
Title Bacterial modulation of visceral sensation: mediators and
mechanisms

Authors Lomax, Alan E.;Pradhananga, Sabindra;Sessenwein, Jessica
L.;O'Malley, Dervla

Publication date 2019-07-10

Original Citation Lomax, A. E., Pradhananga, S., Sessenwein, J. L. and O'Malley, D.
(2019) 'Bacterial modulation of visceral sensation: mediators and
mechanisms', American Journal of Physiology-Gastrointestinal
and Liver Physiology, In Press, doi: 10.1152/ajpgi.00052.2019

Type of publication Article (peer-reviewed)

Link to publisher's
version

https://www.physiology.org/doi/abs/10.1152/ajpgi.00052.2019 -
10.1152/ajpgi.00052.2019

Rights © 2019, The American Physiological Society. All rights reserved.

Download date 2025-01-14 01:03:20

Item downloaded
from

https://hdl.handle.net/10468/8423

https://hdl.handle.net/10468/8423


1 
 

Bacterial modulation of visceral sensation: mediators and mechanisms 1 
 2 

 3 

Alan E Lomax*1, Sabindra Pradhananga1, Jessica L Sessenwein1, Dervla O’Malley2,3 4 

 5 

1Gastrointestinal Diseases Research Unit, Queen’s University, Kingston, ON, Canada 6 

2APC Microbiome Ireland, University College Cork, Ireland 7 

3Department of Physiology, University College Cork, Ireland 8 

 9 

*Author for Correspondence: 10 

Alan Lomax 11 

GIDRU Wing, 12 

Kingston General Hospital, 13 

Kingston ON K7L 2V7 14 

Canada 15 

Email: lomaxa@queensu.ca 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

Downloaded from www.physiology.org/journal/ajpgi at Univ Col Cork (143.239.102.147) on August 30, 2019.



2 
 

Abstract 25 

The potential role of the intestinal microbiota in modulating visceral pain has received increasing 26 

attention during recent years. This has led to the identification of signaling pathways that have 27 

been implicated in communication between gut bacteria and peripheral pain pathways.  In 28 

addition to the well-characterised impact of the microbiota on the immune system, which in turn 29 

affects nociceptor excitability, bacteria can modulate visceral afferent pathways by effects on 30 

enterocytes, enteroendocrine cells and the neurons themselves. Proteases produced by bacteria, 31 

or by host cells in response to bacteria, can increase or decrease the excitability of nociceptive 32 

dorsal root ganglion (DRG) neurons depending on the receptor activated. Short chain fatty acids 33 

generated by colonic bacteria are involved in gut-brain communication, and intracolonic short 34 

chain fatty acids have pro-nociceptive effects in rodents but may be anti-nociceptive in humans. 35 

Gut bacteria modulate the synthesis and release of enteroendocrine cell mediators including 36 

serotonin and glucagon-like peptide-1, which activate extrinsic afferent neurons. Deciphering the 37 

complex interactions between visceral afferent neurons and the gut microbiota may lead to the 38 

development of improved probiotic therapies for visceral pain.   39 

  40 
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Introduction 41 

Visceral pain is a common and debilitating symptom of many digestive diseases, 42 

including inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) (17). Visceral 43 

pain is often resistant to conventional analgesics and can sometimes be exacerbated by opioid 44 

drugs (45, 55).  In light of this, new therapeutics to relieve visceral pain are urgently needed.  45 

Progress towards this goal will be accelerated by a more complete understanding of the 46 

peripheral signaling molecules that modulate nociception in the gut. 47 

The perception of pain is accomplished by neural pathways that connect the gut to the 48 

brain via the spinal cord. The first neurons in this chain have cell bodies in dorsal root ganglia 49 

