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ABSTRACT 

This paper presents a normalization-based approach to the mobility analysis of spatial compliant multi-beam modules to 

address the dimensional-inhomogeneity issue of motion/load. Firstly, two spatial non-tilted and tilted multi-beam modules, 

composed of uniform beams with symmetrical cross sections and same length, are proposed. Using a normalization technique, 

the compliance matrices of these spatial multi-beam modules are derived, from which the DOF (degrees-of-freedom) of the 

compliant modules can be obtained by direct observation and/or screw representation. The results are compared with those 

obtained without normalization. It is shown that the DOF of these compliant modules can be identified more easily using the 

proposed approach than the approach without normalization. Then, two spatial double non-tilted and tilted three-beam modules 

are proposed and analyzed for potential applications such as acting as building blocks of new compliant manipulators. The 

normalization-based approach can also be used for the mobility analysis of spatial compliant multi-sheet modules such as the 

parallelogram module and the four-sheet rotational module and the error analysis of spatial multi-beam modules with beams of 

compatible length. 
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1. Introduction 

 

Compliant mechanisms [1, 2], transmitting motion/loads by the deformation of compliant members, have many potential 

merits such as zero backlashes, no need for lubrication, reduced friction and wear, and high precision compared with traditional 

rigid-body mechanisms [3, 4]. They can be used in a variety of applications, especially where high-precision motions are 

required, such as precision motion positioning stages, precision robotics in biomedical applications, MEMS sensors and 

actuators, amplifiers, grippers, adaptive mechanisms, and design-for-no-assembly [5–10]. The degrees-of-freedom (DOF) of 

traditional rigid-body mechanisms can be identified and calculated using formulas proposed in the literatures. But for the 

compliant mechanisms, there is no apparent boundary to identify the DOF or the degrees-of-constraint (DOC) due to complex 

issues such as dimension, loads and motion range. In [11], the DOF of compliant mechanisms, especially planar compliant 

mechanisms, were determined using the Pseudo-Rigid-Body-Model concept. References [12, 13] proposed an 

eigenscrew-based method to determine the DOF or compliance of compliant mechanisms. In addition, the constraint-based 

design approach (CBDA) [14], the screw theory based approach (STBA) [15] and the freedom and constraint topology 

approach (FACT) [16, 17] have been proposed to analyze the DOF and/or DOC of compliant mechanisms. Different from the 

CBDA, the STBA uses the mathematical expressions to represent the CBDA, and the FACT employs the geometric figures to 

visualize the CBDA. The STBA and FACT can also be used to synthesize the screw motion.  

    In analyzing the DOF of a compliant mechanism quantitatively, we need to compare the output displacements to identify the 

DOF/DOC. If one displacement is much larger than another displacement under the same dimension, then the larger one can be 

regarded as the DOF. However, if two displacements, such as one translational displacement and one rotational angle, are not 

under the same dimension, then the DOF identification becomes difficult.  

In addition, the DOF of certain compliant mechanisms, such as the linear motion flexure [1, 5] composed of two 

parallelogram modules in mirror-symmetry, can also degenerate into the DOC when they achieve a large range of motion. This 

is caused by the significant load-stiffening effect [1, 18]. Under the small deflection assumption, this issue can be neglected. It 

should also be noted that the location and magnitude of applied loads may affect the identification of the DOF and DOC. For 

example, for a cantilever beam, it is well known that the axial displacement of the tip is usually thought to be the DOC, while 

the transverse displacement of the tip is usually regarded as the DOF. However, if the axial force acting at the tip of the beam 

was much larger than the exerted transverse force, the resulting axial displacement would be much larger than the transverse 

displacement.  

In order to make translational displacements and rotational angles (or the forces and the moments) comparable, a 

normalization strategy (non-dimensional/homogeneous measures) is needed to unify the dimensions of compliant mechanisms. 

A normalization technique has been employed in the modeling and design of compliant/flexural mechanisms [5, 18–23]. It has 

been shown that the normalization strategy can simplify equations and derivation in the analysis of compliant mechanisms. In 

rigid-body manipulators/mechanisms, such strategy has also been employed. For example, Ref. [24] proposed a characteristic 

length for normalizing the Jacobin matrix of rigid-body robots. The normalization technique [5, 18–23] provides a way to deal 

with the above non-homogeneous issue in identifying the DOF of compliant mechanisms. In addition, in the analysis of 

compliant mechanisms, one can assume that all loads are in the same order of magnitude and comparable under the same 

dimension. 

