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Abstract 

Cardiac Syndrome X (CSX), the presence of angina pectoris with objective signs of 

myocardial ischaemia despite angiographically normal epicardial coronary arteries, 

appears to be due to coronary microvascular dysfunction and is known to be 

associated with an elevation of several inflammatory biomarkers, suggesting a possible 

role for inflammation in its pathogenesis. We aimed to further characterise this 

relationship by prospectively analysing a wide variety of molecular biomarkers in a 

cohort of CSX patients, thereby charting the changes in biomarkers throughout the 

natural history of CSX from its initial diagnosis to eventual disease quiescence. We 

followed a cohort of CSX patients from the time of their diagnosis through two further 

follow-up visits and compared their biomarkers to those of healthy age- and sex-

matched controls. 

 

We found that CSX patients have a persistent low-grade systemic inflammatory 

response characterised at all time points by an elevation of the cytokines Tumour 

Necrosis Factor (TNFα) and Interferon gamma (IFNγ), regardless of the presence or 

absence of contemporaneous signs or symptoms of disease activity. Interleukin-6 (IL-6) 

and C-reactive Protein (CRP), on the other hand, are only elevated when patients have 

clinical evidence of disease activity and may be state markers in CSX. Moreover, CRP 

levels appear to correlate with signals of disease severity such as the time taken to 

develop symptoms during exercise stress testing. Both IL-6 and CRP are capable of 

directly mediating endothelial dysfunction and we contend that they may be 

responsible for a temporary worsening of microvascular function during symptomatic 

periods. We have also demonstrated that the enzyme Indoleamine-2,3-dioxygenase is 

upregulated in active disease, with plasma tryptophan levels being reduced and the 

Kynurenine:tryptophan ratio being elevated in symptomatic CSX patients. This may 

provide an explanation for the increased burden of psychological disease encountered 
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in CSX patients in general and for the increased perceived stress and disproportionately 

reduced disease-related quality of life seen in our own CSX cohort.  

 

In our analysis of the microRNA transcriptome we noted that miR-143 is significantly 

under-expressed in CSX patients. This might allow phenotype switching in vascular 

smooth muscle cells and lead to vascular remodelling. These cells may enter a 

proliferative and secretory phase responsible for increased extracellular matrix 

production and local medial hypertrophy. This would result in reduced vessel 

responsiveness to local rheological stimuli and reduced luminal diameter, resulting 

ultimately in relatively increased microvascular resistance during times of increased 

myocardial oxygen demand, thereby limiting maximal hyperaemia during exercise. 

 

Taken together, these findings corroborate many previous hypotheses regarding the 

role of inflammation in CSX, generate new insights into possible pathogenic 

mechanisms and offer new therapeutic targets for the future management of this 

important cardiological condition. 
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Chapter 1: General Introduction 
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1.1 Introduction 

Cardiac Syndrome X (CSX) is the presence of typical anginal chest pain, with objective 

evidence of ischaemia, no evidence of epicardial coronary artery stenosis on coronary 

angiography and in the absence of structural heart disease 1. CSX is the poor relation of 

epicardial Coronary Artery Disease (CAD). The latter has garnered an abundance of 

attention and well-funded research while CSX has received considerably less. This is 

partly due to the fact that, while CAD is one of the most potent killers worldwide, CSX 

has been shown to have a very favourable prognosis in terms of mortality. Otherwise, 

CSX does its best to imitate its kin. The pain it causes is indistinguishable from the 

angina from atherosclerotic CAD, its symptoms can also persist for years after diagnosis 

and its impact on the quality of life of its sufferers is equivalent to that of patients with 

CAD 2,3. Additionally, all but the best invasive medical tests are unable to distinguish 

between CSX and CAD.  

 

CSX imposes a large burden on the healthcare system by causing frequent 

hospitalisations and necessitating costly investigations, often repeatedly in the same 

patient. It also usually results in on-going medication requirements as well as 

necessitating long-term follow-up with primary care physicians while also causing 

patients to re-present to cardiology services. Given that it imposes such a burden on 

both patient and healthcare-system it is frustrating that after 46 years its aetiology and 

effective treatment strategies remain largely undetermined due in no small part to the 

vastly contradictory results of research in this area. The prevailing consensus now is 

that most of the patients with CSX likely suffer from microvascular angina, relative 

ischaemia of the myocardium during exercise due to dysfunctional coronary 

microvessels such as resistance arterioles, which may be affected by chronic low-grade 

inflammation. Another purported mechanism is the “Sensitive Heart” theory, which 

holds that CSX patients are especially sensitive to cardiac stimuli and can suffer from 

angina even in the absence of substantial ischaemia 4. 
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The ischaemic aetiology is questioned, however, due to the lack of irrefutable evidence 

of true myocardial ischaemia. Exercise Stress Testing (EST) and Myocardial Perfusion 

Imaging (MPI) using isotope scans are useful investigations and are sufficient to 

facilitate the diagnosis of CSX but both are susceptible to providing false-positive 

results. Furthermore, even positive results in these tests are only suggestive of 

ischaemia and not diagnostic of such. Studies looking at other indicators of potential 

ischaemia such as stress-induced wall-motion abnormalities during echocardiography 

and metabolic studies examining myocardial ischaemic metabolite production CSX 

have had contradictory results 5-9. More modern imaging techniques such as Cardiac 

MRI (CMR) and Positron Emission Tomography (PET) studies have both demonstrated 

and failed to demonstrate myocardial hypoperfusion and reduced coronary flow 

reserve in patients with angina but normal coronary arteries 10-12. The widely disparate 

findings in all of these studies is partly due to the varying inclusion and exclusion 

criteria used in each. All facets of the diagnostic criteria of CSX are susceptible to 

subjective biases and subtle changes in criteria may produce hugely different cohorts 

of patients. This will be discussed further in section 1.2.1, the diagnostic criteria.  

Importantly, CSX is not in the everyday vocabulary of most practicing cardiologists and 

its true incidence in Ireland is undocumented. That notwithstanding, a typical 

cardiology department will encounter at least 30 of these patients every year but these 

will likely go undiagnosed due to the low profile of CSX. 

 

1.2 Diagnosis 

Unfortunately, research into CSX has been hampered by the inconsistency in its 

definition. There is no universal definition of CSX nor has it been codified by the two 

large cardiology associations, the American Heart Association (AHA) and the European 

Society of Cardiology (ESC). Despite this, the most commonly used contemporary 

diagnostic criteria were propounded by Lanza in 2007 and are described in section 
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1.2.1 below 1. These criteria were utilised as the inclusion criteria for the patients 

described in this thesis. The most recent ESC guidelines on the management of stable 

coronary artery disease, however, describe the evolution of the diagnosis of CSX into 

‘microvascular angina,’ (MVA) a term chosen to reflect the most likely pathogenic 

 
Figure 1.1: Diagnostic Criteria for Cardiac Syndrome X 

A. Diagram showing 
the typical distribution 
of referred cardiac pain 
(in pink) with the 
surface overlying the 
heart being shown in 
red.  

B. Diagram showing 
three commonly used 
diagnostic tests 
demonstrating 
ischaemia; the exercise 
stress test (with ST-
depression), single-
photon emission 
computed tomography 
(SPECT, with an apical 
defect) and cardiac MRI 
(with sub-endocardial 
hypo-enhancement). 

C. Diagram showing 
invasive coronary 
angiography. The 
catheter is introduced 
in a retrograde fashion 
into the coronary 
arteries. Contrast is 
then injected and a 
fluoroscopic image is 
obtained to illustrate 
an outline of the vessel 
lumen. 

D. Other Cardiac 

conditions that may 

lead to angina pectoris 

and a positive EST 

preclude a diagnosis of 

CSX. 
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mechanism. While tests of microvascular function can be performed to further 

strengthen the diagnosis of CSX or MVA, at present they are not necessary to achieve 

the diagnosis, which is usually made by exclusion, as these tests carry not-

inconsiderable procedural risks13,14. Thus, CSX and MVA have generally been used as 

synonyms, although not all CSX patients have demonstrable microvascular dysfunction.  

 

1.2.1 Diagnostic Criteria 

In order to make the diagnosis of CSX/MVA several criteria must be met (See Fig. 1.1). 

As alluded to in section 1.1, most of these criteria are open to interpretation and 

consequently many studies have had subtly but significantly different entry criteria. For 

this thesis it was decided to be quite strict in the adherence to stringent criteria so as 

to maximise the likelihood that all patients diagnosed with CSX truly had a cardiac 

cause for their pain. The most cogent criteria were codified by Lanza et al and are 

adhered to in this thesis1. Thus, to have a diagnosis of CSX the patients must have 

satisfied all of the following conditions: 

a) Angina Pectoris 

The cardinal symptom of CSX is angina pectoris. Angina in CSX is clinically 

indistinguishable from that seen in CAD. It was first described by Heberdon in 1772: 

“They who are afflicted with it, are seized while they are walking, (more 

especially if it be up hill, and soon after eating) with a painful and most 

disagreeable sensation in the breast, which seems as if it would extinguish life, 

if it were to increase or continue; but the moment they stand still, all this 

uneasiness vanishes….. The pain is sometimes situated in the upper part, 

sometimes in the middle, sometimes at the bottom of the os sterni, and often 

more inclined to the left than to the right side. It likewise very frequently 

extends from the breast to the middle of the left arm..”15 
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Chest pain is categorised by the AHA and ESC into typical angina, atypical angina and 

non-cardiac chest pain based on the presence or absence of the criteria shown in table 

1.1 below. Patients with ≤ 1 of these criteria have non-cardiac chest pain and are 

generally at much lower risk of obstructive coronary artery disease, patients with 2 

have atypical (but probable) angina and patients with all three have typical (or definite) 

angina pectoris, with increasing likelihood of significant CAD as more criteria are met 

(prevalence of >50% stenosis of 0.47, 0.75 and 0.92  for non-cardiac, atypical and 

typical angina respectively based on Diamond’s data) 16. Research by Kaski shows that 

CSX patients tend to have retrosternal chest pain of gradual onset, which may persist 

for >15 minutes in a third of cases and which is related in all cases to exertion but may 

also occur at rest in 41% 17. 

 

Table 1.1 ESC Clinical Classification of Chest Pain, 2006, based on work by GA Diamond. 

Typical Angina (Definite) All 3 of the following characteristics: 

 Substernal chest discomfort of characteristic quality and 

duration 

 Provoked by exertion or emotional stress 

 Relieved by rest and/or GTN 

Atypical Angina (Probable) Meets 2 of the above characteristics 

Non-cardiac Chest Pain Meets ≤1 of the above characteristics 

 

 

Only patients with typical/definite angina were eligible for inclusion in the CSX group 

used in this thesis so as to homogenise the group and to minimise the potential of 

including patients with non-cardiac causes of chest pain. Even this was open to 

interpretation, however, as the “characteristic quality” is not specified. For this study, 

pain was noted to be uncharacteristic if it was of atypical character (e.g. pleuritic, 



8 
 

radicular), of excessive duration (e.g. lasting several hours without relief) or being 

atypical in location (e.g. cervical spine, sub-scapular).  

 

b) Positive objective test suggestive of ischaemia 

The vast majority of studies into CSX have included exercise stress testing (EST) as the 

non-invasive investigation of choice to illustrate possible ischaemia. A few studies, 

however, use radionucleotide myocardial perfusion imaging for enrolment while 

coronary reactivity testing and coronary sinus metabolite analysis have also been used. 

It should also be mentioned that in the past not all studies required positive ischaemic 

testing to diagnose CSX, with some requiring merely angina and a normal angiogram to 

make the diagnosis, further highlighting the inconsistency amongst research protocols 

in this area. An EST involves monitoring the surface 12-lead electrocardiogram (ECG) 

while a patient walks on a treadmill following a predetermined protocol. The most 

commonly used protocol is the Bruce protocol where the pace and incline of the 

treadmill increases at 3 minute intervals. ECG changes suggestive of ischaemia include 

ST-depression, ST-elevation and ventricular dysrhythmia. 

 

For this thesis, an electrically positive treadmill-based EST was used as an inclusion 

criterion for CSX. An EST was considered electrically positive if there was ≥1mm of 

horizontal or down-sloping ST-depression 80ms after the j-point on the stress 

electrocardiogram. An EST was considered symptomatically positive if it elicited typical 

angina chest pain in the patient. ESTs have a sensitivity of 75-90% and a specificity of 

70% for CAD and it is important to note that CSX would constitute a “false-positive” EST 

for CAD. The specificity of EST for ischaemia in CSX is unknown but indeed a “false 

positive” EST can be associated with microvascular dysfunction18.  
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c) Angiographically normal coronary arteries 

Coronary angiography or left heart catheterisation (LHC) is the gold standard 

investigation to investigate suspected coronary artery disease. It involves cannulating a 

major artery (e.g. femoral or radial) and passing catheters retrogradely until they reach 

the coronary arteries, where contrast is used under fluoroscopic guidance to outline 

the lumina of the arteries. Again the literature is somewhat hazy on what constitutes a 

normal coronary angiogram. Some studies have used <50% decrease in luminal 

diameter, others have used <20% while still others have insisted on perfectly smooth 

coronary arteries. For this thesis, an angiogram was considered normal if the coronary 

arteries were smooth or had minimal luminal irregularity (<10%) as determined by two 

independent reviewers. It should also be noted that a normal coronary angiogram only 

ensures the absence of macroscopic obstructive lesions in the epicardial coronary 

arteries. It does not imply complete normality of the arteries (as CSX patients do not 

have normal arterial vasomotor function, as will be discussed later). It should also be 

pointed out that fluoroscopic coronary angiography lacks the resolution to evaluate the 

coronary microvasculature, the proposed site of dysfunction in CSX. 

 

d) The absence of other causative cardiac conditions 

CSX can be a diagnosis of exclusion. Once a patient has appropriate symptoms, 

objective evidence of ischaemia and a normal angiogram they become a possible case 

of CSX/MVA. It is only if they do not have any other disease capable of causing angina 

and a positive EST that they are labelled CSX/MVA. Some of these conditions are 

described in table 1.2 below. In addition, one should always entertain the possibility 

that a patient has a non-cardiac cause of chest pain and a real false-positive EST. Some 

gastrointestinal conditions (such as oesophageal spasm) present with a retrosternal 

squeezing sensation, which can be relieved by nitrates. See section 1.2.2 for further 

discussion on this subject. 



10 
 

Table 1.2: Other potential causes of angina, a positive EST and a normal LHC. 

 

 

Thus, on the surface the diagnosis of CSX appears to be relatively straight forward. 

There are two chief problems relevant to this thesis, however. First, even patients with 

atypical angina can have obstructive CAD, implying that atypical angina of 

microvascular aetiology similarly exists. The exclusion of all patients with atypical 

angina from this study will almost certainly have excluded some patients with 

microvascular angina/CSX but with the trade-off that all patients in this study had 

typical symptoms of CSX, increasing the reliability of the diagnosis but perhaps limiting 

the generalisability of the results. Second, the degree to which exercise stress testing 

for CAD is actually falsely positive rather than diagnostic of microvascular angina is 

unknown. For example, the specificity of an EST for obstructive CAD is 75%. Of the 25% 

with a false-positive EST, some will have true CSX in which case the test wasn’t actually 

falsely positive for ischaemia.  Some authors have simply taken patients with typical 

Condition Effect 

Valvular Heart Disease Stenotic lesions may result in myocardial hypertrophy, diastolic 

dysfunction and angina pectoris.  

Myocardial hypertrophy increases the chance of EST positivity. 

Hypertensive Heart Disease Increases ventricular afterload with consequent hypertrophy 

and diastolic dysfunction. 

Dysrhythmia Tachyarrhythmias may produce rate-related ischaemia during 

EST as well as leading to symptoms. 

Diabetes Mellitus Can lead to secondary microvascular dysfunction, which is 

considered a separate diagnosis to primary MVA/CSX. 

Cardiomyopathy Dilated, hypertrophic and restrictive cardiomyopathy can all 

lead to ventricular dysfunction, increased wall tension and 

symptoms of angina with positive ischaemic testing. 
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angina and a normal LHC, forgoing the EST. Some of these patients were also recruited 

for comparison in the present study and will hereafter be termed ‘loosely’ diagnosed 

CSX, or LCSX. Both CSX and LCSX are subsets of patients with chest pain and normal 

coronary arteries (CPNCA). 

 

1.2.2 Clinical Features 

The clinical characteristics of patients with CSX were well elucidated in a study by JC 

Kaski et al in 1995 17. In this study of 99 patients with CSX they noted that the chest 

pain was predominantly gradual in onset, lasted anywhere from <5 minutes (in 21%) to 

over a quarter of an hour (in 33%) and was related to exertion in 99% of cases and also 

occurred at rest in 42%. The chest pain was predominantly retrosternal (84%) with 

radiation occurring to the neck in 7%, left arm in 35% and arm and neck in 19%. 

Patients on average had 3-7 episodes of angina per week. Physical examination in CSX 

is usually normal. In Kaski’s cohort 81% had normal baseline ECGs with 11% having 

flattened T-waves and a further 7% having ST-depression. Interestingly, only 24% 

actually had reversible perfusion abnormalities on myocardial perfusion scintigraphy. 

Non-invasive testing showed that the EST became positive at an average of 324 ± 246s 

(modified BRUCE protocol) while Holter monitoring revealed ambulatory ST-depression 

in 64% of cases, which were associated with pain in only 49% of cases. Similarly, many 

episodes of chest pain occurred in the absence of documented ST-depression on Holter 

monitoring. Echocardiography is also normal by case definition. 

 

1.2.3 Differential Diagnoses 

Chest pain with normal coronary arteries (CPNCA) encompasses a heterogeneous 

population with a myriad of causes of chest pain, both cardiac and non-cardiac. In fact, 

only 20% of patients with CPNCA will have typical angina pectoris, strongly suggesting a 

cardiac cause in only these cases. The remainder will have either a non-cardiac source 
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for their chest pain or cardiac chest pain with atypical features. Determining the cause 

of chest pain in these patients is oftentimes difficult and requires a systematic 

approach.  

 

Figure 1.2: The Differential Diagnosis of Chest Pain with Normal Coronary Arteries. The majority will be 
non-cardiac (inner circle) in nature with normal stress testing and may originate from gastrointestinal 

(GIT e.g. GORD, cholelithiasis), respiratory (Resp. e.g. LRTI, PE) or psychological sources. Cardiac causes 
(outer perimeter) are legion and many of these will induce a positive EST. 

 

The first step is to undertake a thorough history and examination looking for features 

of atypical chest pain or symptoms and physical signs to indicate an alternative 

diagnosis. Examples would include chest wall tenderness in musculoskeletal chest pain 

and pain brought on by ingestion of alcohol or fatty food in GI disturbances. The EST 

will further exclude many patients with truly non-cardiac sources of chest pain such as 

lower respiratory tract infection (LRTI). Unfortunately, the EST may be falsely-positive 

(mimicking the diagnosis of CSX) or negative (potentially missing patients with 

microvascular angina) and so cannot be relied on fully. Other tests such as holter 
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monitoring, echocardiography, provocation tests on coronary angiography, coronary 

reactivity testing (CRT) or oesophago-gastroduodenoscopy (OGD) may be indicated to 

exclude other causes of chest pain as directed by the history, examination, stress test 

or angiographic findings. Figure 1.2 shows the main differential diagnoses to be 

excluded. 

 

1.2.4 Related Microvascular Conditions 

CSX, Coronary Slow Flow and Microvascular Angina 

The diagnostic criteria for CSX are designed to exclude patients with non-cardiac chest 

pain (by only selecting patients with typical symptoms) and to select patients with 

chest pain due to myocardial ischaemia that is not due to epicardial coronary artery 

disease or structural heart disease. It is believed that microvascular dysfunction is the 

main cause of symptoms in this group. Even this highly selected group is believed to be 

heterogeneous and there are several related conditions that are believed to be caused 

by microvascular dysfunction, namely Cardiac Syndrome X (CSX), Microvascular Angina 

(MVA) and the coronary slow flow phenomenon (CSFP), which has also been referred 

to as Cardiac Syndrome Y. 

 

As mentioned above, CSX and MVA have been used synonymously, perhaps unwisely, 

since the inception of CSX as a condition. In recent times CSX has been equated to 

stable primary microvascular angina and may be renamed as such 14. Most recently, 

however, the term microvascular angina has been reserved, at least in a research 

setting, for patients with demonstrable coronary microvascular dysfunction on invasive 

coronary reactivity testing (CRT). The only real difference between CSX and MVA is that 

all MVA patients have undergone confirmatory CRT to diagnose coronary microvascular 

dysfunction while CSX patients are only presumed to have it. This may be a reasonable 

approach, however, as reactivity testing is a potentially hazardous procedure and its 



14 
 

sensitivity for ischaemia-inducing microvascular dysfunction is not known. It currently 

has a Class IIb level C recommendation in the 2013 ESC Stable Coronary Artery Disease 

guidelines, meaning that, while it may be considered in special cases, its value is not 

well established. Furthermore, over 75% of patients with CSX will have reduced 

coronary flow reserve and an even higher proportion will have impaired peripheral 

flow-mediated dilatation, a marker of peripheral endothelial function19-22. Additionally, 

MVA is having the same identity crisis in terms of diagnostic criteria that CSX has 

endured and the necessity for objective evidence of ischaemia in the diagnosis is still 

under debate. If methods can be established to diagnose microvascular dysfunction 

more routinely and safely then it is likely that Cardiac Syndrome X will no longer exist 

as a diagnosis and the emphasis will be put on patients with proven microvascular 

angina23. Cardiac MRI and PET scanning are the most promising modalities that may 

fulfil this role in the future but at present are costly and time-consuming24,25. 

 

The coronary slow flow phenomenon (CSFP) is an angiographic diagnosis of presumed 

microvascular dysfunction. In this condition there is a slowing of the passage of 

contrast down the coronary arteries, taking 3 or more beats to fill the artery (so-called 

TIMI 2 flow) in the absence of obstructive coronary artery disease. Like the two other 

conditions above, there is disagreement on the diagnostic criteria for CSFP, including 

how many vessels need to exhibit slow flow to make the diagnosis and how stenosis-

free the arteries must be. CSFP is believed to occur due to increased coronary 

microvascular resistance inhibiting the flow of contrast down the arteries. Like CSX, 

patients with CSFP have a high prevalence of recurrent chest pain (84% at 21 months) 

and high anxiety scores. A comparison between the 3 microvascular diagnoses is 

shown in the table 1.3 below. 
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Table 1.3: Conditions involving coronary microvascular dysfunction 

Clinical 

Syndrome 

Cardiac Syndrome X Microvascular Angina Coronary Slow Flow 

Phenomenon 

Diagnostic 

Criteria 

Typical Angina 

 

Normal Coronary Arteries 

(<10% stenosis) 

 

 

Objective Evidence of 

ischaemia (EST, MRI, PET, 

MPI or metabolite studies) 

Absence of other cardiac 

disease 

Angina* 

 

Non-obstructive coronary 

artery disease (<50% 

stenosis)* 

 

Evidence of impaired 

coronary microvascular 

function 

Angina 

 

Non-obstructive coronary 

artery disease (<50% 

stenosis)* 

 

TIMI 2 flow or corrected 

TFC>21±3 frames in the 

LAD, >22±4 in the LCx or 

>20±3 in the RCA 

Nature of 

Angina 

Typical exertional angina Typical or atypical Usually at rest 

Stress Test Positive by definition Less commonly positive Infrequently positive 

Gender 

predominance 

Female Female Male 

Pathophysiology Myocardial Ischaemia 

 

Microvascular Dysfunction 

 

Endothelial Dysfunction 

 

Abnormal cardiac 

autonomic regulation 

 

Abnormal pain perception 

 

Abnormal platelet function 

 

Myocardial Ischaemia 

 

Reduced microvascular 

vasodilatory responses 

 

Abnormal cardiac pain 

perception 

Microvascular spasm 

EST-Exercise Stress Test; LAD- Left Anterior Descending Artery; LCx. – Left Circumflex Artery; MPI- 

Myocardial Perfusion Imaging; RCA- Right Coronary Artery; TFC- TIMI frame count; TIMI- Thrombolysis in 

Myocardial Infarction. * Uncertain criteria at present. 
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1.2.5  Grading of Disease Severity 

Once a diagnosis of CSX has been made, attempts should be made to quantify the 

burden of symptoms experienced by the patient. Symptoms may be graded using the 

simplest and most widely used classification of angina symptoms, the Canadian 

Cardiovascular Society (CCS) classification. This grades angina based on the minimum 

exertion required to elicit the chest pain and is numbered from I-IV. Table 1.4 

illustrates this scale with an estimate of the metabolic equivalents (METS) of the 

inducing activity. 

 

Table 1.4: Canadian Cardiovascular Classification of Angina 

CCS Class Physical Limitation METS  

CCS I No limitation in everyday activities. Angina only brought on by strenuous 

or prolonged exertion 

7-8 

CCS II Mild limitation of ordinary activity such as walking uphill, rapidly climbing 

stairs etc. 

5-6 

CCS III Marked limitation of ordinary activity such as angina when walking on the 

flat or walking at a normal pace up one flight of stairs 

3-4 

CCS IV Unable to carry out any physical activity without angina. Angina may 

occur at rest 

1-2 

METS-Metabolic Equivalents 

 

Clinicians usually grade symptoms based on the history reported by the patient 

although the EST offers a more objective assessment by allowing the determination of 

several numerical estimates of physical limitation. These include total exercise 

duration, time to angina and ST-depression, Rate-Pressure Product (RPP) at first 

symptoms and at peak exercise and total METS achieved. Furthermore, several 
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questionnaires allow for self-assessment of disease burden. The Seattle Angina 

Questionnaire is a well-established questionnaire that provides the clinician with a 

validated estimate of disease burden. It generates 5 scores in different response 

categories (see table 1.5) with each scale ranging from 0 to 100, with higher scores 

being associated with better health outcomes.  

 

Table 1.5: Seattle Angina Questionnaire (SAQ) Summary Scores and sample scores from the validation 

cohort of patients with coronary artery disease (CAD). 

SAQ Summary Score Sample Questions CAD 

Score26 

Physical Limitation (PL)  Over the past four weeks, how much limitation 

have you had due to chest pain during the 

following activities? Climbing a hill, walking, 

cleaning etc. 

50.2 

Angina Stability (AS)  Compared with 4 weeks ago how often do you 

have chest pain when doing your most strenuous 

activities? 

52.0 

Angina Frequency (AF)  Over the past 4 weeks, on average, how many 

times have you had chest pain? 

67.5 

Treatment Satisfaction 

(TS) 

 How satisfied are you that everything is being 

done to treat your pain? 

 How bothersome is it for you to take your pills 

for your chest pain? 

78.1 

Quality of Life (QOL)  Over the past 4 weeks, how much has your chest 

pain limited your enjoyment of life? 

 How often do you think or worry that you may 

have a heart attack or die suddenly? 

56.7 
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1.3 Epidemiology 

Given the lack of consistency in the diagnostic criteria used in CSX it may come as no 

surprise that the incidence and prevalence of CSX worldwide is not known. The 

introductions to most studies in CSX contain the general statistic that up to 30% of 

LHCs performed to investigate angina pectoris are normal (CPNCA) but almost no study 

reports the number of patients screened in order to obtain the patient cohort. Any 

study that has recruited a large number of CSX patients has done so over several years 

(e.g. 164 patients in 6 years and 108 in 5 years 27,28) In general, CSX is seen to be a 

condition that occurs in post-menopausal women. 

 

1.3.1 Demographics 

An analysis of the pooled results of studies into CSX found that 56% of patients with 

CSX were female and that the mean age was 53.8 ± 5.8 years 29. The 57 studies 

included in this analysis, however, varied widely in their entry criteria. Table 1.6 below 

shows the demographics for CSX patients from studies in several different regions in 

the world all of which include the strictest entry criteria of typical chest pain, positive 

exercise stress testing and normal coronary arteries. These studies are in broad 

agreement that CSX predominantly occurs in middle-aged women who suffer from a 

variable number of cardiac risk factors. 
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Table 1.6: Selected studies from different global locations demonstrating the demographics of CSX 

patients 

Chol=Cholesterol, F.Hx.= Family History of ischaemia heart disease, HTN= Hypertension. * Patients with 

hypertension were specifically excluded from this study 

 

1.3.2 Incidence and Phenotype in Ireland 

Only one paper specifically examining the incidence of CSX in a European setting has 

been published. This was performed in a Dutch hospital in 2003 and the investigators 

noted that 10% of patients attending for coronary angiography to investigate chest 

pain had normal coronary arteries and that only 3% had normal arteries and a positive 

exercise stress test thus achieving the diagnosis of CSX29. An Asian study showed that 

3.5% of their coronary angiography patients had CSX by strict definitions30. In an effort 

to describe the incidence and phenotype in Ireland, we performed a prospective study 

of all patients attending the catheterisation laboratory in Cork University Hospital over 

a three-month period. This was published as a paper entitled, “Cardiac Syndrome X in 

Ireland: Incidence and Phenotype,” and the results of this are discussed in chapter 2. 

Study Year Country n  Cardiac Risk Factor Prevalence  

Gender Age HTN Chol Smoking F.Hx. 

Tritto 2009 Italy 350 72% F 61±10 65% 61% 22% 24% 

Qing 2013 China 120 81% F 48±8 47% 36% 12% 9% 

Kaski 1995 England 99 79% F 48.5±8 * 29% 29% 46% 

Radice 1995 USA 30 73% F 61±6 - 17% 20% - 

Dollard 2014 Ireland 17 88% F 59±7 35% 82% 0% 65% 

Ezhumalai 2015 India 35 50% M 53±9 53% 31% 18% - 
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1.4 Pathophysiology  

1.4.1 Mechanism of Angina 

The pathways involved in the genesis and perception of angina pectoris deserve a brief 

description as an understanding of these allows one to speculate as to the possible 

pathogenesis of CSX. Angina is the pain caused by the visceral sensation of myocardial 

ischaemia. It is not proportional to the degree or distribution of ischaemia and so 

relatively mild ischaemia can lead to severe symptoms. An overview of the mechanism 

of angina is shown below in Figure 1.3. 

 

a) Local Stimulus 

The stimulus for angina begins at the myocardial cellular level. The accepted theory 

was propounded by Lewis in 1932 31. Known as the chemical theory, this states that 

local chemicals produced in ischaemic tissue trigger local nociceptive neurons resulting 

in perceived pain. Myocardial cells are highly metabolically active and require constant 

turnover of their high-energy phosphate stores. This demands a constant supply of 

oxygen and fuel (predominantly in the form of free fatty acids but also ketone bodies 

and carbohydrates). Indeed, even a brief interruption of this supply line for even 15 

seconds results in the depletion of all ATP stores within the cardiac myocytes. The most 

usual cause of an interrupted supply of metabolites is by a reduced blood supply to the 

heart (ischaemia). This typically is the result of a stenosed epicardial coronary artery, 

which limits maximal hyperaemia during exercise, or a complete blockage as occurs in 

an acute myocardial infarction.  
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Figure 1.3: The mechanism of angina. 

 

During exercise the metabolic rate of the myocytes increases and necessitates an 

increased blood supply. Control of regional myocardial perfusion predominantly rests 

with the microcirculation (vessels <500µm in diameter) which can dilate or constrict 

rapidly in response to the metabolic needs of the subtended territories. Under normal 

circumstances, the larger conduit arteries do not contribute to resistance to blood flow 

but with a functionally significant epicardial arterial stenosis they become the limiting 

factor to increased blood flow. The normal response to exercise is widespread 

vasodilation of the microvasculature as well as of the supplying arteries. When the 

response is normal, this results in up to an 8-fold increase over resting flow rates.  If 

this is not normal, however, the end result is a mismatch between the supply and 

demand of oxygen. This results in a switch to anaerobic metabolism within the 

myocytes. Glycolysis increases but is not followed by oxidative phosphorylation and 

hence the pyruvate is metabolised in the cytosol into lactate and free hydrogen ions. 
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This reduces intracellular pH, which further worsens myocyte function by diverting 

energy use towards calcium homeostasis as well as impairing contractile function. 

Additionally, ATP production is reduced and there is a build-up of ADP, inorganic 

phosphate, and adenosine. This change in myocyte biochemistry triggers intracardiac 

sensory nerve endings, beginning the process of pain perception.  

 

b) Neural Pathways  

Both myelinated Aδ fibres and unmyelinated C fibres are present in the epicardial 

interstitium and contain chemo-, mechano- and thermo-sensitive channels (the TRPV1, 

transient receptor potential vanilloid 1, channel is believed to be an important player). 

These fibres are also sensitised by reduced pH and some ischemia-induced substances 

such as bradykinin and prostanoids. Furthermore, selective adenosine receptors (A1 

and A2) are present in the perivascular sympathetic nerves and the activation of A1 

receptors by adenosine has been shown to stimulate angina. These fibres aggregate 

into bundles in the septa of the muscle and run alongside the coronary arteries. 

 

These sensory afferents are believed to mainly run in the autonomic fibres (both 

sympathetic and vagal) coming from the heart, as surgical interventions on local 

sympathetic ganglia reduced anginal symptoms in >80% of patients32. These fibres 

project upwards towards the thalamus primarily in the spinothalamic tracts (although 

some fibres project in the dorsal columns), where viscerosomatic convergence occurs 

over a long segment of spinal cord. This results in the referral of visceral cardiac pain 

over a diffuse cutaneous area, usually involving the C2-C6 and T1-T5 dermatomes, but 

rarely involving C7 or C8. Thus, cardiac pain is felt in the throat, chest and inside of the 

left arm but rarely in the hand and fingertips. It has been noted that angina results in a 

bilateral increase in blood flow in the thalamus and that this occurs even in “silent” 

ischaemia. From here, the signals project cortically and are processed in the prefrontal 
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and cingulate cortices33. Interestingly, significantly greater activation of the right 

anterior insula is seen in CSX patients with angina pectoris than in patients with 

obstructive coronary artery disease or healthy controls, which might play a role in their 

apparent increased perception of cardiac stimuli34. 

 

 

Figure 1.4: The Ischaemic Cascade 

 

1.4.2 Myocardial Ischaemia in CSX 

As angina is initiated by myocardial ischaemia it is reasonable to expect that ischaemia 

is present in CSX, a condition typified by angina. There is again, however, considerable 

debate and conflicting data regarding this. The majority of the evidence suggests, 

however, that myocardial ischaemia is indeed present in CSX. The ischaemic cascade is 

depicted in figure 1.4 above. The classical pathway indicates that the onset of 

ischaemia is followed first by metabolic evidence of ischaemia, then by evidence of 

impairment of myocardial mechanical function (in the form of reduced muscle 

relaxation and eventually contraction), then altered myocardial electrical activity (in 

terms of ST-segment depression or elevation on an ECG) and finally angina pectoris 

before irreversible myocardial necrosis occurs. It has been suggested that this model 

may not apply to ischaemia in CSX and that the pathway may even be mostly inverted 
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(i.e. that angina precedes ECG changes and mechanical evidence of ischaemia35) in CSX 

patients. 

 

Evidence for myocardial ischaemia 

Metabolic evidence of ischaemia is considered the gold standard for detection of true 

ischaemia. However, altered myocardial mechanical function and ECG changes also 

occur during the ischaemic cascade and are also considered as markers for myocardial 

ischaemia. 

 

a) Evidence of Perfusion Abnormalities 

CMR: Initial cardiac magnetic resonance (CMR) studies utilising myocardial perfusion 

techniques demonstrated possible subendocardial hypoperfusion in CSX patients. A 

small study by Panting et al (n=20) used gradient-echo, gadolinium-enhanced 

sequences in a 1.5T scanner, both at rest and after 6 minutes of adenosine infusion, to 

calculate a myocardial perfusion reserve index10. They demonstrated that CSX patients 

failed to substantially improve their endocardial perfusion in response to adenosine 

but did have a normal response in their epicardium. Additionally, they found that 95% 

of CSX patients developed chest pain on adenosine infusion compared with 40% of 

healthy controls (2=26.1, p<0.001). These findings were contradicted by a larger, well-

executed study 5 years later11. A further 20 CSX patients underwent spoiled echo 

gradient, gadolinium enhanced sequences in a 1.5T scanner both at rest and after 3 

minutes of adenosine stress. This study failed to observe any impaired improvement of 

subendocardial perfusion during stress and pointed out that the selection criteria for 

patients in the two studies differed, with Panting relying on EST and Vermeltfoort on 

MPI. A subsequent CMR study involving 42 patients, however, also demonstrated 

reversible stress-induced subendocardial perfusion defects36. A CMR study in patients 

with proven microvascular dysfunction (by coronary flow reactivity testing) showed 
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very similar results and all of these patients also fulfilled the criteria for diagnosis with 

CSX22. 

PET/CT: Cardiac Positron Emission Tomography detects injected radionuclide tracer 

concentrations in the heart and is useful in accurately demonstrating myocardial 

perfusion. Studies involving PET have consistently demonstrated that CSX patients have 

reduced coronary flow reserve i.e. a diminished capacity to increase blood flow in 

response to an increase in demand12,37.  

Myocardial Perfusion Scintigraphy: Fragasso showed hypoperfusion in 77% of CSX 

patients during stress in his small cohort using thallium. Furthermore, 97% of the 

patients had defects at rest or stress. This was also seen in an older study of patients 

with CPNCA and CSX, where 98% had abnormal thallium scans38. These were more 

pronounced than the mere 40% of patients who had perfusion defects in a technetium 

labelled study39.  

Echocardiography: Non-invasive assessment of coronary blood flow and muscle 

perfusion may be achievable by transthoracic Doppler interrogation of the left anterior 

descending coronary artery coupled with myocardial contrast echocardiography. This 

was achieved in a small study and demonstrated reduced coronary flow reserve in CSX 

patients40. A more recent study also showed impaired coronary auto-regulation with 

increased baseline blood flow in addition to reduced coronary reserve in CSX 

patients41. 

Invasive Angiography: By definition, the coronary arteries of CSX patients are 

angiographically normal. Invasive assessment of coronary flow reserve using doppler 

wires and coronary reactivity testing, however, has demonstrated that reduced 

coronary flow reserve is common in CSX patients19,22. Furthermore, simple blush 

scoring of the myocardium after contrast injection during coronary angiography has 

been used to attempt to quantify the microvascular perfusion in CSX patients and has 

been shown to be reduced in this cohort42.  
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In summary there is compelling evidence from multiple modalities that confirms that a 

stress-induced perfusion deficit does exist in patients with CSX. 

 

b) Metabolic Evidence of ischaemia 

The original paper in which the first CSX patients were described (10 patients with 

normal arteries, angina and ST-depression induced by atrial pacing; the so-called group 

X) demonstrated that CSX patients had similar myocardial lactate production to 

patients with obstructive CAD, with extraction rates of <10% (indicative of ischaemia) 

seen in roughly half of each group43. Lactate metabolism has also been examined in 

several other studies but these have widely had disparate results, with some studies 

showing no evidence of lactate production and other showing lactate production in 

only 30% of cases8. Similarly, coronary sinus pH is reduced in ischaemia and was shown 

to be reduced in 30% of patients with CSX. Oxygen extraction from the coronary blood 

increases during increased metabolic demand and a reduction in SpO2 in the coronary 

sinus may also indicate possible myocardial ischaemia. One study showed that 

coronary sinus SpO2 decreased in 50% of patients with CSX, but that this was only 

transient in a half of these cases where it returned to normal within 20s44. A study of 

35 women with angina pectoris and normal coronary arteries using myocardial 

phosphorus-31 Nuclear Magnetic Resonance Spectroscopy during isometric handgrip 

exercises demonstrated a large decrease in phosphocreatine:ATP ratios in 20% of 

subjects indicating an abnormal metabolic response in these women. While not 

examining a CSX cohort specifically, the authors believed that the women with 

evidence of ischaemia constituted a likely cohort of patients with microvascular 

angina45. 

 

 

 



27 
 

c) Evidence of mechanical dysfunction secondary to ischaemia  

This area has cast the greatest doubt on the ischaemic aetiology of CSX when looked at 

through the paradigm of the ischaemic cascade. Several studies have examined the 

evidence for systolic mechanical dysfunction, a classical hallmark of ischaemia, and had 

consistently found it to be lacking in CSX until a very recent study using the modern 

technique of speckle tracking showed reduced longitudinal strain of the left ventricle 

during systole, indicating impaired systolic function46. A small, unblinded study showed 

no difference in left ventricular volumes or function during stress or rest between 

healthy controls and CSX patients while other studies showed no regional wall motion 

abnormality during stress (in the form of dobutamine or atrial pacing) 

echocardiography5,6,47,48. Another small study using adenosine stress echocardiography 

in patients with CSX demonstrated inducible diastolic dysfunction during stress 

indicating global dysfunction with reversal of the e’ to a’ ratio on tissue Doppler 

imaging (see Fig. 1.5 below). Researchers have hypothesised that the hypoperfusion in 

CSX is likely to be patchy and diffuse rather than confluent and focal with the result 

that no regional wall motion abnormalities are demonstrable, unlike the highly regional 

area of hypoperfusion and impaired function seen in classical ischaemia seen in 

coronary artery disease49. 

 

 

Figure 1.5: Pulse wave Doppler over the lateral mitral annulus during rest (left) and during adenosine 
stress (right) in a CSX patient. Note the reversal of the spectral profile indicating induced diastolic 
dysfunction. 
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d) Evidence of electrical dysfunction due to ischaemia  

This is one of the hallmarks of CSX. In this thesis the presence of ECG evidence of 

ischaemia during EST is one of the diagnostic criteria for CSX. Electrocardiographic 

evidence of ischaemia is seen almost ubiquitously in exercise stress testing as well as 

during Holter monitoring of these patients27,50-52. The diagnostic value of ST-depression 

in EST is controversial, however, especially in the female population. The sensitivity and 

specificity of ST-depression in EST for obstructive coronary artery disease is about 60-

70% and 70-80% respectively. Its sensitivity and specificity for myocardial ischaemia 

(including macrovascular and microvascular ischaemia) is unknown. 

 

Figure 1.6: An ECG from an EST performed on one of the CSX patients in this thesis. Note the 2mm of 
horizontal ST-depression seen in leads V4-V6. 

 

1.4.3 The Role of the Endothelium & Microvasculature in CSX 

The endothelium is a cellular monolayer that forms the primary interface between the 

circulating blood and the various tissues around the body. There is a surprising degree 

of heterogeneity in endothelial phenotypes, with different vascular beds having 

different endothelial linings: the sinusoids in the liver and the glomerulus in the 
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nephron, for example. The endothelium in the coronary arteries is of particular clinical 

importance as dysfunction of this tissue is critical in the development of conditions 

such as atherosclerosis, myocardial infarction and CSX. Healthy endothelium is typified 

by several general features: being anti-thrombotic, anti-inflammatory, selectively 

permeable and capable of mediating the phenotype and activity of the underlying 

muscle. Endothelial dysfunction or activation may be the primary abnormality in CSX 

and thus the function of normal endothelium warrants detailed discussion.  

 

 

Figure 1.7: Functions of Normal Endothelium 

 

Normal Endothelial Function 

a) Immune modulation  

Endothelium is responsible for the recruitment of inflammatory cells to the site of 

tissue damage. In health, the endothelium does not interact with the circulating 

immune cells. If a local pro-inflammatory stimulus (such as necrosis or oxidative 
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damage) is present, the endothelial cells are stimulated to express several molecules 

that recruit immune cells, such as macrophages and leucocytes, to the local tissue. 

Adhesion molecules play a crucial role here. 

 

 Figure 1.7 (1). The initial interaction between endothelium and leucocyte is 

mediated by selectins and induces ‘rolling’ of the leucocytes. P-selectin, stored in 

the Weibel-Palade bodies (WPB), is released in response to cytokine stimulation of 

the EC (particularly histamine, IL-1 and TNFα) and binds with PSGL-1 (p-selectin 

glycoprotein ligand) on neutrophils and T-cells. E-selectin is produced via delayed 

transcription of the SELE gene in response to the cytokines and is then expressed 

on the cell surface. It further arrests the movement of the leucocytes, sticking them 

to the endothelial lining. 

 Figure 1.7 (2). Once the leucocytes have come to a halt due to the interactions with 

the selectins, locally produced chemokines activate the leucocytes, which then 

display integrins. These integrins then proceed to anchor the leucocyte firmly to the 

endothelial cell through their interactions with Intercellular Adhesion Molecules 

(ICAMs) and Vascular Cell Adhesion Molecules (VCAMs).  

 Figure 1.7 (3). Finally, the cells transmigrate through the endothelial cell layer to 

get to the inflamed tissue in a process termed diapedesis. This is believed to again 

be mediated by ICAM-integrin interactions and primarily takes place through the 

paracellular route, when local intercellular junctions become disrupted by 

inflammatory signalling. 

 Figure 1.7 (4). C-reactive protein, an acute phase protein, has recently been shown 

to be produced by activated coronary artery endothelium in response to 

inflammatory cytokines and leptin, an adipokine 53,54. This has been shown to 

increase platelet adhesion and CRP is known to strongly induce endothelial 

dysfunction through multiple pathways. 

 In addition, local vasodilation and increased permeability occur in response to a 

pro-inflammatory stimulus. 
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b) Regulation of coagulation 

A healthy endothelium is necessary to maintain the fluidity of blood by providing a 

constant anti-thrombotic microenvironment. It inhibits coagulation in several 

important ways. 

 

 Figure 1.7 (A). Healthy ECs express heparan sulphate proteoglycans (HS), as part of 

the glycocalyx, which bind to and augment circulating anti-thrombin-III (AT3) 

activity. This protein inhibits the formation on thrombin, thereby preventing the 

activation and crosslinking of fibrin and thus clot formation. 

 Figure 1.7 (B). Surface expression of thrombomodulin (TM) is also potently anti-

thromobotic. Thrombomodulin binds thrombin and changes its target from fibrin to 

Protein C (PC), which it activates and which in turn inhibits factor VIII (intrinsic 

pathway) and factor V (common pathway) activation thereby preventing 

coagulation. 

 Figure 1.7 (C). Healthy endothelium also expresses Tissue Factor Pathway Inhibitor 

(TFPI), which prevents the activation of the extrinsic coagulation cascade by 

inhibiting factor VII activation by local tissue factor. 

 Figure 1.7 (D). Additionally, endothelium produces many factors that govern the 

activation of platelets. ECs can produce prostacyclin and nitric oxide, which can 

inhibit platelet aggregation, or von Willebrand Factor, CRP and Thromboxane A2, 

which increase platelet activation. 

 Finally, ECs can cause local vasoconstriction, which can improve haemostasis 

immediately. 

 

 

c) Regulation of Permeability 

As mentioned before, the ultrastructure of endothelial linings varies from tissue to 

tissue. In general, the coronary arterial endothelium is impermeable to plasma proteins 

due to the presence of intercellular tight and adherent junctions, which preclude the 
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movement of substances greater than 4Å through. The endothelial layer is capable of 

regulating its permeability, however. 

 Figure 1.7 (α). The cells may increase paracellular transport of proteins (and indeed 

cells during diapedesis of leucocytes as mentioned above) by regulating the 

integrity of the intercellular junctions. The loosening of adherent junction binding 

allows the formation of intercellular gaps, through which substances may pass. The 

adherent junctions are enzymatically altered (usually by phosphorylation), which 

leads to their internalisation and indeed may also cause cytoskeletal contraction, 

further separating the cells. Inflammatory molecules (such as bradykinin and 

histamine) lead to such upregulation of paracellular transport. 

 Figure 1.7 (β). The luminal surface of endothelial cells is pock-marked by multiple 

invaginations termed caveolae. These pits contain clusters of proteins aggregated 

in lipid rafts that may bind to and internalise extracellular substances and allow for 

vesicles-mediated transport from the luminal surface to the abluminal membrane 

in a process termed transcytosis. The caveolae also play a critical role in the 

activation of eNOS. 

 

 

d) Paracrine Signalling 

Endothelial cells interact closely with the other cells in the vessel wall. They are in 

intimate contact with pericytes (Rouget cells) and can modulate the activity of the 

underlying vascular smooth muscle cells (VSMC)55. In health, the VSMCs maintain a 

contractile phenotype but this can be dramatically altered into a non-contractile, 

secretory phenotype that can propagate the pro-inflammatory cascade. 

 Figure 1.7 (I). ECs have direct connections to the underlying pericytes (through peg 

and socket contacts) involving gap junctions, thereby allowing any electrochemical 

signal to be propagated directly from cell to cell. Similar myoendothelial gap 

junctions may allow for electrical continuity between the EC and VSMC 
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populations. This may allow for immediate hyperpolarisation of VSMCs in response 

to laminar shear stress. 

 Figure 1.7 (II). In addition, the endothelium produces many compounds that may 

influence the phenotype of underlying smooth muscle cells. Substances such as 

growth factors (e.g. Platelet-derived growth factors, insulin-like growth factor and 

basic fibroblast growth factor) and prostanoids such as prostacyclin are produced in 

the ECs and may modulate VSMC differentiation. Even microRNAs released from 

ECs in response to shear stress may also affect VSMC phenotype (e.g. miR-200b and 

miR-143). Furthermore, ECs may produce matrix metalloproteinases and pro-

angiogenic substances, which may alter the local extracellular environment and 

contribute to vessel remodelling. 

 

 

e) Alteration of Vascular Tone 

Perhaps the function of endothelium that is most relevant to CSX is its ability to affect 

vascular tone, leading to vasodilatation or vasoconstriction. It is capable of producing 

many substances that lead to these vascular changes. Experimental evidence suggests 

that abnormal vasomotor responses are key to the pathogenesis of CSX. Given its 

importance, endothelial regulation of vascular tone will be discussed in more detail in 

the next section.  

 

 

Vascular Tone Homeostasis 

The regulation of the diameter of blood vessels is a dynamic and local process, which is 

influenced primarily by the characteristics of the blood flow through the lumen of the 

vessel as well as through neural inputs. The ultra-structure of the blood vessel wall is 

adapted to allow for rapid and sustained changes in vascular tone in response to 

altered haemodynamics and local stresses. The components of the tunica intima, 

primarily the endothelium, respond to changes in local rheology and signal the vascular 



34 
 

smooth muscle (VSMC) in the tunica media to relax. Autonomic inputs also modify 

these responses. Altered regulation of vascular tone is of great importance in CSX. 

 

 

Figure 1.8: Cross-section of an artery 

 

Endothelial Stresses 

As blood flows through a blood vessel it exerts several forces on the endothelial lining. 

The hydrostatic blood pressure generated by the pumping action of the heart works 

normally (i.e. perpendicularly) to the endothelium, essentially compressing it, as well as 

creating a circumferential tension due to altering pulse pressures. The adventitia is also 

stretched outwards, creating a tensile stress. Taken together these create a wall stress 

that is distributed across the entire thickness of the vessel wall (i.e. intima, media and 

adventitia). At the same time shear stress is exerted on the endothelium by the blood 

as it flows past. It is a tangential stress that is exerted parallel to the flow of the fluid. In 

general, studies have found that shear stress is an important modifier of endothelial 

cell function although some suggest that the normal forces could be equally 

important56. 
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Shear Stress 

If one considers a blood vessel in cross-section, the region of maximal blood flow 

velocity is at the centre of the blood vessel. The blood layer nearest the endothelium is 

flowing at a much lower velocity due to friction between it and the endothelium. In 

between these two extremes the blood flow velocity changes gradually with each outer 

layer moving slightly more slowly than the layer immediately inside it. This tends to try 

to drag the endothelium along in the direction of blood flow and this creates the shear 

stress. The shear rate is a measure of how quickly the velocity changes from each layer 

of blood to the next and has a direct bearing on the magnitude of shear stress 

generated. The characteristics of the blood also directly affect the shear stress. Unlike 

the normal hydrostatic pressure, the effects of shear stress are mostly limited to the 

endothelial layer of the vessel wall.  

 

Work by Lipowsky et al shows that the microcirculation experiences the greatest shear 

stress in the vascular tree (by a factor of 6 when compared with arteries and veins) 

implying that shear stress is critical in the regulation of microvascular tone and 

indicating that the increase in velocity and decrease in diameter outweigh the reduced 

viscosity of blood in these vessels57. Vessels work to autoregulate the shear stress they 

experience, endeavouring to keep it at 15 dynes/cm2. At high levels of shear stress, the 

vessels dilate to reduce this stress while at low levels you can get some neointimal 

hyperplasia to reduce the vessel lumen. When the shear stress is at the desired level 

endothelial and smooth muscle proliferation is minimal. This does not tell the complete 

story, however, as not all shear stress is equal.  
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Laminar versus Oscillatory Shear Stress 

 

Figure 1.9: Comparison of Laminar and Turbulent blood flow in a blood vessel 

 

Normal blood flow in undiseased, straight blood vessels is laminar and rhythmical and 

creates pulsatile laminar shear stress. Endothelial cells respond to this by a process called 

mechanotransduction (see below) and this activates transcription of many genes that 

protect the endothelium from damage, inducing vasodilatation, anti-inflammatory and 

anti-oxidant processes. Atherosclerosis starts at predictable points in an artery; where 

there is a bend, a bifurcation or an anatomical abnormality. All of these result in 

turbulent local blood flow, which disrupts the laminar shear stress and causes oscillatory 

shear stress. As described below, this changes the activity of many regulatory pathways 

in the endothelial cell, predisposing the local intima to atheroma formation. 
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Mechanotransduction 

Endothelial cells respond rapidly to changes in local blood flow. Signals can be relayed 

almost instantly to affect vasomotor tone and gene transcription expression can be 

altered as quickly as within one hour. The mechanisms involved in the cellular response 

to this mechanical stimulus are interesting but remain to be fully determined.  

 

Figure 1.10: Methods of Mechanotransduction 

 

The main theory is that ion channels respond to local shear thereby altering 

transcellular gradients and activating second messenger systems. The chief channel 

involved appears to be an inward rectifying K+ channel, which ultimately leads to an 

increase in intracellular calcium which can activate signalling pathways including the 

cytosolic release of eNOS from caveolae. Several theories exist as to how these 

channels respond to shear stress.  
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a. Direct deformation: opening of the channel might occur as a direct result of the 

drag of blood across its extracellular surface. In silico models have suggested, 

however, that the physical drag of blood along the endothelium is unlikely to be 

of sufficient magnitude to cause this. 

b. Cytoskeletal- dependant activation: endothelial cells are exposed to shear stress 

and circumferential stretch and this can cause activation of sensory proteins 

attached to the cytoskeleton. These may activate the ion channels in the cell 

membrane as well as G-protein coupled receptors even in the absence of the 

necessary ligand. 

c. Membrane Fluidity: Blood shear can alter the local viscosity of the plasma 

membrane and this has been shown to activate ERK as well as potentially 

activating many second-messenger systems directly. 

 

In addition to ion channels, ECs may monitor local stresses by other means.  

a. Cilia: ECs can develop cilia, which may directly detect local blood flow 

characteristics. Indeed, laminar flow has been shown to reduce cilia density 

while cilia are upregulated in areas of turbulent flow 

b. Glycocalyx consists of glycosylated transmembrane proteins that extend out 

beyond the cell membrane plane into the blood. These negatively-charged 

proteins are coiled when shear stress is low but unfurl when blood flow is fast, 

allowing Na+ to bind and activating a second messenger system.  

c. Via attachments to the ECM and other cells: The ECs are anchored to the ECM 

and basement membrane as well as to each other. Shear stress will be 

transmitted via the cytoskeleton to these anchors and may allow signal 

transduction to nearby structures. 

d. Nuclear Compression: One interesting theory, without evidence to date, is that 

cellular compression can also result in nuclear compression with deformation of 

the chromatin, altering the access of transcription factors to genes.  
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Once the signal has been received by the cell, either by ion channel activation with 

resultant secondary messenger activation or by direct cytoskeletal-mediated non-

ligand dependant G-protein activation, various cell-messenger systems become 

activated, altering cellular function and EC gene expression. 

