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Dedicated to young Hugh

Things get better

“Long is the way and hard, that out of Hell leads up to Light.”
- John Milton (Paradise Lost)



Bart Simpson: Um, Dad?

Homer Simpson: Yeah?

Bart Simpson: What is the mind? Is it just a... system of impulses, or...
IS it... something tangible?

Homer Simpson: Relax! What is mind? No matter. What is matter?
Never mind.

Bart Simpson: Thanks, Dad.

Homer Simpson: Good night, son.

- The Simpsons

**k*k

“First they take the dingle-bop and they smooth it out with a bunch of
schleem. The schleem is then repurposed for later batches. They take the
dingle-bop and they push it through the grumbo where the fleeb is
rubbed against it. It's important that the fleeb is rubbed because the fleeb
has all of the fleeb juice. Then, a schlami shows up and he rubs it and
spits on it. They cut the fleeb. There's several hizzards in the way. The
blamphs rub against the chumbles, and the plubis and grumbo are shaved
away. That leaves you with a regular old plumbus.”

- Rick and Morty (How plumbuses are made)

***k

Clark: “Yeah, but I will have a degree. You’ll be serving my kids fries
at a drive through on our way to a skiing trip.”

Will Hunting: “That may be. But at least | won’t be unoriginal.”

- Good Will Hunting (Bar scene)


http://simpsons.wikia.com/wiki/Bart
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1 PREFACE

1.1 GENOMIC DATA

The bacteriophage MS2, an RNA-based virus that infects E. coli, was the
first organism to have its genome made digitally available using sequencing
technology in 1976. Following this milestone, the sequencing of more complex
genomes from PhiX174 to Drosophila melanogaster culminated in the sequencing of
the human genome, which was completed in 2003. This was a thirteen-year project
that was undertaken by Celera Genomics (a private company led by Craig Venter)
and an NIH-funded public initiative led by Francis Collins (Moraes and Goes, 2016).

Shortly after the human genome had been sequenced, Craig Venter and his
team went on an expedition to the Sargasso Sea in a sailing boat. They sampled the
microbial content of the area at multiple sites by passing water through filters and by
sequencing the resulting residue. They discovered a surprising amount of microbial
diversity estimated at 1,800 species containing 1.2 million previously unknown
genes (Venter et al., 2004).

Sequencing projects like the Sargasso Sea expedition reveal an impressive
level of diversity that was considerably underestimated using purely culture-based
methods. Improvements in technology and an increase in the sequencing and
analysis of molecular data have propelled us into an era of biological research where
important insights are no longer dominated by culture-dependent methods. The field
of Bioinformatics is rapidly expanding, created by the fusion of Biology, Computer
Science and Mathematics. This multi-disciplinary approach to research brings with it
a new kind of research, applying computer algorithms and statistical knowledge to a
wide variety of biological questions. The size of some sequence datasets is so
immense that a team of researchers could not manually read through even a small
fraction of the data over the course of their lives. Yet sub-disciplines of
Bioinformatics such as Comparative Genomics have the power to probe a seeming
ocean of nucleotide bases for patterns that expand on current knowledge,

strengthening theoretical insights with high-throughput empirical data.



1.2 SCOPE OF THE REVIEW

This literature review focuses on comparative microbial genome analysis in
lactobacilli. Lactobacillus species are involved in food fermentation, probiotics and
starter cultures for dairy products, although they can have negative roles too like in
cavity formation due to acid production in the presence of sugar (Salvetti et al.,
2012). The paraphyletic nature of lactobacilli and the historical misclassification of
species due to contradictory genotype/phenotype sub-groupings make this large
bacterial division an interesting and a challenging task for present and future
bioinformaticians.

The sub-discipline of Comparative Genomics relies on the comparison of
functional and phylogenomic properties of multiple genomes. Studies have been
conducted on as few as two genomes of the same strain to hundreds of genomes
scattered across the tree of life. This review will bring together relevant literature
involving the comparison of multiple genomes of Lactobacillus and will provide a
comprehensive description of the accumulation of knowledge since the first studies
to the present day.

The structure of this review will proceed through the origin and history of
Microbial Genomics to a literature review of comparative microbial genome analysis
in lactobacilli, focusing on key concepts and insights. Early sections give more
general overviews, but microbes are focussed on where possible. Relevant software
and bioinformatic techniques are included where they add to the understanding of the

topics being covered.
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2 MICROBIAL GENOMICS

2.1 AHISTORICAL PERSPECTIVE

Microbial Genomics is possible only because it is built on a history of older
and more established disciplines. It is easy to take the following facts for granted:
bacteria exist; they vary functionally relative to other, closely related bacteria; these
closely related bacteria all evolved from a common ancestor; functional variation is
due to digital, heritable variations in nucleotide sequences; these variations can be
analysed using machines capable of sophisticated, high-speed computations. These
facts arise from five separate disciplines - Microbiology, Evolution, Genetics,
Mathematics and Computer Science - which have been combined together into a

multidisciplinary approach to modern biological research.

2.1.1 MICROBIOLOGY

The microscopic fruiting bodies of mould were first observed in 1665 by
Robert Hooke and, in 1676, Antonie van Leeuwenhoek observed the first bacteria
using a single-lens microscope of his own design. The existence of organisms too
small to be seen with the naked eye had been hypothesised since ancient times, but
the drawings and descriptions of Hooke and Leeuwenhoek foreshadowed the
emergence of the field of Microbiology (Lane, 2015). The fact that microbes exist at
all opens up a vast array of questions into exactly what it is they do and what effects
they have on human health and wellbeing.

Microbiology became firmly established as a science in the 1800s with the
pioneering work of Ferdinand Cohn, Robert Koch and Louis Pasteur. Cohn
developed the first taxonomic classification of bacteria based on their shape - a
scheme that is still in use today. Pasteur disproved the theory of spontaneous
generation with a series of ingenious experiments showing that meat broth remains
sterile when air-borne bacteria are prevented from reaching it. Robert Koch

solidified the germ theory of disease by applying a set of rules to observations while
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isolating and re-introducing disease-causing bacteria to susceptible hosts, a series of
logical steps that became known as Koch’s postulates (Madigan, 2012).

No longer could microbes spontaneously arise from nothing; they were pre-
existing lifeforms that were amenable to categorisation and a specific microbe had
unique properties that caused a specific disease. The subsequent discoveries of
Martinus Beijerenk (discoverer of viruses and enrichment culture techniques), Sergei
Winogradsky (discoverer of the role of bacteria in geochemical processes) and many
others led to a rapid expansion of the field of Microbiology and therefore a
considerable increase in the number of implications that further research might
reveal (Dworkin, 2012).

2.1.2 EVOLUTION

As the field of Microbiology blossomed, Charles Darwin was writing his
book On the Origin of Species. Darwin’s book, published in 1859, expounded the
theory of evolution by means of natural selection. The idea that a species could
change over time had existed since ancient Greece, and many hypotheses were put
forward over the centuries to try to explain the forces behind evolution. Most
notably, Jean-Baptiste Lamarck proposed that organisms arose through spontaneous
generation, became increasingly complex with the passing of generations and
adapted to their environment through the inheritance of acquired characteristics
(Burkhardt, 2013).

Just as Pasteur dispensed with the belief that the spontaneous generation of
life is commonplace, Darwin showed that adaptive variations are selected by the
environment and less “fit” individuals fail to survive and reproduce. Importantly, he
provided convincing arguments (each one strengthened by detailed observations
spanning decades) that a species can give rise to new species and he speculated that
all life arose from a single common ancestor in the distant past.

The hierarchical nature of species was propounded by Carl Linnaeus in
1735, and the categorisation of microbes began with Cohn in the 1800s, but the idea
that all species are essentially cousins of each other with varying evolutionary
distances was revolutionary. Applied to Microbiology, Darwin’s theory portrayed

microbes as organisms that change and adapt to their environments.
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Natural selection transforms Biology from a collection of processes and facts
into a cohesive scientific field held together by a fundamental theory that explains
the complexity of life. A famous essay by Theodosius Dobzhansky summarises the
impact of Darwin’s work: Nothing in Biology Makes Sense Except in the Light of
Evolution (Dobzhansky, 1973).

2.1.3 GENETICS

While Darwin’s theory explained adaptive change in Biology, it lacked a
mechanism for heredity — how are adaptive traits passed down through the
generations? Darwin didn’t rule out Lamarckian inheritance, which postulated a
blending of characteristics from both parents. It was Gregor Mendel, an Augustinian
friar and contemporary of Darwin, conducting experiments on pea plants in his
garden in Brno, who developed the concept of units of inheritance and fathered the
science of Genetics (Mendel, 1866)

Mendel focussed on seven traits of pea plants, meticulously recording the
number of each type (e.g. green versus yellow seeds) in the offspring of crossed
parents. His experiments gave rise to the idea of dominant and recessive traits as
well as the independent assortment of phenotypes in successive generations of plants
(Slack, 2014). The supposed blending mechanism of inheritance proposed by
Lamarck and others and partly supported by Darwin was largely ruled out by
Mendel’s mathematical treatment of heritable traits — his results suggested that traits
were particulate and inherited as individual units.

Mendel’s work fell into obscurity but was rediscovered late in the 1800s by
scientists working on related phenomena. The subsequent decades saw the dawn of
molecular genetics as the search for the molecules responsible for inheritance
escalated. The position of genes on chromosomes was suggested by Thomas Hunt
Morgan based on observational data from mutations in fruit flies and the linear
arrangement of genes on chromosomes was demonstrated by his student, Alfred
Sturtevant, in 1913 (Sturtevant, 1913). The molecular nature of the gene was
solidified with the Avery-MacLeod-McCarty experiment in 1944, which
demonstrated that DNA was the molecule that carried genetic information in

bacterial transformation (Avery et al., 1944). James Watson and Francis Crick
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determined the double-helical structure of DNA in 1953 using the x-ray
crystallography results of Rosalind Franklin, elucidating its reverse complementarity
and showing that adenine always binds with thymine and guanine with cytosine (the
infamous A, T, G and C nucleotide bases of genetics) (Watson and Crick, 1953). The
discovery of DNA led to a flurry of further research into the genetic code, the set of
rules that determine the translation of nucleotides into proteins. A microorganism,
just like a fruit fly or a human being, could now be thought of as the phenotypic
representation of digital, discrete genetic instructions that are subject to evolution by
natural selection. The integration of multiple scientific disciplines was leading to a
more detailed understanding of the complex nature of life. This process was to

continue.

2.1.4 MATHEMATICS

Mathematics and Biology are traditionally two entirely separate disciplines
and it was originally thought that Mathematics would not make much of a
contribution to biological research due to the messy complexity of life compared to
the deterministic predictability of mathematical equations and formulas. However,
the integration of evolutionary theory with Genetics led by Ronald Fisher, used a
mathematical framework to create what is now known as the modern synthesis, a
combination of the ideas of Darwin and Mendel. In his book of 1930, The Genetical
Theory of Natural Selection, Fisher showed that the appearance of continuous
variation can be explained by the interaction of multiple discrete genetic units, a
controversial idea at the time. This mathematical emphasis on evolutionary ideas
used by Fisher was implemented by J.B.S Haldane as he quantified natural selection
in peppered moths in the case of industrial melanism (where a dark colouration is
selectively favoured due to soot deposits on trees). Sewell Wright, too, followed suit
by studying complexes of interacting genes and he introduced the concept of an
adaptive landscape in 1932 where adaptive peaks of different heights could be
bridged in small populations through genetic drift. Fisher, Haldane and Wright
together created the field of population genetics, a discipline infused with concepts
from evolutionary and ecological theory, the principles of Genetics and substantial

mathematical theory (Slack, 2014). The application of sub-disciplines of
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Mathematics, particularly Probability and Statistics, directly to the nucleotide and
amino acid composition of biomolecules would require the integration of another

discipline.

2.1.5 COMPUTER SCIENCE

Devices such as the abacus have been used to aid computation for thousands
of years, but the origin of Computer Science rests on several theoretical discoveries
and their incorporation into the building of machines capable of computation.
Charles Babbage developed the concept of the first programmable computer, the
difference engine, in the early 1800s as an aid to navigation. In 1833, he expanded
the concept into the analytic engine, a general-purpose mechanical computing device
that took punched cards as input. The analytic engine was never completed, but a
simplified working version was built years after his death (Haas, 1994). George
Boole, an English mathematician, invented binary algebra in the mid-1800s, which is
the conceptual foundation of logic gates that form the building blocks of all modern
computers (Boole, 1847). Alan Turing in his paper of 1936, On Computable
Numbers, introduced the concept of the stored program, where all computational
instructions are stored in memory (Turing, 1936). Before this, a computer program
was fixed in hardware and the introduction of a new program involved the re-wiring
of the machine. Turing’s “universal computing machines” led to the computational
flexibility of today’s computers.

The digital computer evolved from using vacuum tubes, to transistors to
integrated circuits, becoming faster and smaller following Moore’s Law, which
states that the processing power of computers will double every two years
(Dasgupta, 2016). The digital representation of molecular sequences and the power
of modern computers have created a new laboratory for research, one that replaces
bench science equipment and an array of chemicals with biological data and
computer logic. Leeuwenhoek’s microscopes allowed him to discover a new world
beyond the limits of what we can see; so too will the computer expand our
understanding of nature, allowing us to discern patterns and processes that were
previously embedded in biological phenomena too vast and interconnected to be

understood. The computer has truly become an essential tool for scientists.
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Microbial Genomics is a hybrid of disciplines that stretch back over
centuries, but its existence would not be possible without the available data that
represent the biological phenomena we wish to explore. The generation of one-
dimensional sequence data (on which genomic research depends) began with the

development of sequencing technology and the concepts that lie behind it.

2.2 GENOME SEQUENCING

Genome sequencing reduces a complex, three-dimensional DNA molecule
into a linear, one-dimensional format, much like letters in a book except that there
are no spaces or individual words, just a continuous stream of A’s, C’s, G’s and T’s.
All we are left with is a sequential pattern of nucleotide bases, the majority of which,
in bacteria, code for genes. The information in this pattern of bases, however, is
informationally rich and determines the three-dimensional structure of proteins and
various types of non-coding RNA molecules. Sequences involved in the rates of
transcription and translation are also encoded in this one-dimensional representation
and, importantly, the evolutionary history of the genome (and of individual genes) is
recorded in the nucleotide pattern of DNA. When compared to homologous
sequences from related strains and species, this pattern can elucidate phylogenetic
relationships across groups of organisms and provide evidence of the effects of
horizontal gene transfer by viruses and other mobile elements.

Cutting-edge sequencing technology is working towards the possibility of
reading an entire genome in a single step, but over the short history of genome
sequencing and even today a genome is sequenced as many separate fragments of
DNA that are subsequently assembled and analysed. The associated biases, errors
and practical limitations of this strategy have led to an explosion of ideas, software
and technologies to handle the daunting task of genome sequencing and the
complexity of the analyses that are needed to interpret the intricacies of life at a

molecular level.
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2.2.1 FIRST-GENERATION SEQUENCING

The first gene to be sequenced was that encoding the coat protein of the RNA
bacteriophage MS2, a project carried out by Walter Fiers and colleagues in 1972
(Min Jou et al., 1972). This was followed four years later by the sequencing of the
complete MS2 genome with its inventory of three genes (Fiers et al., 1976). The first
generation of DNA sequencing technologies began with Sanger sequencing in 1977,
an initiative led by Nobel Prize-winner Frederick Sanger. Sanger’s sequencing
method depends on a chain-termination step where deoxynucleosidetriphosphates
(dNTPs) are added to a DNA template starting from a specific primer sequence using
DNA polymerase. Di-dNTPs are also present in one of four reactions (one for each
nucleotide) and, when incorporated into the growing DNA molecule, stop strand
elongation due to the lack of a 3°-OH group required for bond formation between
two nucleotides. The DNA fragments that result from rounds of strand elongation are
heat-denatured and separated by gel electrophoresis according to size, a separate lane
for each nucleotide (A, C, G and T). The bands of DNA are visualised using
autoradiography and the sequence is determined directly from the gel image. This is
possible because DNA fragments of different lengths all start from the same primer
and a band appears where a ddNTP was incorporated into the sequence, meaning that
consecutive bands represent consecutive nucleotides in the sequence (Sanger et al.,
1992).

The timeline for the sequencing of larger and more complex genomes runs
from bacteriophages to archaea to fruit flies, the nucleotide count increasing from
thousands to millions and the simplistic organization of a single circular
chromosome expanding into numerous linear ones. These early sequencing
initiatives were completed using Sanger sequencing, each new project placing
greater demands on the efficiency of the Sanger method. In particular, the Human
Genome Project drove the modification of Sanger sequencing to become faster and
more cost effective, leading to cheaper and more efficient protocols. Radioactive
labels were replaced by base-specific fluorescent dyes and gel electrophoresis by
automated capillary electrophoresis. Sanger sequencing remains the gold standard
for clinical diagnostics, but it is too slow and expensive for most of today’s studies
unless they require the sequencing of only a handful of genes (Moorthie et al., 2011).

The massive biological datasets that are routinely sequenced today are possible
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because of a new generation of technologies: Next-generation sequencing (NGS),

also known as high-throughput sequencing.

Moore's Law

\Illl\"m"m\l\“' National Human

|||| Genome Research
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Figure 1.1: Cost of sequencing a genome over time. Reduction in the cost of
sequencing the human genome over time has out-paced Moore’s Law (Wetterstrand,

2012; Creative Commons license).

2.2.2 NEXT-GENERATION SEQUENCING

NGS technology is fuelled by the demand for cheaper and cheaper
sequencing at ever higher capacities. Both Sanger and NGS sequencing rely on
multiple copies of overlapping nucleotide ‘reads’ for the construction of longer
sequences called contigs and for sequence validation, but Sanger creates one read at
a time while NGS is massively parallelised. This is the defining characteristic of
NGS sequencers - the ability to sequence millions or even billions of features
together in a single run and to generate output where each feature is a sequenced
read of nucleotide bases accompanied by per-base quality scores (Moorthie et al.,
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2011). There are four main technologies that fall under the umbrella of NGS (as well
as a host of minor ones) and they have had varying successes and contributions to
the DNA sequencing revolution.

Pal Nyren and colleagues developed pyrosequencing, which depended on a
luminescent method for measuring pyrophosphate synthesis (Ronaghi, 2001). This
two-enzyme process used ATP sulfurylase to convert pyrophosphate into ATP that
then acted as the substrate for luciferase, producing light proportional to the number
of pyrophosphate molecules. The light intensity is measured as each nucleotide is
washed over the template DNA and incorporated onto the growing strand by DNA
polymerase. Sequence information can be observed in real time unlike the lengthy
electrophoresis step required by Sanger sequencing and natural nucleotides are used
instead of the modified dNTPs used in Sanger’s chain-termination (Nyren, 2015).
One issue with pyrosequencing is with the accurate detection of homopolymers due
to the non-linear readout after four or five consecutive occurrences of the same
nucleotide, making artificial insertion/deletion events a regular occurrence for
genomic regions of low complexity (Balzer et al., 2011). This technology can
produce reads of 400-500 base pairs (bp) and it increased sequencing speed by
orders of magnitude compared to Sanger sequencing. Pyrosequencing was licensed
to 454 Life Sciences and later purchased by Roche.

The Solexa sequencing method uses what has become known as ‘bridge-
amplification’ to sequence both ends of a DNA molecule. This is achieved when
replicating DNA strands adopt an arched configuration in order to undergo a second
round of polymerisation off neighbouring surface-bound oligonucleotides. The first
machines could only produce reads of up to 35 bp, but they had the advantage of
providing paired-end data where the number of nucleotides that lie between two
sequenced ends is also known (even if the nucleotides themselves are not). This
additional information allowed for a more accurate determination of repetitive
regions in a genome since the distance of two reads from each other could now be
used to infer their relative positions. The first machine to use this technology was the
Genome Analyzer, which was later followed by the HiSeq (longer reads and greater
read depth) and then the MiSeq (lower through-put with longer reads than the HiSeq
at a lower cost). Today, this technology is owned by Illumina, which has been by far
the most successful sequencing company to the point of controlling most of the
market (Metzker, 2010).
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Applied Biosystems developed a method of sequencing by oligonucleotide
ligation and detection (SOLID). Unlike Sanger, 454 Pyrosequencing or Illumina,
sequencing is carried out using a DNA ligase instead of a polymerase so the
sequence-by-synthesis (SBS) technique that dominated innovation was absent from
this technology. The company became Life Technologies after a merger with
Invitrogen and while its shorter read length and lower read depth cannot compete
with Illumina, its low cost has kept the technology in commercial use (Heather and
Chain, 2016).

Life Technologies also developed the first sequencer to discard the use of
detection by light for a 454-like protocol that measures nucleotide incorporation by
the change in pH during polymerisation when protons are released. This technology
allows for very rapid sequencing, but has the same limitation as 454 pyrosequencing
when it comes to the reliable interpretation of homopolymers (Metzker, 2010).

The capabilities of sequencing technology have grown at a rate that has far
outstripped Moore’s law for computing, which predicts a doubling time of two years.
For example, between 2004 and 2010 the capabilities of sequencing technology
doubled every five months (Heather and Chain, 2016). This impressive rate of
progress has led to a new generation of sequencers that are taking over from the

Next-generation technologies.
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Figure 1.2: Next-generation sequencing. (Sanchez, 2011; CC Attribution-
ShareAlike License)

2.2.3 THIRD-GENERATION SEQUENCING

Third-generation sequencers, although largely in development stages,
emphasise the sequencing of single molecules without the need for DNA
amplification. The biases and errors associated with DNA amplification are therefore
absent from third-generation sequencers (Schadt et al., 2010). The most widely used
technology at present is the SMRT (single molecule real time) platform from Pacific
Biosciences. This technology can produce long reads up to 10 kb quickly, the
sequencing of a single molecule occurring at the rate of the polymerase (Roberts et
al., 2013).

A greatly anticipated third-generation technology is nanopore sequencing.
Oxford Nanopore Technologies have already created a USB device the size of a
mobile phone that was used to sequence the Ebola virus in Guinea by Joshua Quick
and Nicholas Loman (Quick et al., 2016). Recent advances promise to take the
sequencing monopoly away from a handful of commercial companies, giving small

laboratories, research groups and even independent individuals the chance to
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sequence the genomes of single organisms and of entire bacterial communities.
Currently, however, error rates are very high when compared with Sanger and next-
generation sequencing technologies and considerable improvements will have to be
made before nanopore and related sequencing platforms gain widespread use (Lu et
al., 2016).

It is likely that third-generation sequencing technologies such as nanopore
will eventually output incredibly long reads with high accuracy, capturing a
complete microbial genome in a small number of sequences. Bioinformaticians of
the near future will take it for granted that the digital representations of genomes
they analyse do not first have to be pieced together from a multitude of short reads
and remain in a draft form, broken into numerous contigs.

Even after short reads are assembled together into larger portions of the
genome, repetitive regions, limited read depth and sequence quality ensure that the
genome remains in a draft form. Next-generation sequencing such as Illumina needs
to be accompanied by gap-closure strategies such as manual PCR in order to turn a
draft genome from numerous sub-sequences of varying sizes (or contigs) into a
single sequence representing the entire genome. This is unfeasible for large projects
containing dozens or even hundreds of microbial genomes, so genome analysis is
often carried out on datasets of draft genomes. Alternatively, a complete reference
genome can be used as a template for the mapping of reads, but this strategy also has
its limitations because strain-specific genes are ignored as only genomic regions
homologous with the reference are assembled.

The general problem of building genomes out of short reads is known as
genome assembly and it is a procedure that is almost always completed before
subsequent genome analysis takes place. As sequencing projects get more ambitious
such as the goal of BGI (formerly Beijing Genomics Institute) to sequence one
thousand genomes each from humans, microbes and animals/plants, the importance
of sequence assemblers and their ability to handle multiple types of sequence data is

growing.

2.3 GENOME ASSEMBLY

The first Sanger sequences were only a few dozen nucleotide bases in length,

but these took weeks of laboratory work to produce and were remarkable
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achievements for their time. The assembly of these early reads took no more than
minutes, carried out largely by hand instead of requiring sophisticated software for
the automated assembly of thousands to millions of short reads. As sequencers
evolved and became more automated and more high-throughput, the demand for
assembly software skyrocketed. The manual sequencing of increasingly longer DNA
molecules was painstaking and it was accompanied by the impracticality of
reconstructing more and more full-length sequences from reads by hand. Today sees
the use of numerous popular assemblers and data from multiple sequencing
technologies, leading to questions that several papers have already sought to answer:
what combination of sequence technology and assembly software gives the most
accurate representation of the underlying genome of interest, and how do we
determine this optimal combination (Baker, 2012)?

2.3.1 PRE-ASSEMBLY QUALITY CONTROL

Sequencing data comes in the form of a multitude of fragmented, one-
dimensional reads of A’s, C’s, G’s and T’s. The challenge is then to piece all these
reads together to give one or multiple contigs of the genome sequence of interest.
The quality of these reads will affect the quality of the final assembly so two
important pre-assembly steps that are almost always carried out are read trimming
and read filtering. Trimming removes low-quality portions at the beginnings or ends
of reads and has been shown to increase assembly quality as well as the reliability of
subsequent analyses (Del Fabbro et al., 2013). Numerous read-trimming
software/packages/tools are available including Cutadapt, FASTX and Trimmomatic
(Bolger et al., 2014). Read filtering is important for removing low-quality reads
since their inclusion leads to a more fragmented and error-prone assembly. Tools
such as Trimmomatic allow quality cut-offs to be specified so that the extent of
trimming and filtering can be adjusted. The iterated adjustment of parameters is a
common bioinformatic exercise since optimal parameter values are different
depending on the structure and quality of data. In the case of quality control for
sequencing data, a good strategy is to trim and filter reads at multiple cut-offs and
use a tool like FastQC. This software assesses read quality as well as other factors

like GC content, duplication level, k-mer content, read length distribution,
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overrepresented sequences and the presence of adapters. Once sequence data have

been appropriately trimmed and filtered, sequence assembly can begin.

2.3.2 ASSEMBLY ALGORITHMS

The assembler builds contiguous sequences by overlapping staggered reads,
each nucleotide being represented multiple times. Longer reads like those from
Sanger sequencing cover larger regions of a genome, have a higher probability of
being unique portions of DNA and provide greater overlap with other reads of the
same length. This is why Sanger sequencing is effective at low read depth (or
coverage) while next-generation technologies such as Illumina and 454
Pyrosequencing require (and have the ability to generate) a lot more reads. Illumina
also has the advantage of providing paired-end information by sequencing both ends
of longer DNA fragments, ensuring that each read pair carries unique sequence
information, especially since the insert sizes (the un-sequenced regions in the
middle) of DNA fragments involved in paired-end sequencing are inexact and follow
a distribution rather than a set value (Baker, 2012). What this means is that the
probability of an identical read pair being sequenced twice is very low since varying
insert size considerably increases the number of possible read pairs. This can be
contrasted with single-end sequences, which have a higher probability of being
sequenced more than once by chance alone. Duplication of reads due to PCR cycles
is a separate problem and one that is usually resolved by software designed to
identify and remove duplicates from sequence data (Ekblom and Wolf, 2014).

Assemblers designed to handle long-read sequences use an approach known
as overlap-layout-consensus (OLC). Newbler, an assembler designed for 454
Pyrosequencing reads, uses this algorithm to assemble the relatively long reads
generated by Roche sequencing technology. OLC is generally too computationally
intensive for short-read data such as Illumina and SOLID so alternative assembly
strategies are available and can be separated into extension-based methods and De
Bruijn graph algorithms. Extension-based methods are computationally efficient
compared to OLC, but they are very sensitive to sequencing errors and repetitive
regions. The De Bruijn graph algorithm is currently the most popular assembly
method for short-read data and these assemblers dominate genomic research that
uses Illumina (the majority) or SOLID data (Miller et al., 2010).
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The De Bruijn graph algorithm breaks each read into overlapping sub-
sequences of a specified length, k, commonly referred to as k-mers. Each k-mer
becomes a node in a network built by connecting all k-mers that overlap by k-1
bases. A contig is formed when overlapping k-mers reach a point that cannot be
resolved by the assembler due to the unavailability of k-mers that extend the
sequence (insufficient coverage) or due to the existence of repetitive regions that
prevent the assembly algorithm from resolving k-mer positions. Paired-end
information is used to bridge contigs in cases where each member of a read pair
exists on a different contig. A string of N’s then joins the contigs, representing the
number of unidentified bases in a gap. The resulting structure is called a scaffold
(Ekblom and Wolf, 2014). Popular De Bruijn graph assemblers include Velvet
(Zerbino and Birney, 2008), SOAPdenovo (Luo et al., 2012) and SPAdes
(Bankevich et al., 2012). The extension of contigs using short-reads and synteny
information in the form of N’s can be carried out using software such as GapFiller

(Boetzer and Pirovano, 2012).

1001 0110

Figure 1.3: De Bruijn graph of the binary sequence 0000110010111101 using a k-
mer size of four. The blue numbers from 1 to 16 trace the path of the sequence and
arrows indicate the direction that the sequence moves through the path (Compeau et
al., 2011; Springer Nature, License no: 4251410698290).
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2.3.3 ASSEMBLY STATISTICS

A given assembly can be treated as a working hypothesis rather than an
accurate representation of the sequenced genome. There are multiple parameters that
need to be optimised during the assembly process including k-mer length, coverage
cut-off for contigs and expected average coverage. A typical genome assembly
process involves the adjustment of software parameters - and perhaps the testing of
several different software - before an optimal assembly is chosen.

The assessment of assembly quality is a controversial issue because there is
no consensus on what constitutes a good assembly. The sequence diversity across
microbial genomes is staggering and considerable variation exists in all the
following: genome size, replicon complexity, GC content, number and size of repeat
regions, functional diversity and nucleotide k-mer composition. A small bacterial
genome with no plasmids and few repeat regions will be far easier to assemble than
one with multiple plasmids of different origin and whose genome is replete with
repetitive genes.

Despite the challenges involved with assessing genome assemblies,
numerous assembly statistics and other genomic analyses have been developed that
are commonly used to measure assembly quality. The assembly statistics focus on
the completeness of the assembly and the extent of read coverage. Assembly length
(the sum of all contig lengths) is often compared to the length of complete genomes
of the same species (if available) to test for agreement in size, which is usually very
similar across strains of a species. N50 is the contig length at which 50% of the
genome is contained in contigs of at least this length. The N50 value is a common
assembly metric, but should be interpreted with caution as genomes with a greater
number of repetitive regions will, on average, be more fragmented and have a lower
N50. The largest contig size is another common metric reported with assembly
summary statistics (Ekblom and Wolf, 2014).

The median coverage of contigs, nucleotides or k-mers (in the case of Velvet)
is a useful statistic, but it obscures regional coverage variation over the length of an
assembled genome. For this reason, numerous assemblers give a more detailed report

of variation in coverage so that regions of low coverage (and hence of lower
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confidence) can be detected. What constitutes sufficient coverage will vary however,
depending very much on the genome of interest and the focus of the study (Sims et
al., 2014).

Numerous other analyses are routinely carried out in addition to assembly
statistics to test for genome completeness and lack of contamination. The absence of
essential genes is evidence of missing genome regions caused by insufficient
coverage or quality issues. Coding and non-coding genes involved in transcription
and translation can be used as marker genes to test assembly quality. If genes
essential for cell viability are absent from an assembly, confidence in the
presence/absence distribution of other genes in the genome is low. Multiple steps in
the annotation of a genome are also used to test overall assembly quality and lack of
contamination. Comparative Genomics involving strains of the same or different
species can highlight potential issues such as missing genome regions, contradictory
genome statistics (GC content, genome size, etc.) and a high percentage of genes
with top hits to other species (usually a sign of contamination rather than horizontal
gene transfer).