                                                           
1Part of this paper was presented in the 13th World Congress in Mechanism and Machine Science, June 19-25, 2011, Guanajuato, Mexico. A23-390. 
2Corresponding author. Email: X.Kong@hw.ac.uk. Tel: +44(0)1314513688. 
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Based on the above advances, this paper aims to present a normalization-based approach to the mobility analysis of a class of 

spatial compliant parallel modules
3
 (CPMs) with distributed compliance in order to identify the DOF from the normalized 

compliance matrices in a straightforward manner. This class of spatial CPMs are composed of uniform beams with generic 

cross-sections (such as symmetrical and rectangular) and the same length or compatible length at least, which can be used in 

many applications either independently or as a compositional unit of a complaint manipulator [21, 22]. This paper mainly 

focuses on the mobility analysis of typical spatial multi-beam modules with beams of symmetrical cross-sections and same 

length to demonstrate the normalization-based approach. We will discuss two types of typical spatial multi-beam modules: 

non-tilted multi-beam modules (all identical beams are parallel and spaced uniformly around a circle on the base and the motion 

stage to produce planar motion) and tilted multi-beam modules (the axes of all the identical beams intersect at a point and the 

beams are uniformly spaced around two circles on the motion stage and base to produce spherical motion). For the spatial 

multi-sheet modules with beams of rectangular cross-sections such as the parallelogram module and the four-sheet rotational 

module, the mobility analysis using the proposed normalization-based approach is briefly discussed in Appendices A and B in 

order to avoid the analogous tedious derivations. For the spatial multi-beam modules with beams of compatible length, a typical 

case is the error analysis, which can be found in Appendix C using the proposed method.  It is noted that if beams in a spatial 

CPM have significantly different length, compared with the long beam(s), a shorter beam will degrade to a 3-DOF 

lumped-compliance spherical joint or even a DOC from a 5-DOF compliant mechanism, which is out of scope of this paper. 

This paper is organized as follows. Section 2 recalls the normalization strategy by normalizing the force-displacement 

equations for a symmetrical cantilever beam. In Section 3, spatial non-tilted multi-beam modules including a spatial three-beam 

module (TBM) and a spatial double TBM are analyzed using the proposed normalization-based method. Section 4 discusses 

spatial tilted multi-beam modules including a spatial tilted TBM and a spatial double tilted TBM, Finally, conclusions are 

drawn. 

 

2. Normalization strategy 

 

    The beam-based modules can be normalized as follows [21, 22]. All translational displacements and length parameters are 

divided by the beam length L, forces by EI/L
2
, and moments by EI/L. Here, E and I denote, respectively, the Young’s modulus 

and the second moment of the area of a symmetrical cross-section. I=πD
4
/64 for beams with round cross-section of a diameter 

D and I=T
4
/12 for beams with square cross-section of a thickness of T. The normalized beam is equivalent to a beam with unit 

length, unit Young’s modulus and unit cross-sectional moment. Throughout this paper, non-dimensional quantities are 

represented by the corresponding lower-case letters.  

 
Fig. 1. A basic cantilever beam 

 

    For the basic cantilever beam (Fig. 1), P, Fy, Fz, Mx, My and Mz denote the actual loads acting at the centre of the free-end to 

cause motion. P, Fy and Fz are the forces along the X-, Y- and Z-axes, respectively, and Mx, My and Mz are the actual moments 

about the X-, Y- and Z-axes, respectively. Xt, Yt and Zt are the translational displacements of the centre of the free-end along X-, 

Y- and Z-axes, respectively; θtx, θty and θtz are the rotational displacements of the free-end about the X-, Y- and Z-axes, 

respectively.  

The linear load-displacement equations of the free-end centre without normalization, similar to the ones used in [25, 26], are 
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3
A spatial compliant module/mechanism is a compliant mechanism that has compatible size in three dimensions 
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where G denotes the shear modulus of material. The entry in the first row and first column is )4/(2 LDE  for round beams or 

LET /2 for square beams. 

Using the above normalization procedure, Eq. (1) can be re-written in a normalized form as: 
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where all the loads and displacements are the normalized quantities (scalar) which are corresponding to the non-normalized 

loads and displacements in Eq. (1). All the non-dimensional numbers, a=12, c=−6, d=16/(D/L)
2
 for round beams or d=12/(T/L)

2
 

for square beams, b=4, and δ=2G/E=1/(1+v) (v is the Poisson ratio of material), are characteristics of the uniform symmetrical 

beam.  

Equation (2), the linear load-displacement equations of a beam, will be used for the mobility analysis of spatial multi-beam 

modules under small deflection condition that usually assumes the normalized displacements to be less than 0.1 [27]. It should 

be noted that the smaller the motion range is, the more accurate the linear modeling is. 

 

3. Spatial non-tilted multi-beam modules 

 

In this section, we will further recall the modeling of compliance matrices of a spatial TBM and a spatial double TBM [21] 

and then analyze their DOF. 

 

3.1. Analysis of a spatial TBM 

 

A spatial TBM [1, 5, 21, 27] is shown in Fig. 2. It is composed of three parts: a base, three parallel beams with symmetrical 

cross sections and a thin motion stage. The base and motion stage are connected by the three beams. The three beams are spaced 

uniformly around a circle of a radius r3 on the base and on the motion stage. The external loads acting on the motion stage cause 

the motion stage to move through deformation of the beams. 

