

        
   

 
         

            

   

  

  
 2.34 

At zero temperature 
            

   
        , hence Equation 2.35 yields 
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      2.36 

         
   

 
       
     
    2.37 

The above expression is the celebrated Landauer formula which relates the 

conductance with transmission. Evidently, the conductance depends on the number 

of transverse modes of the channel      . If the conductor is much smaller than any 

scattering length           then      for all subbands and    
   

 
     . 

This manifests that the conductance is quantised and is proportional to the number of 

propagating modes.    
   

 
         is the quantum of conductance. The 

resistance       
    defines the contact resistance which arises due to the interface 

between the reservoirs and the conductor. This is unlike a macroscopic conductor 

which follows Ohms law     
  

 
. Here,   and A are the resistivity and cross-

sectional area of the wire, respectively. As N is directly proportional to A the 

quantum resistance also decreases with increasing cross-section as more subbands 

are populated but in discrete steps. 

2.3.2 S-matrix 

It is apparent that the central quantity in the Landauer approach is the probability for 

charge carriers to be transmitted through the scattering region. To this end, it is 

instructive to sketch how this probability is calculated. Quite generally the problem 

can be expressed through the quantum mechanical scattering matrix or S-matrix. The 

S-matrix relates the amplitude of outgoing channel eigenstates to the amplitudes of 

incoming modes via transmission      and reflection matrices      for each lead 
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  2.38 

               

     
  2.39 

The dimension of the S-matrix is determined by the number of channels in each lead. 

For example,    and    are      
        

  and        
        

  matrices, where      
  

and      
  are the number of channels in the right and left lead respectively. And     

and     defines the reflection and transmission of electrons respectively from right 

lead. The transmission probability of each mode is obtained by taking the square of 

the corresponding S-matrix element 

               
  2.40 

The total transmission probability (transmittance or transmission function) can be 

obtained from the summation of the transmission probability of each mode 

           2.41 

To calculate the S-matrix, response Green’s functions are employed since they 

contain information for a response at point    due to an excitation at point r. It is 

generally impossible to calculate the Green’s function for the whole system. 

However, one may calculate the Green’s function for a region that contains the 

scatterer and connects the left to the right lead. The first step is to divide the system 

into three parts as before (left lead + conducting channel/scatterer + right lead).  

The total Hamiltonian can be expressed symbolically as  

                         2.42 
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where L(R) and C stand for the left(right) lead and the conductor in the centre. Let us 

consider the representation for basis functions as   ,    and    for the left, centre 

and right regions respectively; in this thesis    is the Kohn-Sham Hamiltonian and 

the basis functions are numerical atomic orbitals. Then, the Hamiltonian can be 

expressed in the following matrix form under the assumption that there is no 

interaction between the left and right leads 

   

      

        
 

      

  2.43 

For non-orthogonal orbitals there is also the corresponding overlap matrix 

S= 

      

   
      

 

      

  2.44 

Here, HL(SL), HR(SR ) and HC(SC ) are the Hamiltonian (overlap) matrices of the leads 

and the device and HLC(SLC ), HRC(SRC ) are the coupling matrices between the device 

region and the leads.  

The Green’s function for the semi infinite leads is expressed as (here, it is assumed 

that          , thereby defining the retarded Green’s function) 

     
                  )-1 2.45 

Defining the self-energies   
 ,   

  via 

  
               

    
               2.46 

  
               

   
                2.47 
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one can solve for the Green’s function of the central region 

  
               

       
        2.48 

where the effect of the leads on to the conductor is taken into account via the self-

energies. Finally, the scattering matrix can be calculated using the channel 

eigenstates and   
     155

 For example, the transmission function is expressed in 

terms of Green’s function as
 

          
           

            2.49 

where                 
          

        The unitarity of the S-matrix can 

be checked (       ) since probability is conserved for each channel. 

2.3.3 Self-consistency using NEGF 

As mentioned in the previous sections we use the Kohn-Sham Hamiltonian      as 

input to my transport calculations. Following Ke et al.
115

 the NEGF can be 

performed independently of the electronic structure step. Solution of the Green’s 

function   
     from     is equivalent to solving the KS equations, so   

     

contains information on the state of the system.
155

 For an initial Hamiltonian and the 

corresponding Green’s function, the density matrix (DM) is calculated according to 

   

 
 

 
          

                  
  

  
 

  
      

           
       

  

  
             

            

2.50 
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Unlike electronic structure calculations which are typically carried out with periodic 

or cluster boundary conditions (BCs), the above equation yields the DM for the open 

system, with self-energies taking into account the semi-infinite electrodes. The first 

term in Equation 2.50 is the equilibrium (linear-response) contribution to the DM, 

and the second term is the non-equilibrium (polarization and current flow) 

contribution, which vanishes when μL = μR.  

The charge density can be computed straightforwardly from the DM according to 

        
 

                       2.51 

As a general principle, codes based on KS-DFT can find the entire system 

Hamiltonian HKS from knowledge of just the electronic density, so this density is 

used in the electronic structure code to extract the new Hamiltonian matrix of the 

device region. This process of computing the density matrix from the Hamiltonian 

and vice versa iterates until the charge density converges, after which the S-matrix 

and the transmission function T(E) are computed for the converged density. 

2.4 Computational packages 

Below a brief description follows of the computational tools used in the calculations. 

2.4.1 Quantum Espresso 

Quantum Espresso is an open source integrated suite of computer codes for 

geometrical optimisations of the atomic structure and electronic structure 

calculations.
116

 It is based on a plane wave implementation of DFT. Pseudopotentials 

(both norm-conserving and ultra soft) are employed to eliminate core states. 

Quantum Espresso builds onto newly-restructured electronic-structure codes (PWscf, 

PHONON, CP90, FPMD, and Wannier) that have been developed and tested by 
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some of the original authors of novel electronic structure algorithms - from Car-

Parrinello molecular dynamics to density-functional perturbation theory - and 

applied in the last twenty years by some of the leading materials modelling groups 

worldwide. Quantum Espresso can perform the following types of calculations: 

1) Geometrical optimisation 

2) Band structure, projected density of states 

3) Electron-phonon interactions 

The most important input parameters in Quantum Espresso are the atomic 

geometries (number and types of atoms in the periodic cell, bravais-lattice index, 

crystallographic or lattice constants), the kinetic energy cutoff, the type of 

pseudopotentials, and the total maximum force on an individual atom for geometry 

optimizations. 

Quantum Espresso is a very simple approach towards predicting the electronic 

properties of materials or a combined system. As Quantum Espresso uses plane wave 

basis sets it is one of the most accurate DFT tools. However, it has limited capability 

when applied in large systems due to the computational cost. 

2.5.2 OpenMX 

OpenMX (Open source package for Material eXplorer) is a software package for 

nano-scale material simulations based on DFT.
156

 Unlike Quantum Espresso Open-

MX solves the Kohn-Sham equations using pseudo-atomic localized basis functions 

(NAOs with a finite radius) which is useful for O(N) calculations. Open-MX uses the 

local density approximation (LDA and local spin density approximation) and 

generalized gradient approximation to the exchange-correlation potential with norm-
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conserving pseudopotentials. It requires similar inputs to Quantum Espresso with the 

main difference arising from the use of the NAOs as described in Section 2.2.2.2. 

Open-MX calculates many structural and electronic properties such as total energy, 

forces, band structure, density of states (DOS) and projected DOS, and can perform 

full and constrained geometry optimisation. Since the code is designed for the 

realization of large-scale ab initio calculations on parallel computers, it is anticipated 

that OpenMX can be a useful and powerful tool for nano-scale material sciences in a 

wide variety of systems such as bio-materials, carbon nanotubes, magnetic materials, 

and nanoscale conductors. 

2.5.3 TiMeS  

TiMeS (Transport in Mesoscopic Systems) is an in-house modular transport 

simulator that allows measurement of both the intrinsic electronic transport 

properties of materials and the electrical characteristics of devices. Based on Green’s 

function techniques, the scattering-matrix, and hence the transmission T(E) of charge 

carriers injected at energy E, can be calculated from a single-particle Hamiltonian H 

in either the low-bias (non-self-consistent) Landauer approximation or in fully self-

consistent NEGF theory. 

The non-self-consistent (NSC) version of TiMeS operates as a post-processing step 

after the electronic structure computation. Importantly, TiMeS is completely 

modular in that it needs, and has, no information about the representation used by the 

electronic structure code except for the single-particle (typically Kohn-Sham) 

Hamiltonian and overlap matrices. TiMeS currently has interfaces to accept this 

information from OpenMX,
92

 DFTB
+117

 and the Quantum Espresso DFT code via 

transformation of plane waves to Wannier orbitals.
118
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Like other localized-orbital electronic transport codes based on Landauer or NEGF 

theory,
119,120

 TiMeS calculates the self-energy of the semi-infinite electrodes based 

on the surface Green’s function for the given on-site and hopping Hamiltonian and 

overlap matrices for the electrodes.  The entire transport region is broken into three 

sub-regions: the two electrodes and a scattering region.
115

 The electrodes are semi-

infinite repetitions of periodic cells.  These cells and the scattering region must be 

“principal layers”
115

 such that overlap elements vanish for orbitals separated beyond 

the adjacent principal layers. Therefore, just one hopping Hamiltonian is needed for 

each electrode. TiMeS then proceeds to solve the scattering problem as described in 

Section 2.3.1. 

Starting with this low-bias algorithm, TiMeS is extended to perform fully self-

consistent NEGF calculations to retain modularity. NEGF is implemented 

independently of the electronic structure step and TiMeS calculates the electronic 

density matrix from the (typically KS-DFT) Hamiltonian output by the electronic 

structure code. The procedure to obtain the converged density matrix using open 

boundary conditions (BCs) was explained in Section 2.3.2.  The integration in 

Equation.2.50 is done by Gaussian quadrature, and the equilibrium part may also use 

complex contour integration (starting appreciably below the lowest energy band), 

such that each integral usually requires evaluation of G(E) at ~50 or fewer energies 

E. Note that even in a zero-bias calculation, the linear-response density in NEGF can 

differ from the non-self-consistent result because of the inclusion of the self-energies 

representing open BCs rather than the periodic BCs of the electronic structure step. 

In the limit of an ideal calculation, the central region should be made long enough 

that the BCs are virtually irrelevant, but this is not always the case in practice. In the 

case of applied bias, convergence is ensured by extending the scattering region.  
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Figure 2.5:  The TiMeS flowchart shows the cross-platform of quantum transport 

implementation. The non-self-consistent step is indicated by the dark (blue on line) 

arrow. 