(DRG), project sensory axons into the gut and form excitatory synapses in the dorsal horn of the 50 

spinal cord. A subpopulation of these neurons, called nociceptors, detects noxious stimuli and 51 

activates pain circuits in the brain. Host-derived mediators from biopsies of IBS and IBD 52 

patients induce hyperexcitability in nociceptive DRG neurons, leading to an exaggerated 53 

response to stimuli such as distension or a bowel movement (16, 26, 60). This change in 54 

nociceptor sensitivity is a major driver of visceral pain.  Superimposed upon these peripheral 55 

changes are changes in central nervous system (CNS) circuits that amplify synaptic inputs from 56 

the periphery (17, 20). Thus, visceral pain results from a combination of peripheral sensitisation 57 

and central plasticity.  Combating these pro-nociceptive influences are host-derived analgesic 58 

substances including endogenous opioids and cannabinoids (22, 124).  This balance between pro-59 

nociceptive and anti-nociceptive influences on DRG neuron excitability dictates the transmission 60 

of pain stimuli to the CNS and the perception of pain. Recent investigations have identified the 61 

gut microbiota as an additional factor in pain modulation, capable of either worsening or 62 

ameliorating pain (8, 88).  Microbial modulation of visceral pain may have translational 63 
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relevance given the changes in microbiota composition associated with IBD and IBS.  Although 64 

intestinal fungi may also play important roles in modulating visceral pain (21), in this review, we 65 

discuss the potential mediators of bacterial modulation of peripheral visceral pain pathways.   66 

A potential role for gut bacteria in visceral pain signalling  67 

The mutualistic relationship that has evolved between bacteria and eukaryotes includes 68 

the ability of commensal bacteria in the gut to influence behavior and pain (24, 40, 88, 96, 122). 69 

Although probiotics have been marketed for the treatment of visceral pain for over a decade, 70 

there is a lack of mechanistic insight into which bacteria, bacterial metabolites, or signaling 71 

pathways are most important. To date, much of the evidence in support of a role for the 72 

microbiota in regulating pain is derived from in vivo studies demonstrating that germ-free mice, 73 

or mice treated with antibiotics that alter the microbiota early in life, have heightened pain 74 

sensitivity (39-41, 74, 88, 90, 98). However, changes to pain sensitivity in germ-free mice may 75 

not be due solely to direct microbial-neuronal interaction, as germ-free mice exhibit a number of 76 

potentially confounding developmental changes to the immune system. Similarly, a study of 77 

visceral pain sensitivity in mice treated with a cocktail of antibiotics reported an increase in 78 

visceral pain accompanied by an increase in colonic myeloperoxidase activity, which is 79 

indicative of immune system activation (126). This suggested a role for inflammatory changes in 80 

nociceptive effects of modulating the microbiota. Although there is potential for bacterial 81 

products to directly activate nociceptive neurons, the evidence until recently, largely supported a 82 

role for epithelial and immune cells in mediating many of the effects of the gut microbiota on 83 

pain pathways in vivo (Table 1) (5, 80, 84, 131). 84 

Bacteria as a source of host modulatory factors 85 
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There is a growing appreciation that the gut microbiota can be considered an endocrine 86 

organ, having the capability to directly or indirectly regulate different gastrointestinal and stress 87 

hormones, which may modify host physiological function (33). Intriguingly, the transfer of 88 

faecal matter from IBS patients is sufficient to evoke visceral hypersensitivity in gnotobiotic rats. 89 

This is not due to changes in mucosal permeability or immune activation, raising the possibility 90 

that bacterial metabolites in IBS patient stool directly modify gut-brain signalling (35). DRG 91 

neurons are capable of “sensing” the presence of microbes. They express functional microbial 92 

pattern recognition molecules, including toll like receptors and nucleotide-binding 93 

oligomerization domains 1 and 2 (91), whose activation can modulate neuronal excitability. 94 