In the initial configuration, a mobile rigid body coordinate system O'-X'Y'Z' and a global fixed coordinate system O-XYZ 

are coincident and both origins are at the centre, O', of the bottom-plane of the motion stage. All external applied loads, p (axial 

force), fy, fz (transverse forces), mx (torque), my and mz (bending moments), can be regarded to act at the centre, O', of the motion 

stage since all forces acting at other points can be transformed to the centre plus extra moments. All translational displacements 

of the centre, O', along the X-, Y- and Z-axes are denoted by xs (axial displacement) ys and zs (transverse displacements), 

respectively; All rotational displacements (angles) of the motion stage about the X-, Y- and Z-axes are denoted by θsx (torsional 

angle), θsy and θsz (bending angles), respectively. All the loads and displacements shown in all the following figures are 

represented by the nondimensional quantities in the coordinate system O-XYZ.      

 

 
Fig. 2. A spatial TBM in deformation 

 

In terms of the type synthesis of CPMs in [5, 28], the three out-of-plane DOF, xs, θsy and θsz, of the spatial TBM are 

suppressed, and the motion stage is constrained to move within the YZ plane, which leaves ys, zs and θsx as the DOF. If the pitch 

radius r3 of the beams (hence the motion stage) becomes relatively large, the rotation about the X-axis will be constrained as 

well. The detailed quantitative analysis of the spatial TBM can be presented in the subsequent sections.  

 

3.1.1. Modeling of the spatial TBM 

 

The modeling of a spatial TBM can refer to the stiffness modeling of compliant parallel structure [21, 29]. The derivations of 

the linear analysis for the spatial TBM are summarized as follows.  

Under the assumption of small rotation angles, the contribution of the rotation order of three Euler angles may be disregarded 

[30]. By neglecting high order terms of rotational angles in the product of three rotation matrices, the geometry compatibility 

(b) Top view of motion stage  
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conditions, between the mobile end, connected to the motion stage, of each beam and the motion stage, can be expressed in a 

matrix form as  
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where DPi is the transformation matrix of the displacements of the motion stage. xi, yi and zi (i=1, 2, 3) are the translational 

displacements of the centre (tip) of the mobile end of the i-th beam along the X-, Y- and Z-axes, respectively; θix, θiy and θiz are 

the rotational displacements of the mobile end of the i-th beam about the X-, Y- and Z-axes, respectively. xi', yi' and zi' (i=1, 2, 3) 

are the local coordinates of the tip of the i-th beam relative to mobile rigid body coordinate system (x1'=0, y1'=r3sin(π/3), 

z1'=r3cos(π/3) for the tip 1, x2'=0, y2'=0, z2'=−r3 for the tip 2, x3'=0, y3'=−r3sin(π/3), z3'=r3cos(π/3) for the tip 3).  

Based on Eq. (2), the load-displacements equations for the tip of the i-th beam in the spatial TBM can be obtained as 

   Tzyx
T

zyxzy ,,,,,,,,,, iiiiiiiiiiiii zyxmmmffp K                                                                                                            (4) 

where Ki=K (Eq. (2)) is the stiffness matrix for each beam. pi, fiy, fiz, mix, miy and miz (i=1, 2, 3), denote the internal loads acting 

at the tip of the i-th beam, of which pi, fiy and fiz are the forces along the X-, Y- and Z-axes, respectively, and mix, miy and miz are 

the moments about the X-, Y- and Z-axes, respectively. 

Using the transformation matrix DPi in Eq. (3), the load-equilibrium conditions for the motion stage are shown as follows. 
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where T
piD may be thought of as the transformation matrix of the loads.  

Substituting Eq. (4) into Eq. (5), and then substituting Eq. (3) into the result, we have  

spXKF                                                                                                                                                                            (6) 

where T
szsysxssss ],,,,,[ zyxX and T

zyxzy ],,,,,[ mmmffpF . p33
T
p3p22

T
p2p11

T
p1p DKDDKDDKDK  , which is the stiffness 

matrix of the spatial TBM. 

The load-displacement relationships for the motion stage can also be re-expressed as 

FCX ps                                                                                                                                                                             (7) 

where 1
pp
 KC , which is the compliance matrix of the spatial TBM.  

    Equations (7) and (6) are the forward load-displacement equations and inverse load-displacement equations of the motion 

stage of the spatial TBM, respectively. 

Let the spatial TBM be made of a standard aluminium alloy for which Young’s modulus, E, is 69,000 Nmm
−2

 and Poisson’s 

ratio, v, is 0.33. Substituting all the values of the non-dimensional numbers and local coordinates into the compliance matrix in 

Eq. (7), we have 
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where d≥10000 for L/D≥25 or L/T>29, and r3 should usually be comparable with the beam length L, which may be larger than 

0.5. Note that this compliance matrix is a symmetrical matrix. Under large d, the highlighted diagonal compliance entries 

(elements (2, 2), (3, 3) and (4, 4)) associated with the two transverse displacements and the torsional angle are much larger than 

those compliance entries associated with the axial displacement and the two bending angles, and therefore are the dominant 

entries in the compliance matrix. Equation (8) also captures how the size parameters r3 and d influence the compliance matrix.  