High-quality assemblies are the foundation on which reliable bioinformatic
analyses are based. Without detailed annotation however, a genome is just a
sequence of unintelligible nucleotide bases, one after the other. Looking at an
assembled genome on a computer screen, it is impossible to tell what species it
encodes or whether the genome belongs to an animal or a plant or a bacterium. The
hidden patterns inherent in a genome’s nucleotide order need more sophisticated
methods to be deciphered. The expanding array of techniques and software currently
being employed in genomic and comparative genomic studies is unravelling the
mysteries of DNA, elucidating the functional and phylogenetic properties of

organisms on a molecular level.

2.4 GENOME ANNOTATION

Genome annotation has tedious connotations. It conjures up the manual
curation of open reading frames (ORFs) in software such as Artemis — a tool for
sequence visualisation and annotation (Rutherford et al., 2000). Annotating a
genome however, is what extracts structural and functional information from the

organism of interest. It describes the physiological capabilities of a microbe and
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informs decisions on whether the microbe is pathogenic, probiotic or of industrial or
commercial use.

The exponential increase in the number of sequenced genomes and the
growing sample size of comparative genomic studies have forced annotation tools to
become faster, more automated and more accessible. While manual annotation tools
such as Artemis work on a gene-by-gene basis, gene prediction software and
functional databases can be combined to annotate hundreds of genomes in anywhere
from several hours to a few minutes (depending on the speed of software and the size
of the database).

24.1 GENEPREDICTION

The average protein-coding content of a bacterial genome estimated from
2,671 Genbank genomes in 2014 is 88% (Land et al., 2015). The majority of a
bacterial genome encodes the proteins necessary for survival and reproduction in a
given environment so an essential step in genome annotation is to predict the gene
content of a given genome. This can be done with homologous gene searches using
curated gene databases and sequence alignment software such as BLAST (Altschul
et al., 1990). The exponential increase in the number of new genomes being
sequenced (and hence the number of novel genes) means that genome annotation
using known genes is often insufficient, leading to the necessity for de novo methods
that do not rely on reference sequences. There are multiple technical and conceptual
issues that must be overcome in order to accurately predict the set of genes that a
genome codes for using de novo methods. There are numerous important factors to
consider when predicting genes in a microbial genome: gene length, k-mer content,
GC content, relative gene positions, gene overlap, correct start-site prediction and
reading frame, among others. These factors rest on the concept of an open reading
frame (ORF), a basic genetic principle that must be incorporated into every gene
prediction software and every study involving genome annotation.

A genome may appear to be a random ordering of four nucleotide bases, but
it has a structure defined by its molecular transcription and translation machinery
that goes beyond the genetic code of triplet codons representing amino acids. A gene

can lie on either strand of a DNA double helix and because of the reverse
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complementarity of DNA, the opposite strand also contains the gene sequences
contained on the other, but the nucleotides are in the reverse orientation and
complemented according to the rules of base pairing (Alberts, 2015). A simplistic
model of a genome would thus have two reading frames, forward and reverse, and
RNA polymerase would always transcribe genes in one of two frames, passing
MRNA to the ribosome and its associated molecules, which translate the gene three
bases at a time, one codon after the other. Stagger an inter-genic region by inserting
or deleting a nucleotide however, and the reading frame of downstream (3’ direction)
genes is altered relative to those upstream (5’ direction). Mutations involving the
insertion or deletion of nucleotides need to involve multiples of three nucleotide
bases to preserve the reading frame relative to downstream genes. This means that
there are six potential reading frames for genes on a double-stranded DNA molecule
and a gene can lie in any one of these. An open reading frame is therefore a sequence
of nucleotides whose length is a multiple of three, that begins with a start codon
(ATG, TTG or GTG coding for methionine) and ends with a stop codon (TAG, TGA
or TAA, signalling to the ribosome to terminate translation) where no other stop
codon appears in the interval of codons (Cristianini and Hahn, 2007).

An ORF is the minimal requirement for the prediction of a complete,
functional gene. It would be relatively easy to predict all ORFs in a genome and then
impose a method of filtering false positives by using gene length and overlapping
sequences (for example, excluding a small ORF within a larger ORF on the same or
different reading frames). All ORFs are not necessarily genes however, and many
start codon 3-mers can appear within a gene (just as many methionine residues can
exist within a protein), making accurate start-site prediction difficult. Choosing the
longest ORF is often dangerous because genes in different reading frames can exist
upstream of the correct start codon, excluded due to the incorrect upstream extension
of a gene to maximise ORF length. An effective solution to this issue is the inclusion
of information related to nucleotide composition in gene prediction algorithms.

The ability to differentiate between coding and non-coding sequences of a
genome is the key to a successful gene prediction algorithm. The nucleotide
composition of coding DNA is substantially different from non-coding DNA due to
selective constraints and other factors (Hayes and Borodovsky, 1998). A summary of
the average nucleotide composition between a gene and the surrounding inter-genic

region in terms of k-mer content (for example) can show obvious differences.
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Predicting the transition from coding to non-coding sequence, or vice versa, iS more
challenging however, because the correct codon (either start or stop) has to be
identified that divides the two regions. For start-site prediction, it is always possible
to extend an ORF upstream to the next start codon in the same reading frame — the
challenge here is to determine which start site is more probable. The fact that gene
prediction must take place over six reading frames only complicates matters, and
numerous software-mediated approaches refine initial gene predictions by
considering the relative position of other genes within the genome or using sequence
patterns from microbial ribosomal binding sites (RBS) of known bacteria (Lukashin
and Borodovsky, 1998). The existence of introns in eukaryotes is a separate issue
and one that can be ignored when considering prokaryotic gene prediction software
(Wang et al., 2004).

Markov models have proven to be an effective tool in differentiating coding
from non-coding sequences and therefore providing accurate predictions of genes
and their start sites (Cristianini and Hahn, 2007). These models make the assumption
that a state (in this case, the occurrence of a nucleotide) depends only on a specified
number of previous states in the model (the nucleotides immediately upstream). A
first-order model is one that depends only on the previous state while a second-order
model depends on the two previous states, and so on. Models of this kind can be
expanded into a hidden Markov model (HMM) where a sequence is composed of
unobserved (or hidden) states, transitioning from one state to another along the
sequence length and the observed nucleotide pattern follows the probabilities of
these hidden states. HMMs used in the prediction of genes have multiple states,
including the coding and non-coding regions of the genome as well as start/stop
codons and reverse complemented sequences on the opposite strand.

A common strategy in gene prediction software is to first identify all possible
ORFs in a genome’s six reading frames and then to apply Markov models in order to
predict the subset of ORFs that represent coding regions of the genome.
GeneMark.HMM (Lukashin and Borodovsky, 1998) adopts this strategy and uses
nine HMM states to differentiate between coding and non-coding sequences. This
software uses a fixed-order Markov model, which means that it uses a pre-
determined number of states (nucleotides) to predict a subsequent state. In this case,

second-order models are used so that a nucleotide’s identity depends on the previous
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two nucleotides in a sequence. Gene start-sites are refined in a subsequent step that
uses an model to identify upstream ribosomal binding sites (RBS).

Glimmer3 (Salzberg et al., 1998) adopts a different strategy, predicting an
initial set of genes and using the derived k-mer counts to build models that are then
used to iteratively predict genes with greater accuracy. It uses what are called
interpolated Markov models (IMM) to vary the order of its Markov models
depending on available data. This is an alternative approach to the fixed-order
models of GeneMark.HMM because higher-order models are used when sufficient k-
mer counts are available and lower-order models are used in cases where accurate
probabilities for higher-order models cannot be estimated. The initial step of
Glimmer3 is to identify all possible ORFs, but its Markov models are more flexible
because higher-order models decrease the accuracy of gene prediction when the k-
mers they use to predict a subsequent nucleotide are not sufficiently represented in a
genome. What constitutes sufficient representation of k-mers is an issue that
highlights a more general challenge in genomic analysis: there is usually no correct
set of values for a given parameter (such as order in Markov models) and adjustment
of parameters while measuring prediction accuracy is often the best approach when
deciding on the most appropriate values to use.

The prediction of partial genes is important when draft genomes are being
studied because genes can be truncated at either their 5’- or 3’-end (or both) at contig
boundaries. The reason for the existence of partial genes in draft genomes reflects
the inability of assembly algorithms to resolve repetitive regions. Genes can be
present in multiple copies (such as the 16S rRNA gene) or can have highly
conserved domains as part of a larger gene family. Both cases introduce repetitive
regions into a genome that an assembler will fail to assemble fully. Alternative
explanations for partial genes are low read coverage and low read quality, but these
issues can be avoided with competent pre-sequencing and sequencing steps.

GeneMark.HMM allows for the prediction of partial genes while Glimmer3
does not. MetaGene (Noguchi et al., 2006) predicts complete and partial genes in
genomic and metagenomic microbial datasets. It uses GC-dependent di-codon
frequencies from bacterial and archaeal species along with numerous ORF statistics
to assign scores to pre-computed ORFs. The statistics are calculated from the input

(meta)genome and involve numerous distributions including ORF length, distance of
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predicted start-sites from annotated start-sites and orientation-dependent distances of
neighbouring ORFs.

The three gene-prediction software described above have parallels in other
available software and there are dozens of downloadable programs and web tools
dedicated to the prediction of prokaryotic genes. The most popular software have
high sensitivities and specificities, but no gene prediction strategy is perfect and each
method has its strengths and weaknesses. A strategy that is commonly used to reduce
false negative gene predictions is to combine the results of multiple software and
include all predicted genes in the final output (or perhaps a gene predicted by two
out of three software). An accurate set of predicted genes is essential for subsequent
genome annotation and analysis. This is also true for the prediction of non-coding
genes such as tRNA and rRNA sequences, which have equivalent dedicated software
such as tRNAscan-SE (Lowe and Eddy, 1997) and RNAmmer (Lagesen et al., 2007).
Subsequent annotation steps are equally important, involving the use of appropriate
gene databases and the assignment of function to predicted genes based on

homology.

2.4.2 FUNCTIONAL ANNOTATION

SWISS-PROT is a high-quality, curated, protein sequence database that
maintains a high level of integration with other databases (Bairoch and Apweiler,
2000). A query gene (usually the translated amino acid sequence) can be BLASTed
against this database and hit a sequence with 100% identity over its full length,
indicating that the function of the SWISS-PROT sequence can be reliably transferred
to the query gene. Alternatively, a BLAST result can give back lower alignment
statistics that typically cover a range of values, which makes assigning functions to
genes an issue of choosing parameter thresholds (i.e. what is the lowest percentage
identity and alignment length at which a function can be transferred from a reference
to a query gene?) If the top BLAST hit for a query gene falls below chosen
thresholds, the gene is labelled as ‘hypothetical’ unless another database or method
is able to assign functional information. For instance, the query gene can be
BLASTed against the much larger, NCBI non-redundant (nr) database of protein

sequences — a database that receives a much lower level of curation than SWISS-
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PROT (although SWISS-PROT is a subset of NCBI nr). The query gene might then
hit a reference sequence that passes the previously chosen BLAST thresholds and be
assigned the function of the reference sequence based on the assumption that the
thresholds indicate a homologous relationship of sufficient similarity that a shared
function can be inferred. Failure to assign a function to a query gene using BLAST
(or related local and global alignment software such as USEARCH (Edgar, 2010) is
often remedied using HMM databases such as TIGRFAM (Haft et al., 2003) and
Pfam (Finn et al., 2016) that capture conserved domain information and have the
ability to detect more distant homology. A hypothetical gene has, of course, a
function (if it is real and not a false positive gene) — it is just that no homologous
sequence has been identified in a database from which a function can be inferred.

The above common scenario highlights the interplay between databases,
algorithms and parameter thresholds when assigning functions to predicted genes in
newly sequenced genomes. Just like the careful selection of gene prediction software
and appropriate parameter settings lead to an optimal set of predicted genes, so too
do the choice of database, algorithm and thresholds lead to the most accurate
assignment of functions. These choices can vary, of course, depending on the desired
outcomes of an analysis, especially whether the study design aims at giving a general
overview or focusses on very specific aspects of certain genes and functions.

The Clusters of Orthologous Groups (COG) database (Tatusov et al., 2000)
assigns genes from numerous species to a hierarchy of nested functional groups, the
highest of which symbolises general functions by individual letters (i.e. ‘G’ for
‘Carbohydrate transport and metabolism’). In this case, each query gene is assigned
to a COG letter based on relatively lenient BLAST thresholds (i.e. 40% identity and
50% of query gene aligned) and those genes that fall below cut-off values are
interpreted as hypothetical genes. Interestingly, COG has two general categories -
‘General functional prediction only” and ‘Function unknown’ - that are equivalent to
the category ‘hypothetical’ at this functional level. These categories highlight a
larger issue in other databases of the presence of sequences that have ‘hypothetical’
as their only functional annotation. This issue is particularly prevalent in the 2017
version of the NCBI non-redundant protein database where many functionally
annotated sequences are identical to ‘hypothetical’ sequences from separate projects.
The top hit for a query gene can therefore be a hypothetical protein at 100% identity

over its full length while the second hit can be just (or almost) as good, but involve
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an assignable function. An obvious method to combat this problem is to exclude all
hypothetical proteins from a database before using it as a reference, since predicted
genes that fall below specified thresholds can be labelled as ‘hypothetical” anyway.

It is possible for a gene to be assigned multiple COG letters, which
emphasises a fact that is often overlooked: a single protein can have multiple
domains, each one with a very different sub-function, together defining the function
(or functions) that the protein carries out as a whole. Multi-domain proteins are more
prevalent in eukaryotes (Jacob et al., 2007), but there is evidence to suggest that up
to two-thirds of prokaryote proteins have at least two domains, suggesting that
functional annotation of microbial proteins should be restricted to individual
domains (Vogel et al., 2004). This is where HMMs become more useful than general
BLAST searches. A hidden Markov model can be created from many homologous
sequences, representing the sequence variation within a single domain. Amino acid
sequences are usually used for building HMMs because they can detect more distant
homology, but nucleotide sequences can also be used and are the input data for
building models such as those involved in the gene prediction algorithms described
earlier. A large database of domain-centric HMMs is a powerful tool for predicting
the functional variation of a gene set, focussing on conserved, functional sequences
within genes rather than treating the entire sequence as an entity that must share
homology over its full length. BLAST specialises in the local alignment of exact
sequences, but HMM searches require a different algorithm like that incorporated by
hmmscan from the HMMERS3 suite of tools. This software uses profile HMMs built
from multiple alignments of conserved domains stored in databases like TIGRFAM
and Pfam mentioned earlier. The output is a BLAST-like report of statistics that
reflect the probability of regions of input query genes sharing domains contained in
the profile HMMs. Analyses like these (as well as BLAST) can be highly
parallelised to run using many HMMs on a multitude of query genes.

Strategies involving the use of BLAST or HMMER on input sequences
predict the presence (or absence) of particular genes and domains. Subsequent
annotation steps can collect these isolated results together and present them in an
interactive framework where they reveal the biological context of the genes and
genomes being studied. The variety of ways this can be done is tremendous,
depending on the scope of individual projects and research questions. Several

software tools have been developed to present gene annotation results in the larger
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context of the biochemical pathways of which they are a part. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) displays this information as graphical
diagrams of metabolic and regulatory pathways (Ogata et al., 1999). This and related
methods of visualising networks of interacting proteins can reveal patterns that lists
of individually annotated genes cannot because the functioning of entire pathways is
considered instead of the presence or absence of single functions in isolation.

A comprehensively annotated genome provides a powerful insight into the
inner workings of a microbial strain. There are numerous complete genomes on
GenBank that represent the type strains of species and they have been downloaded
many times. Along with a file holding the unbroken string of nucleotides that
represents all the strain’s genetic information (excluding potential plasmids, which
are stored in separate files), an array of additional files is also available that
encompass the genome’s functional repertoire. As insightful as this information can
be, a type strain does not reflect the variation within a species — it merely acts as a
definition of the species main genotypic and phenotypic characteristics. The effects
of gene loss and horizontal gene transfer (HGT) mean that every gene within a
species has a distribution that falls somewhere along a range from being universally
present (a core gene) to being restricted to a single genome (strain-specific). Even
more importantly, type species of genera and sub-genera fail to capture the enormous
diversity of functions within their clades, especially for paraphyletic ones such as
Lactobacillus, which was shown to contain multiple other genera branching from
within its phylogenetic tree (Salvetti et al., 2013).

This is where Microbial Genomics gives way to Comparative Microbial
Genomics, an extension of assembly and annotation procedures to multiple genomes
followed by comparative genomic techniques. Describing the genomic details of a
single strain is like taking a snapshot of a dynamic process and hoping to understand
the forces involved without measuring how these forces change the underlying
biology over time. Comparative Genomics applied to Lactobacillus (the subject of
the rest of this review) takes the genomic information from many separate strains,
combining them to reveal the evolutionary and ecological processes that explain the

diversity that lies behind this commercially important genus.
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3 COMPARATIVE GENOMIC STUDIES AND EMERGING
CONCEPTS

3.1 EARLY COMPARATIVE GENOMIC STUDIES IN LACTOBACILLI

The first comparisons involving sequences pre-dated whole-genome
comparative studies of cellular microbes. Single-gene comparisons expanded into
analyses of the homology and synteny of prophages, showing that these diverse
replicators can share similarities in gene sequence and gene order (Koonin &
Galperin, 2003). A scan of PubMed shows that early microbial studies of the late
1990s and early 2000s are dominated by the comparison of prophages, a trend that is
as true for Lactobacillus as it is for other genera. Desiere et al describe sequence
similarity and synteny in the late gene cluster of Lactobacillus phages (Desiere et al.,
2000). Comparison of complete prophages highlights problems with phage
taxonomy in lactic acid bacteria (Proux et al., 2002), describes prophage diversity
across Lactobacillus strains (Ventura et al., 2003, Ventura et al., 2004) and across
species (Tuohimaa et al., 2006), and provides insight into the inconsistent phylogeny
of prophages with their bacterial hosts (Ventura et al., 2006). Comparative genomics
of prophages reveals in greater detail the mosaic nature of viral DNA, capturing the
rapid rate at which phages evolve and diversify over time, even within closely
related host strains and species.

The intervening years have seen an increasing number of comparative
genomic studies based on bacterial genome sequences. Comparative genomics does
not always involve the analysis of sequence data, however. A study of Lactobacillus
sakei strains isolated from meat used comparative genome hybridisation (CGH) to
compare 18 strains with a reference L. sakei strain, 23K (Nyquist et al., 2011). These
methods rely on hybridisation to known sequences and were the method of choice
for these types of analyses before direct sequencing of DNA became fast and
affordable. Today, the analysis of genome sequence data is becoming more common
place and a lot more high-throughput as these trends continue at an ever increasing
rate.

Makarova & Koonin carried out an early comparative genomic study on

lactic acid bacteria involving nine genomes, emphasising the phylogenetic and
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functional diversity of LAB organisms (Makarova et al., 2006). They showed that
the nutritionally rich environments typical for LAB species have apparently selected
for considerable gene loss across the group, their genomes displaying a limited range
of biosynthetic capabilities. These varying levels of auxotrophy are balanced by a
broad range of carbon and nitrogen transporters as well as key HGT events that have
allowed LAB species to successfully adapt to these habitats. The study also
highlights the paraphyletic nature of Lactobacillus, a genus that has five other genera
branching from within its phylogeny (Makarova et al., 2006).

Makarova & Koonin focus on many of the important concepts in
Comparative Microbial Genomics, concepts that will act as a template for the rest of
this review. Selection pressure, gene loss, horizontal gene transfer, niche-specific
adaptation, strain-specific genes and paraphyletic genera — all these phenomena are
essential for understanding the evolution of Lactobacillus, its current paraphyletic
status and the phylogenetic and functional diversity that characterise its members. A
good place to start when thinking about these issues is the concept of the pan-
genome, the intriguing fact that the total number of non-homologous genes within a
collection of microbial strains of a species can far outnumber the gene count in any
one of their genomes. The pan-genome concept is generally applied to an individual
species, but it can be extended to multi-species comparisons, a topic that will be
discussed in later sections.

3.2 THE PAN-GENOME

3.2.1 HOMOLOGY, ORTHOLOGY AND PARALOGY

For the pan-genome of a species to be described or, indeed, for it to make
sense at all, some evolutionary concepts need to be taken into consideration. The
sequences of a gene present in multiple strains of a species need to be identified as
having a common ancestor: a gene present in a single copy in one bacterial cell
before subsequent rounds of replication led to the diversification of strain lineages.
The ancestral gene no longer exists, of course, but the conserved and variable
regions of its descendant genes represent the evolutionary trajectory of the gene as it
diversified over time.

The modern sequence descendants of an ancestral gene are referred to as

homologous genes — a central concept in the comparison of all genomes, both
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prokaryotic and eukaryotic. In Comparative Genomics, an efficient way to identify
homologous genes across genomes is by using bi-directional best hits (BBH) (Ward
and Moreno-Hagelsieb, 2014). In this method, all genes from one genome are
blasted against all genes from the other and a gene pair that have each other as their
respective top BLAST hits are called BBHs and assumed to be homologs.

The accuracy of the BBH method depends on appropriate parameter cut-offs
such as percentage identity and alignment length. It is favourable to use additional
steps to support this initial prediction of homology and this is what software like
QuartetS (Yu et al., 2011) and OrthoMCL (Li et al., 2003) do. They use Markov
clustering to group homologous pairs of genes, defining a gene across all genomes in
a dataset by the BBH pairs that cluster together. For instance, a gene cluster that has
a sequence present in every genome represents a core gene.

There is an additional complication, however. The sequences in a
homologous gene pair are either orthologs or paralogs of each other. Orthologous
genes exist in different genomes and arise from a common gene ancestor through
binary fission of the parent cell (and its accompanying DNA) into two daughter cells.
Paralogous genes, by contrast, can exist either in the same genome or different
genomes, arising from a gene duplication event. It is no contradiction that a
duplication event can lead to a paralogous gene pair in separate genomes; gene
duplication produces gene B from gene A and replication produces two orthologous
copies of these genes in another cell. Gene A is therefore an ortholog of gene A and
a paralog of gene B in the other cell.

The problem arises when the loss of gene A in one species and the loss of
gene B in another leads to the identification of gene B as a BBH with gene A from
the other species, a homologous relationship that would then be mistaken for
orthology. QuartetS deals with this problem by constructing quartet gene trees
composed of a BBH pair and an identified BBH paralogous pair from a third genome
of the same gene cluster. If the split between the paralogous genes occurs first,
followed by a subsequent split that creates the homologous BBH pair of uncertain
origin, then the pair are assumed to be paralogous, mirroring the relationship of the
paralogous BBH pair that gave rise to them (Yu et al., 2011).

When considering the pan-genome - the total number of genes in a genomic
dataset (usually confined to a single species) of a given size - the main point of

interest is not the total number of sequences; it is the total number of genes (grouped
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into orthologous clusters) along with their distribution across the strains under study.
The pan-genome includes genes of potential orthology with other sequences outside
of the dataset, but which have no identified homology with any genes in the genomes
under study. These genes are called strain-specific genes, unique genes or ‘orphans’

and will be covered in more detail in a later section.

3.2.2 THE EUKARYOTIC PAN-GENOME

In many eukaryotic species, the genes present in a genome remain the same
from organism to organism. The main source of genetic variation resides in
homologous sequences that differ in their nucleotide and/or amino acid composition
in the form of single nucleotide polymorphisms (SNPs) or, more uncommonly,
insertion/deletion events. Non-homologous genetic differences such as copy-number
variation (CNV) involve the deletion or duplication of repetitive regions and also
play a role in eukaryotic genetic variation, although CNV has also been detected and
studied in prokaryotes (Taniguchi et al., 2010).

Over the past number of years, a growing appreciation for the existence of
eukaryotic pan-genomes has swept through the scientific community following a
number of key studies. The phytoplankton, Emiliani, shows considerable variation in
gene content over a broad geographical area with only two-thirds of the pan-genome
shared by all sequenced isolates. Genes coding for metal-binding proteins, in
particular, display variable presence and help explain this species’ physiological
plasticity over different aquatic environments (Read et al., 2013). Plant genomes,
too, show variation in gene content (Hirsch et al.,, 2014) and studies are now
adopting the concept of the pan-genome for research in human genetic variation (Li
et al., 2010). Variable gene content within species across the tree of life is
increasingly seen as a driving force for phenotypic variation, contributing to
explanations of how organisms within a species adapt to particular niches. Nowhere
is this more extensive than in prokaryotes and the intra-species diversity within
Lactobacillus offers many examples of how a pan-genome expands the
environmental range of a species. This allows them to thrive in niches that would be
inaccessible if bacterial evolution depended solely on the environmental selection

pressure placed on mutations in homologous DNA.
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3.2.3 THE PROKARYOTIC PAN-GENOME

The concept of the pan-genome was developed by Tettelin et al in 2005
(Tettelin et al., 2005). In this study they sequenced the genomes of six strains of
Streptococcus agalactiae and showed that the gene content across the strains could
be divided into three groups: genes shared by all strains (the core genome), genes
shared by a subset of strains (the accessory genome) and genes unique to each
individual strain (strain-specific genes). The pan-genome can be visualised as a
curve on a graph of number of genomes (x-axis) versus number of genes (y-axis), the
addition of each new genome adding extra genes that have no close homology with
those of the previously added genomes. In this way, the pan-genome for a given
genomic dataset consists of all core genes plus dispensable and unique genes.
Tettelin et al extrapolated this pan-genome curve forward and hypothesised that the
appearance of new genes would continue even after the addition of hundreds of
genomes (Tettelin et al., 2005). In contrast, 44 genomes of Streptococcus
pneumoniae were used to predict that the pan-genome would become saturated at 50
genomes with no new genes added following further genome addition (Donati et al.,
2010).

Just like the pan-genome curve, core-gene and new-gene curves can also be
plotted, representing the tendency of genetic diversity to be more comprehensively
captured with larger genomic datasets than smaller ones. The pan-genome of a
particular species (for a given number of genomes) is said to be either open or
closed, depending on whether the addition of more genomes will continue to
introduce “new” genes into the dataset. The calculation of this value is based on the
slope of the log of new genes plotted against the log of number of genomes; if this
value (a) is less than one, the pan-genome is open, otherwise it is closed (Tettelin et
al., 2005). An open pan-genome is a useful indicator of the extent of genetic
diversity within a microbial species, suggesting frequent HGT and gene loss events,
but it can also be over-interpreted. The openness of a pan-genome depends very
much on the size of the dataset and, in principle, even the most diverse species will
have a closed pan-genome when enough genomes are added to the dataset under

study.
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Figure 1.4: New- and pan-genome curves of Streptococcus agalactiae. New and
total genes are plotted as a function of number of genomes and the order of addition
of genomes is permuted 1,000 times to give measures of variation (circles) and
average values (squares) for new genes and total genes, respectively (Tettelin et al.,
2005; Copyright (2005) National Academy of Sciences).

3.2.4 THE PAN-GENOMES OF SPECIES WITHIN THE L. CASE/ GROUP

Broadbent et al analysed the genomes of 17 strains of L. casei isolated from
dairy, plant and human sources (Broadbent et al., 2012). This dataset had an open
pan-genome with 1,715 core and 4,220 accessory genes. They estimated that the
pan-genome was 3.2 times larger than the average size of individual genomes,
suggesting frequent HGT from other lactobacilli and more distant bacteria. Dairy
strains displayed considerable gene decay, hypothesised to be due to relaxed
selection pressure in nutritionally rich dairy environments (Broadbent et al., 2012).
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Smokvina et al analysed 34 strains of the closely related L. paracasel,
showing that each genome had between 2,800 and 3,100 protein-coding genes with a
conserved species core of 1,800 and a pan-genome of 4,200 genes (Smokvina et al.,
2013). Accessory genes mainly consisted of hypothetical proteins, phages, plasmids
and transposases as well as those functional groups that are known to undergo niche-
dependent selection pressures such as transporters, CRISPR-associated proteins, EPS
biosynthesis proteins and cell-surface proteins. An enormous variety of sugar-
utilisation gene cassettes reflected the adaptability of L. paracasei to different niches
with strains harbouring between 25 and 53 cassettes. Despite this, no obvious
relationship was found linking gene content to niche, highlighting the complex
evolutionary relationship that this species has with its environment (Smokvina et al.,
2013).

The studies of Broadbent and Smokvina are largely consistent, describing an
open pan-genome with considerable variation from strain to strain. Douillard et al
conducted a reference-based study of the third member of the L. casei group, L.
rhamnosus, using 100 strains and the widely used probiotic L. rhamnosus GG
(Douillard et al., 2013b). They predicted 17 highly variable genomic regions related
to lifestyle and showed that phylogeny could be partly associated with niche. Unlike
the outcomes of the comparative studies of L. casei and L. paracasei described
above, variation in gene content was limited to genes that were present in L.
rhamnsus GG. This strategy has the advantage of defining inter-strain variability in
terms of a complete, well-annotated reference genome that has been
comprehensively researched, but suffers from the exclusion of genes and genomic
regions that are absent from strain GG. As such, the study does not strictly deal with
the pan-genome of L. rhamnosus, but it does highlight the important point that a
reference strain fails to capture the extent of the functionality within a species. Kant
et al, however, did describe an open pan-genome for L. rhamnosus in their study of
cell-surface proteins (Kant et al., 2014), showing that a focus on strain-specific
properties highlights the genetic diversity of this species.

The L. casei group have been described as niche generalists that have adapted
to very different habitats (Cai et al., 2009). Add to this the frequent taxonomic
inconsistencies that have led to numerous strains being misclassified within the L.
casei group (Wuyts et al., 2017) and an open pan-genome might seem like an

obvious comparative genomic conclusion. Depending on the study/species, this
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might be because of frequent HGT and gene loss across diverse habitats or due to
exaggerated diversity within species introduced by incorrectly classified strains. An
interesting question to ask is if the apparently open pan-genome of L. casei exists for
other Lactobacillus species, perhaps those with more reliable taxonomy or those

with smaller genomes and a narrower range of habitats.

3.2.5 THE PAN-GENOMES OF OTHER LACTOBACILLUS SPECIES

Martino et al analysed the genomes of 54 strains of L. plantarum isolated
from different environments (Martino et al., 2016). L. plantarum is a generalist
species with a large genome and, like species from the L. casei clade, strains often
harbour more than 3,000 genes, which is a large gene count for a species of
Lactobacillus. The study labelled L. plantarum as a nomadic species and used gene-
trait matching to show that strains do not cluster according to their source of
isolation. They revealed a mixed distribution of strains where the phylogeny and
function did not explain adaptation of groups of L. plantarum to specific
environments (Martino et al., 2016). This is a good example of a generalist strategy
where potential niche-specific adaptations are not found to be exclusive to strains
isolated from the niche of interest. Martino at al describe the L. plantarum pan-
genome as not having reached saturation at a sample size of 54 and it can be
hypothesised that this species, like the generalist L. casei, also has an open pan-
genome.