 

Mediators of Vasodilation 

One of the primary effects of increased laminar shear stress is to cause vasodilation of 

the blood vessel in a process termed flow-mediated vasodilatation (FMD), which is an 

endothelial-dependent process (which is to say that FMD fails to occur in the absence 

of a healthy endothelium). This increase in vessel diameter reduces the shear stress 

back towards normal, thereby providing a negative feedback. In a typical scenario, 

increased cardiac workload results in the release of local metabolites (e.g. bradykinin) 

around the cardiomyocytes, which causes local capillary vasodilation. This in turn 

increases the pressure gradient across the resistance arterioles, which then increases 

the blood flow velocity through these vessels and consequently the shear stress 

experienced by the arteriolar endothelium. This is detected through the various means 

of mechanotransduction and then provokes resistance vessel vasodilation, increasing 

the blood supply to the cardiomyocytes and reducing shear stress to normal levels. 

When the metabolic demand of the tissue diminishes, the microvasculature reverts 

back to its basal state.  
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Table 1.7: Endothelium-Derived Mediators of Vasodilation 

COX- Cyclo-oxygenase; CYP- Cytochrome P; EET- Epoxyeicosatrienoic Acid; GC- Guanylyl Cyclase; MLCP- 

Myosin Light Chain Phosphatase; MLCK- Myosin Light Chain Kinase; PKA- Protein Kinase A. 

 

The endothelium mediates vasodilatation in a surprising variety of ways but in the main 

it either causes VSMC hyperpolarisation through the opening of potassium channels or 

affects the contractile apparatus in the VSMC through GPCR pathways. The chief 

mediators of the endothelium-dependent vasodilation are shown in the table 1.7 

above. As previously mentioned, the VSMC and EC are in direct electrical continuity via 

gap junctions and indirectly via pericytes. Increased shear stress causes 

hyperpolarisation of the ECs and this also affects the membrane potential of the 

VSMCs, thereby preventing contraction. Laminar shear stress also promotes the 

production of many substances which are released by the endothelium and diffuse 

locally to promote local smooth muscle relaxation. Many of these substances are 

oxylipins and are discussed in more detail in chapter 7. The most important mediator of 

endothelium-dependent vasodilation is nitric oxide (NO). It seems that NO is important 

in macrovascular dilation while the other endothelial derived mediators have more of a 

role in the microvasculature. 

Mediator Source Mechanism of action 

Nitric Oxide eNOS Activates GC and MLCP and opens potassium 

channels  

Carbon Monoxide Haem Oxygenase Activates GC and opens potassium channels 

EET CYP Opens potassium channels causing 

hyperpolarisation 

Prostacyclin (PGI2) COX2 Activates PKA and inhibits MLCK 

PGE2 COX2 ↑cAMP production 

H2O2 Metabolism Opens potassium channels causing 

hyperpolarisation 

Electrochemical Mechanotransduction Hyperpolarisation via myoendothelial gap junctions 
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Nitric Oxide 

Nitric Oxide (NO) is synthesised through the action of Nitric Oxide Synthase (NOS) on 

the substrate L-arginine in the presence of several co-factors to produce NO and 

citrulline. The NO gas diffuses rapidly towards the VSMC, where it activates second 

messenger systems before being rapidly destroyed through interactions with local 

reactive oxygen species.  

 

Synthesis 

The endothelium harbours large quantities of NOS (termed endothelial NOS, eNOS or 

NOS3). eNOS is localised to membrane invagination called caveolae, where it is 

contained through myristoyl and palmitoyl lipid anchors. It is also intimately associated 

with a membrane protein, caveolin, which renders it inactive. Various stimuli lead to 

dissociation of the eNOS from the caveolin, allowing eNOS to be activated through 

phosphorylation. Activated eNOS has both reductase and oxygenase domains as well as 

a calmodulin-binding domain. The release of intracellular endothelial calcium allows 

further activation of eNOS through this calmodulin domain. eNOS requires the 

presence of several co-factors for its activity, including tetrahydrobiopterin (BH4), 

NADPH, FAD and FMN. These co-factors allow the transfer of electrons along the 

enzyme. NOS mediates the oxygenation of arginine using electron donors. This reaction 

produces the NO radical and citrulline, an amino acid. The absence of any of the co-

factors can lead to uncoupling of this reaction and the production of reactive oxygen 

species.  

 

Regulation of activity 

eNOS activity is altered by its interaction with caveolin, other proteins such as NSIP and 

NOSTRIN and through its phosphorylation by various kinases (e.g. Akt, AMPK, SIRT1). 
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Increased endothelial calcium concentrations in response to shear stress lead to 

calmodulin binding, which leads to conformational changes in eNOS, increasing its 

efficiency. Laminar shear stress, acetylcholine, bradykinin and oestrogen can lead to 

upregulation of NO production through phosphorylation pathways as well as releasing 

it from caveolin. Oxidative stress, endothelial dysfunction, ageing and increased 

competition from arginase lead to reduced NO production. 

 

Effects 

NO has many potent protective effects. It reduces formation of oxLDL, inhibits platelet 

aggregation, reduces endothelial activation and reduces Endothelin production. In 

addition, it diffuses into nearby VSMCs where it activates guanylyl cyclase. This 

increases cGMP formation that in turn leads to opening of potassium channels with 

resultant VSMC membrane hyperpolarisation and smooth muscle relaxation. cGMP 

also causes calcium sequestration in the sarcolemmas of the VSMCs, depriving the 

contractile elements of this crucial element and allowing for relaxation. It also seems to 

activate Myosin light chain phosphatase, which allows relaxation of smooth muscle. 

Furthermore, NO reduces VSMC proliferation and phenotype switching and through 

nitrosation reactions may inhibit apoptosis. 

 

Termination of Signalling 

NO has an extremely short half-life as it binds to haemoglobin in blood and is 

eradicated by reactive oxygen species in the ECF or cells, being converted to 

peroxynitrite. Oxidative stress and reactive oxygen species therefore increase the 

degradation of NO and reduce its bioavailability. Also, as will be discussed further in 

the next section, dysfunctional endothelium has a reduced capacity to produce nitric 

oxide and this has many deleterious effects on endothelial biology. Other extrinsic 

mediators of endothelial vasodilation include adenosine, histamine, bradykinin and 



43 
 

various neurohumoral inputs (e.g. circulating adrenaline effects via α and β 

adrenoceptors. 

 

Figure 1.11: Regulation of endothelial Nitric Oxide Synthase and biological effects of Nitric Oxide. 

 

Mediators of Vasoconstriction 

The ability of the endothelium to mediate vasodilation is counterbalanced by its 

capacity to induce strong vasoconstriction. The endothelial derived factors that 

mediate vasoconstriction are listed in the table below. The most potent of these is 

Endothelin-1, a peptide that is locally produced through the activity of Endothelin 

converting enzyme (ECE) in the endothelium. Endothelin stimulates the release of 

sarcolemmal calcium into the cytoplasm of vascular smooth muscle cells, causing 

potent vasoconstriction. Furthermore, Endothelin has the capacity to increase platelet 

and leucocyte activation, having a pro-inflammatory effect. Stimuli for the formation of 

Endothelin include angiotensin II, cytokines and oscillatory shear stress while its release 

is impaired by prostacyclins and nitric oxide. 
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Table 1.8: Endothelial Mediators of Vasoconstriction 

 

The overall vessel tone is a summation of the counterbalancing effects of the 

vasodilators and vasoconstrictors on the vascular smooth muscle. It has been 

demonstrated that a dysfunctional endothelium is tipped towards a net 

vasoconstriction, due to an imbalance in the release of many of the aforementioned 

substances.  

 

Endothelial Activation and Dysfunction  

Healthy endothelium has adapted to respond to laminar shear stress by having anti-

inflammatory, anti-apoptotic, anti-thrombotic and vasodilatory paracrine effects. Early 

stages of atherosclerotic vascular disease, however, are typified by a loss of this 

protective phenotype and the endothelium is referred to as being activated and 

dysfunctional. Many of the conventional risk factors for atherosclerosis may mediate 

their deleterious effects by inducing this endothelial dysfunction, which then alters 

local processes and promotes atherosclerotic vascular disease. 

Mediator Source Mechanism of action 

Thromboxane A2 COX2 Activates MLCK and Protein Kinase C (PKC). 

Endothelin -1 ECE Calcium release from sarcoplasmic reticulum 

H2O2 Respiration Calcium influx and PKC activation 

PGH2 COX2 ↑cAMP production 

Angiotensin II ACE Activates PKC, inhibits AC, ↑ myosin 

phosphorylation 

Electrochemical Mechanotransduction Depolarisation via myoendothelial gap junctions 
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One hallmark of endothelial dysfunction appears to be the reduced bioavailability of 

nitric oxide, either by a reduction in its production or by increased degradation through 

interactions with reactive oxygen species. In addition to nitric oxide, many of the 

endothelial derived vasodilating compounds are downregulated in dysfunctional 

endothelium. This leads to a reduced capacity for endothelial-dependent 

vasodilatation, i.e. vasodilatation that is brought about through the secretion of factors 

from intact endothelium. In vivo studies have shown that diseased coronary arteries 

lose the normal vasodilatory response to intracoronary acetylcholine, a substance that 

is normally a potent stimulator of nitric oxide release and endothelium-dependent 

vasodilation. Indeed, these dysfunctional arteries undergo paradoxical vasoconstriction 

in response to acetylcholine. This effect is also caused by an increased secretion of 

vasoconstrictor compounds such as endothelin at the same time as the reduction in 

vasodilators. 

 

Table 1.9: Features of Endothelial Dysfunction 

 

Causes of Endothelial Dysfunction Markers of Endothelial Dysfunction 

Aging (Senescence) Abnormal Coronary Reactivity Testing (CRT) 

Diabetes Reduced Flow Mediated Dilatation (FMD) 

Dyslipidaemia 
Increased Markers of Oxidative stress 

(ADMA) 

Hyperhomocysteinaemia Increased Pro-Coagulant Factors (vWF) 

Hypertension 
Increased Markers of Vascular Inflammation 

(e.g. CRP, ICAM, VCAM, Selectins) 

Inflammation  

Oestrogen deficiency  

Oxidative Stress  

Smoking  
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Another feature of endothelial dysfunction is the increased expression of surface 

markers such as chemokines, cytokines, adhesion molecules and platelet activators, in 

a state termed endothelial activation. Furthermore, the endothelium may trigger the 

release of many cytokines and inflammatory markers. In part this is due to activation of 

endothelial NFκB. The result of this change in surface expression is the recruitment and 

activation of many effector cells of the immune and haemostasis systems. Local 

immune cell infiltration is a feature of plaque formation. Thus, the induction of an 

activated and dysfunctional state in endothelial cells by diverse risk factors leads to 

diminution of endothelial-dependent vasodilation in the vasculature and the fomenting 

of a local pro-atherosclerotic milieu. This is believed to be the earliest step in the 

atherosclerotic process. 

 

Measuring endothelial and microvascular function 

There are several methods used to determine endothelial and microvascular function. 

The most direct of these is through coronary reactivity testing. This invasive procedure 

is performed during cardiac catheterisation and involves the intracoronary injection of 

substances designed to trigger endothelial-dependent vasodilation. The most 

commonly used substance is acetylcholine. The degree of vasodilation is determined by 

comparing the peak blood flow velocity using a Doppler wire before and after infusate 

delivery. These results are then compared with vasodilation induced by substances that 

do not require functioning endothelium, usually adenosine or GTN. The response to 

adenosine typically demonstrates the microvascular function while the response to 

GTN elucidates the macrovascular response. An indirect measure of endothelial and 

microvascular function is the degree of vasodilation in response to increased blood 

flow (and hence shear stress) in an artery. This is termed flow-mediated vasodilation 

and is an endothelium-dependent process. The most common FMD protocol involves 

measuring the change in the radial or brachial arterial diameter in response to reactive 

hyperaemia following a short period of ischaemia induced by the inflation of a 
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sphygmomanometer cuff to supra-systolic levels. It has been shown that peripheral 

endothelial function assessed in this way correlates with coronary artery endothelial 

function in population studies58. 

 

Aside from measuring the impact of endothelial dysfunction on vasomotor function, it 

is possible to gauge the state of the endothelium through the measurement of 

circulating biomarkers. Activated endothelium expresses many surface markers and 

secretes substances that may be measured in circulating blood.  

 Vascular inflammation markers with the highest endothelial specificity include 

E-selectin and VCAM. Other suitable biomarkers include ICAM-1, CRP and SAA 

(although these latter two are not specific to the endothelium). 

 Increased oxidative stress (a cause of endothelial dysfunction) may be indirectly 

measured by assessing the concentration of serum asymmetric 

dimethylarginine (ADMA), a potent inhibitor of nitric oxide synthesis, which is 

induced by oxidative stress. 

 Pro-coagulant factors: von Willebrand Factor (vWF) is released from activated 

endothelium via the release of Weibel-Palade bodies. This substance promotes 

platelet adhesion and blood coagulation. 

 General Inflammatory Markers: In the absence of other causes of active 

inflammation, endothelial dysfunction is associated with elevated levels of pro-

inflammatory cytokines such as IL-6, TNFα and IL-1. 

  

Endothelial Dysfunction in Cardiac Syndrome X 

There is ample evidence that the endothelium in patients with CSX is dysfunctional and 

activated. Many markers of endothelial dysfunction have been assessed and the results 

of selected studies are shown in the table below. Serum levels of soluble markers of 
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activation, such as the selectins and ICAM-1, have been shown to be significantly 

elevated in CSX, while VCAM-1 is also high, albeit not significantly so 59,60. This implies 

that the endothelium expresses higher levels of these substances and as such may be 

triggering cellular immune responses. It has furthermore been shown that markers of 

inflammation are elevated in CSX. Moreover, the symptom burden in CSX appears to 

directly correlate with the degree of elevation of inflammatory markers 2,27. Other 

biomarkers hint that the endothelium in CSX patients is exposed to excessive oxidative 

stress and this might in part be responsible for the endothelial dysfunction seen in this 

condition61. The trigger for these changes may merely be the exposure to many 

traditional cardiovascular risk factors such as hypertension and dyslipidaemia, although 

some research has focussed on the possibility of an infectious cause of low-grade 

vascular inflammation, with chlamydia and helicobacter pylori as two potential causes 

62,63. 

 

Both invasive and non-invasive measures of peripheral and coronary vasomotion 

consistently show that endothelial-dependent vasodilation is impaired in CSX patients 

and many have inferred from this observation that inadequate coronary vasodilation in 

times of increased cardiac demands may be the aetiopathogenesis of the cardiac 

syndrome X phenotype64. These microvascular abnormalities have been confirmed 

through many different modalities including invasive coronary reactivity testing with 

acetylcholine, PET scanning and Doppler interrogation of flow velocities. Therefore, the 

prevailing theory for CSX, which may be more appropriately termed microvascular 

angina, is that endothelial dysfunction is induced in coronary vasculature in response 

to traditional cardiovascular risk factors and that this leads to inadequate vasodilation 

and hence inadequate coronary flow reserve to meet the metabolic needs of the 

myocardium during exercise, which in turn leads to angina. 
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Table 1.10: Summary of studies of endothelial dysfunction in CSX 
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Structural Abnormalities of the Vessel in CSX 

Quite apart from the activation and dysfunction of the microvascular endothelium in 

CSX, there is some evidence of overall structural and morphological abnormalities of 

microvessels in CSX. Studies examining the ultrastructure of peripheral capillaries in 

CSX patients show an overall decreased capillaries density and an increase in the 

thickness of the vessel media (due to increased VSMC mass) and a relative decrease in 

lumen size in the microvessels of CSX patients compared with those of healthy 

controls65.  PET scanning shows that similar morphological changes are present in the 

coronary microvessels of CSX patients66. Biopsy studies of cardiac tissue in CSX patients 

also demonstrates perivascular monocytic and polymorphonuclear cell infiltration of 

the microvascular wall with endothelial oedema and ultimately perivascular fibrosis67. 

These findings suggest chronic vessel wall inflammation. The same study also 

demonstrated the abnormal presence of apoptotic endothelial cells in the CSX patients. 

This may demonstrate premature cell senescence or else severe cellular damage. 

 

Calcium scoring on CT scanning has been used as a marker of the burden of coronary 

atherosclerosis with an Agatston score of zero being associated with low burden and 

with increasing scores correlating with larger plaque burden. 64-slice CT scanning of 

CSX patients has demonstrated that these patients have higher calcium scores than age 

and sex matched healthy controls despite the absence of coronary artery disease on 

invasive angiography68. This highlights the relative insensitivity of coronary angiography 

for early atherosclerosis and demonstrates that CSX patients do have cardiac pathology 

that may explain some of their symptoms, viz. early atherosclerosis with endothelial 

dysfunction. The same study also demonstrated an increase in the carotid intima-

medial thickness in CSX patients compared to controls. 
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In short, the macrovasculature and microvasculature in both the peripheral and 

coronary circulations are structurally abnormal in CSX patients. This is in addition to the 

obvious functional abnormalities that have already been discussed. 

 

Endothelial Senescence 

 

Figure 1.12: Telomeres 

 

All cells in the body have a finite capacity to replicate. This is known as the Hayflick 

phenomenon and is believed to be due to telomere shortening. All chromatids have 

telomeres of varying lengths at each end. Telomeres are regions of repetitive 

nucleotide sequences that are many kilobases long. They contain many guanine-rich 6-

8bp sequences (typically TTAGGG) that repeat. Due to the physical mechanics of DNA 

replication, the information at the ends of chromatids cannot be replicated and is lost. 

With each division, therefore, the chromatin strand shortens. Telomeres provide a 

reservoir of “junk” DNA that can be lost with each replicative cycle without loss of DNA 

that encodes genes. Typically, each cycle results in the loss of between 25 and 100bp. 

Once the telomeres run out, the cell is incapable of replicating without loss of critical 
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genetic material and successful division ceases. Studies by Hayflick on foetal cells 

showed that they could divide between 40-60 times on average. Some malignant cells 

can lengthen telomeres through the action of an enzyme called telomerase and this 

can result in immortalisation of the cells. Endothelial cells, like most somatic cells, have 

very low levels of telomerase.  

                          

When a cell can no longer replicate it enters a phase known as senescence with these 

cells irreversibly entering permanent cell-cycle arrest, with DNA content that is typical 

of the G1 phase.  As well as undergoing telomeric senescence as described above, a cell 

can enter senescence prematurely in response to stresses such as oxidative damage or 

a continuous mitogenic stimulus. This appears to have evolved as a protective 

mechanism, possibly to minimise the risk of cancer. Regardless of the cause, 

senescence appears to involve activation of a p53/p21 or p16/retinoblastoma tumour 

suppressor pathways that then results in alteration of cellular structure and function. 

Senescent cells are usually enlarged and flattened and contain a high concentration of 

β-galactosidase, signifying an increase in cellular liposomal population. The cells are 

also functionally altered and, as in the case of endothelium, are no longer capable of 

carrying out some necessary functions. Some studies have shown that the endothelium 

overlying atherosclerotic plaque exhibits high levels of senescence-associated β-

galactosidase (SA-β-gal) and further studies have also shown that telomere lengths in 

endothelial cells are shorter in atherosclerosis-rich regions than in healthy 

endothelium69,70. Despite the fact that the immune system appears to be able to 

remove senescent cells, ageing is associated with an increase in the population of 

senescent cells in various tissues and it is believed that these cells are responsible for 

the deleterious age-related changes seen in vivo.  
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Figure 1.13: The Cell Cycle 

 

Factors regulating endothelial senescence 

Apart from simple replicative (or telomeric) senescence, endothelial cells are subject to 

multiple stimuli that can cause stress-induced (or premature) senescence. 

a. Oxidative Stress:  Normal mitochondrial metabolism produces many reactive 

oxygen species (ROS), which are normally neutralised by endogenous reducing 

agents such as glutathione. Endothelial cells can produce many ROS, including 

superoxide and hydrogen peroxide, with the main source being NADPH oxidase 

(NOX). ROS are capable of oxidising many substances in vivo, including proteins and 

nucleic acids. Telomeres, and the GGG repeats in particular, are particularly 

susceptible to oxidative damage and this may induce senescent similar to 

traditional telomeric senescence. In addition, oxidative stress can activate stress-

response kinases that may induce p53 activity and senescence. Homocysteine also 

shortens telomeres while oxidised LDL has been shown to inhibit telomerase in 

endothelial cells.71 
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b. Sustained mitogenic stimulus: Oncogene overexpression can induce senescence 

through dysregulation of mitochondrial activity with an overflow of ROS into the 

cells, Miyauchi et al showed that this was the case with Akt-induced senescence in 

endothelial cells with Akt inhibiting FOXO3a’s ability to regulate cellular levels of 

ROS with resultant p53 activation72. 

c. SIRT1 activity: Sirtuins are known to prolong cellular life. It seems as if they are 

capable of deacetylating and inactivating p53, thereby switching off the senescence 

apparatus. Sirtuin activity in the endothelium is mediated by nitric oxide and shear 

stress, with laminar flow upregulating its expression. Oscillatory shear, seen in 

atherosclerosis prone areas, downregulates SIRT1, which may result in endothelial 

senescence. Indeed, endothelium overlying atherosclerotic plaques has been 

shown to be populated by a high proportion of senescent cells73. 

d. Nitric Oxide: Quite apart from its ability to upregulate sirtuins, NO has also been 

shown to directly upregulate telomerase activity and delayed EC senescence 74. 

 

Impact of endothelial senescence 

Senescent endothelium demonstrates a pro-inflammatory phenotype and is 

dysfunctional in several ways. The most important of these features are tabulated 

below. It is essential to observe that many of the features of senescent endothelial 

cells are generally prominent in the endothelium of CSX patients, the implication being 

that EC senescence may be a pathological feature of CSX. It is possible that oxidative 

stress and other causes of endothelium dysfunction also cause premature endothelial 

senescence in CSX patients. This would explain the typical functional and structural 

abnormalities seen in the microvasculature in this condition. The specific presence of 

senescent endothelium has not been evaluated in CSX but histological studies have 

shown that a proportion of EC in CSX patients are apoptotic67. Senescent endothelial 

cells may ultimately undergo apoptosis in an effort to reduce the negative impacts of 

the senescent phenotype75. 
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Table 1.11: Endothelial Senescence 

 

1.4.4 Abnormal Autonomic Function 

Another theory for the apparent microvascular dysfunction in CSX is the possibility of 

sympathetically mediated vasoconstriction. The autonomic innervation of the coronary 

microvascular is quite potent and is mediated mostly through adrenoceptors. α-

adrenoceptors mediate vasoconstriction, with α1 receptors predominating in the 

epicardial coronary arteries and α2 found in the microvasculature. These are opposed 

by the activity of β-adrenoceptors. These receptors are found in highest concentrations 

in the arterioles and are mostly the β2 subtype76. Under normal circumstances in 

healthy coronary arteries there is almost no activity through the α-adrenoceptors. It is 

believed that as atherosclerosis progresses, the relative contribution to vascular tone 

shifts from predominantly β-receptor driven to α-receptor driven with resultant 

vasoconstriction. 
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There is some evidence that α-adrenergic tone is indeed elevated in CSX. Indirect 

evidence of sympathetic overdrive, such as observations of QT dispersion, heart rate 

variability and resting heart rates, has been seen in CSX 77-80. Imaging techniques using 

MIBG (an analogue of noradrenaline) have also shown frequent abnormalities involving 

cardiac MIBG uptake, indicating that there may be excessive competition with 

endogenous noradrenaline in the heart in CSX patients, hinting again at sympathetic 

overdrive81. One interventional trial showed that the use of doxazosin, an alpha-

blocker, increased coronary vasodilator reserve in CSX patients82.  

 

There is, of course, some contradictory evidence regarding adrenergic tone in CSX. Use 

of doxazosin as a therapy for CSX has been unsuccessful, refuting the adrenergic theory 

somewhat 83. In addition, PET scanning of CSX patients following pre-therapy with 

doxazosin failed to show any improvement in coronary blood flow or flow reserve. 

There is a caveat, however, that doxazosin is a selective α1-blocker and it is the α2-

receptors that may be relevant to the microvascular dysfunction seen in CSX. 

Interestingly, non-selective inhibitors of alpha blockers (e.g. imipramine) have been 

shown to be effective in treating CSX84. 

 

1.4.5 Abnormal Nociception 

As has been described in section 1.4.1, the neural sensation of angina is brought to the 

somatosensory cortex via autonomic afferent fibres. These fibres project cortically via 

the thalami bilaterally. An early theory into the aetiology of CSX suggested that the 

symptoms of the condition might be due to abnormal perception of cardiac stimuli, 

either at a peripheral nerve level or indeed centrally. One of the early investigators in 

CSX coined the phrase “sensitive heart syndrome” when a patient who presented with 

chest pain, a positive EST and normal angiogram had their pain reproduced by pacing 

of the right ventricle with a pacing lead. Interestingly, imipramine was used to 

successfully treat her symptoms4. 
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There is some evidence that CSX patients may be more sensitive to cardiac stimuli. 

Normally people demonstrate differing levels of awareness of their own heart. Even an 

individual’s ability to perceive their own heartbeat (ventricular ectopics for example) 

varies tremendously depending on their mental state, state of arousal etc. Studies in 

CSX patients have shown that these patients demonstrate a heightened awareness to 

intracardiac stimuli. For example, two studies showed that over 80% of the CSX 

patients developed chest pain upon mere manipulation of an angiography catheter in 

their right atrium and over 90% in response to manipulation of the catheter in their 

right ventricle 85-87. Similarly, injection of contrast into the coronary arteries evoked 

pain in the majority of CSX patients studied. 

 

Similarly, it has been shown that CSX patients have altered responses to peripheral 

painful stimuli. An early study showed that CSX patients had significantly lower pain 

thresholds compared to healthy controls when confronted with noxious stimuli such as 

forearm ischaemia and electrical stimuli. On average their pain threshold was 35-40% 

lower than that seen in healthy patients88. Furthermore, other studies using laser 

evoked potentials (a technique whereby a painful heat stimulus is delivered to the skin 

using a focused laser and the cortical response is recorded via electroencephalograph 

leads) have demonstrated a reduced habituation to repeated painful stimuli. The 

normal response to repeated noxious stimuli is a gradual reduction in amplitude of the 

evoked cortical potentials. This normal habituation is absent in CSX patients indicating 

abnormal cortical handling of painful stimuli 18,89. This phenomenon is also observed in 

migraine and in fibromyalgia. Moreover, treatment of CSX with implantable spinal cord 

stimulators has been shown to restore normal habituation and to alleviate anginal pain 

in CSX patients90.  

 

Further evidence of abnormal pain processing is to be found in Positron Emission 

Tomography (PET) studies in CSX patients. These studies evaluated the increases in 

cerebral blood flow to (and hence activation of) various cortical regions in response to 
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dobutamine infusion. The general response to cardiac stimulation by dobutamine was 

activation of the hypothalamus, thalami, right frontal cortex and temporal poles, 

essentially delineating the normal sensory pathway. Some differences did exist 

between healthy controls and CSX patients, however. There was a relative increase in 

blood flow to the right insular cortex in CSX patients compared to controls, while the 

control patients had higher activation of the left insula and right anterior cingulate 

cortex34. These changes were not related simply to the presence of chest pain in the 

CSX patients during the study as further comparison with a coronary artery disease 

group also showed higher right insular activation in the CSX group despite similar chest 

pain. The insular cortex is believed to be responsible for interoception and has been 

implicated in irritable bowel syndrome91. The possibility of CSX being a central pain 

processing problem is intriguing. 

 

A final consideration when evaluating the perception of pain by CSX patients is the 

frequent presence of psychosocial co-morbidity in these patients. CSX patients tend to 

have higher incidences of anxiety and depression compared to healthy controls and 

even patients with coronary artery disease92-94. Anxiety states have been shown to 

augment pain perception95.  

 

1.4.6 Summary 

Although debate still exists as to the exact definition of Cardiac Syndrome X, let alone 

its pathogenesis, there is a growing realisation among cardiologists that it is a real 

pathological condition with demonstrable abnormalities on many investigations. Its 

aetiology likely involves the effects of many conventional cardiovascular risk factors on 

the endothelium, with endothelial and resultant microvascular dysfunction and 

perhaps an abnormal nociceptive processing overlay. A summary is presented below in 

figure 1.14. 
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Figure 1.14: The possible pathogenesis of CSX 

 

1.5 Prognosis 

The overall prognosis in CSX has been perceived as being good and it may be because 

of this that research into the condition has been relatively sparse. The lack of 

consistency in case definition has also limited the generalizability of data from different 

studies. Recent studies have shown, however, that the prognosis for microvascular 

angina is worse than that of the general population with an increased risk of future 

stroke and vascular disease. Despite the generally favourable outcome, however, the 

burden of disease on the patients with CSX is similar to that of patients with coronary 

artery disease. A systematic review of the prognosis in CSX was undertaken for this 

thesis and follows here. 
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1.5.1  Systematic Review of Prognosis in Cardiac Syndrome X 

1.5.1.1 Abstract 

Objective  

Cardiac Syndrome X (CSX) has been a challenging diagnosis since it was first described 

over 40 years ago, when the presence of angina with a normal angiogram was 

considered diagnostic. This heterogeneous group was shown to have an excellent 

prognosis. The modern diagnosis of CSX includes objective evidence of ischemia, 

defining a subset of the previously described group. This systematic review attempted 

to determine if prognosis in CSX with objective ischaemia remained benign. 

  

Design and Outcomes Measured  

A review of all English language literature in PubMed identified relevant studies of CSX 

patients with objective ischaemia. Data regarding outcomes, including death, 

myocardial infarction (MI), hospitalization and repeat angiography, were extracted and 

synthesised. 

 

Results  

Sixteen papers were included with a total of 1177 patients with a mean (SD) 6.17(3.06) 

years follow-up. The overall Level of Evidence was level 4. Thirteen deaths occurred in 

6576 patient-years [median (IQR) 0.00(0.00-0.26) deaths/100 patient-years.] Few MIs 

occurred [0.00(0.00-0.09) MI/100 patient-years] but recurrent hospitalizations 

occurred frequently [Mean (SD) 4.8(5.0) hospitalizations/100 patient-years] with a 

median (IQR) 2.70 (1.93-7.91) angiograms/100 patient-years. Of these angiograms only 

2.7% required revascularization. 70.1(25.7) % of patients at 6.1(3.4) years follow-up 
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had on-going pain with 77.0(18.5) % of patients on anti-anginal medications at 8.2(3.8) 

years. 

 

Conclusions  

This review confirms the benign prognosis of CSX with an exceptionally low mortality. 

Recurrent hospitalization, repeat angiography and on-going symptoms requiring 

medication are the main problems confronting the CSX population. The low incidence 

of revascularization in these patients might deter the desire for repeat angiography.  

  

1.5.1.2 Introduction 

Cardiac Syndrome X (CSX) is a clinical problem that has been confounding cardiologists 

since the early days of diagnostic coronary angiography. Initially described in 1973, CSX 

is the presence of typical anginal chest pain (burning, retrosternal discomfort which is 

worsened by exertion and relieved by rest or nitrates) despite the absence of 

demonstrable epicardial coronary stenosis on angiography 96. Between 15-30% of all 

angiograms performed to investigate angina are normal97,98. Not all of these patients 

have CSX, as in the majority of these cases the chest pain is non-cardiac. The diagnostic 

criteria for CSX have evolved over the past 20 years and the general consensus now is 

that a diagnosis of CSX requires objective evidence of myocardial ischaemia in addition 

to the typical chest pain and angiographically normal coronary arteries. Ischemia may 

be implied by several means but most commonly by positive exercise stress testing 

(EST), myocardial perfusion imaging (MPI) or dobutamine stress echocardiography 

(DSE)3. Although the exact pathophysiology remains undetermined it is believed that 

the aetiology of CSX is microvascular dysfunction37,99,100. 

 

CSX is regarded generally as having a benign prognosis based on early case series97,101. 

These heterogeneous series did not include the strict criterion of demonstrable 
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ischemia. They indicated that these patients generally suffered no excess cardiac 

mortality but did continue to suffer from chest pain for many years after diagnosis.  

Also, traditional therapies for angina were poorly effective in the CSX populations. 

Importantly the optimal medical treatment of coronary artery disease has substantially 

evolved in recent years. However, the issue of benign prognosis in CSX has recently 

been called into question102. 

  

The objective of this review is to identify all studies that include prognostic data for 

patients with the modern definition of CSX (viz. typical angina pectoris, normal 

coronary angiograms and objective evidence of ischaemia) and to establish if these 

patients suffer from excess morbidity and mortality. 

 

1.5.1.3 Methods 

Criteria for Study Selection 

All studies published in the English language up to January 2013 relevant to the review 

topic were eligible for consideration. Study populations met the strict diagnosis of CSX.  

All suitable participants were included regardless of age, gender or ethnicity. Anginal 

symptoms were required to be typical in nature in order to exclude patients with likely 

non-cardiac chest pain and to make the study population under review more 

homogeneous. “Normal” angiograms were those without any stenosis >20% severity, 

in line with most studies’ inclusion criteria. Objective evidence of ischemia included 

electrically-positive EST, positive DSE or MPI evidence of hypo-perfusion. Duration of 

follow-up of at least 2 years was chosen as necessary to allow time for the 

development of outcomes such as hospitalisations and revascularisations. 
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Outcomes Measured 

The main outcomes of interest included the overall mortality (including deaths not 

attributable to cardiovascular disease) and the incidence of myocardial infarction and 

other vascular complications. Rates of re-hospitalisation during the period of follow-up 

as well as the need for repeat angiography and/or re-vascularisation were also 

recorded. Finally, the use of anti-anginal medication and the presence of on-going 

angina at the end of follow-up were noted. Not all studies included all of these 

outcomes but all data were extracted where available 

 

Search Strategy 

A review of EMBASE, PubMed, Web of Knowledge and the Cochrane database was 

undertaken to identify all relevant papers up to June 2013. MeSH terms used in 

Pubmed included “microvascular angina” and “/prognosis”. Other keywords used with 

Pubmed and EMBASE were “microvascular”, “long-term”, “outcome”, “Cardiac 

Syndrome X” and “complications”. A search of the grey literature found one additional 

abstract, an Italian registry of CSX patients  [Tritto et al, ESC Congress, Barcelona 

2009].103 Finally, all articles’ references were evaluated and any other potentially 

relevant articles were reviewed.  

 

Each study included was examined in detail by the authors of this review. The patient 

selection process was examined closely. All studies included stated that patients had 

typical chest pain. Some studies were excluded as they included patients with atypical 

chest pain (i.e. at rest, pleuritic etc.) These patients may not be diagnosed with CSX but 

possibly with non-cardiac chest pain. All included studies also specified that subjects 

had undergone testing, which had revealed objective evidence of ischaemia. EST was 

used fifteen studies and MPI was used in one.104 The studies also needed to attempt to 
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account for all patients lost to follow-up and provide evidence that efforts were made 

to enrol all suitable patients.  

 

Assessment of Study Quality 

Studies were graded as being good, fair or poor based on the assessment of the NICE 

(National Institute for Health and Clinical Excellence) criteria for the assessment of case 

series (Table 1.11). Each criterion was worth 1 point in the assessment. A score of 0-3 

would be poor, 4-6 fair and 7-8 good. Follow-up of at least 2 years’ duration was 

required. At least 80% follow-up was expected from studies to be included. 

No. of centres Was the case series collected in more than one center? 

Hypothesis Was the hypothesis/aim/objective clearly described? 

Clear Criteria Were the inclusion and exclusion criteria (case definition) clearly 

reported? 

Clear 

Outcomes 

Was there a clear definition of the outcomes reported? 

Prospective Were data collected prospectively? 

Recruitment Was there an explicit statement that patients were recruited 

consecutively? 

Findings Were the main findings of the study clearly described? 

Stratification Were outcomes stratified by test results, patient characteristics 

etc. 

Table 1.11: NICE Quality Assessment Tool for Case Series: 0-3 = poor; 4-6 = fair; 7-8 = good 
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Data extraction  

Data was extracted independently by the authors. The mean, SD and range of follow-

up in years was recorded. The number of patients and gender distribution of patients 

were also noted. The number of patient-years was determined by multiplying the 

number of patients by the mean duration of follow-up. Where specified, the numbers 

for death, myocardial infarction (MI), revascularization and repeat angiography were 

noted. Data on the proportion of patients with on-going symptoms was also noted if 

available. 

 

Data analysis 

All data from the studies was input into a database on SPSS (v20). The average point 

estimate per 1000 patient-years was calculated for each parameter in each study. The 

mean of these estimates from all studies was calculated as well as the standard 

deviation. If the data was not normally distributed, its central tendency and dispersion 

were described in terms of its median and interquartile range. The data itself is 

reported as mean (SD) in the form x (y) if normally distributed or as median (IQR) in the 

form x (y-z) if not normally distributed.  It was intended that gender-specific outcome 

data would be calculated but only 13 of 16 studies gave population breakdown by 

gender and no study divided outcomes into subgroups by gender, thereby precluding 

synthesis of this data. 

 

1.5.1.4 Results 

 

Description of the Studies 

The search strategy identified 318 total citations (see figure 1.15 below). Abstract and 

title review excluded 284 of these. Thirty-four full-text articles were examined and 18 
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of these were found to be unsuitable for inclusion. Six of the excluded articles included 

patients with atypical angina, 1 had >20% loss to follow-up, 8 had no objective 

evidence of ischaemia, 2 had no clear inclusion criteria, 1 had data that was unsuitable 

for extraction and 4 had two or more of the above issues.  This left 16 studies for 

analysis with a total 1177 patients giving a median (IQR) of 43(26-97) patients per study 

with a mean (SD) 6.2 (3.0) years follow-up (Table 1.12). All of the included studies used 

the modern criteria for CSX diagnosis. Most included studies are of level of evidence 4 

based on the Agency for Healthcare Research and Quality scale. No randomized 

controlled trials were found and 14 of the 16 studies were non-comparison 

observational studies (i.e. case series).3,17,28,101,104-114 One of the remaining papers had a 

comparison group defined by the presence or absence of a second positive ischemic 

test (i.e. a positive MPI in addition to a positive EST).108 The other paper was a case-

control study assessing the efficacy of spinal cord stimulation.111 The control group in 

this latter study had CSX and was included in this review. No paper had a healthy 

control group. 

 

 The median (IQR) quality score was 6 (5.25-7.00) out of a possible 8. Fifteen of the 

studies were prospective. In all cases, efforts were made to ensure 100% follow-up of 

patients. For the subsidiary end-points such as the degree of improvement in angina 

etc. appropriate questionnaires were used. Enrolment was complete in all studies 

although only 5 specifically stated that consecutive patients were enrolled. Each study 

had at least 2.5 years of active follow-up and >90% follow-up was maintained in all 

cases.  The lack of healthy control groups impacts on the strength of data derived from 

these studies. 
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Figure 1.15: PRISMA diagram  

 

Outcomes 

Outcomes are summarized in Table 1.13, which highlights the percentage of the study 

populations that registered each individual end-point, and in Table 1.14, which shows 

summary descriptive data of the major outcomes noted by the majority of the trials.  
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Table 1.12: Characteristics of Included Studies. CVA- Cerebrovascular Accidents, Hosp- Hospitalisations, 

Meds- Medications, MI- Myocardial Infarction, Revasc- Revascularisations. 

Study Year Country Quality 

score 

Sample 

Size 

Follow-

up 

(years) 

Outcomes Measured 

Bemiller  

et al 

1973 USA 4/8 12 4.1 MI 

Bugiardini 

et al 

2004 Italy 6/8 42 10.3 Death, MI, Pain, Hosp, 

Meds 

Chauhan  

et al 

1993 UK 7/8 82 3.0 Death, MI, Pain, Hosp, 

Meds 

Delcour  

et al 

2009 USA 5/8 6 7.4 MI, CVA 

Di Monaco 

et al 

2010 Italy 6/8 40 6.6 Death, MI, Pain, Hosp, 

Angio. 

Huang  

et al 

2010 Taiwan 7/8 108 5.0 Death, MI, Hosp, Revasc, 

CVA 

Kaski  

et al 

1995 UK 8/8 99 7.0 Death, MI, Pain, Hosp 

Lamendola 

et al 

2010 Italy 5/8 155 11.4 Death, MI, Pain, Hosp, 

Angio Revasc, Meds. 

Leu  

et al 

2006 Taiwan 7/8 92 2.7 Death, MI, Hosp, Angio, 

Revasc, CVA 

Opherk  

et al 

1989 Germany 6/8 25 4.0 Death, MI, Pain 

Radice  

et al 

1995 Italy 5/8 30 12.5 Death, MI, Pain, Hosp, 

Angio, Revasc, Meds, 

CVA 

Romeo  

et al 

1993 Italy 6/8 30 5.0 Death, MI, Pain, Meds. 

Sgueglia  

et al 

2007 Italy 6/8 9 3.0 Death, Pain 

Shintani  

et al 

2003 Japan 6/8 43 6.4 Death, MI, Pain 

Sun  

et al 

2001 Taiwan 7/8 54 7.1 Death, MI, Pain, Meds 

Tritto et al 2009 Italy 5/8 350 3.3 Death 
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Table 1.13: Outcomes at End of Follow-up as Percentage of Study Population. CVA- Cerebrovascular 

Accidents, Hosp- Hospitalisations, Meds- Medications, MI- Myocardial Infarction, Revasc- 

Revascularisations 

 

 

 

Study n Death MI Hosp Angio Revasc Pain Meds CVA 

Bemiller et al 12 - 0 - - - - - - 

Bugiardini et al 42 0.02 0.02 0 - - 31.0 42.0 - 

Chauhan et al 82 0 0 23.2 - - 47.6 45.0 - 

Delcour et al 6 0 16.7 - - - - - 16.7 

Di Monaco et al 40 0 0 67.5 62.5 - - - - 

Huang et al 108 4.62 0 9.25 - 0 - - 4.62 

Kaski et al 99 0 0 29.3 - - - - - 

Lamendola et al 155 2.59 0 57.4 21.3 1.3 - - - 

Leu et al 92 0 0 8.70 8.70 0 - - 3.26 

Opherk et al 25 0 0 - - - 100 - - 

Radice et al 30 3.33 0 13.3 26.6 0 67.7 21 10.0 

Romeo et al 30 0 0 10.0 - - 97 29 - 

Sgueglia et al 9 0 - - - - 100 - - 

Shintani et al 43 2.33 0 - - - 44.2 - - 

Sun et al 54 1.85 1.85 - - - 77.8 33 - 

Tritto et al 350 0 0.29 - - - 71.2 - - 
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Outcome No. of 

studies 

Patient 

Years 

Absolute 

Count 

Average Measure 

Death 15 6577 13 0.0 (0.0-2.6)/1000pt-yrs 

Myocardial 
Infarction 

15 6599 4 0.0 (0.0-0.9)/1000pt-yrs 

Hospitalisation 9 4592 189 47.8 (50.0)/1000pt-yrs 

Repeat 
Angiography 

4 2654 74 41.7 (35.8)/1000pt-yrs 

Revascularisation 4 2930 2 0.0(0.0-0.8)/1000pt-yrs 

On-going Pain 9 3021 450/665 70.6± 25.7% of patients at 6.1± 
3.4 years’ follow-up 

Anti-Anginal Use 6 3231 293/393 77.0± 18.5% of patients at 8.2± 
3.8 years 

Cerebrovascular 
complications 

4 1207 12 12.9± 0.7/1000pt-years 

Table 1.14: Summary of Major Outcomes 

 

1.5.1.5 Discussion 

This review appears to confirm the benign nature of CSX in terms of mortality, even 

when using the widely accepted contemporary diagnostic criteria. The calculated 

mortality rate of 2.6 per 1000 patient-years compares favourably with even 2012 

mortality data for the general unselected adult populations from the included study 

locations (range: 6.4-11.0 deaths/1000 pa). Some of this discrepancy will be explained 

by the fact that cardiovascular disease accounts for 30% of all deaths and CSX patients 

necessarily have normal epicardial coronary arteries and structurally normal hearts. 
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Additionally, patients in these series have also been thoroughly medically assessed, 

benefitted from regular specialist follow-up and have been selected as “pure” CSX 

patients. Many studies excluded diabetic patients and those with hypertensive heart 

disease, further narrowing the case definition and selecting out healthier patients. 

Finally, the use of cardio-protective medications, such as statins and beta-blockers, in 

these patient groups would further reduce cardiovascular risk. Clearly, however, a 

diagnosis of CSX does not seem to confer increased mortality. 

 

The increased rate of cerebrovascular events in this population does warrant further 

scrutiny. A typical Western country would expect to have 1-3 strokes per 1000 patient-

years but the incidence in the CSX population noted here is more than triple that. It 

must be noted that only 4 studies (18% of the 6626 patient-years) reported on the 

presence or absence of cerebrovascular events and in these only 12 events occurred. 

All of these studies specified that the events were not “procedure related” but did not 

elaborate as to how this was determined. CVAs are known to complicate 0.05-0.1% of 

all coronary angiograms. 115,116 It is possible that conventional risk factors that may 

result in endothelial dysfunction and CSX may also potentially increase the risk of 

concurrent cerebrovascular disease. 

 

The true burden of CSX seems to come from the recalcitrant symptoms. Over two-

thirds of patients suffer with on-going typical angina pectoris and this in turn leads to 

consumption of anti-anginal medications in a similar proportion of patients. It is 

somewhat reassuring then that only 4.8 per 100 patients per annum require re-

hospitalization due to this persistent angina. The incidence of repeat angiography is, 

however, relatively high with 4.2 occurring per 100 patients per annum indicating that 

a large proportion (>85% of those studied) of CSX patients who are hospitalized during 

follow-up will undergo a further angiogram. The most relevant statistic is that <0.08 

revascularizations occurred per 100 patients per annum implying that >97% of 



72 
 

angiograms performed did not indicate a need for intervention. This data is based on 

only 4 studies reporting on revascularizations. 

 

1.5.1.6 Limitations 

Whilst undertaking this review it became clear that there is a paucity of studies with 

robust design quality looking at prognosis in CSX. This is demonstrated by the absence 

of healthy comparison groups, the use of small sample sizes and the intermediate 

quality scores of the available studies and is borne out by the heterogeneity of the 

outcome data across all of the studies. This review attempted to include studies with 

similar patient cohorts in terms of case definition with particular emphasis on studies 

looking at typical angina pectoris to avoid encompassing subjects with probable non-

cardiac chest pain and incidental false-positive ischemic testing. This means that the 

results of this review are applicable mostly to patients with typical chest pain CSX and 

not necessarily all patients with chest pain and CSX. A comprehensive review published 

last year included studies with a more heterogeneous population as well as patients 

without objective of ischaemia and reported favourable outcome data in terms of 

mortality and myocardial infarction in this group again showing the prognostic value of 

a normal coronary angiogram.117 

 

1.5.1.7 Implications for Practice  

Once the diagnosis of CSX has been made the patient should be reassured regarding 

prognosis. The vanishingly low rate of MI, revascularizations and death are welcome. 

The cardiology community does need to be aware of the fact that the majority of these 

patients will continue to suffer from angina even after 5 years and that over three 

quarters will require long-term treatment. Repeat angiograms should be avoided in 

these patients unless there is a strong clinical suspicion that something has changed. 
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1.5.1.8 Implications for Research  

There is a lack of high-quality studies in this area. Inadequate case definition has led to 

heterogeneous study population and consequently heterogeneous results. The data 

generated by studies to date are quite convincing but the studies are undoubtedly 

subject to substantial bias. Higher quality research with consistent case definitions in 

terms of symptoms as well as more reliable measures of true ischemia (e.g. PET or 

coronary sinus lactate sampling) would allow more homogeneity across studies. 

 

1.6 Treatment 

Treatment of CSX is dependent on the ability to diagnose it. As the condition presents 

with symptoms identical to that seen in obstructive coronary artery disease many 

traditional anti-anginal therapies have been employed to affect symptom control in 

CSX patients. Results have been inconsistent, however, and the majority of patients are 

left with inadequate symptom control. This section will examine the evidence of the 

effectiveness of many treatment options and will attempt to provide a framework for 

controlling symptoms in these patients.  

 

1.6.1 Conventional Anti-Anginal Pharmacotherapy 

Anti-anginal therapy aims to reduce myocardial metabolic demand by reducing cardiac 

work as well as maximizing oxygen delivery to the myocardium. Several therapies that 

are useful in treating angina in obstructive coronary artery disease have also been 

shown to be of use in CSX. 

 

Beta-blockers: The sympathetic nervous system up-regulates several cardiac functions 

resulting in an increased metabolic demand.  Normal myocardium contains an 

abundance of β1- and β2-adrenoceptors, which are involved in the activation of the 
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myocardium by the sympathetic nervous system. This results in increased chronotropic, 

inotropic, dromotropic and lusitropic effects. All of these increase myocardial oxygen 

demand, which can lead to ischaemia. Studies have shown that CSX patients have 

increased sympathetic drive as evidenced by a reduced heart rate variability 80, higher 

average heart rates 79 and prolonged QTc 77 compared to healthy controls. Abating this 

increased sympathetic tone could remedy some of the symptoms of CSX.   

 

 

Figure 1.16: Treatment Options in CSX 
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Third-generation beta-blockers have been shown to increase baseline coronary blood 

flow as well as improving coronary flow reserve (CFR). These features may be of 

particular benefit in CSX where an impaired CFR is often seen. Nebivolol, a commonly 

prescribed 3rd generation beta-blocker, has a good dataset supporting its use in CSX. It 

has been shown to improve CCS anginal class in 70% of patients and significantly 

prolongs exercise duration as assessed on exercise stress testing (EST). In addition, it 

improves endothelial function with a 200% increase in NO release and also reduces the 

concentrations of inflammatory molecules such as vWF, hsCRP and ADMA (aspartate 

dimethylarginine, a potent inhibitor of NO activity.)  

 

Despite their tendency to cause macrovascular vasoconstriction, 2nd generation beta-

blockers have also been shown to be clinically effective in CSX. Two studies showed 

significant reductions in the frequency of angina attacks while on atenolol 118,119, while 

the latter study also noted that 18/22 (82%) of CSX patients developed electrically 

negative ESTs while taking atenolol. In summary, Beta-blockers appear to be effective in 

controlling symptoms and improving exercise capacity in CSX and Nebivolol may even 

modulate pathways allowing recovery of endothelial function. 

 

Calcium Channel Blockers (CCBs): CCBs block slow voltage-gated calcium channels in 

the smooth muscle cells of vascular walls, preventing calcium influx and allowing 

vasodilatation. This reduces peripheral resistance and afterload, which accounts for 

much of their anti-anginal effects. Non-dihydropyridine CCBs also affect the 

myocardium and exert negative inotropic and chronotropic effects, thereby reducing 

metabolic demands. In aggregate, CCB use in CSX can be supported either after a trial 

of beta-blockade or perhaps in tandem with it. Studies have shown improvements in 

exercise duration on exercise stress test (along with a delay in time to ischaemia of 

80%.) CCBs also reduce angina frequency and GTN use. 120,121  
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Ranolazine: Ranolazine reduces the late transcellular sodium current thereby reducing 

calcium influx via sodium-dependant Calcium channels in cardiomyocytes. This 

improves lusitropic function and may improve diastolic filling parameters. This also 

reduces wall stress and end-diastolic pressure with a concomitant reduction in 

microvascular compression during diastole. Ranolazine appears to have a small 

significant benefit on coronary and systemic microvascular function (as measured by 

CFR in response to adenosine and cold-pressor test, and brachial artery FMD and 

nitoprusside-mediated dilation122.) A pilot study in 20 women with CSX showed that 4 

weeks of treatment with ranolazine improved several subjective parameters as 

measured by the Seattle Angina Questionnaire (SAQ). Quality of life (p=0.021), angina 

stability (p=0.008) and physical functioning scores (p=0.046) were all improved123. A 

similar study expanded on this with 30 CSX patients and found that ranolazine 

significantly improved all aspects of the SAQ and also improved time to 1mm ST-

depression and total exercise time during EST. A study run in patients with a diagnosis 

of microvascular angina determined by invasive coronary reactivity testing failed to 

replicate these findings124. 

 

Nicorandil: Nicorandil is a novel anti-anginal agent with two distinct modalities of 

effect. It can activate the cGMP second messenger pathway, mimicking nitric oxide 

activity, in vascular smooth muscle cells. It also activates an ATP-sensitive K+ channel, 

which causes hyperpolarization of the myocytes while also reducing intracellular 

calcium. At lower doses the nitrate-like activity allows epicardial vasodilatation but 

higher doses are needed to allow resistance vessel dilatation, resulting in reduced 

coronary arterial resistance. One study showed that oral administration of 5mg three 

times daily of nicorandil significantly prolonged total exercise time and time to 1mm 

ST-depression on EST in 13 patients with CSX125. The frequency of angina episodes, use 

of GTN and subjective feeling of improvement were also significantly improved.  
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Ivabradine: Ivabradine induces bradycardia by directly affecting the If channels of the 

sino-atrial node. Its effect is one of pure heart rate reduction. It is indicated for use in 

chronic stable angina and in heart failure. The only study into its effectiveness in CSX 

showed that ivabradine significantly improved all aspects of the SAQ. It did not, 

however, show any clinical improvement in terms of EST-induced ST-depression or 

exercise capacity. Also it showed no significant improvement in systemic or coronary 

microvascular function.126 When taken with the fact that beta-blockers are almost 

universally useful in CSX, ivabradine’s effectiveness tells us that heart rate control is a 

very important goal in the treatment of CSX. 

 

Trimetazidine: The data regarding the usefulness of trimetazidine in CSX is 

underwhelming. The results have been mixed although two small studies have shown a 

marginal improvement in EST parameters while on trimetazidine.  

 

1.6.2 Adjunctive Medical Therapy 

The main aim in the management of CSX is to control the patient’s symptoms but an 

important secondary goal should be to modify their vascular phenotype (which is 

typified by reduced NO availability and endothelium-dependant vasodilatation.) The 

main agents, beyond those mentioned above, that would be of useful in this regard are 

statins and ACE-inhibitors. 

 

Renin-Angiotensin Aldosterone System antagonism: Angiotensin II is a potent 

vasoconstrictor and leads to increased myocardial contractility and heart rate due to 

AT1 receptor activation. ACE inhibitors, as well as preventing the formation of 

Angiotensin II, prevent the degradation of bradykinin, itself a potent vasodilator. 

Therefore, ACEI may be of benefit in CSX by preventing both vasoconstriction and 

increased cardiac workload but also by facilitating bradykinin-mediated vasodilatation, 
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which may be central to their effectiveness. In addition to having a beneficial effect on 

markers of endothelial function, studies using exercise stress test outcomes suggest 

that ACE-inhibitors consistently improve exercise duration. Ramipril and Enalapril have 

both been shown to be particularly effective in this regard and ramipril also reduce the 

weekly angina burden by 66% with a tandem drop in GTN use in studies.121,127,128 Both 

the Kaski and Pizzi studies also showed significant reductions in the magnitude of ST-

depression at peak exercise whilst on ACEI therapy. 

 

ARBs on the other hand have not been shown to be effective in CSX. One study showed 

that irbesartan failed to improve exercise duration in 24 CSX patients129. This lack of 

efficacy may highlight that the bradykinin-mediated vasodilation pathway may be 

responsible for the benefits of ACE inhibitors in CSX patients, as ARBs do not increase 

bradykinin levels in vivo. 

 

Statins: HMG-CoA reductase inhibitors reduce mortality in many vascular conditions 

through direct reduction in LDL levels as well as through pleiotropic effects. The utility 

of statins in CSX has been studied in several small RCTs. Simvastatin use in CSX patients 

with pre-existing dyslipidaemia improved brachial artery FMD (indicative of improved 

endothelial-dependant vasodilatory function) as well as improving the time to 1mm ST-

depression on exercise testing130. Statins can even be effective in CSX patients with 

normal plasma lipids131. This last study also noted clinical benefit in the form of 

increased Exercise duration on EST and time to 1mm ST-depression with significant 

improvements in FMD on pravastatin, changes which were absent in the placebo 

group. Additionally, patients reported feeling improved more when on pravastatin than 

those in the placebo group (p=0.014). 
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Aspirin: The current ESC guidelines advocate the use of aspirin in microvascular angina 

(CSX) alongside statin therapy in an effort to modulate endothelial dysfunction, 

although there is no evidence specifically supporting its use on a secondary prevention 

basis in CSX.  