If d or r3 increases, the three rotational angles all decrease. 

Equation (8) further shows that θsz=0 if mz=−fy/2, and θsy=0 if my=fz/2. This reveals that we can exert two transverse forces, 

on the motion stage, at the symmetric centre of all beams to eliminate the parasitic bending angles. The new action position is 
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termed as the centre of stiffness [18]. 

 

3.1.2. DOF analysis of the spatial TBM 

 

When multiplying the normalized compliance matrix (Eq. (8)) by a normalized load vector [1, 1, 1, 1, 1, 1]
T
, which considers 

all the load components under the same load magnitude, to generate the normalized displacements, each compliance entry in the 

compliance matrix can be thought of as the product of the compliance entry times a relevant unit load and represents the 

contribution of unit load component to the associated displacement. Then we can easily conclude that both the transverse 

displacements and the torsional angle are DOF whereas the two bending angles and the axial displacement are DOC since these 

compliance entries associated with the axial displacement and the two bending angles are negligibly smaller than the 

highlighted diagonal compliance entries associated with the two transverse displacements and the torsional angle. 

Let us consider a specific case of spatial TBM whose parameters are: d=10000, r3=0.6 and L=50mm. 

    Substituting the above geometrical parameters into Eq. (8), we obtain 
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    By replacing all the very small entries (approximately in the order of 0.01 of the dominant (highlighted diagonal) compliance 

entry) in Eq. (9) with 0, Eq. (9) is simplified as 
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The above simplified matrix clearly shows that only the two transverse displacements and the torsional angle about the 

X-axis are the DOF, which provides an easy and direct way to identify DOF/DOC without further complicated 

derivation/transformation. If there is no normalization applied in the above stiffness modeling (Eqs. (3)–(8)), the compliance 

matrix of the spatial TBM can be re-expressed as 






























 

0002.00000043.00

00002.000043.000

00000

00043.0000

0043.00000

000000769.0

101 3
non-p

0.0606

64.1788

64.1788

C  .                                                                (11) 

Different from Eq. (9), the DOF cannot be obtained directly from the non-normalized compliance matrix (Eq. (11)) by 

comparing the entries due to the different units of compliance entries. This may also mislead some readers to that the torsional 

angle is the DOC rather than the DOF by direct observation since the compliance entry associated with the torsional angle in Eq. 

(11) is as small as that associated with the axial displacement. 

 

3.2. Analysis of a spatial double TBM 

 

In compliant mechanism design, one can obtain compliant mechanisms with good performance characteristics such as 

kinematic-decoupling and reduced primary stiffness, respectively, by symmetrical and serial arranging two modules or more.  

A spatial double TBM [21, 22, 27] is shown in Fig. 3. It is composed of two spatial TBMs as two basic building blocks 

connected in series and has approximately half primary stiffness and double motion range of a single spatial TBM. Here, the 

global fixed coordinate system, loads and displacements are defined in the same way as the above spatial TBM. The inner and 

outer pitch radiuses of beams are represented by r3 and r3', respectively. 

From the nonlinear analysis [27] of the single spatial TBM (Fig. 2), we learn that the axial displacement depends on three 

components: purely elastic effect only from the axial force, purely kinematic effect, from the three DOF, and elastokinematic 

effect (the elastokinematic effect is very smaller than purely kinematic effect) of the spatial TBM. However, for the spatial 

double TBM, the purely kinematic effect upon the axial displacement can be largely eliminated as the transverse forces and 

torque imposed on the secondary stage produce positive axial displacement to the motion stage, while the transverse forces and 

torque imposed on the motion stage produce negative axial displacement. In addition, the spatial double TBM can alleviate the 

load-stiffening effect [5, 27] from the axial force, which makes it suitable for the symmetrical design. The above argument 

provides a basis for us to 1) use the spatial double TBM as a building block of compliant manipulators [21, 22], and 2) analyze 

the spatial double TBM using the linear modeling method due to the approximately eliminated nonlinear characteristics such as 

purely kinematic effect.  
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Fig. 3. A spatial double TBM 

 

The stiffness modeling of the spatial double TBM (Fig. 3) can be derived as the stiffness modeling of compliant serial chains 

[21, 29]. 

Since the displacements of the motion stage in the spatial double TBM are caused by both the inner spatial TBM deformation 

and the outer spatial TBM deformation, we have 

s2s1s ΔXΔXX                                                                                                                                                                (12) 

where T
szsysxssss ],,,,,[ zyxX is the resulting displacement vector of the motion stage, ΔXs1 is the displacement vector 

component of the motion stage resulting from the contribution of the inner spatial TBM deformation alone, ΔXs2 is the 

displacement vector component of the motion stage resulting from the contribution of the outer spatial TBM deformation alone. 

From Eq. (7), we obtain 

FCΔX ps1                                                                                                                                                                        (13) 

where Cp, shown in Eq. (8), is the local compliance matrix of the inner spatial TBM.  T
zyxzy ],,,,,[ mmmffpF , which is the 

load vector acting at the motion stage.  