The non-self-consistent and the NEGF flowchart are shown in Figure 2.5. This 

flexibility and modularity allows for easy continuation of interrupted runs, as well as 

interchange and comparison of different electronic structure approaches or density 

functionals. The programme flow is specifically designed to allow a modular 

incorporation of differing electronic structure methods to obtain the single-particle 

Hamiltonian. In the present work, matrix representations of the Hamiltonians of the 

relaxed structures were obtained from OpenMX. 
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Chapter 3: Structural and electronic properties of 

hydrogenated and hydroxylated SiNWs 

3.1 Chapter introduction 

The properties of silicon nanowires have been previously explored using DFT with 

plane wave
69,112,121

 and atomic basis sets.
92,110

 Other approximate methods such as 

empirical tight-binding
76,83,117

 and DFT within the approximate Harris-Foulkes 

functional
76

 have also been used. Most studies identified the qualitative dependence 

of the band gap magnitude and character as a function of nanowire diameter, 

orientation axis, cross-section shape and surface preparation. It is generally found 

that the band gap in silicon nanowires becomes direct due to zone folding and 

increases with decreasing diameter due to size-quantisation.
65

 For a fixed cross-

section, hydrogen passivated SiNWs grown along the orientations <111>, <110>, 

and <100> show larger band gap in the given order
58

 whereas surface termination 

with species other than hydrogen tends to decrease the band gap.
65

 

In this Chapter, the issue of quantitative estimates in SiNWs derived from DFT 

implementations using numerical atomic orbitals (NAOs) is revisited. It is the 

purpose of this chapter to examine the method proposed by Ozaki et al.
92, 111

, and 

implemented in the OpenMX package
156

 and take a first step towards a systematic 

validation of its accuracy for electronic structure calculations (and derived 

quantities) in SiNWs. Early studies in bulk-Si
105

 have indicated that a double-zeta 

polarised (DZP) basis set may suffice and variational freedom from larger basis sets 

may be required for converged forces in atomic relaxations.
124

 This rule of thumb is 

not always followed in SiNW calculations, specifically in asserting qualitative 
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trends, and more importantly there is no point of reference. Here, the systematic 

improvement of electronic structure calculations in SiNWs with respect to the basis 

size and optimisation has been studied. 

By using the basis sets provided by the OpenMX library and varying the number of 

functions their quality was established their quality before and after orbital 

optimisation, in calculating properties such as total energies, band gaps, effective 

masses and group velocities. The latter are important to estimate the charge-carrier 

mobility in SiNWs. Results are benchmarked against the PW implementation in the 

Quantum Espresso electronic structure platform.
118

 The addition of d-polarisation 

functions is a minimum requirement to obtain the correct bonding geometries and 

qualitative description of the electronic structure. It was found that a DZP basis with 

orbital optimisation provides a good compromise between efficiency and accuracy 

yielding overall significant improvement at a small cost. Most importantly, the 

optimised orbitals are transferable to different wire orientations and surface 

terminations. These conclusions should be applicable to other semiconductor 

nanostructures. Notably, bond lengths, atomisation energies, and Kohn-Sham 

eigenvalue spectra were compared previously between PW and OpenMX NAOs 

basis sets for dimers and it was found that chemical accuracy can be obtained even 

with a small set of orbitals.
114

 

The structure of the chapter is as follows. For benchmarking of NAOs with PWs, in 

Section 3.2 we consider two systems of common interest (see Figure 3.1): (a) 

intrinsic hydrogen-passivated SiNWs (SiNW:H) and (b) intrinsic SiNWs with 

hydroxyl surface termination (SiNW:OH) as a minimal model of an oxidised surface. 

A more detailed analysis of band structure properties is given in Section 3.3 for the 
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common case of hydrogenated SiNWs followed by a discussion of transferability in 

Section 3.4. 

3.2 Benchmarking of numerical atomic orbitals 

3.2.1 Hydrogenated silicon nanowires 

Hydrogenated SiNW grown along the <110> crystallographic direction with 

diameter 1.15 nm (24 Si and 16 H atoms in the unit cell) were constructed by cutting 

a hexagonal cross-section from the bulk-Si structure and passivating the free surfaces 

with hydrogen. These structures are considered as prototype models due to their 

common occurrence using bottom-up synthesis. The DFT methodology has been 

discussed in Section 2.3. 

First, the electronic structure has been calculated using plane wave basis sets as 

implemented in the Quantum Espresso (QE) package. This sets the benchmark with 

respect to results obtained from NAO basis sets. The structure was geometry 

optimised with force threshold of 0.01 eV/Ǻ and Monkhorst-Pack k-point sampling 

on a 15x1x1 grid in the Brillouin zone. The PW kinetic energy cut-off was chosen to 

be 30 Ry (408.17 eV). The PBE generalised gradient functional (GGA) and norm-

conserving pseudopotentials have been used throughout the simulations. The cross-

section of the relaxed SiNW:H is shown in Figure 3.1(a). The Si-Si bond distance is 

2.362 Å at the core and 2.351 Å at the surface. These are in good agreement with 

previous PW calculations obtained from the VASP programme package
125

 by using 

the same functional and projector augmented wave (PAW) method with an [Ar] core 

for Si. Similarly, the predicted Si-H bond length in the relaxed geometry is 1.5 Å 

which is the same as the experimental value.
22
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Figure 3.1: Three dimensional cross-sectional views of nanowires oriented along the 

<110>-crystallographic direction as studied here; (a) intrinsic hydrogen-passivated 

SiNWs (SiNW:H) and (b) intrinsic SiNWs with hydroxyl surface termination 

(SiNW:OH) as a minimal model of an oxidised surface. 

 Geometry relaxation and calculated the electronic structure of the same SiNW:H 

using numerical atomic orbital basis sets in the OpenMX implementation of Ozaki et 

al
92

 are also performed. Norm-conserving pseudopotentials are used. Also, the inputs 

of force threshold, approximate exchange-correlation functional and k-point 

sampling are the same as in the plane wave calculations. The basis size for Si was 

varied while keeping a minimal basis set (s1) for H. A systematic convergence test 

of the quality of the basis set for Si was performed by increasing the number of 

primitive orbitals describing the valence electrons and by adding higher angular 

momentum functions (d-polarisation).  

In Table 3.1, two tests are summarised (a graphical representation of the data follows 

in Figure 3.2). Firstly the total energy per atom (Figure 3.2(a)) is considered. It 

decreases with increasing the contraction and/or adding polarisation function until 

(a) (b) 

(a) 
(b) 
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convergence to less than 0.1 meV per atom. This is a minimum requirement 

regarding the basis set sufficiency of NAOs and it is demonstrated here for the 

extended system of SiNWs. 

The optimisation of orbitals overall yields significant improvement and it becomes 

less important as the number of contractions increases as may be expected. An 

important feature is the apparent lower energy of the double-zeta (s2p2) and triple-

zeta (s3p3) basis sets compared to the single-zeta with d-polarisation functions 

(s1p1d1) which nevertheless yields some erroneous results. Use of a minimal basis 

set for Si (SZ, DZ, TZ from the OpenMX library and their optimised counterparts) 

yields a stretched Si-H bond with length 1.68 Å, much longer than the typical Si-H 

bond length. As a result
 
the silicon surface is not properly saturated, thus, affecting 

the band structure. In contrast to expectations from simple zone-folding of bulk-Si 

bands 
124

 and the plane wave calculations , an indirect gap was observed. It is found 

that it is necessary to add d-polarisation functions to silicon in order to obtain the 

experimental bond length of 1.5 Å. This also improved the quality of the band 

structure yielding a direct band gap as can be deduced from Figure 3.3. 
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Figure 3.2: (a) Variation of the total energy per atom in <110>-oriented 

hydrogenated silicon nanowire (Si24H16) for different numerical atomic basis sets 

with respect to s4p4d1. (b) Difference in the band gap energies obtained from the 

numerical atomic orbital basis sets with respect to plane waves. 

(a) 

(b) 
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Table 3.1: The total energy per atom and the band gap of the <110>-oriented 

nanowire with unit cell Si24H16, calculated using numerical atomic basis sets as 

implemented in OpenMX. Various contraction schemes are shown along with 

optimized basis sets. The band gap is consistently overestimated compared to the 

plane wave calculation. In the last column the band gap of bulk Si is shown as 

reference. 

 

 

 

Basis set on Si Total energy 

per atom (eV) 

Band gap 

(eV) 

Eg
NAO

-Eg
PW

 Band gap of 

Bulk Si 

s1p1 −71.139 3.32 2.05 0.98 

s21p21 −71.424 3.13 1.86 0.91 

s2p2 −71.511 2.80 1.53 0.91 

s3p3 −71.629 2.63 1.36 0.90 

s43p43 −71.639 2.6 1.33 0.90 

s1p1d1 −71.408 2.41 1.14 0.88 

s21p21d1 −71.605 2.29 1.02 0.86 

s2p2d1 −71.686 2.26 0.99 0.86 

s32p32d1 −71.849 2.27 1.0 0.83 

s3p3d1 −71.863 2.23 0.96 0.83 

s43p43d1 −71.869 2.24 0.97 0.82 

s4p4d1 −71.879 2.23 0.96 0.82 
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Figure 3.3: Comparison of the (a) valence and (b) conduction (sub-) bands of 

hydrogenated SiNWs (Si24H16) calculated using PWs (Red solid lines), double-zeta 

polarised NAOs (purple dotted lines) and optimised double-zeta polarised NAOs 

(black dashed lines). All curves have been referenced to the top (bottom) of the 

valence (conduction) bands. 

(a) 

(b) 
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As a second test we look at the band gap difference with respect to the PW 

calculation (Figure 3.2(b)). The underestimation of the band gap in DFT is a well-

known issue and such an analysis can only be used qualitatively.
65

 For example, the 

calculated band gap for bulk Si obtained from a plane wave calculation is 0.8 eV and 

this should be compared to the experimental value of 1.11 eV.  In this chapter, and in 

the future, we are interested in retrieving and assessing basic device modelling 

parameters from the band structures. This comparison then serves as a preamble to 

the results of Section 3; a variation of 25 meV around the saturation value would hint 

to a converged electronic structure calculation from which the required quantities 

can be extracted. The size of the NAO band gap decreases with the extended basis 

sets. However, it is 75.6% larger compared to the PW calculation as commonly 

observed. The band gap of bulk Si is also shown in the last column of Table 3.1 as 

reference. Again there is convergence with increasing basis set size and contractions 

towards 0.82 eV. This is just 0.02 eV larger than the plane wave calculation, 

implying that the difference between the plane wave and NAO band gap grows due 

to quantisation as the diameter of the nanowire decreases. One contributing factor 

could be the lower effective mass obtained with NAOs (discussed later in Section 

3.3) which increases the band gap widening at small diameters. 