 

Aminophylline: Aminophylline is a non-selective adenosine receptor antagonist as well 

as being a phosphodiesterase inhibitor. Adenosine plays an important role in regulation 

of coronary blood flow, chiefly by causing local vasodilatation at the site of its release. 

Antagonism of adenosine has been shown to improve exercise capacity in patients with 

CAD but its use in this manner has never been widespread. Studies in CSX patients have 

shown that IV aminophylline infusion at the time of EST increases exercise capacity by 

40% as well as rendering the test electrically negative in the majority of cases132,133. The 

effectiveness of oral aminophylline was also investigated and shown to significantly 

improve exercise time, time to ST-depression, magnitude of ST-depression and time to 

angina on EST 134.  

  

1.6.3 Non-pharmacological Therapies 

Some patients may be resistant to the use of medications, especially if they are prone 

to side-effects. Non-pharmacological therapies may be of benefit used alone or in 

conjunction with medications. 

 

Exercise Training: The benefits of aerobic exercise and cardiac rehabilitation in 

Ischaemic Heart Disease and heart failure have been well demonstrated and there may 

be a role for it in CSX. Several small studies have been performed but are limited to 

female populations with CSX. Studies consistently show that women with CSX have a 

reduced functional capacity and that there is significant benefit to following a cardiac 



80 
 

rehabilitation program. Both exercise capacity itself and measures of psychological 

well-being (such as the HADS and HAQ scores) improve following these programs.135-137  

Exercise is safe, cheap and effective in women in CSX and as such should be 

recommended for all suitable female CSX patients. No studies have examined its 

effectiveness in a male population to date but it is likely to be similarly beneficial in 

that population. 

 

Neuromodulation therapy: Many CSX patients have been noted to have increased 

sensitivity to a variety of cardiac stimuli (e.g. injection of contrast, intracoronary 

adenosine infusion or ventricular pacing) and it has been suggested that they have a 

dysregulation of cardiac nociceptive pathways. Modulation of these pathways may be 

achieved using TENS or, more invasively, Spinal Cord Stimulation (SCS). In aggregate, 

studies of neuromodulation therapy demonstrate some efficacy in CSX. 

 

Psychological Intervention: CSX patients suffer from more anxiety and depression than 

healthy control and even people with CAD 92,138.Given the potential for psychological 

stress to cause ischaemia and even infarction, treatments aimed at controlling 

psychological factors might have a role in symptom management in CSX. A Cochrane 

Review into psychological interventions (including Cognitive Behavioural Therapy) in 

general non-cardiac chest pain (which included some CSX patients) identified 16 RCTs 

(n=803) and showed a significant reduction in reported chest pain in the first 3 months, 

Relative Risk of 0.68 (95% CI 0.57 to 0.81), which was sustained to 9 months139.  In a 

small pilot study, Cunningham et al140 showed that transcendental meditation reduced 

angina frequency in women with CSX while improving QOL scores. Therefore, 

psychological interventions can be of benefit in CSX, especially when psychological 

comorbidities have been identified. 
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1.6.4 Other Potential Therapies 

Treatment may be unsuccessful despite trying the whole gamut of previously 

mentioned interventions. Further less usual treatments may be of benefit in selected 

patients.  

Enhanced External Counterpulsation: EECP has been shown to increase shear stress in 

blood vessels and consequently improves endothelial function. Kronhaus and Lawson 

showed that 35 hours of EECP improved CCS class (from 3.57±0.4 to 1.42) and 

normalised perfusion defects in 28 of 30 patients with CSX, although many of their 

patients had comorbidities such as diabetes, CKD and CCF. Effects persisted at 1 

year141. 

 

Metformin: One study showed that metformin improved peripheral microvascular 

function as well improving Duke Treadmill Score by 6.1 Units in 33 CSX patients without 

diabetes. Chest pain incidence tended to be less when on metformin (-30%, 

p=0.054)142. 

 

Proton-Pump Inhibitors: The PITFALL trial showed that proton-pump inhibitors 

significantly improved chest pain in a highly selected cohort of patients who had 

cardiac syndrome X. Only 34% of eligible patients were enrolled and 97% of these had 

gastritis/GORD on OGD. Unsurprisingly, PPIs were effective in this cohort143. 

 

Imipramine: Cox et al showed that imipramine significantly reduced the total number 

of chest pain episodes experienced by 47% but at the expense of a high incidence of 

side-effects (83% suffered from anticholinergic effects) in a group of 18 women with 

chest pain and normal coronary arteries (14 also met the criteria for CSX.) Quality of 

life was not improved by therapy84. 
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ω-3 Fatty acids: One recent trial showed that dietary supplementation with omega-3 

significantly reduced symptoms in a CSX cohort. It would be of great interest if dietary 

factors could influence CSX symptoms144. 

 

Vitamin D: One recent small study showed a significant benefit in terms of symptoms 

and EST parameters in CSX patients treated with vitamin D supplements145. 

 

1.6.5 Ineffective Therapies 

Some drugs commonly used in cardiovascular disease have not been shown to be of 

benefit in CSX. 

Alpha-blockers: Alpha-adrenoceptor blockade leads to arteriolar vasodilatation and as 

such may be useful in CSX. The only therapeutic trial looking at clinical effectiveness of 

doxazosin in CSX has shown no benefit83. Similarly, Prazosin and clonidine have been 

shown to be ineffective in CSX.  

 

Nitrates: Findings across many studies consistently show that nitrates are not of 

substantial benefit in the CSX population. In fact, most of the studies show a 

disimprovement in exercise capacity as measured by EST, with a reduced time to 

ischaemic threshold and a prolonged recovery time. 134,146-148 Similarly studies into L-

arginine (an amino-acid precursor of NO) supplementation also show no improvement 

in exercise duration on EST despite beneficial effects on CFR and FMD. The reason for 

this lack of benefit is likely to be a rebound increase in sympathetic tone with resultant 

vasoconstriction. Additionally, nitrates affect larger arteries with minimal effects on the 

microvasculature. Finally, they may precipitate a coronary steal phenomenon by 

preferentially promoting sub-epicardial vasodilatation at the expense of the 

endocardium. 
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Table 1.15: Evidence Base for Therapeutic Options 
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1.6.6 Recommendations 

 All patients with CSX should be commenced on an exercise programme with the 

aim of improving their physical conditioning as well as building confidence in 

their ability to exercise. This is cheap, safe and effective. Other lifestyle factors 

such as smoking and diet should also be modified. 

 Patients with concomitant dyslipidaemia should be started on a statin if 

suitable. 

 Treatment with ACEI if hypertension develops or renal dysfunction exists would 

be advisable.   

 Aspirin should be commenced if no contra-indications exist. 

 A reasonable first line therapy in CSX is a beta-blocker, particularly nebivolol, as 

these give good symptomatic benefit.  

 A trial of ranolazine would be an acceptable alternative as the results of most 

trials to date show improved SAQ scores as well as improved EST parameters.  

 Nicorandil, ivabradine and calcium channel blockers could be added if 

symptomatic control remains poor. 

 Nitrates should be avoided in CSX. 

 Other centres’ experiences with SCS are needed before it can be recommended 

as a treatment. 

A suggested treatment pathway is shown in the figure 1.17 below. 

 



85 
 

 

Figure 1.17: Suggested Management Flowchart 
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1.6.7 Discussion  

The treatment and diagnosis of CSX has only recently been codified by cardiology 

organisations. It is clear that the guidelines regarding its management are based on the 

evidence detailed in table 1.15 and indeed some of the recommendations are based on 

trials with small numbers of patients and variable results. Management of CSX 

continues to require a trial and error approach on a patient-by-patient basis. 

Inconsistent results of trials into treatment options are likely due to contamination of 

the sample population by patients with non-cardiac chest pain. It is also possible that 

we still have not identified the true cause of microvascular angina, making the rational 

choice of best effective therapy difficult. Regardless, the reality is that approximately 

70% of CSX patients will remain symptomatic despite therapy at an average of 7 years’ 

follow-up.  

 

All efforts must be made at the time of initial diagnosis to exclude other common 

mimickers of cardiac pain. Particular care must be taken to out rule GORD and other 

GIT disorders as these tend to be present long-term and do not respond to anti-anginal 

therapy. A further obstacle to effective treatment is that patients with normal coronary 

arteries and unexplained chest pain tend to be discharged from cardiology services 

with the result that their general practitioner undertakes their further management 

under the assumption that their pain is non-cardiac.  

 

To enable progress in this field it must become easier to reliably diagnose CSX. At 

present the diagnosis mostly hinges on the result of an EST, an unreliable test with a 

high false-positive rate, which likely means that some patients with non-cardiac chest 

pain will erroneously be labelled as having CSX. Once the population becomes 

homogenised, meaningful and more consistent data regarding therapies may hopefully 

be obtained. 
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1.7 Biomarkers in CSX  

The term “Biomarker” was originally entered as a MeSH (Medical Subject Heading) 

term in 1989 and is defined on Pubmed as a “measureable and quantifiable biological 

parameter which serves as an index for health- and physiology-related assessments 

such as disease risk, psychiatric disorders, environmental exposure and its effects, 

disease diagnosis, metabolic processes, substance abuse…. etc.” The National Institute 

of Health further clarified this by defining a biomarker as “A characteristic that is 

objectively measured and evaluated as an indicator of normal biological processes, 

pathogenic processes or pharmacological responses to a therapeutic intervention”. 

These biomarkers can be anything from a physical sign, such as heart rate or 

temperature, to biological molecular biomarkers such as microRNAs or proteins, or to 

imaging findings such as coronary arterial calcium scores or wall motion abnormalities 

on echocardiography.  

 

Biomarkers are most practically utilised to identify the presence or severity of a disease 

state and as such may be used as screening tools to rule in a disease (such as 

genotyping for long QT syndromes), as point of care tests to rule out a disease (such as 

an acute myocardial infarction in the case of high sensitivity troponins) or to monitor 

disease activity or response to therapy (such as tumour markers for various cancers). 

Good screening biomarkers require a high degree of specificity to rule a disease in (the 

spIN rule) and usually have a very high likelihood ratio (usually >12) for disease when 

positive. The specificity can be increased by requiring sequential positive tests (the 

AND rule). Diagnostic biomarkers used to rule diseases out should have a very high 

sensitivity (the snOUT rule) with a low LR (<0.10)149. The utility of a diagnostic 

biomarker may be evaluated using the c-statistic (analogous to the area under the 

curve of a receiver operating characteristic curve). The c-statistic is the likelihood that a 

particular test can predict the identity of a patient with the disease when it is used on a 

pair of patients where one has the disease and one does not. Finally, biomarkers may 
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also be used to help elucidate pathogenic mechanisms in diseases by implicating 

certain biological processes in disease activity and so may be useful to further 

characterise diseases. 

 

Examples of biomarkers currently in use in cardiovascular medicine include high 

sensitivity troponin, blood pressure, urine albumin excretion, ankle-brachial index, 

carotid intimal-medial thickness, ADMA, hsCRP and lipoprotein (a). Many parameters 

have been assayed in CSX including markers of vascular inflammation, cardiac risk, 

vascular function and functional capacity. Some of these are summarised in table 1.16 

below. Critically, these biomarkers have only been assessed at a single time point and 

as such can be poorly used to assess the natural history of the disease. The aim of this 

thesis was to evaluate biomarkers in Irish participants with CSX and in those without 

(i.e. to potentially discover diagnostic biomarkers) but also to see if the trajectory of 

certain biomarkers correlated with known clinical indices of disease activity (i.e. to 

determine type 0 or prognostic biomarkers) or if baseline biomarkers could predict 

future outcomes.  

 

One of the most consistent findings in patients with CSX is the presence of low-grade 

inflammation. Whether this is cause or effect is unknown. Studies have regularly 

demonstrated elevated levels of high-sensitivity CRP while the data is inconsistent with 

respect to other markers such as intercellular adhesion molecules and tumour necrosis 

factor. Another relative constant in CSX is the demonstration of deranged markers of 

vascular function such as flow-mediated vasodilation (FMD) in the forearm or coronary 

flow reserve (CFR) determined by invasive or non-invasive methods. Several molecular 

biomarkers have been shown to correlate with clinical markers of disease burden such 

as evidence of subclinical atherosclerosis in the form of increased carotid intima-media 

thickness, duke treadmill score on EST or impairment of FMD150-152. Only two 

biomarkers, baseline bilirubin and basal superoxide production, have been shown to 
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predict long-term prognosis in CSX patients while it is known in general that CRP 

predicts outcome in patients with atherosclerosis 28,110,153. 

Table 1.16: Selected studies into biomarkers in CSX 

Biomarker Study Finding 

hsCRP Lanza et al62 Elevated with no evidence of increased pathogenic burden 

 Atmaca et al150 Elevated and correlated with FMD measurements (r=-0.44, p<0.001) 

 Tenekecioglu et al154 Elevated and associated with reduced HDL-C levels 

ICAM-1 Tousoulis et al59 Elevated with non-significant elevation in VCAM-1 

Selectins Senen et al60 P-selectin and E-selectin were elevated in CSX. 

Interleukin-6 Li et al155 Elevated and associated with an elevated white cell count 

 Rasmi et al63 Elevated and associated with CagA+ H. Pylori infection 

TNFα Lin et al156 Elevated and associated with increased superoxide free radicals 

Homocysteine Timurkaynak et al151 Elevated and inversely correlated with Duke Treadmill Score (r=-0.506, 
p<0.001) 

MCP-1 On et al157 Elevated and associated with decreased serum anti-oxidant levels 

Bilirubin Huang et al28 Patients with adverse events at follow-up had lower baseline bilirubin 

Uric Acid Acikgoz et al158 Elevated and associated with increased carotid intima-media thickness 

 Elbasan et al159 Increased Uric Acid in CSX predicted coronary slow flow 

ADMA Sen et al152 Increased and correlated with increased carotid intima-media thickness 

 Okyay et al160 Increased and associated with abnormal myocardial tissue perfusion 

Superoxide Leu et al110 Basal superoxide generation predicted future clinical events (OR 3.87, 
p<0.001) 

Leptin Jadhav et al161 Elevated with increased insulin indicating possible metabolic syndrome 

Endothelin Hoffman et al162 Elevated in patients with CSX 

Calcium Score Mizia-Stec et al68 Elevated in CSX and are age-related and independent of vascular 
function 

LV function Yagmur et al46 Reduced LV longitudinal strain on speckle tracing is seen in CSX 

FMD Huang et al163 Reduced in CSX and correlated with levels of EPCs (r=0.557, p=0.001) 

ADMA- Asymmetric dimethylarginine, EPC- Endothelial Progenitor Cells, FMD-Flow-mediated Vasodilation, HDL- 
High Density Lipoprotein, ICAM- Intercellular Adhesion Molecule, LV- left ventricle, MCP- Monocyte 
Chemoattractant Protein, TNF- Tumour Necrosis Factor. 
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1.8 Primary hypothesis and aims of the thesis 

This thesis aims to interrogate the hypothesis that immune activation and 

inflammation play a central role in the pathogenesis of Cardiac Syndrome X and that 

biomarkers indicative of the activation of these systems can be used to track disease 

activity, to predict prognosis and to implicate pathways relevant to this syndrome’s 

causation. While biomarkers have already been evaluated in CSX, we aim to broaden 

the scope of this assessment to the longitudinal study of biomarkers in these patients, 

paying particular interest to changes in these biomarkers as disease activity waxes or 

wanes. We aim to further investigate the possibility of novel molecular biomarkers by 

investigating the transcriptome and lipidome in CSX patient. We also wished to see if 

inflammation was necessary or sufficient to cause disease in our cohort. 

 

Aim 1: To determine if Cardiac Syndrome X is present in an Irish population and then 

to determine if these Irish CSX patients are broadly similar to previously described 

populations from other regions. CSX has not been investigated in an Irish setting. To 

establish its presence, we interviewed all-comers to the cardiac catheterisation 

laboratory in a tertiary cardiac centre during the study period. We adhered to a 

particularly strict definition of CSX to ensure reliable diagnosis. The demographics, 

laboratory data and cardiac investigation results were assessed in patients diagnosed 

with CSX and the phenotype of a typical Irish CSX patient was determined. Moreover, 

an additional group of patients with chest pain, angiographically normal epicardial 

coronary arteries and a normal EST (the so-called LCSX population) was recruited to 

determine if they were an immunologically and clinically distinct population and to 

therefore assess the importance of a positive EST in the diagnosis of CSX. 

 

Aim 2: To investigate the role of life stress and the psychological impact of disease in 

CSX patients. CSX patients have a high burden of psychological comorbidity such as 



91 
 

anxiety and depression. We attempted to evaluate this psychological aspect of CSX by 

studying life stresses (both actual and perceived) and markers of disease-mediated 

psychological effects such as disease related quality of life and overall satisfaction with 

disease management using validated questionnaires. We wished to examine the 

impact of disease activity on life stress to see if there was any relationship between 

external factors, disease perception and molecular biomarkers of disease activity. 

 

Aim 3: To establish the baseline immune phenotype of Irish CSX patients in terms of 

cell counts, acute phase reactants, endothelial adhesion molecules, cytokines and 

associated inflammatory processes. Having identified a population of Irish CSX 

patients using the rigorous application of the most stringent diagnostic criteria we 

attempted to define the nature and extent of the inflammation in our cohort by 

comparing the concentrations of various molecular biomarkers in their plasma to levels 

in age- and sex-matched healthy controls. We also intended to assess any relationship 

between the degree of immune activation and the severity of symptoms, thus 

determining if a biological gradient or dose-response relationship existed between 

inflammation and symptoms. 

 

Aim 4: To explore the microRNA transcriptome in our CSX cohort to determine if our 

patients had a particular miRNA signature. As microRNAs provide a relatively specific 

insight into the possible mechanisms at play in many disease conditions we wished to 

use Next-generation sequencing to evaluate the differential expression of miRNAs in 

CSX patients. We hoped that this might shed some light on the unclear 

pathophysiology in play in CSX as well as perhaps providing a valid plasma biomarker 

for disease activity. 
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Aim 5: To prospectively follow our patients over the course of 2 further visits, re-

evaluating symptoms, objective signs of disease activity and biomarker values at 

each visit, to allow the natural history of the disease to play out. Our expectation 

would be that as a patient’s clinical status improves their inflammation would 

similarly abate. Additionally, repeated measures would allow us to assess the 

consistency of immune activation in CSX patients over time. We reasoned that the 

clinical status of some patients would change over time. If we could identify these 

patients and examine which biomarkers (if any) changed in parallel with their clinical 

changes it would give the opportunity to identify appropriate type 0 biomarkers in this 

population. It might also allow for further hypothesis generation with respect to the 

potential roles the various biological processes associated with the implicated 

biomarkers might have in the pathogenesis of CSX. Evidence of a resolution of immune 

activation in concert with symptom resolution would provide further evidence of 

possible causation of inflammation in CSX by demonstrating reversibility. 

 

Aim 6: To hypothesise as to the cause of inflammation in CSX. By analysing the 

pattern of immune activation as well as the miRNA profile in CSX we hoped to generate 

a hypothesis as to the underlying cause of inflammation in the CSX population as this 

remains unknown despite decades of research. Additionally, we attempted to analyse 

diet as a potential trigger of CSX by obtaining information regarding patients’ dietary 

habits using validated questionnaires and also by analysing the plasma fatty acid profile 

of our patients. If we could determine a cause for the inflammation, we could make 

recommendations as to potential future therapies in CSX and suggest further avenues 

of research to pursue. 
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1.9 Summary 

Cardiac Syndrome X is a clinical condition that is seen globally but which is often 

underdiagnosed. It is defined as the presence of angina pectoris, a positive non-

invasive test suggestive of ischaemia and normal epicardial coronary arteries on 

angiography. In essence this means that it is true cardiac ischaemic pain but where the 

ischaemia is not attributable to disease of the larger distributing coronary arteries. The 

term Syndrome X is unfortunate as it implies a sense of mystery surrounding the 

condition. In truth much is now known about the condition and it should now be 

termed microvascular angina. The terms CSX and microvascular angina are used 

interchangeably in this thesis. 

 

CSX is mostly seen in middle-aged women with a past history of dyslipidaemia as well 

as many other traditional cardiovascular risk factors. It may be diagnosed in 

approximately 1% of all coronary angiograms undertaken in Ireland and in 3% of those 

performed to investigate chest pain. It is likely due to microvascular dysfunction, 

specifically failed endothelium-dependent vasodilation of the resistance arterioles in 

the coronary vascular beds in response to exercise. An abnormality in pain processing 

and co-morbid psychological abnormalities may also contribute to the phenotype. The 

microvascular dysfunction is most likely secondary to endothelial dysfunction, which 

may in turn be as a result of the early impact of traditional cardiac risk factors 

(hypertension, dyslipidaemia, diabetes etc.) on the endothelium of the 

microvasculature. Many markers of endothelial activation and vascular inflammation 

are elevated in CSX, hinting at an inflammatory aetiology for this condition. 

 

Overall the prognosis in CSX is good but patients are plagued by refractory symptoms 

and impaired quality of life despite proven benefit for some traditional anti-anginal 

therapies.  
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The purpose of this thesis is to longitudinally and prospectively study changes in 

various plasma molecular biomarkers in CSX patients. We hope to identify markers of 

disease activity that vary in response to changes in disease state. This may allow the 

development of potential diagnostic biomarker panels as well as providing further 

insight into the exact pathogenesis of CSX. Markers of vascular inflammation, cell-

mediated immunity and general inflammation will be studied. Furthermore, the 

genetic pathway will be indirectly studied through the analysis of the presence of 

plasma microRNAs. 
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Chapter 2: Study Design and Participant 

Characteristics 
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Introduction 

2.1 Chapter Overview 

2.1.1  Chapter Objectives 

1. The nature of the Irish CSX population is currently unknown. The main objective of 

this chapter was to determine the phenotype of the typical Irish CSX patient by 

reliably identifying them using strict diagnostic criteria and then analysing a variety 

of parameters such as demographics, traditional cardiac risk factor profiles, 

symptom burden and life stresses. In addition, routine laboratory urine and blood 

test results would be investigated to establish the usual values of these 

investigations in CSX patients and the results of their cardiac evaluations would 

similarly be collated to establish the normal results for this population. An age and 

sex-matched healthy control group would allow for the identification of significant 

deviations of CSX patients’ baseline characteristics from “normal”. 

2. These CSX patients would be followed longitudinally to assess changes in their 

clinical status in terms of symptoms, EST parameters and markers of disease 

activity. This will be more relevant in other chapters concerned with variations in 

biomarkers with time. 

3. As well as identifying and phenotyping this population, we also aimed to establish 

the incidence of CSX in patients undergoing coronary angiography in an Irish 

tertiary cardiac referral centre as this has not been previously explored. We wished 

to estimate the overall burden of CSX in Ireland as this may help to direct future 

diagnostic/treatment pathways. 

 

2.1.2  Phenotype Study 

A case-control study design was adopted to assess the baseline phenotype of the CSX 

population and to compare various risk factors to those of age and sex-matched 

healthy controls. It also allowed the assessment of potential biomarkers of disease 

activity. The study aimed to go beyond this, however, by following-up this initial study 
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with a longitudinal prospective observational study of the CSX patients to assess 

changes in their clinical status and biomarkers over time. Suitable patients were 

recruited from 3 participating hospitals; Cork University Hospital (CUH), a tertiary 

cardiology referral centre; the Mercy University Hospital (MUH), a regional hospital; 

and the Bon Secours Hospital (BSH) in Cork, a private hospital with a large volume 

throughput, with a combined overall catchment area of 660,000 people. A simple flow-

chart illustrating the design is shown below in Fig. 2.1 overleaf. The study design was 

approved by the Clinical Research and Ethics Committee of the Cork Teaching Hospitals 

(CREC).  

 

2.1.3  Incidence study 

It is estimated that approximately 20-30% of coronary angiograms are normal but the 

majority of these patients will not be diagnosed with CSX as they may have atypical 

symptoms, equivocal stress testing, other conditions leading to angina or have a 

different indication for LHC (such as pre-transplant evaluation etc.). The only study 

specifically examining the incidence of CSX in a European hospital setting was a single-

centre study performed in Holland where they noted an incidence of 3.2% in their 2003 

study cohort 29. It is not known if this is generalizable to a broader European 

population. During the design of this study it was estimated that over 40 patients with 

CSX could be recruited by screening patients three days per week in the designated 

centres for 1 year. This figure was based on an estimated 2500 angiograms occurring 

annually during regular working hours with an expected incidence of 3% in a European 

population. Unfortunately, it became clear quite early on that recruitment would be 

much slower than anticipated with ultimately only 17 patients being recruited over a 

15-month period (a longer recruitment period was impossible due to study time 

constraints imposed by the necessary period of follow-up) as shown more clearly in 

figure 2.2 below. To investigate the apparently low incidence of CSX in Ireland we also 

performed a prospective incidence study over a three-month period. 
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Figure 2.1: Longitudinal study design showing the parameters that would be obtained at each time point. * and ** 
were not included in the study design ab initio but were added later. 
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Methods 

2.2  Subject Recruitment 

2.2.1  Cardiac Syndrome X patients for phenotyping 

The principal investigator attended CUH 3 days a week from 0900 until 1600 and the 

BSH one day a week from 0900-1200 (MUH does not have a catheterisation 

laboratory). All consultant cardiologists in CUH, MUH and BSH were aware of the 

recruitment effort. Separate information sheets for patients and doctors were 

displayed in the catheterisation laboratory control room, waiting bay and outpatient 

clinics in CUH, MUH and BSH (see Appendix I). Patient recruitment ran from December 

2011 until March 2013. Cardiac Syndrome X was diagnosed if the patient had (a) typical 

stable angina pectoris (i.e. sub-sternal discomfort of typical character and duration, 

which was exacerbated by exercise and relieved by rest and/or nitrate); (b) an 

electrically positive exercise stress test (defined as ≥1mm of horizontal or downsloping 

ST depression 80ms after the J-point); (c) no lesion >10% on coronary angiogram; and 

(d) no other explanation for the chest pain (e.g. valvular, hypertensive or myocardial 

heart disease or an obvious non-cardiac source for the chest pain). These criteria are 

the most commonly used contemporaneous criteria1. Exclusion criteria included other 

cardiac conditions, systemic inflammatory conditions (including infection, chronic 

kidney disease, connective tissue disease and depression) and the regular use of 

NSAIDS, corticosteroids or immunosuppressants. Due to requirements from the ethics 

committee, we limited the study to people under the age of 70 and excluded pregnant 

patients. The presumed mechanism for the CSX patients’ pain was, as previously 

mentioned, microvascular angina (see Fig. 2.3).  
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Figure 2.3 Possible pathophysiology of Cardiac Syndrome X.  a. Longitudinal cross-section of the 
coronary circulation. Note that the microvasculature accounts for the majority of the resistance. b. 
Cross-section of the coronary microvasculature. c. Classical myocardial ischaemia resulting from the 
atherosclerotic stenosis. The slider shows the degree of myocardial perfusion longitudinally along the 
tissue. Pink= well perfused; blue=poorly perfused. d. Possible mechanism of ischaemia in Cardiac 
Syndrome X. The resistance arterioles fail to adequately dilate in response to increased cardiac workload 
with consequent relative hypo-perfusion of the distal myocardium. 
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The nQuery Advisor (Release 4.0) by Statistical Solutions Ltd, Cork, Ireland was used to 

power the study. Initial sample size calculations were based on previous studies into 

hsCRP in CSX populations, which showed a mean change in CRP of 2.3±3.8. A power of 

80% and a two-tailed significance of 0.05 were sought and the projected sample size 

for each group was 44. 

 

To identify suitable patients, all patients who attended for coronary angiography were 

interviewed individually by the principal investigator and completed the Rose Angina 

questionnaire, a WHO validated angina questionnaire (Appendix I). Their symptoms 

were categorised as being typical of angina, atypical or non-cardiac in nature as 

described in section 1.2.1. Only those patients with typical angina pectoris were 

assessed further. The results of ESTs or other non-invasive tests for ischaemia were 

then noted. Only those patients with an electrically positive EST or equivalent 

continued to be considered for inclusion. The ESTs were reviewed by the study author 

and the consultant responsible for the patient. Once the coronary angiogram was 

performed and found to be normal, the patients were again approached and full 

informed consent was obtained for inclusion in the study if no exclusion criteria were 

met (Appendix I). It should be noted that all patients who met the inclusion and 

exclusion criteria were approached and all of these patients consented to study 

enrolment.  

 

2.2.2  Healthy Controls  

Control patients were recruited from 2 local primary care centres by the principal 

investigator. All patients were in good health, had no previous cardiac history and 

conformed to the same exclusion criteria as CSX patients. Efforts were made to age and 

sex-match them for the expected study cohort, mainly by attempting to enrol middle-

aged women with a history of hyperlipidaemia. Consecutive control patients adhered 
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to the same exclusion criteria as CSX patients and additionally had no history of cardiac 

disease or symptoms. 

 

2.2.3  “Loose” CSX patients (LCSX) 

Several patients were enrolled without review of the EST printouts as these tests had 

been performed at an outlying hospital before referral to CUH. As such on the day only 

the written report from the EST was available stating that it was positive. These 

patients were enrolled as possible CSX patients as they had typical angina pectoris and 

normal coronary arteries. The hardcopies of the EST were later obtained and in 7 cases 

were found to be electrically normal but had been deemed abnormal by inexperienced 

non-consultant hospital doctors who in most cases had misinterpreted normal up-

sloping ST-depression as pathological, a common error. As blood samples had already 

been obtained and questionnaires administered to these patients we included them in 

a small cohort termed “loose CSX” (LCSX), where a patient has angina with normal 

coronary arteries but no objective evidence of ischaemia. It should be pointed out that 

this definition of CSX has also been used in many publications in the past but is now 

deemed insufficient for a true diagnosis of CSX (where a positive objective test for 

ischaemia is now required) as it led to a markedly heterogeneous population. It would 

be of interest to see if a positive EST defines a different population in terms of 

phenotype, clinical outcome or biomarkers compared with patients who may have 

microvascular angina. 

 

2.2.4  Incidence Study subset 

To determine the specific incidence of CSX in Ireland we examined all patients 

presenting for coronary angiography over a defined three-month period from 

December 2012-February 2013. This comprised a total of 55 weekdays from 0800-

1800. Out-of-hours cases were not included as the study investigators were not 

present to interview patients at these times. CSX patients adhered to all of the usual 
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inclusion and exclusion criteria (apart from the upper age limit of 70 years). During this 

study period anonymised demographic data, cardiac risk factor profiles, EST results and 

angiography results were recorded for all comers, as opposed to only CSX patients. All 

patients signed full informed consent. 

 

2.3  Initial Investigations 

2.3.1  Baseline information 

Once enrolled in the study, CSX patients were interviewed further and data was 

collected from the hospital notes and databases regarding traditional cardiovascular 

risk factors, such as blood pressure, cholesterol levels and smoking history while 

routine blood test results and results from previous cardiology investigations (such as 

electrocardiogram, echocardiography, cardiac MRI etc.) were also documented. EST 

parameters including the overall test duration, time to ECG changes, maximum rate-

pressure product and time to symptoms were also noted.  

 

2.3.2  Questionnaires 

Several questionnaires were administered including the 10- point Cohen Perceived 

Stress Scale (PSS-10) and the Brugha List of Threatening Experiences (LTE-Q) 

questionnaire to examine the role of perceived and actual life stresses as a measure of 

stress and coping in CSX patients (see appendix I). Higher scores on the PSS-10 indicate 

increased perceived stress and indicate greater vulnerability to stressful life-event 

triggered depressive symptoms. It also correlates with depressive and physical 

symptomatology, social anxiety and the degree of utilisation of health services164. 

Higher scores on the LTE-Q indicate greater life stress while also being associated with 

an increased risk of depression (OR 1.64-2.57), anxiety (OR 1.35-1.97) and alcohol 

dependence (OR 2.86-4.80)165. 
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The Seattle Angina Questionnaire was licensed from Cardiovascular Outcomes Inc. 

(Missouri, USA) and was administered to the CSX cohort. This well-validated 

questionnaire assesses the health status of the patient with regard to their angina26. It 

examines the severity of symptoms by providing 5 summary scores in several areas; a 

physical limitation score, stability and frequency of angina scores, treatment 

satisfaction score and a disease related quality of life score. The domains are marked 

from 0-100 with higher scores implying less disease impact (e.g. a physical limitation 

score of 100 would mean that the patient was asymptomatic). It has been used 

extensively in cardiovascular research. The scores from the various domains have been 

significantly linked with mortality rates at 1 year166. 

 

2.3.3  Biological samples management 

Venous blood samples were taken from an ante-cubital fossa vein and drawn into a 

10ml dipotassium EDTA tube. No patient had been fasting for more than 3 hours. The 

samples were immediately centrifuged at 112 RCF for 15 minutes at 4°C. The plasma 

was then aliquoted into 2ml microtubes, which were then transferred in an ice box to 

the Biosciences Institute in University College Cork where they were stored in a -80°C 

freezer until they were subsequently needed for analysis. Mid-stream urine samples 

were collected from patients in standard universal containers and were sent directly to 

the hospital laboratory for standard analysis. 

 

2.3.4  Exercise Stress Testing 

All CSX patients underwent a baseline treadmill EST following the BRUCE protocol. This 

standard protocol involves a staged increase in treadmill speed and incline until limited 

by patient factors (such as fatigue or limiting angina pectoris) or until at least 85% of an 

age-related target heart rate ([220- age in years] beats per minute) is achieved. The 

overall exercise duration, METS achieved, time to 1mm of ST-depression on ECG, time 

to angina, peak rate pressure product and the Duke Treadmill Score (DTS) were all 
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calculated. The Duke Treadmill score is a useful summary statistic as it uses EST-defined 

parameters such as exercise duration, electrocardiographic evidence of ischaemia and 

degree of induced angina to give a weighted score that predicts cardiovascular 

outcomes such as mortality and degree of coronary atheroma. DTS scores usually range 

from -25 (highest risk) to +15 (lowest risk) and is defined in the following equation: 

𝐷𝑇𝑆 = 𝐸𝑥𝑒𝑟𝑐𝑖𝑠𝑒 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 − 5(𝑆𝑇𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑖𝑛 𝑚𝑚) − 4(𝑎𝑛𝑔𝑖𝑛𝑎 𝑖𝑛𝑑𝑒𝑥) 

The angina index is 0 when no angina is experienced, 1 when non-limiting angina 

occurs and 2 when the angina is limiting, i.e. the EST must be stopped due to the 

angina167. 

 

2.3.5  Data management 

Each patient was given an anonymised identification code at enrolment (e.g. CSX13 or 

HC21, indicating CSX patient number 13 or healthy control number 21) and all data was 

coded and input into a database using SPSS for Windows v20 (Armonk, NY: IBM Corp.) 

and then encrypted. Hardcopies of data were kept in a locked filing cabinet in a locked 

office adjacent to the catheterisation laboratory in CUH. Continuous variables are 

expressed as mean ± SEM if normally distributed and median (IQR) if not normally 

distributed. Standard statistical tests were used. Categorical variables were compared 

using Fisher’s exact test while the normality of the distribution of continuous variables 

was assessed using the Kolmogorov-Smirnov test (KS test) and Shapiro Wilk test. 

Summary statistics of normally distributed variables were compared using the student 

t-test or one-way ANOVA with Bonferroni post-hoc testing where appropriate. 

Transformations were attempted on non-normally distributed variables to enable 

parametric testing but the Mann-Whitney U test or Kruskal-Wallis tests were used if 

simple transformation did not render the distribution of the variables normal. 

Differences between repeated measures were assessed using the paired student t-test 

or Related Samples Wilcoxon Signed Rank test as appropriate to data distribution. 

Correlations were sought using Spearman’s rank correlation co-efficient. Standard 
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Linear Regression and logistic regression analyses were performed with a limit of one 

predictor variable per 10 subjects. All reported p-values are two-tailed and reported 

confidence intervals are calculated to the 95% confidence level. 

 

2.3.6  Follow-up visits 

CSX patients were invited to return for two further reviews to chart the course of their 

self-reported symptoms, questionnaire results, EST parameters and blood tests. All 

follow-up visits were performed in the CUH outpatient department between 0900 and 

1300. There was 100% follow-up at visit 2 and 94% at visit 3 for CSX patients. There was 

100% follow-up of LCSX patients at visit 2 and they were not brought back for a third 

visit. Healthy controls were only seen at a single time-point. 

 

Results 

2.4  Incidence 

2.4.1  Incidence Results 

The published results of this study are in appendix II. During the 3-month incidence 

study period 485 patients underwent coronary angiography but only 372 of these 

actually presented with chest pain. Of those with chest pain, 258 (69%) had typical 

angina pectoris. Figure 2.4 shows the breakdown of patient numbers at each step of 

the diagnostic process. Angiograms investigating chest pain were normal in 77/372 

(21%) of cases and of these 38 (49%) had undergone an EST, which was electrically 

positive in a mere 8/38 patients. Two of these patients had atypical chest pain while 6 

complained of typical angina. One of the latter had severe hypertensive heart disease 

and thus was excluded from the diagnosis of CSX. Thus only 1.3% of patients with chest 

pain undergoing coronary angiography achieved a diagnosis of CSX. CSX patients 

comprised 1.0% of all angiograms (including those for non-cardiac indications), 4.1% of 
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normal coronary angiograms and 1.9% of angiograms performed to investigate typical 

angina pectoris (see table 2.1) 

 

 

Figure 2.4: Diagnosing CSX in an Irish cohort of patients undergoing coronary angiography. 
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Table 2.1: Observed incidence of CSX, Atypical CSX, LCSX and CPNCA in CUH. 

 

2.4.2  Comparing patient groups by angiography results  

Patients were categorised into 3 groups based on their angiogram result and overall 

diagnosis to allow for comparison between groups. Patients with ischaemic heart 

disease were placed in Group 1 if they had macroscopic coronary artery disease 

(stenosis >10% severity) and consisted of 331/485 patients. Patients with a normal 

angiogram but without a diagnosis of CSX were placed in Group 2 118/485. It should be 

noted that 31 patients had no epicardial coronary artery disease but had other 

abnormalities on angiography (such as dilated cardiomyopathy or a severely 

regurgitant valve) and were excluded from this analysis. The 5 CSX patients identified in 

the incidence study were added to the 12 already recruited for this thesis and together 

comprised Group 3. The main characteristics of these groups are shown below in table 

2.2. 

 

Diagnosis Patient Features Cohort or subset Observed 
Incidence 

CSX 1. Typical Angina All-comers (n=485) 1.0% 
n=5 2. Positive EST Patients with chest pain (n=372) 1.3% 
 3. Normal LHC Patients with Typical Angina (n=258) 1.9% 
  Normal Coronary Angiograms (n=123) 4.1% 

Atypical  1. Any chest pain All-comers 1.4% 
CSX 2. Positive EST Patients with chest pain 1.9% 
n=7 3. Normal LHC Patients with Typical Angina 2.7% 
  Normal Coronary Angiograms 5.7% 

LCSX 1. Typical Angina All-comers 1.9% 

n=9 2. No EST Patients with chest pain 2.4% 
 3. Normal LHC Patients with Typical Angina 3.5% 

  Normal Coronary Angiograms 7.3% 

CPNCA 1. Any chest pain All-comers 15.9% 
n=77 2. Normal LHC Patients with chest pain 20.7% 
  Normal Coronary Angiograms 62.6% 
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Parameter 
 

Group 1 
IHD 

(n=331) 

Group 2 
Normal 

LHC ex. CSX 
(n=118) 

Group 3 
CSX cases* 

(n=17) 

P1/3 

CSX v  
IHD 

P2/3 

CSX v 
Normal 

Gender (M:F) 76%:24% 53%:47% 12%:88% 0.001 0.001 

Age (years) 65.1 ± 0.6 59.6 ± 1.0 59.2 ± 1.6 0.003 0.870 

BMI (kg/m2) 28.2 ± 0.3 28.1 ± 0.5 27.7 ± 1.0 0.699 0.769 

Hyperlipidaemia 277 (83.7%) 49 (41.5%) 14 (82.4%) 0.500 0.009 

Hypertension 267 (80.7%) 56 (47.5%) 6 (35.3%) 0.003 1.000 

Symptoms 

        Chest pain 

Typical 

Atypical 

        SOB 

 

285 (86.1%) 

246 (74.3%) 

39 (11.8) 

98 (29.6%) 

 

72 (61.0%) 

5 (4.2%) 

67 (56.7%) 

40 (33.9%) 

 

17 (100%) 

17 (100%) 

0 (0.0%) 

4 (23.5%) 

 

 

0.143 

0.235 

0.786 

 

 

0.001 

0.000 

0.581 

Smoking Status    0.796 0.601 

Current 72 (21.8%) 17 (14.4%) 0 (0%)   

Ex 139 (42.3%) 44 (37.3%) 9 (52.9%)   

Non 119 (35.9%) 57 (48.3%) 8 (47.1%)   

Table 2.2: Comparison between groups. Patients with IHD (Group 1); normal angiogram excepting CSX 

(Group 2); CSX patients (Group 3). P1/3 is the p-value for differences between group 1 and group 3 using 

fisher’s exact or student t-test test while p2/3 refers to differences between groups 2 and 3. * CSX group 

includes 5 patients from incidence study period and 12 from extended recruitment. 

 

All of the CSX patients were Irish and 88% were female, with the majority (87%) of 

these being post-menopausal. This significantly differed from the marked male 

majority seen in the IHD group (p<0.001) and the neutral gender split in the normal 

angiogram category (p=0.001). The mean age for CSX patients was 59.2 ± 1.6 years and 

was significantly lower than the mean age of patients with IHD (p=0.003) and no 

different to other patients with normal coronary angiograms (p=0.817). CSX patients 

were more likely to have hyperlipidaemia compared to other patients with normal 

coronary angiograms. They were also less likely to have hypertension than patients 

with IHD. Of note, no patient was discharged with a diagnosis of CSX or MVA, 

highlighting a lack of acceptance or awareness of the diagnosis. 
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2.5  Phenotype at Baseline 

2.5.1  Basic Parameters 

Over the prolonged 18-month period 17 CSX patients were identified and recruited 

with a further 7 LCSX patients included. Twenty-one age and sex-matched healthy 

controls were also recruited. The baseline characteristics between these groups are 

shown in table 2.3. These three groups are very similar in terms of most major criteria. 

The control group and CSX group in particular are very well matched with the only 

significant difference being the use of aspirin in the CSX group. It should be noted that 

these patients were recruited directly from the catheterisation laboratory where 

premedication with aspirin is routine. These patients would only have ingested 75mg 

daily over the week prior to enrolment. 

 

As mentioned above, the CSX patients had an average age of 59 years and were 

predominantly female (88%). This is in keeping with the literature, which has observed 

that CSX is most commonly seen in post-menopausal women. The patients were, on 

average, mildly overweight with a BMI of 27.6 and there was also a high prevalence of 

dyslipidaemia in all groups. Curiously, the prevalence of treated hypothyroidism in this 

group was 24%, far higher than the usual prevalence of 1.0-1.4% in the general Irish 

population. This is likely attributable to the age and gender of the CSX patients 

although triiodothyronine (T3) is known to have vasoactive properties including 

coronary arterial vasodilation and its role as a possible factor in the pathogenesis of 

CSX is an intriguing possibility. 
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Parameter Healthy 

Control 

(n=21) 

Cardiac 

Syndrome X 

(n=17) 

Loose Cardiac 

Syndrome X 

(n=7) 

p-value 

Gender (M:F) 19%:81% 12%:88% 57%:43% 0.06FE 

Age (years) 60.1 ± 1.4 59.2 ± 1.6 57.4 ± 4.1 0.70A 

BMI (kg/m2) 27.9 ± 0.8 27.6 ± 0.9 26.4 ± 1.1 0.63 A 

Hypertension 9 (42.9%) 6 (35.3%) 3 (42.9%) 0.92FE 

Hyperlipidaemia 18 (85.7%) 14 (82.4%) 6 (85.7%) 1.00 FE 

Statin 8 (38.1%) 8 (47.1%) 5 (71.4%) 0.31 FE 

ACEI 5 (23.8%) 2 (11.8%) 1 (14.3%) 0.77 FE 

Aspirin 5 (23.8%) 11 (64.7%) 3 (42.9%) 0.05 FE 

Smoker  11 (53.4%) 9(52.9%) 2 (28.6%) 0.57 FE 

Table 2.3 Baseline characteristics of CSX, LCSX and healthy control groups. A=ANOVA, FE=Fishers Exact. 

 

2.5.2  Traditional Cardiovascular Risk Factors  

a) Hyperlipidaemia: Over 80% (14/17) of the CSX patients had a diagnosis of 

hyperlipidaemia (defined as the use of a statin and/or a total cholesterol 

>5.0mmol/L), which was matched in the control group. The mean cholesterol for 

the CSX group was 5.37 ± 0.3mmol/L, being 4.8 ± 0.6mmol/L for those on statin 

therapy and 6.2 ± 0.8mmol/L in the 9 patients who were not on a statin. LDL was 

modestly elevated at 3.6 ± 0.7 mmol/L while HDL levels were normal (1.49 ± 0.2 

mmol/L). 

b) Hypertension: It should be noted that patients with demonstrable hypertensive 

heart disease (electrocardiographic evidence of left ventricular hypertrophy using 

the Cornell criteria or echocardiographic LVH) or poorly controlled hypertension 

(systolic blood pressure of >180mmHg at the start of the EST) were excluded from a 

CSX diagnosis. With this caveat, 6/17 CSX patients were diagnosed with mild 

systemic hypertension. 
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c) Smoking: Remarkably none of the CSX patients were active smokers while 9 

(52.9%) admitted to having smoked in the past with a mean 16.5 years since they 

had quit and a median pack year history of 15.0 (IQR 12.5 – 26.3). Three of the 

healthy controls were current smokers while 47% had never smoked. Only 2 of the 

LCSX group had ever smoked. 

d) Family History: The majority of CSX patients had a significant family history of 

ischaemic heart disease (defined as diagnosed ischaemic heart disease before the 

age of 55 in male or 65 in a female first or second degree relative). 

 

2.5.3  Co-morbidities 

Apart from hypertension and hyperlipidaemia mentioned above, the CSX patients had 

relatively little comorbidity. A minority, 3/17 (18%), had some mild osteoarthritis. The 

prevalence of hypothyroidism in this group was 23.5%, far higher than the national 

average of 1.0-1.4%. Two of the CSX patients had IBS and one had coeliac disease. One 

LCSX patient went on to be diagnosed with Rheumatoid Arthritis over one year later 

 

2.5.4  Reported Symptoms  

CSX patients had developed symptoms 3.4 ± 0.8 years prior to angiography and most 

had symptoms 1-2 times per week. All of the CSX patients had central chest discomfort, 

which radiated to the throat in 29% of cases and to the left side of the chest and left 

arm in a third. The severity of angina was a median Canadian Cardiovascular Society 

(CCS) Class of 2 (IQR 1 to 2). Only 11.8% got angina on walking at their normal pace 

with the remainder getting symptoms on quickening their pace or walking up an 

incline. The pain eased on slowing down in 35.3% of cases but 52.9% of patients 

needed to stop entirely before getting relief while 11.8% experienced the “walk-

through” phenomenon. Only 1 patient reported getting rest pain with that occurring 

only once during a time of emotional stress. Each bout of angina lasted for an average 
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of 5.0 ± 1.1 minutes. Almost a quarter of patients, 4/17 (23.5%), also complained of 

dyspnoea on exertion in tandem with their angina. 

 

The LCSX group’s pain had been present on average only 1.4 ± 0.3 years and lasted an 

average of 5.7 ± 1.9 minutes. The pain was predominantly retrosternal in all patients 

and radiated to the arm in over a half of cases and to the neck in 29%. Only 1 LCSX 

patient got pain while walking at their usual pace while the remainder required more 

strenuous exertion to induce the pain. The chest pain resolved on slowing down in 5/7 

(71%) with only 1 having to stop to get relief and one walking through. The average 

severity of angina was CCS class 1, i.e. only on extreme exertion. 

 

2.5.5  SAQ results 

SAQ domain 
Score 
(CSXa) 

Score 
(LCSXb) 

Pab 
Score 

(IHD) 
pa 

Physical Limitation 81.8 ± 2.1 83.3 ± 6.1 p=0.80 50.2 p<0.001* 

Angina Stability 52.9 ± 4.2 46.4 ± 3.6 p=0.42 52.0 p=0.43 

Angina Frequency 76.5 ± 1.9 65.7 ± 4.8 p=0.04* 67.5 p<0.001* 

Treatment Satisfaction 86.0 ± 3.0 85.7 ± 4.4 p=0.95 78.1 p=0.01* 

Quality of Life Score 53.4 ± 4.9 60.7 ± 7.2 p=0.42 56.7 P=0.52 

Table 2.4: SAQ scores: Scores range from 0-100, with a higher score indicating improved health function. 
Values reported as mean ± SEM. 

pab Significance between CSX and LCSX groups by Mann-Whitney U 

pa Reported significance between CSX and Spertus’ IHD group using Wilcoxon Signed Rank test 

 

The SAQ questionnaire was originally validated in an ischaemic heart disease cohort 

and there are reported values in this cohort. These values are shown above in the fifth 

column of table 2.4, labelled “score (IHD),” and are used as a baseline comparison 

group for our CSX patients26. As can be observed from the table, the CSX patients have 
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significantly less physical limitation than patients with conventional stable angina 

(p<0.001) and also experienced less frequent angina (p<0.001) and greater treatment 

satisfaction (p=0.01). Most significantly, however, the CSX patients had similar disease 

impact on their quality of life as patients with obstructive coronary artery disease and 

angina (p=0.52). The QOL score is determined by the patient’s responses to questions 

regarding their estimates of disease impacts on enjoyment of life as well as an 

assessment of their response to the prospect of life-long symptoms and their worries 

regarding the possibility of a heart attack or sudden cardiac death. This highlights the 

impact that CSX has on the psychological well-being of patients.  

LCSX patients did not differ from CSX patients in terms of physical limitation or quality 

of life but did have more frequent angina pectoris. 

 

2.5.6  PSS and LTE-Q 

 

Figure 2.5 A. Perceived Stress Scale-10 item questionnaire scores. B. Brugha List of Threatening 
Experiences scores. 

 

In general, recruited patients had relatively low 10-part Cohen questionnaire (PSS-10) 

scores with an average score of 9.8 ± 1.7 in the CSX group, a lower score of 5.0 ± 1.4 in 
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the LCSX group with the healthy controls having a mean score of 4.6 ± 0.8 (see Fig 2.5 

Panel A above). It should be noted that only 12 healthy control patients completed the 

PSS-10 score and LTE-Q, perhaps introducing some bias. One-way ANOVA confirms a 

significant difference between CSX and Healthy Controls (mean difference of 5.2 ± 2.1, 

p=0.05) while the LCSX patients only trended lower (p=0.19) than CSX, although the t-

test reached significance (t22=-2.117, p=0.047). Thus, CSX patients do appear to have 

greater perceived life stress. This may indicate the impact of CSX on the psychological 

health of patients.  

 

“Normal” scores for each demographic cohort in US populations are published, 

although the validity of extrapolating these normal scores to an Irish population is 

questionable164. For the given cohort (mean age of 59), the US normal score for PSS-10 

is 11.9 ± 6.9. This is not significantly different from our CSX cohort, t16=-1.172, p=0.259 

but is higher than both our LCSX cohort t6=4.82, p=0.003 and healthy controls, t11=8.63, 

p=0.001. It would seem reasonable to conclude that, although they have greater 

perceived stress than their Irish controls, Irish CSX patients do not suffer from markedly 

high levels of stress by international standards. 

 

Interestingly in the CSX group the PSS-10 score did negatively correlate with the SAQ 

domain scores for both treatment satisfaction (rs=-0.517, df=16, p=0.040) and quality 

of life (rs=-0.553, df=16, p=0.026) but not in the other domains, indicating that 

increased perceived life stress was associated with worsening markers of psychological 

disease impact rather than physical symptoms in CSX (see figure 2.6 below). 

Additionally, a multiple linear regression analysis was performed to investigate if these 

two domain scores could predict a participant’s perceived stress. Test assumptions of 

normality, linearity and multicollinearity were confirmed. A significant regression 

equation was found (F (2,21)=9.0, p=0.001 with an adjusted R-squared of 0.411). 
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Participants PSS-10 score equalled 42.7 - 0.185 (QOL) - 0.278 (TSS). Both QOL and TSS 

were significant predictors of PSS-10 score (p=0.007 and 0.003 respectively). 

 

Figure 2.6: A. Correlation between the PSS-10 (Cohen) score and the SAQ quality of life score for CSX 
patients. B. PSS-10 and SAQ treatment satisfaction scores. Multiple regression analysis confirms 
significant interactions. 

 

The LTE-Q scores were low in all groups with only 8 (47%) of the CSX, 5(42%) of healthy 

controls and 3 (43%) of the LCSX group listing any significant experiences in the 

preceding 6 months. This did not significantly differ (p=0.753, see Fig 2.5 Panel B). 

Predictably there was a moderate correlation between PSS-10 scores and scores from 

the LTE-Q, (rs=0.537, df=36, p=0.001) reflecting the fact that stressful life experiences 

increase perceived stress. In those who had experienced at least one threatening 

experience, there was an even stronger correlation (rs=0.769, df=16, p=0.001) as 

shown in the scatter plots in Fig 2.7 below. 
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Figure 2.7 Scatter plots showing the correlation between PSS-10 scores and the LTE-Q scores at baseline 
for all subjects. Panel B shows this correlation in people who reported any threatening experience. 

 

2.5.7  Results of Cardiac Investigations 

Parameter CSX (n=17) LCSX (n=7) p-value 

EST duration (mins) 8.7 ± 0.5 8.3 ± 2.0 0.77 

METS 9.4 ± 0.5 8.9 ± 2.5 0.75 

RPP 28985 ± 977 27040 ± 2910 0.53 

TTS 6.0 ± 0.7 5.6 ± 1.5 0.81 

TTECG 5.7 ± 1.0 - - 

DTS -2.2 ± 1.0 4.0 ± 1.6 0.006* 

Table 2.5: EST parameters. RPP- Rate Pressure product. TTS- time to symptoms. TTECG- time to ECG 
changes. DTS- Duke Treadmill score. 

 

CSX patients’ pre-test 10-year cardiovascular risk score (chance of having a major 

cardiovascular event) as assessed by the SCORE calculator was low at 2% (IQR 1-2). 

Before stress testing the average pre-test probability for obstructive coronary artery 

disease was 54 ± 3.0% for CSX and higher at 63.7 ± 7.7% for LCSX patients (p=0.287), 

mostly due to the greater number of males in the latter group. The CSX group had a 

mean EST duration of 8.7 ± 0.5 minutes while the mean rate-pressure product was 

28985 ± 997, signifying a high-intermediate haemodynamic response. Their average 

Duke Treadmill Score was -2.2 ± 1.0, indicating a post-test moderate risk of IHD (≈43% 
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chance of significant CAD and 33% chance of 3 vessel disease). The time to angina on 

the EST was 6.0 ± 0.7 minutes while the time to diagnostic ECG changes was slightly 

less at 5.7 ± 1.0 minutes, perhaps hinting that the CSX patients do follow the traditional 

ischaemic cascade (see section 1.4.2). There were no significant differences between 

the CSX and LCSX groups in terms of exercise time, METS achieved, rate-pressure 

product or time to symptoms. The Duke Treadmill score was significantly lower in the 

CSX group but this is to be expected given the absence of ECG changes by definition in 

the LCSX group. 