Furthermore, the pathogenic bacterium Staphylococcus aureus directly excites DRG neurons 95 

through a toxin that forms cation-permeable pores in DRG neuronal membranes and through 96 

secretion of N-formylated peptides (32). In contrast to the pro-nociceptive effects of this skin 97 

pathogen however, the commensal gut microbes studied to date have inhibitory effects on DRG 98 

neuron excitability (88, 93, 109).  Given the potential importance of the microbiota as a 99 

modulator of visceral pain, identification of the specific species involved and mediators 100 

responsible will be particularly important. Gut microbes produce a plethora of neuro-active 101 

compounds such as proteases (116), short chain fatty acids (SCFA) (99) and also classical 102 

neurotransmitters such as γ-amino butyric acid (GABA), dopamine and norepinephrine (94).  We 103 

will consider the available evidence in support of a role for specific bacterial mediators in terms 104 

of their capability to directly access and act upon nerve circuits to modulate their function (39, 105 

88, 137). We will also discuss microbe-mediated modulation of visceral pain pathways by using 106 

immune cells and enterocytes as cellular transducers (Figure 1).   107 

Direct signalling by bacterial metabolites 108 
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Proteases 109 

Extracellular proteases, in particular serine and cysteine proteases, are important modulators of 110 

visceral pain (127). Proteases are released from many eukaryotic cell types, including mast cells, 111 

neutrophils and enterocytes (97, 104). Recent in vivo and in vitro work has identified the gut 112 

microbiota as an important source of proteases (116) capable of affecting peripheral pain 113 

pathways (8, 81, 109).  Pain regulation by proteases most often occurs through the activation of 114 

protease activated receptors (PARs). PARs are a family of four G-protein coupled receptors that 115 

lack conventional ligand binding sites and are instead activated via protease-mediated hydrolysis 116 

of amino acid residues.  Upon protease cleavage, a tethered ligand within the receptor is revealed 117 

that activates intracellular signaling pathways (97). The net effect of receptor signaling depends 118 

not just on the PAR subtype involved but the specific amino acids hydrolysed (97). A consistent 119 

finding from numerous laboratories is that PAR-2 activation causes sustained hyperexcitability 120 

of DRG neurons (6, 34, 51, 136).  Indeed, activation of nociceptor PAR-2 by mast cell tryptase 121 

and enterocyte derived trypsin-3 (85, 104) has been implicated in visceral pain (12, 63). 122 

However, nociceptive neurons also express PAR-1 and PAR-4. Activation of PAR-1 and PAR-4 123 

reduces DRG neuron excitability and is anti-nociceptive (10, 11, 66, 104). PAR-2 activation in 124 

vivo by cysteine proteases in fecal supernatants from IBS patients enhanced the visceromotor 125 

response to colorectal distension in rats, an in vivo assay of visceral pain.  In contrast, activation 126 

of PAR-4 by commensal microbes has an analgesic effect in vivo and in vitro (81, 109).  The 127 

opposing effects of PAR-2, PAR-1 and -4 suggest that the balance between PAR-2, and PAR-1 -128 

4 activation could be a critical determinant of nociception.   129 

While it seems clear that activation of PARs by proteases derived from the microbiota 130 

can modulate pain, an important unresolved issue is whether these proteases exert this influence 131 
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via actions on mucosal cells, immune cells or directly on DRG nerve terminals.  The intestinal 132 

barrier is comprised of a mucus-coated epithelial monolayer whose integrity is maintained by 133 

tight junction proteins, which regulate the paracellular movement of luminal molecules. Beneath 134 

the epithelial layer, intrinsic and extrinsic neurons relay neural information both within the GI 135 

tract but also between the gut and the CNS. However, evidence that this communication system 136 

extends beyond the epithelial barrier to the microbially-dominated environment of the gut lumen, 137 

has resulted in it being referred to as the microbiota-gut-brain axis (19, 47, 76). It appears that at 138 

least in some circumstances, the impact of PAR activation on visceral pain is due to modulation 139 

of epithelial barrier function. Using a model of IBS in rodents, Miquel and colleagues found that 140 

proteases derived from Faecalibacterium prausnitzii inhibited the increase in visceral pain that 141 

results from neonatal maternal separation.  In this case, the decrease in visceral pain was ascribed 142 

to PAR-4 mediated reversal of the increase in mucosal permeability in this model of visceral 143 

pain (81).  Faecal supernatants from patients with chronic ulcerative colitis led to a decrease in 144 

visceromotor response to colorectal distention due to activation of PAR-4 (8). In a separate 145 

study, serine proteases from Faecalibacterium prausnitzii acted directly on nerve terminals to 146 

inhibit colonic sensory nerve spike discharge and reduced the excitability of colon-projecting 147 