It is stressed again that simply using more orbitals to optimise the minimal basis set 

is not sufficient to yield the correct electronic structure. For example, the contracted 

orbital basis s21p21d1 with total of 9 basis functions performs better compared to 

s3p3 or s43p43 having 12 basis functions. As mentioned previously higher angular 

momenta functions (d-polarisation) are needed to yield the correct band gap 

character. Further improvement of the bands is obtained by increasing contraction 

combined with orbital optimisation as implemented in OpenMX. Interestingly, the 
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use of optimised orbitals for a fixed size basis set is not as significant as for the total 

energy calculations. A direct contrast between the first few valence and conduction 

bands of PW and NAO calculations is shown in Figure 3.3. For comparison, we have 

referenced the energy with respect to the top of the valence band and shifted the 

NAO conduction bands by the difference between the OpenMX and Quantum 

Espresso band gaps. The qualitative and quantitative agreement between the PW and 

the NAO valence sub-bands is remarkable (Figure 3.3(a)). Comparing the 

conduction sub-bands yields a qualitative similar picture of electronic structure but it 

apparently lacks in accuracy (Figure 3.3(b)). This is understood given the delocalised 

nature of the conduction bands. A more quantitative analysis follows in Section 3.3. 

Table 3.2:  CPU time with respect to size of basis sets for SiNW:H using the same 

hardware configuration and calculation inputs. 

 

Basis set on Si CPU time (Hours) 

s1p1 1.45 

s21p21 1.03 

s2p2 2.26 

s32p32 2.21 

s1p1d1 3.87 

s21p21d1 3.81 

s2p2d1 4.34 

s32p32d1 4.21 

s3p3d1 6.04 

s43p43d1 5.67 

s4p4d1 7.01 
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Finally, to demonstrate the gain in computational time by using smaller basis sets in 

Table 3.2 we compare the CPU time for structural relaxation of the SiNW:H 

supercell using different NAOs. The data clearly show the increase in CPU time with 

increasing contraction and addition of d-polarisation orbitals. It is also seen that 

calculations with optimised orbitals require almost similar CPU time as their 

corresponding with primitives, e.g., s32p32d1 and s2p2d1 basis sets. 

3.2.2 Hydroxylated silicon nanowires 

The hydroxylated SiNWs were obtained by simple substitution of the hydrogen 

passivation with –OH surface terminating groups. This structure serves as a minimal 

model to investigate oxygen-silicon bonding as this simple substitution changes the 

oxidation state of the silicon atoms at the surface.
76

 First we inspected the O-H and 

Si-O bond lengths in the optimised geometries to check the performance of the 

various NAO contracted schemes. Based on the results for hydrogenated SiNWs and 

previous studies on the directional Si-O bonding,
125

 d-polarisation orbitals for both 

Si and O for the geometry relaxations are used; otherwise the obtained geometries 

are unreasonable. The use of polarised orbital for H does not change the results. The 

relaxed geometry has Si-Si and Si-O bond lengths of 1.7 Å and 0.98 Å, respectively, 

which are close to the theoretical and experimental values of crystalline silica 
126

.  

The O-H bond length is 0.98 Å which is typical for the hydroxyl group. The cross-

section of the simulated wire is shown in Figure 3.1(b). 

In Table 3.3, the total energy and the band gap difference between the NAO and the 

PW calculations is shown for various NAO basis sets. As previously, the total energy 

can be seen to reduce with increasing the basis contraction or orbital optimisation 

and converge to less than 0.1 eV per atom.  
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Table 3.3: The total energy per atom of the <110>-oriented nanowire with unit cell 

Si24O16H16, calculated using numerical atomic basis sets as implemented in 

OpenMX. Various contraction schemes are shown along with optimized basis sets. 

The band gap is consistently overestimated compared to the plane wave calculation. 

 

 

 

 

 

 

Basis set on Si and 

O 

Total energy per 

atom (eV) 

Band gap (eV) Eg
NAO

-Eg
PW 

(eV) 

s1p1d1 -177.1932 1.34 0.38 

s21p21d1 -177.3409 1.32 0.36 

s2p2d1 -177.5383 1.25 0.29 

s32p32d1 -177.6795 1.26 0.30 

s3p3d1 -177.7185 1.26 0.30 

s43p43d1 -177.7258 1.26 0.30 

s4p4d1 -177.7617 1.25 0.29 
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Figure 3.4: Comparison of the (a) valence and (b) conduction (sub-) bands of 

hydroxylated silicon nanowires (Si24O16H16) calculated using plane waves (red solid 

lines), double-zeta polarized NAOs (purple dotted lines) and optimized double-zeta 

polarized NAOs (black dashed lines). All curves have been referenced to the top 

(bottom) of the valence (conduction) bands. 

(b) 

(a) 
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The band gap obtained from the plane wave calculation is 0.96 eV. This is smaller 

than the 1.27 eV band gap of SiNW:H and it is attributed to orbital hybridisation.
65

 

The respective values for the NAO basis sets are 2.23 eV for SiNW:H and 1.25 eV 

for SiNW:OH. Using the PW result as a benchmark, the NAO implementation 

consistently overestimates the band gap, similarly to the hydrogenated SiNWs. The 

comparison between the PW and NAO band structures is shown in Figures 3.4(a) 

and 3.4(b) for the first few valence and conduction sub-bands, respectively. The fair 

agreement for the occupied states compared to the empty conduction band states is 

confirmed. A graphical representation of the results shown in Table 3.3 is shown in 

the Figure 3.5. 
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Figure 3.5: (a) Variation of the total energy per atom in <110>-oriented 

hydroxylated silicon nanowire (Si24O16H16) for different numerical atomic basis sets 

with respect to s4p4d1. (b) Difference in the band gap energies obtained from the 

numerical atomic orbital basis sets with respect to plane waves.  

(b) 

(a) 
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3.3 Analysis of band structure properties 

Deviations in the second and first derivatives of the various sub-bands, which yield 

respectively the effective masses      
   

  
   
  

 

  

 and group velocities   
  

           
 
, have a quantitative effect on the calculation of transport quantities 

such as conductivity and mean free path. In the theory of mesoscopic transport and 

in the relaxation time approximation, the conductivity is,       
     

  

  
   , where 

NC is the number of contributing subbands and   ,    and    are electron density, 

effective mass and relaxation time of the i-th sub-band at the energy of the injected 

charge carriers; the average mean free path equals       
    

   
  
    129

 To study 

the sub-bands properties for different NAO basis sets and compare with the PW 

method, the effective mass and group velocity of hydrogenated SiNW for the first 

three sub-bands above (conduction) and below (valence) the Fermi level is 

calculated. This covers the typical energy range of injected charge carriers. For this 

purpose, each sub-band was fitted in a small interval near the Г-point and elsewhere 

in the first Brillouin zone. A polynomial method was implemented for fitting curves 

yielding first and second derivatives for the calculation of vg
i
 and mi, respectively. 

In Table 3.4, results for both electrons (conduction bands) and holes (valence bands) 

are summarised for the commonly referenced Г-point. They are in good agreement 

with other computational works which are close to 0.15me for electron effective 

mass and 0.20 me for hole effective mass.
58,68,69

 The effective mass and group 

velocity for the top-valence and bottom-conduction bands are plotted in Figures 3.6 

and 3.7, respectively, for k values corresponding to the indicated energy range 

(which is within 0.1 eV from band extrema). It is observed that the effective masses 
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predicted from the various NAO basis are slightly overestimated compared to the 

values derived from the PW calculations. The opposite holds for the group velocity 

  
 . These results indicate that there is a minor underestimation of the mean free path 

by at most 4%, whereas, variations in the effective mass may yield up to 65% lower 

conductivity.  

Table 3.4: Predicted electron and hole effective masses at the Г-point using various 

basis sets. 

Basis sets Electron effective 

mass (me) 

Hole effective mass 

(me) 

plane waves 0.15 0.20 

s2p2d1 0.12 0.11 

s32p32d1 0.12 0.12 

s43p43d1 0.12 0.12 
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Figure 3.6: Predicted (a) effective mass and (b) group velocity of carriers within the 

energy range of the first valence band using the basis sets as indicated. 

(a) 

(b) 
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Figure 3.7: Predicted (a) effective mass and (b) group velocity of carriers within the 

energy range of the first conduction band using the basis sets as indicated.     

In Table 3.4, results for both electrons (conduction bands) and holes (valence bands) 

are summarised for the commonly referenced Г-point. They are in good agreement 

with other computational works.
58,68,69

 The effective mass and group velocity for the 

(a) 

(b) 



65 
 

top-valence and bottom-conduction bands are plotted in Figures 3.6 and 3.7, 

respectively, for k values corresponding to the indicated energy range (which is 

within 0.1 eV from band extrema). It is observed that the effective masses predicted 

from the various NAO basis are slightly overestimated compared to the values 

derived from the PW calculations. The opposite holds for the group velocity vg
i
. 

These results indicate that there is a minor underestimation of the mean free path by 

at most 4%, whereas, variations in the effective mass may yield up to 65% lower 

conductivity.  

3.4 Transferability of optimised numerical atomic 

orbitals 

The transferability of optimised orbitals is explored by two types of control 

calculations. First, by considering hydrogenated SiNWs with three different 

orientations <100>, <110> and <111> (see Figure 3.1(a) and inset of Figure 3.8) the 

NAOs as obtained from different systems and compared their electronic structure are 

exchanged. For example, the contracted orbitals obtained after orbital optimisation in 

<110>-oriented SiNW:H as inputs for calculations with <100>- and <111>-oriented 

SiNW:H are taken. For a fixed orientation, the total energies obtained after geometry 

relaxation are equal for the various NAO basis sets independent on the wire 

orientation used for the orbital optimisation. This procedure also yields almost 

identical band structures as shown in Figure 3.7.  
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Figure 3.8: Transferability comparison of optimised numerical atomic orbitals. (a) 

Band structure of <100>-oriented SiNW:H using optimised orbitals obtained from 

<110>-oriented SiNW:H (black solid line) and by performing orbital optimisation 

for <100>-oriented SiNW:H (red dotted line). (b) Band structure of <111>-oriented 

SiNW:H using optimised orbitals obtained from <110>-oriented SiNW:H (black 

solid line) and by performing orbital optimisation for <111>-oriented SiNW:H (red 

dotted line). (c) Band structure of <110>-oriented SiNW:OH using optimised 

orbitals (silicon) for <110>-oriented SiNW:H (black solid line) and by performing 

orbital optimisation for <110>-oriented SiNW:OH (red dotted line). 
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In the second and more intriguing test, the NAOs that describe the Si atoms in 

hydrogenated SiNWs are taken, optimised them and used them as inputs for 

calculations with hydroxylated SiNWs. The same procedure was applied vice versa 

(i.e., optimised Si-atom NAOs from SiNW:OH used in SiNW:H). Also in this case 

electronic structure results do not depend on the optimisation environment, as 

demonstrated by the identical band structures in Figure 3.8. This procedure can 

prove very efficient in larger nanowires (or indeed other systems) where orbitals can 

be optimised in a small controlled environment and then transferred to the bigger 

system. 