 

During coronary angiography only 2 of the CSX patients reported chest pain on the 

injection of contrast while only 1 of the LCSX patients complained of such. Also, the CSX 

group mean Left Ventricular End-diastolic Pressure (LVEDP) was measured and found 

to be elevated at 18.1 ± 1.2mmHg (normal range 8-12mmHg) although this was not 

different to that seen in LCSX (19.7 ± 2.4, p=0.59) This might imply, however, that CSX 

patients have increased ventricular wall tension due to diastolic dysfunction, which 

would have ramifications for microvascular function. Other studies have shown 

evidence of diastolic dysfunction in CSX168. 

 

2.5.8  Blood results  

The results of routine haematological and biochemical tests were normal in both CSX 

and LCSX and did not differ significantly. The CSX average haemoglobin was 13.6 ± 

0.27g/dl, the WCC was 6.2 ±0.3 x 106 cells/l with normal platelets of 238 ±13.4 x 106 

cells/ml. Interestingly, CSX patients had an elevated neutrophil to lymphocytes ratio 

(NLR) when compared with healthy controls at 2.22 ± 0.09 vs 1.47 ± 0.08 x 106 cells/l 

(t25=3.5, p=0.002), although this had returned somewhat to normal at follow-up (1.89 ± 

0.20, adj. p=0.07). The renal function was normal with an average creatinine of 70 ± 3.3 

µmol/L as was hepatic function with an ALT of 29.2 ± 4.6 units/L and an INR of 0.99 ± 

0.1. As part of their work-up, 9/17 CSX patients had an autoimmune panel sent. This 
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standard assay, performed by the hospital laboratory includes Anti-nuclear antibody, 

Rheumatoid factor and Extractable nuclear antibodies. Eight of the patients had 

negative rheumatoid factor and negative anti-nuclear antibodies (ANA) while one 

patient had a weakly positive ANA. 

 

2.5.9  Urinalysis 

Structural and functional changes have been seen in microvessels of CSX patients 

including rarefaction, medial hypertrophy etc 169. Hypertensive and diabetic 

microvascular disease has been shown to lead to proteinuria. We wished to see if the 

microvessels in CSX lead to clinically detectable levels of proteinuria. Thus we assessed 

the urinary albumin:creatinine ratio in our CSX patients. The CSX population had 

normal albumin: creatinine ratios (ACR) with and average ACR of 1.04 +/- 0.6 (normal 

range 0-3.0). No patient had an elevated ACR and there was no significant difference in 

ACR between symptomatic and asymptomatic patients. 

 

2.6 Second Visit 

Each CSX patient was scheduled to be reviewed at two further review visits during 

which questionnaires, blood tests and exercise stress tests were repeated. The follow-

up in the CSX patient group was excellent with all patients returning for at least one 

review (visit 2) at 9.7 ± 0.5 months. It is important to note that one patient had injured 

themselves before visit 2 and as such was unable to perform an EST while another 

patient was only 2 months after an operation and had not been mobilising well and as 

such was unable to give an accurate assessment of symptoms. All LCSX patients were 

reviewed at 8.2 ± 0.7 months. Control patients were not followed up. 
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2.6.1  Visit 2 SAQ 

SAQ domain (CSX) Visit 1 Visit 2 p 

Physical Limitation 81.8 ± 2.1 86.3 ± 3.2 p=0.07 

Angina Stability 52.9 ± 4.2 56.3 ± 4.8 p=0.42 

Angina Frequency 76.5 ± 1.9 90.6 ± 3.0 p=0.001 

Treatment Satisfaction 86.0 ± 3.0 91.8 ± 2.7 p=0.017 

Quality of Life Score 53.4 ± 4.9 74.5 ± 3.4 p=0.003 

Table 2.6: CSX SAQ parameters at visit 2 compared with baseline at visit 1. P-values reported using the 

paired t-test or related-samples Wilcoxon Signed-Rank test as appropriate 

 

 

At follow-up, the SAQ domain scores had generally improved in the CSX cohort (see 

table 2.6). The average physical limitation score (PLS) trended towards improvement 

with a mean difference of 5.0 ± 2.7; t16=1.89, p=0.07. In tandem with this improvement 

in PLS, the angina frequency score significantly improved over the follow-up period 

with the mean score increasing by 14.1 ± 2.7 (95%CI: 8.9 to 20.5). There was also a 

significant improvement in treatment satisfaction score of 5.8 ± 2.3 (95%CI: 1.3 to 11.2) 

while there was a marked improvement in disease related quality of life by 21.1 

(95%CI: 9.6 to 33.5). A further point of interest is that the burden of physical 

symptoms, as measured either by SAQ (PLS) or EST (time-to-symptoms or DTS) did not 

appear to correlate with perceived quality of life indicating that the psychological 

burden of CSX may not be wholly related to physical symptom severity. 

 

At visit 2, nine CSX patients claimed to have had no angina in the month prior to review 

but only four (24%) claimed to be completely asymptomatic with a PLS of 100. Ten 

patients, however, had improved at least marginally, with 7 showing worsening of 

symptoms from baseline. In terms of magnitude of change, 3 patients had significantly 

worsening symptoms (defined as a change in PLS score of -5 or greater), 6 had minimal 

change and 8 (47%) had significantly improved symptoms (PLS change of +5 or greater). 
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LCSX patients had generally improved dramatically at follow-up. They were more likely 

(p=0.06) to have complete resolution of their symptoms than CSX patients with the 

majority 5/7 (71%) being symptom free by visit 2. One other LCSX patient had 

significantly improved while the remaining one had significantly worsened. 

 

2.6.2  Visit 2 Life Stress  

CSX PSS-10 scores at follow-up were a mean 6.8 ± 1.4. Scores correlated strongly with 

the patients’ visit 1 perceived stress scores (rs=0.683, df=15, p=0.002) but as a group 

had significantly decreased by 3.1 (95%CI -5.8 to -0.3, p=0.03). PSS-10 scores were 

significantly lower in the patients whose SAQ physical limitation score had significantly 

improved (Δ of >5) compared to those whose symptoms had significantly worsened 

(p=0.012) but the difference between completely asymptomatic patients and 

symptomatic patients failed to reach significance (p=0.10), see Figure. 2.9 below. There 

was a moderate negative correlation between PSS-10 scores and Treatment 

Satisfaction Scores (rs=-0.599, df=17, p=0.011). There remained very few threatening 

events noted in the CSX group, with only 5 patients having any significant event in the 

previous 6 months. The LTE-Q did not have any ability to discern patients with regards 

to SAQ or EST parameters. 
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Figure 2.9: A. Comparison between Cohen Perceived Stress Scale scores (PSS-10) observed at visit 1 and 
at visit 2 in CSX patients. B. PSS-10 scores in symptomatic v asymptomatic patients at follow-up (p=0.10) 
C. Scatter plot illustrating the strong correlation between visit 1 and visit 2 PSS-10 scores indicating the 
consistency in patients’ perceived stress. D. PSS-10 scores in patients whose Physical limitation scores 
had worsened >5, remained the same within ±5 or improved >5. 

 

2.6.3  Visit 2 EST  

As noted above in 2.6, only 15 CSX patients had a follow-up EST. Nine patients now had 

electrically negative ESTs while 6 had ongoing ischaemic changes and chest pain. Two 

patients could not get a follow-up EST, one because of a recent surgery and one 

because of an injury. One of these patients claimed no ongoing physical limitation from 

angina while the other continued to get symptoms. The average EST duration, rate-

pressure product, time to ECG changes/symptoms (if present) were no different at visit 

2 than they were at baseline. Predictably, the Duke Treadmill score was significantly 

better at visit 2 than at baseline as patients no longer had significant ST-changes (mean 
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difference 5.8 ± 1.7, p=0.005). CSX patients with a positive stress test at visit 2 had 

significantly worse physical limitation scores (t13=2.93, p=0.04), angina frequency 

scores and treatment satisfaction scores at follow-up but did not have worse quality of 

life scores than those with normal ESTs (see table 2.7). The summary EST score (the 

Duke Treadmill score) did correlate with the PLS score at visit 2 (rs=0.548, df=15, 

p=0.035) while the time to symptoms on EST also strongly negatively correlated with 

PLS (rs=-0.873, df=7, p=0.01).  

 

Visit 2 SAQ domain 
Normal EST 

n=9 
Positive EST 

n=6 
p 

Physical Limitation 92.7±2.2 76.4±6.0 0.04 

Angina Stability 61.1±7.3 50.0±6.5 0.53 

Angina Frequency 98.9±1.1 78.3±4.0 0.001 

Treatment satisfaction 95.8±2.8 85.4±5.0 0.05 

Quality of life 75.0±3.7 72.2±7.3 0.75 

Table 2.7: CSX SAQ parameters at visit 2. Scores are compared between improved and worsened 

patients as determined subjectively (by SAQ PLS score) or objectively (by EST). EST- Exercise Stress Test. 

PLS- Physical Limitation Score.  

 

Those patients whose EST became normal appeared to be less symptomatic even at 

enrolment (see Fig 2.10). It appears logical that the less severe your symptoms are 

(measured both objectively by EST or subjectively by SAQ) the more likely it is that you 

will improve at follow-up. Logistic regression analysis was performed to investigate the 

effect of baseline PLS on EST positivity at visit 2. The logistic regression model was 

significant, χ2(1) = 10.625, p=0.001. The model explained 71% (Nagelkerke R2) of the 

variance in EST positivity at follow-up and correctly classified 92.9% of cases. Increasing 

baseline PLS was associated therefore with a decreased likelihood of ongoing EST 

positivity (OR 0.72 (95%CI 0.53-0.99).  
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Figure 2.10: Bar chart comparing baseline PLS scores and DTS scores between CSX patients who would 
complete a normal EST at follow-up and those who would continue to have an electrically abnormal EST. 

 

Explicitly, patients with normal follow-up EST had significantly higher baseline PLS 

(86.2±2.6 v 74.7±1.8, t13=3.20, p=0.007) and they had less severe EST abnormalities at 

enrolment with borderline better Duke treadmill scores (U=5, p=0.06), longer time-to-

symptoms (t12=2.75, p=0.025) and a trend towards longer time to ECG changes 

(p=0.15). In essence, these patients had milder disease and it appeared to improve 

spontaneously. These normal patients did not differ from those with ongoing EST 

changes in terms of statin use (p=0.608), aspirin use (p=0.379) or ACE-inhibitor use 

(p=1.00) at follow-up.  
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2.7  Third Visit 

Follow-up of CSX patients was 94% complete at visit 3 at an average 16.8 ± 0.7 months 

after initial enrolment with 16/17 patients returning for review with the remaining 

patients being uncontactable at last follow-up. No patient had died or suffered a major 

cardiovascular event (such as MI or cerebrovascular accident). Only 11/16, however, 

consented to performing a third EST.  

 

2.7.1  Visit 3 SAQ scores 

 

Figure 2.11: Line chart showing the changes in SAQ scores from visit 1 through to visit 3 

 

The SAQ domain scores were not significantly different from visit 2 to visit 3 and in 

most cases had fallen back to an intermediate value between visit 1 and visit 2, 

perhaps signifying a fluctuating clinical course in CSX (see Fig. 2.11). The Angina 

frequency (p=0.01), Physical limitation (p=0.06) and Quality of life scores (p=0.07) 
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remained better than at baseline, however. By visit 3, only 4/15 patients claimed to be 

asymptomatic with a PLS of 100. Four patients had significantly disimproved since visit 

2 in terms of symptoms (ΔPLS >-5) and 5 had significantly improved (ΔPLS >+5) while 

the remaining 6 had no significant change. The QOL score at visit 3 correlated strongly 

with markers of disability such as the EST Duke Treadmill Score (rs=0.712, df=10, 

p=0.02), PLS (rs =0.584, df=14, p=0.028), ASS (rs =0.621, df=14, p=0.018) and TSS (rs 

=0.638, df=14, p=0.014) as shown in figure 2.10. Simple linear regression analysis of the 

Visit 3 SAQ parameters reveals a significant interaction between Visit 3 PLS and TSS 

with the observed QOL scores (F(2,11)=12.47, p=0.001; adjusted R2 of 0.638). Both TSS 

and PLS were significant predictors of QOL and all pre-test assumptions were met.  

 

Figure 2.12: Scatter plots showing the correlations between quality of life and A. Duke Treadmill Score, 

B. Physical Limitation Score and C. Treatment Satisfaction score. D. Spearman rank correlation co-

efficients and regression equation with adjusted R-square of the model.  
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By the end of the study only 4/16 (25%) of CSX patients followed to the end were 

asymptomatic while 5/7 (72%) of the LCSX patients were asymptomatic (p=0.06 for 

difference).  

 

2.7.2  Visit 3 Life Stress 

Despite a further diminution of LTE-Q scores, the PSS-10 score of CSX patients 

increased slightly from visit 2 to visit 3 (see Fig. 2.13). Despite this divergence, overall 

the PSS-10 scores and LTE-Q scores again correlated (rs=0.594, df=15, p=0.02). The PSS-

10 scores correlated closely across all 3 time points. 

 

 

Figure 2.13 Mean PSS-10 and LTE-Q scores over the three visits. 
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2.7.3  Visit 3 EST 

Only two of the 11 CSX patients performing a stress test now had an unequivocally 

electrically positive EST with a further 4 patients getting mild chest pain on the 

treadmill. Similarly, nine patients were now minimally symptomatic by PLS. Due to the 

reduced compliance, especially given the small starting population, the study began to 

lose statistical power. The average duration was 8.2 ± 0.4 minutes with an average time 

to ECG change of 6.5 ± 0.5 minutes (n=2) and time to symptoms of 5.5 ± 0.6 minutes 

(n=6). The average Duke Treadmill score remained higher than at baseline (average 

difference of 8.1 ± 1.4, p=0.001) and borderline higher than the visit 2 values (average 

difference 1.5 ± 0.8, p=0.077) 

 

Discussion 

2.8  Incidence Discussion 

We are one of the first groups to attempt to prospectively investigate the incidence of 

CSX in a European population and we show that, although CSX exists in Ireland in a 

definable population, it is relatively uncommon. Approximately 1.3% of patients 

undergoing coronary angiogram during the incidence study period at an Irish tertiary 

referral centre met the diagnosis of Cardiac Syndrome X. This is substantially lower 

than the 3% observed by Vermeltfoort et al in their retrospectively identified 2003 

cohort of Dutch patients with CSX. There are two main possible explanations for this 

difference, either a difference in the true incidence exists or else there is a difference in 

the diagnostic process.  

 

Given that the exact pathophysiology of CSX remains the subject of debate it is difficult 

to be authoritative about the possible relevant contributory differences between the 

two populations in these studies, however several potentially relevant dissimilarities 

exist. Firstly, the Dutch cohort was taken from angiograms performed back in 2003 
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compared with our group, which are mainly from 2012. It is possible that the incidence 

of CSX is diminishing with time or that improved primary prevention interventions for 

vascular disease are having a beneficial impact on the potential patient population. 

Secondly, the Irish and Dutch populations differ somewhat in terms of diet, ethnicity, 

cardiovascular risk and population density.  

 

The other main possibility, that we underdiagnosed CSX relative to the Dutch paper, is 

likely. In this study we used a strict definition of CSX, particularly with respect to the 

nature of the chest pain. Typical angina pectoris was a prerequisite for diagnosis, which 

excluded patients complaining of atypical pain (e.g. pain that was not exertional/stress 

related, was pleuritic in nature, was not characteristically substernal or that persisted 

for an excessively long duration despite rest.) The Dutch paper does not specify their 

definition of angina pectoris and the study was performed retrospectively, which limits 

the ability to identify atypical features of pain and may have led to the inclusion of 

patients with non-cardiac chest pain. In our study, the typical angina criterion excluded 

2 patients with atypical chest pain, normal arteries and positive EST. Had they been 

included an overall incidence of 1.9% would have been seen, which is closer to that 

seen in the Netherlands.  

 

Although our design limited our potential population, we believed it to be important to 

ensure that we define a homogeneous and reproducible cohort so as to optimise our 

ability to identify characteristics of that group and to allow a clear signal to be seen by 

cutting out noise from borderline or erroneous cases, as these patients may bear no 

resemblance to patients with true CSX. The result of this policy was that we had a 

smaller than anticipated number of patients and so did not meet our target sample size 

as estimated by our pre-study power calculations. Longer recruitment was precluded 

due to time constraints within the study design. 
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Another factor that limited our ability to diagnose CSX patients was that during the 

incidence study only 49% of patients with normal coronary arteries had undergone an 

EST. This was beyond our control. Only 10/77 patients with CPNCA had typical angina 

pectoris, however, and 9 of these had undergone stress testing (with the last being 

unable to due to physical limitations) indicating that the majority of appropriate 

patients were stress tested. The importance of the EST in diagnosing CSX will also be 

investigated further in this thesis. Had we ignored the requirement of a positive EST 

and simply included patients with typical angina and normal coronary arteries (the 

older classification of CSX, termed LCSX in this thesis) we would have doubled our 

intake. A positive EST, however, identified a distinct set of patients who were more 

likely to have ongoing symptoms at follow-up despite similar initial symptoms and 

angiography results (CSX v LCSX, p=0.06).  

 

A final explanation for our relatively low incidence is that it may be possible that some 

CSX patients were missed in out-of-hours periods as acute cases such as acute ST-

elevation myocardial infarctions would be prioritised during daytime hours, deferring 

CSX angiograms until a later time, and thus potentially masking its true incidence.  

 

2.9  Phenotype discussion 

The phenotype of the Irish CSX patient seemed to mirror that of previously reported 

patients in other CSX studies, whereby the significant majority of subjects were female 

with an average age of about 60. Irish CSX patient differed from IHD patients in that 

they tended to be younger by about 5 years (t346=-3.34, p=0.003; 95%CI -2.3 to -9.5 

years) and were less likely to have hypertension, although they had a similar 

prevalence of hyperlipidaemia. The increased prevalence of hypothyroidism in our CSX 

cohort may represent a red herring or may hint at a possible contribution to the 

pathogenesis of CSX. Triiodothyronine (T3) is known to affect the microvasculature and 
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perhaps its lack (or the use of the synthetic L-thyroxine) may have an aetiological role. 

This deserves further study.  

 

Irish CSX patients are only mild-moderately symptomatic physically but appear to 

suffer significant non-physical effects from their condition. Their SAQ-defined quality of 

life scores are disproportionately low when compared to their physical symptom scores 

and are equivalent to those of patients with obstructive ischaemic heart disease. The 

specific SAQ questions for this summary score include: “How much has your chest pain 

limited your enjoyment of life?”, “how would you feel if you had these symptoms for 

the rest of your life?” and “how often do you think or worry that you may have a heart 

attack or die suddenly?” indicating that these patients dwell on their physical 

symptoms even though they are less physically limited. Their QOL scores improved 

over time but, despite the reassurance of a normal angiogram, these patients remained 

concerned at follow-up, with low QOL scores. The follow-up QOL scores appeared to 

depend on the severity of ongoing symptoms, indicating the importance of making the 

diagnosis and instigating treatment in these patients to allow for the amelioration of 

disease burden. 

 

As well as having a reduced disease-related quality of life, Irish CSX patients also had 

greater perceived life stress than controls despite no relative excess of notable life 

stressors. This perhaps may reflect the psychological toll of angina. Indeed, the PSS-10 

score correlated with both QOL and treatment satisfaction scores, showing that CSX 

patients have a generally less favourable perception of life, stress and disease impacts. 

Stress didn’t seem to reliably predict symptoms but there was a trend towards greater 

stress in CSX patients with ongoing symptoms at follow-up compared with patients 

who had improved. It is known that stress can reduce pain thresholds and worsen 

patients’ coping skills so there may be a bidirectional interaction between stress and 

symptoms in CSX170. 
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CSX patients in our cohort tended to show ECG changes on the treadmill before they 

developed chest pain, suggesting that the traditional model of the ischaemic cascade 

may be valid in CSX too. Another consideration regarding possible pathophysiology is 

that we found CSX patients to have elevated Left Ventricular end-diastolic pressures 

(LVEDP) during angiography. This implies increased wall tension during diastole (the 

time of maximal myocardial blood flow) and hence may lead to the compression of 

micro-vessels within the myocardium, which may contribute to the disease process. 

This has not been reported before. 

 

Irish CSX patients generally improved during the course of an 18-month follow-up. 

Most parameters of physical symptoms such as SAQ scores and EST measures 

improved at follow-up. This was matched by an improvement in perceived stress 

scores. At the second visit 10/16 (63%) patients had symptomatically significantly 

improved while by the final visit this number reached 11/15 (73%). It should be noted 

that only 27% of patients claimed to be completely asymptomatic at study end 

highlighting the prolonged nature of the disease. It is also important to point out that 

EST electrical positivity dwindled as the study went on. Technically these patients could 

be considered to no longer have CSX and merely just chest pain with normal coronary 

arteries. Only 6 and 2 patients had ongoing chest pain and an electrically positive EST 

at visit 2 and 3 respectively.  

 

The lack of reproducibility of EST results in this cohort may just follow the overall 

improvement in patients’ clinical condition with time. The patients whose ESTs 

remained positive over time did have lower PLS at baseline (t13=-3.20, p=0.007), at visit 

2 (t13=-2.54, p=0.04) and at visit 3 (t9=-3.63, p=0.006) than those whose EST 

normalised, indicating that the patients with the most severe disease had persistent 

dynamic ECG changes. This might demonstrate the natural history of CSX; patients with 
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a positive EST being worst off and those with milder disease eventually developing 

normal ESTs and disease resolution. 

 

As a by-product of the recruitment process we also identified a cohort of patients with 

typical angina a normal angiogram and a normal EST, which we labelled loose CSX 

(LCSX), as this has historically been used as an alternative definition of CSX. We will use 

this to examine the clinical utility of the EST in the initial diagnosis CSX. The 

effectiveness of the EST for clinically defining a distinct cohort of patients is uncertain 

in patients with normal coronary arteries as the EST is generally useful in predicting the 

presence of obstructive CAD, having a modest sensitivity and specificity of 68% and 

77% therein. The values for these parameters in microvascular angina are unknown. A 

false positive EST may just demonstrate myocardial ischaemia in a CSX patient as 

opposed to being truly “falsely” positive. The distinction therefore between LCSX and 

CSX patients in terms of baseline biomarkers will be interesting going forward. We 

found that these patients resembled the CSX patients in most respects (such as their 

demographics, symptoms and cardiac risk factors) and differed only in their PSS-10 

scores and the fact that they were more likely to be symptom free at follow-up 

(p=0.06).  

 

Finally, it is important to note that we have recruited controls who are well matched 

for age and sex. They also ended up being well matched in terms of statin use, which 

may be important as we will be investigating sensitive inflammatory markers and the 

pleiotropic effects of statins include an anti-inflammatory effect. 
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2.10  Limitations 

Our observational study prospectively acquired data from a cohort of patients 

undergoing coronary angiography in two centres. The prospective nature allowed for 

the pre-diagnosis assessment of symptoms and risk factors, allowing for unbiased 

assessment of symptom character. There are several limitations in the execution of this 

study, however:  

 The patients are non-consecutive. This was unavoidable as resources were not 

available to allow for 24-hour coverage of the catheterisation laboratory by study 

investigators. Patient interview was a necessary part of the study to allow accurate 

documentation of symptoms.  Therefore, patients with angiograms performed after 

hours could not be enrolled in the study as the method of data acquisition for these 

patients would not be consistent with other patients.  

 The determination of the ‘typicalness’ of the angina is partly subjective, despite the 

checklist provided for its characterisation by the ESC, due to the ambiguity of the 

phrase “typical character and duration.” Great efforts were made to be consistent 

in the characterisation of chest pain. Another facet of this is that significant 

coronary stenosis can present with atypical angina, thus the exclusion of patients 

with these symptoms may exclude some CSX patients with ischaemic pain. This was 

necessary, however, to ensure the exclusion of patients with a correct diagnosis of 

non-cardiac chest pain. 

 Finally, exclusion criteria in the CSX patients may have affected some of the 

measured characteristics of the group. For example, the upper age limit of 70 years 

was imposed by the local ethics committee, however only 1 patient during the 

incidence study period was over 70 and would have qualified for a diagnosis of CSX. 

Most studies into CSX exclude patients with diabetes mellitus or systemic 

hypertension. We excluded patients with DM or evidence of hypertensive heart 

disease (LVH by ECG or ECHO) but included patients with mild or controlled 

hypertension. As hypertension also leads to endothelial dysfunction, the hallmark 
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of CSX, the exclusion of hypertensive patients would probably exclude people with 

true microvascular angina. This may account for some of the reduced prevalence of 

hypertension noted in the CSX group. Conversely, diabetic microvascular disease 

probably represents a separate cohort of patients phenotypically and warrants 

exclusion.  

 

Summary 

In summary, we identified 17 Irish CSX patients with moderate symptoms and followed 

them for approximately 17 months with repeated EST, questionnaires and blood tests. 

We also enrolled 21 healthy controls from 2 primary care practices. A small 7 patient 

cohort of patients with chest pain, normal coronary arteries and normal stress tests 

was also recruited for comparison. CSX patients had a reasonable degree of 

psychological disease impact and almost three-quarters of CSX patients remained 

symptomatic until the end of follow-up, although most patients improved from 

baseline. 

 

We also found that in Ireland CSX is a relatively uncommon diagnosis made after only 

about 1.3% of all angiograms investigating chest pain and is most likely to occur in 

middle-aged women with dyslipidaemia and a moderate overall risk categorisation 

based on pre-angiography non-invasive testing. Despite the low incidence, it should be 

stressed that CSX is no less common than many other notable cardiac conditions such 

as anomalous coronary arteries (seen in 1-2% of angiograms) or coronary arterial 

dissection (in 0.1%). It deserves greater exposure and cardiologists should be aware of 

it. The application of the diagnosis to appropriate patients was low in CUH and thus 

CSX patients in Ireland are underdiagnosed and therefore lacking sufficient treatment. 

They warrant specialist follow-up in order to appropriately manage their condition.  
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Chapter 3: Markers of General and Vascular 

Inflammation in Cardiac Syndrome X  
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Introduction 

3.1  Chapter Overview 

In this chapter we will examine the status of general inflammation in the Irish CSX 

patient and establish its relationship with endothelial activation and clinical features. 

Many studies have confirmed the presence of a low-grade systemic inflammatory 

response in CSX59,60,171. Our first step is to confirm that our patients conform to this 

body of evidence. We then wish to examine biomarker evidence of endothelial 

dysfunction in the form of endothelial adhesion molecules. Having done this, we aim to 

investigate the temporal relationship between inflammation, vascular and clinical 

features, including symptoms and EST parameters.  

 

3.1.1  Acute Phase Reactants 

APRs are generally plasma proteins that are primarily but not exclusively synthesised 

by the liver as part of the innate immune response. They are typified by an acute and 

sustained rise in plasma concentrations mere hours after a suitable stimulus. They 

remain elevated for the duration of this stimulus, which is usually either infective or 

inflammatory, and as such can be used as a non-specific barometer of inflammatory 

activity. We have decided to examine the role in CSX of two of the most studied APRs, 

C-reactive Protein (CRP) and Serum Amyloid A (SAA), to establish overall inflammatory 

activity.  

 

C-Reactive Protein 

CRP has been extensively investigated in the field of cardiovascular medicine. It is a 

23kDa pentameric protein that is released from the liver in response to IL-1, IL-6 and 

TNFα amongst other signals. Even within its normal range of 1-10mg/L, CRP has been 

shown to have strong predictive prognostic power in patients with acute coronary 

syndromes and is a powerful non-traditional cardiovascular risk factor in otherwise 
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“healthy” populations. It is known to be modestly elevated in CSX and has been shown 

to correlate with the degree of endothelial dysfunction (as assessed by flow-mediated 

dilation of the brachial artery and coronary flow reserve on invasive angiography) and 

somewhat with disease severity in terms of Duke Treadmill Score (see chapter 2)172,173. 

Its role in CSX is interesting because it may be a direct mediator of disease as well as 

being an indicator of disease severity.  

 

 

Figure 3.1: C-reactive Protein inducers, structure and effects on the endothelium. 

 

CRP has multiple endogenous ligands including oxidised LDL and oxidised 

phosphatidylcholine in cell membranes174. It has been shown to bind to apoptotic and 

damaged cells to target them for immune destruction in a process termed 

opsonisation. CRP also has many deleterious effects on the normal functioning of 

endothelium. It has been shown to diminish the protective glycocalyx that covers 

endothelial cells and which is important in intercellular communication and in 

mechanotransduction175. Furthermore, it induces endothelial activation with increased 

expression of ICAM-1 and VCAM-1 with further local cytokine release176. It also 

increases platelet adherence to the endothelium, mostly through the upregulation of 

P-selectin while also upregulating angiotensin II type 1 receptor expression, which can 

cause vasoconstriction. Of further significance when one considers the putative 

pathogenesis of CSX, CRP downregulates endothelial Nitric Oxide Synthase (eNOS) 

transcription and reduces eNOS mRNA stability while also uncoupling eNOS activity 
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resulting in a reduction in available NO177. This prevents endothelial-derived flow-

dependent vasodilation in the vascular tree178. CRP may even induce endothelial 

apoptosis179. Finally, CRP has also been shown to stimulate the release of matrix 

metalloproteinase 1 and 10, which may lead to plaque instability from stromal 

breakdown. 

 

The cause of increased CRP in many vascular conditions such as atheromatous 

coronary artery disease is unknown but many infective and autoimmune causes have 

been investigated but none has been found to be a compelling inducer. It may just 

reflect tissue injury from traditional risk factors with a resultant inflammatory 

response. 

 

Serum Amyloid A 

Serum Amyloid A is a family of apolipoproteins that normally associates with HDL. 

When present in high proportions SAA has the ability to modify the biological activity 

of HDL by altering reverse cholesterol transport, reducing its anti-oxidant function and 

ultimately rendering the HDL pro-inflammatory180. Like CRP, SAA is also released in 

response to many various stimuli (such as IL-1, IL-6, TNFα) and can increase 1000-fold 

from its normal range of 1-5mg/ml in response to stimuli such as infection or tissue 

necrosis. Again like CRP, SAA correlates with increased CV mortality in large studies and 

as such is another non-traditional cardiac risk factor181,182. SAA activates receptors 

involved in pathogen identification, such as TLR 2 and 4, while also being able to bind 

to CD36, a scavenger receptor. It appears to preferentially increase neutrophil activity 

over monocyte/macrophage activity. It too has several pro-inflammatory effects on 

endothelium with reduced endothelial cell proliferation, increased adhesion molecule 

expression and endothelial activation, increased NFκB transcription and increased 

intracellular oxidative stress all being described183,184. It has also been shown to reduce 
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endothelium-dependent vasodilation and NO bioavailability185,186. SAA concentrations 

have never before been investigated in CSX.  

 

3.1.2  Adhesion Molecules 

In addition to evaluating markers of basal inflammation we will examine plasma 

markers of endothelial activation. Endothelial cells that are activated by certain stimuli 

(including pro-inflammatory cytokines) will express adhesion molecules. These 

molecules allow the endothelial cells to interact with circulating immune cells and 

thereby recruit them to cause affect a local inflammatory response. We intend to 

examine the degree of endothelial activation using serum concentrations of VCAM-1 

and ICAM-1, the two most important endothelial adhesion molecules 

 

Intercellular Adhesion Molecule (ICAM-1) 

ICAM-1 (CD54) is a transmembrane molecule that is expressed on endothelial cells and 

on the surface of some leucocytes. It is constitutively expressed and its function is to 

allow the interaction between immune cells and endothelial cells. Its expression is 

increased by pro-inflammatory cytokines (such as IL-1 and TNFα) and CRP. ICAM-1 

levels are also increased in diabetes mellitus, heart failure and ischaemic heart 

disease187. Elevated levels are associated with reduced myocardial perfusion reserve as 

assessed by MRI188. It binds to leucocyte integrin and Mac-1 and mediates the firm 

adhesion of leucocytes to activated endothelium and the transmigration of these cells 

across the endothelial barrier. It has been implicated in the pathogenesis of 

atherosclerosis and has been shown to be elevated in CSX59,161,169. 
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Vascular Cell Adhesion Molecule (VCAM-1) 

The VCAM-1 gene is a member of the Immunoglobulin-gene superfamily and is found 

on chromosome 1. Its transcription product, the protein VCAM-1 (CD106) is a type I 

transmembrane protein expressed exclusively on activated endothelial cells. It is 

upregulated in response to turbulent shear stress or oxidative stress from reactive 

oxygen species and may also be induced by inflammatory stimuli though the activation 

of NFκB transcription factors. Its main cytokine stimuli include TNFα and IL-1, although 

it is also induced by CRP and its mRNA is stabilised by IL-4. It is often co-expressed with 

ICAM-1 on tetraspanin-rich microdomains and this allows for the firm adhesion of 

leucocytes to endothelial cells through the co-operative action of the two adhesion 

molecules189. 

 

VCAM-1’s main ligand is integrin, a protein expressed on the surface of many immune 

cells including lymphocytes, monocytes and eosinophils. VCAM-1 plays an integral role 

in vascular inflammation and allows for the recruitment of immune effector cells to the 

local perivascular space by causing cell flow slowing, rolling adhesion and finally firm 

adhesion to occur. VCAM-1 has been shown to be an early finding in areas predisposed 

to atheroma formation and VCAM-1 levels are an indicator of the degree of endothelial 

activation and as such are of great interest in microvascular angina190. Indeed, elevated 

VCAM-1 levels have been shown to be associated with reduced coronary flow reserve 

in CSX patients191. There have been conflicting results from studies into VCAM-1 in CSX 

with some showing no elevation of levels and others showing a near-significant 

increase in VCAM-1 concentrations in CSX populations59,192. 

 

Our contention is that CSX patients will have evidence of inflammation and endothelial 

activation and that these levels will likely correlate with the degree of disease severity. 

We therefore hope to establish the baseline inflammatory profile, including APRs and 

adhesion molecules, in Irish CSX patients by comparing them with healthy age- and sex-
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matched controls. We will then longitudinally study changes in clinical status with 

changes in levels of these immune markers with the hope that improved clinical status 

is reflected in reduced levels of immune and endothelial activation 

 

3.1.3  Chapter Objectives 

1. Initially we aim to verify that our CSX population reflects those seen in previous 

CSX studies, which have almost universally demonstrated low-grade 

inflammation. We will examine baseline acute phase reactants as markers of 

overall inflammatory status. We have chosen high-sensitivity C-Reactive Protein 

(CRP), the most studied Acute Phase Reactant (APR), as our primary biomarker and 

Serum Amyloid A (SAA) as our confirmatory signal.  

2. Having established that CSX patients have low-grade inflammation we will further 

investigate if they have biomarker evidence of early endothelial activation and 

dysfunction. Intracellular Adhesion Molecule-1 (sICAM-1) and vascular cell 

adhesion molecule-1 (sVCAM-1) are early markers of endothelial activation and we 

will evaluate if these markers are deranged in CSX and if they correlate with the 

acute phase reactants, investigating a possible interaction.  

3. We will also evaluate the interaction between the inflammatory and endothelial 

biomarkers with symptoms in the form of SAQ results and EST parameters. If 

inflammation and endothelial dysfunction are causative in CSX one would expect an 

interaction. 

4. Stress has been shown to be associated with increased inflammatory markers and 

upregulated HPA axis activity. We will investigate if there is an interaction between 

our biomarkers and perceived or actual life stress. 

5. We aim to see if changes in clinical status are reflected in changes in APRs and 

markers of endothelial dysfunction. In those patients who improve, we want to 

show reduced endothelial activation and reduced general inflammation indicating 

that it is a state marker rather than a trait marker. 
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Methods 

3.2  Participant Recruitment 

Patient recruitment is as detailed in chapter 2.2. We enrolled a total of 17 patients with 

CSX, 7 with LCSX and 21 controls. Almost 1,850 patients undergoing coronary 

angiography for chest pain were screened to obtain this sample cohort of CSX patients. 

Every suitable patient was approached and all agreed to be enrolled in the study. The 

study protocol was approved by the local research ethics committee. CSX patients were 

followed-up at 2 further visits when blood and questionnaire investigations were 

repeated. 

 

3.3  Investigations 

At enrolment all subjects gave full-informed written consent and filled out a cardiac 

risk factor questionnaire. Venous blood samples were taken between 0900 and 1200 

and were drawn into dipotassium EDTA tubes and immediately centrifuged at 112 RCF 

for 15 minutes. Plasma was then aliquoted into 2ml microtubes and frozen at -80°C for 

later analysis. CSX patients also completed the Seattle Angina Questionnaire (SAQ), the 

list of threatening experiences questionnaire (LTE-Q) and the Perceived Stress Scale 

(PSS) questionnaire as detailed in 2.3.2. No symptomatic treatment was undertaken in 

CSX patients at diagnosis. The CSX patients were followed at two further visits, planned 

to occur around 6 months and 12 months after the angiogram, when the exercise 

stress test, blood sampling and questionnaires were repeated. Stress testing was 

performed as previously described (2.3.4). 

 

3.4  Biomarker Detection  

Plasma samples from all time points were later thawed and analysed together 

immediately using the MesoScale Discovery Human Vascular Injury II 
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Electrochemiluminescence kit (Meso Scale Discovery, Rockville, MD). This assay has a 

lower limit of detection (LLOD) of 0.1 ng/mL and a lower limit of quantification (LLOQ) 

of 0.7ng/mL for human CRP and the average co-efficient of variation (CV) was 2.5 (1.1 

to 3.9) % between duplicated samples. It has an LLOD of 0.09ng/ml and LLOQ of 

0.5ng/ml for SAA with an average CV of 3.4 (1.4 to 5.4 %). The VCAM-1 LLOQ was 

0.07ng/ml and LLOQ was 0.7ng/ml with an average CV of 3.2 (0.0 to 7.4%). The ICAM-1 

LLOD was 0.01ng/ml and the LLOQ was 0.09ng/ml with an average CV of 3.2 (1.0 to 

4.5%). Any sample with a CV>20% was excluded from analysis. Inter-run CVs are shown 

in figure 3.2 below, which is reproduced from the manufacturer’s product insert. 

 

Figure 3.2: Average intra- and inter-run CV (co-efficient of variation) from the product insert of the MSD 
Vascular Injury II Electrochemiluminescence kit. 

 

The exact protocol for the MSD Human Vascular Injury plate is available on the 

vendor’s website but the basic procedure is as follows. The 96-well 4-spot plates are 

first blocked with Blocker A, a solution of proteins in phosphate buffer that is designed 

to prevent the binding of non-specific proteins to the plate. This allows for less 

background noise and enhances the sensitivity of the procedure. The plates are then 

incubated at room temperature with shaking for 1 hour before being washed with PBS-
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T 0.05%. Calibrator blend was then diluted appropriately and added to give a standard 

curve while plasma samples were also added to the plates, which were then incubated 

and shaken for another 2 hours. After further washing, the Sulfo-Tag Detection 

antibody solution was added to each well and further incubated at room temperature 

with shaking for 2 hours. Finally, the plates were washed and read buffer was added 

before the plates were analysed with the SECTOR analyser, allowing for quantification 

of luminescence and hence concentrations of the substances under investigation. 

 

3.5  Data Management 

All data was analysed using SPSS Statistics for Windows v20.0 (Armonk, NY: IBM Corp.). 

Continuous variables are reported as mean ± SEM if normally distributed and as 

median (IQR) if non-normally distributed. Categorical variables are reported as the 

absolute number (percentage). The Mann-Whitney U or student t-test were used 

where appropriate to compare CRP concentrations between CSX and HC groups. 

Comparisons between multiple groups were achieved using the One-way ANOVA with 

Bonferroni post-hoc testing or Kruskal Wallis test where appropriate. Categorical 

variables were compared using the Chi-squared test or Fisher’s exact test where 

appropriate. Correlations were examined using Spearman’s rank correlation test. All 

reported p-values are two-tailed and reported confidence intervals are calculated to 

the 95% confidence level. 

 

Results 

3.6.  Acute Phase Reactants 

3.6.1  Baseline CRP 

Baseline CRP was significantly higher in CSX patients when compared to healthy 

controls (1.57 [0.48 to 4.81 vs 0.77 [0.14 to 1.17] mg/L, U=281.0, p=0.002; see Fig 3.3 

Panel A). Thirty-five percent of CSX patients had a CRP in the range of 1-3mg/L 
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(classified by the AHA as intermediate risk for cardiovascular disease) while a further 

35% had a CRP>3mg/L (defined as high risk for cardiovascular disease). This compares 

with only 38% of healthy controls in the intermediate risk category and none in the 

high risk category (p=0.007 for difference). Baseline CRP correlated with EST markers of 

disease severity especially time to symptoms (rs=-0.686, df=12, p=0.014) and time to 

ECG changes (rs=-0.551, df=15, p=0.033) (see fig 3.3 Panel B). CRP did not correlate, 

however, with life stress scores or SAQ domain scores. 

 

 

Figure 3.3 A: Differences in mean CRP concentration between HC, Baseline CSX and Follow-up CSX. B. 
Scatter plot showing the correlation between CRP and time to symptoms on EST. 

 

 

3.6.2  Follow-up CRP 

The CRP concentrations in CSX patients as a group remained higher at visit 2 when 

compared with the same control group CRP (2.38 ± 0.57 vs 0.82 ± 0.11mg/L, mean 

difference 1.56 ± 0.57, 95% CI 0.14 to 2.97, adjusted p=0.026; See Fig 3.3 Panel A). 

There was no statistical difference between CRP at visit 1 and visit 2 for the CSX 

patients (test statistic=67, p=0.653; Related-Samples Wilcoxon Signed Rank Test).  
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As mentioned in chapter 2, 10 CSX patients had improved in terms of their physical 

symptoms as assessed by their Physical Limitation Score from their Seattle Angina 

Questionnaire with the remaining 7 worsening. Interestingly, the patients whose 

symptoms had improved had an average drop in CRP of -0.51 (-1.47 to +0.11mg/L) 

while those whose symptoms worsened had an average increase in CRP of 0.28 (0.13 

to 0.81mg/L); difference between the two groups, U=8, p=0.027. This is illustrated in fig 

3.4 below. Similarly, the 9 patients who claimed to have had no angina in the previous 

month (angina frequency score of 100) had a lower CRP at follow-up compared with 

those patients who had experienced angina recently (1.23 ± 0.24 vs 2.53 ± 0.46mg/L, 

mean difference -1.30 ± 0.52, 95% CI -0.19 to -2.41mg/L, p=0.025). 

 

 

Figure 3.4 A. Net change in CRP in those patients whose physical limitation score worsened or in those 
who improved. B. CRP in patients with a second positive EST compared to those with a normal 2nd test. 

 

Only 6 patients had electrically positive ESTs at follow-up with the remaining 9 patients 

who underwent follow-up EST having a normal test. Those patients with positive ESTs 

had higher CRP concentrations on average at follow-up than patients who now had 

normal stress test (mean difference of 1.48 ± 0.54mg/L, 95% CI 0.31 to 2.66, p=0.017; 

See Fig 3.4 Panel B above). CRP at visit 2 also strongly correlated with time to 

symptoms on the follow-up EST (rs= -0.899, df=4, p=0.015) 
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The average CRP of the entire group at visit 3 had dropped to 1.47 [0.73 to 2.42mg/L], 

a point where it was no longer significantly different from healthy controls (adjusted 

p=0.102). Only 2 patients remained with a positive EST but their CRP was no different 

from that of the 9 patients with a normal EST (p=0.868). Again only 4 patients had no 

symptoms by PLS but their CRP was non-significantly lower than that of the remaining 

11 symptomatic CSX patients (0.88 [0.40 to 1.13 mg/L] v 1.90 [0.29 to 3.00 mg/L], 

p=0.101).  

 

3.6.3  Baseline SAA 

Baseline SAA concentrations were markedly positively skewed (skewness of 1.38) with 

the concentration in CSX being 4.95 [1.98 to 7.95mg/L] and healthy controls having a 

median 2.36 [1.62 to 4.08mg/L]. A square-root transformation was performed to 

render the values normally distributed. The CSX SAA concentrations were significantly 

higher than healthy controls as shown below in fig 3.5 (t36=2.114, p=0.045). No 

significant correlations were seen between baseline SAA and SAQ domain scores, PSS-

10 results or EST parameters. 

 

Figure 3.5 A. Bar chart demonstrating median SAA concentrations in the healthy controls compared with 
the CSX group at different time-points. B. Transformed baseline SAA showing a significant difference 

between SAA levels in CSX and controls. 
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3.6.4  Follow-up SAA 

At follow-up, the SAA levels dropped slightly in CSX patients but they overall remained 

higher than that seen in healthy controls as shown in figure 3.5a above (adj. p=0.010). 

Unlike CRP, SAA did not differ significantly between patients who continued to have a 

positive EST and those who improved. Similarly, SAA did not distinguish patients with 

ongoing symptoms by SAQ at visit 2, although there was a borderline significant 

difference in levels by visit 3 with patients with ongoing PLS symptoms having higher 

SAA concentrations (p=0.06).    

   

3.7  Markers of Vascular Inflammation 

3.7.1  Baseline ICAM-1 

Baseline ICAM-1 was significantly higher in CSX patients compared to healthy controls 

353 ± 25 vs 284 ± 20 ng/ml (95%CI: 5 to 133ng/ml; t35=2.192, p=0.035; see Fig 3.6 Panel 

A).  

 

Figure 3.6 A. Comparison of ICAM-1 concentrations in healthy controls and CSX patients. B. Bar chart 
demonstrating the relative ICAM-1 concentrations over time in the CSX group with the healthy controls 
as a comparison. 
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3.7.2  Follow-up ICAM-1 

ICAM-1 remained elevated in CSX patients during their early follow-up compared with 

healthy controls but by visit 3 was not statistically higher (p=0.09). Furthermore, ICAM 

did not show any relationship with clinical markers of disease severity either in the 

form of EST parameters or questionnaire results. 

 

3.7.3  Baseline VCAM-1 

Unfortunately, our study appears to have been underpowered to detect a significant 

difference in VCAM-1 levels in our populations. There was only a trend towards a 

higher VCAM-1 in CSX patients (433 ± 31 vs 373 ± 19; T36=1.721, p=0.09). There was no 

correlation between VCAM-1 concentrations and symptom burden as defined by SAQ 

or EST. 

 

 

Figure 3.7:  A. Trend towards higher VCAM-1 concentrations in CSX populations. B. Median VCAM-1 
Concentration at differing time points. 

 

3.7.4  Follow-up VCAM-1 

VCAM-1 concentrations were higher in CSX patients at visit 2 compared to healthy 

controls (432 [361 to 504] vs 371 [329 to 418]ng/ml; U=246, p=0.048) although when 
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corrected for repeated comparisons it lost its significance (p=0.096). Unfortunately, 

VCAM-1 was not significantly different in populations defined by their EST or SAQ 

results. 

      

3.8  Correlations 

As one would expect, there was a moderate correlation amongst the two acute phase 

reactants at baseline in all participants (rs=0.517, df=36, p=0.001). This was also true 

for the CSX group (rs=0.640, df=15, p=0.006). There was also strong correlation 

between CRP and ICAM-1 (rs=0.450, df=36, p=0.005) and SAA and ICAM-1 (rs=0.437, 

df=35, p=0.007), while in the CSX group SAA correlated with ICAM-1 (rs=0.522, df=14, 

p=0.038). VCAM-1 levels, however, did not correlate with APRs but did correlate with 

ICAM-1 levels at baseline (rs=0.511, df=14, p=0.043) and at follow-up (rs=0.566, df=14, 

p=0.018). 

 

 

Figure 3.8 A. Correlation between CRP and ICAM-1 at baseline in the entire group. B. Correlation 
between both Acute Phase Reactants at baseline. 
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There were some correlations between markers of vascular inflammation and EST 

measures of disease severity. There was a moderate negative correlation between 

baseline CRP and time to symptoms (rs= -0.690, df=10, p=0.013) and maximum Rate–

Pressure Product (rs = -0.636, df=8, p=0.048) on baseline EST while there was a trend 

towards a shorter time to ST-depression with increasing CRP (rs= -0.502, df=13, 

p=0.056). SAA was found to correlate with time to ST-segment depression on EST (rs=-

0.538, df=12, p=0.047) while ICAM-1 correlated with time to symptoms on the EST (rs=-

0.610, df=10, p=0.035). CRP at visit 2 also strongly correlated with time to symptoms 

on the follow-up EST (rs = -0.899, df = 4, p = 0.015) however there was no significant 

correlation with time to ECG changes at this visit.  

 

3.9  LCSX 

As mentioned in chapter 2, we followed 7 LCSX patients (those patient with typical 

angina, normal angiograms and normal exercise stress tests) to further investigate the 

utility of stress testing in the diagnosis of CSX. We found in chapter 2 that a normal EST 

at baseline heralded an excellent prognosis, with the majority of these patients 

recovering completely from their symptoms by their follow-up visit at visit 2, while the 

majority of CSX patients continued to suffer with symptoms.  

 

Importantly we found that LCSX patients had significantly lower CRPs than CSX 

patients, where the EST is required to be positive. CRP was 0.64 [0.35 to 0.81mg/L] vs 

1.57 [0.89 to 4.80mg/L]; Kruskal-Wallis Test Stat=15.1, adj. Sig=0.032. LCSX patients 

were no different to healthy controls in terms of CRP (adj. Sig=1.000). This data is 

illustrated in Figure 3.9. 
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Figure 3.9: A. Median CRPs compared between controls, CSX and LCSX groups. B. Kruskal-Wallis pairwise 
comparison demonstrating the significant difference between CSX and both LCSX and Controls. 

 

Similarly, SAA concentrations were also significantly lower at baseline in the LCSX 

group compared to CSX (1.42 [0.85 to 2.09mg/L] vs 4.95 [2.32 to 7.51mg/L]; p=0.05) 

while ICAM-1 levels trended lower by one-way ANOVA (255 ± 21 vs 353 ± 25ng/ml; 

p=0.065) being significantly lower by t-test (t21=-2.4, p=0.025). Again, there was no 

difference in terms of inflammatory biomarkers between LCSX and healthy controls. 

Interestingly, there was no significant difference between LCSX and CSX in terms of 

VCAM-1.  

 

In all, this hints that the EST, as well as being prognostically important, also selects 

patients with a distinct immune profile. This fact resembles the differences in CRP 

concentrations between CSX patients at visit 2 with positive versus negative EST’s 

where the EST again defined a group that differed in CRP concentrations. 



155 
 

3.10  Regression 

We examined the ability of baseline biomarkers and clinical parameters to predict 

those CSX patients who would have ongoing symptoms at follow-up using logistic 

regression analysis. All pretest assumptions were met. As shown in Chapter 2, baseline 

physical limitation score was an excellent predictor of follow-up EST positivity. Adding 

CRP to the model does not improve this predictive power (predicts only 87% of cases v 

93% with PLS alone) but remains significant (Nagelkerke R-square of 0.743, p=0.003 for 

the model). The best model for predicting follow-up EST positivity is baseline Duke 

treadmill score (DTS) combined with baseline CRP, which predicts 100% of patients 

with positive EST at follow-up (p<0.001) compared to DTS alone, which only predicts 

61% of positive cases. CRP is also reasonably good at predicting follow-up symptoms as 

determined by SAQ being able to predict 75% of people who will have had no or 

minimal symptoms (defined as an Angina Frequency Score of 100) at follow-up 

(Nagelkerke R-square of 0.334, p=0.03) and improves the predictive power of baseline 

PLS alone (together predicting 100% of asymptomatic cases at follow up, p<0.001). 

 

3.11  ROC curves 

We used Receiver Operating Characteristic curves to assess the ability of the various 

biomarkers to discriminate CSX patients from the overall cohort. Obviously, an 

elevated CRP is a non-specific finding but, as can be seen in Fig 3.10, we can select CSX 

subjects out from the study population quite well using CRP and reasonably well using 

SAA and ICAM-1. A cut-off concentration of 1mg/L of CRP gave a sensitivity of 71% and 

a specificity of 72% to detect CSX cases. A higher cut-off of 2mg/L gave near 100% 

specificity but the sensitivity dropped to under 50%. The overall area under the curve 

(AUC) for CRP was 0.794, which was better than SAA (0.689) and ICAM-1 (0.685). 
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Figure 3.10 ROC curves and landmark cut-off values for CRP (A), SAA (B) and ICAM-1 (C) for the detection 
of CSX in our cohort. 

 

CRP is even better at discriminating CSX from LCSX with an AUC of 0.815 (p=0.02) with 

a CRP of 1mg/L giving a 71% sensitivity and 86% specificity and 2mg/L giving 100% 

specificity and 40% sensitivity. Certainly an elevated CRP is not specific for CSX in a 

general population but it may have some utility in identifying CSX patients in a cohort 

of people with angina pectoris and normal coronary arteries. 

 

3.12  Principal component analysis 

PCA was performed on the 4 markers of vascular injury and predictably, a two-

component solution was found. Bartlett’s Test for Sphericity was significant (p<0.001), 

indicating that component analysis was appropriate. Both components met the Kaiser 

criterion (i.e. had Eigenvalues >1) and were above random data Eigenvalues as 

determined by parallel analysis. The oblimin rotation was used due to allow for 

correlation between the components. The solved structure and pattern matrices are 

shown below in Fig 3.11. Component one relates strongly to the two acute phase 

reactants while component 2 is focused on the markers of endothelial activation. Our 2 

components explain 83% of the variance seen in our original 4 parameters. 
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Figure 3.11: Output for Principal Component Analysis indicating a 2 component solution 

FS1= 0.452(CRP) + 0.520(SAA) +0.202(ICAM1)-0.106(VCAM-1) 

FS2= 0.019(CRP) – 0.135(SAA) + 0.421(ICAM1) + 0.746(VCAM-1) 

Thus factor 1 describes their acute phase reactants and factor 2 their vascular 

inflammation. Factor 1 is significantly different (U=385, n=38, p=0.001) in between the 

groups while factor 2 just fails to reach significance (p=0.06). 

 

Discussion 

3.13  Acute Phase Reactants 

To our knowledge this study is the first to prospectively examine a cohort of CSX 

patients in order to observe the relationship between changes in markers of 

inflammation and in symptoms. We have replicated the general finding that CRP is 

elevated in patients with CSX and have shown that this holds true even when patients 

are followed over time.  We have bolstered the idea that CSX patients have chronic 

low-grade systemic inflammation by also showing for the first time that serum amyloid 

A is similarly elevated. Of the two acute phase reactants studied, CRP shows more 

promise in terms of being a state molecule in CSX and even a possible effector 

molecule in the pathogenesis of this condition. 



158 
 

We found that CRP measurements distinguished a subset of CSX patients whose ESTs 

became symptomatically and electrically negative at their first follow-up visit. These 

patients, by definition, could be considered to no longer have CSX and were shown to 

have developed significantly lower CRP concentrations than those patients who 

continued to have a positive EST. It is important to note that there was no significant 

difference between the groups in terms of CRP at initial diagnosis. Additionally, the CRP 

in the overall CSX cohort fell back towards levels comparable to healthy controls by the 

end of follow-up as most of the patients had improved in terms of EST parameters and 

symptoms. These findings would suggest that CRP is a state marker of Cardiac 

Syndrome X.  

 

We also provided further evidence to suggest that CRP may be linked to the severity of 

symptoms. This was illustrated by the fact that CRP inversely correlated with time to 

symptoms on EST (a reproducible marker of symptom severity) at both baseline and at 

the second visit. CRP also tended to increase as time to ST-depression on EST (an 

objective measure of disease severity) decreased. Moreover, CRP concentrations fell 

on average in patients whose symptoms improved while the opposite occurred in 

patients whose symptoms worsened. It was also higher in patients who had more 

frequent angina at follow-up. Taken together with Cosin-Sales’ data relating CRP to 

disease activity in patients with chest pain and normal coronary arteries, the case for 

CRP as a state marker in CSX becomes compelling27. This is tempered, however, by the 

fact that another moderately large study of CSX patients failed to find a correlation 

between CRP and symptoms in CSX62. 