DRG neurons via PAR-4 activation (109). Furthermore, these proteases reversed DRG neuronal 148 

hyperexcitability caused by the dextran sulphate sodium model of colitis in mice (109).    149 

Opposite findings have been reported for microbial activation of PAR-2. Luminal 150 

administration of faecal supernatants from patients with diarrhea-predominant IBS increased 151 

visceral pain sensitivity and impaired mucosal barrier function in vivo via PAR-2 activation (49).   152 

Consistent with the ability of luminal proteases to have pronociceptive effects, luminal 153 

administration of the PAR-2 activating serine protease, cathepsin S, was sufficient to increase 154 
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visceromotor responses in mice in a PAR-2-dependent manner (27).  Similarly, activation of 155 

PAR-2 by host derived proteases causes a sustained increase in the excitability of mouse DRG 156 

neurons (67). Thus, although there is abundant evidence that activation of neuronal PAR-2 has 157 

pro-nociceptive effects, it remains unclear whether neuronal PAR-2, in addition to mucosal 158 

PAR-2, participates in the pro-nociceptive effects of bacterial proteases.  Cell-specific receptor 159 

knockout strategies will be important tools in identifying which PAR-expressing cells are most 160 

important to visceral pain modulation in vivo.   161 

In addition to microbial-derived proteases, the microbiota is a rich source of protease 162 

inhibitors (54) including siropins, which has been shown to mitigate the effect of host-derived 163 

proteases implicated in IBD pathogenesis (82).  A recent study using a rodent model of post-164 

inflammatory hypersensitivity provided valuable evidence that synthetic protease inhibitors can 165 

mitigate the pro-nociceptive effects of proteases in this model (28).  It therefore appears that the 166 

balance between the activity of proteases and protease inhibitors can influence visceral 167 

perception and may be an important target for novel therapeutics (128).   168 

Short chain fatty acids 169 

Short chain fatty acids (SCFAs) are produced by the fermentation of dietary polysaccharides that 170 

are metabolized by the anaerobic bacteria found in the cecum and colon. Formate, acetate, 171 

butyrate, and propionate are the major byproducts of this fermentation process (83).  Earlier 172 

reports have identified Fecalibacterium prausnitzii, Eubacterium rectale, Eubacterium hallii and 173 

Roseburia faecis as bacteria capable of producing butyrate. Likewise, acetate and pyruvate are 174 

produced by enteric bacteria such as Blautia hydrogenotrophica; propionate, on the other hand, 175 

can be produced by Bacteroidetes and Firmicutes (72). 176 
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 A well-established effect of butyrate is inhibition of bowel inflammation and 177 

enhancement of mucosal repair, which would have an indirect effect on inflammatory visceral 178 

pain (103). SCFAs also modulate the enteric nervous system (113) and have been posited as an 179 

important mediator of microbiota-gut-brain communication (88). Microbial dysbiosis, due to the 180 

administration of antibiotics or due to modulation of diet, led to a decrease in SCFA and an 181 

increase in visceral sensitivity (38, 90, 100, 112).  This suggests an association between SCFA 182 

and visceral pain modulation but does not directly establish a causal relationship. Contrary to 183 

these studies, when SCFAs were administered to control rats and rats with TNBS-induced colitis, 184 

visceral hypersensitivity was not improved by any of the SCFAs (acetate, propionate and 185 

butyrate) used (121). In fact, butyrate administration decreased the noxious pressure threshold in 186 

rats, indicating a pronociceptive effect; this phenomenon was more pronounced in control rats 187 

than in TNBS- treated rats. This observation is supported by a report that rectal administration of 188 

sodium butyrate induced colonic hypersensitivity in rats (133). This pronociceptive effect was 189 

associated with neuronal activation of extracellular signal related kinase (ERK)1/2 and an 190 

enhancement of DRG neuronal excitability. However, a study of healthy human volunteers 191 

concluded that butyrate treatment induced a dose-dependent reduction of visceral sensitivity 192 