Ojala et al described the core and pan-genome of 10 L. crispatus strains
(Ojala et al., 2014). Strains of this species have smaller genomes than L. plantarum
and the L. casei group, but it would not be considered a specialist. While L. crispatus
is commonly isolated from the human vagina, it is also found in a variety of other
host-associated habitats. With a core genome of 1,224 genes and an accessory
genome of 2,705 genes, these 10 strains are predicted to have an open pan-genome
that continues to rise with the addition of new genomes until a sample size of 285
genomes has been reached (Ojala et al., 2014).

Frese et al showed that different L. reuteri lineages have become adapted to
living in the gut of their respective vertebrate hosts, clustering together based on

multi-locus sequence analysis (MLSA). Strains isolated from rodents show a large,
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adaptable open pan-genome while strains isolated from humans have undergone
greater genome reduction and reveal a closed pan-genome (Frese et al., 2011). These
results are a better example of niche-specific adaptation, highlighting the application
of the pan-genome concept within sub-lineages of a species, a useful strategy when
gene flow and host specificity are the phenomena of interest. Wegmann et al carried
out a core genome alignment of 20 L. reuteri genomes, showing that strains isolated
from the same vertebrate tend to cluster together as sub-clades, but do not always
represent a monophyletic group (Wegmann et al., 2015). The study focussed on pig
isolates and described 6 strains having a core genome of 1,364 genes and a pan-
genome of 3,373 genes. The core genome decreased to 851 genes and the pan-
genome increased to 5,225 genes when the 14 strains from other hosts were
included, demonstrating the reasonable point that more distantly related strains will
likely share fewer genes and possess a more variable accessory genome.

L. reuteri has also been isolated from non-intestinal environments such as
sourdough (Zheng et al., 2015) and its niche-dependent description as having both an
open and a closed pan-genome shows that the pan-genome concept is very much an
analytical tool rather than a factual description of a species that takes one of two
values, true or false, open or closed.

Kant et al expanded pan-genome analysis to 20 complete genomes from
across the Lactobacillus genus. The pan-genome consisted of approximately 14, 000
genes with a core genome of 383 orthologous gene sets. They also highlighted the
impressive level of variation in genomic characteristics such as GC content and
genome size, ranging from 33% to 51% and 1.8 to 3.3 Mb, respectively (Kant et al.,
2011).

The evolutionary and ecological pressures that shape a pan-genome are
interactive and multi-dimensional. The processes of gene divergence and gene
duplication play a part, whether due to random genetic drift or from positive or
purifying selection pressures. These factors cannot explain the impressive level of
gene distributions in microbes however - the niche-specific presence of certain genes
and the sometimes random scattering of homologous genes across a phylogenetic
lineage. Processes that operate on a faster timescale have a greater role in explaining
pan-genomes: horizontal gene transfer and gene loss, evolutionary factors that will

now be examined in more detail, with examples from Lactobacillus species.
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3.3 HORIZONTAL GENE TRANSFER AND GENE LOSS

A phylogenetic tree is based on the concept of vertical gene transmission, the
passing of genes from parent to daughter cells, be it the action of zygotes following
meiosis or the mitotic division of haploid bacterial cells through binary fission.
Horizontally transferred genes do not rely on the generational passage of genetic
information; they use alternative methods to spread from genome to genome,
contradicting the neat description of evolution portrayed by phylogenetic trees.
Recent studies have popularised the use of phylogenetic networks in order to capture
the horizontal transmission of genes alongside vertical transmission from generation
to generation (Huson and Scornavacca, 2011). There are numerous processes that
transform the classical notion of a tree into the revolutionary concept of a network,
opening up new avenues of research and questioning some of the earlier principles of

evolutionary biology.

3.3.1 RECOMBINATION

Muller’s ratchet is a concept invoked to explain the evolution of sexual
reproduction (Muller, 1964). Sex in eukaryotes prevents the irreversible
accumulation of deleterious mutations that would occur in a species that reproduces
by purely vertical means. The idea of a mutational ratchet turning in one direction,
gradually decreasing the average fitness of an asexually reproducing species is more
of a null hypothesis than an evolutionary process that is observed in nature. The
closest that biological observations come to Muller’s concept of this one-way
deterioration of genomes is in endobacteria such as the Mycoplasma-related
symbionts that inhabit the cells of fungi. These organisms are vulnerable to genome
degeneration because most of the selection pressure acting on their free-living
ancestors has been removed by adopting an endosymbiotic lifestyle, but they retain a
level of genome plasticity through recombination (Cortez and Weitz, 2014).

Recombination involves the swapping of homologous regions of DNA,
catalysed by enzymes such as recombinases. Recombination in eukaryotes ensures

that homologous portions of DNA are constantly being reshuffled from generation to
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generation, increasing the genetic variation in a population and allowing natural
selection to choose from a wider pool of phenotypes (Andersen and Sekelsky, 2010).

In both eukaryotes and prokaryotes, recombination is an important
mechanism for DNA repair. Michod et al review the adaptive value of sex in
microbial pathogens and conclude that recombinational repair of damaged DNA is
the main benefit of recombination in pathogens, especially because of the harsh,
oxidative environments encountered by pathogens that infect the host cell (Michod et
al., 2008). Recombination through processes such as transformation, which involves
the taking up of foreign DNA from the environment and its incorporation into the
recipient cell, is one way that microbial populations retain their genetic diversity.
The classic example of microbial ‘sex’ however, is displayed by the horizontal

transfer of plasmids.

3.3.2 PLASMIDS

The bacterial chromosome contains all the essential genes for a cell to
survive and reproduce. Introduce a bacterial strain to a new environment however,
and the cells might not have the necessary genes to respond to these altered
conditions. Changes to the phenotype of a strain that confer a specific advantage
were originally called R-factors (in the case of antibiotic resistance) and similar
labels before the term ‘plasmid’ was coined and later revised to refer to an
independently replicating, circular, double-stranded DNA molecule that moved
horizontally from cell to cell within microbial populations (Hayes, 2003). The study
of these plasmids becomes important when they carry genes that allow bacteria to
function in ways for which the chromosome does not code such as the breakdown of
a certain sugar or resistance to heavy metals.

Plasmids contain genes that allow them to replicate apart from the
chromosome and they can exist anywhere from a single copy to thousands of
replicons per cell. Plasmid copy number and plasmid size are usually strongly
correlated, with megaplasmids of over 100 kb often being present once per cell,
requiring partition proteins to ensure their vertical transfer into both daughter cells,

while plasmids as small as 1 kb get transferred in roughly equal proportion in a
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probabilistic manner due to sheer number of replicons (Thomas and Summers,
2001).

Plasmids have mechanisms for transferring themselves horizontally from one
cell to another. A subset of plasmids have genes involved in the formation of a
conjugative “sex” pilus that joins two cells and allows plasmid DNA to be
transported across it, endowing a recipient cell with the plasmid-specific properties
of the donor. Numerous mobilizable plasmids that do not contain the full
complement of genes necessary for conjugation exploit the formation of pili by other
plasmids. Some plasmids are thought to be (or have become) completely non-
mobilizable, transmitted purely by vertical means, but recent research has
downplayed this by providing evidence that 90% of all plasmids in Staphylococcus
aureus previously thought to be non-mobilizable have mechanisms that assist in
HGT by conjugation (Ramsay et al., 2016).

Plasmids are an integral component of genetic diversity and adaptability in
Lactobacillus species, leading to greater adaptation to different niches and the
tendency of Lactobacillus pan-genomes to be open. Many of the plasmids in
Lactobacillus are cryptic, meaning that they have no known function (Wang and
Lee, 1997), but numerous plasmids have been identified that increase the functional
capacity of their hosts. Ricci et al investigated the distribution of plasmids in 22 L.
helveticus strains isolated from 5 Italian cheeses and found eight plasmid-free strains
and multiple plasmids of varying sizes (2.3 to 31 kb) and different homology groups
(Ricci et al., 2006). Claesson et al described the multireplicon genome architecture
of L. salivarius UCC118 and showed that a circular megaplasmid expanded the
functionality of the strain, coding for a bacteriocin, carbohydrate utilisation genes
and a bile salt hydrolase (Claesson et al., 2006). Li et al studied 33 strains of L.
salivarius, showing the ubiquitous presence of the circular megaplasmid ranging in
size from 120 kb to 490 kb. Megaplasmids tend to be more stable than smaller
plasmids and the study found that phylogenetic comparison of the repE gene unique
to the megaplasmid followed a similar evolutionary path to the groEL gene present
on the chromosome, suggesting that this megaplasmid was acquired early in the
evolution of L. salivarius (Li et al., 2007). Smokvina et al describe a plasmid pan-
genome of 230 orthologous groups as a subset of the total pan-genome of 4,200 and

show that, although a substantial portion of plasmid genes are annotated as
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‘hypothetical’, numerous known adaptive functions are also present (Smokvina et
al., 2013).

In genomic studies of extreme environments, plasmids are often the carriers
of genes that allow bacterial strains to survive. A study of a Polish copper mine rich
in heavy metals showed that plasmids confer resistance to arsenic, cadmium, cobalt,
mercury and zinc (Dziewit et al.,, 2015). Environments with particularly high
bacterial densities such as biofilms are hotspots of HGT, including plasmid
conjugation. These communities are of particular importance in human health where
hospital biofilms promote the transfer of multi-drug resistance to potentially
pathogenic organisms (Stalder and Top, 2016).

The existence of plasmids greatly adds to the complexity of evolutionary
dynamics in bacteria, increasing gene flow within environmental niches and
allowing strains to rapidly adapt to new conditions. There is a stronger ecological
force however, one that has been attributed to maintaining microbial population
diversity (Olszak et al., 2017) as well as contributing to genetic exchange within and
between microbial species (Harrison and Brockhurst, 2017).

3.3.3 BACTERIOPHAGES

Plasmids are usually thought of as beneficial to the host microbe. The
common view is to treat them like an adaptation selected at the level of the microbial
cell and its genetic lineage, although there are many instances where this is clearly
not the case (i.e. cryptic plasmids). This is not true of bacteriophages, viruses
composed of either DNA or RNA, encapsulated in protein, that inject their genetic
material into the microbial cytoplasm, hijacking cellular machinery for their own
replication (McGrath and Van Sinderen, 2007).

Plasmids and bacteriophages exploit microbial cells in very different ways.
The plasmid and chromosome often behave symbiotically, both increasing the
probability of each other’s survival and continued reproduction within the protective
structure of the cell. Phages can behave quite violently, multiplying rapidly within
their host cell until they are released into the extracellular environment in a
chemically-induced burst that signals the death of the cell. This behaviour gives rise

to a type of predator-prey cycle where increasing phage numbers lead to a decrease
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in the population of the host which in turn provides a lower density of cellular
machinery for the phage to manipulate, resulting in a decrease in phage numbers and
an increase in host cells, and so on (Cortez and Weitz, 2014).

Phages are divided up into two types, lytic and temperate, depending on
whether they have a lytic or a lysogenic cycle. In a lytic cycle, the phage
immediately hijacks the transcriptional and translational machinery to make copies
of itself, subsequently destroying the host cell and spreading out to infect new hosts.
Lysogeny involves the incorporation of the phage genetic material into the
chromosome where it lies dormant until unfavourable environmental cues trigger a
Iytic state (Shao et al., 2017).

In both cycles it is possible for a phage to act as a carrier of bacterial DNA
from one host to another, potentially endowing infected cells with new functions. In
a lytic state, the formation of bacteriophage capsids can be accompanied by the
incorporation of fragments of host DNA into the virion. This happens in a very small
number of replicating phages out of the huge number that are released from the cell
following lysis, but it is enough to contribute to the horizontal transfer of bacterial
genes within a population (Hartl and Jones, 1998), in the phenomenon of
transduction.

In a lysogenic state, the bacteriophage genome integrates into the host cell as
a prophage and replicates along with the chromosome. In this state, the replication of
the prophage is indistinguishable from that of the host genome and both sets of genes
are transmitted vertically as the microbial cell divides. When unfavourable
environmental conditions trigger excision of the prophage and a return to the lytic
state, host DNA can accompany the phage genome due to incorrect excision of the
prophage, which then gets packaged into the protective protein capsid along with the
phage genome. This process can also leave phage DNA behind in bacterial
chromosomes, adding phage genes to the pan-genome of a bacterial species
(Harrison and Brockhurst, 2017).

The widespread existence of horizontal gene transfer through plasmid
conjugation, phage transduction and recombinational events considerably alters the
study of ecology and evolution, especially on a microbial scale where HGT is the
dominant mode of adaptation to changing biotic and abiotic conditions. The
existence of HGT and the impressive variety of mechanisms involved can reshuffle

the list of evolutionary phenomena in order of priority, highlighting concepts that

49



demand a greater level of explanation if the role of HGT in biology is to be fully
appreciated and better understood.

Horizontal gene transfer brings a question sharply into focus, one that has
often been overlooked by biologists who study the adaptive evolution of organisms
over time. Who or what does the phenotypic expression of a gene benefit? What
entity is natural selection acting on to shape each adaptive function in nature? The
obvious answer would appear to be the organism with its repertoire of genes, all
interacting to achieve a common purpose: survival and reproduction of the members
of a species. Selection at the level of organisms has been described as a useful
working hypothesis for selection at a lower level, that of the gene, a concept that was
first popularised in a 1976 book by Richard Dawkins, The Selfish Gene. The book
portrays early pre-cellular genes (if they can be called that) as replicators that vary in
their longevity, fidelity of replication and rate of replication due to variation in their
primary sequence. The banding together of these ancient replicators would have led
to evolution of the first cells, very likely in response to the origin of viruses
(Forterre, 2006), each replicator/gene having the shared goal of ensuring the
phenotypic expression of the genotype successfully interacted with the environment
in such a way as to optimise genomic propagation from generation to generation.

The selfish gene theory forces us to pay closer attention to selection acting on
horizontally transferred genes, asking whether the strategies of plasmids and maybe
even bacteriophages in some sense should primarily be studied as either a cost or a
benefit to host bacteria. Richard Dawkins says that plasmid and bacteriophage
adaptation should be studied primarily as costing or benefiting the plasmid and
bacteriophage genes that code for these adaptations, framing HGT events as adaptive
to the genes being transferred, not for the microbial cells receiving the transferred
genes.

One particularly large family of genes provides a strong example of the
selfish gene theory in action. Transposases, having the apt nickname “jumping
genes” among others, possess the ability to cut themselves out of a chromosomal
region and paste themselves into other genomic regions, sometimes on
extrachromosomal replicons, were they are exported from the cell and transferred to
cells of the same and, less commonly, other species (Reznikoff, 2003).
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3.3.4 TRANSPOSASES

Transposases, also known as insertion sequences (IS), are the most abundant
genes in nature according to a 2010 study that analysed ten million protein-coding
genes across bacteria, archaea, eukaryotes and viruses (Aziz et al., 2010). These
genes are the pinnacle of selfishness, coding for nothing more than their own
horizontal transfer. They multiply within and across genomes and have diversified
into a huge variety of groups with many different mechanisms to catalyse
transposition.

Transposases do not need homologous recombination in order to insert
themselves into a new genomic region; they code for an enzyme that binds to
recognised flanking regions, nicking the DNA and forming a complex between the
transposase enzymes and the DNA sequence to be transferred to a target site
(Reznikoff, 2003). Target DNA sites vary considerably depending on the type of
transposase. It was originally thought that transposases show little to no sequence
specificity for target regions, but accumulating research is providing evidence
against this, showing that some transposases always target a TA dinucleotide
sequence (Munoz-Lopez and Garcia-Perez, 2010) while others target longer
consensus sequences (Goryshin et al., 1998).

The selfish nature of transposases is an interesting and important area of
study in its own right, but the transposase-mediated transfer of additional genes in
the form of transposons, pathogenicity islands, antibiotic resistance gene clusters,
and other functions is what makes these enzymes key players in HGT. A transposon
is simply a gene or group of genes that includes one or more transposases that allow
the sequence to be mobilised, often transferring new functions across bacterial
strains and species (Darmon and Leach, 2014). Larger clusters of genes known as
genomic islands are often flanked by transposases, mobilising entire clusters of
genes that would otherwise be confined to the chromosomes of species that shared a
common ancestor also possessing the cluster. An excellent example of this in a
Lactobacillus species is the characterisation of a horizontally transferred operon in L.
curvatus NRIC0822 of a flagellar operon, conferring motility to the strain. The
flagellar motility operon has transposases at both ends and was previously thought to

be confined to members of the L. salivarius clade before bioinformatic analysis
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identified high levels of gene synteny and sequence similarity with the operon in
NRIC0822 (Cousin et al., 2015).

There are numerous additional examples in lactobacilli of the role of
transposases in the horizontal transfer of novel functions such as genomic islands for
cobalamin production in L. reuteri (Morita et al., 2008) and tetracycline resistance in
L. sakei (Devirgiliis et al., 2013). The number of studies that report the mechanisms
behind the horizontal acquisition of functions is growing and many of these highlight
the role of transposases, as well as plasmids and bacteriophages, in HGT. The
contribution of these evolutionary phenomena to the size of bacterial pan-genomes is
only beginning to be understood, but there is another process that influences the
distribution of genes throughout strains of a species: gene loss, which involves either
gene deletion or the inactivation of a gene and its accumulation of mutations over

time.
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Figure 1.5: The main forms of horizontal gene transfer in bacteria. A) Naked
bacterial DNA is released into the environment from a lysed cell and taken up by a
recipient cell, where it can be incorporated into the genome. B) Bacteriophage lyse a
host cell and infect neighbouring cells by injecting their nucleic acids into the
cytoplasm. In a lysogenic state, the phage genome is incorporated into the genome,
sometimes carrying bacterial genes with it. C) Plasmid genes code for conjugative
structures that act as a bridge between cells in contact, transferring the plasmid from
the donor to the recipient cell (Furuya and Lowy, 2006; Springer Nature, License no:
4252530480072).

3.3.5 GENELOSS

An essential gene, acquiring a mutation (including deletion of the whole
gene) that disables the gene’s function, will quickly lead to the death of the cell.
There is a purifying selection that keeps a species’ core genes conserved and fully

functional, pruning branches that represent genomes with fatally deleterious
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mutations from the phylogenetic tree of dividing cells. No gene loss occurs in this
scenario because the loss of any gene means a genome harbouring the lethal
mutation will never replicate again, immediately reducing its number of descendants
to zero.

An exception to selection acting on core genes to preserve their function is
when a gene duplicates. One copy of the gene will remain under purifying selection
while the other is free to evolve new functions, although the most common fate of a
duplicated gene is to gather mutations until it becomes non-functional, a pseudogene
that increasingly loses sequence similarity with its paralogous homolog (Lynch and
Conery, 2000).

Gene duplication often leads to a type of gene loss, but the most prevalent
form that gene loss takes is when a gene, due to changing environmental conditions,
is no longer necessary or even useful for survival, undergoing loss of its function due
to genetic drift or active selection pressure. Koskiniemi et al provide evidence that
selection can be a significant driver of gene loss because unnecessary genes provide
a fitness cost to the host. They measured the growth rate of Salmonella enterica
under multiple conditions involving gene deletions and observed that approximately
25% of deletions led to increased bacterial fitness (Koskiniemi et al., 2012).

Gene loss can also be neutral, resulting from a lack of selection pressure to
weed out mutations in genes that no longer confer a fitness benefit to the host. The
relative roles of selection and genetic drift in gene loss are still not well understood
(Albalat and Canestro, 2016), a varying contribution from both evolutionary forces
being likely depending on the environmental context of the gene in question.

Gene loss is often strongly associated with particular niches or reproductive
strategies. Endobacteria show considerable gene decay due to decreased selection
pressure for nutrients that are easy to access within host cells (Naito and Pawlowska,
2016) while strains of Lactobacillus casei isolated from cheese have lost many genes
that were no longer needed due to the nutrient-rich environment of the dairy niche
(Cai et al., 2009).

The combined effects of HGT and gene loss in shaping the pan-genomes of
Lactobacillus are mirrored in the gene distributions of many other species. Core
genes are involved in a much lower rate of horizontal gene transfer and gene loss
while the accessory genome is dominated by both processes, composed of genes

from plasmids, bacteriophages, genomic islands and other agents of HGT, which are
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usually much more likely to also undergo gene loss (Segerman, 2012). A category of
genes that exemplify the dispensable nature of the accessory genome are the strain-
specific genes, unique to each genome and quite often un-annotatable, almost as if
they reflect an analytical error rather than a biological reality.

3.3.6 STRAIN-SPECIFIC GENES

Describing a gene as strain-specific means nothing without stating the
parameters of the dataset to which it belongs (number of strains, species) and the
method used to infer all the genes that are not strain-specific. A strain-specific gene
can acquire an orthologue if the number of genomes in the dataset is increased, or it
can be redefined as part of a group of orthologues if a threshold is lowered (percent
identity, for example). Methodological considerations aside, it is very possible for a
strain to be the only member of a species possessing a particular gene, having
acquired it horizontally from another species in its environment or, less likely,
possessing the only remaining gene from an orthologous group that was once
common within a species but is now absent from all but one due to gene loss.

Bosi et al analysed 64 strains of Staphylococcus aureus from a range of
niches, host types and antibiotic resistance profiles and found that virulence varied
considerably in a strain-dependent manner due to differences in metabolic
capabilities (Bosi et al., 2016). In this study, the severity of an S. aureus infection
was very much contingent on strain-specific genes. The importance of strain-specific
properties have been studied in Lactobacillus too. Douillard et al analysed the
genomes of several L. rhamnosus and L. casei strains and found strain-specific genes
with potential probiotic properties (Douillard et al., 2013a). In another study, a
genomic comparison of three L. rhamnosus strains using probiotic strain GG as a
reference revealed strain-specific characteristics with a role in the prevention and
possible treatment of C. difficile infection (Boonma et al., 2014).

The high numbers of strain-specific genes in most bacteria suggest that
horizontal gene transfer and gene loss play a dominant role in the microbial
evolution. Gene gain and loss represent the major source of innovation in
prokaryotes, occurring at a higher rate than nucleotide substitution (Chang and Duda,

2012). The phylogenetic history of a single gene can contradict that of the majority
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of other genes within a genus, but the average statistical tree reflects the
phylogenetic history of the information processing gene complexes of the genus as
well as other core genes that have been vertically transmitted, free from HGT, acting
as a scaffold around which the evolutionary history of all genes can be interpreted
(Puigbo et al., 2009). The phylogenetic tree of Lactobacillus species and their related
genera does not therefore represent the history of all Lactobacillus genes, but it is the
vertically diversifying evolutionary structure that all HGT events from plasmid
conjugation to bacteriophage transduction move within.

3.4 THE PARAPHYLETIC NATURE OF LACTOBACILLUS

3.4.1 MONOPHYLY, POLYPHYLY AND PARAPHYLY

Taxonomy is the classification and grouping of organisms according to
shared characteristics. Methodological attempts to classify life into groups date as far
back as Aristotle, but it was Carl Linnaeus who developed the hierarchical concept
of classification and popularised the binomial nomenclature of species that is still in
use today. The goal of taxonomy is not to describe the evolutionary relatedness of all
living things, but to group them into coherent assemblages of organisms, almost like
a catalogue of species for the study of biological disciplines (Grant, 2003).

The advent of phylogenetics signalled the use of molecular information for
either the confirmation or contradiction of earlier taxonomic classifications.
Phylogeny refers to the evolutionary relationships across organisms, the order of
diversification events that occurred within a given lineage that trace all descendants,
living and extinct, back to a common ancestor. These relationships are most
commonly represented as a tree, each bifurcating branch signifying a speciation
event (in the case of actual species formation) or the diversification of lower taxa
such as strains (when the phylogeny of a single species is being studied)
(Konstantinidis and Tiedje, 2007). Taxonomy and phylogeny can agree on the
hierarchical grouping of species, but they can also disagree, in some cases quite
significantly. This is because, traditionally, taxonomy focussed on morphological
characteristics, which can erroneously make two species appear more closely related

than they actually are due to convergent evolution. Phylogenetics, in contrast, utilises
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evolutionary signals from molecular data to track the divergence of strains and
species from a common ancestor.

A now-famous example of the clashes that can occur between taxonomy and
phylogeny is the fact that the hippopotamus is the closest living relative to Cetaceans
— whales, dolphins and porpoises. Ursing and Arnason in 1998 confirmed the
growing suspicion of this evolutionary relationship by conducting a phylogenetic
analysis using the mitochondrial genomes of Hippopotamus amphibius and 15 other
placental mammals including pigs, horses, cows, sheep and whales (Ursing and
Arnason, 1998). These contradictions are dotted throughout the tree of life and have
given birth to several terms that describe taxonomic classifications in the light of
phylogenetic insight.

A monophyletic clade is a group of organisms classified together under a
particular taxonomic name that consists of all the descendants of a common ancestor
(Sereno and Lee, 2005). This is the ideal underlying reality of each classified taxon,
but human error in deriving imperfect correlations between morphological similarity
and evolutionary relatedness leads to complications in the grouping of organisms.

Paraphyletic and polyphyletic clades are two consequences of limitations in
taxonomic methodology. Paraphyly involves a group of organisms that share a
common ancestor, themselves representing only a subset (usually the majority) of all
the descendants of that ancestor. This means that they share the same common
ancestor with one or more sub-clades that have a different taxonomic classification.
Polyphyly involves a group of organisms that have been classified together
according to one or more phenotypic characteristics that do not reflect underlying
evolutionary relatedness (Sereno and Lee, 2005). Polyphyletic clades can be
scattered in multiple groups across a larger branch of the tree of life and represent
both outdated classifications that await systematic modification or groups that have
practical use in biological research due to an important phenotypic trait that ties them
together.

3.4.2 [ACTOBACILLUS PHYLOGENY

In 2006, Canchaya et al carried out a comparative genomic analysis of five

complete Lactobacillus genomes: L. salivarius, L. plantarum, L. acidophilus, L.
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johnsonii and L. sakei. They reported little genome synteny across the five species,
which makes sense when they are shown to be scattered across a 16S rRNA gene
phylogenetic tree of 111 Lactobacillus species. A tree generated from a core protein
set of 593 orthologs was largely concordant with a tree generated from whole-
genome alignments. The authors concluded that the extreme divergence observed in
Lactobacillus supported the recognition of sub-generic divisions (Canchaya et al.,
2006).

An interesting concept is implicit in the multiple methods of phylogenetic
reconstruction used by Canchaya et al (Canchaya et al., 2006): there is a
phylogenetic tree and there is an underlying phylogeny, the former being an output
from a particular method of organismal comparison that takes evolutionary patterns
into account, the latter representing the actual evolutionary history of the genomes
being analysed. A phylogenetic tree is an estimation of the true underlying series of
speciation events of a group of organisms and different metrics as well as different
regions of the genome can and do disagree, both because of variations in algorithmic
and biological assumptions, and variations in phylogenetic signal in different DNA
sequences.

Claesson et al noted in 2007 that numerous species of Lactobacillus have
been reclassified to other genera and the taxonomy of the genus at the time was
generally unsatisfactory (Claesson et al., 2007). Makarova & Koonin in 2007 stated
that classification of Lactobacillales remained an unresolved issue because the
phenotypic scheme for taxonomic assignment was based on fermentation profiles
and disagreed with rRNA-based phylogeny. A phylogenetic tree constructed from
four subunits of the DNA-dependent RNA polymerase showed Pediococcus,
Leuconostoc and Oenococcus branching from within Lactobacillus (Makarova and
Koonin, 2007).

A 2008 study by Claesson et al used several whole-genome and single-gene
phylogenetic analyses in an attempt to sub-divide lactobacilli into coherent sub-
generic groups. They found significant incongruencies among phylogenetic analyses
and hypothesised that these are due to differences in evolutionary rates, hidden
paralogies (mistaken orthology) and HGT. They showed that the GroEL gene is a
more robust phylogenetic marker than the 16S rRNA gene for single-gene phylogeny
of lactobacilli and, despite contradictions in the clustering of sub-clades, four sub-

generic groups showed considerable robustness. Interestingly, they found that these
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major groupings were more clearly defined by gene absence than the presence of
gained genes, highlighting the trend toward genome reduction found in lactobacilli
due to their adaptation to high-nutrient environments (Claesson et al., 2008).

Kant et al constructed a phylogenetic tree based on a core genome of 383
orthologues from 20 complete Lactobacillus genomes, defining separate groups
based on group-specific core genes. The aim of this study was to provide a platform
for present and future analyses involving Lactobacillus genomes, acting as a kind of
template for the addition of new species (Kant et al., 2011).

It was conclusions like those of the Claesson et al, Makarova & Koonin and
Kant et al studies that led Salvetti et al to update the phylogenetic tree of
Lactobacillus based on the 16S rRNA gene, dividing the genus up into sub-clades
consisting of 15 groups of three or more species, four pairs and 10 single lines of
descent. They also noted that the genus Pediococcus branches from within
Lactobacillus, confirming previous evidence that the lactobacilli are a paraphyletic
genus (Salvetti et al., 2012). This study was based on the 16S rRNA gene and it is
interesting to consider how similar their tree topology would be if different marker
genes were used.

Lukjancenko et al showed that Leuconostoc branches from within
Lactobacillus when species are clustered based on variable gene content
(Lukjancenko et al., 2012). Variable gene content correlates well with core- and
marker-gene phylogeny at a species level because the accumulation of gene loss and
HGT events occurs over time as core-gene sequences diverge.

The number of recognised Lactobacillus genomes is continuously growing,
rising with the publication of each new study as research expands in the areas of
food fermentation and probiotics. From around 80 species in 2006 (Canchaya et al.,
2006) to 152 in 2012 (Salvetti et al., 2013), Lactobacillus is a genus with a regular
stream of new members. Holzapfel et al emphasised the explosion of new species
discovered over a 15-year period up to 2014, highlighting the tendency for early
phenotypic classifications to be transferred to newly created genera, including
Atopobium, Carnobacterium, Eggerthia, Fructobacillus and Weissella. They
concluded that the phylogenetic diversity of Lactobacillus warrants genotypic
subdivision of the genus, a conclusion that has been put forward by previous studies
(Holzapfel and Wood, 2014).
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In 2015, Goldstein et al reported the number of recognised Lactobacillus
species as 170 and stressed that they cannot be differentiated easily by phenotypic
means. They noted that the antimicrobial susceptibility of Lactobacillus species was
poorly defined in large part because of their taxonomic complexity (Goldstein et al.,
2015). It is this taxonomic complexity and the impressive levels of phylogenetic and
functional diversity that make Lactobacillus such an interesting genus for
researchers, even when their importance in the food industry and in human health is
not the focus of study.

The extensive horizontal transfer of genes and gene loss events in
Lactobacillus reflects the range of niches that they occupy and the varying selection
pressure that must act on their genes as they adapt to new and changing
environments. Variation in gene presence across a taxon is an important
phenomenon to understand, elucidating the different processes involved in the
evolution of bacterial species. The evolution of core genes is also informative, the
analysis of sequence divergence revealing information on the role of varying
selection pressure throughout genomic regions as well as along the length of each
gene, constraining certain amino acid residues while allowing others to mutate and
become fixed within a bacterial population, both through genetic drift and positive
selection pressure. The evolutionary rate and associated factors are at the heart of
these studies because an explanation of evolutionary rate variation across lineages
and within genes provides insight into the evolutionary forces that have acted on, and

are still acting on, the genomes of organisms.

3.5 EVOLUTIONARY RATE

3.5.1 MUTATION RATE

Mutations are the nucleotide base changes that accumulate in a DNA
sequence over time. They can happen as point mutations, leading to single base
changes or single base insertion or deletion events, or they can involve the inversion
or translocation of larger sequence regions. Mutations in DNA occur because the
copying fidelity of cellular replication machinery is less than perfect. Endogenous
factors such as reactive oxygen species and exogenous factors like UV light also
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cause mutations through various processes. Enzymes involved in DNA repair reduce
the number of these mutations, often by using homologous nucleotide regions that
still code for the correct sequence. DNA repair mechanisms are also error prone,
which means that no actively reproducing organism is ever really mutation-free
(Bertram, 2000).