 

The relative importance of a positive EST in the diagnosis of CSX has been unclear. In 

modern diagnostic criteria a positive EST is an imperative for a diagnosis of CSX as it 

provides objective evidence of possible myocardial ischaemia in patients with typical 

angina pectoris. By comparing our CSX cohort with a LCSX cohort (where the EST is 
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normal), we have shown that a baseline positive EST in patients with angina and 

angiographically normal coronary arteries selects out a population that have higher 

CRP concentrations and who, incidentally, are more likely to have ongoing symptoms 

at follow-up. Conversely, a higher baseline CRP had a reasonably good AUC (0.815) to 

select out CSX patients from LCSX without performing an EST and could be used to 

diagnose and prognosticate in terms of symptom burden going forward in patients 

presenting with chest pain and normal coronary arteries. 

 

If CRP is indeed a state marker in CSX, the question becomes one of whether CRP is an 

innocent bystander or an active player in CSX disease activity. As noted in 3.1.1, CRP 

has the ability to affect vascular function. CRP certainly has the potential to directly 

induce endothelial dysfunction through the activation of LOX-1, an endothelial 

receptor that is also activated by oxidised-LDL and is thought to be involved in the 

development of atherosclerosis. LOX-1 activation can lead to NFκB activation, 

increased local inflammation and endothelial apoptosis with reduced endothelium-

dependent vascular smooth muscle relaxation 193. Moreover, CRP has been shown to 

inhibit endothelial prostacyclin synthesis, to reduce NO bioavailability and to be 

associated with increased coronary microvascular resistance 174. (See: Fig 3.12 Panels 

B,C below). 

 

Given then that CRP can induce the vasomotor dysfunction, a possible cause of 

symptoms in CSX, what causes the relatively elevated CRP in CSX patients? As noted in 

chapter 2, the prevalence of hyperlipidaemia in our CSX cohort was high and this is one 

of the most common causes of vascular inflammation via the formation of oxidised LDL 

and the activation of local effector cells (see figure 3.13 below). The prevalence of 

hyperlipidaemia was similar in the comparison control group, however, and the degree 

of inflammation in the CSX patients was still significantly higher.  
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Figure 3.12 Coronary microvascular dilation in response to exercise (believed to be blunted in CSX) and 
the possible impact of CRP thereon. A. Longitudinal cross-section of the microvasculature detailing the 
arteriole, capillary bed and draining venule in the myocardium. Inset shows a cross-section of the 
arteriole. During exercise the vascular smooth muscle cells (VSMCs) in the arteriolar walls relax allowing 
increased luminal diameter and blood flow. B. Cross-section of the arteriolar wall showing pathways 
responsible for vasodilation. Steps that are affected by CRP are delineated by dotted lines with empty 
triangles. C. Diagram showing the possible role of CRP as an effector agent in microvascular dysfunction 
in CSX. A2- Adenosine receptor 2; AA-Arachidonic Acid; β2- β2 adrenoceptor; COX- Cyclo-oxygenase; 
CYP- Cytochrome P450; EC- Endothelial Cell; EET- Epoxyeicosatrienoic acid; eNOS-Endothelial Nitric 
Oxide Synthase; IP- Prostacyclin Receptor; LOX1- Lectin-type Oxidised LDL Receptor 1; PGI2- Prostacyclin. 
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Figure 3.13: Effects of oxLDL on the vascular wall. When LDL becomes trapped in the subendothelial 
space it becomes oxidised by local chemicals. The oxLDL then binds to CD36 receptors on nearby cells. It 
triggers phenotype switching in VSMCs, increasing cytokine release and reducing contractile 
responsiveness. It activates local tissue macrophages, upregulating their CD36 expression, thereby 
increasing their uptake of oxLDL forming foam cells, an important source of pro-inflammatory cytokines. 
ECs are activated via CD36 and LOX1 pathways. Adhesion molecule expression, cytokine release and 
oxidative stress are all increased while NO bioavailability is reduced. 

AP-1 -Activator Protein-1; EC- Endothelial Cell; eNOS- Endothelial Nitric Oxide Synthase; E-Sel- E-Selectin; 
IL- Interleukin; MAPK- Mitogen Activated Protein Kinase; MCP- Monocyte Chemoattractant Protein; 
NFκB -Nuclear Factor Kappa-light-chain-enhancer of Activated B Cells; NO- Nitric Oxide; NOX- NADPH 
Oxidase; ROS- Reactive Oxygen Species; Src- Src Family Kinase; VSMC- Vascular Smooth Muscle Cell. 

 

It should also be noted that CRP can be elevated in purely stress-related conditions. 

Studies have attempted to identify possible infective pathogens as triggers for 

inflammation in CSX (such as H. Pylori) without success62. Diet, demographics and 

subclinical infections may also trigger minor elevations in CRP194. The ultimate cause 

remains elusive and it may be that several separate causes exist and trigger an 
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elevation of CRP with the eventual result of endothelial dysfunction and symptoms in 

susceptible individuals (as many patients with much higher CRP levels do not suffer 

from microvascular angina). It must also be stressed, however, that CSX patients only 

have minor elevations in CRP concentrations and indeed they have CRP concentration 

within the normal range, despite being significantly greater than that seen in healthy 

controls. Minor CRP elevations are commonly seen and may just represent tissue injury 

from multiple vascular insults rather than being a causative agent in the pathogenesis 

of CSX. 

 

On balance, we believe that CRP fulfils several of the Bradford-Hill criteria for causal 

association with the symptoms of CSX. CRP is consistently elevated in CSX, there 

appears to be a dose-response relationship between symptoms and CRP, the condition 

reverses when CRP falls and there is a biologically plausible pathway for its action. 

Serum Amyloid A also has the potential to affect endothelial function and so the 

demonstration that it is elevated in CSX may have similar relevance to that of CRP. 

Unlike CRP, however, we could find no relationship in our study population between 

SAA levels and markers of disease activity other than the observation that as time 

passed the SAA levels in the overall improved CSX population fell back towards normal. 

 

3.14  Endothelial Activation 

As well as showing that our patients had general inflammation, we were able to 

illustrate that they had evidence of endothelial activation. Both ICAM-1 and VCAM-1 

were elevated in our patients with CSX compared with healthy controls and this 

elevation was also seen through the period of follow-up. There was a correlation 

between acute phase reactants and adhesion molecules indicating that they may be 

responding to the same stimulus, that the endothelial activation is dependent on 

general inflammation or that the endothelial activation is driving general inflammation. 

Unfortunately, apart from demonstrating increased levels of markers of endothelial 
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activation in CSX, we were unable to demonstrate a close relationship between 

concentrations of VCAM or ICAM and markers of disease activity. This was probably 

due to the small size of our study population. 

 

The presence of endothelial activation in itself is, however, a very important finding in 

CSX as it supports the notion of microvascular dysfunction being integral to the 

pathogenesis of the condition. Upregulation of adhesion molecule expression on the 

endothelium indicates an activated state. As described further in chapter 1.4.3, 

endothelial activation is usually in response to an extrinsic insult such as oxidative 

stress, hypertension, dyslipidaemia or an inflammatory stimulus. As well as increasing 

the recruitment of inflammatory cells to the local microenvironment and being pro-

thrombotic, endothelial activation reduces the bioavailability of many endothelial-

derived vasodilating substances such as prostacyclin and nitric oxide. It is known to be 

associated with the blunting of flow-mediated dilation of arteries and with diminished 

coronary flow reserve191. Impaired coronary microvascular reactivity due to endothelial 

activation is the most common theory in most papers regarding CSX pathogenesis and 

our study supports this hypothesis.  

 

3.15  Limitations 

The small number of patients in this study certainly under-powered it for some of the 

parameters and limited our ability to measure significant differences. Numbers were 

limited by the availability of patients at the recruitment centres during the recruitment 

period. Consecutive appropriate patients were enrolled but the overall incidence of 

CSX in Ireland was much lower than anticipated. Despite this, the fact that the study 

included a repeated-measures design allowed us to compare our sample with the 

healthy controls over several time points. The fact that the main significant findings 

were consistently found is reassuring. Also the stringent inclusion/exclusion criteria 
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were designed to ensure that every patient meeting them had true CSX. A study with a 

larger sample group would help to confirm the findings of this study.  

 

Exercise stress testing is an imperfect tool for detecting possible ischaemia with the 

possibility of recording false positive or negative results. Ideally this type of study could 

be performed using cardiac magnetic resonance imaging to more definitively 

demonstrate ischaemia. Changes in the degree of hypoperfusion over time as detected 

by CMR could be correlated with changes in inflammatory biomarkers. A further 

approach would be to diagnose the patients using coronary reactivity testing, an 

invasive approach but one likely to become the gold standard in diagnosing 

microvascular angina in the future. The advantages of EST, however, include its low 

cost, safety, wide availability and that it also allows the objective assessment of the 

patient’s functional status. 

 

It would have been interesting to have included a small cohort of patients with 

obstructive coronary artery disease in our study as this would have allowed us to 

compare CRP concentrations in more symptomatic patients with that of our CSX 

population. Similarly, it would have been useful to include another cohort of patients 

with atypical chest pain, a positive EST and normal coronary angiogram to compare so 

that we could see which of the diagnostic criteria are important in CSX. Certainly our 

data suggests that the EST is of great importance in the diagnosis of CSX as it defines an 

entirely distinct population in terms of markers of vascular injury and prognosis. The 

answer to the question, “how important is the nature of chest pain in the diagnosis of 

Cardiac Syndrome X?” has not been answered. It may be that the nature of the chest 

pain is not as critical. Unfortunately, time and funding constraints prevented the 

pursuit of an answer to this question. 
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Conclusions 

Our small study demonstrates that CSX patients have mild systemic inflammation and 

evidence of endothelial activation. Both of these facts support the notion of 

microvascular endothelial dysfunction in CSX. This is the first time that SAA has been 

shown to be elevated in CSX. CRP is also identified as a feature of CSX and our study 

adds credence to the idea that CRP is an active mediator of symptoms in Cardiac 

Syndrome X. We demonstrate a novel finding that CRP remains significantly higher in 

CSX patients who remain symptomatic than in either healthy controls or CSX patients in 

whom symptoms abate over a short period of follow-up. In addition, we show that, in 

our patients, symptom severity as measured by EST performance correlates 

significantly with contemporaneous CRP concentrations. We also highlight the 

importance of an electrically positive stress test in the diagnosis of CSX. This test 

distinguishes CSX patients from other patients with angina and normal coronary 

arteries. These two populations are shown to be distinct in terms of acute phase 

reactants, markers of endothelial activity and prognosis. We also found that CSX 

patients with lower CRP concentrations, better physical limitation scores and better 

Duke Treadmill Scores are more likely to have early resolution of symptoms than those 

patients with more symptoms and a greater burden of inflammation. The basis for the 

pro-inflammatory state in CSX remains unknown. 
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Chapter 4: Cytokine Expression in CSX 
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Introduction 

4.1  Chapter Overview 

Having established that our CSX cohort has mild baseline elevation of acute phase 

reactants and markers of endothelial activation, thereby conforming with the results of 

the majority of reported CSX studies, the next step was to evaluate the potential 

mechanism of immune activation in CSX with particular interest in the cause for the 

persistently elevated acute phase reactants. APRs are just that, an acute response to an 

inflammatory stimulus. Their production is mainly regulated by cytokines and a handful 

of studies have demonstrated elevated cytokines, including TNFα, IL-6 and IL-10, in CSX 

populations63,155,195. Indeed, higher levels of these cytokines have been shown to 

associate with reduced myocardial perfusion on cardiac MRI188. There is some evidence 

that peripheral mononuclear cells (PMCs), a key source of pro-inflammatory cytokines, 

are activated in CSX and contribute to oxidative stress and endothelial dysfunction in 

CSX. The role of cytokines in the persistent inflammatory response seen in CSX has not 

been clearly elucidated. Given also that half of our population improved over time, the 

changes in cytokines in these patients would also be of interest as one may potentially 

infer pathogenesis from the differential cytokine profile displayed in these CSX patient 

sub-groups. 

 

4.2  Cytokines  

Cytokines are soluble polypeptides that play a major role in the intercellular 

communication that orchestrates the immune response. Many cell types, from 

lymphocytes to epithelial cells, are capable of releasing cytokines in order to 

communicate in a paracrine, autocrine or systemic humoral capacity. Each cell type has 

a particular repertoire of cytokines that they are capable of producing in response to a 

stimulus such as tissue injury, oxidative stress, ischaemia, shear stress and other 

cytokines. Indeed, cytokines frequently regulate the production of other cytokines in a 

complicated web of interactions. Cytokines display pleiotropy and redundancy, 
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meaning that each cytokine has varied effects and that several cytokines have the 

same effect. They may have local and systemic repercussions and cause these through 

interactions with receptors resulting in alterations in gene transcription.  

 

4.2.1  Classification conventions 

There is no standardised method for the classification of cytokines but they may 

usefully be classified by several different systems. For example, one may examine the 

cytokines that typify an innate immune response (mediated mainly through 

complement, physical barriers and phagocytes such as macrophages and neutrophils) 

or that are more typical of an adaptive immune response (i.e. one driven mainly by T 

and B-lymphocytes). Equally validly, one could examine the cytokines seen in an acute 

inflammatory response as opposed to a chronic one. The cell of origin could also be 

used to distinguish cytokines with lymphokines being produced by lymphocytes and 

monokines being produced by macrophages and monocytes. A well-used classification 

describes type 1 and type 2 cytokines with type 1 referring to cytokines mainly 

produced by Th1 Helper T-lymphocytes to promote a cellular immune response against 

an extracellular pathogen and type 2 identifying Th2-cell cytokines activating a humoral 

response against intracellular agents. These two pathways mutually inhibit each other. 

The simplest concept of classification involves the subdivision of cytokines into pro- 

and anti-inflammatory substances but this is rendered complex by the aforementioned 

pleiotropy of cytokines with some being pro-inflammatory in certain situations and 

anti-inflammatory in others. In short there is no perfect way to classify cytokines but 

for our purposes we broadly classify our cytokines into pro-inflammatory and anti-

inflammatory with further reference to type 1 and type 2 cytokines. The various 

categories and the appropriate cytokines are shown below in table 4.1. As one may 

appreciate, there is considerable overlap between the classification systems.  
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Classification Parameter  Main cytokines 

Timing Acute inflammation TNFα, IL-1, IL-5, IL-6, IL-8, IL-11, IL-17, GM-
CSF 

 Chronic Inflammation Humoral IL-4, IL-5, IL-6, IL-7, IL-13; Cellular IL-
1, IL-2, IL-3, IL-4, IL-7, IL-9, IL-10, IL-12, IFNγ, 
TNFα 

System Innate Immunity TNFα, IL-1, IL-12, IFNα 

 Adaptive Immunity IL-2, IL-4, IL-5, IL-17, IFNγ 

Cell of Origin Monokine IL-1, TNFα, IFNα/β 

 Lymphokine IL-2, IL-3, IL-4, IL-5, IL-6, IFNγ, GM-CSF 

Response Type Type 1  IL-2, IL-10, IFNγ, TNFβ 

 Type 2  IL-4, IL-5, IL-6, IL-9, IL-10, IL-13 

Effect Type Anti-inflammatory IL-4, (IL-6), IL-10, IL-13, TGFβ 

 Pro-inflammatory IL-1, IL-6, TNFα, IFNγ 
 

Table 4.1: Classification systems for cytokines. 

 

4.2.2  Principal Vascular Cytokines 

There are many different cytokines but for the purposes of this chapter we shall limit 

our discussion to the cytokines with most relevance to vascular function and describe 

their cardiovascular impacts.  

 

Tumour necrosis factor alpha (TNFα) is a mediator of the acute inflammatory response. 

It is primarily released by activated mononuclear phagocytes, principally monocytes 

and macrophages, but may also be released by neutrophils, vascular smooth muscle 

cells and even endothelial cells196. These cells may be activated by extrinsic pathogens 

or other cytokines such as interferon gamma (IFNγ). TNF α activates NFκB and 

upregulates the expression of the adhesion molecules VCAM-1 and ICAM-1. It also 

increases the production of reactive oxygen species (ROS) via increased NADPH oxidase 
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activity thereby increasing oxidative stress. Furthermore, TNF has been shown to 

uncouple the activity of eNOS and to enhance AT1R receptor expression and endothelin 

production, thereby reducing vasorelaxation. Other effects include the induction of 

apoptosis in endothelial cells by high plasma concentrations while TNFα also promotes 

the production of acute phase reactants such as CRP and SAA from the liver. IL-1 is 

functionally very similar to TNFα, may be produced by endothelial cells and induces 

similar vascular effects. 

 

Interferon-gamma (IFNγ) is the typical cytokine produced by activated Th1 Helper T-

lymphocytes and NK cells. Its primary function is to activate macrophages, causing 

them to release cytokines and upregulating their ROS-producing machinery thereby 

equipping them to deal with extracellular pathogens. Apart from augmenting the local 

vascular inflammatory response, IFN has also been shown to upregulate endothelin 

activity in the vasculature and to assist TNF-induced expression of adhesion molecules 

on endothelial cells. It also stimulates the production of superoxide radicals in 

endothelial cells themselves197. IL-6 is released by activated T-cells, macrophages, 

VSMCs and endothelial cells and is a potent stimulus for hepatic production of acute 

phase reactants. It is produced by adventitial monocytes as part of vascular 

inflammation in response to Angiotensin II, cytokines (such as IL-1 and TNFα), oxidative 

stress and vascular injury and, like hsCRP, has been shown to independently predict 

cardiovascular risk. It upregulates Angiotensin II Type-1 receptor (AT1R) gene 

expression and is implicated in the regulation of oxidative stress in endothelial cells198. 

IL-6 levels have been seen to negatively correlate with endothelium-dependent 

vasodilation199. IL-8 is the main chemokine responsible for the recruitment of 

phagocytes to the sub-endothelial space in atherosclerotic plaques and is released by 

macrophages and monocytes. IL-5 is an important type 2 cytokine released by Th2 

CD4+ T-cells and mast cells. It stimulates eosinophil activation and the proliferation of 

B-cells. 
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Finally, IL-10 is the other side of the coin. It is the main anti-inflammatory cytokine and 

is an inhibitor of activated macrophages. It generally opposes the actions of TNFα and 

reduces TNF release from macrophages. It may be released by monocytes, 

Lymphocytes and epithelial cells. It has been shown to reduce oxidative stress by 

reducing iNOS and cytokine release by T-cells while also playing a role in anergy 

induction. More interestingly it has been shown to inhibit the deleterious effects of 

angiotensin II, diabetes and ageing on vascular cells, preventing oxidative stress and 

vascular dysfunction200-202. It generally preserves normal vascular function through the 

inhibition of iNOS with the consequent reduction of oxidative stress. 

 

4.2.3  Cytokines in Cardiovascular Disease  

4.2.3.1 Ischaemic Heart Disease 

Inflammation has been implicated in several important cardiovascular conditions. The 

best described of these is atherosclerosis, the process of blood vessel wall injury with 

the initiation of a local pro-inflammatory microenvironment followed by the alteration 

of local cytoarchitecture with resultant remodelling of the vessel wall itself. A primary 

driver of this inflammation is believed to be oxidised Low Density Lipoprotein (LDL), 

which provides a potent pro-inflammatory stimulus in susceptible areas of intima. 

These areas are generally regions of turbulent or disrupted blood flow where the usual 

laminar shear stress is perturbed. The endothelium responds to oscillatory shear stress 

by reducing Kruppel-like Factor-2 (KLF-2) activity and allowing the unfettered activation 

of NFκB, a transcription factor that activates several pro-inflammatory cascades. This 

switches the endothelium to its dysfunctional and activated phenotype, with the 

increased expression of cellular adhesion molecules as well as increased permeability 

and release of chemokines. This in turn promotes the recruitment of monocytes to the 

vessel wall where they interact with local LDL particles, which have also seeped 

through the disrupted endothelial barrier, by the activity of scavenger receptors. The 

monocytes become activated macrophages and release TNFα, IL-6 and IL-1 as well as 

increasing local reactive oxygen species production through the upregulation of NADPH 
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oxidase activity. These pro-inflammatory cytokines recruit T-cells and more 

macrophages to the locality as well as triggering phenotype switching in local VSMCs 

and further potentiating endothelial activation. T-cells attracted by the local 

inflammation are typically of the Th1 subtype. These respond to oxLDL and heat shock 

proteins to release IFNγ and more TNFα, thereby further stimulating TNFα release from 

local monocytes and the vicious cycle continues with local inflammation, endothelial 

activation, VSMC apoptosis and matrix metalloproteinase production expression with 

tissue breakdown.  The ultimate result of severe atherosclerosis is myocardial 

infarction and this has been repeatedly shown to be associated with large elevations in 

the pro-inflammatory cytokines TNFα, IL-6 and IL-1203.  

 

4.2.3.2 Vasospastic Conditions 

Inflammation has also been observed in several disorders characterised by altered 

blood vessel tone with certain cytokines believed to predispose blood vessels to 

undergo spasm. The most obvious example of this is Prinzmetal angina, a condition in 

which the epicardial coronary arteries go into transient occlusive spasm with resulting 

typical angina pectoris and associated ST-elevation on ECG. Another extreme example 

of this is in Takotsubo cardiomyopathy where catecholamines cause such significant 

vasospasm that a myocardial infarction supervenes. Similarly, allergic immune 

activation may also lead to acute coronary syndrome in the relatively rare Kounis 

Syndrome where mast cell activation leads to coronary vasospasm204. In these 

conditions, pro-inflammatory cytokines such as TNF, IL-6 and IL-1β are associated with 

increased tendency towards acute epicardial coronary arterial spasm and may be 

described as spasmogenic. Inflammatory cytokines are known to sensitise blood 

vessels to vasoconstrictor substances through the upregulation of Angiotensin (ATII) 

and endothelin receptor (ET-1) upregulation.  Experimentally, predisposition to spasm 

may be induced through the application of IL-1β onto in vitro arteries205. CRP and IL-6 

have also been shown to be elevated in patients with vasospastic angina and levels 

have appeared to correlate with disease severity206,207.  
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4.2.3.3 Heart Failure 

Cytokines are also elevated in both traditional heart failure (with a reduced ejection 

fraction) and the modern epidemic of heart failure with preserved ejection fraction 

(HFPEF). Studies have shown that HFPEF is associated with a pro-inflammatory 

phenotype with increased TNFα, IL-1β and IL-6208. Simple hypertension, the main cause 

of HFPEF, may also be associated with raised TNFα and IL-6, possibly through the 

effects of the angiotensin and sympathetic nervous systems209.  

 

4.2.3.4 Cardiac Syndrome X 

There have been a handful of studies that have evaluated the role of cytokines in CSX 

and these have produced conflicting results. The most recent and largest of these 

studies showed an elevation of IL-6 and IL-10 in 111 CSX patients. Strangely there was 

no elevation of CRP seen in these patients and plasma levels of TNFα were lower than 

that seen in healthy controls195. Other smaller studies, however, have shown elevation 

of TNFα and IL-6 in CSX patients63,155. To date there is no evidence for IFNγ elevation 

but increased IFNγ receptor subunit expression has been observed in Peripheral Blood 

Mononuclear Cells (PBMCs) in CSX210. 

 

4.3  Chapter Objectives 

The presence of inflammation in CSX is generally accepted. The ultimate cause of this 

inflammation, however, remains obscured. The analysis of the cytokine profile in CSX 

may allow one to infer the likely cell types responsible for the persistence of 

inflammation and therefore lead to possible explanation as to the causes of the 

immune activation ab initio. As we have seen in chapter 3, our CSX cohort has evidence 

of chronically raised APRs with mild resolution of inflammation over time. It will be 

interesting to see the concurrent changes in cytokine expression that follow these 

alterations in acute phase reactants over time.  The aims of this chapter are as follows: 
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1. We aim to investigate the baseline cytokine profile in our CSX patients. We will 

attempt to identify a pattern in this profile and hypothesise as to the likely cells of 

origin for the expressed cytokines. For example, IFNγ may indicate the involvement 

of Th1 cells, while TNFα may implicate mononuclear phagocytes etc. 

2. Having established the nature and magnitude of the cytokine expression in CSX we 

will attempt to correlate these with the degree of expression of acute phase 

proteins and adhesion molecules as elucidated in chapter 3. 

3. We will also investigate if the observed symptoms are greater in patients with 

greater cytokine expression. In essence we will try to correlate cytokine 

concentrations with symptoms and objective EST findings. 

4. Knowing that some of our cohort improved symptomatically over time, we will 

investigate the differential expression of cytokines in these patients with the hope 

that we may see a discernible pattern that may implicate a particular cytokine in 

the causation of symptoms in CSX. 

5. We finally hope to make appropriate inferences from the data provided to 

characterise the inflammation seen in CSX. Is it chronic in nature? Is the innate or 

adaptive immune system implicated? Is the immune response primarily cellular or 

humoral? 

 

Methods 

4.4  Participants 

Participants from the original study cohort described in chapter 2 also comprised the 

study population for this chapter211. Seventeen symptomatic CSX patients were 

identified and enrolled from the catheterisation lab in Cork University Hospital while 21 

age- and sex-matched controls were also identified. The 7 LCSX patients were again 

considered. Study participants were between 42-69 years of age and were 

predominantly female. Exclusion criteria included the use of anti-inflammatories 

(including NSAIDs, steroids etc.) in the month prior to enrolment or the presence of a 
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systemic inflammatory condition (such as known renal or liver disease, connective 

tissue disease or active infection). CSX and LCSX patients were followed at visit 2 (at 8.2 

± 0.7 months) and CSX patients were followed at a further visit 3 (at 16.8 ± 0.7 

months). The study protocol was approved by the local research ethics committee and 

all participants gave full informed consent. 

 

4.5  Investigations 

Seattle angina questionnaires (SAQ), Cohen Perceived Stress Scale (PSS-10) and 

Brugha’s List of Threatening Experiences (LTE-Q) were administered as outlined in 

Chapter 2.3. Also, Exercise Stress Testing (EST) and venesection were performed as 

previously outlined. 

 

4.6  Measurement of Plasma Cytokines 

Levels of IFNγ, IL-2, IL-4, IL-5, IL-10, IL-12p70 and IL-13 were assessed using the 

commercially available high-sensitivity Mesoscale Discovery (Rockville, MD, USA) 

Human Th1/Th2 7-plex Ultra-Sensitive Kit, which employs electrochemiluminescence to 

allow the detection of Type 1 and Type 2 Cytokines. A custom Mesoscale Discovery 

Human Pro-Inflammatory Panel Kit was also used to determine quantities of IFNγ, IL-

1β, IL-6, IL-8 and TNFα. Both kits employed similar standard protocols. Samples were 

run in duplicate and included standard calibrator dilutions to establish standard curves. 

No sample dilutions were performed based on past experience with these particular 

plates. Results with a co-efficient of variation <25% were deemed acceptable for 

inclusion in analysis. The median lower limits of are shown in table 4.2 in section 4.8 

below. 
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4.7  Data analysis 

Data was analysed using SPSS v 20 for windows (IBM, Armonk, NY, USA). Data was 

expressed as mean ± SEM if it was normally distributed. Some data (such as IL-6 

concentrations) were strongly positively skewed but were normalised with a simple 

reciprocal transformation. Some data (such as IL-10 concentrations) could not be 

normalised and are reported as median [IQR]. Means were compared using student t-

tests or one-way ANOVA with Bonferroni correction where appropriate. Non-

parametric data were compared using the Mann-Whitney U-test or Kruskal-Wallis test 

as appropriate. Repeated measures were compared using paired sample T-test or 

repeated measures ANOVA as specified for normally distributed data and Related 

Samples Friedman’s Two-Way Analysis of Variance by rank for skewed data. 

Correlations were investigated using Spearman’s Rank Correlation. Missing data was 

only imputed if >15% of sample data were missing and this only occurred for IL-10. All p 

values are two-tailed and calculated to 0.05 significance levels. 

 

Results 

4.8  Data Quality 

Table 4.2 demonstrates the overall quality of the data obtained from the analyses. It 

becomes apparent that the MSD TH1/TH2 plates gave a poor overall quality of data. 

Only IL-5 and IL-10 gave useful data from these plates. The remaining cytokines 

appeared to be present in levels below the LLOD (see figure 4.1). The pro-inflammatory 

panel on the other hand, gave excellent data throughout.  
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Table 4.2 QC of Cytokine Measurement. CV- Co-efficient of Variation. LLOD- Lower Limit of Detection. 

 

  

Figure 4.1: A. Plot showing the Standard Curve (blue) and sample signals (red dots) for TNFα on the Pro-
Inflammatory Plate. Note that all of the samples fall on the linear part of the calibration curve in the 
detection range. B. Similar plot for IL-2 on the TH1/TH2 Plate. Note that most samples fall below the 
LLOD or do not fall on the linear part of the standard curve. 

 

Only IL-5 and IL-10 data was salvageable from the Th1/Th2 plates. As can be seen in 

table 4.2, 89% of baseline IL-5 data and 66% of baseline IL-10 data was in the detection 

Cytokine Median LLOD 

(pg/ml) 

Average CV 

observed (%) 

Missing 

Cases 

(below LLOD) 

Excluded 

Cases 

(CV>25%) 

Total 

Cases 

Analysed 

IFNγ1 0.55 33.7±4.7 20 8 17 

IL-2 0.43 67±10.5 35 1 9 

IL-4 0.16 None detected 45 0 0 

IL-5 0.07 13.9±2.7 1 4 40 

IL-10 0.51 14.9±2.5 6 10 29 

IL-12p70 2.0 22.0±5.6 30 4 11 

IL-13 1.3 28±7.3 34 4 7 

IL-1β 0.04 7.3±1.2 0 2 43 

IFNγ2 0.20 7.2±1.2 0 0 45 

IL-6 0.06 8.1±2.4 0 1 44 

IL-8 0.04 5.1±0.9 0 1 44 

TNFα 0.04 6.2±0.6 0 0 45 
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range of the assay with a CV of <25% between duplicate samples. Between the 3 time 

points, 15.9% of all values were missing. Missing data was treated as missing at random 

following a missing value pattern analysis in SPSS (see figure 4.2. below). Missing values 

were imputed using multiple imputation (linear regression method). 

 

 

Figure 4.2: Missing Data Analysis prior to multiple imputation. A. Pie charts showing the number of cases 
with at least one missing value and also the overall number of missing values. B. Missing Value Pattern 
grid showing no monotonic pattern in our dataset.  

 

4.9  Pro-inflammatory cytokines 

4.9.1  Baseline 

Baseline IFNγ was elevated in CSX patients (8.7 ± 1.3 vs. 5.8 ± 0.5; mean difference 3.0, 

95% CI 0.39 to 5.6 pg/ml, p=0.04). Interestingly, IL-1β was no different between groups 

and if anything trended lower CSX patients (0.25 ± 0.02 vs. 0.19 ±0.03 pg/ml, MWU 

121, p=0.15). IL-6 was significantly higher in the CSX population (1.50[1.01 to 2.05] vs. 

0.60 [0.46 to 0.74]pg/ml). The reciprocal transformation gave a significant t-test value 

of t36=-5.3, p<0.001. There was no significant difference in IL-8 levels at baseline 

(p=0.642). TNFα levels trended towards being significantly higher at baseline (2.49 ± 

0.2 vs. 2.08 ± 0.11 pg/ml; t36=1.9, p=0.06). 
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Figure 4.3: Baseline pro-inflammatory cytokines in healthy controls and CSX patients. 

 

4.9.2  Follow-up 

Broadly speaking, IFNγ concentrations were persistently elevated in the CSX group until 

the end of follow-up. It remained significantly higher at visit 2 (8.1 [4.0 to 13.0] vs. 5.0 

[4.0 to 7.5] pg/ml; H=18.6, adjusted p=0.039) but only trended so at visit 3 (p=0.07). 

There was no significant difference between CSX patients and controls in terms of IL-1β 

at follow-up, although the concentration of this cytokine had increased significantly 

(paired sample t-test t16=3.1, p=0.007) in the CSX cohort from visit 1 to visit 2 and this 

remained the case at visit 3 (W=117, p=0.01). Perhaps the most striking change in 

cytokines was the precipitous drop in IL-6 concentrations to control levels at the first 

follow-up visit (adj p=1.0 between controls and CSX group at visit 2 and 3; Related 
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Samples Friedman’s Two-Way Analysis of Variance by rank Q=18.875, adjusted p<0.001 

for CSX baseline to visit 2 and adjusted p=0.002 for Baseline CSX to visit 3). IL-8 

concentrations were similar across all time periods.  

 

Despite the cohort becoming less symptomatic, TNFα concentrations increased over 

time. A repeated measures ANOVA with a Greenhouse-Geisser correction determined 

that the mean concentration differed significantly between the 3 time points 

(F(1.53,22.98)=4.23, p=0.036) but post-hoc testing with Bonferroni correction showed 

only a trend towards a higher TNFα at visit 3 (p=0.08). Follow-up TNFα in the CSX group 

did differ from control TNFα at both time points, however (mean difference 0.69 ± 

0.24pg/ml, p=0.042 at visit 2; mean difference 0.79 ± 0.25pg/ml, p=0.015 at visit 3). 

 

 

Figure 4.4: Pro-inflammatory cytokines at follow-up visits in the CSX cohort. Asterisks refer to 
significance versus healthy controls with correction for repeated measures. The cross refers to 
comparison with the baseline CSX value. 

 

4.9.3  Cytokines by Clinical Outcome 

Given that our sample size was small and that the overall changes in absolute cytokine 

concentrations were low, it is not surprising that there was no consistently significant 
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signal of cytokine change in patients who improved in terms of disease severity. There 

was a general trend towards greater drops in IL-6 concentrations in patients whose 

symptoms had improved but these did not reach statistical significance (p-values 0.08-

0.12) and were influenced by an extreme outlier value as shown in figure 4.5 below.  

 

 

Figure 4.5: Changes in IL-6 concentration from baseline at Visit 2 (Panel A) and Visit 3 (Panel B) in 
patients who symptomatically improved and those whose EST normalised. 

 

4.10  Type 2 Cytokines 

4.10.1  Baseline IL-5 and IL-10 

There was no significant difference in baseline IL-5 or IL-10 between the two groups 

(U=156, p=0.670; and U=147, p=0.497 respectively). Both datasets were strongly 

positively skewed and no simple transformation could normalise the data distribution. 

IL-5 concentrations were 1.11 [0.44 to 1.58 pg/ml] in the control group and 1.03 [0.75 
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to 3.1 pg/ml] in the CSX group while IL-10 concentrations were 2.23 [1.76 to 3.71 

pg/ml] in the Control group and 2.97 [1.45 to 4.74 pg/ml] in the CSX group. 

 

4.10.2  Follow-up IL-5 and IL-10 

There was no significant change in IL-5 or IL-10 at follow-up. Median IL-10 had 

increased to 3.6 [2.6 to 5.8 pg/ml] but this was a non-significant change from baseline 

(p=0.13) while IL-5 also increased non-significantly to 1.6 [0.8 to 3.6] by the end of 

follow-up.  

 

Figure 4.6: A. Bar chart depicting the longitudinal results of IL-5 concentrations in CSX patients compared 
with healthy controls. B. Bar chart illustrating IL-10 concentrations over time in the same populations. 

 

4.10.3  IL-5, IL-10 and Clinical Outcomes 

There were no significant differences in IL-5 or IL-10 concentrations in those CSX 

patients that improved in terms of symptoms or EST findings and those that did not. 

 

4.10.4  IL-6:IL-10 ratio 

The IL-6:IL-10 ratio dropped significantly as a result of the overall reduction in IL-6 

concentrations and the mild trend towards IL-10 increases. The ratio improved more in 

patients whose symptoms resolved than in the symptomatic cohort at follow-up and 
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the absolute ratio was lower in asymptomatic patients at visit 3 (p=0.04, see figure 4.7 

below). 

 

Figure 4.7: A. Box plot showing the relative change in IL-6:IL-10 ratio in CSX patients whose symptoms 
had resolved (n=4) at follow up and those who remained symptomatic (n=13). B. Absolute IL-6:IL-10 
ratios in patients whose symptoms had resolved at visit 3 (n=4) and those who remained symptomatic 
(n=12). 

 

4.11  Correlations 

There was a strong correlation between baseline IFNγ and TNFα (rs=0.538, df=36, 

p<0.001) in the overall group, which was also observed consistently in the CSX cohort 

at all time points (rs=0.672, df=15, p=0.003 at baseline, rs=0.654, df=15, p=0.004 for 

visit 2 and rs=0.624, df=14, p=0.01) as shown in figure 4.8 Panels A and B below. 

Baseline IL-1 also strongly correlated with IL-8 concentrations in the overall cohort 

(rs=0.549, df=36, p<0.001) and in the CSX group (rs=0.821, df=15, p<0.001), which is 

expected as IL-1β is an inducer of IL-8 expression. Predictably, IL-6 concentrations 

correlated closely with TNFα levels (rs=0.545, df=36, p<0.001; See Fig. 4.8 Panel C) but 

this did not reach significance for the CSX cohort on its own (p=0.09). IL-5 and IL-10 

concentrations correlated strongly in the entire cohort (rs=0.656, df=36, p<0.001) and 

at all time points in the CSX group (rs=0.600, df=14, p=0.014 at baseline, rs=0.770, df=8, 

p=0.009 at visit 2 and rs=0.771, df=13, p=0.001 at visit 3) but these data are positively 

skewed. There was a moderate correlation between the IL-6 concentrations and CRP 
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and SAA concentrations (rs=0.468, df=35, p=0.003 and rs=0.432, df=35, p=0.008 

respectively), although this was not seen in the smaller CSX population. There were no 

significant correlations between cytokines and age, BMI or cholesterol concentrations. 

 

 

Figure 4.8: A. Scatter plot of IFN and TNF concentrations at baseline in all participants. B. Scatter plot 
showing IFN and TNF concentrations at all three time points in the CSX group. C. Scatter plot showing the 
correlation between baseline TNF and 1/IL6 in all participants. D. Scatter plot showing the correlation 
between the square root of the baseline CRP concentration and the reciprocally transformed baseline IL-
6 concentrations in all comers.  

 

4.12  LCSX 

LCSX patients’ plasma IFNγ concentrations did not differ significantly from healthy 

controls (mean difference 0.12, 95% CI -3.8 to 4.1pg/ml) or from the CSX group (mean 

difference -2.85; 95% CI -6.9 to 1.2pg/ml). Similarly, there was no difference in TNFα 
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concentrations between LCSX and healthy controls (mean difference 0.12, 95% CI -0.64 

to 0.89pg/ml). There was a slight trend towards higher IL-6 in the LCSX patients (adj. 

significance 0.09) compared to the HC group. There was no significant difference in 

concentrations of IL-5 and IL-10 between the three groups. 

 

4.13  Regression 

Logistic regression analysis was performed to investigate the effects of baseline 

cytokines on clinical outcomes in our CSX patients. All pre-test assumptions including 

the absence of multicollinearity were met. While a model using baseline IL-6 and TNFα 

to predict symptomatic improvement (as assessed by the Seattle Angina Questionnaire 

PLS at the end of follow-up) was statistically significant (χ2(2)=9.62, p=0.008, explaining 

73% (Nagelkerke R2) of the variance and correctly predicting 87.5% of the outcomes), 

neither of the beta-coefficients in the variables output reached significance. 

 

4.14  ROC 

 

Figure 4.9: ROC curves for IL-6, IFN and TNFa to identify CSX patients from overall study population. 
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Receiver Operating Characteristic Curves were drawn for each of the significantly 

differentially expressed cytokines. Only IL-6 illustrated a significant ability to 

discriminate between CSX and non-CSX patients in the study cohort. Cytokine 

biomarkers were unable to discriminate between CSX patients and LCSX patients. 

 

4.15  Principal Component Analysis 

A PCA was performed including the maximum 9 predictor variables (√CRP, SAA, ICAM-

1, PSS10, LTE-Q, IFNγ, TNFα and the reciprocal of IL-6) for 45 patients. The Kaiser-

Meyer-Olkin measure was >0.6 and Bartlett’s Test for Sphericity was significant at 

p<0.001, indicating that factor analysis was appropriate. Three components met the 

Kaiser criterion (i.e. had Eigenvalues >1 and were above the elbow in the Scree plot) 

and were extracted. These 3 components explained 70% of variance in the samples. 

The pattern and structure matrices are shown below. 

 

Figure 4.10: Matrices describing the 3 component output of principal component analysis on our study 
population. Both pattern and structure matrices are shown as we utilised oblimin rotation. 

 

Component 1 relates closely to our markers of vascular injury (CRP, SAA, ICAM-1 and 

VCAM-1), Component 2 relates to markers of stress (PSS-10 and LTE-Q) and component 
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3 related to general inflammatory markers (IFNγ, IL-6 and TNFα). Component 1 differs 

significantly between CSX and the non-CSX group (t33=2.8, p=0.007). Component 2 did 

not differ between the groups (p=0.133) while component 3 was different between the 

2 groups (t33=3.5, p=0.001). 

 

Discussion 

4.16  Cytokine expression in CSX 

This chapter confirms the presence of chronic low-grade inflammation in CSX patients 

and shows for the first time an ongoing elevation of cytokines in this population. This 

inflammation is characterised by a persistent elevation of IFNγ and TNFα for the 

duration of follow-up regardless of symptom severity, indicating that elevation of these 

cytokines may be a trait finding in CSX. The finding of elevated baseline TNFα is in 

broad agreement with the few previously published studies into cytokines in CSX 

populations (the most recent study excepted). This is the first time, however, that IFNγ 

has been shown to be elevated in CSX. Our CSX patient cohort also resembled 

previously studied populations in that they demonstrated elevated plasma IL-6 

concentrations but we have shown for the first time that this elevation is transient and 

appears to dissipate with time in tandem with waning symptoms. It may be that IL-6 is 

a state marker of CSX. 

 

4.16.1  Cellular sources 

The exact cell of origin for these cytokines is difficult to determine. The major cellular 

source of TNFα is the macrophage/monocytes population but several other possible 

sources include lymphocytes, secretory vascular smooth muscle cells and endothelial 

cells themselves. IFNγ is primarily produced by Th1-differentiated T-lymphocytes 

(although it may also be released by macrophages) and may be responsible for the 

maintenance of higher than normal basal TNFα release via the activation of 
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macrophages. Interleukin-6 is also released from activated macrophages in response to 

TNFα but similarly may be released from a plethora of cells including lymphocytes and 

endothelial cells (in an NFκB dependent fashion).  

 

One possible pathway in CSX may therefore involve the activation of macrophages by 

various stimuli with the consequent release of TNFα and IL-6 from these cells with this 

response being augmented by IFNγ co-stimulation of the macrophages. Levels of TNFα 

and IL-6 cytokines in our cohort highly correlate, suggesting co-release from a common 

cellular source or else inter-dependent release. Similarly, IFNγ and TNFα levels were 

shown to tightly correlate suggesting that it may well be signals from Th1 cells that 

govern macrophage activity in CSX. Certainly, macrophages may play a central role in 

CSX as monocyte counts have been shown to be elevated in CSX, although this was not 

observed in our population2. Furthermore, plasma levels of Monocyte Chemoattractant 

Protein-1 are known to be raised in CSX, which is not surprising as CRP is known to 

induce MCP expression157,212. Similarly, T-lymphocytes are known to play an important 

role in atherosclerosis, so the IFNγ seen in CSX may be attributable to increased Th1 cell 

activity213.  

 

Circulating neutrophils provide another possible source for cytokine production in CSX. 

As was noted in chapter 2.5.8, our patients had an elevated neutrophil to lymphocytes 

ratio (NLR) when compared with healthy controls, indicating a predominance of 

neutrophils in the plasma. This replicates previously described findings in CSX 

populations and is sometimes observed in chronic inflammatory conditions214. Like CRP 

and IL-6, the NLR has been shown to independently predict outcomes in coronary 

artery disease patients215. Interestingly, the NLR has been associated with measures of 

disease activity in CSX, with higher NLR being associated with reduced myocardial 

perfusion on coronary angiography and slower heart rate recovery after EST (a 

measure of cardiac autonomic activity)216,217. Furthermore, activated neutrophils are a 
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source of oxidative stress, which may drive further endothelial dysfunction in CSX, and 

neutrophils have been implicated in the induction of endothelial dysfunction218. Given 

that there is a predominance of neutrophils in our patients it is possible that they, 

either alone or in concert with macrophages, are responsible for the basal cytokine 

secretion. 

 

4.16.2  Stimulus for cytokine expression 

The stimulus for immune activation in CSX has eluded researchers for decades. 

Macrophage or neutrophil activation may be in response to a pathogen. One group 

investigated this possibility, studying serology for H. pylori, C. pneumoniae, 

Cytomegalovirus and Epstein Barr Virus infection in CSX patients but found no excess 

prevalence in the population62.  Another study, however, did notice an increased 

prevalence of active H. pylori infection in 50% of their 30 patient CSX population using 

the urease breath test, although this population appeared to have been diagnosed with 

“atypical chest pain”219.  A further study examined IgG for H. pylori and found that 95% 

of the CSX population studied had previous H. pylori infection as opposed to only 45% 

of controls63. The overall prevalence of H. pylori in the country of origin, Iran, is about 

80-95%, however220. The notion of H. pylori being the causative agent in at least some 

CSX populations is interesting, especially as treatment with a proton pump inhibitor 

has been shown to be of benefit in some patients with possible CSX143. 

 

Other possible stimuli for immune activation in CSX include oxidised LDL from 

dyslipidaemia coupled with oxidative stress. Oxidised LDL is a potent stimulus for 

endothelial and macrophage activation. There is certainly a high prevalence of 

dyslipidaemia in our CSX cohort (82% v 42% in other patients with normal angiograms, 

p=0.009; see chapter 2.4.2) while previous studies have demonstrated increased 

oxidative stress in CSX221,222. It is clear that our CSX population have angiographically 

normal coronary arteries but this does not preclude the presence of atherosclerosis, 
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however, as the initial response to atherosclerosis is outward stretching of the vessel 

to preserve lumen diameter in a process termed positive remodelling, a process not 

readily apparent on angiography (see figure 4.11 below).  

 

Figure 4.11: Positive remodelling of a coronary artery (the Glagov phenomenon) illustrated by the 
increased overall diameter of the blood vessel in response to mural atheroma (middle panel) to preserve 
luminal cross-sectional area. This is overcome in advanced atherosclerosis, where mural atheroma 
eventually compromises lumen size. 

 

This remodelling may be more noticeable on coronary arterial CT or MR imaging and 

indeed CSX patients are known to have elevated coronary calcium scores, indicative of 

atherosclerosis, despite normal luminal diameters68. Alternatively, the CSX patients 

may have predominantly arteriolosclerosis or indeed have atherosclerosis in other 

vascular trees, as each vascular territory behaves differently and there is some 

histological evidence of arteriolosclerosis in CSX67. Certainly the observed Type 1 

cytokine profile is in keeping with atherosclerosis. 

 

Another possible source of increased basal cytokine expression is hypertension. Even 

pre-hypertension (systolic blood pressure between 120 and 139mmHg) has been 

associated with increased levels of TNFα, IL-6, MCP-1 and ICAM-1223. It is believed that 

hypertension may induce the same endothelial dysfunction as dyslipidaemia via NFκB 

induction, perhaps in an angiotensin-II-dependent manner. It is also possible that 
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inflammation induces hypertension in these patients due to alteration of blood vessel 

function as detailed in the following section. Our population of CSX patients had a 

similar incidence of mild hypertension as the matched healthy controls (35% vs. 43%) 

and did have evidence of mildly elevated left ventricular end-diastolic pressure (LVEDP) 

during angiography, which may be a consequence of mild hypertension.  

 

4.16.3  Endothelial Sequelae of Increased Cytokine Expression 

 

Figure 4.12: Potential effects of cytokines on endothelial function in CSX. Note that both circulating 
mediators and locally produced cytokines, acting in an autocrine or paracrine fashion, may influence 
endothelial and vascular smooth muscle behaviour. See text for abbreviations. 

 

The persistently elevated TNFα and IFNγ may reflect an ongoing pro-inflammatory 

stimulus in CSX patients or else might point to a genetic “priming” of the immune 

systems in these patients. These cytokines remain elevated despite the resolution of 

clinical symptoms in many of the CSX patients and so may not be effector molecules in 

the pathogenesis even though TNFα is known to be a potent cause of endothelial 



192 
 

activation and dysfunction via NFκB upregulation. This results in the expression of 

adhesion molecules, reduced nitric oxide bioavailability and increased cellular oxidative 

stress (see Figure 4.12 above). It is possible that this basal pro-inflammatory state 

keeps the endothelium in a dysfunctional state with symptoms supervening in the 

presence of a provoking factor such as glycaemic loading, further immune activation or 

blood pressure elevation. 

 

The general decrease in IL-6 concentrations over time at the same time as 

improvement in symptoms, on the other hand, may be a signal that IL-6 is a mediator 

of disease activity. Predictably, the acute phase reactants CRP and SAA correlated 

closely with IL-6 concentrations and we have shown in chapter 3 that CRP may be a 

state marker in CSX, meaning that it is only elevated in patients with active disease. 

This may also be the case with IL-6. IL-6 is known to have several deleterious effects on 

healthy endothelium. Perhaps most relevantly, IL-6 causes the upregulation of the 

angiotensin II type 1 receptor (AT1R) expression in the vascular wall, increasing its 

responsiveness to circulating angiotensin II, itself an inducer of vascular IL-6 

production. This causes increased production of reactive oxygen species (ROS) by the 

VSMCs, reduced endothelial dependent vasodilation and enhanced vasoconstriction, all 

known features of CSX224. IL-6 is also known to be a potent inducer of endothelial 

endothelin (ET-1) production225. ET-1 is the most potent endogenous vasoconstrictor 

which is also known to impair endothelial vasodilation and has previously been found 

to be elevated in CSX patients following glycaemic stress192. It is not surprising that IL-6 

concentrations are linked with the degree of impairment of flow-mediated vasodilation 

in healthy men199. While endothelial cells appear to lack IL-6 receptors, IL-6 may induce 

endothelial activation via trans-signalling, where IL-6 binds to a soluble IL-6 receptor. 

 

Most pro-inflammatory cytokines are capable of inducing oxidative stress. The vascular 

wall contains many possible sources of ROS including uncoupled eNOS activity, 



193 
 

increased NADPH oxidase activity, from mitochondrial sources and from local 

phagocytes undergoing IFNγ -induced oxidative burst. These ROS, when present in 

sufficient quantities, may potently induce endothelial dysfunction through direct 

chemical interaction with NO, forming peroxynitrite and reducing NO bioavailability226. 

The role of oxidative stress in CSX has been investigated. There is evidence of reduced 

serum antioxidant levels, increased malondialdehyde concentrations and increased 

myeloperoxidase activity in CSX, all signals of increased oxidative stress221,222,227.  

 

4.16.4  Cytokines and Clinical Improvement 

As mentioned, clinical improvement occurred concurrently to a drop in serum IL-6 in 

patients. The reasons behind this reduction in IL-6 over time in our population, despite 

persistently elevated TNFα and increasing IL-1β, are not apparent in this study. It 

should also be noted that CRP was also found to fall across this time period, perhaps as 

a result of the reduced IL-6 levels. Our IL-10 levels showed a non-significant trend 

towards generally increasing during follow-up. One recent study into CSX 

demonstrated significantly elevated levels of IL-10 but their patients cohort was 

atypical in that they had normal CRP and low TNFα, in contradiction to most published 

studies on CSX195. The IL-6:IL-10 ratio is a well-studied measure of the pro-anti-

inflammatory cytokine balance. In our study, CSX patients whose reported symptoms 

improved had lower IL-6:IL-10 ratios that patients who remained symptomatic at the 

end of follow-up. It may be that there is a slow increase in IL-10 over time in the CSX 

population and that this in turn switches off IL-6 production and hence alleviates the 

harmful endothelial effects inherent in higher IL-6 levels as well as counteracting the 

activated angiotensin system by reducing oxidative stress. 

  

4.17  Limitations 

The main limitation with respect to this chapter was the inability to glean valuable data 

from the TH1/TH2 plates due to technical reasons. The loss of IL-4, IL-12 and IL-13 data 
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in particular prevented further discussion regarding Th1-Th2 balance in CSX. It would 

also have been useful to examine IL-17 concentrations as this may be implicated in CSX 

through its ability to recruit monocytes and neutrophils to site of inflammation. 

Unfortunately, funding was not available to investigate this facet of cytokine 

expression in CSX. Again, our small sample size potentially deprived us of some power 

to detect differences in IL-10 levels. 

 

Conclusions 

Our CSX patient cohort had evidence of persistent low-grade inflammation that was 

driven primarily by elevated IFNγ and TNFα. This was present regardless of 

symptomatology indicating that mild baseline phagocyte activation may be a trait of 

CSX patients. Whether the responsible cells are macrophages or neutrophils is difficult 

to tell, although our patients had an elevated neutrophil to lymphocyte ratio. There 

was an initial pronounced elevation of IL-6 concentrations in symptomatic CSX 

patients, which did not persist through follow-up and there was some evidence that IL-

6 may be a state marker in CSX as greater drops in this cytokine appeared to follow 

improved clinical status in tandem with an improved IL-6:IL-10 ratio. This may highlight 

a role for these cytokines in disease resolution. Pro-inflammatory cytokines may be the 

trigger for endothelial activation in CSX and may induce microvascular dysfunction 

through upregulation of angiotensin and endothelin pathways in the endothelium as 

well as being a trigger for oxidative stress. Modulation of vascular inflammation in CSX 

using statins and angiotensin receptor blockers has been shown to be effective in 

controlling symptoms, highlighting the importance of cytokines in the pathogenesis of 

this condition. The baseline stimulus for their release has not been elucidated but the 

main culprits likely include traditional cardiovascular risk factors such as dyslipidaemia 

and hypertension. 
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Chapter 5: Tryptophan Metabolism in CSX 
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Introduction 

5.1  Chapter Overview 

Tryptophan, an amino acid characterised by the inclusion of an indole ring in its central 

structure, is one of the nine essential amino acids in humans, this meaning that it 

cannot be produced endogenously. As such, it must be ingested from dietary sources 

such as cheese, red meat and eggs. Furthermore, tryptophan is typically only present in 

small quantities in the human body and is at risk of being rapidly depleted through 

utilisation. Apart from its primary role as a substrate for protein synthesis in the liver, 

tryptophan is also the precursor substrate in the biosynthesis of several important 

substances in human physiology, including serotonin, kynurenine and melatonin. These 

substances play a role in various body functions including mood, circadian rhythm, 

immune function and vascular function. Thus, tryptophan and its metabolites have 

been implicated in various diseases including depression, anxiety, somatisation, 

atherosclerosis and vascular inflammation. It is possible that deranged tryptophan 

metabolism may be implicated in the pathogenesis of CSX, given the prevalence of 

anxiety and vascular inflammation in this condition64,92,138,228,229. To date, research into 

the metabolism of tryptophan in CSX has not been published. In this chapter, the main 

bifurcation in the pathway of tryptophan metabolism is examined. 

 

5.2  Overview of Tryptophan Metabolism  

Tryptophan is not stored in large quantities in humans. Apart from its incorporation 

into proteins in the liver (its primary fate), tryptophan is metabolised through two main 

pathways in the body, the kynurenine pathway and the methoxyindole pathway. Being 

the minor pathway, only about 3-5% of plasma tryptophan is metabolised through the 

methoxyindole pathway but it remains one of great importance, being responsible for 

the formation of serotonin and melatonin. The initiating step in serotonin production is 

the hydroxylation of tryptophan. This mainly occurs in the gastrointestinal tract’s 

enterochromaffin cells, where 90% of the body’s serotonin is synthesised. The rest is 
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formed by neurones of the serotonergic system in the CNS. Circulating platelets take 

up and store large quantities of serotonin in dense granules and these are used to 

assist with local haemostasis by inducing vasoconstriction.  