(125). In summary, despite evidence implicating SCFAs in mediating gut-brain communication 193 

in general, there are conflicting findings regarding the role of SCFAs in modulating visceral 194 

pain.    195 

Microbial neurotransmitters and neurotrophic factors 196 

Microbial depletion and recolonization studies have linked microbial modification of neuroactive 197 

compounds in the gut-brain communication axis to diseases of the peripheral and central nervous 198 

system (119). Germ-free studies illustrate the crucial role of microbes in the development of 199 
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brain function and expression of central neurochemicals (15, 23) however, antibiotic treatment in 200 

mature animals can avoid the confounding developmental effects of early-life microbial 201 

alterations. Hoban and colleagues reported modification of central monoamines, serotonin and 202 

brain derived neurotrophic factor (BDNF) following sustained antibiotic administration to adult 203 

rats. These changes were accompanied by altered behaviors and diminished visceral pain 204 

sensitivity to colorectal distension (58). Interestingly, antibiotic-related alterations in 205 

neurotransmitters can be long-lasting and have different functional outcomes when administered 206 

early in life. A gender-specific increase in visceral sensitivity, which was linked to decreases in 207 

spinal cord expression of transient receptor potential (TRP)V1, α2A adrenergic receptors and 208 

cholecystokinin B receptors, was noted in male rats treated with vancomycin from postnatal days 209 

4-13 (90).  210 

In addition to modification of host neurotransmitters, microbes also exhibit the capacity 211 

to secrete functional neurotransmitters and neurotrophins. GABA, the major inhibitory 212 

neurotransmitter, is synthesized by several Lactobacilli and Bifidobacteria (14, 129). As GABA 213 

receptor agonists can suppress visceral pain responses to colorectal distension (56)  and 214 

inflammation-induced pain signals (73), this may contribute to nociceptive signaling from the 215 

gut (62). Dopamine and norepinephrine, which have reported anti-nociceptive effects of visceral 216 

pain sensitivity (37, 92), are also produced by several gut bacterial species, including Bacilli and 217 

Escherichia (94, 129). BDNF, an important neurotrophic regulator of synaptic plasticity and 218 

neurogenesis, is purported to be a hallmark of altered microbiota-gut-brain axis signaling, given 219 

that its expression is altered in germ-free mice (87, 120) and in antibiotic- (58) and prebiotic-220 

treated mice (107). Moreover, BDNF is expressed on TRPV1‐expressing nociceptive DRG 221 

neurons (132) and neutralizing BDNF blocked visceral hypersensitivity in inflammatory colonic 222 
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hypersensitivity (42). In IBS patients, increased expression of nerve growth factor (NGF) 223 

correlated with visceral pain sensitivity (134), which may be due to sensitization of pro-224 

nociceptive receptors on primary afferent neurons. Indeed, NGF increases TRPV1 expression in 225 

DRGs (110).  In the context of microbial modification of host molecules, an in vitro study 226 

demonstrated that  Lactobacillus rhamnosus induces anti-inflammatory effects in human 227 

epithelial cells which is mediated by NGF (75). Although intriguing, evidence that gut bacteria 228 

have the capacity to secrete neurotransmitters and neurotrophins, does not explain how 229 

neuromodulatory molecules in the external environment of the gut lumen can modify gut-to-230 

brain nociceptive signalling. As afferent nerves do not reach through the epithelium into the gut 231 

lumen, further mechanistic studies are needed to determine how bacterially-derived 232 

neuromodulatory factors can cross the gut barrier to influence gut-brain signalling. 233 

 234 

Indirect signaling  235 

Serotonin secretion from Enterochromaffin cells 236 

Serotonin has long been recognised as a critical regulator of gut function, inflammation and pain 237 