Similar to Eq. (3), we further have 
'
s2s2 XJΔX                                                                                                                                                                      (14) 

where '
s2X  is the displacement vector of the secondary motion stage and J is the transformation matrix of the displacements of 

the secondary motion stage with respect to the global coordinate system O-XYZ. The latter is obtained based on Dpi in Eq. (3) 

using the relative location (1, 0, 0) of the centre of the motion stage with respect to that of the secondary motion stage. 

Based on Eq. (7), we obtain 

2p2
'
s2 FCX                                                                                                                                                                      (15) 

where Cp2, which can be obtained using Eq. (8), is the local compliance matrix of the outer spatial TBM. F2=J
T
F, obtained 

using Eq. (5), is the load vector acting at the secondary motion stage. 

Combining Eqs. (12)–(15), the load-displacement equations for the motion stage can be obtained as 

)FJJC(CFJJCFCX T
p2p

T
p2ps   .                                                                                                                           (16) 

Thus, the compliance matrix for the spatial double TBM can be expressed as  
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where Cp2 and J are shown in detail as follows: 
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. 

From the above entries of the compliance matrix in Eq. (17), it is shown that under relatively large d (e.g. d ≥10000), the 

spatial double TBM is still a 3-DOF CPM, but it has half primary stiffness of a spatial TBM. Under the conditions of large 

enough r3 and r3', the spatial double TBM can also be regarded as a 2-DOF compliant module without appreciable torsion. This 

also applied to the single spatial TBM under large enough pitch circle radius. 

  

4. Spatial tilted multi-beam modules 

 

In this section, we will investigate the modeling of compliance matrices of a spatial tilted TBM and a spatial double tilted 

TBM and also analyze their DOF. 

 

4.1. Analysis of a spatial tilted TBM 

 

A spatial tilted TBM [31] is shown in Fig. 4. It is composed of a base, three tilted beams and a thin motion stage. The base 

and motion stage are connected by the tilted three beams. Here, the three beams are uniformly spaced around two circles of 

radius r3 and r3' (r3 < r3') on the motion stage and base, respectively, and three central axes of the three beams intersect at one 

point (named theoretical virtual rotation centre: C).  

Based on the type synthesis of CPMs in [16, 28], the CPM in Fig. 4 is a 3-DOF rotational CPM, and all the three rotations are 

with respect to the theoretical virtual rotation centre C. The external applied loads, displacements of the motion stage and global 

fixed coordinate system are defined in the same way as in Section 3.1. Three local coordinate systems (O1-X1Y1Z1, O1-X2Y2Z2, 

and O3-X3Y3Z3) at the tips of the three beams (Figs. 4 (b) and (c)) are further established to facilitate the analysis. 

 
Fig. 4. A spatial tilted TBM 

 

4.1.1. Modeling of the spatial tilted TBM 

 

Similar to the modeling in Section 3.1.1, the geometric compatibility relationships between the displacements of the motion 

stage centre and the displacements of the i-th tip, with respect to the Oi-XiYiZi (i=1, 2, 3), can be obtained as 














































































































































































sz

sy

sx

s

s

s

''

''

''

sz

sy

sx

s

s

s

XY

z

y

x

100000

010000

001000

0100

0010

0001

cossin0000

sincos0000

001000

000cossin0

000sincos0

000001

cos0sin000

010000

sin0cos000

000cos0sin

000010

000sin0cos

)()(



































z

y

x

xy

xz

yz

z

y

x

αβ
z

y

x

ii

ii

ii

ii

ii

ii

ii

iii

i

i

i

i

i

i

DRR

                          (18) 

where xi, yi, zi, θix, θiy and θiz (i=1, 2, 3) are the displacements of the i-th tip with respect to Oi-XiYiZi. xi', yi' and zi' are the relative 

location parameters of the i-th tip with respect to the centre, O', of the motions stage. α1=2π/3, α2=0, α3=−2π/3. 

Then, the load-displacement equations for the i-th tip with respect to Oi-XiYiZi is 
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where pi, fiy, fiz, mix, miy and miz (i=1, 2, 3), denote the loads acting at the i-th tip with respect to Oi-XiYiZi. 

Further, the load-equilibrium conditions for the motion stage can be obtained as 
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where Di, RX(−αi) and RYi (β) (i=1, 2, 3) are those matrices shown in Eq. (18). 

Combining Eqs. (18)–(20), we obtain the load-displacement equations for the motion stage as: 

FCFKX 1p
1
1ps                                                                                                                                                               (21) 

where T
szsysxssss ],,,,,[ zyxX and T

zyxzy ],,,,,[ mmmffpF .
iii
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iiii αββα DRRKRRDK )()()()( XY
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Y

T
X

T
1p 



, which is the 

stiffness matrix of the spatial tilted TBM. 1
1p1p
 KC , which is its compliance matrix accordingly. 