A mutation rate of zero would mean that all descendant sequences are
identical to an ancestral sequence, leading to the absence of evolution and nothing on
which natural selection can act. When asked to define evolution in a sentence,
Richard Dawkins stated that “Life results from the non-random survival of randomly
varying replicators.” Genetic variation is necessary for evolution, and mutation is
the process that restocks the sequence variation lost through genetic drift, purifying
selection and the fixation of gene variants within a population.

Mutation rate is not the same as fixation rate. A mutation occurs in the larger
context of a population of organisms and the gene variant produced by the mutation
initially has a frequency of one. The gene variant is said to be “fixed” when it is
found in every member of the population. A neutral mutation can drift to fixation
through random oscillations in frequency while deleterious mutations can become
fixed in a relatively small population when its negative effect on fitness is small. An
advantageous mutation will become fixed at a rate determined by the increase in
fitness of the genomes it occupies, taking effective population size into account.

The mutation rate is far from uniform. Sniegowski et al noted that selection
can adjust the mutation rate by acting on sequence variation in genes responsible for
DNA replication and repair. They hypothesise that, since most mutations are either
neutral or deleterious, the mutation rate of a species is as low as the physiological
cost of increased fidelity will allow, concluding that selection for higher mutation
rates is likely only in special cases (Sniegowski et al., 2000). Such a case surely
exists in the bacterial pathogen, Helicobacter pylori, which was shown to have a
mutation rate over 10 times faster during the acute phase versus the chronic phase of
infection in humans and rhesus macaques. The elevated mutation rate of H. pylori
during acute infection is orders of magnitude faster than any other studied bacterium
and likely facilitates rapid adaptation to the host environment (Linz et al., 2014). In
contrast to the “cost of fidelity” hypothesis put forward by Sniegowski et al, Lynch
supports the hypothesis that the lower limit imposed on the mutation rate is

explained by genetic drift (Lynch, 2010).
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Wielgoss et al conducted an evolutionary experiment over 40,000
generations of E. coli in order to quantify the spontaneous mutation rate in this
species. They sequenced 19 E. coli genomes at the end of the experiment and
directly inferred the point mutation rate based on accumulated substitutions,
calculating a rate of 8.9 x10'' per base-pair per generation and recording a
significant bias toward increased AT content (Lynch, 2010). The measured
substitutions were limited to a particular subset of mutations - those that occur within
protein-coding genes but code for the same amino acid due to the redundancy of the

genetic code.

3.5.2 SYNONYMOUS AND NON-SYNONYMOUS MUTATIONS

Each amino acid of a gene is coded for by a triplet of nucleotides, but not
every triplet codes for a different amino acid. There are 4° = 64 possible codon
triplets and only 20 amino acids, and every possible triplet codes for either an amino
acid or a stop codon. The genetic code leads to a redundancy where several different
codons can be translated into the same amino acid, usually those sharing the first two
nucleotide bases (Watson, 1970).

A mutation in a gene sequence that leaves the translated amino acid sequence
unaltered is called a synonymous mutation while one that leads to an amino acid
change is called a non-synonymous mutation. It is a common assumption that
synonymous mutations are hidden from natural selection because they leave the
protein sequence, and therefore the phenotype, unaltered. For this reason, the rate of
synonymous mutation is assumed to reflect the mutation rate because both operate in
the absence of selection (Zhang and Yang, 2015). However, it has been shown that
synonymous mutations do have an influence on the ‘genome phenotype’, the
tendency for changes in nucleotide sequences to affect transcription and translation
accuracy as well as the rate of protein mis-folding and a range of other processes
(Forsdyke, 2002).

Non-synonymous mutations represent the mutation rate under selective
pressure, whether it is a conserved structural protein domain under purifying
selection or an active protein site displaying considerable amino acid variation across

species due to strong positive selection. For a given gene, the number of potential
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synonymous and non-synonymous sites can vary, which can lead to false
conclusions about the evolutionary rate or the type of selection acting on the
sequence. Normalised values are more commonly used where dN = number of non-
synonymous substitutions per non-synonymous site and dS = number of
synonymous substitutions per synonymous site. The value for dS is used as a relative
mutation rate for the gene and the ratio, dN/dS, reflects the evolutionary rate of
proteins normalised for variation in mutation rate under a neutral model and can be
used as a measure of the strength and type of selection pressure acting on a gene
(Zhang and Yang, 2015).

A dN/dS value of approximately one suggests that a gene is under, on
average, neutral selection pressure since the proportion of substitutions subject to
selection and the proportion hidden from it both accumulate at the same rate. A value
of less than one suggests that purifying selection is constraining amino acid
substitutions while synonymous mutations occur unchecked by selection. A value of
greater than one suggests that non-synonymous mutations are positively selected for
relative to neutral synonymous mutations, which follow a statistical fixation or

elimination implied by genetic drift (Zhang and Yang, 2015).

3.5.3 SELECTION PRESSURE AND EVOLUTIONARY RATE

The evolutionary rate of a gene is a measure of how fast its sequence evolves.
Excluding pseudogenes, which are practically selectively neutral, the divergence of
two nucleotide sequences will occur much more quickly than their corresponding
amino acid translation. Evolutionary rate therefore depends very much on whether it
is being measured at the nucleotide or protein level.

A protein sequence evolves at a uniform rate neither along its length nor over
time. In a given environment, selection acts on each individual codon of a gene,
constraining amino acids that are essential for protein function and allowing other
residues to vary once overall protein structure is not compromised (Yang, 1996). If
environmental conditions change, selection pressure on a gene may change and each
amino acid will potentially be affected by an altered pressure. It is difficult to predict
the effect that a specific environmental change will have on evolutionary rate, but

there is evidence to suggest that changing environments, particularly unpredictable
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ones, favour adaptations that increase the mutation rate, leading to positive selection
for a subset of non-synonymous mutations, which increase the average evolutionary
rate of a population (Denamur and Matic, 2006).

The average selection pressure acting on most genes may well be purifying,
preventing most amino acid changes from persisting in a population, but bacterial
genes involved in overcoming host defences have been shown to be under positive
selection pressure due to the evolutionary arms race of adaptation and counter-
adaptation between host and pathogen (Jordan et al., 2002). This has been shown in
pathogenic strains of E. coli where cell-surface proteins are under positive selection
because of their interaction with the changing environment of the host (Petersen et
al., 2007).

Functional importance of a protein was once thought to be the main factor
affecting the evolutionary rate of the gene that codes for it - the more important the
protein, the slower the rate of evolution. It has been found that expression level is the
major determinant of evolutionary rate, with functional importance playing only a
minor role (Zhang and Yang, 2015). Numerous other factors have been shown to
correlate with evolutionary rate and also with each other, making the phrase
‘correlation versus causation’ very much central to the interpretation of results.

The complexity of analyses involving evolutionary rate is further increased
by the array of methods that are currently used to measure it. The first step involves
the multiple alignment of homologous genes (either nucleotides or amino acids)
carried out using software such as Muscle (Edgar, 2010) and CLUSTALW
(Thompson et al., 1994), which attempt to introduce gap positions in order to
preserve positional homology across sequences. Amino acid substitution matrices are
used to assign similarity scores to sequence alignments based on the agreement of
physico-chemical properties between homologous positions (Henikoff and Henikoff,
1992) while values of dN and dS are calculated from aligned homologous codons.
Maximum parsimony, maximum likelihood and Bayesian methods are also used to
calculate evolutionary rate (Bevan et al., 2005).

The Lactobacillus genus is phylogenetically and functionally diverse, making
the study of evolutionary rate across its genes both intriguing and daunting.
Makarova & Koonin used a molecular-clock test on a phylogenetic tree generated
from ribosomal proteins to reveal a high heterogeneity of evolutionary rates among

Lactobacillales (Makarova and Koonin, 2007). This finding is not so surprising
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given that Lactobacillus species are scattered over such a variety of niches and wide
array of environmental conditions. Attaching absolute rates to evolutionary events is
difficult, often relying on simplistic assumptions in the absence of fossil and other
temporal evidence. An alternative approach is to use a relative measure of
evolutionary rate such as the dN/dS ratio that normalises for variation in mutation
rate across genes, but cannot provide estimates of the occurrence of speciation events
in time (Zhang and Yang, 2015).

New Lactobacillus species are being announced every year, accompanied by
the increasing rate of published studies on lactobacilli. Comparative genomic and
phylogenomic studies of lactobacilli are also becoming more numerous, fuelled by
the rapidly falling cost of sequencing and the expansion of bioinformatic tools
designed specifically for these types of analyses. Future studies will continue to
reveal the impressive level of functional variation characteristic of the Lactobacillus
genus, providing greater insight into its evolutionary and ecological dynamics. The
potential consequences include advances in human health through probiotics,
increased efficiency of food preservation and advances in the industrial use of

lactobacilli.
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1 INTRODUCTION

The genus Lactobacillus comprises over 200 formally recognized species and
subspecies that have been isolated from a wide range of sources (Salvetti et al.,
2012). Their ability to ferment raw materials including milk, meat and plants has
resulted in their industrial and artisanal use. Hence many Lactobacillus species have
a long history of human usage (Bernardeau et al., 2006), including recognition as
Generally Recognized as Safe (GRAS) or a Qualified Presumption of Safety (QPS)
by FDA and EFSA, respectively (Bernardeau et al., 2008). Some strains are
marketed as probiotics, meaning they may be beneficial to the consumer beyond
basic nutritional value (Klaenhammer et al., 2012, Hill et al., 2014). Products
containing lactobacilli dominate the global probiotics market, which is expected to
reach a value of USD$24 billion by 2017. In addition to fermentative and
preservative properties, some lactobacilli produce exopolysaccharides that contribute
to the texture of foods (Badel et al., 2011), and to intestinal survival of probiotic
species (Marco et al., 2010). Furthermore, lactobacilli are under development as
delivery systems for vaccines (Mohamadzadeh et al., 2009) and therapeutics
(Alvarez-Sieiro et al., 2014, Bermudez-Humaran et al., 2013). In recent years the
relevance of lactobacilli to the chemical industry has considerably increased because
of their capacity to produce enantiomers of lactic acid used for bioplastics as well as
1,3-propanediol (a starting ingredient used for biomedicines, cosmetics, adhesives,
plastics and textiles) (Reddy et al., 2008). Thus, lactobacilli are among the microbes
most commonly used for producing lactate from raw carbohydrates and synthetic
media (Castillo Martinez et al., 2013).

The lactobacilli were originally grouped taxonomically according to their
major carbohydrate metabolism, as homofermentative (metabolic group A),
facultatively heterofermentative (group B) or obligately heterofermentative
lactobacilli (group C) (Hammes and Vogel, 1995). The accumulation of 16S rRNA
gene sequences (Collins et al., 1991) and a handful of genome sequences led to the
realization that taxonomic and phylogenetic groupings of the lactobacilli were not
concordant (Canchaya et al., 2006, Kant et al., 2011, Zhang et al., 2011, Makarova et

al., 2006), that the genus is unusually diverse (as recently reviewed (Salvetti et al.,
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2012)), and that a revised genome-based re-classification of the genus was warranted
(Claesson et al., 2008).

To provide an extensive resource for comparing, grouping and functionally
exploiting the lactobacilli, we sequenced 175 Lactobacillus genomes and 26
genomes from 8 other genera historically associated with or grouped within the
lactobacilli. We complemented our analysis with the inclusion of 12 genome
sequences from two genera that were already publicly available. In all but one case
we sequenced genomes of Type Strains sourced from international culture
collections (Supplementary Table 1), to provide taxonomic rigor and to avoid the
problems associated with the genome sequence of a non-type strain unintentionally
becoming the de facto genetic reference for that species, even when it contravened
the published type-strain phenotype for that species (Felis et al., 2007). This
phenomenon has added to confusion on strain identification. Three non-type strain
Leuconostoc genomes were downloaded from NCBI (JB16, KM20 and 4882) and

one Pediococcus non-type strain was sequenced (AS1.2696).

78



2 METHODS

2.1 SEQUENCING AND ASSEMBLY

Whole-genome sequencing was performed using Illumina HiSeq 2000
(IMlumina Inc. U.S.A) by generating 100 bp paired-end read libraries following the
manufacturer’s instructions. An average of 190 Mb of high quality data were
generated for each strain, corresponding to a sequencing depth of 16-fold to 185-fold
(Supplementary Table 1).

The paired-end reads were first de novo assembled using SOAPdenovo
v1.06, local inner gaps were then filled, and single base errors were corrected using
the software GapCloser. The individual genome assemblies of 200 strains have been
deposited in the National Center for Biotechnology Information under the project
numbers PRIEB3060 and PRINA222257 with individual accession numbers listed in
Supplementary Table 1. Raw reads for 200 strains have been deposited in the
sequence read archive (SRA) under the sample accession IDs listed in

Supplementary Table 1.

2.2 CDS PREDICTION AND ANNOTATION

The coding sequences (CDS) of genes were predicted for each sequenced
genome by using Glimmer v3.02 (Delcher et al., 2007). Partial genes were predicted
by replacing gaps between contigs by a six-frame start/stop sequence
(NNNNNCACACACTTAATTAATTAAGTGTGTGNNNNN). Glimmer3 normally
predicts only complete genes, but a partial gene at a contig boundary with the above
sequence at one or both ends will be predicted and given artificial end(s) (e.g.
NNNNNCACACACTTAA at the 3’ end). The number of partial genes along with
their status (5’ end missing, 3’ end missing, both ends missing) were determined
using these artificial ends. To obtain functional annotation, the amino acid sequences
of predicted CDS were blasted (BLASTP) against the nr database with the criterion
of e-value < 1e-5, identity > 40% and length coverage of gene > 50%. Additional
annotation was obtained from the COG (Tatusov et al., 2003) and KEGG (Kanehisa
et al., 2014) databases using BLASTP and the same BLAST thresholds.
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2.3 CONSTRUCTION OF CORE- AND PAN-GENE FAMILIES

For identifying the pan-genome, a pair-wise comparison was performed using
L. gasseri ATCC33323 as the first genome, followed by the random selection of
each of the remaining genomes, without replacement, until all 213 genomes were
included. Gene families were identified where homologous genes were found with
BLASTP above the threshold of 25% identity over 40% of the gene length. Genes
that fell below these thresholds formed new families, all of which were summed to
give the pan-genome family set. A pan-genome family set was also derived after
removing the genomes with greater than 200 contigs to assess the effect of higher
contig number on pan-genome size.

To identify core genes for phylogenetic analysis, gene predictions for the 213
genomes were translated from nucleotide into amino acid sequences and used as the
input for QuartetS (Zhang et al., 2011). QuartetS first predicted orthologs by
reciprocal best BLAST between pairs of genomes using cut-offs of 25% identity and
40% length. The level of identity was kept above 25% given that below this level we
cannot assume the shared common ancestry of genes based on sequence data alone
(Chung and Subbiah, 1996). An equation that approximates the construction of a
quartet gene tree assigned a confidence value to each reciprocal best blast pair of
genes to determine if their relationship was orthologous or paralogous. Two-stage
clustering (MCL and SLC) was used to cluster orthologs across all 213 genomes so
that a presence and absence distribution could be determined for all gene families.
Gene families with a representative sequence in all 213 genomes were selected as
core genes for the construction of a phylogenetic tree. This method supported a core
of 73 genes (Supplementary Table 2; Supplementary dataset S1 for sequences),
which was used in all phylogenetic inferences.

2.4 ASSESSING THE ROBUSTNESS OF CORE GENE NUMBER AND TREE
TOPOLOGY

We tested for the presence of 114 bacterial core marker genes (Wu et al.,
2013) in the gene sequences of each of the 213 genomes and found that, while no
genome had a low number of predicted marker genes (range 96 - 111), the 4
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genomes with fewer than 105 genes all had contig numbers less than 200.
Furthermore, when we correlated the number of predicted core genes (out of 114)
with contig number, the Spearman correlation value was very low (rho value of
0.078; p-value = 0.26). This shows that draft genomes with larger contig numbers do
not have artificially low core gene numbers.

To investigate the effect of core gene number on robustness of phylogeny, we
omitted some of the more peripherally related LAB from the analysis, namely, we
omitted the Atopobium, Kandleria, Olsenella and Lactococcus species, and this
resulted in a core genome of 121 genes. The resulting phylogeny was highly
congruent with the 73-core gene phylogeny, and was also supported by equally high
bootstrap values. We put back in Lactococcus and removed Carnobacterium,
resulting in a core gene set of 117 genes. Similarly, the resulting phylogeny was
highly congruent with the 73-core gene phylogeny, and was also supported by

equally high bootstrap values.

2.5 CALCULATION OF ANI AND TNI

The pair-wise ANI and TNI values across newly sequenced genomes were
calculated according to methods proposed by Goris et al. (Goris et al., 2007) and
Chen et al. (Chen et al., 2013), respectively. The frequency distributions of the ANI
and TNI values of 3,730 published bacterial genomes were acquired from our

previous report (Chen et al., 2013).

2.6 PHYLOGENETIC ANALYSIS

To determine the placement of the Lactobacillus Genus complex and
associated genera within the Bacterial kingdom, we used AMPHORA2 (Wu and
Scott, 2012), a marker gene database used in the phylogenetic inference of
prokaryotes, to identity 16 marker genes (Supplementary Table 4; Dataset S2 for
gene sequences), out of a total of 31 possible marker genes, that were shared across
452 representative bacterial species (Supplementary Table 3). We aligned the amino
acid sequences for each gene separately using MUSCLE v3.8.31 (Edgar, 2004) and
then constructed the maximum likelihood tree based on the concatenated alignment
using the software PHY ML with the WAG model (Guindon and Gascuel, 2003).
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A Maximum Likelihood phylogeny concentrating on the Lactobacillus
Genus complex and associated genera was inferred from 73 core genes present in all
213 strains. Amino acid sequences were aligned as above and the phylogeny was
estimated using the PROTCATWAG model in RAXML v8.0.22 (Stamatakis, 2014)
and rooted using Atopobium minutum DSM 20586, Olsenella uli DSM 7084 and
Atopobium rimae DSM 7090. Bootstrapping was carried out using 100 replicates and

values are indicated on the nodes of the phylogeny.

2.7 PREDICTION OF GLYCOLYSIS-RELATED GENES

A matrix with the presence/absence of the 10 core glycolytic genes across the
213 genomes was built using a combination of annotation querying and BLAST
searching. When a gene was absent in one or more genomes, the result was
confirmed with a tblastn (Altschul et al., 1990) search using L. salivarius query
genes. In cases where a homolog was found using the blast approach the sequence
was retrieved and aligned with mafft (Katoh and Toh, 2008). Alignments were
inspected to confirm similarity of the sequences.

We mined the genomes for the presence of phosphoglycerate mutase using
the approach published by Foster et al (Foster et al., 2010). The query
phosphoglycerate mutases from E. coli GpmA (dPGM; NCBI GI number 50402115)
and E. coli GpmM (iPGM,; 586733) were aligned against the six-frame translations
of the 213 draft genomes with tblastn. Hits with a bit score larger than 100 were
considered as a PGM match.

2.8 BACTERIOCIN PREDICTION

BAGEL (de Jong et al., 2010) was utilized to mine genomes for potential
bacteriocin operons; results were manually verified within Artemis (Rutherford et
al., 2000).

2.9 AMINO ACID PATHWAY IDENTIFICATION
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Amino acid pathways were investigated through the KEGG suite of tools
(Moriya et al., 2007).

2.10 CRISPR IDENTIFICATION

CRISPR-Cas systems were identified using CRISPRFinder (Grissa et al.,

2007) and manual curation of the results.

2.11 INVESTIGATION OF NICHE ASSOCIATION

The 213 genomes were grouped into 6 niche categories in order to test for
niche-specific associations in functional gene groups and genomic characteristics.
The 6 niche categories are food (n=76), animal (n=56), plant (n=34), wine product
(n=33), environment (n=7) and unknown (n=7). The niche category for each genome
is shown in Table 1. We applied Kruskal-Wallis tests and generated boxplots for
visualisation in order to determine trends among niches for 104 variables. These
variables included all functional groups analysed in this study, MGEs (plasmids,
phages and IS elements) and the following genomic parameters: genome size, gene
number, contig number, GC content and sequencing depth. Statistics and

visualisation were carried out in R v3.1.1.

2.12 PROFILING OF GHS AND GTS

The detection and assignment of sequences to families of carbohydrate-active
enzymes (CAZyme) was carried out using a two-step approach. HMMSCAN (from
the HMMER package v3.1bl) was used to query hidden Markov models
representing the signature domains of each CAZyme family, to predict potential GTs
and GHs across the 213 genomes below a threshold cut-off of 1e-05. In a separate
approach, genes that have the GH and GT enzyme configuration (EC) designation
EC 3.2.1.X and EC 2.4.X.X, respectively, were pooled into a GT and GH database.
BLASTp searches were used to predict potential GTs and GHs from the 213
genomes using a cut off of 40% identity and 50% length with an e-value cut-off of
1e-05. Results from the HHM approach and the blast approach were compared to

determine if both approaches supported the predicted gene results. Common genes
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were retained and genes unique to one approach were screened against the Pfam 27.0
database to confirm the presence of GT/GH domains. Copy number of the verified

GH/GT family were summarised in a heatmap.

2.13 IDENTIFYING CARBOHYDRATE TRANSPORTERS

To predict genes involved in carbohydrate transport we downloaded the
protein database (go_20140614-seqdb.fasta.gz) from the Gene Ontology Consortium
Database (http://archive.geneontology.org). A subset of this database was created by

selecting all sequences that were annotated as carbohydrate transporters. Predicted
genes from our study were blasted against this smaller database using BLASTP and
genes involved in carbohydrate transport were selected using the thresholds, 40%

identity, 50% coverage of query gene aligned and e-value <1e-05.

2.14 GENERAL METABOLISM

To generate an overview of metabolism we blasted all predicted genes
against the STRING database v9 (Franceschini et al., 2013). The top hit for each
gene (i.e. lowest e-value) was used to assign a COG category after applying
thresholds of 40% identity, 50% of query gene length aligned and e-value <1e-05. R
v3.1.1 was used for reformatting and for generating the COG heatmap.

2.15 IDENTIFYING GENES INVOLVED IN STRESS RESPONSE

The KEGG database was mined for gene products annotated as playing a part
in stress responses. These were categorised into acid stress, oxidative stress,
heat/DNA damage, cold stress, osmotic stress and bile tolerance. These genes were
compiled into a database of 61,706 proteins. This database served to query
(BLASTDp) the predicted proteins encoded by the 213 genomes. Hits were considered
stress response genes if their gene products displayed greater than 40% identity over
50% of the length of the KEGG stress response protein below an e-value of 1le-05.
Copy number of the distribution of each of the stress-response proteins was

summarised and visualised using a heat-map in the R statistical package v3.1.1.

84


http://archive.geneontology.org/

2.16 IDENTIFICATION OF INSERTION SEQUENCES

To predict IS elements, Hidden Markov models representing 19 IS
transposase families were downloaded from the TnpPred web service
(http://www.mobilomics.cl). HMMSCAN (from the HMMER package v3.1b1) was

used to query amino acid sequences of predicted genes against the HMMs.

2.17 PHAGE IDENTIFICATION

Bacteriophage genes were annotated by BLASTP search against the NCBI
protein database using cut-offs of 40% identity over 50% of the length with an e-
value of <1e-05. To predict phage-specific genes, a string search of predefined phage
functions was carried out on gene annotations. Phage functions that overlap with
non-phage functions such as those involved in transcription and DNA metabolism
are usually annotated as belonging to prophages and these genes were also included
in the phage results.

2.18 PLASMID IDENTIFICATION

For each genome, contigs were blasted against an NCBI reference database
of complete plasmid sequences. A group of contigs was identified as belonging to a
plasmid if at least 25% of their combined length aligned to at least 25% of the
plasmid at >70% identity. These thresholds were determined empirically by
adjusting alignment length and identity cut-offs until the strains in the dataset that
are known to have plasmids and those that are known to have no plasmids both gave
correct predictions. All predicted genes belonging to plasmid-associated contigs
were then blasted against the STRING database v9.1 (Franceschini et al., 2013) in

order to assign COG categories.

2.19 ANALYSIS OF LPXTG PROTEINS, SORTASES AND PILUS GENE
CLUSTERS

Interproscan v. 5.44.0 with TIGRFAM 13.0 database with default parameters
was used to search for conserved domains in the genomes (Haft et al., 2003,
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Quevillon et al., 2005). Automatic pilus cluster search was performed using LOCP v.
1.0.0 with parameters "-P 1" and "-P_adj 0.05" (Plyusnin et al., 2009). The LOCP
output results were then curated.. Both programs were run on the amino acid coding
sequences data. R v. 3.0.1 was used for managing and parsing the output data (Team,
2013).

2.20 CELL ENVELOPE PROTEASE (CEP) IDENTIFICATION AND ANALYSIS

CEP sequences were identified in the genome sequences using two strategies.
The first strategy involved a BLAST search using Subtilisin E as the search model.
This returned 1,201 putative homologs. The second strategy used a HMM model for
subtilisin as the search model and this returned 151 hits. Both panels of hits were
further interrogated using the following strategy. Firstly, the presence of the key
catalytic residues was confirmed (Asp, His and Ser, in this order of occurrence) and
the proteins binned by number of residues in the sequence. The panels were further
rationalized using a HMM search model for domains identified in the only solved
structure of an active CEP, the ScpA from Streptococcus pyogenes (Kagawa et al.,
2009). These searches included the DUF1034 which is equivalent to the Fnl domain
of ScpA, the CHU_C model corresponding to the Fn2 domain and the PA domain,
SLAP which is an S layer anchoring domain and a manual inspection for LPXTG
derivative sequence. This screening identified 60 CEPs across the genome database.
Each of these hits was in turn used as a BLAST search model to confirm no
additional CEPs could be identified. These searches proved to be internally

consistent with no additional CEPs identified.
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3 RESULTS

3.1 A GENUS MORE DIVERSE THAN A FAMILY

The genomes of the lactobacilli range in size from 1.23 Mb (L.
sanfranciscensis) to four times larger (4.91 Mb; L. parakefiri) as shown in
Supplementary Table 1 and Supplementary Fig. 1. The GC-content also varies
considerably, from 31.93% to 57.02% (Supplementary Fig. 1). The core genome of
the 213 strains comprises only 73 genes, the majority of which encode essential
proteins for cell growth and replication (Supplementary Table 2). Owing to the draft
nature of the genomes, this core gene number would increase were the genomes to
be closed. The genus Lactobacillus and associated LAB genera have a large open
pan-genome whose size increases continuously with the number of added genomes,
and contains 44,668 gene families (Supplementary Fig. 2). Exclusion of draft
genome assemblies at different fragmentation levels, namely greater than 20, 50,
100, 200, 300, 400 and 500 contigs does not lead to largely altered predictions for
the pan-genome curves. Core genome curves were also generated using the same
fragmentation levels and these curves are similar, especially for higher fragmentation
levels. The core gene curves do show, however, that contig numbers have an effect
on the core genome size (Supplementary Fig. 2). Although niche associations and
described sources for Lactobacillus strains and species are not all equally robust,
there was a clear trend for the genomes of species isolated from animals to be
smaller, consistent with genome decay in a nutrient-rich environment (Makarova et
al., 2006) (Supplementary. Fig 3).

ANI (average nucleotide identity) is the average identity value calculated
from a pair-wise comparison of homologous sequences between two genomes and is
frequently used in the definition of species (Chan et al., 2012, Goris et al., 2007).
The frequency distribution of pair-wise ANI values for Lactobacillus species differs
substantially from the distribution of values for Genus and Family, overlapping with
values for Order and Class (Supplementary Fig. 4). TNI (total nucleotide identity) is
an improved method that determines the proportion of matched nucleotide sequences
between pairs of genomes, providing a higher discriminatory power for the high-
level taxonomy units in this dataset (Chen et al., 2013). The TNI calculations
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indicate that the genomic diversity of the genus Lactobacillus is intermediate
between that of the majority of the currently approved taxonomic units for orders
and families (http://www.bacterio.net/), and the mean value of total nucleotide
identity between all species in this genus is 13.97% (Supplementary Fig. 4). Thus,
although Lactobacillus has traditionally been defined as a Genus, its genetic

diversity is larger than that of a typical Family.

3.2 A PARAPHYLETIC GENUS INTERMIXED WITH FIVE OTHER GENERA

In light of the extraordinary genomic diversity of the genus Lactobacillus and
its polyphyletic nature, we set out to provide the most comprehensive phylogenetic
study of the genus to date, thereby removing ambiguities in uncertain classifications
and further validating existing taxonomic relationships. We constructed a
phylogenetic tree with the lactobacilli and representative genomes of 452 selected
genera from 26 phyla (Supplementary Table 3) using 16 proteins common to all taxa
(see Supplementary Information for details and selection criteria; see Supplementary
Table 4 for the protein list). The phylogeny revealed that Lactobacillus is
paraphyletic and that all species of Lactobacillus descend from a common ancestor
(Fig. 1; this tree with taxon names and branch lengths is presented in Supplementary
Fig. 5). However, five other genera, Pediococcus, Weissella, Leuconostoc,
Oenococcus, and Fructobacillus, are grouped within the lactobacilli as sub-clades.
This phylogenomic arrangement was confirmed by a maximum likelihood tree
constructed from the 73 core proteins shared by the 213 genomes of the lactobacilli
and 10 associated genera (Fig. 2). This tree is supported by high boot-strap values,
which supports the 73 core proteins as being truly reflective of the evolutionary
history of the lactobacilli and associated genera, unbiased by HGT. The genera
Pediococcus, Leuconostoc and Oenococcus have long been recognized as a
phylogroup within the genus Lactobacillus based on both 16S rRNA gene sequence
typing and extensive phylogenomic analysis (Makarova et al., 2006, Salvetti et al.,
2012). Our results provide unequivocal evidence that the genera Fructobacillus and
Weissella are members of the Lactobacillus clade, with Fructobacillus located
between Leuconostoc and Oenococcus and the genus Weissella located as a sister
branch (Fig. 2). As the Lactobacillus clade includes species from six different genera

(Lactobacillus,  Pediococcus, Weissella, Leuconostoc, Oenococcus and
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Fructobacillus), we propose to name these six genera as constituting the
Lactobacillus Genus Complex. Interestingly, the Carnobacteria are external to the
Streptococcus/Lactococcus branch in the 16-core phylogeny of 26 phyla (Fig. 1), but
they are internal to this branch in the 73-core tree of the Lactobacillus Genus
Complex and associated genera (Fig. 2). The lower bootstrap values of 48% (L.
lactis) and 64% (Carnobacterium) for the 16-core tree, which was built from an
alignment of 3,863 bp, suggests that there was not enough phylogenetic signal to
resolve these branches to a high degree of confidence. In contrast, the 73-core tree,
which was built from an alignment of 30,780 bp, has bootstrap values of 100% for
both these branches. This places greater confidence in the latter tree topology and
hence it was used in all downstream analyses.