(50, 77). Accordingly, the release of serotonin from enterochromaffin (EC) cells and its sites of 238 

action are important therapeutic targets for visceral pain. Two recent independent reports 239 

delineated the ability of microbes to modulate serotonin synthesis by EC cells. One study 240 

reported an increase in serotonin production in mice colonised with human fecal microbiota, 241 

compared to germ-free mice (99).  This was associated with an increase in expression of 242 

tryptophan hydroxylase 1 (TPH1), the rate limiting enzyme for serotonin synthesis in EC cells. 243 

Consistent with the ability of microbial metabolites to increase TPH1 expression, the SCFAs, 244 

sodium acetate and sodium butyrate, increased TPH1 expression in a human-derived EC cell 245 
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line. The second study identified spore-forming bacteria as important modulators of serotonin 246 

production by EC cells, and revealed that this effect occurred in the colon but not the small 247 

intestine (135).  Furthermore, EC cell serotonin modulation by microbiota was also observed in 248 

RAG1 knockout mice which lack T and B cells, suggesting a direct action on EC cells rather 249 

than an indirect effect via immunomodulation.  SCFAs were also implicated as modulators of EC 250 

cell function, which may be an important mechanism of pain modulation by microbiota. Other 251 

bacterial metabolites, such as bile acids and p-aminobenzoate, have also been implicated in 252 

regulating serotonin production. From these findings it appears that several bacterial signaling 253 

pathways depend on the release of serotonin from EC cell as a means of modulating gut function, 254 

inflammation and visceral pain.  In addition to microbial modulation of serotonin release, Kwon 255 

and colleagues have recently (69) demonstrated that host-derived serotonin has direct and 256 

species-specific effects on the growth of commensal microbes in vivo and in vitro.  Furthermore, 257 

the secretion of the anti-microbial peptide α-defensin from the HT-29 epithelial cell line was 258 

inhibited by serotonin (69).  These findings illustrate the complex and bidirectional nature of the 259 

interactions between gut microbes and enterochromaffin cells. 260 

GLP-1 secretion from L-cells 261 

Similar to EC cells, GLP-1-secreting L-cells may act as chemosensory sentinels, conveying 262 

information about the luminal environment to the host. L-cells are polarised, electrically 263 

excitable enteroendocrine cells (31), which sense the arrival of nutrients, such as glucose and 264 

amino acids, in the small intestine. Despite the reduced probability of nutrients being present, the 265 

abundance of GLP-1-secreting L-cells increases towards the distal end of the GI tract (117). 266 

Consistent with the contents of the colonic lumen, L-cells in this region express receptors for 267 

SCFAs and bile acids (101, 123). Moreover, dietary supplementation with SCFAs (123), the 268 
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introduction of specific commensal strains (9, 118) or antibiotic treatment (61) increased GLP-1 269 

levels. Somewhat counter-intuitively, one study determined that serum GLP-1 was also elevated 270 

in germ-free mice (108), although other researchers found that germ-free mice exhibited a strong 271 

state of GLP-1 resistance, with impaired GLP-1 evoked gut-brain signalling and enteric nervous 272 

system function (52). A clinical trial in IBS patients found that administration of a GLP-1 273 

mimetic reduced acute abdominal pain in patients (57). GLP-1 can act as a classical endocrine 274 

hormone, however GLP-1 also has direct neurostimulatory actions on vagal afferent neurons 275 

(78). Furthermore, there is evidence of direct, physical contact between a pseudopod-like 276 

elongation of L-cells and afferent nerve fibres (18), providing for a potential neural signalling 277 

pathway in the modification of GI function. Thus, L-cells are appropriately positioned to 278 

facilitate cross-barrier signalling from the gut lumen to the host peripheral nervous system and 279 

on to the CNS, and should be investigated as a potential modulator of visceral pain.  280 

Histamine release from mast cells 281 

Histamine, which is mainly secreted by mast cells, promotes allergic inflammation but also 282 

appears to play a role in visceral nociception. Indeed, histamine-containing secretions from IBS 283 

patient mucosal mast cells have been shown to excite rat nociceptive visceral afferent nerves, 284 

and are thus likely to participate in relaying visceral pain signals (13). Of the four histamine 285 

receptor subtypes, H1R and H2R are most prevalent in the gut. Similar to the opposing actions of 286 