3.5 Conclusions  

In this chapter the implementation of numerical atomic basis sets by studying the 

structure is evaluated, total energy and electronic bands of silicon nanowires with 

hydrogen and hydroxyl terminations. It has been shown that there is systematic 

improvement with respect to the basis size and orbital optimisation. It was estimated 

that the mean free path is not significantly affected but predictions of the 

conductivity can be up to 65% lower. Total energies converge by adding 

contractions with higher angular momentum. Both plane wave basis set and atomic 

orbital basis set give qualitative and quantitative similar valence bands whereas 

conduction bands improve with higher atomic basis sets. However, optimised NAOs 

offer a good compromise to study SiNWs with fixed basis size, in particular, within 

the double-zeta polarised approximation. It is also established that there is some 

transferability of optimised NAOs which can be used to address nanowire 

calculations in more complex (larger) environments. These results put on a firm 

basis the use of NAOs as an efficient method, alternative to plane waves, to calculate 

the properties of silicon nanowires. 
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Chapter 4: Structural, electronic and transport properties of 

doped silicon nanowires 

4.1 Chapter introduction 

One can change the electronic and optical properties properties through doping of the 

SiNWs
128

 as demonstrated by evidence on tuneable control of their conductivity and 

photoluminescence.
20,129

 Therefore a detailed understanding of the structural and 

electronic properties of doped SiNWs is important. In particular, there is a growing 

need to address materials transport properties and large-scale device simulations 

from first principles where dopants are introduced in the source and drain regions as 

well as in the channel due to unintentional or intentional doping. Such examples are 

discussed Chapters 5 and 6. To this end, a good compromise between efficiency and 

accuracy is sought
112

 and atomic orbitals offer a tractable basis sets. Nevertheless, as 

discussed in the previous chapter a systematic approach is needed prior to applying 

them in practice.
94,114

 

In this chapter DFT is employed to investigate the electronic structure of <100>-

oriented hydrogenated SiNWs with diameter of 1.15 nm and highly-doped with 

boron, phosphorous, arsenic and gallium. These nanostructures are particularly 

relevant for the recent proposal of junctionless transistors
55

 where doping 

concentrations as high as 10
21

 cm
-3

 are required. The convergence of different 

expansions of primitive and contractions of optimised NAOs by studying the 

structural and electronic properties of SiNWs with an uneven distribution of dopants 

has been reported. 

The structure of the chapter is as follows. In Section 4.2 the implementation of 

numerical atomic basis sets by studying the total energy and electronic bands of 
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silicon nanowires with hydrogen surface terminations and doped with B, P, As and 

Ga atoms (see Figure 4.1) has been reported. In section 4.3 a first discussion of how 

charge-carrier transport properties are affected in the conduction and valence bands 

depending on the dopant type has been reported. An estimate of the mean free path is 

also derived. 

 

Figure 4.1: Cross section of <110>-oriented (geometrically optimised) doped silicon 

nanowires.In (a), a single gallium atom acts as substitutional dopant (Si23Ga1H16). 

Substitutional dopants (B, Ga, As, P) are distributed at two different uneven 

locations assigned as configuration 1 in (b) and configuration 2 in (c). 

 

 

(a) 

(c) 

(b) 
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4.2 Electronic properties of doped silicon nanowires 

Three models of SiNWs are considered. Firstly, gallium has been placed 

substitutionally at 2.5% (see Figure 4.1(a)). To study the effect of dopant-dopant 

interaction, we doubled the supercell size and placed dopants at uneven sites. These 

are configurations 1 and 2 in Figures 4.1(b) and 4.1(c). Substitutional doping of 

hydrogen passivated SiNWs is achieved by exchanging silicon atoms in the supercell 

with B, P, Ga and As atoms. 

 DFT calculations were performed with the PBE generalized gradient approximation 

(GGA) to the exchange and correlation functional. Norm-conserving fully relativistic 

pseudopotentials and numerical atomic basis functions are generated by the software 

package ADPACK.
156

 A Monkhorst-Pack k-point sampling on a 15x1x1 and 7x1x1 

grid in the Brillouin zone along the nanowire axis direction is used for the unit cell 

and the doubled supercell respectively. The SiNW is put in a supercell with more 

than 24 Å spacings in the lateral directions to avoid any interactions between the 

neighbouring image nanowires. The SiNWs and the unit cell lattices are fully 

relaxed. Structural optimisation calculations are performed until the absolute value 

of force acting on each atom is less than 0.01 eV/Å. The geometry-optimised cross-

section of the Ga-doped SiNW is shown in Figure 4.1(a). 

The systematic convergence of the quality of the basis sets is performed by 

increasing the number of primitive orbitals describing the valence electrons and by 

adding higher angular momentum functions (d-polarisation). The total energy and 

electronic structure calculated using a hierarchy of basis sets, from single-ζ minimal 

to multiple-ζ with polarization orbitals were compared. The basis size for the silicon 

and dopant atoms was varied while keeping a minimal basis set (s1) for H. The 
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minimal basis set for Ga and As is s1p1d1 and the starting point is to include d-

orbital polarisation functions also for Si.  

The convergence of the energy per atom is shown in Table 4.3. The calculated total 

energy for the various NAO basis sets reduces with increasing the basis size and/or 

applying orbital optimisation as can been seen in Figures 4.2, 4.3 and 4.4. Unless 

explicitly indicated, there is no difference between the dopant configurations 1 and 2 

in Figures 4.2 and 4.3. By increasing the contraction and adding d-orbital 

polarisation functions, the total energy per atom converges to less than 0.01 eV per 

atom. This is a minimum requirement regarding the basis set sufficiency of NAOs 

and it is demonstrated here for the extended system of SiNWs. The respective 

convergent band gap values for the NAO basis sets using s32p32d1 basis sets are 

2.04 eV, 1.89 eV, 1.63 eV and 2.46 eV for SiNWs doped with B, P, As and Ga, 

respectively. The optimisation of orbitals overall yields significant improvement and 

it becomes less important as the number of contractions increases as may be 

expected. 

A simple inspection of Figures 4.2 to 4.4 may suggest that optimised orbitals do not 

yield significant improvements when multiple-ζ basis sets are used. This may hold 

well for the structural properties. But the previous comparison with plane wave 

benchmark calculations for the hydrogenated and hydroxylated SiNWs of Chapter 3  

has indicated that electronic structure features and transport properties derived 

thereafter greatly improve by orbital optimisation. This is demonstrated in Figure 4.5 

(in particular 4.5(b)) by comparing the band structures between primitive and 

optimised double-ζ polarised NAOs for the first few valence and conduction sub-

bands. The sensitivity to orbital optimisation is smaller for the valence electronic 

states. 
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Table 4.3: The total energy per atom of the <110>-oriented nanowire with unit cell 

Si23Ga1H16, calculated using numerical atomic orbital basis sets as implemented in 

OpenMX. Various expansion schemes are shown along with optimized basis sets. 

 

 

 

 

 

 

 

 

Basis set on Si  and Ga Total energy per atom (eV) 

s1p1d1 −118.5932 

s21p21d1 −118.865 

s2p2d1 −118.9959 

s32p32d1 −119.1376 

s3p3d1 −119.1676 

s43p43d1 −119.1752 

s4p4d1 -119.187 
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Figure 4.2: Variation of the total energy per atom in <110>-oriented Ga-doped 

silicon nanowire (Si23Ga1H16) for different numerical atomic orbitals basis sets. All 

values are referenced to the calculation using the s4p4d1 NAOs. 
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Figure 4.3: Variation of the total energy per atom in <110>-oriented silicon 

nanowires for different numerical atomic orbitals basis sets and p-type dopants that 

is, (a) boron doped (Si46B2H32) and (b) gallium doped (Si46Ga2H32). All values are 

referenced to the calculation using the s4p4d1 NAOs. 

(a) 

(b) 
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Figure 4.4: Variation of the total energy per atom in <110>-oriented silicon 

nanowires for different numerical atomic orbitals basis sets and n-type dopant atoms, 

that is, (a)  phosphorous doped (Si46P2H32) and (b) arsenic doped (Si46As2H32). All 

values are referenced to the calculation using the s4p4d1 NAOs. 

(a) 

(b) 
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Figure 4.5: Comparison of the first few valence and conduction (sub-)bands of (a) 

gallium doped (Si46Ga2H32) and (b) arsenic doped silicon nanowire (Si46As2H32) 

calculated using primitive (red solid lines) and optimized double-zeta polarized 

NAOs (black solid lines). 

(a) 

(b) 
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Finally, the transferability of optimised orbitals is explored by two types of control 

calculations. First, we consider phosphorus doped SiNWs with three different 

orientations <100>, <110> and <111>. The NAOs as obtained from the various 

systems and compare their electronic structure were exchanged. For example, the 

contracted orbitals obtained after orbital optimisation in <110>-oriented P-doped 

SiNW as inputs for calculations with <100>- and <111>-oriented P-doped SiNWs 

were taken. For a fixed orientation, the total energies obtained after geometry 

relaxation are equal for the various NAO basis sets independent on the wire 

orientation used for the orbital optimisation. This procedure also yields almost 

identical band structures. The result of the comparison for the <100> orientation is 

shown in Figure 4.6. This procedure can prove very efficient in larger nanowires (or 

indeed other systems) where orbitals can be optimised in a small controlled 

environment and then transferred to the bigger system. 
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Figure 4.6: Transferability comparison of optimised numerical atomic orbitals. The 

band structure of a <100>-oriented P-doped is shown as calculated using orbitals 

obtained either from optimisation within the same structure (magenta solid lines) or 

from optimisation performed on <110>-oriented nanowires (blue dashed lines). 
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4.3 Scattering properties of n- and p-type dopants in 

silicon nanowires 

In the present section the impact of a single dopant on charge-carrier transport 

properties is focused. In particular, the scattering of electrons and holes for various 

n- and p-type dopants is discussed. These are boron and gallium (electron acceptors) 

and arsenic and phosphorus (electron donors).  The transmission is calculated using 

the Green’s function formalism and Kohn-Sham Hamiltonians obtained from 

OpenMX as indicated in Sections 2.3.2 and 2.5.3. Optimised double zeta basis sets 

with d polarization (s32p32d1) have been used for these calculations. The supercell 

used to define the scattering region is depicted in the inset of Figure 4.7. It is noted 

that the supercell extends to seven unit cells (26.88Å x 25Å x 25Å) to ensure that 

there is no residual interaction between the leads, thereby allows use the projection 

of the leads to self-energies as computational method (see Section 2.3.2). The wire 

axis is oriented along the <110> crystallographic direction and the diameter is 1.15 

nm. 