As a complement to the maximum likelihood tree of the Lactobacillus Genus
Complex and associated genera based on 73 core proteins (Fig. 2), we built another
tree (Supplementary Fig. 6) omitting Atopobium, Olsenella, Kandleria and
Carnobacterium genomes and retaining the position of the most recent common
ancestor (MRCA) according to the tree of bacteria (Fig. 2). In agreement with
previous observations based on 28 LAB genomes (Zhang et al., 2011), this tree
shows that the Lactobacillus Genus Complex splits into two main branches after
diverging from the MRCA. Branch 1 contains the type species of the genus
Lactobacillus, L. delbrueckii, and a large number of type strains that were isolated
from dairy products. Branch 2 contains more species (n=127) than Branch 1 (n=77),

and all five of the other genera in the Lactobacillus Genus Complex.
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Lactobacillus Most closely related genus

Atopobium — — — Q) Coriobacterium
——— Carnobacterium—— ¢ Melissococcus
Fructobacillus
Kandleria — — —— @ Erysipelothrix
Lactococcus — —— A Streptococcus
Leuconostoc
—— Oenococcus
Olsenella
Pediococcus
Weissella
Actinobacteria Acidobacteria
Aquificae
Chlamydiae
Chlorobi
= . Bacteroidetes Chloroflexi
Chrysiogenetes
Deferribacteres
. Deinococcus
Cyanobacteria Dictyoglomi
Elusimicrobia
Fibrobacteres
e Fusobacteria
Firmicutes Gemmatimonadetes
N Nitrospirae
glanctcr)]mycetes
i pirochaetes
Proteobacteria Synergistetes

Tenericutes

— Thermodesulfobacteria
Tenericutes Thermotogae
Verrucomicrobia

Figure 1: Cladogram of 452 genera from 26 phyla with the 213 genomes
analysed in this study, based on the amino acid sequences of 16 marker genes.
The tree was built by using the maximum likelihood method but visualized by
removing the branch length information. The colored branches indicate different
genera sequenced in this research; grey branches indicate members of genera whose
genomes were previously sequenced. The outer circle color represent the phyla that
are indicated in the legend, and the different shapes near tips indicate the position of
genera that most closely related with Atopobium, Carnobacterium, Kandleria, and

Lactococcus, separately.
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Figure 2: Maximum likelihood phylogeny derived from 73 core genes across 213
strains. The phylogeny was estimated using the PROTCATWAG model in RAXML
and rooted using the branch leading to Atopobium minutum DSM 20586, Olsenella
uli DSM 7084 and Atopobium rimae DSM 7090 as the outgroup. Bootstrapping was
carried out using 100 replicates and values are indicated on the nodes. Colours on
taxon labels indicated presence of CRISPR-Cas systems using pink, blue and green
for Type I, 1l and Il systems, respectively. Undefined systems are represented in
yellow. Color combinations were used when multiple systems from different

families were concurrently detected in bacterial genomes.
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3.3 A BROAD REPERTOIRE OF CARBOHYDRATE ACTIVE ENZYMES

With interest in their applications in fermentations, some of the earliest
classifications of lactobacilli were based on their carbohydrate utilization patterns
(Hammes and Vogel, 1995). Glycolysis occurs in obligately homofermentative
(group A) and facultatively heterofermentative (group B) lactobacilli, and has been
traditionally linked to the presence of 1,6-biphosphate aldolase (Kandler, 1983). A
full set of glycolysis genes were predicted in 49% of the species analysed
(Supplementary Fig. 7), and gene duplication is common, though not particularly
associated with a group or niche. All Lactobacillus, Leuconostoc, Weissella,
Fructobacillus and Oenococcus species lacking phosphofructokinase (Pfk) formed a
distinct monophyletic group. This group included the historically-defined L. reuteri,
L. brevis, L. buchneri, L. collinoides, L. vaccinostercus and L. fructivorans groups.
Most species (75%) within this Pfk-negative clade also lacked 1,6-biphosphate
aldolase, though this gene was consistently present in the Weissella clade as well as
in some leuconostocs and species from the L. reuteri and L. fructivorans groups.
Importantly, most species (87%) within the Pfk-lacking group were classified as
obligatively heterofermentative (Salvetti et al., 2012), with the rest being
facultatively heterofermentative. The reason for the link between pfk gene loss and
heterofermentative metabolism needs functional genomic investigation. The average
phylogenetic distance (number of nodes to root) of facultatively heterofermentative
lactobacilli (as defined in Supplementary Fig. 7) to the MRCA (Supplementary Fig.
6) is considerably lower than that of obligately heterofermentative or obligately
homofermentative species (Supplementary Fig. 8) suggesting that the Lactobacillus
MRCA was facultatively heterofermentative. The obligatively heterofermentative
species also form a distinct cluster that may be explained by several evolutionary
scenarios that require further investigation.

Biotransformation of carbohydrates by bacteria can be exploited for
transforming raw materials, for optimizing growth and for producing valuable
metabolites. The 213 genomes collectively encode 48 of the 133 families of

glycoside hydrolases (GH) in the CAZy database (http://www.cazy.org), many of

which represent unrecognized and unexploited enzymes for biotechnology (Fig. 3).
Chitin is the second most abundant natural polysaccharide after cellulose. Among
115 LAB species previously tested, only Carnobacterium spp. were able to
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hydrolyse alpha chitin (Leisner et al., 2008). In this study, three new
Carnobacterium genomes, along with strains of L. delbrueckii, L. nasuensis, L.
agilis, L. fabifermentans and Pediococcus, provide the genetic information to exploit
that activity. The GH39 genes are beta-xylosidases that are present in the L. rapi/L.
kisonensis branch as well as two singleton species, L. concavus and L. secaliphilus.
GH49 (dextranase) and GH95 (alpha-fucosidase) are harboured only in the L.
harbinensis/L. perolens branch with GH49 being absent from the latter species.
Dextranases are considered to be the most efficient means for hydrolysing
undesirable dextrans at sugar mills (Rodriguez Jiménez, 2009). Microbial
mannanases hydrolyse complex plant polysaccharides and they have applications in
the paper and pulp industry, for food and feed technology, coffee extraction, oil
drilling and detergent production; the corresponding GH76 is found only in the two
L. acidipiscis strains. GH101 is found only in L. brantae isolated from goose feces
and L. perolens which is from a beverage production environment. This GH is an
endo-alpha-N-acetylgalactosaminidase, which is thought to play a role in the
degradation and utilization of mucins by probiotic bifidobacteria (Fujita et al., 2005).
While this explains its presence in the goose intestine, its association with beverage
production may be due to limited hygiene.

We identified two GH families not previously associated with the
Lactobacillus genus complex. GH67 displays alpha-glucuronidase activity (Shallom
et al., 2004) and is involved in the breakdown of xylan; such enzymes have an
application in the pulp industry for bio-bleaching, in the paper industry, as food
additives in poultry and in wheat flour for improving dough handling (Beg et al.,
2001). GH95 fucosidases can cleave and remove specific fucosyl residues
(Katayama et al., 2004). Fucose residues are present in oligosaccharides in milk and
on erythrocyte surface antigens. Some GH types appeared to be common across the
genome dataset, if not universal, and these are described in Supplementary
Information.

Analysis of the 213 genomes reveals they encode representatives of 22 of the
95 families of glycosyltransferases (GT) in the CAZy database with a high level of
GT-encoding diversity and a number of surprising findings (Supplementary Fig. 9).
Glycogen is one of five main carbohydrate storage forms used by bacteria, and a
previous analysis of 1,202 diverse bacteria concluded that bacteria that can

synthesize glycogen occupy more diverse niches (Wang and Wise, 2011). GT5 and
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GT35 are glycogen synthase and glycogen phosphorlyase respectively. These GTs
are encoded by the L. casei clade, which includes two species that are currently
exploited heavily as probiotics, L. casei and L. rhamnosus, as well as the L.
plantarum group, some members of the L. salivarius group (such as L. salivarius
itself) and a number of singletons. It is not clear if the ability to synthesize glycogen
contributes to the biological fitness of these species. Strikingly, among the
sequenced genomes only L. gasseri encodes GTI11 (galactoside a-1,2-L-
fucosyltransferase) while only L. delbrueckii DSM15996 encodes GT92 (N-glycan
core a-1,6-fucoside B-1,4-galactosyltransferase). Surface fucose is common in
pathogens, including Helicobacter pylori, where it is linked to antigenic mimicry
(with Lewis blood group antigens), immune avoidance and adhesion (Bergman et al.,
2006). According to the CAZy database, the GT11 fucosyltransferase is uncommon
in LAB; it is present in Akkermansia muciniphila, in a minority of commensal
Bacteroides, in three Roseburia species and in several Proteobacteria. Interestingly,
GT92 is not described in any prokaryotic organisms in CAZy, but the current study
identified the characteristic GT92 domain in L. delbreuckii. The production of
surface fucose-containing moieties by certain L. gasseri and L. delbreuckii strains

merits biological evaluation.
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Figure 3: Heatmap illustrating the distribution and abundance of glycoside
hydrolase (GH) family genes across the Lactobacillus Genus Complex and
associated genera. Gene copy number of each of the 48 represented GH families is
indicated by the colour key ranging from black (absent) to green. Strains are graphed
in the same order left to right as they appear top to bottom in the phylogeny (Fig. 2)
with the isolation source of each strain indicated by the colour bar at the top of the

heatmap.
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3.4 SORTING THE INTERACTION FACTORS ON THE LACTOBACILLUS CELL
SURFACE

Surface proteins of lactobacilli include key interaction receptors for
probiotics and enzymes for growth in milk. A major class of surface proteins in
Gram-positive bacteria are those anchored by sortase enzymes that recognize a
highly conserved LPXTG sequence motif (Navarre and Schneewind, 1999). We
identified 1,628 predicted LPXTG-containing proteins and 357 sortase enzymes in
the 213 genomes (Supplementary Table 5). The number of sortases and LPXTG
proteins greatly varies between species (Fig. 4), with 0 to 27 LPXTG proteins found.
The highest number of LPXTG proteins (27) occurred in the milk isolate
Carnobacterium maltaromaticum DSM 20342. Other species of the genus
Carnobacterium also showed a large LPXTG protein repertoire, suggesting
extensive interactions within their respective habitats and associated microbial
communities. Among the variety of LPXTG proteins, we particularly focused on
sortase-dependent pilus gene clusters. Common in Gram-positive pathogens, these
proteinaceous fibers are also produced by commensal bacterial species such as
Lactobacillus rhamnosus (Kankainen et al., 2009) and the SpaCBA pili have been
shown to contribute to probiotic properties by mucin binding (von Ossowski et al.,
2010) and cellular signalling (Ardita et al., 2014). A total of 67 pilus gene clusters
were predicted in 51 bacterial strains (Fig. 4), most strains harboring a single pilus
gene cluster (PGC) (Supplementary Fig. 10). Only about one third of the piliated
strains possessed pilus gene clusters similar to L. rhamnosus strain GG pilus clusters
in terms of gene order, i.e. a cluster of three pilin genes and one pilin-specific sortase
gene. The remaining pilus clusters showed the presence of two other major types and
numerous other types that are different in organization and sequence from that of L.
rhamnosus GG (Fig. 4). Five particular clades were associated with the presence of
PGCs. The ecologically diverse L. casei/L. rhamnosus clade (Figure 4, Panel C,
Clade ii) harbored the greatest number of piliated species. Some strains e.g. L.
equicursoris, W. confusa and L. parabuchneri (DSM 15352) are distinguished by
being the only piliated species within their respective clades (Fig. 4, Panel C), which
we cannot currently explain. The availability from this study of over 50 new pilus
gene clusters is expected to provide new avenues for addressing their role in

probiotic and other functions.
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Figure 4: Differential abundance of genes encoding LPXTG proteins, sortases,
pili and cell envelope proteases (Panels A, B, C and D, respectively). The y-axis
indicates the number of genes/clusters detected. Strains are graphed in the same
order left to right as they appear top to bottom in the phylogeny (Fig. 2). In panel C,
each black bar indicates strains belonging to the same lineages. Panel C legend: i. the
L. composti clade; ii. the L. casei/rhamnosus clade; iii. the L. ruminis clade; iv. the L.
brevis/parabrevis clade; v. the Pediococcus ethanolidurans clade. Panel D legend: S,
S-layer type anchor; LX, LPXTG-sortase dependent anchor (including derivatives

thereof); T, truncated protein.
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3.5 DIFFERENTIAL EVOLUTION OF CELL ENVELOPE PROTEASE GENES

Cell Envelope Proteases (CEP) are multi-subunit, cell-wall-anchored,
subtilase-type proteinases produced by many LAB. They are primarily associated
with cleaving casein as the first stage in releasing peptides and amino acids during
growth in milk, and variations in their sequence and domain structure contribute to
determining the flavour of cheese (Siezen, 1999). In particular, the Protease
Associated (PA) domain and the A domain have been shown to impact on the
specificity of the enzyme. The A domain has been subdivided into 3 fibronectin
domains (Fnl, Fn2 and Fn3) and these are implicated in substrate binding (Kagawa
et al., 2009). Furthermore some CEPs of commensal lactobacilli may act upon
inflammatory mediators to ameliorate Inflammatory Bowel Disease (von Schillde et
al., 2012), so mining the novel Lactobacillus genomes for these proteases could
identify novel therapeutics for chemokine-mediated inflammatory diseases. We
identified genes for 60 CEPs in the 213 genomes, ranging from 1,097 to 2,270 amino
acids in length (Supplementary Table 6). Forty four strains had a single CEP, while 8
strains encoded 2 distinct CEPs (Fig. 4). Four disrupted CEP genes were detected,
two occurring at contig boundaries. Presence of genes for CEPs exhibited clear clade
association, notably with the L. delbrueckii, L. casei and L. buchneri clades, part of
the L. salivarius clade, and the Carnobacterium clade.

The CEPs are defined as cell associated, and different anchoring mechanisms
have been identified. Seventeen of the 60 CEPs incorporated a SLAP domain,
putatively responsible for non-covalent interactions with the cell wall, 12 had a
canonical LPXTG motif for covalent linkage to peptidoglycan, and a further 18 had a
derivative of the LPXTG motif (Fig. 4). Interestingly, 13 of the CEPs had neither an
S-layer type domain nor an LPXTG type motif. These proteins all terminated
precisely before standard anchoring motifs at a sequence conserved across all of the
60 identified CEPs, suggesting that this was non-random. Of these 13 CEPs, 11 are
in the L. buchneri clade, suggesting positive selection for release of protease activity
into the growth medium in this clade. There may be an advantage to the cell by
releasing enzyme away from the cell surface and not saturating or competing for cell
wall anchoring. Twelve of these 13 CEPs cluster in a distinct group in a phylogenetic
tree and the multiple alignment indicates the sequences differ from other CEPs along

the entire length of the protein (data not shown). Putative anchoring by the SLAP
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domain is notably associated with the L. delbrueckii sub-clade, while CEPs
containing LPXTG motifs occur in the L. casei, L. salivarius, Pediococcus and
Carnobacterium groups.

The pair-wise amino acid identity values between the 60 CEPS ranged from
100% down to just 20%, a level of divergence indicating the likelihood that some of
these proteases have novel specificity. Of the 60 CEPs identified, 23 had the PA
domain, 57 the Fnl domain (DUF_1034) and 25 the Fn2 domain (CHU_C).
Interestingly, there is some association between anchoring mechanism and domain
composition. For the SLAP domain-containing CEPs, 12/17 do not contain the Fn2
domain, and for the CEPs devoid of SLAP or LPXTG sequences, 11/13 do not
contain a PA domain. The differential domain composition in the CEPs indicates that
a diverse range of substrates and products are likely. These properties may be

exploitable for improvement of food flavour or for enhanced probiotic capabilities.

3.6 CRISPR-CAS SYSTEMS AND MOBILE GENETIC ELEMENTS

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in
combination with CRISPR-associated proteins (Cas) constitute CRISPR-Cas
systems, which provide adaptive immunity against invasive elements in bacteria
(Barrangou et al., 2007). Sequences derived from exogenic elements are integrated
into CRISPR loci, transcribed and processed into mature small interfering RNAS,
and the small CRISPR RNAs (crRNAs) specifically guide Cas effector proteins for
sequence-dependent targeting and endonucleolytic cleavage of DNA sequences
complementary to the spacer sequence (Barrangou and Marraffini, 2014). CRISPR-
Cas systems have revolutionized genetic engineering and gene therapy by enabling
precise targeted manipulations in prokaryotic (Jiang et al., 2013) and eukaryotic
genomes (Hill et al., 2014), and recently in lactobacilli (Oh and van Pijkeren, 2014).

A total of 137 CRISPR loci were identified in 62.9% of the genomes
analysed, representing all the major phylogenetic groups of lactobacilli evaluated
(Fig. 2). This indicates that these systems are evolutionarily widespread throughout
this genus, and likely functionally important. This is considerably higher than the
~46% general occurrence rate in bacterial genomes in CRISPRdb (Grissa et al.,
2007). There was overall congruence between the phylogenomic structure of the

lactobacilli (Fig. 2) and CRISPR-Cas system phylogeny (Supplementary Fig. 11)
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reflecting co-evolutionary patterns. For Type allocation, the signature genes cas3,
cas9 and casl0 for Types I, Il and IlI, respectively, were used, complemented by
comparison of CRISPR repeat sequences and the universal Casl protein (Grissa et
al., 2007). Types I, Il and Il CRISPR-Cas systems were all detected (66, 68, and 3
systems, respectively; Supplementary Table 7). Comparative analyses of defining
CRISPR features revealed a diversity of the universal Casl protein and
corresponding CRISPR repeat sequences, with consistent clustering in two main
families representing Type | and Type Il systems (Supplementary Fig. 11).
Strikingly, Type 1l systems were detected in 36% of the Lactobacillus Genus
Complex and associated genera, though they occur in only 5% of all bacterial
genomes analyzed to date (Chylinski et al., 2014), suggesting these LAB are a rich
resource for Type Il CRISPR systems. Beyond the diversity of CRISPR-Cas
systems, we further uncovered dramatic variability in locus size and spacer content,
ranging from 2 to 135 CRISPR spacers (Supplementary Table 7).

Type Il CRISPR-Cas systems, which comprise the signature Cas9
endonuclease have received tremendous interest given their ability to re-program
Cas9 using customized guide RNAs for sequence-specific genesis of double stranded
breaks and the corresponding ability to edit genomes using DNA repair machinery.
Here, we observed a diversity of novel Type Il systems with heterogeneous Cas9
sequences (Supplementary Fig. 12, panel A) that expands the Cas9 space
considerably, and the corresponding DNA targeting and cleavage features including
the proto-spacer adjacent motif (PAM) and guiding RNAs (Jinek et al., 2012). Novel
Cas9 proteins we discovered include some relatively short Type I1-A and Type II-C
Cas9 homologs (1,078-1,174 AA) that have potential for efficient virus-based
packaging and delivery (Fig. 5). Furthermore, we determined corresponding putative
trans-activating crRNAs (tracrRNAs) for Type II-A systems (Supplementary Fig.
12, panel B), which is instrumental in designing wild type crRNA:tracrRNA guides
and synthetic single guide RNAs for Cas9 (Jinek et al., 2012). We further
characterized the key elements of Type Il systems for L. jensenii, L. buchneri and L.
mali (Fig. 5), revealing the sequence diversity and structure conservation for the
guide RNAs and their corresponding PAMs.

Phage and plasmid sequences were detected in 92% and 41% of the 213
genomes, respectively (Supplementary Fig. 13 and 14). Several synteny-based

methods were used for predicting prophages, but the results were inconclusive and
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subsequent manual analysis did little to improve this. Prediction of phage-specific
genes was therefore used as an alternative and synteny-based methods of prophage
prediction will be optimised for future studies. There is a trend towards an inverse
correlation between abundance of CRISPR sequences and phage sequences that does
not reach statistical significance (data now shown). Lactobacilli can have complex
genome architecture (Raftis et al., 2014), and in many genomes multiple plasmids
were detected (e.g. 6 plasmids predicted in both L. parafarraginis and P. claussenii;
Supplementary Fig. 14). The phenomenon of very large plasmids exemplified by the
sole genome sequence harbouring a megaplasmid in this analysis (the 380kb
megaplasmid of L. salivarius DSM20555 (Felis et al., 2007)) substantially increases
the number of plasmid-borne genes that are assigned to COGs for this genome
(Supplementary Fig. 14). However, the influence of the megaplasmid on COG
abundance is not evident on a genome-wide scale (Supplementary Fig. 15). These
vectors open new avenues for genetic manipulation of model lactobacilli in the
laboratory and for food-grade strain development. Furthermore, a diversity of
insertion sequence (IS) elements was identified (Supplementary Fig. 16) including
widespread IS families (1S3 is nearly universal), as well as sequences that selectively
occur in particular niches (e.g. 1S91 in dairy L. casei and L. paracasei tolerans and
IS481 in brewing L. paracollinoides, L. farraginis and P. inopinatus). Altogether,
mobile genetic elements and their occurrence reflect both the open pan-genome of
lactobacilli and evolution by gene acquisition, and genome simplification and decay.
Functionally, we also show that detected CRISPR spacer sequences can perfectly
match target phage and plasmid sequences (Fig. 5), which is consistent with
sequence-specific targeting of viruses by CRISPR-Cas adaptive systems. The
findings from analysis of these 213 genomes corroborates previous reports
implicating CRISPR-Cas systems in adaptive immunity against bacteriophages and

plasmids in lactic acid bacteria used as starter cultures in food fermentation.
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Figure 5: Comparative analysis of CRISPR sequences. The tree in panel A is
derived from an alignment of the sequence of the universal Cas protein, Casl, to
create a phylogenetic tree based on the relatedness of all CRISPR-Cas systems in
lactobacilli and closely related organisms. Types I, Il and I11 are represented in blue,
red and green, respectively. The tree in panel B is derived from an alignment of
Cas9, the signature protein for Type Il systems, to create a phylogenetic tree
showing the relatedness of Cas9 proteins from Type I1-A and 11-C systems identified
in lactobacilli and closely related organisms. A subset of short Type II-A Cas9
proteins is highlighted. In panel C, key guide sequences driving DNA targeting by
Cas9 are shown for L. jensenii, L. buchneri and L. mali. Predicted crRNA, and
tracrRNA sequences are shown at the top (red). Complementarity between CRISPR
spacer sequences and target protospacer sequences (blue) in target nucleic acids is
shown for phages and plasmids. The predicted protospacer-adjacent motif (PAM)

sequences flanking the 3’ end of the protospacer sequence are shown in green.
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4 DISCUSSION

This Lactobacillus genome sequencing initiative provides genomic clarity for
a genus bedevilled by phenotypic confusion and inconsistent phylogeny. We
generated a resource dataset whose analysis explained the phenotypic diversity of
lactobacilli and associated genera, and suggested new units for classification. The
200 genomes sequenced were from organisms spanning 9 genera and 174 species;
including available Oenococcus and Leuconostoc genomes brought this to 11 genera
and 185 species. We sequenced the genomes of L. crustorum, L. parabrevis, L.
pobuzihii and L. selangorensis twice, but from different culture collections, and their
sequence identity validated the sequencing and analysis pipelines. We elected to
produce genomes of High Quality Draft standard (Chain et al., 2009), which is
suitable for mining all relevant phylogenetic and functional information, and allows
easy custom finishing as desired for genome regions of interest or whole genomes.
Of the 200 type strains sequenced, 179 were previously unavailable on NCBI, which
allows an unprecedented degree of integration of Lactobacillus genomics into
taxonomic discussions and decisions. Since we started the sequencing phase, an
additional 29 lactobacilli or candidate lactobacilli have been published in the
literature; the definition of core genes and robust phylogeny described here will
make their addition to the phylogenome easy once their genomes are sequenced.

Uncertainty surrounding species assignment and grouping into larger
taxonomical units is undesirable, and it presents a considerable challenge for some
bacteria such as those we termed here “the Lactobacillus Genus Complex”. Formal
re-classification is the prerogative of systematic committees, but we examined
phylogenomic approaches that might guide such classification. We first examined
the most recent phylogeny (Salvetti et al., 2012) containing 16 phylogroups, and
determined the frequency distribution of branch distances within phylogroup co-
members and non-members (Supplementary Fig. 17, panel Al) based on the core
gene tree (Fig. 2). We also calculated the frequency distribution of whole genome-
wide genetic distance that is measured by the 1- TNI value (Supplementary Fig. 17,
panel B1). The ideal phylogrouping that would yield non-intersecting curves was

clearly not achieved through measurement of branch lengths or TNI values.
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Therefore, we manually edited phylogroup membership primarily to concord with
monophyletic clades, as well as to minimize the intersection area between curves
(Supplementary Fig. 18). Although the TNI value distribution was still not
discriminatory after optimizing the phylogroups (Supplementary Fig. 17, panel B2),
we achieved superior separation of branch length distribution (Supplementary Fig.
17, panel A2). However, a stringent cut-off value for judging whether two strains
belong to the same phylogroup could not be achieved, which may be due to unequal
clock rates or speciation rates throughout the tree (which will be hard to determine
based on current strain information). Nevertheless, the revised phylogrouping based
on core genome comparison presented here can serve as the basis for discussions of
formal re-classification.

Mobile replicons including bacteriophages and plasmids are a prominent
feature of this group of bacteria, and have historically attracted attention because of
their ability to extend the phenotype of a strain, or in the case of phage, to lyze
starter or adjunct cultures. The data in this genome resource extend the knowledge
base for exploiting the Lactobacillus mobilome. There is also a proportional
abundance of systems to modulate the movement of these replicons. Collectively,
our data reveal the widespread occurrence of diverse CRISPR-Cas immune systems
in the genomes of lactobacilli, including a plethora of novel Type Il systems with
diverse Cas9 sequences. Of particular interest is the identification of a variety of
Cas9 proteins that can be used in combination with novel guide sequences and
various associated targeting motifs for flexible DNA targeting and cleavage. We
anticipate that these novel systems will open new biotechnological avenues for next-
generation Cas9-mediated genome editing in eukaryotes and prokaryotes. The broad
occurrence of diverse CRISPR-Cas immune systems in lactobacilli in general also
provides enormous potential for strain genotyping and enhancing phage resistance in
industrial strains.

The genomic analysis highlights the remarkable diversity of pili in lactic acid
bacteria. This also suggests that the pilus biogenesis, assembly, and also function
may differ quite considerably between strains. To date, there have been only a few
reports describing pili in Lactobacillus species other than L. rhamnosus. The present
data offer a useful basis for future functional studies of these potentially piliated

species from an environmental and evolutionary perspective.
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Our data indicate that the Lactobacillus ancestor was facultatively
heterofermentative, and that selective gene loss events have fine-tuned
glycolysis/hexose/pentose metabolism in clade-specific patterns, against the back-
drop of generalized gene loss and genome decay that characterizes the evolution of
the Lactobacillales (Makarova et al., 2006). The selective pressures other than in the
dairy environment are not well understood. Further evolutionary analyses are
expected to resolve the presence of exceptions we described within major groups
(characterized by a different genetic background compared with that of the whole
group).

Apart from a pattern driven by genome reduction in animal-associated
strains, we did not identify evidence for strong association between the niches of
particular species and their genomic content (Supplementary Info.) though it must be
recognized that the recorded isolation source of any given species may not
necessarily be where it evolved. The strongly divergent patterns already illuminated
by the current dataset for genes involved in carbohydrate management, proteolysis,
surface protein production and destruction of foreign DNA provide a rational
framework for species selection, trait browsing, replicon design and process

optimization in fermentation and bioprocessing applications.
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1 INTRODUCTION

The genus Lactobacillus is a diverse, paraphyletic group with a combined
species and subspecies count of over 200 (Sun et al., 2015). Lactobacilli are Gram-
positive, rod-shaped, non-spore-forming bacteria that inhabit a wide range of niches
from soil and plants to the gastrointestinal tracts of humans and animals (Salvetti et
al., 2012, Slover and Danziger, 2008). They are the largest group within the lactic
acid bacteria (LAB) and one of the most important bacterial groups involved in food
microbiology and human nutrition because of their fermentative and probiotic
properties (Salvetti et al., 2012).

Several pivotal studies have called for a reclassification of the Lactobacillus
genus (Claesson et al., 2008, Salvetti et al., 2012, Sun et al., 2015) while others have
provided detailed characterisation of its diversity (Salvetti et al., 2012, Claesson et
al., 2008, Sun et al., 2015, Zheng et al., 2015a, Canchaya et al., 2006, Kant et al.,
2011). Sun et al recently conducted an international genome sequencing initiative of
the lactobacilli that revealed that the genus was more diverse than a typical
taxonomic family and that confirmed that Leuconostoc, Oenococcus, Weissella,
Pediococcus and Fructobacillus all branch from within the Lactobacillus
phylogenetic tree (Sun et al., 2015).

Numerous studies have also focused on the comparative genomics of
individual Lactobacillus species, highlighting considerable intraspecific genomic
diversity among strains (Forde et al., 2011, Broadbent et al., 2012, Cremonesi et al.,
2012, Douillard et al., 2013, Smokvina et al., 2013, Ojala et al., 2014, Senan et al.,
2014, MM et al., 2015, Wegmann et al., 2015, Zheng et al., 2015b, Raftis et al.,
2011, Martino et al., 2016). One species that has been repeatedly isolated from the
gastro-intestinal tracts of humans and animals and that has potential probiotic
properties is the facultatively heterofermentative species, Lactobacillus salivarius
(Claesson et al., 2006, Messaoudi et al., 2013, Neville and O'Toole, 2010).

The genome of L. salivarius UCC118 was first characterised by Claesson et
al and shown to have a multi-replicon organisation with a single repA-type
megaplasmid and two smaller plasmids. The megaplasmid harboured genes with an

array of functions including bile salt hydrolysis, carbohydrate metabolism and genes
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that complete the pentose phosphate pathway. The study concluded that the
megaplasmid increased the metabolic flexibility and competitiveness of the species
(Claesson et al., 2006). A previous study also identified a novel bacteriocin, Abp118,
encoded by the megaplasmid of UCC118 (Flynn et al, 2002). Two
exopolysaccharide (EPS) production gene clusters were found on the UCC118
chromosome, which share homology and synteny with other L. salivarius strains
(Raftis et al., 2011). EPS, among other bacterial factors, has been implicated in bile
tolerance in species including L. rhamnosus (Koskenniemi et al., 2011).

Two studies showed that other strains of L. salivarius share a similar multi-
replicon organisation to that of UCC118, each having a homologous repA-type
megaplasmid and a varying number of smaller plasmids from none to two (Li et al.,
2007, Fang et al., 2008). Several strains have more complicated architectures:
JCM1046, JCM1047 and AH43348 all have a linear megaplasmid (Li et al., 2007) as
well as a repA-type megaplasmid while JCM1046 also has an additional circular
megaplasmid (Raftis et al., 2014). The varying presence of plasmids in L. salivarius
as well as the variation in size of the megaplasmids (Li et al., 2007) (100-380 kb)
suggests that there is considerable functional diversity across the strains. This
variation is not limited to the plasmids. Raftis et al used the two chromosomal EPS
clusters of UCC118 as a reference in a comparative genome hybridisation (CGH)
experiment that revealed considerable divergence in gene synteny and gene presence
among 33 strains of L. salivarius (Raftis et al., 2011).