 

4.1.2. DOF analysis of the spatial tilted TBM 

 

Consider the spatial tilted TBM shown in Fig. 4, let β=π/4, L=50 (mm), r3=0.6 and d=10000 (x1'=0, y1'=r3sin(π/3), 

z1'=r3cos(π/3) for tip 1, x2'=0, y2'=0, z2'=−r3 for tip 2, x3'=0, y3'=−r3sin(π/3), z3'=r3cos(π/3) for tip 3). The material for this module 

is the same aluminium alloy as detailed in Section 3.1.1.  From Eqs. (18)–(21), we obtain the compliance matrix  
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If ignoring some insignificant entries in Cp1, Eq. (22) can be simplified as 
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From Eq. (23), it is observed that 

      ys≈−(6.893/11.504)θsz≈−(11.504/19.320)θsz≈−[0.6/tan(β)]θsz, 

zs≈(6.893/11.504)θsy≈(11.504/19.320)θsy≈[0.6/tan(β)]θsy. 

i.e. two transverse displacements are not independent of the rotations. Analogous to the DOF analysis in Section 3.1.2, it is clear 

that the spatial tilted TBM has three DOF, which can be represented by the three rotational angles as discussed below. Here, the 

negligible difference such as |6.983/11.504−0.6|=0.007 or |11.504/19.320−0.6|=0.0046 is the well-known centre-drift [32]. 

Equations (22) or (23) also shows that ys=θsz≈0 if mz=0.6fy, and zs=θsy≈0 if my=−0.6fz. This reveals that two transverse forces, 

exerted on the motion stage at the position of the theoretical virtual rotation centre, can not cause any motion. 

The compliance matrix Cp1 can be regarded to be composed of six screws [13] in order to reveal the motion characteristics 

more effectively. Equation (22) can be rewritten as   
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s,s,s,s,ssC                                                                                                   (24) 

where  

0  denotes a 3 by 1 zero vector, 

si (i=2, 3, …, 6) denotes the screws, 

w2 denotes the rotation vector along the −Z-axis,  

w3 denotes the rotation vector along the Y-axis,  
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w4 denotes the rotation vector along the X-axis,  

w5 denotes the rotation vector along the Y-axis ,  

w6 denotes the rotation vector along the Z-axis,  

vi (i=1, 2,…, 6) denotes the translational displacement vector, 

22222 wwrv p , 

33333 wwrv p , 

44444 wwrv p , 

55555 wwrv p  , 

66666 wwrv p ,  

pi (i=1, 2,…, 6) denotes the pitch of the i-th screw, 

ri (i=1, 2,…, 6) denotes the position vector of any point on the corresponding screw axis with respect to the fixed coordinate 

system.  

All the pitches can be obtained as 
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Each rotation radius (the magnitude of the minimal position vector) of the centre of the motion stage with respect to the 

relevant real screw axis (Fig. 5) can be further obtained as 
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Fig. 5. Illustration for real screw axes and theoretical screw axes 

 

Figure 5 shows that the real screw axis w3 (w5) is very close to the corresponding theoretical screw axis which goes through 

the point C and is parallel to the Y-axis. The distance between the two axes is 0.007(or 0.0046), negligible compared with the 

theoretical rotation radius of 0.6. Therefore, the real screw axis w3 (w5) can be thought of as overlapping with the theoretical 

axis parallel to the Y-axis. Similarly, the real screw axis w2 (w6) can be thought of as overlapping with the theoretical axis 

parallel to the Z-axis. These approximations reveal that the spatial tilted TBM is a 3-DOF rotational CPM.  

    The above analysis shows that only the independent pure rotations about the virtual rotation centre are the DOF. 

If there is no normalization applied in the above stiffness modeling (Eqs. (18)–(21)), the compliance matrix of the spatial 

tilted TBM can be re-expressed as follows: 
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This non-normalized compliance matrix (Eq. (27)) has no such characteristics as shown in Eq. (22), and may mislead to that 

xs is the DOF, and θsx is the DOC for some readers by direct observation since the compliance entry associated with the 

translational displacement along the X-axis (xs) is larger than that associated with the rotation about the X-axis (θsx). 

An inverted spatial tilted TBM is shown in Fig. 6. The coordinate system, loads and displacements are all defined in the same 

way as in Fig. 4. Similarly, the compliance matrix for the inverted spatial tilted TBM is derived as 

1
XY
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Let L=50 (mm), d=10000, β=π/4, r3=0.6 and r3'=r3+sinβ=1.307 (x1'=0, y1'=r3'sin(π/3), z1'=r3'cos(π/3) for the tip 1, x2'=0, 

y2'=0, z2'=−r3 'for the tip 2, x3'=0, y3'=−r3'sin(π/3), z3'=r3'cos(π/3) for the tip 3), we have 
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From Eq. (29), it is observed that 

ys≈[0.6/tan(β)+cos(β)] θsz =1.307θsz, zs≈−[0.6/tan(β)+cos(β)] θsy=−1.307θsy. 