 

Melatonin is formed primarily in the pineal gland in the absence of ultraviolet 

radiation. The pineal gland responds to impulses from the retina, autonomic inputs and 

other CNS inputs that are channelled through the suprachiasmatic nucleus. Blue light 

essentially suppresses the production of melatonin in the pineal gland and this allows 

the body to have a biochemical chronometer. Daytime levels of melatonin are 

negligible due to pineal suppression, while there is a surge in its production during the 

night-time hours with a peak at about 0300. Melatonin concentrations, therefore, are 

believed to define the photoperiod for the body and control many chronobiotic effects. 

It is well documented that most adverse cardiovascular events have a peak in the hours 

just after dawn and this coincides with endothelial dysfunction and increased platelet 

reactivity at these times after the end of the scotophase and withdrawal of melatonin 

synthesis. 

 

The predominant pathway, the kynurenine pathway, is initiated via the action of two 

important oxidoreductases, Tryptophan 2,3-dioxygenase (TDO) and Indoleamine 2,3 

dioxygenase (IDO) (see figure 5.1 below). TDO and IDO divert the tryptophan down the 

kynurenine pathway and this results in the formation of many substances including 

kynurenine, several stable intermediates and ultimately nicotinamide adenine 

dinucleotide (NAD), an important co-enzyme for redox reactions. TDO is chiefly found 

in the liver while IDO is found in most tissues, including the endothelium. IDO is 

interesting in that it is primarily upregulated by active inflammation (IFNγ and cell-

mediated immunity specifically), with the result that the rate of tryptophan 

metabolism into kynurenine is accelerated in inflammatory conditions. Thus, as 

inflammation supervenes, tryptophan stores are depleted and the Kynurenine pathway 
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is activated. The ratio of the kynurenine to tryptophan (KTR or KT ratio) is therefore a 

crude barometer of the activation of IDO and hence of cell-mediated immune activity 

and has been shown to be elevated in many inflammatory conditions such as 

rheumatoid arthritis230. 

 

Figure 5.1 Tryptophan metabolism in humans. It bifurcates initially into the kynurenine pathway (left) 
and the methoxyindole pathway (right) 
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5.2.1  Indoleamine 2,3-dioxygenase 

Indoleamine 2,3-dioxygenase (IDO) is an inducible enzyme that is found almost 

ubiquitously in human cells. It is coded for by the IDO1 gene on chromosome 8. It has 

an iron-containing haeme group as its sole prosthetic group and relies upon this to 

affect the transfer of dioxygen or singlet oxygen from a suitable donor (often 

superoxide radicals) to tryptophan. Alongside Tryptophan 2,3 dioxygenase (TDO), it 

catalyses the rate limiting step in the kynurenine pathway of tryptophan metabolism. 

TDO is constitutively expressed in hepatocytes and is upregulated by the presence of 

tryptophan while IDO is found in most tissues around the body, but particularly in the 

lungs and lymphoid tissues, and relevantly may be induced in vascular smooth muscle 

cells and in the endothelium. The expression of the IDO gene is upregulated by 

inflammatory mediators. IFNγ is a particularly potent inducer of IDO but other stimuli 

such as IFNα, IFNβ, IL-2, IL-6, TNFα, oxidative stress and the presence of microbes or 

lipopolysaccharide may also upregulate IDO production231,232. Thus, activation of IDO 

predominantly occurs in the presence of an activated innate or adaptive immune 

response. Typically, IFNγ will be released from macrophages, NK cells and T-cells in 

response to a perceived threat and this switches on IDO1 transcription.  

 

The exact role of IDO in the immune response is uncertain but there are several 

competing theories and IDO is believed to provide a counter-regulatory feedback 

pathway to blunt the immune response. The first is termed the “Tryptophan Depletion 

Hypothesis” where the activated IDO is believed to deplete the local supplies of 

tryptophan by directing it down the kynurenine pathway and thereby preventing 

microbe metabolic activity.  This is believed to be an early biostatic protective response 

to prevent microbial replication but it is now believed that most microbes can 

synthesise tryptophan through alternative means. This depletion effect also affects 

local immune cell function and may therefore have a role in the induction of immune 

system tolerance. IDO, for example, has been shown to be essential in preventing 

destruction of certain immunologically distinct tissues, such as a growing foetus in the 
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gravid uterus, by preventing immune cell function233. Indeed, some cancers take 

advantage of this immune subversion by producing IDO and thereby preventing attack 

by immune effector cells.  

 

It is far from certain, however, that depletion of tryptophan is the main effector 

mechanism of IDO modulation of immune function. The “Tryptophan Utilisation 

Hypothesis” holds that it is the products of the kynurenine pathway more than the 

depletion of tryptophan that modulates immune cell function234.  Kynurenine pathway 

metabolites have been shown to induce apoptosis in Th1 cells and monocytes, thereby 

moving the immune phenotype preferentially to the Th2 type. They have also been 

shown to have a role in endothelial dysfunction and oxidative stress. Regardless of the 

mechanism of tryptophan depletion, low levels of plasma tryptophan have been shown 

to predict increased cardiovascular mortality with patients in the lowest tryptophan 

quartile (<34μM) having an OR of 1.41 (1.05-1.89, p=0.02) for cardiovascular death 

over 10-years235. 

 

5.2.2  The Kynurenine :Tryptophan Ratio (KTR) 

As IDO activation increases more tryptophan is actively converted into kynurenine. The 

relative concentrations of these two substances (i.e. the KTR) is therefore a measure of 

IDO activity and a possible signal of immune system activation. Researchers have 

studied this parameter in several vascular conditions. For example, IDO has been 

shown to be locally upregulated in the antigen presenting cells (APCs) of 

atherosclerotic plaques, implying that it plays a role in mediating the inflammatory 

component of atherogenesis236. The same group showed that IDO activity was also 

significantly correlated with the extent of overt atherosclerosis (such as the 

intima/media thickness of the carotid artery) as well as with plasma lipids and systolic 

blood pressure237. More specifically, the KTR has been shown to be increased in 

angiographically confirmed coronary artery disease patients than in healthy 
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controls238,239. It is known that IDO activity leads to nitric oxide synthase 

downregulation and significantly reduces microvascular reactivity in the setting of 

sepsis240. In this way, IDO is seemingly associated with endothelial dysfunction and 

atherosclerosis. 

 

Furthermore, KTR has been linked with prognosis in coronary arterial disease. 

Researchers studied urinary KTR in over 3000 patients attending for coronary 

angiography and followed them for 55 months. They demonstrated that increased 

baseline urinary KTR was associated with an increased relative risk of major cardiac 

outcome, even after controlling for confounders. Indeed, they showed that each 

standard deviation increase in log-transformed urinary KTR led to a 43% relative 

increase in observed MACE. A similar but slightly weaker association (HR=1.28) was 

seen in angina patients using plasma KTR as a predictor for MACE241.  

 

Finally, the activation of IDO and increased KTR in CAD may be relevant to the 

increased prevalence of depression observed in IHD patients. Importantly, it has been 

demonstrated that the KTR actually correlates with the diagnosis of depression 

(p=0.055) and with scores on a depression scale (P=0.002) in patients with IHD242. 

Furthermore, the KTR is also noted to be higher in patients with somatization disorders 

and pain syndromes243. 

 

5.3  Chapter Objectives 

Given the overview of tryptophan metabolism above it may be appreciated that 

immune-activation of IDO with the subsequent favouring of the kynurenine pathway 

over the methoxyindole pathway may lead to many deleterious vascular effects. 

Increased vascular activation, oxidative stress and vascular inflammation may be 

coupled with activation of endothelial apoptotic pathways leading to the overall 
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progression of generalised endothelial dysfunction. Furthermore, tryptophan and 

serotonin depletion may lead to depression, anxiety and somatisation with 

abnormalities in central pain processing. All of these features are entirely relevant to 

the putative pathophysiology of CSX. While it is known that CSX patients have an 

inflammatory phenotype, the activity of IDO and the consequent role of kynurenine 

pathway metabolites have not been assessed in this condition. In this study, we 

investigate the state of tryptophan metabolism and its relationship with markers of 

vascular inflammation and disease activity in CSX and theorise about its possible role in 

the pathogenesis and symptomatology of this condition. Our chapter aims are 

summarised below. 

 

1. We will examine the plasma ratio of kynurenine and tryptophan (KTR) to estimate 

the activity of the enzyme indoleamine-2,3-dioxygenase (IDO). Our initial 

hypothesis is that patients with CSX will have altered tryptophan metabolism due 

to the induction of IDO, which is upregulated by inflammation. If IDO is 

upregulated, we would expect to see shunting of tryptophan down the kynurenine 

pathway with consequent increases in KTR coupled with tryptophan lack and 

kynurenine excess.  

2. We will investigate the association of IDO activation with the markers of vascular 

and general inflammation that were shown to be altered in CSX patients (as 

investigated in chapters 3 and 4).  

3. Additionally, we will look at the KTR in relation to perceived disease severity and 

life stress as a crude measure of the possible effects of altered tryptophan 

metabolism on the neuropsychiatric aspects of CSX.  

4. Finally, we will examine the longitudinal changes in tryptophan metabolism in CSX 

patients and assess if any correlation with changes in symptom severity occurs.  
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Methods 

5.4  Participants 

The same patient cohorts as defined in chapter 2.2 were used. Again, our CSX cohort 

consisted of 17 patients while we also had 21 age- and sex-matched healthy controls 

and 7 patients with LCSX. Consecutive patients with CSX were recruited from the 

cardiac catheterisation laboratory of a tertiary cardiac referral centre. Every suitable 

patient who was approached consented to participating in the study. The study 

protocol was approved by the local research ethic committee. CSX patients were seen 

at follow-up visits, as previously detailed, where blood sampling and questionnaires 

were repeated. Baseline patient characteristics are shown in table 2.3. The CSX and 

healthy control groups were well matched in terms of gender, age, cardiovascular risks 

and medication use except for aspirin use, which predominated at baseline in the CSX 

group due to their presentation to the catheterisation lab where low dose aspirin is 

usually prescribed. Aspirin has been shown in vivo to reduce IDO activity in stimulated 

PBMC’s244. No patients had used anti-depressants in the preceding year.  

 

5.5  Investigations 

Identical investigations were completed as outlined in chapter 2.3 including Exercise 

Stress test reports, cardiac risk factor questionnaires, the Seattle Angina Questionnaire 

(SAQ), List of Threatening Experiences questionnaire (LTE-Q) and the Perceived Stress 

Scale (PSS). All patients gave full informed consent at enrolment. Venous blood was 

drawn from the antecubital vein into a 10ml dipotassium EDTA tube before being 

centrifuged at 4°C for 15 minutes at 115 RFC. The plasma was then transferred to 2ml 

microtubes and immediately frozen at -80°C until analysis. All blood samples were 

taken between 0900 and 1100 and no patients were fasting for more than 3 hours 

before blood was drawn.  
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5.6  Measurement of tryptophan metabolism 

Aliquots of plasma were thawed and the concentrations of tryptophan, kynurenine and 

kynurenic acid were determined using high performance liquid chromatography (HPLC) 

following established methods245. Briefly, plasma samples were spiked with 3-

nitrostyrosine as an internal standard and were then deproteinised using 20µl of 4M 

perchloric acid. The samples were centrifuged for 15 minutes at 14000 RPM on a 

Hettich Mikro 22R centrifuge (AGB, Dublin, Ireland) and the supernatant was 

transferred to a HPLC vial for analysis. Suitable stock solutions of each standard were 

prepared using HPLC grade water and were acidified with 20 µL of 4M perchloric acid. 

The HPLC system consisted of a Waters 510 pump (Waters, Dublin, Ireland), a 717plus 

cooled Autosampler (Waters), a Hewlett Packard 1046A fluorescent Detector (Agilent, 

Dublin, Ireland), a Waters 486 tunable UV absorbance detector, a Waters bus SAT/IN 

module and a Croco-Cil column oven. All samples were injected onto a reversed phase 

Luna 3µm C18 (2) 150 x 2mm column (phenomenex) which was protected by 

Krudkatcher disposable pre-column filters (Phenomenex) and SecurityGuard cartridges 

(Phenomenex).  

 

The mobile phase consisted of 50 mM acetic acid, 100 mM zinc acetate with 3% (v/v) 

acetonitrile and was filtered through Millipore 0.45 μm HV Durapore membrane filters 

(AGB) and vacuum degassed prior to use. Compounds were eluted over a 30-minute 

run time at a flow rate of 0.3mls/min after a 20µl injection. The column was 

maintained at a temperature of 30°C and samples/standards were kept at 8°C in the 

cooled auto-injector prior to injection. The fluorescent detector was set at an 

excitation wavelength of 254 nm and an emission wavelength of 404 nm. The UV 

detector was set to 330 nm. L-tryptophan and its metabolites were identified by their 

characteristic retention times as determined by standard injections which were run at 

regular intervals during the sample analysis. Concentrations were determined by 
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comparing the respective peak heights of analytes and internal standards. Results are 

expressed as µmol/L of plasma. 

 

5.7  Data analysis 

All data were analysed using SPSS v20 (Armonk, NY: IBM Corp.) and are reported as 

mean ± SEM. The Student t-test or Mann-Whitney U test were employed to compare 

groups as appropriate to the distribution of the given data. Furthermore, One-way 

ANOVA with Bonferroni post-hoc testing or the Kruskal Wallis test were employed 

when necessary. Repeated measures were assessed using paired t-tests or the 

Wilcoxon signed-rank test. Fisher’s exact test was used to compare categorical data. 

Correlations were assessed using Spearman’s rank-correlation test. Two-tailed p-values 

of <0.05 were considered significant in this study. 

 

Results 

5.8  Baseline tryptophan and its metabolites in CSX patients. 

Tryptophan levels were significantly lower in patients with CSX when compared to 

healthy controls (50.0 ± 3.9 vs. 59.2 ± 2.4 µmol/L of plasma; U=83, n=38, p=0.004). 

Conversely, kynurenine concentrations tended to be higher in the CSX cohort (10.3 ± 

3.4 vs. 3.2 ± 0.16 µmol/L, p=0.056). Consequently, the kynurenine: tryptophan ratio 

(KTR) was significantly elevated in CSX patients at baseline (0.202 ± 0.059 vs 0.056 ± 

0.002; U=298, n=38, p<0.001). Transformation of this with a simple reciprocal 

transformation lead to a significant t-test results (t23=-4.27, p<0.001) as shown in figure 

5.2 below.  
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Figure 5.2 A. Bar chart showing the baseline kynurenine and tryptophan concentrations in Controls and 
CSX patients. Note logarithmic scale. B. Kynurenine Tryptophan Ratio transformed using a reciprocal 
transformation. Normal axis scale. 

 

Analysis of kynurenic acid (KYNA) showed that levels were also significantly reduced in 

CSX patients (20.9 ± 1.6 vs 28.9 ± 1.9 nmol/L; t(24) = -2.465, p=0.021) as was the 

kynurenic acid:kynurenine ratio (0.0051 ± 0.0013 v 0.0083 ± 0.0006; t24 = -2.629, 

p=0.015). Importantly KYNA could only be quantified in 7 of 17 CSX patients. There 

were no significant differences in tryptophan or its metabolites between patients in 

terms of gender, age, aspirin use or statin use. 

 

5.9  Follow-up Results 

As a group, the CSX patients continued to have lower tryptophan at visit 2 (47.8 ± 2.3 

µmol/L of plasma; H=19.8, adj. p=0.01) but by visit 3 it had drifted up towards control 

values (52.0 ± 2.6 µmol/L; H=12.0, adj. p=0.07). There was no significant difference in 

kynurenine or kynurenic acid concentrations at follow-up CSX visits compared with 

control levels. The CSX patients did, however, have a persistently elevated KTR at visit 2 
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(0.074 ± 0.004; H=-20.0, adj. p=0.02) and visit 3 (0.071 ± 0.002; H=-19.0, adj p=0.032) 

compared to controls. (see Fig 5.3 below) 

 

 

Figure 5.3: A. Bar chart of Tryptophan concentrations in CSX patients at the 3 time points compared to 
healthy control values. B. Kynurenine Tryptophan ratios in controls and CSX at all 3 time points. 

 

At the second visit, 4 CSX patients reported complete resolution of symptoms as 

judged by a Physical Limitation domain score of 100 on their SAQ. These patients 

showed no significant difference in plasma tryptophan (p=0.177) when compared with 

healthy controls but still had a trend to higher KTR (p=0.052). Those with ongoing 

symptoms as measured by the SAQ continued to have significantly reduced tryptophan 

(mean difference 10.76, 95% CI 1.31 to 20.2 µmol/L, p=0.021) and elevated KTR (mean 

difference 0.018, 95% CI 0.003 to 0.0.029, p=0.012) when compared with the control 

population. Surprisingly, the reverse was true with the Exercise Stress Test results. 

Those patients with a normal EST had marginally higher KTRs than healthy controls 

(mean difference 0.016; 95% CI 0.002 to 0.031) and lower plasma tryptophan (mean 

difference 10.4, 95% CI 0.02 to 20.8μM), while those with positive ESTs showed no 

difference in KTR or Tryptophan (p=0.09 and p=0.18 respectively). These findings are 

illustrated in Figure 5.4 below.  
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Figure 5.4: A. Comparing KTR and Tryptophan concentrations in CSX patients with and without self-
reported symptoms (by PLS on the SAQ) and healthy controls. B. Comparing KTR and Tryptophan 
concentrations between healthy controls and CSX patients with and without electrically positive EST’s at 
visit 2.  

 By the end of follow-up at visit 3, 4 patients were asymptomatic by SAQ results while 

11 had ongoing symptoms. As at visit 2, the patients with ongoing symptoms had 

higher KTRs than healthy controls (H=14.3, n=36, p=0.001) while the asymptomatic 

patients did not (H=6.9, n=36, p=0.696). Again there was a recapitulation of the visit 2 

results in terms of plasma tryptophan levels with symptomatic patients having lower 

levels of tryptophan than healthy controls (mean difference of 10.3μmol/L, 96% CI 0.56 

to 20.0, p=0.035) while the asymptomatic patients had no difference to controls 

(p=0.557) see Fig. 5.5 Panel A.  
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Figure 5.5 A. Comparing KTR and Tryptophan concentrations in CSX patients with and without self-
reported symptoms (by PLS on the SAQ) and healthy controls at Visit 3. B. Comparing KTR and 
Tryptophan concentrations between healthy controls and CSX patients with and without electrically 
positive EST’s at visit 3. 

 

Only 2 patients had electrically positive stress tests at the end of follow-up.  Unlike at 

visit 2, however, these patients had the highest KTR and this was significantly different 

from controls (mean difference 0.026, 95%CI 0.008 to 0.045, p=0.003). They also had 

the lowest levels of plasma tryptophan (mean difference 20.65, 95% CI -2.9 to -

38.4μmol/L, p=0.019) as shown in Figure 5.5 Panel B above. 
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5.10  Correlations 

Despite the differences between groups noted above, tryptophan and its metabolites 

did not significantly correlate with disease severity as assessed by SAQ parameters or 

EST parameters, nor did they correlate with perceived stress. When compared with the 

markers of vascular activation investigated in chapter 3, however, KTR was found to 

weakly correlate with both serum ICAM-1 and VCAM-1 at baseline across both groups 

(rs=0.358, df=35, p=0.030 and rs=0.318, df=36, p=0.052 respectively). There was no 

correlation noted between KTR and acute phase proteins. There was a significant 

correlation noted between KTR and IL-6 (rs=0.478, df=36, p=0.002) but not with IL-1 or 

IFNγ (for methods of IL-6, IFNγ and IL-1 assessment see chapter 4). 

 

5.11  LCSX 

The LCSX patients did not differ from controls in terms of plasma tryptophan at 

baseline, although there was a slight trend towards a lower tryptophan (H=12.5, n=38, 

p=0.09) in LCSX patients. There was no significant difference in terms of Kynurenine 

levels or Kynurenic acid concentrations but interestingly LCSX patients still had 

significantly higher KTRs than healthy controls (H=18.0 n=38, p=0.005). At follow-up, 

however, the LCSX patients had normal Tryptophan concentrations and normal KTRs. 

 

5.12  ROC 

KTR was an excellent differentiating marker to separate CSX cases from healthy 

controls with an AUC of 0.835 and p<0.001.  A value of 0.074 gave a 65% sensitivity and 

100% specficity in our sample. It did not do a good job, however, of differentiating LCSX 
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from CSX patients meaning that its clinical utility in the differentiation of patient 

cohorts with chest pain and normal coronary arteries is poor. 

 

  

Figure 5.6: ROC curves using KTR to select out patients with CSX from the 38 patient cohort of CSX and 
healthy controls (left) and the 24 patient LCSX/CSX cohort (right). 

 

Discussion 

5.12  Tryptophan Metabolism in CSX 

This chapter illustrates the novel finding of increased activity of the enzyme 

Indoleamine-2,3-dioxygenase in a CSX population.  As has been shown in the previous 2 

chapters, this CSX cohort has elevated levels of acute phase reactants, endothelial 

adhesion molecules and type 1 cytokines. The type 1 cytokines (IFNγ, TNFα and IL-6 in 

particular) are known to upregulate IDO activity and so, given this degree of active 

inflammation, it is not surprising to find increased IDO activity in CSX patients as 

evidenced by an increased KTR. Specifically, due to IDO activation our CSX study 

population had relatively low plasma tryptophan and high plasma kynurenine 

concentrations. This may help to explain two of the main features of CSX, viz. 

endothelial dysfunction and a high prevalence of psychological comorbidities. 
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It is possible that the increased IDO activity is just an innocent byproduct of 

inflammation in CSX and plays no role in disease pathogenesis. It is also conceivable 

that it is merely a feedback phenomenon attempting to restore inflammatory balance 

to the body as IDO has been shown to be necessary in developing immune tolerance 

and may reduce immune effector cell activity as discussed in the introduction. On the 

other hand, it may be possible that the products of the kynurenine pathway, 

upregulated by IDO induction, play a biologically active role in the pathogenesis of CSX. 

In this study, it appears that IDO activity may be related to disease activity as patients 

with resolution of angina at follow-up no longer had significantly elevated KTRs when 

compared with healthy controls, although this may be a function of sample size as the 

KTR does not correlate directly with symptom severity.  

 

The prognostic implications of increased IDO activity is also established with increased 

plasma and urinary KTR being associated with adverse cardiovascular outcomes while 

also predicting future acute coronary events in older adults246-248. While early studies in 

CSX indicated a relatively benign prognosis, studies are increasingly showing a greater 

incidence of cardiovascular events in CSX with one large study showing a 7.9% five year 

annualized event rate102. The increased KTR seen in our patients may identify patients 

with increased medium-term cardiovascular risk but the duration of follow-up was 

insufficient to investigate this possibility. 

 

The upregulation of IDO activity and consequent increased of KTR has two main 

implications in CSX. Firstly, the increased degradation of tryptophan, via its shuttling 

down the kynurenine pathway, reduces its bioavailability as a precursor for the 

production of serotonin and melatonin. Secondly, increased IDO activity increases the 

concentrations of kynurenine pathway metabolites, which may be biologically 

significantly active in CSX. We will deal with both of these aspects separately. 
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5.12.1  Reduced Methoxyindole Pathway Products (5-HT and melatonin) 

Altered melatonin handling has been previously observed in CSX cohorts. A small study 

of only 5 CSX patients showed a significant reduction in both initial and peak melatonin 

levels in the CSX group compared with a healthy control group249. The authors believed 

this to be due to reduced pineal sensitivity to sympathetic inputs due to the tonic 

activation of the sympathetic nervous system and autonomic imbalance in CSX but 

increased IDO activity would also explain this finding. Melatonin has been shown to 

have several vascular effects being able to induce both vasodilation and 

vasoconstriction in various tissues. In general, the MT1 receptor mediates 

vasoconstriction and MT2 vasodilation. It seems to have a predominantly 

vasoconstrictor effect on coronary arteries but oral supplementation of sustained 

release melatonin compounds has demonstrated an ability to reduce peripheral blood 

pressure by as much as 6.1/3.5mmHg250.  

 

Further cardiovascular benefits of melatonin include its potent anti-oxidant effects. 

Melatonin can act as a scavenger for reactive oxygen species, including the hydroxyl 

radical (OH·) and the peroxynitrite moiety (ONOO·). It also upregulates superoxide 

dismutase, glutathione reductase and other anti-oxidants. This has been shown to 

reduce the amount of lipid peroxidation and has beneficial effects in reducing the 

oxidation of LDL, a substance implicated in atherogenesis, and in minimising the 

cardiotoxic side effects of anthracyclines. Furthermore it has been shown to reduce the 

overall total serum cholesterol and to increase HDL concentrations251. These effects are 

also believed to reduce the reperfusion damage and dysrhythmias seen after episodes 

of myocardial ischaemia252. 

 

Apart from its anti-oxidant effects, melatonin is also atheroprotective through its anti-

inflammatory effect. It has been shown to reduce the expression of vascular adhesion 

molecules, reduce leucocyte rolling and adhesion, inhibit cyclooxygenase 2 (COX2) and 
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to inhibit NFκB253-255. Finally, melatonin has also been shown to be protective against 

endothelial cell senescence through the maintenance of sirtuin and eNOS activity256. In 

addition, it also prevents the opening of mitochondrial permeability transition pores, 

which are responsible for initiating the apoptotic cascade257. Thus, reduced plasma 

concentrations of melatonin may contribute in several diverse ways to the endothelial 

and microvascular dysfunction that is characteristic of CSX. 

 

Similarly, reduced serotonin bioavailability (which could be reasonably inferred from 

reduced tryptophan and increased kynurenine levels) may also explain several of the 

psychological features of CSX. Our population have increased perceived life stress 

scores and disproportionately impaired quality of life while CSX patients in general 

have been shown to have severe burdens of anxiety and depression. Centrally, the 

serotonergic nervous system modulates mood and behaviour and is implicated in many 

neuropsychiatric conditions such as anxiety and depression. Indeed, depression has 

been linked to tryptophan depletion and reduced availability of serotonin. Notably, 

depression and heart disease often co-exist and are linked bidirectionally. That is to say 

that heart disease frequently causes depression while depression is known to increase 

a patient’s risk of heart disease. The common link between these two disease states 

may be inflammation258. Similarly, anxiety states are also associated with the 

upregulation of the HPA axis and altered serotonin and noradrenaline metabolism.  

 

In addition to its effects in the CNS, serotonin may also play a role in visceral 

hypersensitivity, a potential factor in CSX259. This has been explored with respect to 

Irritable Bowel Syndrome where 5-HT3 and 5-HT4 receptors have been implicated260. 

Use of 5-HT3 antagonists in IBS appeared to reduce sensation to painful colonic stimuli 

through peripheral and central actions while tricyclic antidepressants have also been 

shown to reduce visceral hypersensitivity261-263. Finally it should be noted that 

serotonin is a free radical scavenger and as such may reduce endothelial oxidative 
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stress, although further studies show that its breakdown by MAOA may in fact lead to 

the formation of reactive oxygen species264. 

 

5.12.2  Biological activity of Kynurenine Pathway metabolites 

It is possible that the products of the kynurenine pathway are themselves biologically 

important in the pathogenesis of CSX, specifically in the induction of oxidative stress 

and endothelial dysfunction as IDO activity has been demonstrated in endothelial cells 

themselves. Figure 5.7 below illustrates the possible roles of kynurenine pathway 

products in the induction of endothelial dysfunction in CSX.  

 

Figure 5.7 Cross-section of the blood-endothelial interface illustrating the possible role of endothelial 
IDO in the induction of endothelial activation and dysfunction. AhR- Aryl-Hydrocarbon Receptor. NOX- 
NADPH Oxidase. ROS- Reactive Oxygen Species. 

 

Kynurenine, as well as being an endothelium-derived relaxing factor through the 

activation of Kv7 channels in the vascular smooth muscle cells, has been shown to be 

an endogenous agonist of the aryl hydrocarbon receptor (AhR) 265-267. Activation of this 

receptor initiates an endothelial intracellular cascade involving NFκB and results in 

endothelial activation with a pro-inflammatory and pro-oxidant phenotype267-269. 
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Kynurenic Acid (KYNA) is formed from KYN via the action of kynurenine 

aminotransferase and was found to be significantly reduced in our CSX population. 

KYNA appears to be a vascular protecting agent, being able to scavenge reactive 

oxygen species, thereby reducing the endothelial dysfunction caused by oxidative 

stress. It has also been demonstrated to minimise the deleterious effects of 

homocysteine-induced endothelial dysfunction, possibly through the inhibition of 

vascular NMDA receptors270-272. Thus, its reduced bioavailability may contribute to the 

pathogenesis of CSX. 

 

The second intermediate on the kynurenine pathway, 3-hydroxykynurenine (3-HK), is 

produced locally in endothelial cells and strongly induces the production of reactive 

oxygen species through the upregulation of endothelial NADPH oxidase (NOX) 

activity273. These ROS can then cause cellular dysfunction with increased vascular 

inflammation and activation. Most importantly, 3-HK has been shown to be a potent 

trigger of endothelial apoptosis273. It achieves this by triggering the release of 

mitochondrial cytochrome c with a resultant cascade triggering apoptosis. We did not, 

however, measure plasma levels of this metabolite in our cohort. 

 

Like methoxyindole products, several members of the kynurenine pathway have also 

been implicated in depression and anxiety. Many of these substances have important 

neurological effects. Specific products such as 3-hydroxykynurenine and quinolinic acid 

have been shown to be directly neurotoxic through N-methyl-D-aspartate (NMDA) 

receptor agonism and oxidative stress induction while kynurenic acid is 

neuroprotective, being an NMDA antagonist. Animal models show elevated KTR in 

anxiety/depression while human studies show similar results274. Increased kynurenine 

has also been implicated in post-natal depression while increased peripheral 

kynurenine concentrations has been shown to correlate directly with the magnitude of 

anxiety symptoms275,276. Somatization has also been linked to abnormalities of 
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tryptophan metabolism, correlating positively with the KTR and Kynurenine 

concentration and negatively with tryptophan243. Kynurenine metabolites have also 

been implicated in the pain transmission in migraine with KYNA having anti-nociceptive 

effects277,278. 

 

There are also several immunomodulatory effects of products of the kynurenine 

pathway. Some have been shown to shift the immune balance from a Type-1 cytokine 

profile to a type 2 profile via the attenuation of Th1 cell function. Kynurenine is also 

known, for example, to increase regulatory T-cell (Treg) formation by inducing FOXP3 

expression in undifferentiated T-cells279. Treg cells release IL-10 and are important in 

inducing immune tolerance. Although our CSX patients had elevated IL-5 and IL-10, the 

clearly elevated TNFα and IFNγ implicate a significant type-1 response despite IDO 

activity, hinting at an insufficient counter-regulatory effect by IDO induction.  

 

The cause of the pro-inflammatory state in CSX is uncertain but is likely a combination 

of multiple features including conventional cardiovascular risk factors such as 

dyslipidaemia. Studies have also investigated the potential role of infective pathogens 

in CSX and there are mixed reports implicating gastric Helicobacter pylori as a possible 

agent62,63,280. 

 

5.13  Limitations 

The main limitation of this study is its small sample size, with only 17 suitable CSX 

patients identified over the course of the recruitment period. This, however, is a result 

of the stringent application of appropriate exclusion criteria and the necessity for 

completely normal coronary arteries and convincing angina. Many studies have 

accepted patients with non-obstructive coronary stenoses (defined as <50%) and 

angina-like chest pain, a nebulous definition at best. Our approach has ensured a 
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homogeneous population with a reliable CSX diagnosis but does limit the external 

validity of the results. Reassuringly, despite this limitation the findings were consistent 

in a repeated-measures design.  

 

Additionally, exercise stress testing as a tool for investigating ischaemia is sub-optimal 

as it is subject to inter-observer variability and does have an inherent deficit in 

sensitivity and specificity for myocardial ischaemia. We attempted to minimize some of 

these problems by ensuring that the ESTs were reviewed by two independent 

cardiologists. Ideally, patient recruitment into a study such as this should use state of 

the art techniques such as perfusion cardiac magnetic resonance imaging or patients 

could be further stratified according to results of invasive coronary reactivity testing to 

select patients with demonstrable microvascular dysfunction. Unfortunately, these 

techniques have a time and cost implication, are not without risk and are not widely 

available. 

 

Similarly, an opportunity was missed by not taking a more comprehensive psychiatric 

history (such as the utilization of the structured clinical interview for DSM disorders) as 

it would have been useful to tie the increased IDO activity to increased prevalence of 

depressive symptoms etc. The SAQ treatment satisfaction and quality of life domain 

scores along with the perceived stress scale might give some indication as to the 

patient’s mental wellbeing but a more direct assessment at baseline would have been 

useful. Similarly, it would have been useful also to measure further tryptophan 

metabolites, particularly 3-HK, melatonin and serotonin, to be more certain of their 

possible role in CSX rather than relying on indirect measures of their activity. 
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Conclusions 

Our novel finding of increased IDO activity in CSX raises the possibility of a role for 

tryptophan metabolism in its pathogenesis. Melatonin lack and kynurenine product 

effects may contribute to the induction of endothelial dysfunction typical of CSX while 

the reduced production of serotonin may account for the psychological comorbidities 

commonly seen in these patients. The general finding at follow-up that symptomatic 

CSX patients rather than asymptomatic patients were more likely to have higher IDO 

activity than healthy controls may indicate that increased IDO activity is a state marker 

in CSX. This must be considered with the fact that there was no observed direct 

correlation between the degree of IDO activity and the severity of symptoms. The 

possibility of a role of kynurenine pathway products in the endothelial dysfunction 

seen in CSX merits further research while the role of tryptophan metabolism in 

nociception in CSX also warrants attention.  
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Syndrome X  
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Introduction 

6.1  Introduction to microRNA 

MicroRNAs (or miRNA) are short, non-coding ribonucleic acids between 21-23 

nucleotides in length. They were initially identified in Caenorhabditis elegans, a 

nematode, in 1993 but it wasn’t until 8 years later that a mammalian example of a 

miRNA was demonstrated. About 2555 distinct human miRNAs had been identified (as 

of September 2013) but recent studies have expanded this number greatly. These small 

molecules are transcribed from their own “genes”. They post-transcriptionally 

modulate the function of 30% (but possibly up to 60%) of our genes by altering mRNA 

stability and transcription. Dysregulation of miRNA has been shown in many 

cardiovascular disease states. miRNAs have also been shown to be essential in cardiac 

development and 18 miRNAs constitute 90% of the myocardial miRNA population. The 

vascular endothelium is also a hotbed of miRNA activity and this is affected by local 

blood flow and shear stress and has many effects on endothelial function. To date, 

nothing is known of miRNA activity in CSX. 

 

6.1.1 miRNA Biosynthesis 

1. Transcription 

Most miRNAs are transcribed in the nucleus from DNA by RNA polymerase II. The code 

for about 50% of miRNAs is found in so-called “non-coding” regions of DNA. A further 

40% are coded by sequences found in the introns of genes coding for protein synthesis. 

These intronic miRNAs, also known as mirtrons, can be transcribed independently of 

the host gene through the action of different promoters. The transcription of the 

miRNAs is controlled by regular transcription factors (TF), which are upregulated in 

response to various cellular stimuli. Transcription is subject to many other regulatory 

processes including epigenetic phenomena such as hypermethylation and histone 

deacetylation. Additionally, it has also been demonstrated that miRNAs can initiate 

negative feedback against their own TFs as well as initiating positive feedback 



222 
 

pathways in other instances. This first step results in the formation of the primary 

transcript (pri-miRNA), complete with a 5’ cap and a poly-A tail and may be thousands 

of nucleotides in length (c500-3000bp usually). 

 

 
Figure 6.1: Schematic representation of miRNA biosynthesis 

 

2. Intranuclear processing 

The pri-miRNA is then cleaved by the DROSHA complex, which includes the DROSHA 

RNase III enzyme and DGCR8 amongst others. This process may occur directly following 

or even during transcription of the miRNA. DROSHA cleaves off a large portion of the 

pri-miRNA, creating a 60-100nt RNA strand that includes a hairpin and a 2nt 3’ 
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overhang. This is known as precursor miRNA (pre-miRNA). The exact site of DROSHA 

action is important to produce viable pre-miRNA strands. The fidelity of this process is 

improved by the other proteins resident in the DROSHA complex, which help to direct 

DROSHA to the correct site. DROSHA itself is also subject to regulation by signal 

transducers such as Smads and p53. 

 

3. Exiting the nucleus   

The pre-miRNA is then transported from the nucleus out into the cytoplasm by the 

exportin 5 transporter, found associated with a GTPase Ran in the nuclear envelope. 

Studies have shown that this step may be the rate-limiting step in miRNA production. 

 

4. Further cleavage 

The final step in the formation of mature miRNA is further cleavage of the pre-miRNA 

by the Rnase type III Dicer. This occurs in the cytoplasm, possibly in direct association 

with the formation of a microRNA induced Silencing Complex (RISC, see below). Dicer 

cleaves off the hairpin loop of the pre-miRNA and leaves a ≈22nt miRNA double strand 

comprised of the guide miRNA, destined for incorporation into the RISC, and the 

passenger strand (or miRNA*) that is usually destined for degradation. 

 

5.  RISC loading 

The selection of which strand becomes miRNA and which is miRNA* appears to be 

partly determined by their relative thermodynamic stability, with the miRNA being 

more stable and being preferentially loaded into the RISC.  The mature miRNA-RISC 

complex is now ready to perform its function. 

 

6.1.2  Functions of miRNA 

miRNAs are involved in the fine tuning of the expression of some genes. They affect 

this by altering the stability and functionality of the mRNA produced by gene 

transcription, thereby regulating ultimate gene expression. The miRNAs include a seed 
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sequence at nucleotides 2-7, which confer a specificity of targeting to each miRNA. The 

seed sequence is complementary to a sequence on the target mRNA and allows 

miRNA:mRNA interaction through Watson-Crick base pairing. The target sequence is 

usually, but not exclusively, found in the 3’ untranslated region (3’UTR) of the mRNA, 

although some are found in the 5’UTR and in some cases non-seed dependant 

miRNA:mRNA interaction has been shown to occur. Despite this seed-sequence 

specificity, a single miRNA can affect multiple mRNAs and multiple miRNAs can affect a 

single mRNA. This leads to a complex network of interactions. The miRNA:mRNA 

interaction takes place in association with the RNA-induced Silencing complex (RISC) 

and this regulates the effector phase of mRNA function. 

 

RNA-Induced Silencing Complex formation 

The RISC is found in the cytoplasm and incorporates the guide strand from the mature 

miRNA. Loading of the guide strand into the RISC can occur immediately following 

Dicer action on the pre-miRNA. Of note, RISCs can incorporate other types of non-

coding RNAs such as siRNA, which all perform the same function, namely conferring 

target specificity. The simplest RISC capable of carrying out RNA degradation consists 

merely of the miRNA associated with an Argonaute protein. The Argonaute proteins 

are a family of proteins ubiquitous in plants and animals and are found in the nucleus 

and cytoplasm. Four argonaute genes are found in humans. Most RISCs, however, will 

also incorporate other proteins, which can modify RISC activity. The guide miRNA sits in 

a groove in the Argonaute protein and the target mRNA strand is first bound by the 

seed sequence of the miRNA, with the phosphate backbone then interacting with the 

Argonaute in a non-specific manner. This now forms a fully loaded RISC with 

miRNA:mRNA binding (see Fig 6.2). 

 

RISC effector activity 

The primed RISC usually then leads to a downregulation of the gene target by 

degrading mRNA though some RISCs have been shown to have an upregulatory effect 
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on gene function. The downregulation may be affected by preventing translation or by 

slicing/hydrolysing the mRNA. The latter requires significantly more extensive Watson-

crick binding between miRNA and mRNA, thereby ensuring only the intended target 

mRNA is in fact sliced. Argonoaute 2 is capable of catalyzing this process and slices the 

target mRNA just distal to the portion bound to the seed sequence of the 

complementary miRNA (i.e. between bases 10 and 11, with the seed sequence bound 

from base 2-7.) The resultant sliced mRNA is further degraded by exonucleases found 

in the cell. Translational repression involves the prevention of the protein-protein 

interaction required by the ribosome to allow translation. Furthermore, the RISC 

containing the mRNA may localize to p-bodies found in the cytoplasm, thereby 

sequestering the mRNA and preventing translation. Note also that miRNA may prevent 

gene transcription ab initio in a process called RITS (RNA-induced Transcriptional 

Silencing), although like mRNA cleavage, this requires more sequence complementarity 

between the miRNA and the DNA and is more often carried out by siRNAs.  

 

 
Figure 6.2: RNA-Induced Silencing Complex (RISC) Effects. Ago- Argonaute 2, PACT- Protein Kinase RNA 
activator, TRBP- Transactivation Response RNA Binding Protein 

 

The overall effect of the miRNA depends upon the gene that has been regulated. 

miRNAs play an important role in the development and maintenance of a healthy 

cardiovascular system in particular and their role in the pathogenesis of many 

cardiovascular maladies is now being elucidated.  
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6.1.3  Release of miRNA from the cell 

As described above, the miRNA is transcribed initially in the nucleus before being 

exported to the cytoplasm, where it associates with Argonaute proteins to become the 

RISC. miRNA, pre-miRNA and RISC can then be packaged inside multivesicular bodies. 

The exact means by which the majority of miRNAs enter the circulation is unknown but 

potential mechanisms are shown in figure 6.3 below. 

 

 
Figure 6.3: Fate of miRNAs and possible mechanisms for their cellular release 

 

Kosaka et al demonstrated that release might be coupled to a ceramide-dependant 

process 281. Despite the uncertainty as to the exact mechanism of cellular extrusion of 

miRNA, what does appear clear is that this process is regulated. Pigati et al showed 

that cells could selectively modify the miRNA content of exosomes 282. They showed 

that about two thirds of miRNAs were found in exosomes at concentrations 

approximating their intracellular concentration, indicating that the majority of miRNA 

release is passive. In their model of breast cancer, however, they showed that the 

malignant cells secreted almost 90% of the miR-451 contained within the cell, while 

releasing only 2% of the most-abundant miRNA in the cells, miR-72. The method of this 
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control is uncertain but does show that cells can selectively release miRNAs in different 

quantities. 

 

6.1.4  Circulating miRNA 

miRNAs have been detected in many components of blood, viz. platelets, erythrocytes 

and plasma. Their presence in plasma is surprising as the circulating ribonuclease 

(RNase) enzyme is present in concentrations adequate to neutralize any unprotected 

RNA. What is even more surprising is just how robust plasma miRNA actually is, being 

stable even at the extremes of pH as well as when boiled or frozen. miRNAs do not 

have an innate resilience to RNase action. The protection is conferred to miRNA by the 

manner in which it is transported in plasma. Three main methods of transportation 

have been identified recently. 

 

a. Microparticles 

miRNAs can be enclosed in microparticles released from cells. These particles vary 

in size from 50nm to 2m. At the smaller end of the scale they are termed 

exosomes (from 50-100nm). Slightly larger particles are termed microvesicles (0.1-

1.0m) while the largest are apoptotic bodies (0.5-2.0m). All of these 

microparticles retain surface markers of their cell of origin and are filled with 

cytoplasm that can contain cytokines, RNA, miRNA and other chemicals. In general, 

their contents are pro-inflammatory. They are capable of binding to cell-surface 

receptors of other cells and can then be internalized. In this way miRNA may be 

released from a particular cell, move through the circulation in a protected 

environment before subsequently being taken-up by a distant cell where the 

miRNA could perform its usual effects by binding to ubiquitous Argonaute proteins. 

Microparticles (MPs) appear to be an important mode of miRNA transport as Diehl 

et al showed that when plasma was depleted of MPs, the absolute numbers of 

miRNAs present in the plasma was reduced by over 50% 283.  
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b. Protein bound 

miRNAs also associate with circulating proteins, which protect them from RNase 

action. Arroyo et al determined that up to 90% of plasma miRNA might not be 

found in vesicles, which is at variance with Diehl’s data above 284. They used size-

exclusion chromatography (SEC) and differential centrifugation to first show that 

the majority of miRNA was likely not membrane-bound before demonstrating that 

the miRNA was susceptible to protease action on the plasma samples indicating 

that the miRNA was indeed protein bound. They went on to show using 

immunoprecipitation that the main protein associated with miRNA in plasma was 

Argonaute 2 (the main protein found in the RISC). This raises the possibility that 

cells secrete RISCs directly into the circulation. Finally, Arroyo et al found that 

certain miRNAs were exclusively found in vesicles and they hypothesized that the 

differential release of miRNA into vesicle bound and unbound populations 

represented a cell-type-specific method of miRNA expression. 

 

c. Lipoprotein bound 

Nucleic acids are known to bind to certain lipids. Phosphatidylcholine in particular 

can form stable ternary complexes with nucleic acids. This has been exploited as 

lipid-vehicles have been used to deliver nucleic acids to cells in vitro and in vivo. 

Vickers et al showed that human HDL contains populations of miRNAs in 

proportions that are altered in disease states285. They also found that LDL-

associated miRNA more closely resembled exosome-associated miRNA than the 

HDL-miRNA did. Finally, they showed that the HDL-mediated miRNA delivery to 

other cells depended on cellular uptake by the SR-BI scavenger receptor. 

 

Circulating miRNA is therefore protected from degradation by the membrane of 

microparticles, by their close association to proteins and by their propensity to bind 

with circulating lipoproteins. Plasma miRNA levels may be readily measured and their 

possible use as biomarkers in disease states is attractive. 
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6.2  miRNAs in endothelial cells 

The endothelium is a cellular monolayer that lines all blood vessels in the body. It is 

responsible for regulating vascular tone, localizing blood constituents to the site of 

injury and inflammation and is a very active secretory tissue, being able to release NO 

and many other important biologically active substances. For a full review of 

endothelial cell (EC) function see chapter 1.4. ECs may produce an abundance of 

miRNAs, which can alter the local cellular behaviour. One important factor that may 

regulate the local production of miRNA is the local blood flow specifically the nature of 

endothelial stresses. As was described in 1.4.3, the endothelium may be exposed to 

laminar shear stress or oscillatory shear stress. The endothelium is nominally adapted 

to the former and the latter induces a pro-inflammatory phenotype locally through the 

downregulation of Kruppel-Like Factors (KLF) 2 and 4 with resultant activation of NFκB. 

Many miRNAs are modulated by local shear stress. A sample of these is listed in table 

6.1 below. 

 

  

Table 6.1: miRNAs regulated by endothelial shear stress 
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6.2.1  miRNA and Endothelial Inflammation 

As discussed in 1.4.3, the endothelium plays an important role in the inflammatory 

response. It recruits immune effector cells to local target tissues via the expression of 

surface molecules. These allow adherence and translocation of immune cells across the 

endothelium. It is also capable of secreting pro-inflammatory substances that can 

affect nearby cells such as VSMCs, which also have an important function in 

inflammation as they may de-differentiate from contractile cells into secretory cells. 

Importantly, ECs themselves may be the target of an inflammatory reaction and this is 

at the heart of many disease processes, such as atherosclerosis. Predictably, miRNAs 

have been shown to be important in endothelial inflammation. 

 

NFκB regulation 

Levels of miRNA-10a and -10b are reduced in atheroprone vascular regions and knock-

in of miR-10a in mice leads to reduced expression of surface inflammatory molecules 

on ECs. It is believed that miR-10a targets two enzymes (MAP3K7 and βTRC) that are 

important in the activation of IKK, an enzyme that removes the IκB-inhibitory unit from 

NFκB, while 10b targets MAP3K7 only. By preventing the activation of NFκB in this way, 

miR-10 reduces the expression of many inflammatory substances in ECs (such as 

Selectins, ICAM, VCAM, MCP-1 and MMPs), thereby reducing atheroma formation. 

Laminar shear stress, predictably, has been shown to increase miR-10a expression. A 

recent study in apo-E deficient mice showed that systemic delivery of miRNA-181b 

inhibited NFκB activity through the inhibition of importin-α3, a protein required for the 

transport of NFκB into the nucleus in endothelial cells286. 

 

ETS regulation  

E26 transformation-specific sequences (ETS) are a family of transcription factors that 

are heavily involved in vascular inflammation and are activated in response to a 

plethora of stimuli, including IL-1β, Angiotensin II and TNF-α. ETS can then in turn 

trigger many downstream targets such as VCAM-1, MCP-1 and MMP, thereby 
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contributing to the pro-inflammatory phenotype exhibited by ECs activated by pro-

inflammatory stimuli. Interestingly, Ets-1 also triggers transcription of miR-126, which 

can inhibit translation of VCAM-1 mRNA.287,288. miR-126 levels are reduced in patients 

with established CAD and reduced levels are associated with increased leukocyte 

adherence to ECs with an increased expression of VCAM-1. Overexpression of miR-126, 

on the other hand, was shown to be atheroprotective in mice. Other regulators of Ets-1 

are the miRNA-221/222 cluster, miR-200b and miR-155. These directly target Ets-1 and, 

as such, can control the EC response to stimuli such as Angiotensin II. In addition, miR-

155 also targets the AT1R. Like with miR-126 above, circulating levels of miR-155 are 

reduced in patients with CAD. 

 

Regulation of Inflammatory Cell Adhesion 

miR-31 and miR-17-3p have been shown to reduce neutrophil adhesion to ECs289. They 

blunt the response of the ECs to TNFα by reducing the expression of E-selectin and 

VCAM-1 respectively. miR-663 was shown to increase monocyte adhesion in areas with 

increased oscillatory shear stress290. miR-21 has also been shown to be induced by 

Oscillatory stress and increases VCAM and ICAM expression by inhibiting PPARα with 

resultant derepression of Activator Protein 1291. Finally, Endothelin-1 increases the 

adherence of neutrophils to ECs and is targeted by miR-125a and -125b. The exact role 

of this pathway is yet to be characterised. 
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Table 6.2: miRNAs affecting endothelial inflammatory activation 

 

6.2.2  miRNA and Krüppel-like Factors 

KLFs are zinc-finger containing transcription factors that play an important role in 

linking mechanotransduction to EC genomic activity. Their nomenclature was derived 

from the German for “cripple” as the Krüppel factors were originally found in 

Drosophila and when absent led to severe deformation of the thorax. They are 

numbered chronologically following their discovery. KLF2 and 4 are abundantly 

expressed in EC and their activity regulates many important flow-dependant processes. 

KLF2 is typical of KLFs. Its production in stimulated by laminar shear stress, which 

activates a MAPK/ERK/MEF2 pathway, and by statins, which lead to increased 

transcription of KLF2. The KLF2 then acts in the nucleus and regulates transcription of 

substances involved in inflammation, thrombosis and vasodilatation. The overall result 

is the induction of endothelial activity that prevents local inflammation and thrombosis 

and which promotes vasodilatation. In essence, KLF2 activity is good for a healthy EC. 
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KLF4 acts in a similar fashion, but is induced by inflammation whereas KLF2 is inhibited 

by pro-inflammatory stimuli292. 

 

 
Figure 6.4: KLF Regulation and Effects 

 

In addition to increasing KLF2 expression, laminar shear increases KLF2-mRNA stability 

in ECs. In an excellent study, Wu et al showed that miR-92a transcription is inhibited by 

laminar shear stress and that it varies reciprocally with KLF2 levels 293. They went on to 

demonstrate that miRNA-92a has seed-region complementarity with a sequence in the 

3’-UTR of KLF2-mRNA and that miR-92a forms a RISC that binds the KLF2-mRNA and 

destines it for degradation. During laminar shear, miR-92a is downregulated and KLF2-

mRNA is not targeted and therefore KLF2-mRNA levels are maintained. Wu et al also 

demonstrated that turbulent flow and oscillatory shear stress upregulated miR-92a 

levels with a concomitant drop in KLF2 activity. It became clear that miR-92a 

expression in response to shear stress determined KLF2 activity with many 

downstream effects. When miR-92a levels were increased using plasmid-transfection, 
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KLF2-mRNA/protein, eNOS mRNA/protein and thrombomodulin mRNA/protein were 

all reduced, clearly delineating the pathway.  

 

Inhibition of miR-92a in mice actually decreased atherosclerotic plaque dimensions and 

reduced macrophage and T-lymphocyte accumulation with an increased collagen 

component, indicating an increase in plaque stability 294. These effects were mediated 

through increased KLF2 and 4 signalling. Similarly, the regulation of KLF4 transcription 

by miRNAs has also been described as miR-143/145 reduces KLF4 transcription and 

translation295. Finally, it should be noted that KLF2 is also regulated by factors other 

than miRNAs. TNFα can inhibit MEF2 in the above pathway, preventing KLF2 

expression, by modulating NFκB and HDAC activity 296. It is possible that patients with 

CSX have reduced KLF2 and/or KLF4 activity as they have reduced vasoreactivity and 

high levels of markers of vascular injury. The expression of miR-92a and mir-143/145 in 

CSX has not been described to date although TNFα levels are known to be increased. 
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6.2.3  miRNA and Oxidative Stress Responses 

 

Figure 6.5: Endothelial Oxidative Stress 
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Reactive Oxygen Species (ROS) are produced as a by-product of normal cellular 

metabolism. In blood vessels, they may be produced by ECs, VSMCs or tissue 

macrophages. The main source in ECs is probably plasma membrane NADPH oxidase 

(NOX) activity, although some quantities may also be produced by the uncoupling of 

NOS (when tetrahydrobiopterin levels are low). ROS contain an unpaired electron in 

their outer orbital and are highly reactive. This allows them to damage many 

surrounding substances such as DNA and proteins. CSX patients are known to have 

increased markers of oxidative stress, such as maliondialdehyde (MDA) and serum 

superoxide, and decreased levels of protectors such as superoxide dismutase (SOD) 

110,221,222. Studies have corroborated this by showing that DNA damage is increased in 

the leucocytes of CSX patients in concert with an increase in oxidative stress 297. 

Oxidative Stress leads to endothelial dysfunction and activation. 

 

miRNAs are capable of regulating many processes involved in the EC’s response to 

oxidative stress. Many of the factors involved in this response will be further 

mentioned in this chapter (ZEB1, SIRT1 etc.) Studies have looked at the alteration of 

miRNA levels in response to oxidative stress exposure and several miRNAs have been 

identified as being particularly important. Perhaps the most important are the miR-200 

Family. This family consists of five members. miR-200a, miR-200b and miR-429 are 

located on chromosome 1 and miR-200c and miR-141 are found on chromosome 12. 

They are known to have a role in the metastasis of cancers, with reductions in their 

levels being associated with increased epithelial-mesenchymal transition of the 

malignant cells. The most relevant in the ECs is miR-200c, which is highly expressed in 

response to oxidative stress. miR-200c then induces cellular senescence or apoptosis 

through the inhibition of ZEB1, an anti-apoptotic gene.  

 

miR-200a can also target SIRT1 and reduce its activity in response to oxidative stress. 

Other miRNAs involved in sirtuin regulation (see 6.2.4) may also mediate reduced SIRT1 

activity in oxidative stress with resultant endothelial dysfunction. miR-217 and miR-199 
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might be of particular interest. Finally, miR-21 is induced by oxidative stress and has 

been shown to reduce SOD activity in angiogenic progenitor cells resulting in reduced 

NO availability in these cells 298. It is also upregulated in atherosclerotic plaques. 