The previous study by Raftis et al constituted a largely non-bioinformatic
analysis of L. salivarius strains but nevertheless revealed interesting functional
differences (Raftis et al., 2011). The present study seeks to conduct a fully
bioinformatic analysis of the phylogeny and functional divergence in an expanded
dataset of 42 L. salivarius genomes. The constraint of using a reference strain
(UCC118) that CGH demands is not a limiting factor of the present study, and strain-
specific as well as clade-specific genes and functions can be identified by
comparative genomics that would otherwise be excluded. We focussed on the
analysis of numerous functional traits and we also provide an overall whole-genome

view of the relatedness of the strains and the extent of their diversity.
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2 METHODS

2.1 SEQUENCING, ASSEMBLY AND ANNOTATION

The genomes of a panel of 29 L. salivarius strains were sequenced by
Macrogen Ltd. (Beotkkot-ro-Geumcheon-qu, Seoul, Rep. of Korea) using the HiSeq
platform and 100 bp paired-end reads. This dataset was supplemented by 13 L.
salivarius genomes (5 complete and 8 draft) that were available in NCBI databases.
L. hayakitensis DSM18933 was also included in the study as a related out-group.
The dataset included both genome sequences for the type strain from two different
culture collections (DSM20555" and ATCC117417) to test the robustness of the
methods.

Reads for the 29 sequenced genomes were assembled using Velvet (v1.2.10)
(Zerbino, 2010) with a kmer count of 61, and with expected coverage and coverage
cut-off both set to ‘auto’, allowing Velvet to infer these values. Nucleotide coverages
were all high (>100x) and assembly statistics are available in Table S1. Mauve
(v2.4.0) (Rissman et al., 2009) was used to reorder and reorient draft contigs relative
to the complete genome of UCC118. Additional quality checks are described in
Supplementary methods.

Genes were predicted using three different gene prediction software:
Glimmer3 (v3.02) (Delcher et al., 2007), GeneMark. HMM (v1.1) (Besemer et al.,
2001) and MetaGene (Noguchi et al., 2006). In cases where software predictions
disagreed on the correct start site for a gene, the longest predicted gene sequence was
chosen. Genes predicted by one software only were still included in the dataset in
order to minimise false negative gene predictions.

The issue of multi-copy genes such as the 16S rRNA gene is not addressed in
this study. Our dataset contains a majority of draft genome sequences where
assembly software often fails to assemble multiple copies of identical or almost
identical genes due to ambiguous placement of reads. Similar genes that posed no
problem for assembly software were included in gene counts analysis.

The amino acid sequences of predicted genes were BLASTed (blastp) against

the Kyoto Encyclopaedia of Genes and Genomes database (KEGG) (Ogata et al.,
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1999), the Clusters of Orthologous Groups database (COG) (Tatusov et al., 1997)
and the non-redundant NCBI database (www.ncbi.nlm.nih.gov) to assign functional
annotation. BLAST thresholds for assigning the function of a reference sequence to a
query gene were 40% identity, 50% alignment length to the query gene and a
BLAST bit score of 60. Prediction and annotation of specific functional groups in

this study are described in Supplementary methods.

2.2 CORE-GENE AND SINGLE-GENE PHYLOGENY

QuartetS (Yu et al., 2011) was used to cluster predicted genes (amino acid
sequences) into orthologs. It does this by calculating the reciprocal best BLAST hits
(RBBs) between the genes of each pair of genomes and performing two-stage
clustering (single linkage and Markov clustering) on the RBBs. BLAST thresholds
were 40% identity, 50% alignment length of the query gene and a BLAST bit score
of 50. For clustering the RBBs, an MCL inflation value of 3 and a minimum cluster
size of 2 were used.

The 42 L. salivarius genomes and the L. hayakitensis DSM18933 genome
combined had a predicted core genome of 938 genes. For each genome, these 938
genes were concatenated and the resulting sequences were aligned across the
genome set using Muscle (v3.8.31) (Edgar, 2004). Gap regions were removed in R
(v3.2.3) (R Core Team, 2015) where each amino acid position in the alignment is a
column and all columns with at least one gap are excluded. RAXML (v8.0.22)
(Stamatakis, 2014) was used to generate a bootstrapped tree (100 iterations) from the
core gene alignment using a PROTCATCPREV model and FigTree (v1.4.0)
(Morariu et al., 2009) was used to visualise the tree, which was rooted on L.
hayakitensis DSM18933. The root branch was artificially shortened to provide
greater visual discrimination across L. salivarius sub-clades so all other branches are
informative relative to each other.

To supplement the core-gene phylogeny, 4 single-gene phylogenies were also
generated based on nucleotide sequences using the above methods and a GTRCAT
model. These 4 genes are groEL, rpsB, parB and rpoA, which were identified in each
genome using reference sequences from UCC118.
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2.3 CORE-GENOME AND PAN-GENOME CURVES

A binary gene matrix modified from the QuartetS output was used to
generate core-, pan- and new-gene curves in R. L. hayakitensis DSM18933 was
excluded from this analysis. Unique genes that were excluded by QuartetS (due to a
minimum cluster size of 2) were also added to the matrix at this point. The number
of core, pan and new genes were calculated by starting with two genomes and
sequentially adding genomes, one at a time, until all 42 genomes were included. This
procedure was repeated 1,000 times, each time the order of the matrix being
permuted to randomise the order of addition of genomes. Median values along with
the variation from each permutation were recorded and plotted using R. In order to
assess the open or closed nature of a pan-genome, the logio median values for the
new-gene curve were also plotted where a slope of less than 1 is interpreted as
belonging to an open pan-genome (a < 1) (Tettelin et al., 2008). The R code for
permuting the binary-gene matrix and creating a pan-genome matrix for plotting the
pan-genome curve is on figshare (see Data Bibliography; data file 1). Similar code

was used for the core- and new-gene curves (data file 2 and data file 3, respectively).

2.4 WHOLE-GENOME COMPARISONS: ANI AND POCP

Two whole-genome comparative metrics were used to supplement the core-
gene and single-gene phylogenies. Average Nucleotide Identity (ANI) (Goris et al.,
2007) and Percentage of Conserved Proteins (POCP) (Qin et al., 2014) are two
widely employed methods that seek to provide accurate species and genus cut-off

values, respectively. To calculate ANI values for each pair of genomes, an ANI Perl

script was downloaded (https://github.com/chjp/ANI/blob/master/ANI.pl) and
implemented. Qin et al (Qin et al., 2014) did not provide a POCP script so an in-
house script was written using the same formula and BLAST thresholds listed in
their paper. The script used for POCP calculation is on figshare (see Data

Bibliography; data file 4).
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2.5 ADDITIONAL METHODS SECTIONS

Additional descriptions of Methods can be found in Supplementary Methods. These
carry the sub-headings, ‘Quality assessment of genomes’, ‘Assigning contigs to

replicons’ and ‘Specific functional groups’.
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3 RESULTS AND DISCUSSION

3.1 A DATASET OF 42 GENOMES IS SUFFICIENT TO CAPTURE THE L.
SALIVARIUS CORE GENOME BUT NOT TO CAPTURE THE DIVERSITY
OF ACCESSORY GENES

The core genome of L. salivarius consisted of 1,236 genes. Applying a leave-
one-out-strategy to the 42 L. salivarius genomes and re-computing the core genome
shows that it varies from 1,236 to 1,246 with 1,281 as an outlier when JCM1230 is
excluded. Table S1 shows that the JCM1230 strain sequenced in this study possesses
no plasmids, which explains why the core genome increased so much when the strain
was excluded - the absence of a megaplasmid excludes all extrachromosomal genes
from being part of the core genome. Li et al (Li et al., 2007) identified a repA-type
megaplasmid in JCM1230 and predicted its size to be approximately 100 kb. It is
difficult to explain the absence of plasmid sequences in JCM1230 in the current
study: the megaplasmid might have been artificially excluded by a procedural
artefact during the DNA extraction/preparation procedure or, alternatively, since 100
kb is the smallest repA-type megaplasmid in the Li et al (Li et al., 2007) dataset, the
strain may have lost the megaplasmid in vitro during laboratory passage.

Fig. 1(a) shows the core gene curve for the 42 L. salivarius genomes. The
curve starts to plateau after the addition of only a few genomes and has substantially
levelled out by genome number 42. This suggests that a dataset of 42 genomes is
sufficient to define the core genome of L. salivarius. Hutchison et al (Hutchison et
al., 2016) recently conducted a study on the synthesis of a minimal bacterial genome
that required 473 genes to survive under lab conditions. Like many other species, the
core genome size of L. salivarius, with approximately 1,200 genes, suggests that
most of the core genes of a specific group of bacteria are necessary for processes
outside of basic cell viability such as niche adaptation and interaction with
competitors and pathogens.

The accessory genome of the 42 L. salivarius genomes (excluding unique
genes) consists of 3,057 gene clusters ranging from 802 genes present in only two
genomes to 109 genes present in 41 genomes (all but one). Fig. 1(b) shows the pan-
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genome curve (core and accessory, including unique genes) for the 42 L. salivarius
genomes. The steep slope indicates that the current dataset is not large enough to
define the accessory genome of L. salivarius and that the addition of more genomes
from other strains would continue to increase the size of the accessory gene set. Fig.
1(c) shows that the new-gene curve plateaus off at a steady addition of
approximately 100 genes per genome. The new-gene curve is a combination of
accessory homologous genes and strain-specific genes although homologs might still
exist that are not RBBs or that fall below cut-off values.

Overall, the data presented in Fig. 1 supports the model for an open pan-
genome (Fig. 1(d); a < 1) (Tettelin et al., 2008) whereby an expanding dataset of L.
salivarius genomes will continue to acquire novel genes. Variation in the presence of
genes within species is brought about by two main processes, HGT and gene decay,
both of which apparently began to act upon all L. salivarius strains after they
diverged from their common ancestor, leading to the intra-specific variation
observed in this dataset.

This intra-specific variation can be summarised in a very general sense using
the median number of genes per replicon with the first and third quartiles
representing inter-genome variation: chromosome = 1,737 (1,685, 1,844);
megaplasmid = 249 (216, 283) and small plasmid = 47.5 (23.5, 89.5).
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Fig. 1: A dataset of 42 genomes is not sufficient to define the L. salivarius pan-
genome. The four panels show, with the sequential addition of 42 L. salivarius
genomes (x-axis), the decrease in core genes (panel a; top-left), the increase in total
genes (panel b; top-right), the decrease in new genes (panel c; bottom-left) and the
log of the decrease in new genes (panel d; bottom-right). Genes are counted as
orthologous gene families (% identity >= 40 and % alignment length >=50) except
for genes unique to each genome. The order of addition of genomes has been
permuted 1,000 times. Red dots show the variation in values while black dots show
the median value. An alpha value of 0.44 shows that the pan genome of L. salivarius

is open (a0 < 1).

3.2 THE CORE-GENE PHYLOGENETIC TREE OF L. SALIVARIUS HAS SIMILAR
TOPOLOGY TO ANI WHOLE GENOME CLUSTERS AND SINGLE-GENE
PHYLOGENIES

Fig. 2 shows the core-gene phylogeny of L. salivarius, rooted on L.
hayakitensis DSM18933. The bootstrap values are high, indicating a robust tree

topology and the length of most of the branches leading to the nodes suggests that
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some divergence has occurred even in more closely related strains. Note that the
out-group branch (DSM18933) has been shortened for this analysis (see Methods),
but the scale indicating 0.003 substitutions per amino acid position can still be
applied to all L. salivarius branches. A few sub-clades have little to no outer branch
lengths, reflecting a lack of phylogenetic divergence. LMG14476 and LMG14477
have a difference of only 8 SNPs in the predicted core of 938 genes even though they
were isolated from different sources (Table S1). Three strains isolated from the oral
cavity - gull and gul2 (isolated in the same study), and DSM20555" (independent
isolate) - also show limited phylogenetic divergence (8-19 SNPs). ATCC117417 is
the same L. salivarius type strain as DSM20555" from another culture collection and
they have a difference of 0 SNPs in the predicted core of 938 genes, highlighting the
limited accrual of variation over short periods of time during vertical gene transfer.
A similar case can be observed for three strains - AH4231, AH4331 and AH43348
(17-48 SNPs) - all isolated from the human ileocecal region in the same study and
between UCC118 and AH43324 (54 SNPs) also isolated from the human ileocecal
region. In contrast to these sub-clades, CCUG44481 (an animal isolate) and
CCUG38008 (a human gall isolate) have the most divergent core genome across all
42 L. salivarius strains (3,643 SNPs).

Average Nucleotide Identity (ANI) (Goris et al., 2007) was also used
to cluster L. salivarius strains. Fig. 3 shows a heatmap of ANI values where the
clustering of strains is largely in agreement with the core-gene phylogeny of Fig. 2.
L. hayakitensis was excluded from the heatmap so an unrooted clustering is
presented. ANI was designed as a method to identify whether a particular strain
belongs within a species, using a cut-off value of 95% as the species boundary
(Goris et al., 2007). In terms of its use of homologous sequences, ANI can be
compared with the core-gene phylogenetic method, although it uses nucleotide
sequences and includes homologous inter-genic regions. Discrepancies between the
two tree topologies are likely due to differences in computing similarity scores from
intra-genic amino acid sequences and intra/inter-genic nucleotide sequences. The
lowest ANI value across the L. salivarius strains is 96.8% between JCM1047
(isolated from swine intestine) and CECT5713 (isolated from human breast milk),
indicating that all strains belong to the same species.

Single-gene phylogenies were also constructed using 4 marker genes -

groEL, rpsB, parB and rpoA. When sub-clades had sufficient phylogenetic signal,
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bootstrap values were high and agreed with the tree topology of the core-gene
phylogeny in Fig. 2. On average, however, the phylogenetic signal of the trees was
too low to make reliable comparisons, reflecting the limits of building single-gene
trees to study the evolutionary history within a species, especially since gene
sequences had to be aligned at the nucleotide level to see what little divergence there
was across strains for these genes. The tree for parB is included as Fig. S1 since it

shows the most phylogenetic signal of the 4 genes.
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Fig. 2: A phylogenetic tree generated from 938 core genes shows considerable
variation in divergence across strains. Branch lengths (solid black lines) represent
evolutionary divergence and strain labels are lined up for ease of comparison (dashed
lines). Bootstrap values are included to show robustness of tree topology. The tree is
rooted on L. hayakitensis DSM18933 and this branch is artificially reduced to
provide a clearer visualisation of the other branch lengths relative to each other. The

scale bar shows average number of amino acid substitutions per site.
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Fig. 3: Clustering of pair-wise average nucleotide identity (ANI) scores agrees
largely with the clustering of the core-gene tree in Fig. 2. The colour key (top-
left) shows a gradation of colour from red to orange to yellow to white representing
increasing genome-genome similarity. Euclidean distance and complete linkage
clustering were used to cluster rows and columns. L. hayakitensis DSM18933 is

excluded.

3.3 PLASMIDS CONTRIBUTE CONSIDERABLY TO L. SALIVARIUS GENOMIC
DIVERSITY

Li et al have already shown that there is considerable size variation in L.
salivarius repA-type megaplasmids ranging from 100 kb (JCM1230) to 380 kb
(DSM205557) (Li et al., 2007). This suggests that there is comparable variation in
functional diversity due to the high coding density of prokaryotic replicons. The
number of predicted genes on the repA-type megaplasmids that we predicted ranged
from 165 genes in NIAS840 to 408 genes in cp400. NIAS840 has a complete
genome sequence while that of strain cp400 is a draft, suggesting that closed
genomes are not a factor for bias when predicting the number of genes on
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megaplasmids. The lack of plasmids in L. hayakitensis DSM18933 was not
discussed when the strain was published (Morita et al., 2007) and plasmid absence
has no effect on the conclusion that the repA-type megaplasmid was acquired early
in L. salivarius evolution (Li et al., 2007). The possible technical reasons for the loss
of a megaplasmid in JCM1230 have been covered in a previous section. Table S2
shows the BLAST results of three repA-type marker genes - repA, repE and parA -
against the contigs of each genome. If contigs were assigned to replicons accurately,
it is expected that BLAST hits for each gene would lie on predicted repA-type
megaplasmid contigs. This is indeed the case with all three genes having between
93-100% identities over their full length aligned to a repA-type megaplasmid contig,
usually all three genes aligning to the same contig. Exceptions include JCM1230,
which had no BLAST hits due to its missing megaplasmid, AH43348, which had an
extra parA gene on a predicted repA-type megaplasmid contig and L. hayakitensis
DSM18933, which has a repA gene and a parA gene on a predicted chromosomal
contig. The repA and parA genes of DSM18933 have a lower identity than the other
hits (79% and 87%, respectively) and it is possible that these genes belong to an
unidentified megaplasmid, although there was no mention of extrachromosomal
sequences in the original species/strain description (Morita et al., 2007).

Several strains in the dataset also possess linear megaplasmids that have little
homology to the repA-type megaplasmid, a finding that was first documented in Li
et al (Li et al., 2007). These strains are JCM1046, JCM1047 and AH43348. The
linear megaplasmids of JCM1046 and JCM1047 show high sequence similarity: two
predicted contigs in the draft genome of JCM1047 cover most of the complete linear
megaplasmid of JCM1046 (pLMP1046) with a high percentage identity. The
genome of AH43348 is a draft made up of 114 contigs so the linear megaplasmid
could only be predicted by sequence homology with other linear megaplasmids from
the database of Lactobacillus NCBI plasmids (see Supplementary methods). The
contigs of AH43348 had very little homology to pLMP1046; however, several
contigs do cover most of a second megaplasmid present in NIAS840 aside from the
contigs that align to repA-type megaplasmids. The second megaplasmid of NIAS840
was not described as being circular or linear (Ham et al., 2011) and it is possible that
this megaplasmid is actually homologous to the linear megaplasmid of AH43348.
An alternative explanation is that both AH43348 and NIAS840 have two circular

megaplasmids; this would mean that the homology-based method used in this study
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failed to predict the linear megaplasmid of AH43348, instead assigning its genes to
the chromosome. SMXD51 is predicted to have an additional large plasmid as well
as a repA-type megaplasmid; its draft genome is made up of 10 contigs, 6 belonging
to the chromosome and the remaining 4 described as a 143 kb megaplasmid, an 85
kb large plasmid and two small plasmids (31 kb and 9 kb) (Kergourlay et al., 2012).
We found that the 143 kb and the 85 kb plasmids both align over most of their
sequence to different regions of the repA-type megaplasmid of UCC118 (pMP118),
together adding up to over 94% of its length. This suggests that these two sequences
are not separate plasmids, but together make up the repA-type megaplasmid of
SMXD51 - a finding made more probable by the fact that the available SMXD51
genome is a draft genome.

The smaller plasmids show even greater variation. Our findings (Table S1)
suggest that 15 strains have no small plasmids, 20 strains have a single small plasmid
and 8 strains have two small plasmids. The number of predicted genes on the small
plasmids ranged from 11 in a GJ24 plasmid to 144 in an AH4231 plasmid. Many of
these plasmids show high-level homology to the two endogenous plasmids described
by Fang et al in UCC118 (Fang et al., 2008). The small plasmid of JCM1046
(pCTN1046) is quite distinct from those in UCC118 and shares homology with a
plasmid in SMXD51, a relationship first described in Raftis et al (Raftis et al., 2014).

Fig. 4 shows a general summary of functional diversity across the replicons
for each strain using COG categories. The absence of megaplasmids in DSM18933
and JCM1230 is evident along with the absence of smaller plasmids in 15 strains.
The proportional allocation of genes to COGs shows much more similarity across
chromosomal genes than across those on the megaplasmids or the plasmids,
reflecting the accessory nature of extrachromosomal DNA. The proportions (and raw
counts) of genes involved in translation and ribosomal structure is much higher on
the chromosomes, reflecting the complexity of chromosomal cellular machinery
related to protein production when compared to that of the plasmids. All three
replicon groups have a large number of genes with unknown function, highlighting
current limits to annotation, but also the need for greater experimental investigation.
The mobilome gene category is much higher as a percentage in the plasmids; this
makes sense due to the different selection pressures acting on plasmids and it can be
speculated that it benefits prophages and transposases to use the higher copy number

and conjugative ability of plasmids to multiply.
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The order of the strains (bars) reflects the order of the core-gene tree in Fig. 2. Genes
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category.

3.4 LPXTG-MOTIF SURFACE PROTEINS ARE MORE NUMEROUS IN
STRAINS HARBOURING MULTIPLE SORTASES AND A PUTATIVE PILUS
OPERON

Sortases are important enzymes for recognising and anchoring surface
proteins containing an LPXTG motif, and sortase-anchored surface proteins are often
involved in the interaction of a bacterium with its surrounding environment (Call and

Klaenhammer, 2013). In L. salivarius, this includes host-bacterium interactions since
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most strains have been isolated from human or animal sources. Fig. 5 shows the gene
counts for sortases, pilus genes and genes with an LPXTG motif.

All 43 genomes have at least one sortase A gene, the “housekeeping” sortase,
that typically acts on many protein targets and is considered to be essential for the
survival of most Gram-positive bacteria. Additionally, 7 genomes have an extra
sortase A and 5 of these have a sortase C gene. All 5 strains with a sortase C have a
putative pilus operon, confirming previous studies that describe the role of sortase C
in pilus construction (Spirig et al., 2011). The extra sortase A in strains with a pilus
operon suggests that this gene is a more specific sortase A with some role in the
formation of pili. However, two strains, NIAS840 and AH43348, also have an
additional sortase A gene, but they lack a pilus operon. We described in a previous
section that the non-repA-type megaplasmid (presumably linear based on Li et al (Li
et al., 2007)) of AH43348 has a strong homology to the second megaplasmid in
NIAS840. The extra sortase A gene in these two strains lies on this extra
megaplasmid (speculatively linear) and it presumably acts on gene products with an
LPXTG motif encoded by this replicon. Four of the 5 strains with pilus operons
belong to the DSM20555" sub-clade (4 genomes) where 3 are isolated from the oral
cavity and ATCC117417 is a reference strain from the Human Microbiome Project
(http://www.hmpdacc.org). Pili are commonly involved in adhesion and their
production in this sub-clade might reflect an adaptation to the oral environment by
allowing the bacterial cell to adhere to the tooth surface or underlying dentine.
JCM1047 is a swine intestinal isolate and it is not clear why it is the only other strain
with a predicted pilus operon, except that the presence of pili surely has an adaptive
role in the intestine as well as the oral cavity.

The range of values for gene products with an LPXTG motif is partly
explained by the number of sortase genes and the presence of pilus operons, with
more genes being present in strains with multiple sortases and a pilus operon. L.
hayakitensis DSM18933 has the most genes containing an LPXTG motif (n=18).
This suggests that there might have been selective pressure leading to a reduced

number of cell-surface and secreted proteins with an LPXTG motif in L. salivarius.
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Fig. 5: Gene counts for sortase families, LPXTG motifs and potential pilus
clusters are all positively correlated. Genes are assigned to 4 categories - sortase
A, sortase C, LPXTG and pilin — and coloured according to the in-figure legend. The
order of strains (bars) from left to right reflects the order of the core-gene tree from

top to bottom in Fig. 2.

3.5 THE GENE DISTRIBUTIONS OF GLYCOSYL HYDROLASES AND
GLYCOSYL TRANSFERASES SHOW CONSIDERABLE EVIDENCE OF GENE
LOSS AND HGT

GHs and GTs are two large and important groups of genes that are
responsible for the hydrolysis (or modification) and synthesis, respectively, of the
glycosidic bonds of carbohydrates. Fig. 6 and Fig. 7 show the distribution and
abundance of genes according to their GH and GT families across the 42 L.
salivarius strains and L. hayakitensis DSM18933, separated into their respective
replicons.

There is no correlation between the number of GHs and the number of GTs
per strain in this dataset (Spearman rho = -0.07; p = 0.67), showing the independence

of a strain’s ability to synthesise carbohydrates compared to its ability to break them
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down. This is not surprising since the selective pressures acting on genes that break
down particular carbohydrates are largely determined by the availability of that
substrate in the environment while carbohydrate synthesis can lead to complex
interactive traits such as EPS, which vary in structure, composition and function
depending on the biotic and abiotic environmental factors and the species of bacteria
in question (Ciszek-Lenda, 2011).

For both GHs and GTs, the majority of genes reside on the chromosome (GH
= 808/900; GT = 1,313/1,322), but there is considerably more extrachromosomal
diversity for GHs than GTs and no GTs are located on the smaller plasmids. These
results indicate that GHs are horizontally acquired more frequently than GTs in L.
salivarius. GT families also appear to be more stable on the chromosome compared
to GHs with 10 out of 13 GT families being present in 39 strains or greater while
GHs have only 7 out of 17. Greater retention of GT genes across the dataset suggests
that the relevant functions of carbohydrate synthesis are under greater selective
pressure across all strains, whereas GH gene retention is more variable due to the
dynamic and changeable nature of carbohydrate availability in typical environments
for L. salivarius cells.

Numerous gene families for both GHs and GTs are present in all 43 genomes
and found on the chromosomes only. For GHs, these are GH13, GH32 and GH73;
for GTs, these are GT26, GT28, GT41 and GT51. All these families have numerous
predicted substrates and functional properties and their absence from extra
chromosomal replicons suggests that these genes are important for cell processes
independent of particular niches. More interesting are the families that are present in
all 42 L. salivarius genomes but absent from L. hayakitensis DSM18933 or,
alternatively, absent from all 42 L. salivarius but present in DSM18933. These
families are GH2 and GT32 (present in L. salivarius only), and GH68 (present in L.
hayakitensis only). GH68 is a levansucrase and present in DSM18933 only while
GH2 and GT32 are quite general and act on multiple substrates. Levansucrase
enzymes, unlike sucrases, are localised almost entirely extracellularly and they
contribute to 60% of extracellular sucrase activity (Goncalves, 2015). The presence
of levansucrase in DSM18933 suggests that this strain is more adapted to the
breakdown of sucrose — an ability that may compensate for the fact that this strain
has the lowest number of GH genes (n=12) in this dataset and the lowest number of
GH families (n=9) along with 01M14315, DSM20492 and SMXD51.
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A few other GH and GT families have a very narrow distribution. GH70, a
dextransucrase, is limited to CCUG44481 and GJ24 — a branch pair isolated from
different sources. A gene for GH119, an a-amylase, is found only on the repA-type
megaplasmid of JCM1046. Peptidoglycan lyase — an enzyme that can hydrolyse the
cell walls of bacteria - is found on the smaller plasmids of JCM1046 and JCM1047,
both isolates from the swine intestine. GT27 and GT92 are limited to the
chromosomes of 5 strains: the sub-clade of 4 strains containing DSM20555" and the
singleton, NCIMB8817.

The distribution of genes across the strains in these two major functional
groups shows considerable gene loss and HGT with very limited association of GH

and GT families with isolation source.
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Fig. 6: Gene counts for GH families suggest regular HGT and gene loss events.
The colour key (top-left) shows a gradation of colour from blue to dark blue to
purple as the gene count increases. Grey represents a gene count of zero. GH genes
are separated into chromosomal, megaplasmid and plasmid genes. For each replicon
group, the order of strains (columns) from left to right reflects the order of the core-

gene tree from top to bottom in Fig. 2.
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order of the core-gene tree from top to bottom in Fig. 2.

3.6 HOST ADAPTATION AND GENE CONSERVATION IN EPS GENE
CLUSTERS

L. salivarius UCC118 EPS cluster 1 is located on the chromosome and is
composed of 21 genes spread across 23 kb. Twenty-nine L. salivarius strains harbour
at least 18 genes from UCC118 EPS cluster 1 and the other 13 strains do not have
the cluster in their genomes (Fig. 8). Interestingly, the presence of EPS cluster 1 is
correlated with the core-gene tree (Fig. 2). The majority of strains in the top sub-
clade from JCM1046 to NCIMB702343 lack EPS cluster 1. Two other strains,
DSM20492 and DSM20554, are located in the middle of the tree and do not harbour
the cluster either. DSM18933 lacks EPS cluster 1, suggesting that either the common
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ancestor of L. salivarius acquired the cluster through HGT after the split from
L. hayakitenis or, alternatively, that DSM18933 lost the cluster through gene decay.

Another interesting point is that 9 of the 13 strains lacking EPS cluster 1
were isolated from animal samples and only 3 were isolated from human samples
(one strain does not have a known origin). In contrast to this, the majority of strains
harbouring EPS cluster 1 have a human origin, suggesting that EPS cluster 1 is not
essential for the survival of L. salivarius as a species, but it might code for an
adaptive trait to the human GIT.

L. salivarius UCC118 EPS cluster 2 is also located on the chromosome and is
composed of 28 genes spread across 33 kb. The two physical extremities of the EPS
cluster 2 are shared by all the strains (Fig. 9; from LSL_1574 to LSL_1569 and from
LSL_1551 to LSL_1547). However, variations exist in the middle of EPS cluster 2
and 6 groups were identified as described in Fig. S2. Group 1 contained strains
harbouring all the UCC118 EPS cluster 2 genes while group 6 had only the 2
extremities of the cluster.

The central part of the cluster varies in the L. salivarius strains compared to
the reference strain, UCC118. This region contained the majority of
glycosyltransferases and EPS biosynthesis-related proteins in UCC118 EPS cluster
2. Glycosyltransferases are involved in the addition of sugar subunits to the growing
EPS chain. A difference in the glycosyltransferase composition suggests potential
variation in EPS structure. These results show that the organisation of EPS cluster 2
is not conserved in most L. salivarius strains. Indeed, only 4 strains belong to group
1. UCC118, AH43324, CECT5713 and NCIMBB8818. Interestingly, potential
probiotic activities have been described for CECT5713 (Perez-Cano et al., 2010)
and UCC118 (Flynn et al., 2002).

EPS produced by strains of lactobacilli are suspected to play a role in the
strain’s probiotic activity (Lebeer et al., 2008). L. salivarius heteropolysaccharide
production is controlled by EPS clusters and the structure of Lactobacillus EPS
clusters has been described as highly conserved (Patten and Laws, 2015), although
discussion in this area is still very much open - a fact that is highlighted in
L. salivarius EPS clusters that vary considerably in both their gene synteny and in
the presence of particular genes.
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3.7 BACTERIOCIN GENE CONTENT RANGES FROM UBIQUITOUS TO
STRAIN-SPECIFIC

Flynn et al identified a small, heat-stable bacteriocin, Abp118, in UCC118
that showed considerable antimicrobial activity (Flynn et al., 2002). This bacteriocin
is identified as salivaricin P by Bagel3, which has close homology to Abp118 since
they differ by only two amino acids (Barrett et al., 2007). Homologs of Abpl118
along with their surrounding genes (Areas of Interest; AOIs) are present in 22 strains
of L. salivarius in this study (Table S3). In all 22 cases, this bacteriocin is found on

the repA-type circular megaplasmid and appears to have no strong association with a
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particular isolation source, but its distribution on the core-gene tree (Fig. 2) is
associated with several sub-clades including the UCC118 branch (n=3), the
AH43348 branch (n=6) and a few small sub-branches (of n=2) and singletons. It is
interesting that some of the strains lack this bacteriocin; the size and functional
variation of the repA-type megaplasmid highlights the fast evolutionary rate that
these replicons undergo, perhaps losing Abp118 if bacteria co-inhabiting the same
environment did not compete strongly with L. salivarius for limiting resources.