    This reveals that the motion stage of this inverted spatial tilted TBM can produce large translation than the original one under 

same rotation since the theoretical rotational radius, 1.307, of the inverted module is larger than that, 0.6, of the original module. 

 
Fig. 6. An inverted spatial tilted TBM 

    
4.2. Analysis of a spatial double tilted TBM 

 

Analogous to the generation of the spatial double TBM (Fig. 3), we can combine two spatial tilted TBMs as two basic 

building blocks in series to obtain a spatial double tilted TBM shown in Fig. 7. This mechanism has approximately double 

motion stage and half stiffness of a single spatial tilted TBM as detailed below.  

 

 
Fig. 7. A spatial double tilted TBM 

 

Based on Eqs. (17), (21) and (28), we obtain the compliance matrix for the spatial double tilted TBM: 
T

p2p1s JJCCC  .                                                                                                                                                           (30) 

where Cp1 and Cp2 are the compliance matrices shown in Eqs. (21) and (28), respectively, and  
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Substituting all the geometric parameters into Eq. (30), we obtain 
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Compared with Eq. (22), Eq. (31) shows that the spatial double tilted TBM is also a 3-DOF purely rotational CPM, but has 

approximately half rotational stiffness of a spatial tilted TBM (for example, element (6, 2) of Cp1 (Eq. (22)), is approximately 

half that of Cs (Eq. (31))). 

The normalization-based strategy can also be used to deal with the DOF identification of other spatial multi-beam modules 

such as the spatial double tilted four-beam module shown in Fig. 8, and spatial compliant modules composed of sheets such as 

those discussed in Appendices A and B as well as the error analysis of spatial multi-beam modules with beams of compatible 

length (Appendix C). 

 
Fig. 8. A spatial double tilted four-beam module 

 

5. Conclusions 

 

This paper has analyzed the mobility of several spatial CPMs, especially spatial multi-beam modules, using a 

normalization-based approach. The DOF/DOC can be identified more easily from the compliance matrices using the proposed 

approach than the approach without normalization.  

It is noted that the rotational angles and translational displacements (or the forces and moments) have been compared 

reasonably through the use of a normalization-based approach to deal with the issue of dimension inconsistency, and the 

normalized load vector with load components under the same load magnitude has also been adopted to ensure the loading 

magnitude consistency. 

The proposed approach may provide an easy way to identify the DOF/DOC of a class of spatial CPMs directly from the 

normalized compliance matrices without complicated derivation/transformation. This determination of DOF of other classes of 

compliant mechanisms is still an open issue that deserves further investigation. 
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Appendices 

 

In the appendices, we will discuss the normalization method for spatial compliant modules composed of identical and 

uniform sheets (usually long-side length/ short-side length of a rectangular cross-section>10), and also illustrate how to apply 

the normalization-based approach to the error analysis of spatial multi-beam modules with beams of compatible length. Here, 

the global coordinate system, loads and displacements are defined in the similar way as previously mentioned.  

 

A. Parallelogram module with two sheets 

 
For the normalization of spatial compliant modules composed of identical and uniform sheets (i.e. spatial compliant 

multi-sheet modules), all translational displacements and length parameters are divided by the sheet length L, forces by E'I/L
2
, 

and moments by E'I/L. Here, E' [E/(1−v
2
)] and I denote, respectively, the plate modulus and the second moment of the area of a 

rectangular cross-section of the sheet about the central axis parallel to its long side. 

We first analyze the common-used parallelogram module (Fig. A.1). From the books on mechanics of materials (see [33] for 

example), the torsional stiffness for a typical sheet is )3/())(( 3 LtLuLG . Similar to the formulation of Eq. (2), the stiffness matrix 

for each sheet under the coordinate system O-XYZ can be derived as 
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where u and t are the normalized geometrical parameters of a sheet as shown in Fig. A.1(b). It is noted that there is plane stress 

in the XZ plane, and there is plane strain in the XY plane.  

 
Fig. A.1. Parallelogram module with two sheets 

 

Then, the transformation matrices of the displacements of the motion stage are represented as  
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where w is the normalized spacing parameter as shown in Fig. A.1(a). 

Therefore, the compliance matrix for the motion stage centre is obtained using Eqs. (A.1) and (A.2) as follows. 
1

p22
T
p2p11

T
p1p )(  DKDDKDC    .                                                                                                                                  (A.3) 

As an example, let L=50 (mm), W=50 (mm), T=1 (mm), U=20 (mm) and v=0.3. The substitution of all the normalized values 

into Eq. (A.3) yields 
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Equation (A.4) shows that the translation along the Y-axis is the only DOF since the highlighted compliance element, (2, 2), 

associated with the transverse displacement along the Y-axis is much larger than the other elements, which complies with the 

qualitative analysis. 