In Figure 4.7(a) the transmission for SiNW with a single impurity for energies below 

the valence band edge and for the first subband have been plotted.  Evidently boron 

and gallium atoms act as strong scatterers. This is attributed to their electronic states 

closely aligned to the valence band edge. However, the exact dependence is expected 

to depend on orientation and diameter. Holes injected within the first valence 

subband would show weak scattering in the presence of P and As dopants; for 

example, this configuration could arise in n
+
-p-n

+
 transistor junctions. In contrast, 

strong (weak) scattering is observed for P and As (B and Ga) in the first conduction 

subband. The results are shown in Figure 4.7(b). 
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Figure 4.7: Transmission function across <110>-oriented SiNWs with 1.15 nm 

diameter and doped with single substitutional dopants as indicated. All calculations 

are performed using optimised double zeta basis sets. Results are shown for the first 

valence band in (a) and conduction band in (b). Energies are referenced to band 

extrema. The black dash line indicates transmission of ideal wire. 

(b) 

(a) 

(a) 
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The features observed in the transmission function affect the mean free path λ   . 

Using the approximation of scattering from independent atoms, this can be readily 

estimated from the transmission curves of nanowires with a single impurity. The 

relation holds λ     
     

         
   , where    is the transmission value across the 

wire with the dopant impurity,     is the number of channel eigenstates as defined in 

section 2.3.1, and    is the mean distance between defects. We provide below a brief 

derivation of this relation. 

In the diffusive regime the transmission T is given by 

      
 

 
  4.1 

which by inverting and multiplying by 
 

   
 gives  

      
 

 
   4.2 

Here, L is the length of the conductor/sample,   is the mean free path, and    is the 

contact resistance.
155

 If impurities are considered as classical resistances added in 

series then the total resistance is the contact resistance plus the resistance from all the 

impurities in the sample 

        
 

  
 4.3 

where    is the resistance of a single impurity. For long conductors, i.e., where the 

diffusive regime has been established, the impurity scattering contribution will 

dominate over   . This yields 

      
 

  
  4.4 
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From Equations 4.2 and 4.4 

     
     

     
     4.5 

The resistance of a single impurity can be obtained by subtracting from the 

resistance of a sample with a single impurity the contract resistance, that is, 

      
 

   
  

 

  
 

 

 
  

 

   
  

    

    
   4.6 

Substitution of 4.6 in 4.5 yields the used formula for the calculation of the mean free 

path. We note that      then        which gives an infinite mean free path 

as expected. 

Here, we assume a doping density of              which gives         nm.This 

dopant concentration is typical in the setup of junctionless nanowire transistors. 

Results are shown in Figure 4.8. Evidently, the mean free path depends on the type 

of dopant. For weak scatterers of charge-carriers in the valence (conduction) band, 

that is P and As (B and Ga), the mean free path can be orders of magnitude larger 

than the sub-10 nm lengths envisioned in ultrascaled junctioned transistors. Together 

with other investigations
69,76

 this implies that long-range roughness may be the 

dominant scattering mechanism in these devices. However, strong scattering by the 

B and Ga atoms (P and As) near the valence (conduction) band edge has a significant 

effect in the reduction of the on-current in junctionless transistors as observed 

experimentally.
55
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Figure 4.8: Mean free path of <110>-oriented SiNWs with 1.15 nm diameter and 

doped with single substitutional dopants as indicated. All calculations are performed 

using optimised double zeta basis sets. Results are shown for the first valence band 

in (a) and conduction band in (b). Energies are referenced to band extrema. The 

distance between impurities is assumed to be 19.2 nm and corresponds to doping 

density                

(a) 

(b) 
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Figure 4.9: Transmission function across <100>-oriented SiNWs with 1.27 nm 

diameter and with single substitutional boron impurity as indicated. All calculations 

are performed using optimised double zeta basis sets. Results are shown for the 

valence subbands in (a) and conduction subbands in (b). Energies are referenced to 

band extrema. 

(a) 

(b) 
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For completeness, in Figure 4.9 the transmission of <100> oriented SiNW with 

diameter 1.27 nm across a single boron impurity substituting a Si atom in the centre 

is presented. In this case boron acts as a weak scatterer in the valence band whereas 

strong scattering is observed in the conduction band. This indicates that for small 

diameter nanowires the scattering properties of dopant impurities depend strongly on 

the wire-axis orientation. 

4.4 Conclusions  

In summary, the implementation of numerical atomic basis sets by studying the total 

energy and electronic bands of silicon nanowires with hydrogen surface terminations 

and doped with B, P, As and Ga atoms is evaluated. It has been shown that there is 

systematic improvement with respect to the expansion and contraction scheme. 

Whilst total energies may converge with increasing basis size, optimised NAOs offer 

a better option to study the electronic properties of SiNWs with fixed basis size. In 

particular, the optimised double-zeta polarized basis set offers a reasonable 

approximation. It was also shown that there is some transferability of optimised 

NAOs which can be used to address nanowire calculations in more complex (larger) 

environments. These results complement the results of Chapter 3. The scattering 

properties of n- and p-type dopants is also examined. Fixing the impurity position 

and the diameter, it is found that in nanowires with a small cross-section both the 

dopant type and the wire axis orientation play a significant role in determining the 

transport properties.  
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Chapter 5: Basis set dependence of transport properties and 

electrical device characteristics in Si nanowire setups 

5.1 Chapter introduction 

The continuous miniaturization of electronic transistors pursued by semiconductor 

industries enables more functionality for fixed die area. However, scaling devices to 

sub-deca nanometer gives rise to short-channel and quantum tunneling effects that 

degrade device performance
21,130

 and to keep up with scaling research has motivated 

new transistors designs that use a range of nanostructured materials.
9,21,55,131

 These 

types of devices require taking explicitly into account new physical phenomena and 

materials properties at the nanoscale. For example, strong quantum confinement in 

one- and two-dimensions occurs respectively in ultrathin body and nanowire-based 

FETs
9,26,82,132

 and the high surface to volume ratio allows for the manifestation of 

size effects
65,82

 and body inversion.
21,133-135

 Direct source-drain quantum mechanical 

tunneling
84,131

 and gate-tunneling leakage arise,
55,83,84,133

 obstructing the way to 

reducing power consumption
15,21,55,136

. Manifestations of differing properties of 

nanoscale materials compared to their bulk counterparts have also been demonstrated. 

For the prototypical material of silicon nanowires, surface functionalization schemes 

result in tuning the electronic and transport properties,
76,137

 the effective masses of 

charge carriers become heavier,
80

 dopants may deactivate,
138

 and the deformation 

potentials and electron-phonon scattering can become highly anisotropic.
69

 Various 

semi-classical methods have been elaborated to simulate the current-voltage of 

conventional transistors and are commonly used to reduce costs and shorten the 

design cycle.
55,83,141

 The need to develop such a priori technology evaluation that 

extends to the nanoscale is recognizably significant as the traditional trial-and-error 
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experimental design of nanodevices becomes even more time consuming and 

expensive. Over the last decade the description of electronic quantum transport based 

on computational methods has become one of the core topics in atomic-scale 

modelling and device simulations
9,21,55,142

 and the explicit electronic structure of 

materials has been considered from approximate methods that use empirical bulk 

parameterization
143,144

 to first-principles approaches
92,118,121

 and approximations 

thereof.
76,83

 

Theoretical studies based on first-principles DFT is one of the widely used methods 

to describe accurately the atomic geometry and to provide materials design 

guidelines in an affordable computational time without introducing system 

dependent parameters. In Chapter 3, numerical atomics orbitals are benchmarked 

with plane waves basis sets and discussed the impact of basis set on the electronic 

properties of SiNWs. PWs provide extremely accurate calculations and simple to 

converge, however computational requirements have limited their use in studies of 

quantum transport. On the other hand, basis sets made of atomic orbitals (AOs) can 

be more efficient and their implementation for large-scale order-N calculations is 

highly motivated.
99

 There have been numerous studies of AO implementations on 

the structural properties and electronic spectra of various systems including my own 

work on SiNWs as discussed in Chapters 3 and 4. Surprisingly, with few exceptions 

a similar elaboration on transport properties has attracted little attention despite the 

need to reach the same level of confidence for device design and evaluation. 

Strange et al. performed benchmark calculations of the transmission spectrum for a 

set of five single-molecule junctions.
95

 Using a Wannier transformation on DFT 

Hamiltonians in the PW basis sets enabled them to calculate the transmission 
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function and to compare with a NAOs implementation. They concluded that a double 

zeta polarized basis sets suffices for the particular systems. This confirmed earlier 

work by Bauschlicher et al. on the gold-benzene-1,4-dithiol-gold junction.
145

 In    

Ref. 94 Driscoll and Varga study the dependence of quantum conductance on basis 

sets by comparing localized basis sets with extended non-localized polarized basis. 

They find that convergence with localized basis sets is more demanding due to 

sensitivity in describing the self consistent potential. Hermann et al. also identify 

issues with the use of large non-orthogonal Gaussian-type AOs.
146

 They show that 

basis sets of triple-zeta quality or higher sometimes result in an artificially high 

transmission. These results imply that despite the extensive study of convergence 

properties of AOs in quantum chemistry for decades
103,104

 it is necessary to check the 

transferability of tabulated AOs as well as the construction of NAOs in different 

chemical environments for a priori evaluation of nanoscale devices. 

In this chapter, the TiMeS modularity is used to interface with a full flavor DFT 

package based on numerical atomic orbitals as described previously (see Section 

2.5.3). Its flexibility is demonstrated by applying it to study the basis set dependence 

of the mean free path in silicon nanowires with dopant and surface oxygen impurities 

and the current-voltage characteristics of ultrascaled nanowire devices. These 

calculations are based on Hamiltonian matrix descriptions with varying NAO 

expansions as obtained from OpenMX and combining with Green’s functions 

methods to calculate the quantum-mechanical scattering matrix (see S-matrix in 

Section 2.3.2). Charge self-consistency in the presence of applied voltages is treated 

within the non-equilibrium Green’s functions framework as discussed in Section 

2.3.3.  
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The structure of this chapter is as follows. In Section 5.2 some preliminaries 

regarding the computations are provided which are used to obtain the results  present 

in Sections 5.3 and 5.4. In Section 5.3, TiMeS is applied to the calculation of the 

mean free path and the basis set convergence for silicon nanowires with dopant and 

surface oxygen impurities is established. Optimized double zeta polarized basis sets 

give a reasonable compromise between converged results and efficiency. The 

current-voltage characteristics of ultrascaled (3 nm long) nanowire-based transistors 

with p-i-p and p-n-p doping profiles is investigated in Section 5.4. The quantitative 

interplay between basis set dependence and charge self-consistency is analyzed and 

it is found that the latter has a more profound effect on the device characteristics. 