 

6.2.4  miRNA and Sirtuin activity 

Sirtuins are a family of 7 nicotinamide adenosine dinucleotide (NAD)-dependant 

deacetylases. They remove acetyl-groups from lysine in certain proteins, thereby 

altering protein charge and potentially conformation and function. They perform 

important roles including epigenetic regulation of gene transcription. They can 

deacetylate histones, increasing lysine positive charge and histone-DNA binding 

affinity, thereby limiting transcription factor access. Unlike HDACs, sirtuins can also 

deacetylate many non-histone proteins and have been shown to be important in 

cellular senescence, whole body metabolism and gene expression. They also happen to 

be highly expressed in endothelial cells. SIRT1, in particular, is known to have several 

important cardiovascular effects and is theorised to be the effector molecule for the 

beneficial effects of calorie restriction on cardiovascular parameters such as blood 

pressure, insulin sensitivity and lipid profiles. SIRT1’s effects on many important 

cardiovascular pathways are shown below 299-303.  
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Table 6.3: Selected SIRT1 targets with relevance to cardiovascular disease 

 

miRNA regulation of SIRT1 

In health, SIRT1 levels change dynamically according to nutritional status to help 

maintain an appropriate metabolic response. In diseases such as diabetes and obesity, 

SIRT1 remains suppressed, leading to many inappropriate metabolic behaviours such as 

reduced insulin sensitivity, increased foam cell formation and increased vascular 

inflammation, which can result in vascular pathology. Many miRNAs have seed-

sequence targets in the 3’-UTR of SIRT1-mRNA and several have been shown to directly 

regulate SIRT1 expression. The most important of these with respect to endothelial 

SIRT1 are miR-34a, miR-210 and miR-217304,305. These can induce endothelial 

senescence and Menghini et al showed that miR-217 also reduced NO availablility and 

FoxO1 activity306. Furthermore, miRNAs can control SIRT1 activity by altering the 

availability of NAD+ levels. Some miRNAs (e.g. miR-34a and miR-26b) target 

nicotinamide phospho-ribosyltransferase (NAMPT), an important enzyme in NAD 

biosynthesis307. Further vascular miRNAs capable of regulating SIRT1 include miR-
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143/145, miR-199 and miR-200a 308-310. Interestingly, as sirtuins can control gene 

expression, it is possible that they can modulate miRNA transcription. At least one such 

case has been described where SIRT1 regulated the brain-specific miRNA-134 that 

resulted in altered neuronal plasticity311. Given the important role of SIRT1 in 

endothelial cells, miRNA disruption of its function could play a key role in CSX. 

 

6.2.5  miRNA and eNOS 

Endothelial Nitric Oxide Synthase (eNOS or NOS3, 7q35-36) is an essential component 

of the endothelial-dependant vasodilation pathway. It oxidises L-arginine to the 

gaseous NO, which diffuses rapidly to nearby cells and mediates vasodilatation as well 

as promoting an anti-apoptotic and anti-proliferative environment around the 

endothelium. It mediates this effect via activation of a primary NO receptor or through 

nitrosation of certain iron-sulphur containing proteins such as caspase 3 312.  Reduced 

bioavailability of NO is a feature of CSX. Factors and miRNAs confirmed to regulate 

eNOS activity are shown in Table 6.4 below. 

 

 

Table 6.4: Factors influencing eNOS activity 
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6.2.6  miRNA and Endothelin-1 

Endothelin-1 (ET-1) is a vasoactive 21-amino acid peptide that is released by 

endothelial cells and is a highly potent vasoconstrictor and mitogen. It mediates these 

effects by activating the endothelin-type A receptor (ETaR). Dysregulation of ET1 can 

lead to pulmonary and systemic hypertension, vasospasm and myocardial and blood 

vessel fibrosis. Interestingly, the endothelin type B receptor (ETbR) mediates the 

release of NO, prostacyclin and endothelial-derived relaxing factor and is found in 

almost all parts of the vascular tree. Usually, the predominant effect of ET-1 is 

vasoconstriction. Endothelin production is mainly regulated at the transcription level of 

the endothelin-1 gene (EDN1, 6p24.1). Figure 6.6 shows many of the factors involved in 

this transcriptional regulation. It should be noted that laminar shear stress induces a 

dose-dependent reduction in ET-1 release (as well as reducing the levels of ppET-1 

mRNA and endothelin-converting enzyme 1 isoform) but upregulates ETbR levels by a 

NO- and PKC- dependent mechanism313. KLF2 has also been shown to decrease EDN1 

expression.   

 
Figure 6.6: Endothelin-1 Gene Regulation: AT2- Angiotensin II; ANP- Atrial Natriuretic Peptide; KLF2- 
Krüppel-like Factor 2; LPS- Lipopolysaccharide; LSS- Laminar Shear Stress; NO- Nitric Oxide; oxLDL- 
oxidised Low Density Lipoprotein; PGI2- Prostacyclin; TGFβ- Transforming Growth Factor; TNFα- Tumour 
Necrosis Factor 
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Post-transcriptional regulation of EDN1 also occurs and EDN1-mRNA is quite unstable, 

having a relatively short half-life of 15 minutes 314. The main reason for this is that the 

3’-UTR constitutes over 50% of the EDN1 transcript and contains multiple AU-rich 

elements (AREs), which target the mRNA for degradation. Studies have also shown that 

miRNAs are also involved in this post-transcriptional regulation. The EDN1 3’UTR has 

potential binding sites for up to 48 miRNAs and 4 of these have been shown to interact 

with the mRNA in vivo (miR-1, miR-125a and -125b and miR-199) with all of these 

reducing ET-1 production315-319. ET-1 plays an important role in vasomotor tone. It has 

also been implicated in microvascular dysfunction, causing vasoconstriction and 

endothelial dysfunction 320,321. It is present in higher circulating concentrations in 

patients with CSX and appears to reduce the pain threshold in these patients162,322,323. 

Decreased miRNA-dependant regulation of EDN1 might account for these findings. 

 

6.2.7  miRNA and Endothelial Senescence 

As described in chapter 1.4.3, endothelial senescence renders the endothelium 

dysfunctional with reduced endothelium-dependant vasodilatation and increased 

expression of markers of vascular inflammation, all hallmarks of CSX. The degree of 

endothelial cell senescence in CSX is not known as there are no particular plasma 

biomarkers that can be measured to reliably ascertain cellular status. miRNA profiling 

may be of interest, however, as miRNAs have been shown to have an important role in 

the regulation of senescence in ECs. Dicer, but not Drosha, knockout induced cellular 

senescence in mouse embryonic fibroblasts but the effects of Dicer knockdown in ECs 

is not known. miRNAs implicated in endothelial senescence are shown in table 6.5 

below. 
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Table 6.5: miRNAs affecting endothelial senescence 

Given the fact that CSX patients have evidence of redox imbalance, it would not be 

surprising to find that they have some degree of stress-induced senescence. This 

senescence could explain the CSX phenotype quite well, given that many of the 

features of endothelial senescence are also typical of CSX. Studies in human aortic 
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endothelial cells (HAECs) show that the expression of many miRNAs are changed during 

endothelial senescence 324.   

 

miRNAs may be involved in regulating the induction of senescence itself as well having 

a role in the pathways further downstream. miR-217 and miR-34a can both target 

SIRT1, a key player in cell longevity304,306. Downregulation of SIRT1 leads to increased 

acetylation and activation of p53, which is the main pathway involved in EC senescence 

induction. Likewise, targeting of anti-apoptotic protein ZEB1 by miR-200c may also 

induce senescence and even apoptosis in endothelial cells325. Increased PTEN activity 

due to reduced miR-21a or -214 expression could also induce cell cycle arrest. 

Alterations in levels of miRNAs can also alter many of the cellular functions that are 

changed in senescence such as eNOS activity and the expression of vascular adhesion 

molecules, chemokines and cytokines. In non-endothelial tissue, miR-199 has been 

noted to be significantly downregulated in senescent mesenchymal stem cells while 

miR-143 and miR-10b are upregulated in senescent fibroblasts326,327. 

 

6.3  miRNA in Cardiovascular Disease 

Given their robustness in plasma and relative ease of quantification, miRNAs have been 

identified as promising biomarkers in many cardiovascular diseases. Cardiomyocytes 

may release miRNAs in response to a variety of stimuli and miRNA profiling has been 

performed in many disease states.  

 

6.3.1  miRNAs in Atherosclerosis 

Atherosclerosis is a focal inflammatory process that takes place in the intima of blood 

vessels and results in the accumulation of cells, oxidised lipids and fibrous elements in 

the vessel wall. Under normal pulsatile shear stress, the endothelium protects itself by 

producing anti-inflammatory and anti-thrombotic substances. When the endothelium 

becomes injured, from the effects of hypertension, dyslipidaemia or advanced 



244 
 

glycosylation end products (AGEs) for example, local endothelial changes occur causing 

upregulation of adhesion molecules with local recruitment of inflammatory cells. These 

cells then oxidise and ingest LDL particles with the formation of foam cells. Smooth 

muscle cells in the wall also dedifferentiate and become secretory cells. The local 

inflammatory process results in thickening of the intima that causes vascular 

remodelling and ultimately obstruction of blood flow with resultant ischaemia in 

tissues distal to the stenosis.  

 

miRNAs are involved in many stages in the development of atheromatous plaques, 

from cholesterol synthesis and handling to vascular wall remodelling. Many miRNAs 

believed to be involved in this pathway are depicted in figure 6.7 overleaf. Patients 

with CSX have no macroscopic atherosclerosis and have no excess risk of CAD 

compared with a healthy population. Despite this, the endothelial dysfunction typified 

by the early stages of atherosclerosis is likely to be quite similar in CSX patients. The 

reason for the lack of macroscopic atheroma in CSX patients despite significant 

endothelial dysfunction is unknown. miRNA profiling in CSX patients to determine the 

levels of miRNAs associated with atherosclerosis will be of great interest. 

 

6.3.2  miRNA, Myocardial Ischaemia and Preconditioning 

Despite the presence of angina in CSX, there is conflicting evidence regarding the 

presence of myocardial ischaemia in these patients. Lactate studies examining the 

venous blood draining from the coronary sinus have given conflicting reports and early 

myocardial perfusion imaging techniques failed to show any myocardial ischaemia in 

CSX patients8,328,329. Modern imaging techniques, however, show the presence of sub-

endocardial ischaemia and reduced coronary flow reserve in CSX10. CSX patients, 

therefore, would likely undergo many cycles of ischaemia and reperfusion.  

 



245 
 

 

Figure 6.7: Potential Roles of miRNAs in Atheromatous Plaque Formation 
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Ischaemic tissue becomes biochemically unstable. Many substances are released from 

ischaemic myocardium, such as bradykinin, adenosine, endothelin etc. Additionally, the 

respiratory chain is exhausted of oxygen and many of the complexes are in their most 

reduced state. Reperfusion results in a huge increase in the number of ROS present in 

the cell, increasing oxidative stress on the cell. In fact, reperfusion is also a time of 

marked inflammation in myocardial cells.  

 

miRNA in Ischaemia-Reperfusion Injury (IRI) 

Most of the data for miRNA in reperfusion injury focus on changes after myocardial 

infarction, which would obviously require a longer duration of ischaemia that is seen in 

CSX, where patients don’t suffer infarction. Unfortunately, there seems to be a lot of 

contradictory information regarding the changes in expression of certain miRNAs after 

reperfusion.  For example, miR-1 levels may increase or decrease, depending upon 

which study you read. Overexpression of miR-1 seems to reduce cell viability in 

oxidative stress yet reduces the rate of apoptosis in rat models of IRI. Despite this 

current lack of clarity, this new field is progressing rapidly. The microRNA changes seen 

after ischaemia are tabulated below. 

 

 

Table 6.6: miRNA changes after myocardial ischaemia 
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Repeated bouts of short-lived ischaemia induce many protective changes in myocardial 

cells and have been shown to limit subsequent infarct size in the case of vessel 

occlusion. This is known as ischaemic preconditioning. 

 

miRNA in Ischaemic Preconditioning (IPC) 

IPC has been shown to have early and prolonged effects (up to 96 hours) following 

ischaemia of even 5 minutes’ duration. Early preconditioning is believed to be 

mediated by several substances that are released by the cells during the ischaemia. 

Adenosine appears to be a key player in early preconditioning by acting on the A1 

receptor and Bradykinin has also been shown to reduce dysrhythmia in ischaemic 

hearts and reduces infarct size if given intravenously. These substances are believed to 

act via G-protein coupled receptors to mediate many changes in the myocytes with 

activation of Protein Kinase C as a common step. They appear to prevent cell death by 

preventing the opening of the mitochondrial permeability transition pore (MPTP) and 

hence preventing uncoupling.   

 

More long term changes appear to be mediated by the modulation of mitochondrial 

ATP-dependant potassium channels (KATP) and through the activation of various 

kinases (such as ERK1/2, and PI3K-Akt preventing apoptosis) and iNOS, the inducible 

form of NOS. NO can also activate KATP channels in the mitochondria, limiting the 

cardiac action potential duration. Cyclo-oxygenase-2 is also upregulated in the pre-

conditioned hearts of and may produce cardioprotective prostaglandins.  Hypoxia-

inducible factor-1 may play an important role in preconditioning by regulating 

mitochondrial respiration and is a known target of several miRNAs including miR-199. 
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Table 6.7 miRNAs affected by tissue hypoxia 

A cocktail of miRNAs taken from an ischaemic preconditioned mouse can reduce infarct 

size in another animal when injected directly into the myocardium. This protection was 

associated with an increase in eNOS (without a change in iNOS levels), HSP70 and HIF-

1330. The specific miRNA effectors in IPC are uncertain but many are shown to be 

increased in ischaemia. These are listed in table 5.6. As CSX patients have cycles of 

ischaemia and are likely to have some levels of ischaemic preconditioning it will be 

interesting to see if the profiles overlap. 

   

6.3.3  miRNA in Cardiac Syndrome X 

The simple fact is that nothing is known of miRNA profiles in CSX to date. As 

endothelial dysfunction plays a central role in CSX one might expect to see 

dysregulated miRNA expression in those miRNAs that modulate eNOS, KLF2, KLF4 and 

SIRT1 expression. Also, the pattern of miRNA expression might implicate a certain 

mechanism of endothelial dysfunction such as atherosclerosis or oxidative stress. It 

would also be interesting to see if there is any overlap in miRNA profile between CSX 

and IHD. 
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6.4  Chapter Objectives 

Given the relative specificity of miRNAs and the fact that the miRNA profile has not 

been established in CSX, the potential to discover a particular miRNA signature in CSX 

and therefore provide some insight into the pathways that are dysregulated in CSX 

should be pursued. In this chapter we aim to: 

1. Determine the identity of differentially expressed microRNAs in active CSX using 

Massively parallel (next-generation) sequencing with real-time qPCR validation. 

2. Identify specific targets of these differentially expressed miRNAs and therefore 

pinpoint potential culprit pathways involved in endothelial dysfunction in CSX. Once 

differentially expressed miRNAs are identified we will examine miRBASE and other 

repositories to identify known and potential targets of these miRNAs. The 

relevance of these targets to CSX pathogenesis will be assessed. 

Methods 

6.5  Participants 

The same patient cohorts that have been used in each of the chapters 2-5 were again 

utilised in this chapter. All study participants gave full informed consent to miRNA 

analysis. CSX patients fulfilled the strict criteria as discussed in chapter 1; the LCSX 

patients had typical angina, a normal exercise stress test and normal coronary arteries; 

while the healthy controls were age- and sex-matched to the CSX patients, suffered 

from no cardiac symptoms and fulfilled the same exclusion criteria as the CSX and LCSX 

patients (viz. no other cardiac disease, diabetes mellitus, chronic inflammatory 

condition or recent use of anti-inflammatory medications). As noted in table 2.3, there 

was no significant difference in medication use between CSX, LCSX and healthy control 

patients other than an increased use of aspirin at baseline for the CSX patients. Blood 

samples from patients for miRNA analysis were available for all 17 CSX patients, 6 LCSX 

patients and 15 healthy controls.  
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6.6  Sample Preparation and Quality Control 

Samples consisting of 2.5mls of blood were drawn into PAXgene Blood RNA Tubes 

(PreAnalytiX GmbH, Hombrechtikon, Switzerland) from participants’ antecubital fossa 

veins. Following inversion, the tubes were allowed to stand for 2 hours before freezing 

at -20oC for 24 hours. Samples were then kept at -80oC until needed for further 

analysis. Intercellular RNA remains stable for a minimum of 50 months at -20oC in 

PAXgene tubes. Once all samples had been collected, we proceeded to RNA extraction 

using the PAXgene Blood miRNA Kit (PreAnalytiX GmbH, Switzerland) according to the 

manufacturer’s instructions. This involves centrifuging and washing blood before 

adding proteinase and incubating. The resulting fluid is passed through a shredder tube 

and the supernatant is then passed through an RNA spin column before digestion of 

DNA using DNase followed by washing and elution of RNA using buffers. Using this 

protocol, all RNAs >18 nucleotides in length are purified.  

 

Purity and concentrations of the isolated RNA was assessed initially using a NanoDrop 

1000 spectrophotometer (Thermo Fisher Scientific, MA, USA). This system uses 1μl of 

sample and is capable of determining the concentration of ribonucleic acid samples up 

to 3000 mg/μl with a lower limit of detection of 2ng/μl and has a typical CV between 

duplicated samples of 2%. A ratio of absorbance at 260nm and 280nm is useful in 

assessing the purity of the extracted RNA. A ratio of ≥2.0 is generally accepted as 

“pure” for RNA. A lower ratio than this may be caused by impurities in the samples 

(such as protein contamination). The quality of the extracted RNA was further assessed 

using the Agilent 2100 Bioanalyser (Agilent Technologies Inc., CA, USA) to produce an 

RNA integrity Number (RIN), determined by the electrophoretic trace of the sample. 

The RIN scales from 1 to 10, with 10 indicating completely intact RNA. An RIN of >7 is 

adequate, but >8 is preferable in order to allow for accurate microRNA sequencing. 

Pure RNA was frozen at -80oC until subsequent analysis. 
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6.7  Next Generation Sequencing 

The initial step in analysis of the miRNA profile was to perform next-generation 

sequencing (NGS) of the miRNA. Samples from 4 CSX patients and 4 controls were sent 

for NGS. These samples were taken randomly from CSX patients who were 

symptomatic at the time of blood draw and were taking statins and randomly from 

healthy controls who were on statins. There was no statistically significant gender, 

medication use or age difference between the randomly selected groups. NGS was 

performed by Exiqon (Exiqon Inc., Vedbaek, Denmark) and followed the work plan 

detailed in figure 6.8 below. Exiqon performed quality control analysis of all the 

samples submitted, to ensure no degradation in transport, using an Agilent Bioanalyser 

2100. They then performed a library preparation involving the conversion of RNA to 

cDNA followed by ligation with custom adapters and amplification.  The RNA fraction of 

interest was highlighted by size selection. This fraction was then sequenced by 

synthesis using the Illumina platform with a minimum of 5 million reads. Exiqon also 

performed the statistical analyses to identify differentially expressed miRNAs and 

attempted to ascribe the observed results to a particular Gene Ontology pathway and 

give a biological interpretation. 

 

 6.8  Validation with Quantitative Polymerase Chain Reaction 

In order to validate the NGS results and to investigate the results in the wider CSX 

cohort and control group, we assessed the differential expression of the miRNAs 

identified at NGS by performing quantitative real-time PCR using the miRCURY LNA 

Universal RT microRNA PCR system using SYBR Green (Exiqon Inc., Vedbaek, Denmark) 

and specific qPCR primers for the differentially expressed miRNAs identified at NGS. 

miR-423 was used as the reference RNA as this has been typically detected at medium 

to high levels in serum and plasma samples and is provided by Exiqon as a candidate 

reference gene. The primer mixes included UniSP6 RNA spike-in control primer mix v2 

to ensure good internal validation. 
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Figure 6.8: Work flow of Next-generation Sequencing by Exiqon Inc. (taken with permission from the 
Exiqon report) 
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Figure 6.9 Illustration of the employed quantitative real-time polymerase chain reaction (PCR) processes. 
LNA- locked nucleic acid. RT- Reverse transcription. 

 

The procedure is outlined in figure 6.9 above. The initial step was to perform one first-

strand cDNA synthesis reaction using reverse transcription as per the manufacturer’s 

instructions. This procedure adds a poly-A tail to the RNA sample (polyadenylation) 

before using a poly-T primer with a universal 5’ tag to allow for cDNA synthesis for all 

RNA. A 1:40 dilution of the cDNA was then made using nuclease free water before 

proceeding to rtPCR. rtPCR was performed using a Lightcycler 480 (Roche Diagnostics, 

Basel, Switzerland) with 45 amplification cycles as per the standard conditions. Raw Cq 

(or Ct) values were obtained and normalised against the hsa-miR-423 reference gene. 

The reaction constituents and Lightcycler conditions are illustrated in figure 6.10 

below. 

 

 
Figure 6.10 A. Reagents used in the reverse transcription (RT) step. B. Reagents used for the qPCR step. 
C. Real Time PCR Cycle Conditions 
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6.9  Data management 

Average values of continuous variables such as RNA concentrations are expressed as 

mean ± SEM if normally distributed otherwise they are reported as median 

(interquartile range). Next generation sequencing analysis produced several outputs 

including a Principal Component Analysis, Heatmap, Differential Expression Analysis 

and Gene Ontology Enrichment Analysis. The handling of data for each of these 

outputs is summarised in the relevant results sections. In the qPCR, the observed cycle 

threshold (CT) at which the amplification curves crossed a computer-derived common 

threshold was noted. The deltaCt (ΔCT) was calculated for each sample by subtracting 

the CT for the reference gene (hsa-miR-423) from the CT of the target gene (e.g. miR-

143), thereby standardising the outputs across all samples. The average ΔCT across all 

samples was then calculated. The delta-delta Ct (ΔΔCT) was calculated by subtracting 

the average ΔCT from the ΔCT of the individual samples. The fold-change difference in 

expression for each group versus the average was then assessed by raising 2 to the 

power of -ΔΔCT. The statistical significance of these changes were assessed using the 

Mann-Whitney U test. The confidence intervals for the relative difference in expression 

between the two groups were also obtained by performing a student t-test on the 

average ΔCT values for each group. The 95% confidence intervals for the relative 

expression were then converted into fold-expression increase by raising 2 to the 

negative power of the confidence intervals. The foldchange in respective miRNAs was 

compared between LCSX and the other groups using the Independent Samples Kruskal-

Wallis test. All p-values are two tailed and the confidence intervals are to the 95% limit. 
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Results 

6.10  RNA Quality Control 

The quality of the RNA was assessed both locally in UCC prior to being sent to Exiqon 

and again at multiple stages during the NGS process by Exiqon themselves. 

 

6.10.1  Nanodrop Concentrations 

The average total RNA concentration was 62.4±10.6 ng/μL for the healthy controls and 

55.9 ± 8.0 for the CSX group. The median 260/280 was 2.09 [2.07 to 2.13] for the 

controls and 2.12 [2.06 to 2.16] for the CSX group. No sample had a 260/280 of less 

than 2, indicating that our RNA samples were pure.  

 

6.10.2  Bioanalyser RNA integrity 

The mean RIN for the healthy control patients was 8.4 ± 0.1 and was 8.6 ± 0.1 for the 

CSX population. All samples had an RIN >7, therefore making the samples suitable for 

sequencing. 

 

6.10.3  Quality Control by Exiqon 

The RNA samples were of good data quality and the vast majority had Q scores of >30, 

indicating a 99.9% accuracy in base identification. This is illustrated in figure 6.11 

below.   
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Figure 6.11: Q-scores of the various base samples in each subject. The vertical dotted lines delineate a Q-
score of 30. The vast majority of data had a Q-score in excess of 30 indicating good quality data. 

 

 

The next step in quality control was to identify the read length distribution of the 

identified RNAs. As shown in figure 6.12, each sample had a spike in the 18-22nt range 

(in keeping with miRNA) and smaller other spikes at greater lengths that correspond to 

other substances such as tRNA and mRNA fragments. This illustrates that miRNAs were 

selected appropriately during the NGS. 
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Figure 6.12 Read lengths. Note the spikes in the 18-22nt length, corresponding to detection of the 
miRNAs in the samples. 

 

A further measure of quality control during the NGS protocol was to map the 

sequenced data. The reads could be mapped to miRNA or to the reference genome, or 

be outmapped (contaminants such as adapters, primers and rRNA) or unmapped 

(which do not map to any of the aforementioned categories). Typically, approximately 

50% of the mapped reads will be from miRNA but this may be lower if the samples 

have degraded or are contaminated. As can be seen from Fig. 6.13, there was a 

consistent quantity of miRNA mapped from each subject in the experiment and overall 

58.8% of all reads were mapped to identified miRNA. 
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Figure 6.13 Mapping of NGS reads. Note the dark blue represents reads that map to miRNA’s and 

accounts for approximately 50% of all reads. 

 

6.11  miRNA Next-Generation Sequencing by Exiqon 

NGS was successfully completed by Exiqon. On average, 10.8 million reads were 

obtained per sample. Overall, 195 RNAs with > 50 counts were identified in all samples. 

Five miRNAs were found to be differentially expressed between CSX patients and 

healthy controls. 
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6.11.1  Principal Component Analysis 

 
Figure 6.14: Principal Component Analysis plot with rescaling to be zero-centered and to have unit 
variance (i.e. the variance across samples is scaled to 1). D- Disease (CSX), H- Healthy. PC- Principal 

component. 

 

By including the top 50 microRNAs that had the largest variation across all samples, an 

overview of how the participants clustered based on the variance in these data was 

obtained. The data was normalized with the tag per million (TPM) method and was 

converted to a log2 scale. If the biological differences between the samples were 

pronounced, they would form a primary component of the variation and this would 

lead to separation of samples in different regions of a PCA plot. If other factors, e.g. 

sample quality, inflict more variation on the samples, the samples would not cluster 

according to the biology. As can be seen in figure 6.14, the CSX patients separate 

clearly from the healthy control patients. 
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6.11.2  Heat map and unsupervised clustering 

The heat map diagram in the figure below shows the result of the two-way hierarchical 

clustering of microRNAs and samples. The data was normalized with the tag per million 

(TPM) method and converted to a log2 scale. Then all features were filtered on 

“expressed in all samples” criteria and the 50 features with the highest the coefficient 

of variation (%CV) were selected for the analysis.  Each row represents one microRNA, 

and each column represents one sample. The color of each point represents the 

relative expression level of a microRNA across all samples. The color scale is shown at 

the bottom right with red representing an expression level above the mean and green 

representing an expression level less than the mean. 

 

 
Figure 6.15: Heat Map and unsupervised hierarchical clustering by sample and microRNA. The clustering 
was performed on all samples, and on the top 50 microRNAs with highest %CV based on TPM normalized 
reads. There appears to be a clear differential expression of miRNAs between the CSX patients (2702_ 
CSX1-4) and the control participants (2702_HC1-4). 
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6.11.3  Differential Expression Analysis 

Differential expression analysis attempts to distinguish biological variation from 

technical variation within the experiment, assuming that this varies amongst 

microRNAs. For normalisation Exiqon used the trimmed mean of M-values method 

based on log-fold and absolute gene-wise changes in expression levels between 

samples, as studies have shown it to be most effective for NGS experiments331. For two 

factor experiments, the count data was modelled by a negative binomial distribution. A 

common dispersion across all microRNAs, as well as tag-wise dispersions for specific 

microRNAs, was then estimated using a quantile-adjusted conditional maximum 

likelihood (qCML) estimator. P-values for significantly differentially expressed 

microRNAs were estimated by an exact test on the negative binomial distribution. For 

more general experiments containing multiple factors, the dispersion was estimated 

using the Cox-Reid (CR) profile adjusted likelihood method.  

 

 
Figure 6.16: Table of the 20 most significantly differentially expressed microRNA names and annotation, 
with log fold change (logFC) between groups H (healthy control) and D (disease i.e. CSX) as well as 
Benjamini and Hochberg (FDR) corrected p-values. 
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A list of microRNAs predicted to be differentially expressed between the given 

experimental conditions is presented in Figure 6.16 above. Note that only the top 5 

miRNAs show significant differences after B-H correction for multiple testing. These 

miRNAs were miR-200a, miR-200b, miR-199b, miR-143 and miR-10b and appeared to 

be relatively under-expressed in the CSX population. 

 

 
Figure 6.17: Volcano plot showing the relationship between the estimated p-value and the fold change 

in normalized expression of miRNAs between the two experimental groups. The most significant 
differentially expressed miRNAs are labelled. 
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The above volcano plot gives a graphical representation of the differential expression 

of miRNAs in the two groups. The higher a miRNA is on the y-axis the more statistically 

significant the difference between the cohorts. The more to the right on the plot, the 

more upregulated the expression is in the healthy group relative to the CSX population. 

As one can see, miRNAs were relatively upregulated in healthy controls compared to 

the CSX patients, indicating that reduced miRNA expression may be associated with the 

disease state in CSX. As miRNAs mostly act to silence mRNA expression, under-

expression of miRNAs may allow the upregulation of certain biological processes. 

 

6.12  qPCR confirmation 

All miRNAs were differentially expressed between the two groups. Only miR-143 was 

validated by being underexpressed in the CSX group in both qPCR and NGS analyses. 

The remaining 4 miRNAs were found to be significantly overexpressed in the CSX group 

compared to the healthy controls by qPCR, in contradiction to the NGS results. As can 

be seen in table 6.8 below, the 4 miRNAs that did not validate when compared to the 

NGS results all had CT values of >35, indicating that these miRNAs were very lowly 

represented in the cDNA, probably due to very low expression (as there is high 

amplification of the reference gene in the same conditions). It should be noted that 

these 4 miRNAs also had very low counts by NGS and miRNAs with counts <120 are 

known to be difficult to validate with qPCR. Figure 6.18 illustrates the relative fold-

change in miRNA expression of the different groups versus the overall average. 
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Table 6.8: PCR results. Note the higher CT values in miR-10b, -199b, -200a and-200b. The relative 
expression of the target miRNAs in the CSX group versus the Healthy Control group is shown at the 
bottom of the table and is derived from the 95% CI of t-tests on the ΔCT. P-values in the upper box refer 
to differences by Mann-Whitney U, p-values in the lowest section are the results of t-tests. See section 
6.9. 

 
Figure 6.18: PCR Results. Bar charts of the median foldchange in expression when compared to the 

average expression level 
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6.13  Differentially Expressed miRNAs 

In all, 5 distinct microRNAs were differentially expressed in our CSX cohort as 

determined by NGS and PCR. These were miR-10b, a miRNA associated with 

endothelial inflammation and Kruppel-like factor regulation; miR-143, which regulates 

VSMC phenotype switching; miR-199b, which appears to have a role in the response of 

tissue to hypoxia; and miR-200a and miR-200b, members of the miR-200 family that 

govern many elements of the endothelial response to oxidative stress. The miRSearch 

and miRBase databases were used to research experimentally proven and predicted 

gene targets for the individual microRNAs. It should be again noted that only miR-143 

was validated as being significantly underexpressed in our CSX population with 

consistent results in both NGS and qPCR. The remaining miRNAs were differentially 

expressed, whether assessed by qPCR or NGS, but there was no agreement between 

the modalities as to whether they were under or over-expressed in the CSX cohort. This 

warrants further study. 

 

6.13.1  microRNA-10b  

miR10b is one member of the mir-10 microRNA precursor family. Like other members 

of this family, mir-10b is encoded by a gene in the Hox gene clusters, specifically just 

upstream of Hoxd4 on chromosome 2q31-2q37. It differs by only one base from closely 

related microRNA-10a and they are believed to have similar gene targets332. It may be 

induced by laminar shear stress or hypoxia and its promoter is hypermethylated in 

many cancers.  Confirmed targets for miR-10b importantly include KLF4, HOXD10 and 

KLF11. It has been extensively investigated and labelled as a “metastomir” in many 

cancers, varying from breast cancer to melanoma. It seems as though mir-10b can 

initiate migration and invasion of gastrointestinal cancers through the downregulation 

of Hoxd10 and KLF4 with the initiation of epithelial-mesenchymal transition (EMT). 

Antagonizing mir-10b action upregulates NK cell activity against target cells through 

upregulation of the MICB gene, which regulates MHC expression on target cells333.  
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More importantly for CSX, miR-10a is induced by laminar shear stress and is known to 

reduce NFκB in the endothelium through MAP3K7 and β-TRC downregulation. MiR-10b 

is predicted to similarly downregulate MAP3K7334. Reduced mir-10b, therefore, may 

allow for unfettered activation of NFκB in the endothelium, resulting in local 

inflammation. Also, it has been shown to control BCL2L11, an apoptosis inducer. In a 

study of renal transplant patients, the downregulation of mir-10b was associated with 

allograft rejection and glomerular endothelial apoptosis. Furthermore, the 

downregulation of mir-10b appeared to trigger a pro-inflammatory cascade of 

cytokines and promoted the recruitment of macrophages with endothelial release of 

TNFα, IL-6 and CCL2335. In other studies, it has been demonstrated that mir-10b levels 

are reduced by 83 ± 15% in athero-prone regions of the aortic arch. In these swine 

studies, mir-10b appeared to be largely confined to the endothelium336. 

 

Kruppel-like Factor 4 is a known target of miR-10b and is a key mediator of endothelial 

health, being responsible for regulation of endothelial anti-inflammatory, anti-

thrombotic and anti-oxidant states. KLF4 is upregulated by laminar shear stress in an 

AMPK-dependent MEK5/ERK5/MEF2 pathway and is also upregulated by inflammation 

and vascular injury, being induced by TNFα and particularly by IFNγ292,337. It reduces 

endothelial activation, including VCAM and E-selectin expression, through the 

inhibition of NFκB activation338. It also affects VSMC differentiation and inhibits their 

proliferation. Several studies have suggested that KLF4 may lead to dedifferentiation 

and phenotype switching of the VSMC although others take the opposing view, that 

KLF promotes VSMC differentiation295,339. Similarly, KLF11 is a predicted target of miR-

10b and also suppresses endothelial cell activation through the inhibition of NFκB340.  

 

Reduced miR-10b concentrations in CSX, therefore, would increase KLF4 and KLF11 

concentrations and allow for an anti-inflammatory effect, perhaps as a negative 

feedback to the pro-inflammatory stimulus. Indeed, the inflammation-dependent 

induction of KLF4 may even be explained by an inflammation-dependent reduction of 
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miR-10b concentrations, thereby allowing the expression of KLF4 to supervene. The 

reduced miR-10b may also allow the increased activation of NK cells, a potential source 

for the IFNγ and TNFα seen in our CSX cohort, through upregulated expression of MICB 

MHC class I molecules. On the other hand, increased miR-10b levels in CSX would lead 

to reduced KLF4 activity, thereby switching off the anti-inflammatory apparatus in 

endothelial cells. The activity of KLF4 in CSX deserves further study. 

 

6.13.2  microRNA-143 

miR-143 is coded as part of the polycistronic miR-143/145 cluster on 5q33. It is the 

most highly expressed miRNA in VSMCs and is also produced locally by ECs. Exocytic 

transport of miR-143 and tunneling nanotubes allows communication between these 

two cellular populations. miR-143 expression is upregulated by as much as 7-20 fold in 

response to laminar shear stress and as such regulates EC response to local rheology. 

Expression is also increased by statins, BMP2 and particularly by KLF2 signaling while 

the Jag-1/NOTCH signalling pathway in VSMCs has also been shown to regulate miR-

143 production. miR-143 expression is downregulated by TNFα, acute vascular injury 

and in chronic endothelial stress such as is seen in hypertension341. There are 

numerous genetic targets for miR-143 but most relevantly it regulates KLF4, KLF5, Elk-

1, SIRT-1, COX2 and ACE activity. miR-143 strongly induces cell cycle arrest and 

increased quantities are seen in senescent cells. Conversely, reduced miR-143 levels 

have been seen in many cancers as its absence allows the proliferation of many cell 

lines. It is also atheroprotective and has been found to be reduced in patients with 

atherosclerosis and in damaged blood vessels342.  

 

Crucially, miR-143 appears to be significantly important in the maintenance of healthy 

VSMC differentiation and is key in the preservation of normal contractile function 

mainly through the downregulation of KLF4/5 and upregulation of myocardin343. 

VSMCs depleted of miR-143 de-differentiate and lose their contractile phenotype and 

instead become migratory, proliferative and secretory in nature. Dedifferentiated 
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VSMC usually secrete pro-inflammatory mediators such as TNFα and IL-6 and also 

activate local endothelium. miR-143 knockouts have dilated blood vessels with thin 

media and consequently suffer a drop in blood pressure. VSMC phenotype plasticity is 

crucial in vascular remodeling and in adults is seen mostly in response to vessel injury. 

Reduced miR-143 allows the contractile VSMCs to change function, proliferate and 

migrate, thereby facilitating alteration of the local vascular architecture.  

 

Of further importance, miR-143 targets Angiotensin Converting Enzyme (ACE). miR-143 

knockdown led to increased ACE mRNA concentrations344. Despite this increase in local 

ACE—an enzyme that increases the concentration of Angiotensin II, a potent inducer of 

vasoconstriction—vasodilation supervenes, possibly through a mechanism of 

tachyphylaxis or “angiotensin resistance” with increased local ATII saturating local 

receptors with consequent internalization of the receptors345,346. miR-143 has also 

been shown to downregulate SIRT1308. This deacetylase has many beneficial effects on 

the endothelium including anti-inflammatory effects and potentiation of eNOS activity. 

Finally, Cyclooxygenase 2 (COX2) also appears to be a target of miR-143. 

Downregulation of miR-143 leads to increased COX2 mRNA stability and prostaglandin 

E2 synthesis. PGE2 is known to cause pain, increased vascular inflammation and EC 

activation347. 

  

The validated reduction of miR-143 in our cohort could lead to VSMC dedifferentiation 

and upregulation of ACE and prostaglandin E2 synthesis. Its reduction may be due to 

TNFα or else may be a result of downregulated KLF2 activity (as this is a primary driver 

of miR-143 release). 

 

 

6.13.3  microRNA-199b 

miR-199b is coded on chromosome 19p13.2 and its expression is controlled by the 

TWIST1 transcription factor (incidentally, the same factor that governs miR-10b 
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expression). Its expression is downregulated in hypoxia and in senescent cells. It has 

several relevant targets including sirtuin-1 (SIRT1), Hypoxia-Inducible factor-1 (HIF1), 

the Jagged-1/NOTCH pathway and the TRPV1 vanilloid receptor. Circulating levels have 

been demonstrated to be depressed in several conditions including hepatocellular 

carcinoma and dilated cardiomyopathy348. Elevated levels are seen in pathological 

myocardial hypertrophy as part of a feed-forward CN/NFAT signalling loop349. 

 

miR-199b is important in the differentiation of endothelial cells from stem cells and 

reduced miR-199b leads to reduced angiogenesis350. Reduced miR-199b also allows 

upregulation of hypoxia-inducible factor (HIF1α), which is responsible for 89% of the 

genes upregulated by hypoxia. Apart from inducing iNOS, VEGF and EPO in order to 

maximise blood supply to the hypoxic organ, HIF-1α also induces endothelin-1 via 

direct action on its promoter and can activate NFκB351,352. Reduced miR-199b also 

allows increased sirtuin-1 activity326. As shown in table 6.2, SIRT-1 has many benefits to 

endothelial function and its upregulation in CSX could represent an attempt to reverse 

the endothelial dysfunction present in this condition although cardiovascular SIRT1 is 

regulated more by miR-199a than 199b. Downregulation of miR-199b with consequent 

upregulation of the TRPV1 channel expression is seen in conditions with increased 

visceral pain such as IBS353. TRPV1 channels are also present in the nerves supplying the 

heart and blood vessels and are involved in the perception of cardiac pain. If these 

channels are upregulated in CSX it may allow heightened perception of angina pectoris. 

Increased visceral sensitivity is one of the putative causes of CSX. 

 

Finally, reduced miR-199b has been implicated in upregulation of the ubiquitin-

proteasome-system (UPS) as miR-199 targets ubiquitin ligases. The UPS is a cytoplasmic 

structure that is important in the breakdown of cellular proteins following their 

ubiquitination by ligases354. This is relevant to atheromatous coronary artery disease in 

that remodelling of the arterial wall depends on UPS function. The UPS system is also 
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implicated in endothelial oxidative stress and endothelial activation through 

ubiquitination of various cofactors involved in eNOS regulation352. 

 

6.13.4  microRNA-200 Family 

The microRNA-200 family consists of 5 separate miRNAs that are encoded on 2 

separate chromosomes. Mir-200a, -200b and -429 are all encoded from the same 

region on chromosome 1p36.3, while miR-200c and miR-141 are coded on 

chromosome 12p13.3. All of these miRNAs are richly expressed in epithelial tissues and 

regulate several aspects of the normal functioning of this tissue, being particularly 

implicated in the maintenance of cell polarity and the control of cellular senescence 

and migration. The expression of the miR-200 family is downregulated by hypoxia 

(40%) and specifically by HIF1α, which reduces miR-200b concentrations by 55%. 

Furthermore, inflammation characterised by elevated IL-6 also suppresses miR-200 

expression. Inducers of miR-200 production include TGFβ, PDGF and, significantly, 

reactive oxygen species. As such, the miR-200 family play a key role in the endothelial 

dysfunction that is induced by oxidative stress. Validated and predicted targets of miR-

200a and b include ZEB1, ZEB2, SIRT1, Endothelin-1, KLF11, MAPK (p38), ETS-1 and 

PTEN.  

 

ZEB1 and ZEB2 are repressors of the release of the calcium-dependent adhesion 

molecule E-cadherin, a molecule responsible for the maintenance of endothelial 

integrity. By regulating these transcriptional repressors, miR-200 appears to exert 

important control over the phenotype of epithelium. Reduced miR-200 levels are 

associated with increased epithelial migration with so-called Epithelial-Mesenchyme 

Transition (EMT). Conversely, increased miR-200 leads to the opposite, mesenchyme-

epithelial transition (MET). EMT is important in embryogenesis (Type 1 EMT), the 

induction of cancer metastasis (Type 3 EMT) and in vascular damage and tissue fibrosis 

in response to chronic injury (Type 2 EMT). This last EMT (also called Endothelial-
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mesenchyme transition or EndMT) is believed to be implicated in the microangiopathy 

seen in pulmonary arterial hypertension and systemic sclerosis.  

 

miR-200b is known to target the Ets-1 transcription factor, which is important in 

angiogenesis and endothelial cell migration. Increased Ets-1 leads to reduced 

endothelial differentiation, VSMC hypertrophy and increased release of vascular 

inflammatory mediators and endothelial dysfunction in an angiotensin-II-dependent 

fashion355. Furthermore, miR-200b but not MiR-200a appears to downregulate NFκB 

endothelial signalling in response to Toll-like Receptor (TLR) activity by targeting the 

MyD88 adaptor molecule and as such reduced TLR-induced activation of macrophages 

with the reduced release of cytokines such as IL-6 and TNFα356. 

 

6.14  Gene Ontology Enrichment Analysis 

Gene ontology (GO) enrichment analysis attempts to identify GO terms that are 

significantly associated with differentially expressed microRNAs. Using Exiqon’s 

miRSearch, we map the differentially expressed microRNAs identified above to their 

target genes and it then is possible to investigate whether specific GO terms are more 

likely to be associated with these microRNAs he (Gene Ontology Consortium, 2000). 

Two different statistical tests are used and compared. Firstly, a standard Fisher’s test is 

used to investigate enrichment of terms between the two test groups. Secondly, the 

‘Elim’ method takes a more conservative approach by incorporating the topology of 

the GO network to compensate for local dependencies between GO which can mask 

significant GO terms. Comparisons of the predictions from these two methods can 

highlight the truly relevant GO terms. The figure below shows a comparison of the 

results for the GO (Biological processes) terms associated with the significantly 

differentially expressed microRNAs that were identified between the groups. miRNAs 

were associated with the GO terms via their target genes. 
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Figure 6.19: Scatter plot for significantly enriched GO terms predicted to be associated with differentially 
expressed miRNAs. The horizontal axis shows Fisher test results and the vertical axis shows the results by 
the Elim method. Values along the diagonal are consistent between both methods. The size of the dot is 
proportional to the number of genes mapping to that GO term and the colouring represents the number 
of significantly expressed genes corresponding to that term with dark red representing more terms and 
yellow representing fewer. 

 

The top significant GO terms (biological processes) are given in table 6.9 below.  

 

 

Table 6.9: Significant GO terms from the comparison between CSX patients and healthy controls. 
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Figure 6.20: Gene Ontology network of Biological Processes 
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The GO network generated from our data shows the GO enrichment terms most highly 

associated with our dataset. The strongest supported nodes are red and nodes with no 

significant enrichment are yellow. As is demonstrated above, the adaptive immune 

response and haematopoietic stem cell responses are most highly affected in our 

enrichment analysis. 

 

 

 

Figure 6.21 Cellular Component Gene Ontology Analysis. 
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Cellular component GO highlights the potential cellular locations that are affected by 

the biological effects of the genes regulated by the miRNAs in our analysis. 

Interestingly, membrane ruffling is the most strongly affected component. Membrane 

ruffling is seen in macrophages performing pinocytosis of oxLDL and is upregulated in 

EC in response to oxidative stress. 

 

6.15  LCSX 

Interestingly, the expression of all 5 miRNAs did not differ in the LCSX group when 

compared to the healthy controls (miR-10b, adj. p=0.192; miR-143, adj. p=0. 352; miR-

199b, adj. p=0.631; miR-200a, adj. p=0.184; and miR-200b, adj. p=0.136).  

Discussion 

microRNAs provide a compelling and relatively discerning insight into the mechanisms 

at play in many disease states. As our understanding of the systems and genes that are 

influenced by miRNAs increases, we can begin to use this knowledge to decipher the 

pathogenesis of these conditions. It is reassuring that all five miRNAs that were 

significantly differentially expressed in our CSX population have known genetic targets 

with relevance to vascular function. The identity of these miRNAs directs our attention 

to specific aspects of vascular biology and implicates several pathways as being of 

particular importance in CSX. miRNAs are also attractive as they may provide a possible 

therapeutic option as modulation of their expression may allow one to intervene in 

disease by selectively modifying concentrations of the regulatory miRNAs. 

 

In general, the NGS results showed that the CSX patients under-expressed key vascular 

miRNAs compared with the healthy control groups. Suppression of miR-199b, miR-200a 

and miR-200b is seen in tissue hypoxia while miR-143 is reduced by elevated levels of 

TNFα, as is seen in our population. Meanwhile, miR-10b is downregulated in 

atheroprone regions and in the absence of KLF2 activity. Downregulation of these 
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specific miRNAs can modulate several vascular processes that may be of importance in 

CSX. Chief among these is vascular inflammation, whereby the local pro-inflammatory 

machinery is activated by the upregulation of NFκB, amongst other transcription 

factors.  

 

The qPCR results did not, however, concur with much of the NGS data. This was likely 

due to the very low concentrations of these miRNAs in the samples. Only miR-143 had 

a CT less than 35 cycles. Indeed, the qPCR went so far as to show that the other miRNAs 

were significantly upregulated in our CSX population compared to our control group 

rather than being underexpressed as suggested by the NGS. The reliability of these 

results, given the high CT values, is questionable. These results were, in a way, 

predicted by the extremely low counts in the NGS results for these miRNAs. Exiqon, 

however, claims that 85-90% of miRNAs found to be differentially expressed using NGS 

can be validated by Exiqon’s qPCR system once >120 counts have been measured 

during NGS. Other factors should also be considered. Although our RNA samples were 

shown to be pure during our quality control steps, the purity of the cDNA was not 

assessed. This could affect the efficiency of replication and explain the high CT values. 

The reference miRNA replicated with good efficiency, however, so this does not appear 

to be a likely cause. Another possible explanation for the discordant results would be if 

the primers were unable to anneal correctly. As Exiqon primers use locked nucleic acid 

(LNA) and we used the appropriate primers in the appropriate conditions, this appears 

unlikely. Finally, it may be that our reference miRNA was not stably expressed across 

our groups. This could be offset by running the samples with a panel of reference genes 

to improve standardisation across samples. 

 

We can be reasonably certain, however, that miR-143 is suppressed in CSX patients 

while there is a strong suggestion that miR-10b, miR-199b, miR-200a and miR-200b are 

differentially expressed in CSX patients, although we cannot be sure if it is 

underexpressed or overexpressed. 
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6.16 miRNAs and Vascular inflammation in CSX 

As endothelial dysfunction with inflammation seems to be a defining feature of 

CSX/MVA activity, knowledge of the involvement of miRNAs in this endothelial 

activation could allow for a viable therapeutic option. Our analysis of the miRNA profile 

in our CSX cohort has identified several likely pathways that may be dysregulated in our 

populations due to altered expression of regulatory miRNAs. NFκB was always likely to 

be implicated in endothelial activation and our miRNA analysis shows that this is surely 

the case in CSX as miR-10 is specifically implicated in the regulation of this transcription 

factor. 

 

Low concentrations of miR-10b would allow NFκB activation through increased 

MAP3K7 availability for incorporation into the kinase complex with TRAF6, a complex 

that is critical for the release of NFκB from its inhibitors. NFκB is usually bound to its 

inhibitor IκB in the cytosol but the IKK complex phosphorylates IκB, thereby releasing 

NFκB to migrate to the nucleus and activate its gene transcription programme. Indeed, 

miR-10 may a key regulator of vascular inflammation in CSX through its control of the 

NFκB activation. The canonical NFκB pathway is initiated through its activation by TNFα 

or IL-1 signalling and its association with RelA (p65) complex. As noted in Chapter 4, our 

CSX patients have elevated TNFα concentrations further supporting this theory. 

Activated NFκB then induces adhesion molecules, chemokines (CXCL1 and CXCL10), 

cytokines (TNF, IL-6, IL-1), iNOS and COX2 in the endothelial cells causing a feed-

forward pro-inflammatory cascade.  

 

Another driving force for the perpetuation of vascular inflammation in CSX may be 

activation of the E26 Transformation-specific family of transcription factors. Ets-1 is 

targeted by miR-200b and if this miRNA is reduced in CSX it is reasonable to conclude 

that ets-1 activity is increased. Ets-1 upregulation is stimulated by angiotensin II, IL-1β 

and TNFα. Ets-1 appears to play a key role in the mediation of the vascular effects of 
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Angiotensin II on vessels. Ets-1 causes increased matrix metalloproteinase release with 

medial hypertrophy and increased VCAM and MCP-1, all known features of CSX. 

 

Reduced 10b may lead to upregulated NK cell activity through the derepression of the 

MICB gene that encodes MHC class I proteins on endothelial cells in response to stress, 

which then interacts with NKG2D on NK cells thereby activating them. This may 

implicate NK cells rather than macrophages as the source of the elevated IFNγ and 

TNFα seen in our study population and by extension may indicate that a viral source 

may be at the root of the inflammation in CSX. Natural Killer cells are lymphocytes that 

play an important role in the innate immune system and are crucial in the host defence 

against viruses. An interesting study into CSX patients demonstrated possible 

myocardial viral infections on histological examination in 9/13 of the CSX patients 

studied357. NK cells are capable of targeting activated ECs through their interaction with 

the chemokine fractalkine (C-X3-C), a substance induced on ECs by TNFα. The close 

binding of NK cells to ECs allows the former to degranulate and cause direct cytolytic 

damage to the latter358. NK cells themselves have also been demonstrated to be 

atherogenic through their release of granzyme359. 

 

There may also be a role for increased Cyclooxygenase 2 (COX2) activity in our cohort 

as miR-143 targets COX2. COX2 is constitutively expressed in ECs and VSMCs and, as is 

discussed further in chapter 7, is responsible for the production of many vasoactive 

compounds, including prostaglandins and prostacyclin, but also isoprostanes that are a 

source of oxidative stress. It was initially thought that the upregulation of COX2 may 

compensate for reducing levels of available NO in endothelial dysfunction by increasing 

prostacyclin production, thereby attempting to rescue endothelial-dependent 

vasodilation. It has been noted that COX2 is upregulated in patients with CAD to 

potentiate bradykinin-induced vasodilation360. There is emerging evidence, however, 

that upregulation of COX2 occurs with age and may instead be responsible for the 

production of vasoconstrictor prostanoids as well as imposing an oxidative stress on 
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the endothelium, worsening endothelial dysfunction. COX2 inhibition has been shown 

to improve flow-mediated dilation in patients with CAD, highlighting the role of COX2 

in endothelial dysfunction361. 

 

The role of oxidative stress in CSX has always been interesting as it is an inducer of 

endothelial dysfunction and vascular inflammation. There is clear evidence that these 

patients do have increased oxidative stress and it is believed that this may be at the 

centre of the endothelial dysfunction seen in CSX. The identification of the differential 

expression of the miR-200 family might provide evidence to implicate such oxidative 

stress in CSX. The miR-200 family has been shown to be potently induced by ROS and 

to induce endothelial apoptosis and senescence362. We are not certain if miR-200 is 

upregulated or downregulated in CSX. Hypoxia may reduce miR-200 levels even in the 

face of oxidative stress, with HIF1α signalling perhaps overriding the ROS stimulus for 

miR-200 expression. The upregulated SIRT1 and ZEB1 may also regulate oxidative 

stress, reducing its influence over miR-200 expression. 

 

Finally, the role of Kruppel-like factors in the pathogenesis of CSX also bears 

mentioning. It is important to note that a reduction of miR-143 implies a relative lack of 

KLF2 activity as KLF2 is the most potent stimulus for miR-143 release. As discussed in 

6.2.2 above, KLF2 is a critical anti-inflammatory transcription factor that abrogates the 

effects of NFκB in the endothelium and levels of this transcription factor are reduced 

by TNFα296. Interestingly, 2 of our differentially expressed miRNAs (miR-10b and miR-

143) target KLF4 and as such one might expect that KLF4 levels are increased in CSX 

due to miR-143 downregulation. It should be noted that KLF4 is induced by 

inflammation but is itself anti-inflammatory in its behaviour. Upregulation of KLF4 may 

reduce MCP-1, IL-6 and CRP expression and it may be that activation of this 

transcription factor actually alleviates the symptoms in our cohort by downregulation 

of NFκB and is induced in a counter-regulatory capacity. Similarly, reduced miR-143, 
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miR-199 and miR-200a allow the upregulation of Sirtuin 1 (see 6.2.4) and it is likely that 

this is also an effort to preserve normal endothelial cell function in CSX. 

 

In summary, miRNA profiling would suggest that upregulation of NFκB and Ets-1, 

perhaps ably supported by increased COX2 and NK cell activity, may be the major 

pathways involved in the induction of endothelial activation in CSX. Reduced KLF2 

activity, implied by reduced miR-143 levels, may be compensated for by the likely 

upregulation of KLF4 and SIRT1, two transcription factors that attempt to downgrade 

endothelial inflammation. It may be that SIRT1 and KLF4 win out as CSX patients 

improve. 

 

6.17 miRNA effects on VSMC in CSX 

The pattern of miRNA downregulation in our cohort raises the possibility of VSMCs 

making a significant contribution to the phenotype seen in CSX. VSMCs normally 

differentiate into specialised contractile cells confined to the vessel tunica media. 

Indeed, VSMCs and the extracellular matrix (ECM) they release are the only 

components of the tunica media. They are in direct electrical communication with the 

overlapping ECs via gap junctions as well as via bidirectional signalling carried out by 

many chemical mediators. Their primary function is to modify vessel tone and luminal 

diameter and are particularly important in the resistance arterioles where they control 

the distribution of blood flow to different vascular territories.  

 

Adult VSMCs are not terminally differentiated and demonstrate functional and 

phenotypic plasticity. At one end of the spectrum, quiescent, fully-differentiated 

VSMCs are said to be in the “contractile” state and express many state-specific 

contractile proteins such as SM α-actin, MHC, smoothelin and SM22α. These cells are 

capable of undergoing phenotype switching, where they de-differentiate back into 

non-contractile cells that are capable of migrating and proliferating with loss of their 

specialised contractile proteins. Additionally, these dedifferentiated SM-like cells are 
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capable of producing cytokines and pro-inflammatory mediators and are said to be in 

the “secretory” state.  

 

Switching is seen in hypertension, where extensive remodelling of the entire vascular 

tree is observed with medial hypertrophy, microvascular rarefaction, hyalinisation and 

fibrosis. It is also an important feature of atherosclerosis where secretory VSMCs 

migrate to the intima and fuel the inflammatory cycle in atherosclerotic plaques by 

releasing cytokines. Their release of ECM and proteases also results in plaque 

enlargement, intimal thickening and luminal narrowing. Phenotypic switching is also 

activated in neovascularisation and vascular remodelling and may possibly be seen in 

coronary microvascular dysfunction in hypertrophic cardiomyopathy363. 