 

B. Four-Sheet Rotational Module 

 

A four-sheet module is shown in Fig. B.1. This module, proposed in [17] as a rotational joint, is composed of four non-tilted 

sheets in parallel. Here, the neutral surface of each sheet, associated with the bending about the central axis parallel to the long 

side of its cross-section, passes the central axis of this module.  
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Fig. B.1. Four-sheet rotational module  

     

Analogous to the derivation of Eq. (2), the stiffness matrices for the sheets under the coordinate system O-XYZ can be 

derived as 
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where u and t are the normalized parameters of a sheet as shown in Fig. B.1(b).  

The transformation matrices of the displacements of the motion stage are represented as  
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where w is the normalized spacing parameter as shown in Fig. B.1(c). 

Then, the compliance matrix for the motion stage centre is obtained using Eqs. (B.1) and (B.2) as follows. 
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As an example, let L=50 (mm), W=50 (mm), T=1 (mm), U=20 (mm) and v=0.3. Substituting all the normalized values into 

Eq. (B.3), we have 
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Equation (B.4) shows that the torsion about the X-axis is the only DOF since the highlighted compliance element, (4, 4) 

associated with the torsion about the X-axis is much larger than the other elements, which complies with the qualitative 

analysis. 

Similar to the design in Section 3.2, we can also obtain an improved rotational joint: double four-sheet rotational joint as 

shown in Fig. B.2. It doubles the rotational range without rotation centre-drift, and alleviates the parasitic axial translational 

displacement along the X-axis. 
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Fig. B.2. Double four-sheet rotational modules: a) eight sheets distributed along two circles (largely eliminating the parasitic 

axial translation accompanying the primary torsion), and b) eight sheets distributed along one circle (completely eliminating the 

parasitic axial translation accompanying the primary torsion) 

 

C. Spatial TBM error analysis 

 

In this section, the error analysis of a spatial TBM will be dealt with to analyze the affect of the beam length error on the 

normalized compliance matrix for the DOF identification. In turn, the derived compliance matrix can be used to diagnose the 

length error. 

Here, we only discuss the case in which two beams (Beams 1 and 3) are of length L1, and one beam (beam 2) is of length L2 

(Fig. C.1).  

 
Fig. C.1.Variation of the spatial TBM 

 

Let L1 be the characteristic length for normalization. Then the normalized stiffness matrices for Beam 1 or Beam 3 remain 

unchanged as K shown in Eq. (2), while that for Beam 2 is derived based on the normalization method as follows: 
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where d=16/(D/L1)
2
 for round beams or d=12/(T/L1)

2
 for square beams. 

Form Eq. (C.1), it can be observed that if L2 is significantly smaller than L1, compared with the more compliant Beams 1 and 

3, Beam 2 from a 5-DOF compliant mechanism excluding the axial displacement degenerates to  

a) a 3-DOF spherical joint due to the fact that all the stiffness entries associated with the two transverse displacements 

(elements (2,2), (2,6), (3,3), and (3,5)) are very large resulting from the existence of high-order terms of L1/L2, or  

b) even a DOC if all the stiffness entries associated with the three rotational angles are also very large under the conditions 

that the first-order terms of L1/L2 (elements (4,4), (5,5) and (6,6)) are large enough. 

Let Δ=1−L2/L1 be the small error, we have 
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Further, based on Taylor series expansion, we obtain 
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Therefore, we can re-write the above stiffness matrix (Eq. (C.1)) as  
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Using the stiffness method in Section 3.1.1 to obtain the normalized compliance matrix for the spatial TBM with length error, 

and substituting the same known conditions for Eq. (9) and Δ=0.05 into the result, we have 
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From the highlighted diagonal compliance entries [elements (2, 2), (3, 3) and (4, 4)] in Eq. (C.5), the spatial TBM with length 

error can still be regarded as a 3-DOF planar motion module. However, it shows performance characteristics different from 

those shown in Eq. (9). For instance, a transverse force along the Y-axis will result in a slight torsion [see element (4, 2)], and  a 

torsional moment will cause a slight transverse displacement along the Y-axis [see element (2, 4)]. 
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Figure 1. A basic cantilever beam 

 

 

 

 

 

 

Figure 2. A spatial TBM in deformation 

 

 

 

 

 

Figure 3. A spatial double TBM 
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Figure 4. A spatial tilted TBM 

 

 
 

 

 

 

 

 

Figure 5. Illustration for real screw axes and theoretical screw axes 

 

 
 

 

 

 

 

 

Figure 6. An inverted spatial tilted TBM 
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Figure 7. A spatial double tilted TBM 

 

 

 

 

 

 

Figure 8. A spatial double tilted four-beam module 

 

 

 

 

 

Figure A.1. Parallelogram module with two sheets 
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Figure B.1. Four-sheet rotational module  

 

 
 

 

 

 

Figure B.2. Double four-sheet rotational modules: a) eight sheets distributed along two circles (largely eliminating the parasitic 

axial translation accompanying the primary torsion), and b) eight sheets distributed along one circle (completely eliminating the 

parasitic axial translation accompanying the primary torsion) 

 

 

 
 
 
 

Figure C.1.Variation of the spatial TBM 
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