A number of other bacteriocins are also present in the L. salivarius strains in
this dataset. All 43 strains possess between 1 and 4 enterolysin genes. The N-
terminals of these bacteriocins have considerable sequence homology to a
bacteriophage lysin and they act to degrade the bacterial cell-wall in a range of
genera including enterococci, pediococci, lactococci and lactobacilli (Nilsen et al.,
2003). LS2, an extremely heat- and pH-stable peptide with anti-listerial activity
(Busarcevic and Dalgalarrondo, 2012)7, is confined to the NCIMB8816 sub-clade
(n=4) and shows homology to bacteriocins in several oral streptococci. The two-
strain sub-clade consisting of CCUG44481 and GJ24 is the only branch to harbour a
plantaricin S while MR10B is present on the small plasmid of three strains —
JCM1046, JCM1047 and DSM20554. A cluster of three bacteriocins is present on
two divergent strains, CCUG44481 and CCUG47171, harbouring plantaricin NC8,
lactacin F and acidocin LF221B. The distribution of bacteriocins in this dataset gives
an indication of HGT: LS2 is confined to a single sub-clade and was likely
transferred into the megaplasmid of the ancestor of these 4 strains; MR10B is present
on the only small plasmid in 3 divergent strains.

The production of bacteriocins gives a strain an obvious competitive
advantage since it inhibits similar strains and species that may compete strongly for
limiting resources. Specific environments impose different biotic and abiotic factors
and the details of microbial competition and horizontal transfer of genes (including
bacteriocin genes) are dependent on a complicated interplay among these factors,

potentially explaining the scattered distribution of bacteriocin genes in this dataset.
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4 CONCLUSIONS

We conducted a comparative genomic study of 42 strains of L. salivarius and
a closely related out-group, L. hayakitenis DSM18933. Previous comparative studies
show that there is considerable functional and phylogenetic diversity across
Lactobacillus species. Smaller scale intra-specific studies focusing on single
Lactobacillus species highlight the continuation of this trend across strains.

We demonstrate that L. salivarius has an open pan-genome and that all major
functional groups described show considerable functional variation across strains,
often displaying greater similarity within sub-clusters as opposed to niche-specific
trends. Variation in gene function is greater across the megaplasmids than across the
chromosomes and greater across the smaller plasmids than across the megaplasmids.
The level of functional variation revealed in L. salivarius suggests that strain-specific
properties can potentially be applied to commercial areas of human health and

nutrition such as probiotics and food preservation.
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Chapter IV

Application and optimization of sequence
alignment protocols identifies differences in
evolutionary rate across sub-clades in the
genus Lactobacillus
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1 INTRODUCTION

1.1 LACTOBACILLUS AND EVOLUTIONARY RATE

Lactobacillus is a diverse, paraphyletic genus with over 247 species and
subspecies according to the LPSN (List of prokaryotic names with standing in
nomenclature), although numerous lactobacilli in this list have been reclassified to
other genera. Lactobacilli occupy a wide range of niches including fermented meats,
dairy products and the gastro-intestinal and urinary tracts of mammals (Walter,
2008). Lactobacillus is an interesting genus to study, not only for its functional
diversity and prevalence of horizontal gene transfer (HGT), but also for the insights
into biological principles such as evolutionary rate variation and selection pressure
that such a diverse dataset can provide (Claesson et al., 2008).

Salvetti et al (in prep) generated a phylogenetic tree of 238 Lactobacillus
species and related genera using a concatenation of 29 core ribosomal protein
sequences and a maximum-likelihood approach (Figure 4.1). They used tree
topology to visually identify 14 separate sub-clades ranging in size from just two
species to a large sub-clade consisting of 43 species. Salvetti et al demonstrated
robustness of these sub-clades using multiple methods of whole-genome alignment,
while also conducting a functional analysis to reveal sub-clade-specific genes.

Makarova & Koonin used a molecular clock test to show that genera within
the order Lactobacillales evolve at different rates (Makarova and Koonin, 2007).
Forsdyke notes that accurate temporal calibration of evolutionary rate is difficult
(Forsdyke, 2002) and other studies have suggested that absolute rather than relative
rates are preferably calculated using accompanying temporal data such as fossil
evidence (Jablonski and Shubin, 2015).

Relative rates of protein evolution can be estimated using information based
on synonymous and non-synonymous mutations within protein-coding genes. A
synonymous mutation is a single nucleotide substitution that changes the
trinucleotide sequence of a codon, but that leaves the translated amino acid
unchanged. A non-synonymous mutation, in contrast, will change the trinucleotide

sequence and the amino acid.
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Normalised values for the number of synonymous (dS) and non-synonymous
(dN) substitutions capture the divergence in nucleotides that preserve and alter
amino acid sequences, respectively, between two aligned, homologous, protein-
coding genes. Synonymous mutations are often assumed to reflect the rate of
evolution in the absence of selection (Zhang and Yang, 2015), although there is
evidence that they can affect transcription and translation accuracy as well as the rate
of incorrect protein folding through selective pressure acting on the ‘genome
phenotype’ (Forsdyke, 2002). Non-synonymous mutations reflects the evolutionary
rate under selective pressure where amino acid changes can alter the structural and
functional properties of proteins, thereby influencing the phenotype of a genome.

The ratio of dN over dS reflects the evolutionary rate of proteins normalised
for variation in mutation rate under a neutral model and can be used as a measure of
the strength and type of selection pressure acting on a gene: dN/dS = 1 (no
selection); dN/dS > 1 (positive selection); dN/dS < 1 (purifying selection) (Zhang
and Yang, 2015). The dN/dS ratio is therefore a relative value of protein
evolutionary rate that can be used to compare different lineages and genes.

Selective pressure can vary for each amino acid depending on its structural
and functional importance (Yang, 1996). In this sense, dN/dS varies along the length
of a protein and a single dN/dS value attributed to a gene reflects the average protein

evolutionary rate and overall selective pressure acting on the gene.

1.2 SEQUENCE ALIGNMENT AND MULTIPLE
SUBSTITUTION

Protein-coding sequences evolve as triplets of nucleotides and sequence
similarity degrades more slowly at the amino acid than the nucleotide level (Abascal
et al., 2010). This can lead to problems during sequence alignment, a necessary step
in the calculation of values for dN and dS. Sequence alignment involves the
introduction of gaps in order to preserve positional homology and, for this reason,
methods that correctly align homologous codons lead to more accurate calculations
of dN and dS. Alignment of genes at a nucleotide level is generally more accurate
when assisted by an alignment of translated amino acid sequences acting as a

template (Ranwez et al., 2011).
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Correcting for multiple substitutions using algorithms such as Jukes-Cantor
(Holmquist et al., 1972) can also affect the dN/dS ratio. Jukes-Cantor correction uses
a simplistic model to correct for multiple substitutions, assuming that two random
nucleotide sequences of the same length aligned together will share, on average, one
quarter of the nucleotides from both sequences. The Jukes-Cantor formula is as
follows: 3/4 x log (1 — 4/3 x p) where p = the proportion of nucleotides not shared
between two sequences. Because the value of dS is typically much higher than the
value of dN (in terms of a greater number of substitutions), it will have exponentially
more multiple substitutions and a higher weight for its adjusted value than that of
dN, decreasing the dN/dS ratio and, potentially, changing conclusions based on
selective pressure. A dN or dS value > 0.75 cannot be adjusted by the JC formula
because the formula assumes that sequence divergence beyond this value cannot be

differentiated from an alignment of non-homologous sequences.

1.3 AIMS OF THE STUDY

This study describes the rate of protein sequence evolution of core genes
using the dN/dS ratio in a large genomic dataset consisting of 227 Lactobacillus
species and related genera. Use of the dN/dS ratio allows for interpretation of the
strength and type of selection pressure acting on the core genome. The effect of
sequence alignment protocol on the values of dN and dS is also described, focussing
on direct nucleotide versus amino acid template alignment, pair-wise versus multiple
alignment and the use of Jukes-Cantor correction for multiple substitutions. Jukes-
Cantor correction was used because it makes the fewest assumptions when compared
to other algorithms.

The potential for variation in protein evolutionary rate across 14 sub-clades
identified by Salvetti et al (in prep) is investigated. The average selection pressure
acting on the core genome is expected to be purifying due to selective constraints on
essential genes. However, the degree to which this selection acts can vary across

different lineages.
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Figure 4.1: A phylogenetic tree of 238 Lactobacillus species and related genera
(Salvetti et al; in prep). Ten sub-clades of Lactobacillus are colour-coded while
Pediococcus and Leuconostocaceae are left in white. Two Lactobacillus sub-clades
consisting of two species each have also been left in white. The out-group beneath
the sub-clade Lcor is composed of Carnobactrium, Atopobium, Kandleria and
Lactococcus.

2 METHODS

The Sun et al dataset consisting of 213 genomes (Sun et al., 2015) was
supplemented with additional Lactobacillus genomes made available on NCBI since
its publication, giving a dataset of 227 Lactobacillus species and related genera
(comprised of 199 species and 6 genera). The 227 genomes were assigned to one of
14 separate sub-clades according to Salvetti et al (in prep). Table 4.1 lists all 227
genomes accompanied by four-letter abbreviations for the sub-clades to which they

belong.
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Genes were predicted using Glimmer3 (Delcher et al., 2007),
GeneMark.HMM (Besemer et al., 2001) and MetaGene (Noguchi et al., 2006) where
a gene predicted by at least one software was kept. QuartetS (Yu et al., 2011) was
used to cluster gene sequences into orthologues, identifying bi-directional best hits
(BHH) at thresholds of 25% identity and 30% alignment length. QuartetS output
showed that the dataset of 227 genomes had a core genome of 244 genes, 166
remaining after exclusion of genes containing partial sequences (truncated 5’- and/or
3’ ends).

SNAP (www.hiv.lanl.gov) was used to calculate dN, dS and dN/dS as well as

JC-corrected (Jukes-Cantor) values for dN and dS to account for multiple nucleotide
substitutions where dN = (number of observed non-synonymous
substitutions)/(number of possible non-synonymous substitutions) and dS = (number
of observed synonymous substitutions)/(number of possible synonymous
substitutions). Median dN, dS and dN/dS were calculated for all pairs of homologous
sequences (25,651 pair-wise alignments from 227 homologous sequences for each of
166 core genes).

Four methods were used for the alignment of 227 sequences:

1. ‘nuc align’: Direct nucleotide alignment of 227 sequences (Separately for each of
166 core genes) using Muscle, followed by calculation of dN, dS and dN/dS for each
pair of sequences using SNAP (taking a multiple alignment of 227 sequences as
input).

2. ‘nuc align pair’: Direct pairwise nucleotide alignment of each pair of sequences
(separately for each of 166 core genes) using Muscle (25,651 separate alignments),
followed by calculation of dN, dS and dN/dS for each pair of sequences using SNAP
(taking each pairwise alignment of two sequences as input and outputting values, one
row per sequence pair).

3. ‘aa align’: Alignment of 227 translated amino acid sequences (separately for each
of core 166 genes) using gaps as a template to replace each amino acid with its
corresponding trinucleotide codon, followed by calculation of dN, dS and dN/dS for
each pair of sequences using SNAP (taking a multiple alignment of 227 sequences as
input).

4. ‘aa align pair’: Alignment of each pair of translated amino acid sequences

(separately for each of 166 core genes) using gaps as a template to replace each
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amino acid with its corresponding trinucleotide codon, followed by calculation of

dN, dS and dN/dS for each pair of sequences using SNAP (taking each pairwise

alignment of two sequences as input and outputting values, one row per sequence

pair).

Lali Lactobacillus paralimentarius
Lali Lactobacillus paralimentarius
Lali Lactobacillus mindensis
Lali Lactobacillus versmoldensis
Lali Lactobacillus nantensis
Lali Lactobacillus paralimentarius
Lali Lactobacillus nodensis
Lali Lactobacillus tucceti

Lali Lactobacillus farciminis
Lali Lactobacillus alimentarius
Lali Lactobacillus kimchiensis
Lali Lactobacillus mellifer
Lali Lactobacillus mellis

Lali Lactobacillus heilongjiangensis
Lali Lactobacillus crustorum
Lali Lactobacillus ginsenosidimutans
Lali Lactobacillus futsaii

Lali Lactobacillus crustorum
Lcas Lactobacillus selangorensis
Lcas Lactobacillus manihotivorans
Lcas Lactobacillus selangorensis
Lcas Lactobacillus pantheris
Lcas Lactobacillus casei

Lcas Lactobacillus rhamnosus
Lcas Lactobacillus zeae

Lcas Lactobacillus paracasei
Lcas Lactobacillus sharpeae
Lcas Lactobacillus camelliae
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Lcas Lactobacillus thailandensis
Lcas Lactobacillus brantae
Lcas Lactobacillus saniviri
Lcas Lactobacillus paracasei
Lcas Lactobacillus nasuensis
Lcon Lactobacillus concavus
Lcon Lactobacillus dextrinicus
Lcor Lactobacillus coryniformis
Lcor Lactobacillus bifermentans
Lcor Lactobacillus coryniformis
Lcor Lactobacillus rennini
Ldel Lactobacillus johnsonii
Ldel Lactobacillus gasseri
Ldel Lactobacillus apis
Ldel Lactobacillus helveticus
Ldel Lactobacillus kimbladii
Ldel Lactobacillus gallinarum
Ldel Lactobacillus kefiranofaciens
Ldel Lactobacillus amylolyticus
Ldel Lactobacillus iners
Ldel Lactobacillus psittaci
Ldel Lactobacillus delbrueckii
Ldel Lactobacillus kalixensis
Ldel Lactobacillus ultunensis
Ldel Lactobacillus amylovorus
Ldel Lactobacillus kitasatonis
Ldel Lactobacillus equicursoris
Ldel Lactobacillus delbrueckii
Ldel Lactobacillus delbrueckii
Ldel Lactobacillus acidophilus
Ldel Lactobacillus delbrueckii
Ldel Lactobacillus amylovorus
Ldel Lactobacillus amylophilus
Ldel Lactobacillus amylotrophicus
Ldel Lactobacillus jensenii
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Ldel

Lactobacillus crispatus

Ldel Lactobacillus acetotolerans
Ldel Lactobacillus taiwanensis
Ldel Lactobacillus floricola
Ldel Lactobacillus pasteurii
Ldel Lactobacillus gigeriorum
Ldel Lactobacillus hominis
Ldel Lactobacillus delbrueckii
Ldel Lactobacillus melliventris
Ldel Lactobacillus kullabergensis
Ldel Lactobacillus helsingborgensis
Ldel Lactobacillus kefiranofaciens
Ldel Lactobacillus hamsteri
Ldel Lactobacillus intestinalis
Ldel Lactobacillus helveticus
Leuc Leuconostoc pseudomesenteroides
Leuc Leuconostoc mesenteroides
Leuc Leuconostoc mesenteroides
Leuc Leuconostoc mesenteroides
Leuc Fructobacillus ficulneus
Leuc Fructobacillus pseudoficulneus
Leuc Oenococcus kitaharae
Leuc Weissella minor

Leuc Weissella halotolerans
Leuc Weissella confusa

Leuc Weissella paramesenteroides
Leuc Fructobacillus fructosus
Leuc Weissella viridescens
Leuc Weissella kandleri
Leuc Fructobacillus tropaeoli
Leuc Weissella hellenica
Leuc Leuconostoc kimchii
Leuc Leuconostoc carnosum
Leuc Weissella koreensis
Leuc Weissella oryzae
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Leuc Leuconostoc gelidum
Leuc Leuconostoc fallax
Leuc Leuconostoc argentinum
Leuc Leuconostoc citreum
Leuc Weissella cibaria
Leuc Leuconostoc gasicomitatum
Leuc Weissella ceti

Lfru Lactobacillus fructivorans
Lfru Lactobacillus parabrevis
Lfru Lactobacillus parakefiri
Lfru Lactobacillus kunkeei
Lfru Lactobacillus diolivorans
Lfru Lactobacillus parabuchneri
Lfru Lactobacillus spicheri
Lfru Lactobacillus paracollinoides
Lfru Lactobacillus hammesii
Lfru Lactobacillus farraginis
Lfru Lactobacillus parafarraginis
Lfru Lactobacillus namurensis
Lfru Lactobacillus acidifarinae
Lfru Lactobacillus zymae
Lfru Lactobacillus sunkii
Lfru Lactobacillus kisonensis
Lfru Lactobacillus rapi
Lfru Lactobacillus otakiensis
Lfru Lactobacillus odoratitofui
Lfru Lactobacillus brevis
Lfru Lactobacillus buchneri
Lfru Lactobacillus hilgardii
Lfru Lactobacillus fructivorans
Lfru Lactobacillus fructivorans
Lfru Lactobacillus sanfranciscensis
Lfru Lactobacillus collinoides
Lfru Lactobacillus fructivorans
Lfru Lactobacillus kefiri

157




Lfru

Lactobacillus lindneri

Lfru Lactobacillus senmaizukei
Lfru Lactobacillus paucivorans
Lfru Lactobacillus florum
Lfru Lactobacillus similis
Lfru Lactobacillus ozensis
Lfru Lactobacillus senioris
Lfru Lactobacillus apinorum
Lfru Lactobacillus malefermentans
Lfru Lactobacillus parabuchneri
Lfru Lactobacillus kimchicus
Lfru Lactobacillus koreensis
Lfru Lactobacillus curieae
Lfru Lactobacillus oryzae
Lfru Lactobacillus parabrevis
Lper Lactobacillus perolens
Lper Lactobacillus harbinensis
Lper Lactobacillus composti
Lper Lactobacillus shenzhenensis
Lpla Lactobacillus plantarum
Lpla Lactobacillus herbarum
Lpla Lactobacillus paraplantarum
Lpla Lactobacillus plantarum
Lpla Lactobacillus plantarum
Lpla Lactobacillus pentosus
Lpla Lactobacillus fabifermentans
Lpla Lactobacillus xiangfangensis
Lreu Lactobacillus frumenti
Lreu Lactobacillus mucosae
Lreu Lactobacillus ingluviei
Lreu Lactobacillus oligofermentans
Lreu Lactobacillus ingluviei
Lreu Lactobacillus antri
Lreu Lactobacillus gastricus
Lreu Lactobacillus secaliphilus
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Lreu Lactobacillus equigenerosi
Lreu Lactobacillus reuteri
Lreu Lactobacillus fermentum
Lreu Lactobacillus vaccinostercus
Lreu Lactobacillus hokkaidonensis
Lreu Lactobacillus wasatchensis
Lreu Lactobacillus oris
Lreu Lactobacillus suebicus
Lreu Lactobacillus vaginalis
Lreu Lactobacillus panis
Lreu Lactobacillus pontis
Lros Lactobacillus rossiae
Lros Lactobacillus siliginis
Lsak Lactobacillus fuchuensis
Lsak Lactobacillus sakei
Lsak Lactobacillus sakei
Lsak Lactobacillus curvatus
Lsak Lactobacillus graminis
Lsal Lactobacillus mali
Lsal Lactobacillus nagelii
Lsal Lactobacillus acidipiscis
Lsal Lactobacillus algidus
Lsal Lactobacillus equi
Lsal Lactobacillus acidipiscis
Lsal Lactobacillus saerimneri
Lsal Lactobacillus satsumensis
Lsal Lactobacillus apodemi
Lsal Lactobacillus ghanensis
Lsal Lactobacillus hayakitensis
Lsal Lactobacillus hordei
Lsal Lactobacillus capillatus
Lsal Lactobacillus uvarum
Lsal Lactobacillus oeni
Lsal Lactobacillus ruminis
Lsal Lactobacillus mali

159




Lsal Lactobacillus murinus
Lsal Lactobacillus agilis
Lsal Lactobacillus salivarius
Lsal Lactobacillus animalis
Lsal Lactobacillus vini
Lsal Lactobacillus aviarius
Lsal Lactobacillus aviarius
Lsal Lactobacillus aquaticus
Lsal Lactobacillus cacaonum
Lsal Lactobacillus sucicola
Lsal Lactobacillus ceti
Lsal Lactobacillus pobuzihii
Lsal Lactobacillus pobuzihii
Pedi Pediococcus acidilactici
Pedi Pediococcus claussenii
Pedi Pediococcus cellicola
Pedi Pediococcus stilesii
Pedi Pediococcus lolii
Pedi Pediococcus inopinatus
Pedi Pediococcus damnosus
Pedi Pediococcus parvulus
Pedi Pediococcus pentosaceus
Pedi Pediococcus ethanolidurans
Pedi Pediococcus argentinicus

Table 4.1: The 227 genomes of the Lactobacillus dataset are listed along with the
sub-clades into which they are grouped (modified from Salvetti et al; in prep).
Four-letter abbreviations are used to name each sub-clade, selecting a representative
member from each in the case of Lactobacillus sub-clades and shortening the genus

name in the case of Leuconostocaceae and Pediococcus.
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3 RESULTS AND DISCUSSION

3.1 SEQUENCE ALIGNMENT METHODS

Figure 4.2 shows the percentages of the data that would be included if Jukes-
Cantor correction was applied for each of the four sequence alignment methods. The
number of synonymous substitutions per synonymous site has a range of between 0
and 1, all values greater than or equal to 0.75 considered as having diverged to the
point of mutational saturation under the Jukes-Cantor model. Saturation here means
being indistinguishable from two randomly aligned nucleotide sequences of the same
length, which would disagree in three out of four bases (or 0.75). For ‘aa align’ and
‘aa align pair’ the median number of included pairs (out of 25,651) is approximately
40% while for ‘nuc align’ and ‘nuc align pair' it is much higher, showing that
nucleotide alignments that use amino acid alignments as a template have a much
greater number of synonymous substitutions (and a greater probability of appearing
saturated at the nucleotide level).

Homologous gene datasets with high diversity can appear saturated by
mutations at a nucleotide level and are difficult to distinguish from randomly
aligned, non-homologous genes. These genes are still quite conserved at an amino
acid level however, showing that synonymous mutations accumulate more rapidly
than non-synonymous mutations, which are much more selectively constrained
(Zhang and Yang, 2015). The sequence diversity across the homologous genes in
Lactobacillus shows itself here as considerable saturation of mutations at the
nucleotide level, especially for the two alignments built from amino acid templates.

The above assumptions relate to Jukes-Cantor, which assumes equal rates of
transition and transversion as well as equal proportion of the four nucleotides
(Holmquist et al., 1972). Other models such as Kimura (Kimura, 1980) may not lead
to saturation at the same level of nucleotide divergence due to the relaxed
assumption that transitions can have different rates to transversions. Jukes-Cantor
may not be a suitable method for correcting for multiple substitutions at this level of

sequence diversity.
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Comparison of average % of non-NAs (dS$<0.75) across methods
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Figure 4.2: The number of NAs generated after Jukes-Cantor correction differs
considerably across four sequence alignment methods. An uncorrected value
becomes NA (‘not applicable’ as output from the software) when dS >= 0.75. The
median values of 166 core genes are shown and boxplots are generated from 25,651
pair-wise comparisons involving 227 genomes. The percentage of NAs for dN/dS is
equal to that of dS for each method because dN/dS cannot be computed without a
numerical value for dS. Labels for the four alignment methods are assigned and

explained in Methods.

162



Figures 4.3 and 4.4 show that aligning nucleotide sequences directly leads to
fewer predicted synonymous mutations but more non-synonymous mutations. When
aligning nucleotide sequences directly, Muscle increases percent identity and
alignment score at the cost of introducing unnecessary gaps that misalign
homologous codons. This is less an issue of multiple alignment and more to do with
ignoring biological information on how sequences evolve, in this case the selective
pressure acting on codons. The literature suggests that values of dN and dS (and
hence dN/dS) are more accurate for ‘aa align’ and ‘aa align pair’, both of which use
amino acid alignments as templates for constructing correctly aligned codons at the
nucleotide level (Abascal et al., 2010).

Interestingly, local sequence aligners like BLAST would never detect distant
homology at the nucleotide level because they need to match similar k-mers between
two sequences (Altschul et al., 1990) and two distantly related homologous genes
might have no similar sequence regions at the nucleotide level.

Even though all four methods give the same conclusion of a core genome
under purifying selection pressure (Figure 4.5), ‘nuc align’ and ‘nuc align pair’ have
significantly different dN/dS from each other and from ‘aa align’ and ‘aa align pair’,
which lead to an interpretation of greater selective constraint acting on core genes
when amino acid-based alignment methods are used.

The reason for the difference between ‘nuc align’ and ‘nuc align pair’ is
likely due to methodological differences in introducing gaps in a multiple alignment
of 227 sequences compared to aligning sequences two at a time. Pair-wise sequence
alignment is generally more accurate and the lower dN/dS value of ‘nuc align pair’

(closer to ‘aa align’ and ‘aa align pair’) supports this.
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Comparison of average dN across methods
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Figure 4.3: Average dN values are significantly higher when nucleotide
sequences are aligned directly. The median values of 166 core genes are shown and
boxplots are generated from 25,651 pair-wise comparisons involving 227 genomes.
Labels for the four sequence alignment methods are assigned and explained in
Methods. Outliers are excluded, but all four methods have a minimum value of 0 and

maximum values of 0.4, 0.36, 0.36 and 0.35 from left to right.

164



Comparison of average dS across methods

o _
o -1 .
| |
@ _ | |
© |_||_|
n Do J I I
o) © | | |
| I N
3 g
o i :
9 _ :

! 1 1 1
nuc align nuc align pair aaalign aa align pair

alignment methods

Figure 4.4: Average dS values are significantly lower when nucleotide sequences
are aligned directly. The median values of 166 core genes are shown and boxplots
are generated from 25,651 pair-wise comparisons involving 227 genomes. Labels for
the four sequence alignment methods are assigned and explained in Methods.
Outliers are excluded, but all four methods have a minimum value of 0 and
maximum values of 0.72, 0.82, 0.99 and 0.99 from left to right.
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Comparison of average dN/dS across methods
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Figure 4.5: Average dN/dS ratios are significantly higher when nucleotide
sequences are aligned directly. The median values of 166 core genes are shown and
boxplots are generated from 25,651 pair-wise comparisons involving 227 genomes.
Labels for the four sequence alignment methods are assigned and explained in
Methods. Outliers are excluded, but all four methods have a minimum value of 0 and
maximum values of 0.74, 0.72, 0.5 and 0.49 from left to right.
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3.2 FRAME-SHIFTED ALIGNMENTS

The ‘nuc align’ alignment method took 227 sequences as input and output a
multiple alignment for each of 166 core genes. For this reason, if the alignment for a
particular set of homologous sequences (representing a core gene) was shifted out-
of-frame, the calculation of dN and dS would be out-of-frame for all 227 sequences.
In contrast, the ‘nuc align pair’ method aligned sequences one pair at a time so in-
frame and out-of-frame alignments could be counted as each alignment occurred.

Figures 4.6 and 4.7 show the percentage of out-of-frame pairs (out of 25,651)
for each of 166 core genes (for ‘nuc align pair’) and the average dN/dS ratio for core
genes in-frame and out-of-frame (for ‘nuc align’), respectively. The number of out-
of-frame alignments varies considerably across core genes ranging from close to 0%
to almost 50%, suggesting that the degree of sequence conservation also varies
considerably because many more gaps inserted into an alignment reflect sequence
divergence and lead to a higher probability of incorrect positional homology
(Abascal et al., 2010).

Frame-shifts lead to higher dN values because they mis-align homologous
codons, increasing the number of non-synonymous substitutions. Frame-shifts lead
to lower dS because greater sequence similarity at the nucleotide level is achieved at
the expense of introducing additional gaps. The overall effect is a higher dN/dS ratio
and an interpretation of higher positive selective pressure acting on core genes.
Frame-shifts are not a problem for amino acid alignments because codons are treated
as a single unit (i.e. the amino acid), although it is still possible that non-homologous
codons can be aligned, leading to less accurate calculations of dN and dS.
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Frame-shifts in sequence pairs per gene
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Figure 4.6: Percentage of pair-wise nucleotide alignments per gene that were
frame-shifted due to addition of one or more incorrect gaps ranges from less
than 1% to over 50%o. Pair-wise nucleotide sequence alignments that did not have a
length equal to a multiple of three (unlike the unaligned input sequences) were
counted for each of 166 core genes and expressed as a percentage of 25,651 pair-
wise alignments (for ‘nuc align pair’). Genes are ordered according to increasing

percentage of frame-shifts.
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Comparison of in-frame and out-of-frame alignments (dN/dS)
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Figure 4.7: Average dN/dS ratios are significantly higher for genes where the
multiple alignments of 227 sequences lead to a frame-shift somewhere along its
length (for ‘nuc align’). Boxplots are generated from 166 core genes (39 out-of-
frame and 127 in-frame) where dN/dS for each gene is the median average of 25,651

pair-wise comparisons of 227 sequences.
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3.3 RELIABLE ALIGNMENT OF IDENTICAL SEQUENCES

For each core gene in this dataset, a minority were identical. Table 4.2 shows
a comparison of all-versus-all BLAST for each core gene with SNAP results of dN
and dS. The relevant data are only those sequences with 100% alignment over their
full length (for BLAST) and dN and dS equal to zero (for SNAP), both results
indicating a protein evolutionary rate of zero.

BLAST is a local aligner, but for identical sequences and with masking of
repetitive regions turned off, it will align the sequences over their full length and
identify all pairs where dN and dS should equal zero. Assuming that multiple
alignments are always accurate for identical sequences, calculation of dN and dS
should always give values of zero. Table 4.2 shows that this is not the case, pair-wise
alignments always agreeing with BLAST while multiple alignments sometimes
failing to align identical sequences correctly, which can be seen from correlation
values of less than one. These results suggest that multiple sequence alignments of
divergent homologous sequences can lead to the mistaken identification of mutations
in the minority of identical sequences present when a large number of sequences are
aligned (227 in this case).

Aligning two sequences at a time from a total of 227 in a pair-wise manner,
followed by calculation of dN and dS, identifies all identical pairs and agrees with
BLAST results. This is true for both ‘nuc align pair’ and ‘aa align pair’. These
results encourage performing sequence alignment in a pair-wise manner for analyses
involving evolutionary rate and selection pressure. The main advantage of multiple
alignment over pair-wise alignment in these cases is time, a factor that should be

balanced with the accurate generation and interpretation of results.
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zero count | nuc align aa align nuc align aa align
pair pair
zero count 1 0.884768 0.958548 1 1
nuc align | 0.88476792 1 0.903647 | 0.88476792 | 0.88476792
7 7 7
aaalign | 0.95854807 | 0.903647 1 0.95854807 | 0.95854807
6 6 6
nuc align 1 0.884768 0.958548 1 1
pair
aa align 1 0.884768 0.958548 1 1
pair

Table 4.2: A Spearman correlation of the number of pair-wise comparisons
consisting of identical sequences (out of 25,651) for each gene shows that
multiple alignments can incorrectly align identical sequences in a minority of
cases. BLAST was used to align all 227 sequences for each of the 166 core genes
against each other. The number of identical pair-wise alignments is compared with
the number of pair-wise comparisons where both dN and dS equal 0 (representing
zero mutations between identical sequences) for each of the four sequence alignment
methods. The number of identical sequences per gene ranges from 6 to 38 with a

median of 12.

3.4 EVOLUTIONARY RATE ACROSS SUB-CLADES

In Figures 4.8 and 4.9, it can be seen that ‘nuc align’ shows similar trends in
dN/dS across sub-clades whether Jukes-Cantor correction was applied or not, with
Leuconostocaceae having reduced purifying selection (increased dN/dS) acting on
the core genome in both cases. Leuconostoc has been shown to evolve faster than
Pediococcus in a previous study and at least one strain of Oenococcus oeni
apparently lacks MutL and MutS (Makarova and Koonin, 2007), a result supported
by the lack of strong BLAST hits to mutS and mutL in O. oeni ATCC-BAA 1163 in
this dataset.

Jukes-Cantor correction decreases average dN/dS across the sub-clades by
increasing the value of dS more than dN due to its non-linear correction for multiple
substitutions. This means that a higher value will be corrected to a proportionally

higher value by Jukes-Cantor.