Interestingly, these devices yield relatively large source-drain tunneling (currents of 

the order of 0.5 nA and 2 nA for the p-n-p and p-i-p junctions, respectively) which 

can have a detrimental effect in the device performance.  

 

Figure 5.1: Schematic setup of one of the investigated nanowire structures. A silicon 

nanowire grown along the <110> direction is depicted with p-n-p doping profile. 

Substitutional boron (green sphere) is used to dope the semi-infinite periodic leads 

whereas the “scattering region” incorporates a phosphorus dopant (blue sphere). 

    Scattering region     Left Lead     Right Lead 
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5.2 Computational details 

Throughout the simulations the PBE generalized gradient approximation (GGA) to 

the exchange correlation potential was used together with norm-conserving 

pseudopotentials. The focus is on hydrogenated silicon nanowires grown along the 

<110> crystallographic direction with lattice constant of 3.84 Å and diameter equal 

to 1.15 nm. Impurities are introduced in the supercell by either substitution of silicon 

atoms in the pristine structure with dopants (see Figure 5.1) or changing the surface 

termination and introducing oxygen defects for the model described in Ref. 76 (see 

inset of Figure 5.2). The structures were geometry optimized with force threshold of 

0.01 eV/Ǻ and using optimized double zeta polarized basis set (s32p32d1) for both 

silicon and impurity atoms. Surface-passivating hydrogens are treated in the minimal 

basis set. Total energy calculations using these bases are well converged as shown 

previously.
147

 The supercell consisted of eleven unit cells and its size extended by 

42.24 Å x 25 Å x 25 Å to introduce sufficient vacuum separation between periodic 

images of the nanowires. In the presence of an applied gate bias in the FET setup the 

supercell was extended to 17 unit cells, that is 65.28 Å x 25 Å x 25 Å, to ensure a 

proper redistribution of charges in non-equilibrium. Monkhorst-Pack k-point 

sampling was applied on a 4x1x1 grid along the nanowire axis. As mentioned in 

Chapter 2, the TiMeS transport module requires only a single particle Hamiltonian of 

the relaxed structures of the studied system expressed in a localised basis set which 

in the present work is obtained from OpenMX.  
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5.3 Transport properties 

The impact of numerical atomic orbitals in materials transport properties focusing on 

charge carrier scattering in SiNWs with common impurities is discussed. The 

example of Ref. 76 is taken as initial system of reference, where there is a detailed 

discussion on the scattering behavior due to oxygen defects varying the oxidation 

state of the Si surface. In this model the surface Si atom is locally oxidized to the 

formally Si
2+

 state by forming a Si-O-Si back bond and using a hydroxyl instead of 

hydrogen for passivating the surface dangling bond (see inset of Figure 5.1). The 

presence of the oxygen defect is the origin for surface roughness at the atomic scale. 

   

Figure 5.2: Mean free path of locally oxidized Si nanowire (structure described in 

text) for the indicated basis sets and defect density               (mean 

distance impurities ld  = 9.6 nm). The energy range corresponds to the first valence 

sub-band of the electronic structure obtained with the double-zeta polarized basis set. 
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Following the method in Ref. 76, the mean free path for electrons injected at energy 

E is estimated from  λ     
     

     
    , where    and    are the transmission values 

across the wire with and without local oxidation and    the mean distance between 

defects. The mean free path in the energy range of the first valence sub-band is 

shown in Figure 5.2 for various basis sets, namely, single-zeta, single-zeta polarized 

and double-zeta polarized. Here,           which corresponds to a defect density 

n =            . There is overall good agreement with Ref. 76 where a minimal 

basis set was used within the Density Functional Tight Binding approximation. 

Interestingly, the mean free path obtained from the various basis sets shows variation 

of just up to 0.01% using the double-zeta polarized results as a base within an energy 

range of 0.2 eV.  

The above transport results confirm the weak dependence of λ on the basis set when 

the prevalent scattering mechanism is non-resonant scattering which is regularly 

observed for typical dopant impurities,
146

 surface functionalizations,
73

 and oxidation 

defects.
76

 Using a simple analysis based on band structures, previous predictions 

attribute the mean free path variations to small changes in the group velocity.
145

 It 

may be expected that differing group velocity and effective mass will have most 

significant impact in the transport coefficients when different electronic structures 

are used, hence, the need to calibrate to the experiment is introduced.  

To consider the case of strong scattering, the common example of a boron 

substitutional impurity which could act as a p-type dopant
147

 is studied. The 

transmission of holes injected at energies within the first-valence sub-band is plotted 

in Figure 5.3. Calculations using single-zeta, single-zeta polarized, double-zeta 

polarized and triple-zeta polarized bases are shown. There is overall qualitative 
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agreement between the various sets notwithstanding the evident resonant 

backscattering that strongly suppresses transmission near the top of the first valence 

subband and just below -0.125 eV. However, the quantitative discrepancy may lead 

to significant overestimations of the nanowire conductivity. Similar results are 

obtained for an n-type dopant impurity, namely, substitutional phosphorus. This 

behaviour is similar to conductance estimations in transport across molecular 

junctions where convergence needs to be ensured by enlarging the size of the basis 

set.
145

 It is evident from Figure 5.3 that using the basis set with double-zeta and 

polarization closely tracks the result obtained with triple-zeta polarized basis. This 

would provide a good compromise between size and accuracy in the application of 

atomic basis sets to predict from first-principles the characteristic transport 

lengthscales and intrinsic transport properties in materials.  
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Figure 5.3: Transmission of holes across a silicon nanowire with   boron impurity 

(structure described in text) for the indicated basis sets. The energy range 

corresponds to the first valence sub-band of the electronic structure obtained with the 

double-zeta polarised basis set <110>. 

5.4 Electrical characteristics 

Applying the electronic transmission methodology, in this section the electrical 

characteristics of SiNW based p-n-p and p-i-p junctions will be explored. The p-n-p 

junction is constructed from boron doped leads with an n-type scattering region 

between the two p-type leads (see Figure 5.1). The scattering region is made by 

introducing one phosphorus dopant in the nanowire lattice. For the p-i-p junctions, 

(a) 

(a) 
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the scattering region is intrinsic. The total length of the scattering region is 2.7 nm. 

In the GAA setup of a nanowire-based FET this is surrounded by the cylindrical 

gate, thereby forming the transistor channel. Given that the localization radius of 

dopant impurity states is approximately 1.5 nm and that the channel length should be 

at least two times larger than the nanowire diameter for effective electrostatic gating 

83
, these are model structures for the smallest junctioned nanowire transistors. 

Figure 5.4 and Figure 5.5 illustrates the transmission properties of the p-n-p and p-i-

p SiNW junctions at different source-drain bias voltages, applied along the nanowire 

axis, as predicted from different orbital basis sets. The results are obtained using the 

two different transport algorithms which have already been described in Section 

2.5.3. As expected, Figure 5.4 and Figure 5.5 shows that at small source-drain bias 

voltages the self-consistent converged transmission T(E,VDS) does not differ from 

the linear-response approximation T(E) considerably. However, for larger bias 

applying the NEGF self-consistence loop increases the transmission for all basis sets 

used. It is apparent that the addition of d-polarization functions does not change 

significantly the dependence of transmission on the applied voltage. The main effect 

of the larger basis is on the electronic structure alignment of the scattering region 

with the available channels of the leads as seen by the comparison of the 

transmission between minimal and polarized basis sets. 
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Figure 5.4: Transmission properties of p-n-p junctions using (a) s31p31 and (b) 

s31p31d1 basis sets. The Fermi level is the reference energy. 

      

(a) 

(b) 
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Figure 5.5: Transmission of the p-i-p junctions considering (a) s31p31 and (b) 

s31p31d1 orbital basis sets, respectively. The Fermi level is the reference energy. 

(a) 

(b) 
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The current-voltage (I-V) characteristics of p-n-p and p-i-p junctions based on 

T(E,VDS) and T(E) are plotted in Figures 5.6 (a) and (b), respectively. The I-V 

characteristics using the double-zeta polarized basis set and without self-consistency 

(based on T(E)) is also illustrated in Figure 5.6 for comparison. The minimum orbital 

basis set (s31p31) predicts higher current flow for both junctions compared to orbital 

basis sets with polarization (s31p31d1). For example, at VDS = 0.4 V, the p-n-p 

junction with s31p31 basis set, the current is 0.12 times larger if we consider the 

current characteristic of s31p31d1 as the reference in the fully self-consistent 

approach.  Also, this figure confirms that the difference between SC and non-SC 

results is greater at larger bias voltages for both structures, as is intuitively expected.  

The currents calculated with the NSC loop are lower than applying the 

computationally more demanding NEGF method. This is attributed to an 

overestimation of the polarization effect induced when a bias is applied, whereas, SC 

allows for the redistribution of charges at non-equilibrium. This is important to take 

into account when simulating current-voltage characteristics to extract the device 

performance. Here, this yields an underestimation of the source-drain tunneling 

current. Elsewhere, we have shown that transistor estimates of switching between off 

and on states are much worse if self-consistency is disregarded. From Figure 5.4 and 

Figure 5.5 it is deduced that the potential error is more significant than using a lower 

quality basis set. 
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Figure 5.6: Current-voltage characteristics of (a) p-n-p and (b) p-i-p junctions. The 

different orbital basis sets is compared for both structures. The scattering points 

shows the results based on T(E,VDS) and the lines are corresponding to T(E). 

(b)) 

(a) 
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The I-V characteristic of the p-i-p junction shows more sensitivity at higher bias 

voltages compared to the p-n-p junction. The reason is that there is larger scattering 

for the p-n-p junction due to the larger band offset compared to the p-i-p junction 

(see Figure 5.4 and Figure 5.5). This corresponds to higher level of available 

electronic charges in the p-i-p junction yielding higher current level at larger bias. 

Finally, the source-drain tunneling currents of the devices for the two doping profiles 

are around 0.5 nA (p-n-p junction) and 2 nA (p-i-p junction). These values are two to 

four orders of magnitude higher compared to junctionless Si nanowire devices, that 

is, FETs with homogeneous source-channel-drain doping, of similar channel 

dimensions and orientation. This suggests that at such scales the distribution of 

charge carriers around the dopant blurs the boundaries of a junction over a distance 

comparable to the channel length. Therefore, besides being very difficult to fabricate 

junctioned FET designs would fail to keep carriers out of the channel. 