PAR subtypes described earlier, activation of H1R promotes pro-inflammatory pathways (30), 287 

whereas H2R suppresses inflammation (111). In patients with IBD, reduced expression of H2R 288 

may underlie decreased suppression of TLR-induced cytokine secretion in this patient population 289 

(111). H1R antagonists decreased abdominal pain in IBS patients (68) and in a rat model of 290 

visceral hypersensitivity (115). Moreover, IBS patient biopsies display increased expression of 291 
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H1R (106). Histamine may also be secreted by bacterial species such as Lactobacillus reuteri 292 

6475, a commonly-used probiotic (114), which can reduce intestinal inflammation (48) and may 293 

also have an impact of visceral pain sensitivity. 294 

Vagal afferent pathways 295 

Vagal afferent neurons may also participate in the sensory arm of gut-brain nociceptive 296 

signaling. Although electrical stimulation of abdominal vagal afferents does not induce pain per 297 

se, nociceptive signaling may be modulated by vagal activity (7). Vagal nerve activation may in 298 

fact, induce an inhibitory modulation of chemically or mechanically-provoked insults (29, 53), as 299 

noted in a rat model of visceral pain where vagal nerve stimulation had an anti-nociceptive effect 300 

(138). Vagal afferent terminals are located within enteric ganglia, and in the smooth muscle and 301 

mucosal layers, where they are well-positioned to sense chemo-nociceptive signals (70, 95, 130).  302 

Given the essential role of the vagus nerve in mediating microbe-gut-brain communication (15, 303 

23), future work should address whether modulation of vagal afferent pathways by bacteria 304 

impacts visceral pain. 305 

Conclusions 306 

There is abundant evidence that the microbiota is capable of modifying visceral pain in vivo.  307 

However, clinical trials of probiotics as therapies for visceral pain have yielded equivocal results.  308 

This may reflect patient heterogeneity, patient compliance, or the variety of probiotic 309 

formulations used, which is in turn reflects a relative paucity of mechanistic work identifying the 310 

most important microbial species and mediators to target for clinical benefit.  A number of issues 311 

remain unresolved in bridging the gaps between our present state of knowledge and successful 312 

manipulation of the gut microbiota to alleviate pain.  For example, the detection of high 313 

threshold noxious stimuli in rodents is accomplished by visceral afferent neurons with terminals 314 
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that lie along serosal and mesenteric blood vessels (25).  Furthermore, based on a limited number 315 

of recordings from visceral afferent neurons from human bowel, the majority of afferent 316 

terminals that have been characterized to date have been located in the muscle and vasculature.  317 

Thus, it appears that luminal mediators from the microbiota may have traverse the epithelial 318 

barrier and enter the circulation to access and modulate gut nociceptive terminals.  Future studies 319 

of full-thickness resected bowel preparations from patients may provide insight into how the 320 

luminal microbiota accesses these terminals. Another potential caveat when translating findings 321 

from rodents to patients is that signaling mechanisms that are inhibitory in rodents may be 322 

excitatory in patients, and vice versa. A recent Ca2+ imaging study of PAR activation in human 323 

DRG neurons reported that PAR-1 activation in human neurons is excitatory (43), whereas PAR-324 

1 is inhibitory in rodents (10).    By increasing mechanistic insights into the interplay between 325 

the microbiota and peripheral pain pathways, particularly using patient microbiota and human 326 

DRG neurons (59), improved therapies that harness the analgesic properties of the microbiota 327 

may soon be on the horizon.   328 

 329 

  330 
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Table 1: In vivo studies of the effects of probiotics on visceral pain. 791 

Probiotic strain Reference Main finding Proposed mechanism 

Lactobacillus rhamnosus  
and/or prebiotics 
polydextrose/ 
galactooligosaccharide 

(65) 