171




dN/dS

Comparison of dN/dS across sub-clades (nuc align)
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Figure 4.8: The dN/dS ratio varies significantly across 14 sub-clades for ‘nuc
align’. The dataset of 227 genomes was divided into 14 sub-clades as described in
Methods. The median values of 166 core genes are shown and boxplots are
generated from the number of pair-wise comparisons displayed over the x-axis
labels. Labels for sub-clades are four-letter abbreviations of a representative member
of each group, the full membership of which is listed in Methods (Table 4.1). The
order of the boxplots follows the clock-wise order of sub-clades in the phylogenetic
tree described and displayed in Methods (Figure 4.1). Outliers are excluded from this
figure, but do not change the scale of the y-axis. Jukes-Cantor correction was not

applied to the values in this figure.
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Comparison of average dN/dS across sub-clades (nuc align)
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Figure 4.9: Trends across sub-clades for the JC-corrected dN/dS ratio largely
agree with the uncorrected values shown in figure 4.8, but average values are
consistently lower. Methods are identical to those for Figure 4.8. Jukes-Cantor

correction was applied to the values in this figure.

Figure 4.10 shows that despite lower average dN/dS ratios across sub-clades,
the relative values remain consistent between sub-clades for ‘nuc align’ and ‘aa
align’. These values are median averages of a very large number of pair-wise
comparisons. It is likely that trends would be in less agreement for a single gene in a
smaller dataset across alignment methods.

There is a tendency for sub-clades with more genomes (and therefore more
pair-wise comparisons) to have more relaxed purifying selection pressure acting on
the core genome, suggesting that group size biases the dN/dS ratio towards higher

values. This is not necessarily true however, as dN/dS is already a normalised value
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dN/dS

that reflects the evolutionary rate of protein sequences under selection, accounting
for possible variations in the neutral mutation rate across sub-clades (using dS)
(Zhang and Yang, 2015). An alternative explanation is that sub-clades may be under
different degrees of positive selection pressure from their respective niches, but
without additional temporal information for the common ancestors of each sub-
clade, interpretation of the relationship between sub-clade size and dN/dS ratio is
difficult.

Comparison of dN/dS across sub-clades (aa align)
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0.1

Figure 4.10: The dN/dS ratio across sub-clades for amino-acid based alignment
resembles that for direct nucleotide-based alignment. Methods are identical to
those for Figure 4.8. Jukes-Cantor correction was not applied to the values in this

figure.
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Amino acid-based alignment (‘aa align’) and direct nucleotide alignment
(‘nuc align’) disagree on the role of positive selection pressure acting on core genes
with Figure 4.12 showing numerous genes across sub-clades with dN/dS >1. The
alignment methods, ‘nuc align’ and ‘nuc align pair’, give higher dN, lower dS and
therefore a higher average dN/dS ratio when compared to ‘aa align’ and ‘aa align
pair’. It is not surprising therefore that average dN/dS is higher in Figure 4.12 than in
Figure 4.11 across the sub-clades, but the difference is even more exaggerated. In
previous figures, dN/dS was averaged over genes while gene values are displayed
individually in these two figures, showing the variation that exists in purifying
selection from gene to gene.

Figure 4.11 is likely to be more correct both because core genes, on average,
are very probably under purifying selection (Bohlin et al., 2017) and because amino
acid-based alignments take the evolution of sequences as nucleotide triplets into
account, which leads to a more reliable alignment of homologous codons (Ranwez et
al., 2011)

The results suggest that, as more specific analyses are undertaken involving
dN/dS, the choice of alignment method becomes more important in arriving at the
correct conclusions. In this case, the average predicted protein evolutionary rate of
each sub-clade becomes separated out across 166 core genes (when comparing
Figures 4.8 and 4.10 with Figures 4.11 and 4.12), leading to a greater range of values
for dN/dS.
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Comparison of average dN/d$ across genes and within sub-clades (aa align)
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Figure 4.11: Average dN/dS for 166 core genes varies significantly across 14
sub-clades for amino acid-based alignment and all genes are dominated by
purifying selection pressure. The median value of the number of pair-wise
comparisons displayed on the x-axis in Figure 4.8 is shown for each gene. Boxplots
for each sub-clade are constructed from 166 core-gene values. Jukes-Cantor

correction was not applied to the values in this figure.
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Comparison of average dN/dS across genes and within sub-clades (nuc align)
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Figure 4.12: Average dN/dS for 166 core genes varies significantly across 14
sub-clades for nucleotide-based alignment and the dominant selective pressure
acting on some genes appears to be positive. The median value of the number of
pair-wise comparisons displayed on the x-axis in Figure 4.8 is shown for each gene.
Boxplots for each sub-clade are constructed from 166 core-gene values. Jukes-

Cantor correction was not applied to the values in this figure.
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4 CONCLUSIONS

For a large, phylogenetically diverse dataset, a considerable proportion of
homologous sequence comparisons can show saturation at the nucleotide level. This
conclusion is, however, based on the Jukes-Cantor model and other models that
make more realistic assumptions and account for nucleotide codon triplets may lead
to different conclusions.

Sub-clades across the paraphyletic Lactobacillus genus vary in the protein
evolutionary rate of their core genes, possibly due to differences in selection pressure
by the environment or differences in the efficiency of DNA repair mechanisms.

Different sequence alignment methods give significantly different values of
dN, dS and dN/dS, choice of method being important when interpreting how these
values reflect evolutionary rate and strength of selection pressure.

The zoomed-out approach of this study to comparing average dN, dS and
dN/dS across a large dataset very probably made results more robust to the effects of
different sequence alignment methods and Jukes-Cantor correction. It would be
interesting to observe the results of similar studies on a subset of the data, perhaps
focussing on one or several genes within a sub-clade. The average selection pressure
of the core genome is purifying, but results of these analyses on two subsets of
genes, one under purifying and one under positive selection pressure, might reveal
interesting differences in how software tools and algorithms behave in these two
scenarios.

Also, the comparison of multiple sequence aligners as well as several algorithms
for multiple substitution correction would be a relevant extension to this chapter
because varying assumptions can and do lead to different evolutionary conclusions.
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Chapter V

General discussion and future perspectives
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Charles Darwin devoted a chapter of his book On the Origin of Species to the
artificial selection of species by man. It described the variation present in
domesticated plants and animals, detailing the ways that humans deliberately or
accidentally selected for particular traits, usually traits that benefitted the humans
involved. Darwin chose to explain selection in nature using the analogy of conscious
selection by man, showing that the environment also leads to differential survival
and reproduction of phenotypes. He was well aware of the power that earlier
civilisations had, not only in reshaping the abiotic conditions that surrounded them,
but also in moulding local species to suit human needs. From the development of
animal husbandry and plant breeding that led to the expansion of the first settled
populations to the diversification of the rock dove at the whims of generations of
pigeon fanciers, Darwin described how people’s early, basic knowledge of heredity
gave them the ability to exploit the variation inherent in biological resources,
selecting the most favourable varieties and increasing their economic value over time
(Darwin, 1859).

Early attempts to control the reproduction of species in order to gain from the
resources they provide can be viewed as the origin of biotechnology. As crude and
non-scientific as they were, these endeavours reflect the human capacity to recognise
patterns in the environment and to redirect those patterns for the benefit of human
survival and reproduction. It is the ability to manipulate our environment, to make it
more amenable to our needs, rather than to simply struggle to adapt to its changing
conditions, that has led to advances in knowledge about the species around us, from
the first civilisations to the present day.

The use of macroscopic, multicellular organisms such as species of livestock
and cereal to support dense communities of people is an impressive display of
human ingenuity, laying the foundation for the development of complex societies
through division of labour and specialisation (Violatti, 2014). It is in the microscopic
world, however, that we are likely to see the greatest biotechnological innovations
and insights.

Microbes represent a large portion of the genetic diversity of life, playing
essential biogeochemical roles on a global scale, including those of carbon, nitrogen
and phosphorous cycling (Wang et al., 2017). They colonise our bodies in a
mutualistic relationship that, in the case of the gastro-intestinal tract, allows humans

to absorb otherwise indigestible carbohydrates and additional bacterial products of
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metabolism such as short-chain fatty acids (Flint et al., 2012). Microbes also
represent one of our biggest challenges, causing an alarming array of diseases that
are evolutionarily adopting their former infectivity because of the rise of strains of
bacterial pathogens resistant to antibiotics, which is currently one of the biggest
threats to global health and food security (WHO, 2017).

Humans have a long history of exploiting microbes too. From the first
Neolithic farmers getting drunk on fermented beverages (Charles and Durham, 1952)
to the health-conscious people of modern society who drink probiotics as part of
their daily diet, we have benefited from microscopic organisms without
understanding how they function or even knowing, in earlier times, that they exist at
all. It was with the discovery of bacteria by Antonie Van Leeuwenhoek (Lane,
2015), followed by the pioneering work of people such as Robert Koch and Louis
Pasteur (Hook, 2011), that the study of microorganisms as a scientific discipline was
established, turning the microbial benefits and dangers that we experience away from
the beliefs and superstitions of the day and grounding them in quantitative, empirical

observations and experiments.

In 2017, Microbiology faces a whole range of challenges that could hardly be
predicted in Pasteur and Koch’s time and that did not exist before the advent of DNA
sequencing. Bioinformatics and sequencing technology give us the tools to answer
questions that were previously beyond reach. How diverse is the complex microbial
ecology of the gut? What is its functional capacity? How do the species interact
under different environmental conditions such as changes in diet and age, affecting
human health and wellbeing in the process (Claesson et al., 2012)? Similar questions
could be asked for microbes inhabiting the soil, the oceans, our food and even the
atmosphere as described by a recent paper on the microbial communities of clouds
(Amato et al., 2017).

The focus is no longer on the genetic and phenotypic properties of one or a
few strains in isolation, but on entire microbial communities. This does not reflect
changing interests so much as changing technological and computational
capabilities. In similar fashion, the modern perspective of a bacterial species is
shifting from the defining properties of the type strain to the functional variation
encoded in the pan-genome, a transition that is especially important for microbes

with strain-dependent pathogenicity like E. coli (Rasko et al., 2008) or that have
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strain-specific commercial properties like many Lactic Acid Bacteria (Campana et
al., 2017). The emphasis is very much on diversity.

The ability to generate huge amounts of data that capture the diversity of
microbial communities is an impressive development in modern biological research.
It brings with it a responsibility for current and future generations of biologists to
efficiently manage, store and analyse these data. A recent study led by Professor Rob
Knight in collaboration with the Earth Microbiome Project presented a meta-analysis
of hundreds of microbial community samples from around the world, aiming to give
a more complete characterization of microbial life on Earth (Thompson et al., 2017).
They highlight a growing awareness of the importance and diversity of microbes,
stressing that this is in stark contrast with our limited understanding, an obstacle that
is partly due to a lack of standardised protocols and analytical frameworks, but also
related to the sheer phylogenetic and functional diversity of species.

Similar challenges exist in Comparative Microbial Genomics where the
number of available sequenced genomes is growing exponentially and the true extent
of genomic diversity within species is only beginning to be charted. The
phylogenomic complexity of taxa is increasingly viewed as an exciting area of
research as the role of horizontal gene transfer in microbes is better understood. Back
in 2003, a team at Lawrence Livermore National Laboratory was given the task of
improving the computational tools necessary for fast and efficient DNA diagnostics
for pathogen detection (Chain et al., 2003). The conclusion of their assessment of
software at the time was that the selection of appropriate tools can have a large effect
on both the quality of results and on the effort required to reach those results. They
list the accuracy of results on gene function, gene regulation, gene networks,
phylogenetic studies and other aspects of evolution as depending on accurate
analytical methods. Fourteen years later, another review on bioinformatic platforms
for comparative genomics echoes similar conclusions, emphasising the demand for
fast and automated approaches to keep pace with the rapid increase in available
microbial genomes (Yu et al., 2017).

The necessity for computational speed and automation is obvious enough
given the increasing size of biological datasets. Appropriate software tools and better
reference databases are also essential if the biology represented by sequence data is
to be fully understood. The result is more powerful computers, more sophisticated

algorithms, more experienced bioinformaticians and more efficient storage of digital
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data. The future of the scientific enterprise will not depend on these things alone;
there are other factors, more subtle perhaps, but every bit as important that must be
accounted for if all these sequencing data and their supporting analytical tools and
tool-makers are to achieve their potential. It goes back to the heart of the Scientific
Revolution, grounded in collaboration and the importance of asking the right
questions.

The origin of a study begins with a hypothesis, a question or series of
questions sometimes clearly defined, sometimes more exploratory. It often requires a
carefully crafted experimental design in order to bring that question closer to a
possible answer; in the field of bioinformatics, this starts with sequencing the right
DNA. This suggestion holds considerable merit. An experiment involving
sequencing and its accompanying analysis takes time, expertise and money. The
results are generated, interpreted and published where they can be read and reviewed
and criticised. It does not stop there, however. By making the sequence data publicly
available, other researchers, perhaps even those without the funding for sequencing
projects of their own, but with sufficient expertise and insight, can now analyse the
same data, supporting, modifying and maybe even contradicting the results of the
original study. This is the true spirit of peer review. What is more, there is a growing
number of initiatives by multiple journals to make code and intermediate data
available as well (Hrynaszkiewicz, 2017), making a bioinformatic study completely
transparent, offering the experience inherent in its code as a resource and a learning
tool for researchers working on similar projects. Just as importantly, it allows for the

replicability of the study, ensuring scientific integrity and quality of results.

In chapter 2, we support the emerging principles of biological data science in
our analysis of the most comprehensive Lactobacillus dataset to this day. We
sequenced 175 Lactobacillus species as well as 26 additional genomes from eight
associated genera, depositing both raw reads on SRA and assembled contigs on
GenBank. The power of public data sharing was quickly demonstrated when Zheng
et al downloaded our deposited sequence data, conducted a subset of analyses that
overlapped with ours and had their study published online on September 22" 2015
(Zheng et al., 2015), a full seven days before our more comprehensive study became

available.
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Chapter 1 of this thesis described the historical confusion and continuing
difficulty of defining the Lactobacillus genus, accrediting much of this to the
contradiction between classifications in early phenotypic and subsequent genotypic
properties. It was for this reason, and because the genus is such an important
resource in industrial food fermentation and probiotics, that we sequenced the most
comprehensive Lactobacillus genomic dataset still available (Sun et al., 2015). Our
aim was neither to saturate the available sequence diversity of individual
Lactobacillus species nor to capture the complete functional repertoire of the
Lactobacillus genus. Our primary goals were to provide a reliable phylogenomic
template for future studies, offering a dependable structure for which present and
future analyses of Lactobacillus genomics could be fastened, and to describe the
considerable functional diversity displayed by the type strains of, at that time, almost
all of the characterised Lactobacillus species, including genera that branch within
their phylogeny such as Pediococcus and Weissella as well as multiple reclassified
taxa such as Kandleria and Atopobium. Another reason for focussing on the analysis
of type strains is to allow previous taxonomy, largely phenotypically defined, to be
compared with phylogeny.

We showed that Lactobacillus is more diverse than a typical family
according to Average Nucleotide Identity (ANI) and Total Nucleotide Identity
(TNI). This corroborates multiple studies ranging from Claesson et al who suggested
that Lactobacillus taxonomy was in need of revision (Claesson et al., 2007) to
Goldstein et al who suggested that the taxonomic complexity of Lactobacillus was
the reason for the poor delineation of its species’ antimicrobial susceptibilities
(Goldstein et al., 2015). Chapter 2 strengthens the conclusions of previous studies
that the paraphyletic nature of the genus reflects its outdated phenotypic
classification as a coherent taxon. It echoes the conclusions of Salvetti et al (in prep)
that the proposed Lactobacillus genus complex be more appropriately thought of as a
lineage of multiple genera, historically grouped together by phenotypic traits like
carbohydrate metabolism and lactic acid production rather than by the evolutionary
distance inferred from core genes.

Chapter 2 also highlights the diversity of a number of important functional
groups including glycosyl hydrolases, sortases, cell-envelope proteases and
CRISPR-cas genes. This level of functional diversity is not actually that surprising in

Lactobacillus, given the degree of phylogenomic diversity and horizontal gene
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transfer that has also been described (as reviewed in chapter 1). What is most
important is not the demonstration of diversity itself, but the detailed catalogue of
functional variation that such a dataset enables. To draw a comparison, it is easy to
say that human beings vary in their genetics; this has no potential whatsoever. But to
characterise in detail the individual and ethnic single nucleotide variants that are
persistent in our populations means that we can potentially treat and cure a range of
human diseases (Enriquez and Gullans, 2015). The same is true for Lactobacillus;
what it means for biotechnology, what it means for human health and what it means
for our expanding knowledge of the ecology and evolutionary biology of these
intriguingly diverse microbes.

We recognised early on that a project striving to describe both the phylogeny
of such a complex group of microbes and to characterise its functional diversity
would need an international team of researchers in order to optimise the study. The
nature of this collaboration is summarised in the author list, from research labs
around Ireland to Italy, America and China, all applying their expertise toward one
study, eager to contribute and be part of a larger enterprise. As a result, we published
a very novel study of the first comprehensive Lactobacillus phylogenomic dataset in
Nature Communications in 2015.

Chapter 3 builds on the achievements of chapter 2 in several respects. It
focuses on the functional diversity of a single species, Lactobacillus salivarius,
removing much of the phylogenomic complexity of chapter 2 while emphasising the
functional variation that exists within this reportedly probiotic species, both on the
chromosomal level and on the much more variable genomic regions of its mega and
smaller plasmids (Harris et al., 2017). As part of this study, we sequenced 29 strains
of L. salivarius, depositing the genomes online in order to complement the 13
genomes then available.

For chapter 3, we adopted an even more data-centric approach, choosing to
submit to Microbial Genomics, a new journal with a growing reputation that
promotes double-blind peer review and an open data policy where all data and all
code not suitable for Methods must be available at the time of submission. We
provided digital online identifiers (DOI) to figshare for six in-house scripts that were
coded as part of our study, making them available at the date of publication. The
nature of collaboration in chapter 3 was longitudinal rather than contemporary,

building on research conducted in our lab over more than ten years, adding a strong

187



bioinformatic component to functional and phylogenetic results from previous
studies.

Chapter 4 returns to the Lactobacillus genus, exploring the evolutionary rates
and varying selection pressures acting on an expanded version of the dataset from
chapter 2. We estimated the evolutionary rates of every homologous codon for
hundreds and thousands of sequences of the Lactobacillus core genes, summarising
all these data at the level of phylogenetic sub-clades. The fact that we could do this is
a testament to the ability of bioinformatics to automate computational procedures on
sequence data, made possible by the use of a powerful Linux server.

Although we could have included gene-specific and even intra-genic results,
we chose to focus at a higher phylogenetic level, describing the average protein
evolutionary rate acting over many genes for groups of species. We used one method
of calculating synonymous and non-synonymous substitutions (Nei and Gojobori,
1986), and one method of correcting for multiple sequence substitutions (Holmquist
et al., 1972). Perhaps an intra-genic focus is better served by multiple methods,
removing possible inaccuracies due to biological assumptions inherent in one or
several of the algorithms used. The inclusion of this level of methodological
comparison for specific gene sequences would have reduced the coherence of the
chapter so we chose to postpone these types of analyses for a later date and another

study.

The future of Microbiology will be intertwined with that of Bioinformatics.
As sequencing projects get more ambitious and more computationally capable, the
need for biological expertise and analytical ingenuity will be even greater. This will
make collaborative studies more and more necessary, bringing together scientists
from different backgrounds with complementary skills and experience that could not
be instilled in a single individual due to their multi-disciplinary nature. The same is
true for the Lactobacillus genus. The newest species announcement was
Lactobacillus alii on October 18", isolated from scallion kimchi. The announcement
of new species of Lactobacillus is not a rare occurrence and can only continue as the
global research community expands, adding members to this already extensive group
of microbes.

Public online databases of biological sequence data are a massive global

resource that represent an invaluable source of information about the living world.
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Access to this exponentially growing resource coupled with the necessary analytical
tools is enabling us to increase our understanding of the complex ecological and
evolutionary processes acting on organisms as well as the tremendous genetic
diversity of life, diversity that can be exploited for human health and wellbeing.

We are no longer just making use of the existing functional diversity we find.
Because of the discovery of genetic tools such as CRISPR, organisms can now be
modified very precisely to behave on a biochemical level in ways for which their
genomes never evolved (Zhang et al., 2014). The developing field of synthetic
biology will allow us not only to harness the vast array of phenotypes encoded in the
world’s sequence databases, but also to add purposefully designed sequences that do
not exist in nature. In the not-too-distant future, the rate of new Lactobacillus strains
being deposited online may not be dictated so much by discovery as by the rate of
genetic engineering of new strains in the laboratory. What implications will this have
for Lactobacillus phylogeny? Will these strains ever begin to evolve outside of their
laboratory conditions, as probiotics or novel starter cultures perhaps? The interplay
between horizontal gene transfer and synthetically constructed genetic compounds
would surely be a daunting study for any biologist.

To say that Darwin was an insightful man would be almost laughable. The
genius and the determination that he applied to his single-minded exploration of the
processes that shaped all species, living and extinct, is unparalleled. He probably
would not be surprised by many of the insights that have emerged from biological
research since his day. There are also things that he likely could not have predicted.
To know that all his life’s writing can be stored on a modern USB stick might be a
bit bewildering, for instance. However, it is our increasing ability to consciously and
methodically alter the genetics of species that brings with it as much responsibility as
it does power.

Synthetic biology is an unsettling prospect for many scientists and lay people
alike and an educated guess is that it would have frightened someone as sensitive as
Darwin, who delayed the publication of his book for many years for fear of its
reactionary effect. Change, good or bad, can often lead to fear, and the combination
of Bioinformatics and Synthetic Biology is leading to multiple revolutions in
Microbiology with considerable promise for human health, and the surprises are

unlikely to stop any time soon. It is truly an exciting time to be a biologist.
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SUPPLEMENTARY FIGURE LEGENDS

Supp. Figure 1. Histograms of genome size distribution (A) and GC% (B) for 175
Lactobacillus genomes sequenced.

Supp. Figure 2. Sizes of the pan-genome (top) and core (bottom) genomes in all 213
genomes (red) and in all genomes with less than 20, 50, 100, 200, 300, 400, 500 contigs

(green).

Supp. Figure 3. Analysis of genome assembly size as a function of niche. Niche categories
are plotted on the x-axis and genome assembly size in kilo base pairs is plotted on the y-axis.
Box-plots represent a five-point summary of the data in the following order (from bottom to
top); minimum, first quartile, median, third quartile and maximum. Qutliers are represented as

individual points above or below the boxplot.

Supp. Figure 4. Frequency distribution of ANI and TNI values for the Lactobacillus
species compared to those of traditionally defined taxonomic units. The black lines indicate
the frequency distribution of values for the lactobacilli, which revealed lower values for both

ANI and TNI than the majority of strains within the same family but in different genera.

Supp. Figure 5. Maximum Likelihood tree. Published representative genomes that covered
452 genera from 26 phyla, as well as the 213 genomes sequenced in this research. The tree was
built based on the concatenated amino acid sequences of 16 marker genes by using PhyML
with 100 bootstrap iterations. The numbers at nodes are bootstrap values and the genomes
included in this study were indicated by red font.

Supp. Figure 6. Maximum likelihood tree of strains of the Lactobacillus Genus Complex,
based on the amino acid sequences of 73 core genes. The branch colors indicate different

genera.

Supp. Figure 7. Distribution of glycolytic and pyruvate dehydrogenase genes across 213
lactobacilli and related species. The distribution of phosphoglycerate mutase is discriminated
by the presence of genes encoding the cofactor-dependent (d) or the cofactor-independent (i)



isofunctional enzymes. For all 10 core glycolytic enzymes, gene distribution is indicated in
grey-scale from absence (white) to presence of 4 gene copies (black). For the pyruvate
dehydrogenase operon (4 genes), presence of a functional complex is indicated in black, and
absence of a functional complex in white. The fermentation metabolism phenotype is indicated
as OHO: obligately homofermentative (purple), FHE: facultatively heterofermentative (pink),
and OHE: obligately heterofermentative (green).

Supp. Figure 8. Evolution of carbohydrate metabolism in the Lactobacillus Genus
Complex. A) Maximum likelihood tree of 204 strains of the Lactobacillus Genus Complex
based on concatenated amino acid sequence of 73 core genes. The tree was built using RAXML
with 100 bootstrap iterations. B) The number of nodes and the branch lengths to the MRCA
for each strain/genome. The color of the branches in panel A and the dots in panel B indicate

different fermentation types, with green representing FHE, blue OHE and red OHO.

Supp. Figure 9. Heatmap illustrating the distribution and abundance of
glycosyltransferase family genes across the Lactobacillus Genus Complex and other
genera. Gene copy number of each of the 22 represented GT family members is indicated by
the colour key ranging from black (absent) to green. Strains are graphed in the same order left
to right as they appear top to bottom in the phylogeny (Fig. 2) with the isolation source of each
strain indicated by the colour bar at the top of the heat-map.

Supp. Figure 10. Distribution of LPXTG proteins, sortases and pilus gene clusters among
the 213 genomes analyzed Panel A The pilus gene clusters (PGCs) were found in 24% of all
analyzed genomes and had prevalently one of the four types illustrated in Panel B. Legend:

green arrow, sortase gene; blue arrow, pilin gene.

Supp. Figure 11. Comparative analysis of core CRISPR elements. The tree in panel A is
derived from an alignment of the sequence of the universal Cas protein, Casl, to create a
phylogenetic tree showing the relatedness of all CRISPR-Cas systems in lactobacilli and
closely related organisms (see Fig. 5A). The strain designation is followed by I, II, or IlI,
corresponding to the respective CRISPR-Cas system type, using pink, blue and green for Type
I, 11 and 111 systems, respectively. Undefined systems are represented in yellow. When multiple
Casl proteins were found within a genome, they were differentiated by a letter. The tree in

panel B is derived from an alignment of the CRISPR repeat sequences. All strain names



correlate with the master CRISPR table (Supplementary Table 6). When a strain had multiple
CRISPR repeats, they were given different letters to distinguish the repeats.

Supp. Figure 12. Comparative analysis of Type Il CRISPR-Cas systems. The tree in panel
A is derived from an alignment of the sequence of the Type Il signature Cas protein, Cas9, to
create a phylogenetic tree showing the relatedness of Cas9 proteins from Type I1-A and II-C
systems (see Fig. 5B). The tree in panel B is derived from an alignment of the predicted
tracrRNA sequences for Type 11-A systems.

Supp. Figure 13. Heatmap showing the distribution of 7 phage functional categories over
the 213 genomes present in the dataset. The order of columns follows the order of genomes
in the phylogenetic tree in Fig. 2 from top to bottom. The colour key shows a gradation in

colour from black to red to yellow to green representing gene counts from 0 to 16.

Supp. Figure 14. Heatmap and barplot showing the distribution of plasmid-associated
COGs and the number of plasmids, respectively. The order of rows follows the order of
genomes in the phylogenetic tree in Fig. 2 from top to bottom. The colour key shows a

gradation in colour from black to red to green representing gene counts from 0 to 15.

Supp. Figure 15. Distribution and abundance of 18 different COG categories across the
213 genomes. Number of genes assigned to each of the different COG categories is indicated
by the colour bar from black (absent) to green. Strains are ordered from left to right as they
appear top-down in the phylogeny (Fig. 2) with source information indicated by the colour bar
along the top of the heatmap.

Supp. Figure 16. Heatmap depicting the distribution and abundance of 18 insertion
sequence families across the Lactobacillus complex and associated genera. The number of
genes assigned to each IS family is indicated by the colour bar from black (absent) to green.
The strains appear from left to right as they are featured top-down in the phylogeny (Fig. 2).

Source information for each strain is indicated by a colour bar along the top of the heatmap.

Supp. Figure 17. Branch length distribution and TNI value distribution (1-TNI) for

current phylogrouping of the Lactobacillus Genus complex®, and a manually curated



phylogrouping based on the maximum likelihood tree of 73 core genes (this study; see

Supplementary Figure 18).

Supp. Figure 18. Manually curated phylogrouping of the Lactobacillus Genus complex
and associated genera based on 73 core genes maximum likelihood phylogeny. According
to this revised phylogrouping, when the branch length between two strains is greater than 0.99,
the probability is very high (>97.5%) that they will belong to different phylogroups, and when
the branch length is less than 0.96 between two strains, the probability that they belong to the
same phylogroup is > 97.5%. Compared to the existing phylogrouping®, the adjustments made
here are:

1. Two species, L. amylotrophicus and L. amylophilus that originally belonged to the L.
delbrueckii group were excluded from L. delbrueckii and defined as a new Couple.

2. The single species L. composti was combined with the phylogroup L. perolens.

3. The phylogroup L. casei and L. manihotivorans were combined together with the previously
defined single species, L. camelliae, L. saniviri, L. brantae, L. sharpeae, and the Couple that
contained L. thailandensis and L. pantheris, was defined as a single phylogroup.

4. The single species L.algidus was combined with the phylogroup L. salivarius.

5. Leuconostoc and Fructobacillus were defined as a single phylogroup.

6. The phylogroups L. reuteri and L. vaccinostercus were combined together

7. The phylogroups L. brevis and L. collinoides and a single species, L. malefermentans, were
combined as a single phylogroup.

8. L. senioris was combined with the phylogroup L. buchneri.

9. The couple that contained L. ozensis and L. kunkeei was combined into the phylogroup L.

fructivorans.

Supp. Figure 19. Phylogeny inferred from a 100 core gene dataset (27 partial + 73

complete core genes).

Supp. Figure 20. Heatmap of pairwise ANI values for 213 genomes. The order of these

strains is presented according to their position in the phylogenetic tree based on 73 core proteins
(Fig. 2).

Supp. Figure 21. Scatterplots showing the correlation between the number of

carbohydrate transport genes (y-axes) and the number of glycosyl hydrolase genes (left)



and the number of glycosyl transferase genes (right). The line of best fit for each plot was

estimated using a least squares linear model.

Supp. Figure 22. Barplot of the number of genes involved in carbohydrate transport for

each strain. Strains are ordered according to their order in the phylogenetic tree in Fig 2.

Supp. Figure 23. The effect of normalizing counts of GHs and GTs by genome size. The
three bar-graphs on the left show, from top to bottom, GH gene counts, GH gene counts
expressed as a percentage of the total gene count and genome size (in kbps). The equivalent
for GTs is shown in the three bar-graphs on the right. Genome size is highly correlated with

total number of genes per genome (Pearson; 0.99).

Supp. Figure 24. Heatmap illustrating the distribution and abundance of genes involved
in stress response across the 213 strains. Gene copy number for 27 stress associated genes is
indicated by the colour key from black (absent) to green. Type of stress each gene product
confers resistance to is indicated by row names to the right of the figure. Strains are ordered
from left to right as they appear top down on the phylogeny (Fig. 2) with source information

for each strain indicated by a colour bar at the top of the heat-map.

Supp. Figure 25. Association of carbohydrate transport and lipid transport/metabolism
with niche. Top panels display raw gene counts and bottom panels display gene counts
normalized by total genes. Boxplots represent a five-point summary of the data in the following
order (from bottom to top); minimum, first quartile, median, third quartile and maximum.

Outliers are represented as individual points above or below the boxplot.



Supplementary Figures
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Supp. Figure 1. Histograms of genome size distribution (A) and GC% (B) for 175 Lactobacillus genomes.
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