5.5 Conclusions 

To summarise, in this chapter the impact of numerical atomic orbitals is evaluated on 

electron transport properties mainly on charge carrier scattering in <110> oriented 

SiNWs with dopant impurities. The mean free path is weakly dependent on atomic 

orbitals basis sets for non-resonant scattering. It is found that optimised single-zeta 

and double-zeta orbitals with d functions reproduce the results with triple-zeta 

polarised basis thereby giving a reasonable compromise between converged results 

and efficiency. The current-voltage characteristics of ultrascaled (3 nm length) 

nanowire-based transistors with p-i-p and p-n-p doping profiles was also investigated. 

It was found that charge self-consistency affects the device characteristics more 

significantly than the choice of the basis set. These devices yield source-drain 

tunneling currents of the order of 0.5 nA and 2 nA for p-n-p junction and p-i-p 
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junction, respectively which implies that junctioned transistor designs would likely 

fail to keep carriers out of the channel.  
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Chapter 6: Hole mobility in low-doped silicon nanowires 

6.1 Chapter introduction 

Significant control of the semiconducting behaviour of SiNWs can be achieved via 

doping to tune their electronic and transport properties. The main reason for doping a 

material is to increase the carrier density. Unintentional doping is also present due to 

the fabrication process of electronic devices and the prohibitive cost of producing 

wafers with very low dopant impurity concentrations. As discussed in the 

introductory Chapter 1 several applications of SiNWs require being able to tune the 

doping profile; these include solar cells, photodiodes and FETs for sensors and logic 

gates. Typically boron and phosphorous are used as p- and n-type dopants 

respectively but Ga and As have also been used. Common methods to incorporate 

dopants are during the VLS growth and ion implantation in bottom-up and top-down 

fabrication respectively. 

As seen in Chapter 4 when a dopant is introduced into the silicon lattice it causes 

scattering of charge carriers. This is due to the new chemical environment (potential) 

introduced by the dopant which modifies the periodicity of the lattice. In bulk 

semiconductors there are two sources of scattering from dopant impurities, namely, 

neutral and ionised impurity scattering. The typical ionisation energy in bulk silicon 

for various dopants is ~50 meV which implies that at room temperature ionised 

impurity scattering is the dominant mechanism. However, this may not be the case 

for highly-doped silicon nanowires where the impurity bands strongly overlap with 

the charge carrier channels.
83

 Also quantum confinement and the dielectric mismatch 

with the surrounding material can significantly increase the ionisation energy in low-
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doped silicon nanowires, thereby, making dopants inactive.
138,148

 As demonstrated in 

Chapter 4 neutral impurity scattering can be quite significant in small diameter 

nanowires and in this case it can act as a limiting factor to the mobility which plays 

an important role in the device performance such as drive current and speed. 

A factor to consider in electronic devices based on SiNWs are sample-to-sample 

fluctuations since it is expected that as the width of the nanowire decreases the 

enhanced impurity scattering can depend on the exact number of dopants and their 

location along the radial direction. Moreover charge carrier mobilities are limited by 

other scattering mechanisms like surface roughness and phonon scattering which 

have not been systematically studied. Experimental data have just started to emerge 

and are difficult to interpret. In early measurements, the mobility of <100>- and 

<110>-oriented SiNWs has been estimated by using a capacitance-voltage method 

151
. The authors find that both electron and hole mobilities decrease monotonically 

with nanowire width and that the electron mobilities of nanowires along the <100>- 

and <110>-axis are comparable. This contradicts more recent studies. In Ref. 150, it 

is shown that the <110>-orientation yields enhanced mobility in agreement with 

theoretical results.
151

 

In this chapter we are motivated by the results of Ref. 26 where quantum 

confinement has been studied in <110>-channels made of silicon nanowires. The 

authors perform detailed electrical characterisation in SiNW FETs with sub-5 nm 

channel width and nominally doped with boron (doping density 2x10
15 

cm
-3

). They 

find that the mobility is enhanced due to quantum confinement compared to a 

nanobelt control sample; hole mobilities in the range of 400-1200 cm
2
/(Vs) are 

reported. The hole mobility in boron-doped <110>-oriented Si nanowires with 

different diameters (1.15 nm-4.47 nm) for various low dopant concentrations and 
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place the substitutional dopant impurity at different positions in the cross-section to 

estimate the mobility variations due to neutral impurity scattering is calculated. 

The structure of the chapter is as follows. Section 6.2 provides details on the 

preliminary calculations regarding the electronic structure as well as the scattering 

properties of single boron impurities as a function of nanowire diameter and dopant 

position. These calculations are based on first-principles using OpenMX and TiMeS 

as discussed in previous chapters. In Section 6.3 the results on the hole mobility is 

discussed. Here, the estimations are based on considering scattering from 

independent impurities and applying the relaxation time approximation within the 

Boltzmann transport method. 

6.2 Electronic structure and transmission properties 

Structural relaxations and electronic structure calculations were performed using the 

OpenMX code with the GGA-PBE functional and norm conserving 

pseudopotentials. The structures were geometry optimised with force threshold of 

0.01 eV/Ǻ. A Monkhorst-Pack k-point sampling on a 15x1x1 grid in the Brillouin 

zone and an optimised double-zeta polarised basis set were used. In Figure 6.1 (a-d), 

The band structure of ideal SiNWs surface-passivated with hydrogen and varying 

width (diameter ranges from 1.15 to 4.47 nm) is plotted. The cross-section of the 

nanowires is displayed in the insets. The effective mass is calculated from the band 

structure by taking the second derivative of the first valence band at the gamma   

point as described in Section 3.3. the results in Table 6.1 is tabluated along with the 

band gap. The band gap increases with decreasing nanowire width as expected from 

the stronger quantum confinement and the effective mass increases slightly with the 

width. These results agree with Refs 82, 154. 
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Figure 6.1: Band structures of <110>-oriented Si nanowires with increasing width 

(diameter: 1.15 nm, 2.22 nm, 3.34 nm and 4.47 nm). The cross-sections are given as 

insets. The calculated band gap of bulk Si is 0.96 eV. 

 

(a) 
(b) 

(c) (d) 

2.24 eV 

1.74 eV 

1.36 eV 

1.25 eV 
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Table 6.1: Band gap and hole effective mass of <110>-oriented Si nanowires and 

increasing width. 

 

 

 

 

In Ref. 73 it is shown that a dopant substituting a Si atom in the ‘bulk’ body of a 

nanowire induces stronger back scattering than a surface dopant interacting with a 

dangling bond, in which case ballistic transport occurs. Here, the effect of dangling 

bond saturation by dopant impurities but take into account the possibility of dopant 

substitution in various positions is disregarded. The different distribution of boron 

substitutional dopants in the cross-section of nanowires with increasing width is 

shown in Figure 6.2. For the smallest nanowire with width (d=1.15 nm), one position 

in the silicon body and one at the surface is considered. For the nanowire with 

diameter of 2.22 nm six different positions are considered – three sites for ‘bulk’ 

doping and three dopant positions at the surface. Similarly seven and eight different 

positions for the 3.34 nm and 4.47 nm nanowires respectively are considered. The 

structures are optimised using a supercell of 19.2Å x 25Å x 25Å with the nanowire 

axis oriented along the x-direction and an optimised double-zeta polarised basis set 

as before. However, the approximate single-zeta basis set to perform transport 

calculations within TiMeS is used. Based on the results of chapter 5 this is sufficient 

for a first qualitative discussion of the effect of dopant position and nanowire 

diameter on the hole mobilities. 

 

SiNW diameter 

(nm) 

Band gap (eV) Effective mass (me) 

calculated here 

1.15 2.24 0.14 

2.24 1.74 0.17 

3.34 1.36 0.18 

4.47 1.25 0.19 



107 
 

 

 

 

Figure 6.2: Cross-sections of the <110>-oriented silicon nanowires with boron 

substitutional impurities. The various positions of the boron atoms are indicated. The 

diameter of the nanowires of radius (a) 1.15 nm, (b) 2.22 nm, (c) 3.34 nm and (d) 

4.47 nm.  

 

 

(a) 

(c) (d) 

(b) 
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Figure 6.3: Transmission at different dopant location of boron doped SiNWs with 

width versus eigenenergies of valence band edge (a) 1.15 nm (b) 2.2 nm (c) 3.34 nm 

and (d) 4.47 nm. 

(c) (d) 

(b) (a) 
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The transmission of holes across the considered SiNWs with a single boron impurity 

is shown in Figure 6.3. For the same dopant position the scattering properties are 

different with varying nanowire widths. For example, backscattering is observed 

with the transmission dropping to zero when the boron atom is positioned exactly at 

the centre (bulk) and the diameter is 1.15 nm but for larger nanowires there is no 

such strong scattering for this dopant position. For SiNWs with width 2.22 nm and 

4.47 nm backscattering is seen for both bulk and surface locations of the dopant 

atom. However at nanowire with 3.34 nm width back scattering is seen mostly in the 

bulk site except at position 6 where the dopant is located near the surface. This 

shows that dopants located at the surface can also act as strong scatterers. These 

results show that the scattering behaviour is strongly dependent on nanowire width 

along with dopant location which may explain some of the variations seen in 

electrical characterisation experiments. 

6.4 Hole mobility 

The mobility   of a semiconductor material can be obtained from the Boltzmann 

transport equation within relaxation time approximation 

   
     

  
  6.1 

where   the electron charge and    is the effective mass calculated from the band 

structure of the undoped SiNWs.
157

 The average momentum relaxation time     

            is  

               
 

  
  

   

   
             

  
  

  
        6.2 
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where the Fermi-Dirac distribution       
 

      
      

   

    and  the group velocity    

is calculated from the first derivative of the bands as described in Section 3.3. For a 

one dimensional system      the integral of Equation 6.2 can be expressed as a 

function of energy via the mean free path λ   

     
  

   
               
 

 
       

 

  
  

  

 
       6.3 

Substituting Equation 6.3 in Equation 6.1 gives the mobility as 

  
 

   
               
 

 
       

 

  
  

  

 
                         6.4 

To estimate the mean free path we use the implicit assumption of scattering from 

independent impurities. As in Chapters 4 and 5, this is calculated via λ    

 
     

         
   , where    is the transmission value across the wire with the impurity 

and     the number of modes as defined in Section 2.3.1. These are taken from the 

calculations in the previous section.    is the mean distance between dopants which  

for a fixed dopant concentration decreases with increasing width as shown in Table 

6.2. Here, low-doped SiNWs with nominal doping density ~         is assumed. 
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Table 6.2: Estimates of the distance ld between dopants for varying (low-)dopant 

density and nanowire width. This is calculated from   
 

 
           where W is 

the nanowire diameter and n is the doping concentration. 