Neonatal zymosan-treated rats treated 
with probiotic did not exhibit visceral 
hyperalgesia in response to CRD in 
adulthood  

Altered CNS 
neurotransmitters  

Lactobacillus reuteri (93) Inhibited the bradycardia induced by 
painful gastric distension in rats  TRPV1 modulation 

Lactobacillus paracasei 

(126) Normalized visceral sensitivity to CRD in 
antibiotic treated mice in mice Immunomodulation 

(46) 
Prevented the maternal deprivation 
increased visceral sensitivity in response 
to CRD in rats 

Epithelial barrier regulation 

Lactobacillus acidophilus 

(105) Normalized visceral pain responses to 
CRD in mice and rats 

Altered epithelial 
expression of opioid and 
cannabinoid receptors 

(102) 
Reduced bloating symptoms in patients 
with functional bowel diseases 
experiencing abdominal pain in females 

Modulated μ-opioid 
receptor expression and 
activity  

Lactobacillus farciminis 

(3) Reversed visceral hypersensitivity induced 
by partial restraint stress (PRS) in rats Epithelial barrier regulation 

(2) 

Inhibited Fos protein expression at spinal 
and supraspinal levels as a marker of 
visceral pain in response to  CRD in rats 
after PRS 

None specified 

Bifidobacterium infantis  (64) Reversed post-inflammatory (TNBS) 
visceral hypersensitivity in rats Immunomodulation 

Bifidobacterium lactis (1) Inhibited PRS-induced visceral 
hypersensitivity in rats Epithelial barrier regulation 

Bifidobacterium  longum 
and Lactobacillus 
helveticus  

(4) Reduced chronic stress-induced visceral 
hypersensitivity in mice 

Regulation of 
hypothalamic-pituitary-
adrenal axis  
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Bifidobacterium 
infantis,Lactobacillus 
salivarius,Bifidobacterium 
breve 

(79) Reduced CRD-induced visceral pain 
behaviours in rats  None specified 

Bifidobacterium infantis  
or Lactobacillus salivarius  (89) 

Bifidobacterium infantis decreased 
visceral pain more than Lactobacillus 
salivarius or placebo in IBS patients 

Immunomodulation 

Lactibiane Tolerance®: 
Lactobacillus acidophilus, 
Lactobacillus plantarum, 
Lactobacillus salivarius 
Bifidobacterium lactis 

(86) 
Reversed visceral hypersensitivity induced 
by water-avoidance stress or IBS fecal 
supernatant administration in mice  

Epithelial barrier regulation 

VSL#3 Bifidobacterium 
(B. longum, B. infantis 
and B. breve); 
Lactobacillus (L. 
acidophilus, L. casei, L. 
delbrueckii ssp. 
bulgaricus and L. 
plantarum); and 
Streptococcus salivarius 
ssp. Thermophilus 

(44) 
Early life administration of VSL#3 reduced 
visceral pain perception in a model of IBS 
in rats 

Altered colonic expression 
of genes influencing pain 
and inflammation 

(36) Decreases acetic-acid-induced visceral 
hypersensitivity in rats Epithelial barrier regulation 

(71) Decreases acetic-acid-induced visceral 
hypersensitivity in rats  Immunomodulation 

Faecalibacterium 
prausnitzii  (81) 

Decreased colonic hypersensitivity 
induced by either NMS in mice or partial 
restraint stress in rats 

Epithelial barrier regulation 
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Figure 1: Microbial modulation of visceral afferent pathways 793 

The figure illustrates potential mechanisms by which microbes in the gut lumen could modify 794 

afferent signaling from the gut to the central nervous system. The microbiota can affect the 795 

sensitivity of peripheral pain pathways by direct effects on the peripheral terminals of DRG 796 

neurons or indirectly by changing mediator release from enteroendocrine cells, immune cells or 797 

enterocytes.  NTS: nucleus tractus solitarius, DRG: dorsal root ganglion, ENS: enteric nervous 798 

system, ECC: enterochromaffin cell, TLRs: Toll-like receptors. 799 

 800 
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