W 

(nm) 

   (μm) at n 

           

   (μm) at n 

           

   (μm) at n 

           

   (μm) at n 

           

   (μm) at n 

           

1.15 482 241 160 120 24 

2.22 129 65 43 32 6 

3.34 57 28 19 14 2.8 

4.47 32 16 11 8 1.6 

 

Figure 6.5 shows the hole mobilities as a function of diameter and for various dopant 

positions. Evidently, although mobility variations are observed depending on the 

dopant position a much weaker dependence than expected is exhibited. This is 

attributed to the cut-off introduced in the integral of Equation 6.4 by the distribution 

function, shown in Figure 6.6(a), which suppresses any prominent features observed 

in the scattering properties much below the top of the valence band (e.g., the mean 

free path dependence shown in Figure 6.6(b)). At such low-dopant densities, the 

most significant dependence is observed with respect to increasing nanowire 

diameter and decreasing doping concentration. In both cases the mobility 

monotonically increases due to weaker scattering.  
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Figure 6.5: Hole mobility of <110>-oriented SiNWs with diameter as indicated and 

lightly-doped with boron atoms at various sites (both at surface and bulk). Doping 

density is (a)            and (b)           . 

(b) 

(a) 
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Figure 6.6: (a) The statistical distribution function for holes and (b) mean free path 

of boron doped SiNW with diameter 1.15 nm. Energies have been referenced to the 

top of the valence (sub-)band. 

(a) 

(b) 

1
 –

 f
0 
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Figure 6.7: Hole mobility of <110>-oriented SiNWs with varying width and 

distance between dopants as indicated in Table 6.2. Doping density is ~        . 

Boron substitutional dopants are located in the bulk of the SiNW (referred as 

location 1 in Figure 6.2). 

Comparing the calculated values with those of the experiment at doping density 

            and nanowire width 4.47 nm,
26

 the results show good agreement. 

They may also explain the observed variations between difference channel lengths 

and nanowire diameters. Using the distance ld between dopants as a parameter that 

captures the statistical variations between samples, in Figure 6.7 the hole mobility 

assuming ‘bulk’ boron dopants (position 1 in Figure 6.2) is plotted. It is found that 

for nanowires with similar width and nominally doped at ~         the hole 

mobility shows similar variation as in the experiment, namely, in the range of 340-

1360 cm
2
/(Vs) for the nanowire with 4.47 nm width. 
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6.5 Conclusions  

In summary the impact of dopant position and nanowire width on the transmission 

and mobility of SiNWs nominally doped with substitutional boron is evaluated. The 

scattering properties of single dopant impurities strongly depend on both the 

nanowire size and dopant location. Backscattering and weak scattering may be 

observed when a impurity is placed either in the bulk or near the surface.  However, 

despite strong backscattering for many of the dopant positions the hole mobility 

limited by neutral impurity scattering increases monotonically with increasing 

nanowire width at fixed doping density. The opposite behaviour is expected with 

increasing dopant concentration. Most importantly, it is found that the mobility can 

show significant variations in nominally doped nanowires. For example, at 4.47 nm 

width and            the hole mobility is in the range of 340-1360 cm
2
/(Vs) 

which is in agreement with experimental observations. 
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Chapter 7: Concluding remarks and outlook 

In the second half of 1980s, advances in fabrication and characterisation techniques 

allowed the fabrication of submicron electronic devices that gave birth to the field of 

mesoscopic physics and materials band engineering. Using a combination of 

interfaces and chemical composition, effects such as size quantum confinement, 

quantum mechanical tunnelling, interference and ballisticity have been observed in 

electron transport properties and used in applications. In parallel, the study of 

nanoparticles in chemistry and the detection of fullerenes in 1985 have been placing 

the foundations for the re-discovery of carbon nanotubes in the early 1990s and the 

rise of nanomaterials (in particular one-dimensional) as an alternative to scientific 

and technological advances towards smaller lengthscales. Materials properties as 

determined not only by the bulk structure and stoichiometry but also by 

nanostructuring took a central place. With the convergence of these branches 

towards smaller dimensions along with the needs of microelectronics industry, it has 

been only a matter of time until semiconductor nanowires (predominantly made of Si 

but also of Ge and III-V materials) would become one of the most important 

nanomaterials. In the last decade scientific interest has led to a wealth of discoveries 

regarding their materials properties as wells as to a range of old and new applications 

in the field of sensing, electronics and energy harvesting and storage. These have 

unambiguously demonstrated their potential and their wide employment now and in 

the future.   

Notwithstanding a wealth of open issues, atomic-scale modelling and simulations 

have been very useful in predicting and interpreting experimental results and efforts 

have focused on developing methods for a priori technology evaluation. To this end, 
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theoretical studies based on first-principles are needed to describe accurately and 

efficiently the electronic and transport properties of nanomaterials as well as the 

electrical characteristics of devices. This has been the aim of this thesis. Focusing on 

SiNWs with diameter less than 5 nm and using density functional theory, my thesis 

started with a critical examination of the methodology – which has been (and still is) 

revisited – to enable in the later part a discussion of the possibility to realise certain 

silicon nanowire devices and an explanation of their transport properties. 

Regarding the examination of the methodology, one of the application challenges in 

DFT is accuracy versus efficiency and implementations of numerical atomic orbitals 

as basis sets hold great promises. Nevertheless, as it is made quite clear in this thesis 

this is not straightforward and one has to systematically study their convergence for 

the particular system of interest. Starting from simple models of SiNWs with 

hydrogen and hydroxyl terminations the structural and electronic properties with 

increasing size of NAO basis sets is investigated and for various contraction 

schemes. These studies to included p- and n-type dopant impurities (that is, B, Ga, P, 

and As atoms used as substitutions on Si sites) since doping plays a significant role 

in tuning the electronic and optical properties of such semiconducting nanomaterials 

are extended.  There is systematic improvement in band structure and total energy 

with respect to the basis size and orbital optimisation. Not only the convergence is 

established with increasing the basis size but a great improvement in the quality with 

the optimisation of the contraction for a fixed basis size is shown; the double zeta 

polarised basis offers a reasonable approximation to study structural and electronic 

properties. This is most important to reduce the computational cost. The 

establishment of the transferability is equally interesting in order to put on a firm 

basis the use of NAOs as an efficient method, alternative to plane waves, to calculate 
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the properties of silicon nanowires. Here, using pre-optimised orbitals it is shown 

that this is possible in various silicon nanowires structures which can be used to 

address nanowire calculations in more complex (larger) environments. 

This thesis started discussing the application of NAOs in calculations of transport 

properties by using a simple band analysis. It was concluded that once structural 

optimisation has been accurately performed, estimates of the mean free path are not 

significantly affected by the use of approximate NAOs whereas predictions of the 

conductivity can vary more extensively. This result allowed me to examine the 

scattering properties and the mean free path in silicon nanowires doped with n- and 

p-type dopant impurities. It is showed for the first time that the transport properties 

in nanowires with a small cross-section are determined not only by the dopant type 

but also by the wire axis orientation.  

The relatively weak dependence of the mean free path on the NAO basis set has been 

confirmed (less than 0.01% between basis sets within an energy range of 0.2eV) in 

explicit calculations of quantum transport combining DFT with the Green’s function 

formalism. For the case of weak scattering from impurities the choice of the NAOs 

basis is considerably less important than for impurities inducing strong 

backscattering. However, even in the case of suppressed transmission the double zeta 

polarised basis offers a good compromise whereas the single zeta basis set yields 

qualitatively correct results. We also assessed the impact of various numerical 

atomic orbital approximations on the transport properties of silicon nanowire setups 

with p
+
-n-p

+
 and p

+
-i-p

+ 
doping profiles. Interestingly, although the current-voltage 

characteristics of such ultrascaled (3 nm length) nanowire-based transistors shows 

the expected sensitivity (from the conductivity estimates) to the choice of the NAOs 

basis set, it was found that charge self-consistency affects more significantly the on-
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current. Regarding the possibility to use these devices, it is  concluded that the 

source-drain tunneling currents are quite high – of the order of 0.5 nA and 2 nA for 

p-n-p junction and p-i-p junction, respectively) – to achieve good device 

performance.  

Finally, motivated by recent experiments the hole mobility in <110>-oriented SiNWs 

of different widths (diameters in the range 1.15 nm to 4.47 nm) and nominally doped 

with boron (doping density          ) is calculated. To this end, we combined  

first-principles results on the band analysis and scattering from single impurities with 

the Boltzmann transport approach within the relaxation time approximation. In 

addition to our previous finding on the importance of the wire axis on the scattering 

properties of single dopants we have shown that there is interplay with dopant 

position and wire diameter regarding the effect of neutral dopant impurities in 

transport properties. Unlike earlier calculations, it has identified examples where 

backscattering and weak scattering may be observed when an impurity is placed 

either in the bulk or near the surface. Interestingly, for such low-doping 

concentrations the cut-off imposed by the Fermi-Dirac distribution function implies a 

weak dependence of the mobility from this effect (hence, also the basis set). This has 

as an effect that the hole mobility limited by neutral impurity scattering is 

determined predominantly by the nanowire width and the doping density. The hole 

mobility decreases monotonically with decreasing nanowire width at fixed doping 

density and increasing dopant concentration. Most importantly, it is shown that the 

mobility can show significant variations which can explain experimental 

observations. 

Electronic quantum transport based on first-principles computational methods has 

become one of the core topics in atomic-scale modelling and device simulations. 
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Here, only the surface is scratched. On the one hand, there are fundamental issues 

like the systematic underestimation of the band gap by density functional theory 

which even accurate plane wave calculation cannot predict correctly. This requires 

extending the basic methodology to include many-body corrections to the description 

of electronic excitations. Although most of the results in this thesis do not depend on 

determining the band gap with experimental accuracy, this is a limiting factor of the 

computational methodology regarding interpretation of experiment, predictive 

strength and a priori technology evaluation. These issues form a large part of on-

going research. On the other hand, more simulations are needed to predict materials 

transport properties and electrical device characteristics for systems of experimental 

interest. For example, one should consider the effect of explicitly treating the oxide 

surrounding the silicon nanowires as wells as core-shell structures to account for 

possible interface defects, recombination and charge traps. Regarding the various 

limiting scattering mechanisms to the mobility there is much more work to be done, 

including an analysis of ionised impurity scattering and a complete statistical 

analysis. 

It is expected to have achieved in contributing our share by examining and 

establishing the use of numerical atomic orbital in predicting the electronic and 

transport properties of silicon nanowire structures from first-principles. 
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