 

VSMC phenotypic switching may occur in response to vessel injury, mechanically 

transduced signals from local blood flow, cell-cell signalling or via inflammatory 

signalling. Oxidised LDL is a potent trigger of the switch through the activation of LOX-1 

receptors on VSMCs. TNFα has been demonstrated to stimulate switching while 

Angiotensin II activation of AT1Rs on VSMCs also switches the VSMCs to a secretory 

phenotype, upregulating VCAM-1, ICAM-1 and MCP-1 expression as well as leading to 

fibrosis of the vessel wall and ultimately increased arterial stiffness. Platelet-derived 

Growth Factor (PDGF) pushes the cells towards their secretory, proliferative state 

whereas TGFβ stimulates a stable contractile phenotype. 

 

The genetic regulation of this switch appears to involve Serum Response Factor, in 

concert with its cofactor myocardin, acting via a CarG box to induce a contractile state. 

A parallel promoter of differentiation involves the activation of notch 3 by endothelial-

expressed Jagged-1. Both pathways are believed to involve the increased expression of 

miR-143/145364. These miRNAs then target KLF4, KLF5 and Elk1, reducing their activity. 

Upregulated KLF4 and KLF5 are known to induce secretory states in VSMCs. KLF4, with 

Elk1, binds to and suppresses SMC contractile genes while it also modifies chromatin 
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structure in the VSMCs’ genes365. Reduced miR-143/145, as seen in our cohort, would 

result therefore in increased KLF4 activity with subsequent induction of a secretory 

VSMC phenotype and all of the consequences thereof. 

 

This problem may be compounded in CSX patients as these patients may also have 

increased numbers of SMC-type cells available for secretory activity (see Fig 6.22 

below). If downregulated, miR-200 may allow increased Endothelial-Mesenchyme 

Transition (EndMT), where the endothelial cells themselves detach from the 

endothelial monolayer and migrate further into the intima and become SMC-like cells 

capable of becoming secretory cells thus adding to the pool of pro-inflammatory and 

pro-fibrotic cells in the vessel wall. EndMT is a subset of epithelial-mesenchyme 

transition (EMT), which is a process that has been implicated in the microangiopathy 

seen in Pulmonary Arterial Hypertension and Systemic Sclerosis as well as being an 

important step in the metastasis of many epithelial cancers.  

 

ECs respond to an injurious stimulus such as chronic inflammation, oscillatory shear 

stress, mechanical injury or hypoxia by detaching themselves from each other through 

the breakdown of cadherin, desmoplakin and catenins. The newly freed cells then 

migrate through to the intima and media where they adopt mesenchymal or smooth-

muscle like characteristics and induce local upregulation of ICAM-1, VCAM-1 and 

fibronectin. This has been shown to happen in the microvasculature when ECs are 

exposed to chronic inflammatory stimuli such as IL-1366. IFNγ and TNFα are also 

believed to initiate EndMT through the downregulation of FGFR1, a growth factor 

receptor. Endothelin-1 mediates EMT through activation of the ET-A receptor in a 

TGFβ-dependent fashion. Other triggers for EMT include TGFβ itself, EGF and HGF 

while the Jagged1/Notch interaction is again implicated in EMT. EndMT has been 

shown to be upregulated in MI, portal hypertension, PAH and graft failure. 
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Figure 6.22: Possible role of Vascular Smooth Muscle Cells (VSMC) in the pathogenesis of CSX. miR-143 
downregulation leads to VSMC phenotypic switching while miR-200 downregulation and chronic 
inflammation may lead to to Endothelial-Mesenchymal Transition. The resultant SM-like cells are a 
potent source of vascular inflammation and oxidative stress. 

 

There is some evidence to support this EndMT and VSMC phenotype switching theory 

for CSX causation. Studies have demonstrated an increased number of circulating 

Endothelial Progenitor Cells (EPCs) in CSX367. EPCs are released from the bone marrow 

in response to vascular injury and hone to the injured endothelium to begin the repair 

of the damaged monolayer. EndMT would stimulate EPCs release but they are certainly 

not the only stimulus for CD133 cell release from the marrow as chronic inflammation 

is also a potent trigger. EPCs themselves may also translocate to the subintima and 

then become SM-like cells, adding even more to the reservoir of pro-inflammatory 

cells.  

 

There is also evidence of increased VSMC secretory activity in CSX as histologically the 

microvessels of CSX patients demonstrate subendothelial hyalinisation, fibromuscular 

hyperplasia, medial hypertrophy, myointimal proliferation and perivascular fibrosis all 

indicating increased mesenchymal cell activity in CSX patients67,368. Increased fibrotic 

change in the tunica media is also reflected by increased medial stiffening of arteries. 

CSX patients are known to have greater carotid arterial stiffness than healthy 

controls171. If both EndMT and VSMC phenotype switching are present in CSX, then the 



284 
 

coronary microvascular dysfunction might be analogous to the angiopathy seen in the 

pulmonary circulation of Pulmonary Arterial Hypertension patients. One might 

implicate ET-1 or Angiotensin II as possible causes for this phenotype. 

 

6.18 miRNA and Vasoactive Hormones 

Angiotensin II (AngII) is converted from angiotensin I via the action of Angiotensin 

Converting Enzyme (ACE). miR-143 targets and downregulates ACE activity. The 

downregulation of miR-143 may therefore allow the increased formation of AngII 

through increased ACE activity. AngII has several important effects on the vasculature, 

acting on AT1R to promote vasoconstriction, VSMC phenotype switching, EC apoptosis, 

NOX activity (oxidative stress), COX2 activity, LOX1 expression and vessel fibrosis. The 

benefit of ACE-inhibition in CSX has been demonstrated in many studies as it has been 

shown to partly reduce the endothelial dysfunction. The observation of reduced miR-

143 levels adds support to the notion of Angiotensin playing an important role in CSX. 

 

Endothelin-1 is also crucial in the modulation of normal endothelial function (as 

described in 6.2.6 above). miR-199 directly targets END1 and as such its 

downregulation would allow increased endothelin production319. Endothelin is 

produced in endothelial cells and is the most potent endogenous inducer of 

vasoconstriction. It also has a plethora of other effects that are relevant in CSX. It, 

impairs endothelium-dependent vasodilation by reducing NO bioavailability, increases 

ROS formation through increased NOX activity causes VSMC proliferation and induces a 

pro-inflammatory phenotype including the stimulation of macrophages with the 

release TNFα, IL-1, IL-6 and IL-8321. Both a reduction of miR-199 and the implied 

reduction in KLF2 activity would both upregulate the endothelin system. There is 

evidence to support this in CSX as ET-1 levels increase during exercise and glycaemic 

loading in CSX compared to the opposite responses in healthy controls192,369. The use of 

endothelin antagonists has been shown to improve endothelial-dependent vasodilation 

in PAH subjects but has not been trailed in CSX patients. 
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6.19 TRPV1 and Visceral Hypersensitivity in CSX 

As was laid out in 1.4.4, CSX patients exhibit abnormal pain processing both 

peripherally, with increased sensitivity to cardiac and cutaneous stimuli, and centrally, 

with altered insular activity on fMRI. Visceral hypersensitivity is described in patients 

with Irritable Bowel Syndrome (IBS) and has been tied to increased numbers of C and 

Aδ nerve fibres expressing transient receptor potential vanilloid type 1 (TRPV1). TRPV1 

is found in many small and medium sized nerve fibres and is also expressed in 

peripheral mononuclear cells. It is a 6 transmembrane protein that forms a non-

selective cationic channel with particularly marked permeability to Calcium. When 

activated by heat, lipids or capsaicin it imbues the patient with a sense of burning pain. 

The threshold for TRPV1 activation is reduced by a local drop in pH or local 

inflammation, particularly increased local prostanoids concentrations, and it is induced 

by the presence of reactive oxygen species. When stimulated the nerve endings also 

release Substance P and CRGP to initiate neurogenic inflammation.  

 

miR-199 targets TRPV1 mRNA and miR-199 concentrations have been shown to 

correlate inversely with TRPV1 concentrations and visceral pain scores in patients with 

diarrhoea-type IBS, that is to say that patients with more GI pain have lower miR-199 

concentrations and higher TRPV1 expression353. TRPV1 is believed to play a role in 

cardiac nociception and it may be that over-expression of this receptor, inferred by a 

reduction in miR-199, may lead to a type of visceral hypersensitivity in CSX analogous 

to the GI hypersensitivity seen in IBS. Quite apart from its role in cardiac nociception, 

TRPV1 has further relevance to the pathogenesis of CSX as it modulates innate immune 

function. As it is expressed on blood mononuclear cells, TRPV1 appears to be essential 

for normal monocyte integrity with reduced TRPV1 expression being associated with a 

failure of phagocytosis and oxidative burst and a failure to contain bacterial 

infections370. 
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Finally, TRPV1 is important in the control of endothelial-dependent vasodilation. It is 

present in most arterioles and has varying effects depending on the vascular territory, 

being capable of causing vasodilation or vasoconstriction. Activation of TRPV1 by 

capsaicin leads to pronounced coronary vasoconstriction with increased vascular 

resistance and reduced coronary flow371. Antagonism of the receptor leads to 

vasodilation372,373. It appears that the TRPV1 activation allows increased cytosolic 

calcium concentrations in smooth muscle cells and ultimately leads to release of 

endothelin-1 from the ECs, with endothelin in turn potentiating TRPV1 activation.374 

Thus, reduced miR-199 could allow increased TRPV1 expression in CSX patients with 

repercussions on cardiac nociception and coronary vasomotion. This possibility 

certainly warrants further investigation. 

 

6.20 Limitations 

The main limitation of our analysis of miRNAs in CSX was the fact that we derived 

contradictory results from too well-executed methodologies. The qPCR results were 

not unexpected as we were aware of the low concentrations of the various 

differentially expressed miRNAs ab initio from our NGS analysis. Despite this, all 5 

studied miRNAs were differentially expressed by both methodologies and the 4 

unvalidated miRNAs require further analysis to reconcile the opposing results as they 

hold great potential to further explain the mechanisms at work in CSX. 

 

Conclusions  

This is the first study to examine the miRNA transcriptome in Cardiac Syndrome X. We 

have demonstrated that miR-143 activity is reduced in our CSX patients. This microRNA 

is the most highly expressed miRNA in VSMCs and plays a key role in the regulation of 

the VSMC phenotype. Downregulation of this miRNA raises the possibility of vascular 

smooth muscle phenotype switching as a possible contributing factor to the 

pathophysiology of CSX. Secretory VSMCs can promote local inflammation and vascular 
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remodelling with medial hypertrophy and hyalinisation. Apart from its effects on 

VSMCs, miR-143 is known to regulate endothelial Angiotensin Converting Enzyme 

activity, with knockdown of miR-143/145 leading to upregulation of ACE activity in the 

endothelium with all of the deleterious vascular effects this implies. This provides the 

rationale for the success of ACE inhibition in the symptoms of CSX (see 1.6.2).  

 

 
Figure 6.23: Overview of vascular processes affected by the miRNAs identified as being differentially 
expressed in CSX 
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The expression of miR-10b, miR-199b, miR-200a and miR-200b is also significantly 

altered in CSX. Unfortunately, the NGS and qPCR data did not agree on the nature of 

this alteration but these microRNAs are known to regulate NFkB, Endothelin-1, Ets-1 

and Kruppel-like factors and thus it is reasonable to conclude that these factors may be 

involved in CSX. We also hypothesise about the possible contribution of endothelial-

mesenchyme transition in CSX as this process is also regulated by miR-200. The 

abnormal nociception hypothesis is also supported by the notion of the possible 

alteration in expression of the TRPV1 receptor in the cardiac nociceptive neurons via 

the alteration of miR-199. Figure 6.23 above shows the many vascular pathways that 

are influenced by the miRNAs identified as being differentially expressed in CSX. 

 

Going forward, it would be reasonable to perform repeat qPCR with multiple reference 

genes to allow us to control for any instability in the expression of any one control gene 

in an effort to clarify the alteration in the selected miRNAs’ activity in CSX. Certainly the 

alteration of the above miRNAs warrants closer scrutiny. Investigation of Kruppel-like 

factors 2 and 4 activity as well as TRPV1 expression in CSX may also bear fruit.   
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Chapter 7: Plasma Fatty Acids in Cardiac Syndrome X  
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Introduction 

7.1  Overview of Fatty Acids 

Despite being united by their relative insolubility in water but solubility in organic 

solvents, lipids are a diverse group with many different physicochemical characteristics. 

Lipids may be divided in several ways. A widely used classification system is the LIPID 

MAPS system which is composed of eight different lipid categories (see figure 7.1). In 

this chapter we will concentrate on Fatty Acids and their derivatives, although SCFAs 

are outside the scope of this chapter. 

 

Figure 7.1: LIPID MAPS Lipid Classification System 

 

7.1.1 Structure of Fatty Acids 

Fatty acids are hydrocarbon chains with a methyl group at one end (termed the ω end) 

and a carboxyl group at the other (α end). There can be any number of carbon atoms in 

a fatty acid chain but it tends to be an even number in naturally occurring FA as their 

biosynthesis involves the iterative addition of 2 carbon atoms to a chain. The carbon 

atoms can be numbered from the carboxyl carbon (the α carbon, carboxyl reference 

system) or from the methyl group (ω-carbon, the omega reference system) and the 

carbons may be joined together by a single or a double bond. Figure 7.2 shows 

octanoic acid, an 8 carbon saturated fatty acid. 
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Figure 7.2: Basic Structure of Fatty Acids 

 

FAs may be categorised by the length of their carbon chain and by the number of 

double bonds present. Short chain fatty acids (SCFAs) have less than 6 carbons, 

medium chain fatty acids (MCFAs) have 6-12 carbons and long-chain fatty acids (LCFA) 

contain 13-21 carbons. Very long chain fatty acids can contain 22 or more carbons. 

Saturated fatty acids (SFAs) do not contain any carbon=carbon double bonds and 

carbons are fully saturated with hydrogen atoms. The carbon chains of these FAs are 

straight. FAs that contain double-bonds are termed unsaturated fatty acids and may be 

mono-unsaturated (MUFA) if they only contain one double-bond or poly-unsaturated 

(PUFA) if they contain more. FAs are abbreviated with the convention C x:y Δz1,z2…, 

where x is the number of carbon atoms, y is the number of double bonds and z is the 

position of the double bonds as per the carboxyl reference system. It may also be 

described as its distance from the omega carbon (see Fig 7.3) 
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Figure 7.3: A Polyunsaturated Fatty Acid 

 

The orientation of the carbons around the double bond also offers a further method of 

FA sub-classification and is illustrated in figure 7.4. Most naturally occurring 

unsaturated fatty acids are cis- fatty acids, where the hydrogen atoms on the double-

bonded carbons are found on the same side of the fatty acid chain (i.e. oriented in the 

same direction.) This creates a kink in the fatty acid chain. Trans- configuration FAs 

have the hydrogens on opposite sides of the chain and these FAs are mostly straight. 

Trans-fatty acids have been associated with an increased LDL and increased risk of 

coronary artery disease, cerebrovascular disease and diabetes. 

 

Figure 7.4: Cis- and Trans- isomers 

 

7.2  Fatty Acids and Vascular Function 

Fatty acids and their derivatives are of great importance in cardiology.  Early efforts at 

modification of dietary risk factors for cardiovascular disease centred on saturated 
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fatty acids as these had been shown to increase LDL concentrations. As knowledge has 

progressed, dietary recommendations have changed to include the restriction of trans-

fatty acids and the increase of MUFAs and PUFAs. 

 

7.2.1  Saturated Fatty Acids 

Early epidemiological observational studies noted a correlation between saturated 

fatty acid (SFA) intake, plasma LDL and long-term cardiovascular mortality. These 

results lend support to the lipid hypothesis, which propounds that atherosclerosis is 

due to elevated plasma lipids. Replacing SFA with MUFA or PUFA is of benefit with 

regards to LDL:HDL and so ideally we should reduce SFA intake while replacing it with 

MUFAs or PUFAs. It has been hypothesised too that not all SFAs have similar negative 

cardiovascular effects. It is possible that saturated SCFA and MCFA may be less 

dangerous that saturated LCFAs. 

 

SFAs may have important impacts on EC function but the evidence is in broad 

disagreement on almost all points. Palmitic acid and stearic acid are weak agonists of 

PPARα but can also activate NFκB. Conflicting evidence exists regarding their effect on 

PGI2 release, with some studies showing a reduction and others showing no change. 

Similarly, the impact of SFA on NO release in ECs is uncertain but some small studies 

show that oleic acid and palmitic acid reduce NO release from EC in animal cells and 

HUVECs 375,376. Furthermore, SFAs have been shown to both increase and decrease the 

expression of adhesion molecules on the surface of ECs, further highlighting the lack of 

clarity surrounding the effects of SFAs in EC biology. Finally, a high SFA diet was not 

shown to worsen flow-mediated dilatation when compared with an SFA restricted, 

MUFA-supplemented diet 377. 
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7.2.2  Trans-fatty acids 

Trans-fatty acids (TFA) contain at least one double bond in the trans-configuration (see 

figure 5.3) straightening the fatty acid carbon chain and allowing it to behave like a 

saturated fatty acid. Naturally occurring fatty acids are relatively uncommon in the 

human diet (accounting for <0.5% of total energy intake) and are produced by bacterial 

action in the intestines of ruminants. TFAs are produced industrially by the partial 

hydrogenation of vegetable oils and are incorporated into food by producers to allow 

customisation of food consistency and taste. Approximately 3% of our daily energy 

intake is composed of industrially produced TFAs and these are found in food such as 

pizza, french fries, breaded chicken etc. TFAs are particularly relevant as they are 

known to substantially increase cardiovascular risk. A 2% increase in energy intake in 

the form of TFAs is associated with a 23% increase in CHD 378.  

 

TFAs increase LDL and triglyceride concentrations in blood while reducing HDL and LDL 

particle size, probably via the activation of Cholesterol Ester Transfer Protein (CETP).  

Furthermore, TFAs are pro-inflammatory and have been shown to be associated with 

increased IL-6 and TNFα in patients with dyslipidaemia 379. TFAs may also induce 

endothelial activation and dysfunction and are known to increase ICAM-1, VCAM-1 and 

E-Selectin levels. It has been shown that TFAs reduce brachial artery flow-mediated 

dilatation when taken for 4 weeks 380. The exact mechanism by which this occurs is 

unknown but it is believed that TFAs reduce PGI2 production, possibly by reducing AA 

incorporation into the cell membrane, subsequently reducing its availability for PGI2 

formation. 

 

7.2.3  Mono-unsaturated Fatty Acids  

Monounsaturated fatty acids (MUFAs) contain one double bond, usually in the cis-

configuration. Oleic acid and palmitoleic acid are the two most common MUFAs in our 

diet, with oleic acid being the major component of olive oil. MUFA ingestion modestly 
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reduces plasma total cholesterol by reducing LDL while modestly increasing HDL levels. 

Also, LDLs containing MUFAs are less susceptible to oxidation than those containing 

PUFAs and as such may be less atherogenic (see lipid peroxidation below). Meta-

analyses have also shown that diets high in MUFAs also reduce both systolic and 

diastolic blood pressures. The evidence, much like that for SFAs, is divided on long-

term mortality outcomes with MUFA supplementation 381. 

 

7.2.4  Polyunsaturated and Essential Fatty Acids 

FAs that cannot be biosynthesised in humans are termed ‘essential’. Only two fatty 

acids are known to be essential in humans; an omega-3 FA called alpha-linolenic acid 

(ALA, ω-3) and an omega-6 FA linoleic acid (LA, ω-6). The ultimate sources of these FAs 

are plants as they are readily synthesised there by Δ12 and Δ15 desaturase activity.  As 

such, good dietary sources include plant seeds and fish oils (as the fish assimilate 

nutrients from ingested algae).  

 

 

Figure 7.5 Omega-3 Fatty Acid Structure 
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Omega-3 Polyunsaturated Fatty Acids 

α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosohexaenoic acid (DHA) 

are the three important omega-3 polyunsaturated fatty acids. They share a common 

double bond between the 3rd and 4th carbons when counting from the methyl end. 

Skeleton diagrams for these FAs are shown in figure 7.5 above. They are found in 

chloroplasts and in certain nuts and seeds. These FAs play an important role in 

endothelial function and generally promote an anti-inflammatory, antithrombotic and 

anti-atherosclerotic phenotype and even improve vasodilatory responses. Importantly 

epidemiological studies show improved cardiovascular outcomes in terms of mortality 

and morbidity when patients take dietary omega-3 supplementation (up to a 50% 

reduction if in the upper tertile for PUFA ingestion). Interestingly, a recent methylation 

association study demonstrated that omega-3 PUFA ingestion can even alter DNA 

methylation patterns, indicating that these PUFAs may also play an important role in 

epigenetics 382. The beneficial effects of omega-3 PUFAs are listed below and 

summarised in figure 7.6 

 

Anti-inflammatory effects 

Omega-3 fatty acids reduce vascular inflammation through several means 383: 

 Eicosanoid switching: They switch production of eicosanoids from the pro-

inflammatory two- and four- series to the generally anti-inflammatory three- and 

five-series by directly competing with arachidonic acid for incorporation into 

membrane phospholipids, subsequent release by phospholipase A2 and ultimately 

eicosanoid production by cyclooxygenase and lipoxygenase action. 

 Resolvins: They hasten the resolution of vascular inflammation by producing 

lipoxins, resolvins and protectins. 
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 Reduced NFκB activity: EPA is known to prevent IκB phosphorylation that in turn 

prevents NFκB activation 384. NFκB is an important transcription factor involved in 

inflammation. Its inactivation reduces plasma TNFα in patients treated with EPA. 

 Increased PPARα activation: PPARs are a family of nuclear receptors that mediate 

inflammatory pathways and can directly inhibit NFκB and also reduce expression of 

adhesion molecules and activation of endothelial cells. DHA in particular binds 

avidly to PPARs. 

 Retinoic Acid Receptor (RXR) activation: RXRs are transcription factors and DHA has 

been shown to directly activate RXR. RXR has been shown to increase ABCA-1 (ATP-

binding cassette transporter) and can improve HDL release and have cardio-

protective effects. 

 Toll-like Receptor 4 inhibition: Both EPA and DHA are capable of impairing the 

cytokine response to TLR4 activation in response to endotoxin in mice. Toll-like 

receptors are involved in innate immune responses. PUFAs have been shown to 

reduce plasma CRP levels. 

 

Anti-oxidant Effects 

Omega-3 PUFAs are known to upregulate cellular anti-oxidant pathways such as 

glutathione peroxidase by upregulating mRNA transcription and translation, although 

this may have been in response to the formation of potentially harmful oxidation 

products of the omega-3 PUFAs 385.  

 

Effects on Endothelial Function 

Endothelial dysfunction is the hallmark of CSX and omega-3 fatty acids have several 

benefits in this area. DHA promotes vasodilatation by decreasing VSMC cytosolic 
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calcium thereby minimising activation of the contractile apparatus. The 

aforementioned eicosanoid switching is also important here and DHA may promote 

production of vasodilatory prostacyclin (PGI2) instead of thromboxane, a 

vasoconstrictor. In addition, EPA has been shown to improve the dissociation of eNOS 

from caveolin in endothelial cells. Caveolin prevents eNOS activation in the caveolae 

and its removal allows migration of the eNOS to the cytosol with phosphorylation and 

activation then occurring with increased NO production 386. This is borne out by 

evidence that dietary EPA supplementation leads to improved endothelial-dependant 

flow-mediated dilatation 387. Finally, EPA and particularly DHA increase endothelial 

membrane fluidity and decreased membrane cholesterol (and possibly lipid raft) 

content, which improves mechanotransduction 388. 

 

Figure 7.6 Benefits of Omega-3 PUFAs 

 

Omega-6 Polyunsaturated Fatty Acids 

Linoleic acid (LA) is the archetypal omega-6 fatty acid and is the parent molecule for 

Arachidonic acid and has recently been shown to be an independent risk factor for 

adverse coronary events389. Prior to this it was believed that omega-6 PUFAs were 
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atheroprotective but recent studies have shown that this was due to the presence of 

omega-3 FAs as confounders. LA is found in nuts and vegetable oils and causes 

endothelial cell activation with increased expression of cellular adhesion markers and 

impairment of NO and prostacyclin production. It appears to affect these changes by 

increasing endothelial cell cAMP levels by inhibiting cAMP-hydrolysis by 

phosphodiesterase (PDE) and impairing endothelial Ca2+ responses and by upregulating 

NFκB activity. Despite being the parent molecule for Arachidonic Acid, LA reduces 

endothelial AA content and prostacyclin production in endothelial cells. This is likely 

due to competitive uptake of LA in lieu of AA into the cell membrane phospholipids 

coupled with the fact that endothelial cells have poor Δ-6 desaturase capability and 

thus minimally form AA from LA (indeed studies have shown that only 0.2% of dietary 

LA is actually converted to AA in vivo.) Arachidonic acid is itself an omega-6 PUFA of 

considerable importance. As well as being the precursor for many of the eicosanoids 

discussed below, it has also been shown to directly act as a vasodilator in human 

coronary arteries through the activation of TRPV4390. The omega-6 derived eicosanoids 

are generally more pro-inflammatory than their omega-3 counterparts. 

 

Dietary intake of ω-3 vs. ω-6 Fatty Acids 

In general, ω-3 FAs are atheroprotective and ω-6 are atherogenic. It is believed that 

humans evolved with a diet that was relatively balanced in terms of ω-3 and ω-6 intake 

(≈1:1 ratio). A modern “western” diet has now tipped the scales heavily in favour of ω-

6 intake with an estimated 16:1 split of ω-6 to ω-3 391. Interestingly, these two PUFA 

groups compete directly with each other for interaction with various important 

enzymes in vivo (e.g. cyclo-oxygenase and lipoxygenase and, to a lesser extent, 

elongases and Δ6 desaturase) with an excessive intake of one type of PUFA leading to 

its dominance in the various enzymatic pathways, diverting biosynthesis of eicosanoids 

along the dominant PUFA pathway. It has been shown, for example, that ingestion of 

ω-6 FAs in excess of ω-3 leads to increased production of series-2 prostaglandins and 
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series-4 leukotrienes, which have generally pro-inflammatory effects. The dietary ratio 

of ω-6 to ω-3 is probably of great importance in endothelial biology, although the exact 

ideal ratio remains unknown and medical guidelines recommending omega-3 

supplementation are limited to only a few situations.    

 

The Risks of PUFAs: Lipid Peroxidation 

Lipids in the cell membrane are vulnerable to oxidative damage by reactive oxygen 

species and other free radicals. Unsaturated FAs are particularly vulnerable to 

peroxidation, a chain reaction that is initiated when hydrogen is removed (or 

abstracted) from a carbon chain. The carbon-hydrogen bonds are weakest in the 

carbons near to carbon-carbon double bonds in the unsaturated fatty acids and it is 

these hydrogens that are generally abstracted most easily. Removal of the hydrogen 

leaves a carbon-centred radical leading to a rearrangement of the double-bond 

distribution in the chain with the formation of a conjugated diene. This then reacts 

with oxygen to form a peroxyl radical and subsequently a hydroperoxide. This can then 

propagate and affect other fatty acids locally continuing the chain reaction. This only 

terminates when the radicals begin reacting amongst themselves (i.e. when they 

generally outnumber normal lipids locally) to form a non-radical compound or if local 

anti-oxidant species act to terminate it prematurely. The oxidised lipids form 

isoprostanes (a nonclassical eicosanoid) and are potently pro-inflammatory. PUFAs, 

while having more pronounced beneficial effects than MUFAs in terms of 

cardiovascular risk, are incorporated into LDLs and these LDLs are then more likely to 

be oxidised (due to the larger content of double bonds) forming a potent stimulus for 

atheroma formation.  
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Figure 7.7 Lipid Peroxidation 

 

7.2.6  Eicosanoids and other Oxylipins 

Eicosanoids are derivatives of certain 20-carbon polyunsaturated fatty acids, mainly ω-

3 fatty acids such as Dihomo-gamma-linolenic acid (DGLA) and EPA and the ω-6 fatty 

acid AA. They play an important role in endothelial function and are mediators of 

inflammation, vasomotor function and cell signalling. Oxylipins are oxygenated fatty 

acids and include eicosanoids, docosanoids and others. They act locally but are also 

present in lipids that are housed in circulating lipoproteins. Eicosanoids are not stored 

in cells and are instead produced on an as-required basis. The nature of the precursor 

acid determines the structure and general function of the ensuing eicosanoid. For 

example, eicosanoids derived from ω-6 fatty acids are generally pro-inflammatory (this 

likely accounting for the negative effects of these acids on cardiovascular outcome) 

while eicosanoids produced from omega-3 FAs are less inflammatory. The arachidonic 

acid pathway is shown in the figure 7.8 below. In essence, AA is released from 

membrane PLs by Phospholipase A2. The AA may then go down two main pathways 
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(cyclic or linear) to form various eicosanoids. This process is tightly regulated as it 

involves the oxidation of lipids which has the potential to damage nearby cell 

structures as described above. The cyclic pathway involves the action of 

Cyclooxygenase (COX) and produces the prostanoids, which include Thromboxane 

(TXA2), Prostacyclin (PGI2) and Prostaglandin D2 and E2, from the intermediate 

Prostaglandin H2. This pathway is highly active in endothelial cells. Alternatively, the 

linear pathway produces the leukotrienes (e.g LTB4) and lipoxins and occurs mainly in 

myeloid cells such as macrophages and neutrophils but these substances have potent 

effects on the endothelium. Similar pathways exist for the production of eicosanoids 

from ω -3 fatty acids (EPA in lieu of AA). It should be noted that the subscript number 

in the names of the various eicosanoids indicates the number of double bonds present 

in the substance. Omega-3 (i.e. EPA or DGLA) derived eicosanoids generally have 3 or 5 

double bonds (e.g. PGI3 and LTB5) and tend to be less pro-inflammatory than their ω-6 

counterparts (which have 2 or 4 double bonds). All of these substances are of 

importance in endothelial biology. The eicosanoids are then catabolised by sequential 

oxidation of the 15-hydroxyl group followed by β-oxidation. 

 

EETs 

The Cytochrome p450 (CYP) pathway deserves special mention. It is the third main 

pathway in eicosanoid production (alongside COX and LOX) and produces the non-

classic eicosanoids, epoxyeicosatrienoic acids (EETs). These are produced by ECs in 

response to shear stress and it should be noted that VSMC are not capable of 

producing EETs, leaving the endothelium as the only source of EETs in the vasculature.  

The CYP epoxygenases are capable of adding oxygen across any of the four double 

bonds found in AA resulting in 8 different possible EETs (as there are 2 stereoisomers 

possible for each double bond). CYP2C appears to be the most active form in coronary 

arterial endothelium and produces 14,15-EET. EETs have many biological effects 

including vasodilation, reduced VCAM expression, increased angiogenesis, increased 
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VSMC migration and reduced apoptosis. They are ultimately metabolised by ECs and 

VSMCs by esterification into lipids or else by hydration, terminating their effects 

quickly.  

  

Figure 7.8 Eicosanoids 
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Other Novel Eicosanoids and Related Compounds  

In addition to the classic eicosanoids depicted above, several non-classic (or novel) 

eicosanoids can be produced. Non-enzymatic lipid peroxidation may lead to the 

production of isoprostanes, which are pro-phlogistic and can increase pain perception, 

which may be of particular relevance in CSX patients. The docosanoids (derivatives of 

DHA) such as D-series resolvins and protectins are the mediators of resolution of 

inflammation and should be considered along with eicosanoids. E-series Resolvins are 

derived from EPA.  

 

Oxylipins and Vasomotor Function 

Oxylipin mediators play an essential role in the control of vessel diameter in small 

resistance vessels in the microcirculation and are therefore likely to be of great 

importance in the inadequate vasomotor responses seen in CSX. The ECs themselves 

are capable of producing a great many of these mediators, which can then act on 

nearby VSMC causing vasodilation or vasoconstriction (See Fig. 7.9). As described in 

chapter 1, the endothelium is an active mediator of vascular tonal responses to shear 

stress.  In addition to NO, the endothelium can produce oxylipins, particularly 

prostacyclin and EET, to mediate vasodilatation. Prostacyclin is perhaps the more 

important of these with respect to the larger coronary arteries. It is produced in large 

quantities by ECs through COX and prostacyclin synthase activity in response to shear 

stress 392. It acts via the Prostaglandin I2 GPCR and increases cAMP production, thereby 

activating PKA, which then inhibits Myosin Light Chain Kinase causing relaxation of the 

vascular smooth muscle and vasodilatation.  

 

EETs are believed to be one of the Endothelium Derived Hyperpolarising Factors 

(EDHF). They appear to work as paracrine hormones, being released by ECs and 

activating large conductance calcium-sensitive Potassium channels (BKCa) in nearby 
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VSMCs via an unknown G-protein dependant process, resulting in K+ efflux and VSMC 

hyperpolarisation. EETs can also activate Transient Receptor Potential (TRP) channels 

which also allow calcium influx and activation of KCa channels, similarly resulting in 

hyperpolarisation. The ability of EETs to activate TRPs may be of particular importance 

in the TRPV4 mediated flow-dependant vasodilatation of the coronary 

microcirculation. Activation of TRPV4 by shear stress (possibly mediated by EETs) 

results in the release of another EDHF, H2O2, from EC mitochondria with consequent 

vasodilatation. Finally, PGE2 is a potent vasodilator via a c-GMP-dependant protein 

kinase. 

 

Oxylipins are equally capable of causing vasoconstriction. The most important of these 

is platelet-derived thromboxane A2, which causes potent vasoconstriction via the 

activation of the GPCR thromboxane receptor (a thromboxane prostanoid receptor, 

TP). TXA2 mediated vasoconstriction appears to involve the GPCR-controlled activation 

of many kinases including Rho Kinase, MLCK and PKC. Other COX-dependant 

Endothelial-derived Contracting Factors (EDCFs) or vasoconstrictor prostanoids also 

exist and act via activation of the TP to similarly counteract NO, prostacyclin and 

EDHFs.  These EDCFs include PGH2 and PGI2, although all prostanoids can activate the 

TP, albeit with different affinities. 

 

Oxylipins and Endothelial Activation 

TXA2 is released by platelets and binds to TP receptors on endothelial cells.  This 

activates the ECs with upregulated expression of ICAM-1, VCAM-1 and ELAM1 via 

Protein Kinase C modulated NFκB and Activator Protein-1 (AP-1) activation. 

Prostaglandin E2 also activates Prostaglandin E Receptor 4 (EP4) and induces expression 

of ICAM-1 in endothelial cells. Finally, the cysteinyl leukotrienes (LTC4, LTD4 and LTE4) 

also act  via their GPCRs to promote an inflammatory endothelial phenotype as well as 
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to promote endothelial proliferation 393. The protectins, resolvins and lipoxins all bring 

about the resolution of inflammation. Lipoxins activate the Lipoxin A4 receptor (ALX) 

and have been shown to inhibit inflammatory cell chemotaxis, increase prostacyclin 

production and reduce ROS production in endothelial cells. Aspirin modification of 

COX-2 results in the formation of epi-lipoxins, which also have potent anti-

inflammatory capabilities. Resolvins also prevent phagocyte transmigration across the 

endothelium. 

 

 

Figure 7.9: Eicosanoids and Vasomotor Function 
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7.3 Relevance of Fatty Acids in CSX 

Overall fatty acids represent an important group of molecules in terms of cardiac and 

endothelial structure and function. Abnormal lipid metabolism might be responsible 

for many of the vascular abnormalities seen in CSX. Figure 7.10 highlights the most 

important of these impacts. 

 

Figure 7.10: Summary of lipid effects with relevance to CSX 

 

Studies have shown that fasting plasma triglycerides are within the normal range in CSX 

patients (see figure 7.11 below). It should be clear that diets rich in SFA and TFA as well 

as an excess of omega-6 PUFAs in lieu of omega-3 will lead to endothelial dysfunction 

and activation in vivo through effects on transcription factors governing inflammatory 

responses, eicosanoid-mediated effects and other receptor-mediated effects. There 

are very few interventional studies examining the effects of omega-3 treatment in CSX.  

Gaibazzi et al examined the effects of omega-3 supplementation in a small cohort of 

patients (n=9) with chest pain and normal coronary arteries with ST-depression 

occurring on stress echocardiography. They found that 1g of omega-3 PUFA given once 

daily for 4 months led to the resolution of ST-depression on subsequent stress echo, 
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suggesting remediation of endothelial dysfunction394. A slightly larger placebo-

controlled, double-blind trial by Bozcali et al showed that 4/12 of 1440mg of omega-3 

PUFA daily significantly improved flow-mediated dilatation of the brachial artery (from 

47±48 to 104±23%, p<0.05) and reduced malondialdehyde, a plasma marker of 

oxidative stress, in CSX patients395. This is a proof of concept that dietary factors might 

modify the phenotype in CSX. 

 

Figure 7.11: Published studies of plasma triglycerides and lipoproteins in CSX. 

 

7.4 Chapter Objectives 

The potential role of dietary factors in the modulation or causation of Cardiac 

Syndrome X merits investigation. Given the myriad of functions governed by lipids in 

endothelial cells and also given the fact that diet can alter the types of lipids available 

to endothelial cells it stands to reason that dietary and pharmacological manipulation 

of lipids could be utilised to modulate endothelial function and ultimately disease 

pathophysiology in CSX. This chapter will examine the possibility of diet and plasma 

fatty acids playing a causative role in the chronic low grade inflammation seen in CSX. 

Fatty acids may be studied through the evaluation of plasma, red blood cell membrane 

content or in tissue itself. Plasma fatty acids give an estimation of the subject’s diet 

over the previous 2 weeks while red blood corpuscle (RBC) membrane FA reflects the 

diet composition over the lifespan of the corpuscle, roughly 120 days. Plasma fatty 

acids correlate well with the lipid composition of circulating lipoproteins (see figure 
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7.12) while RBC FA appear to correlate more with tissue levels such as the 

myocardium. We chose to study plasma FA given the important role of lipoproteins in 

vascular function and given the fact that levels of FA in plasma reflects the patient’s 

diet over the previous few weeks, when they were symptomatic. Also plasma fatty acid 

levels are well studied in cardiovascular outcome trials. 

 

 

Figure 7.12: Lipoprotein relative size and triglyceride content. 

 

We will assess the percentage contribution of each identified fatty acid methyl ester in 

the plasma of our patients using the gas chromatography platform. If there is an excess 

of omega-6 fatty acids this may lead to the production of many pro-inflammatory 

oxylipins. It is hoped that it can be demonstrated that Irish CSX patients have abnormal 

plasma lipid profiles, have excessive dietary intake of SFA and TFAs and have a relative 

excess of omega-6 FAs compared to omega-3.  
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Methods 

7.5 Participants 

The same cohorts of participants that have been utilised for each of the preceding 

chapters in this thesis are again used here. Baseline samples are available for all 17 CSX 

patients and the 21 healthy controls. No samples from the follow-up visits were 

analysed. The patients had received no instruction to fast. All samples were taken 

between 0930 and 1130. Hospital laboratory data regarding the most recently 

obtained fasting lipid profile of these patients (14 samples in each group, taken at most 

1 month prior to enrolment) were noted with permission.  

 

7.6 Initial Investigations 

 A diet questionnaire was administered to the CSX patients (see appendix I). This self-

completed questionnaire returns 4 domain scores including (a) The Prudent Diet 

Questionnaire score, (b) the Calorie Control Questionnaire, (c) the Fat Control 

Questionnaire and (d) the Sodium/Salt Control Questionnaire. The first 3 domains have 

6 questions each with 4 possible answers. The salt control domain has only 5 questions. 

Each domain then gives a total score ranging from 6-24 (5-20 for salt), with 6-8 being 

excellent, 9-12 being good, 13-16 being fair, 17-20 being poor and 21-24 being very 

poor. Only 14/17 CSX patients returned this form. All patients completed the SAQ and 

PSS-10 as previously described in chapter 2. EST parameters were again recorded. 

 

7.7 Assessment of Plasma Fatty Acids 

Blood was taken from the ante-cubital fossa vein of participants. It was centrifuged at 

1000 rpm for 15 minutes and the supernatant was aliquoted into microtubes and 

frozen at -80oC until sent for further analysis. Lipids were then extracted from plasma 
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with chloroform: methanol (2:1 v/v) according to the method established in 1957 by 

Folch et al396. Fatty acid methyl esters (FAMEs) were prepared by first using 10 mls of 

0.5 N NaOH in methanol for 10 min at 90oC followed by 10 mls of 14% BF3 in methanol 

(Sigma) for 10 min at 90oC397. FAMEs were recovered with hexane. Before gas-liquid 

chromatography analysis, samples were dried over 0.5 g anhydrous sodium sulphate 

for 60 minutes and stored at 220oC. FAMEs were separated by an Agilent 7890B gas 

chromatograph, equipped with a GC80 autosampler (Agilent Technologies, Little Island, 

Cork, Ireland) and flame ionisation detector. The column was a CP7420 Select FAME 

capillary column (100 m × 250µm I.D., 0.25 µm phase thickness) (Agilent Technologies, 

Little Island, Cork, Ireland).  The injector was held at 250°C for the entire run and was 

operated in split mode using a split of 1/10.  The inlet liner used was a split gooseneck 

liner (Part no: 8004-0164, Agilent Technologies, Little Island, Cork, Ireland).  The 

column oven was held at 80°C for 8 min and raised to 200°C at 8.5 °C /min, this was 

held for 55 min. The total runtime was 77.118 min.  The FID was operated at 300°C. 

The carrier gas was helium and was held at a constant flow of 1.0 ml/min. Results were 

processed using OpenLab CDS Chemstation edition software version Rev.C.01.05 

(Agilent Technologies, Little Island, Cork, Ireland) and peaks were identified with 

reference to retention times of fatty acids in a standard mixture. The percentage of 

individual fatty acids was calculated according to the peak areas relative to the total 

area (total fatty acids were set at 100%). All fatty acid results are shown as g/100 g 

FAMEs 

 

7.8  Data Management 

All data was entered into SPSS v20 (IBM Corp, Armonk, NY). Measures of centrality and 

dispersion used with continuous variables were mean ± SEM if the data was normally 

distributed and median (IQR) if not normally distributed. Student t-test was used to 

compare the concentrations of normally distributed values while the Mann-Whitney U 

test was used for non-normally distributed data. Categorical data was compared using 
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Fisher’s Exact Test. Correlations were calculated using the Spearman Rank Correlation 

Co-efficient. The EPA:AA ratio was calculated by dividing the % of eicosapentaenoic 

acid (EPA) present in the sample by the % of arachidonic acid (AA). The total omega-6 

% was calculated by adding the % of Linoleic acid (LA), γ-linolenic acid, Dihomo-γ-

linolenic acid (DGLA) and arachidonic acid. Similarly, the total omega-3 % was 

calculated by summing the individual percentages of α-linolenic acid (ALA), EPA, 

docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). The omega-6:omega-3 

was then calculated. All p-values are two tailed and calculated to a 0.05 significance 

level. 

Results 

7.9 Diet Questionnaire results 

Domain Score Assessment 

Prudent Diet  14 (11 to 15) /24 Fair 

Calorie Control 10 (8.75 to 11) /24 Good  

Fat/Cholesterol Control 11 (10.75 to 12) /24 Good 

Sodium/Salt Control 7 (6 to 9) /20 Excellent 

Table 7.1: Food Questionnaire Results for the CSX group (n=14) 

As shown in table 7.1 above, the patients followed a relatively standard diet without 

evidence of salt, cholesterol or calorie excess. No patient had taken antibiotics in the 

previous 6 months. None were vegan or vegetarian. 

7.10 Fasting Lipid Analysis 

Group Total Chol LDL HDL Trig VLDL 

CSX 5.3 ± 0.2 3.2 ± 0.3 1.4 (1.3 to 1.7) 1.4 (1.2 to 1.7) 0.6 ± 0.1 

Control 5.1 ± 0.2 2.8 ± 0.2 1.6 (1.4 to 1.9) 1.1 (0.9 to 1.5) 0.8 ± 0.2 

p-value 0.44 0.24 0.18 0.08 0.26 

Table 7.2: Baseline fasting lipid profiles. All values expressed as mmol/L. CSX n=14, HC n=14. 
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7.11 FAME Analysis 

Fatty Acid Control (n=21) CSX (n=17) p 

Myristic Acid (C14:0) 1.6 (1.3 to 1.9) 1.4 (1.3 to 1.8) 0.31 

Palmitic Acid (C16:0) 23.9 (23.1 to 24.9) 24.0 (22.9 to 25.1) 1.00 

Palmitoleic Acid (C16:1) 2.6 (2.0 to 2.8) 2.6 (1.3 to 3.1) 0.52 

Stearic Acid (C18:0) 9.7 (9.0 to 10.7) 9.6 (9.0 to 10.6) 1.00 

Oleic Acid (C18:1c ω -9) 0.1 0 0.44 

Elaidic Acid (C18:1t ω -9) 22.3 ± 0.7 21.3 v 0.4 0.88 

Vaccenic Acid (C18:1t ω -7) 2.2 (1.9 to 2.6) 2.2 (2.1 to 2.7) 0.56 

Linoleic Acid (C18:2 ω -6) 21.3 ± 0.9 23.5 ± 0.9 0.08 

γ-Linolenic Acid (C18:3 ω -6) 0.2 0.3 0.50 

Dihomo-γ- linolenic Acid (C20:3 ω -6) 2.0 (1.7 to 2.2) 2.4 (2.2 to 2.8) 0.00* 

Arachidonic Acid (C20:4 ω-6) 7.8 ± 0.5 7.7 ± 0.4 0.83 

α-Linolenic Acid (C18:3 ω-3) 0.4 ± 0.1 0.3 ± 0.1 0.36 

Eicosenoic Acid (C20:1) 0.1 0 0.80 

Eicosapentaenoic Acid (C20:5 ω-3) 1.6 (1.1 to 2.2) 1.5 (1.2 to 1.9) 0.62 

Docosapentanoic Acid (C22:5 ω-3) 0.0 (0.0 to 1.1) 0.0 (0.0 to 0.0) 0.23 

Docosahexaenoic Acid (C22:6 ω-3) 2.7 (2.2 to 3.5) 2.7 (2.1 to 3.0) 0.78 

Total SFA 35.8 ± 0.6 35.4 ± 0.5 0.62 

Total MUFA 27.3 ± 0.8 26.1 ± 0.6 0.25 

Total PUFA 36.9 ± 1.2 38.5 ± 0.7 0.26 

EPA:AA 0.19 (0.16 to 0.27) 0.22 (0.16 to 0.27) 0.82 

Total ω-3 5.0 (3.8 to 5.9) 4.6 (3.6 to 5.1) 0.46 

Total ω-6 31.2 ± 1.0 33.8 ± 0.8 0.05* 

ω-6: ω-3 6.4 (5.4 to 8.3) 7.5 (6.3 to 9.3) 0.20 

PUFA:SFA 1.04 ± 0.05 1.09 ± 0.03 0.39 

Table 7.3: FAME results between groups given as % of total identified fatty acids (g/100g). 
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Table 7.3 above demonstrates the relative concentrations (expressed as g/100g) of the 

Fatty Acid Methyl Esters in both participant cohorts. Palmitic acid, linoleic acid and 

stearic acid together comprised over 50% of all measured fatty acids in our samples 

and the relative proportion of PUFAs to SFAs was favourable, being neither too low for 

the effects of excess SFA to occur nor too high to a point where lipid peroxidation 

would supervene (at approximately 1.5:1) 398. The only significant differences between 

our CSX patients and the controls were slightly higher proportions of omega-6 PUFAs 

and DGLA in the CSX group. Fatty acid levels did not differ according to statin use and 

there was no significant difference in statin use between genders (FET, p=0.21). 

 

Plasma omega-3 levels were, however, lower in women than men across the total 

study population [4.4 (2.4 to 5.8) vs 5.5 (5.1 to 9.1); U=37, n=37, p=0.019]. This was 

also reflected in a higher omega-6: omega-3 ratio in women [7.3 (6.1 to 9.0) vs 5.1 (3.2 

to 7.0); U=143, n=36, p=0.023) and a lower EPA:AA (0.20 ± 0.02 vs 0.38 ± 0.08; t35=-

3.44, p=0.002, 95% CI -0.08 to -0.29). The total percentage of Omega-3 PUFAs also 

moderately inversely correlated with markers of vascular and general inflammation (IL-

6, rs=-0.371, df=37, p<0.01; CRP, rs=-0.393, df=37, p=0.01; VCAM-1, rs=-0.407, df=37, 

p=0.01). FAME parameters did not correlate with any parameters of symptoms as 

assessed by EST parameters, SAQ domain scores or PSS-10 scores. 

 

7.12 Limitations 

The lack of dietary questionnaires from the control group prevents a meaningful 

comparison between the groups in terms of diet. It may also have been more useful to 

investigate RBC cell membrane instead of plasma fatty acids as this might have given 

an insight into diet over a longer term. Again, the small numbers limited our statistical 

power but this was unavoidable. 
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Discussion 

This is the first study to investigate the role of plasma fatty acids in CSX. As diet is one 

possible trigger for chronic low grade inflammation and dietary omega-3 

supplementation has been shown to ameliorate endothelial function in CSX, we wished 

to evaluate the composition of the CSX plasma fatty acid profile as a measure of recent 

dietary fatty acid intake. Our hypothesis was that CSX patients would have a relative 

lack of omega-3 with a predominance of omega-6 PUFAs with the result that omega-6 

derived pro-inflammatory oxylipins would predominate and potentially cause the 

general and vascular inflammation typical of CSX.  

 

Surprisingly, we found that the plasma FA profile was strikingly similar in CSX patients 

and in the age- and sex-matched controls. It should be noted, however, that our 

controls did have a high prevalence of dyslipidaemia of over 80% (by design to match 

for statin use) and so do not represent true “normal” in terms of lipids. That 

notwithstanding, we did find a small but significant relative increase in omega-6 PUFAs 

in the plasma of the CSX cohort, perhaps supporting the notion of omega-6-derived 

eicosanoids resulting in inflammation. We did not, however, see a significant reduction 

of omega-3 or a significantly greater omega-6: omega-3 ratio. Indeed, the CSX omega-3 

percentage is well within the normal range quoted in other studies399. It should also be 

considered, however, that several parameters suggest an unfavourable FA profile in 

our CSX patients. Firstly, the EPA:AA of the CSX group falls well below the preferred 

0.75 level to prevent poor cardiac outcomes400. Secondly, the ratio of omega-6: omega-

3 PUFAs is far higher than the putative ideal of 1:1 in both patient cohorts and also 

higher than the potentially beneficial levels quoted in studies. Indeed, a target of <4:1 

is used for secondary prevention of coronary artery disease (where it was associated 

with a  70% relative risk reduction in mortality) while a ratio of 2-3:1 has been shown 

to suppress inflammation in RA391. This may provide the rationale for omega-3 use in 

CSX patients. 
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We also found a significantly greater % of DGLA in the plasma of CSX patients. This 

fatty acid has been shown to correlate with anxiety and depression symptomatology in 

patients with affective disorders which may have some relevance to our CSX patients, 

although DGLA levels did not correlate with perceived stress scores401. DGLA has also 

been shown to act as an anti-inflammatory mediator by reducing TNFα release from 

lymphocytes but again did not correlate with observed TNFα concentrations402. The 

DGLA-derived eicosanoids are also generally anti-inflammatory in nature but the 

significance of the increased DGLA is unknown.  

 

It is also important to realise that, while we have calculated the relative proportions of 

plasma fatty acids in our patients, we did not calculate their absolute concentrations. It 

may be that the absolute quantity of FAs is higher in CSX than in health. This is relevant 

as high FA levels have been shown to induce endothelial dysfunction through NFκB 

activation with reduced endothelial-dependent vasodilation403. As shown in figures 

7.11 and 7.12, the largest quantity of fatty acids is found in circulating triglycerides, 

chylomicrons and lipoproteins and the absolute concentration of total cholesterol and 

LDL is increased in CSX compared with healthy controls404,405. The patients in our study, 

however, had normal triglyceride levels 

 

In all, this study does not provide much support to the notion that diet is a cause of the 

chronic low-grade inflammation seen in CSX. This may need to be confirmed in other 

studies, perhaps using a truly healthy control group without dyslipidaemia and a more 

detailed food frequency questionnaire. Other measures of the FA profile such as the 

RBC membrane evaluation could be employed to assess the impact of the longer-term 

diet. The role of lipids in CSX warrants further thought and investigation as these 

molecules are essential to normal endothelial function. 
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Perhaps focus should be turned to the actual FA derivatives directly relevant to 

endothelial function, the eicosanoids. These may be quantified using multiple methods 

such as gas chromatography-mass spectrometry (GC-MS), spectrophotometry or liquid 

chromatography-tandem mass spectrometry (LC-MS/MS)406. The levels of the various 

oxylipins in CSX would be of great interest. Another facet of the lipidome that may be 

of relevance to CSX is the SCFA fraction. These lipids have been shown to regulate GIT 

immune cell function (mediating cytokine release and eicosanoid production) and can 

also be quantified using GC-MS407,408. It is possible that our diet might influence our 

immune phenotype via the action of the GIT microbiome. Similarly, the phospholipid 

metabolite TMAO (produced by the action of the gut microbiome on choline-

containing food) has been shown to be associated with worsened cardiovascular 

outcomes and to alter macrophage phenotype, a potential pathogenic mechanism in 

CSX409. 

 

Conclusion 

In summary, we did not find convincing evidence that diet and plasma fatty acids play a 

role in the pathogenesis of CSX. The CSX patients did have an unfavourable lipid profile 

with a modestly elevated total cholesterol concentration and LDL level with normal 

HDL and triglyceride concentrations with the majority being on statin therapy. They 

have a relatively elevated level of omega-6 PUFAs, perhaps predisposing them to 

omega-6 derived pro-inflammatory eicosanoids, and a low EPA:AA ratio (albeit no 

different to that of our controls). The high omega-6: omega-3 ratio and low EPA:AA 

ratio provide a rationale for the use of omega-3 supplementation in these patients, as 

this has been shown to improve endothelial function, markers of oxidative stress and 

symptoms in a CSX population. The role of eicosanoids and SCFAs in CSX could be 

further investigated. 
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Chapter 8: General Discussion 
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8.1 Overview and summary 

In this thesis we have identified an extremely well-defined and phenotyped cohort of 

Irish Cardiac Syndrome X patients and investigated the role of systemic low grade 

inflammation (LGI) in this condition. While LGI has been previously well documented in 

CSX, we have attempted to chart the course of this inflammation over the natural 

history of the condition, from first diagnosis through to disease quiescence. This is the 

first investigation to demonstrate that CRP and IL-6 appear to act as state markers of 

disease activity in CSX, being elevated when patients are symptomatic and returning to 

normal once symptoms and signs of disease abate. This is the first time also that these 

patients have been shown to demonstrate chronically elevated TNFα and IFNγ 

irrespective of symptom severity and disease activity, indicating that the immune 

system (and perhaps more specifically macrophages) of these patients may be tonically 

mildly active. The cause for this chronic activity merits further investigation but we have 

made some efforts here to investigate diet as a potential factor in this cohort. 

Additionally, we have made efforts to explain the pathophysiology behind the excess 

psychological comorbidity in CSX by examining the metabolism of tryptophan. Finally, 

we have provided evidence, through the analysis of the miRNA transcriptome, 

supporting the VSMC phenotype switching hypothesis that may indicate the presence of 

microvascular remodelling.  

 

Despite the disagreement in the literature regarding the exact diagnostic criteria for 

and indeed cause of CSX, one constant finding has been the presence of mild systemic 

inflammation. Despite its near ubiquity, the exact nature of the inflammation in CSX 

has not been satisfactorily determined. Specifically, we do not know what the initiator 

of the inflammation is, which exact inflammatory pathways are involved and, perhaps 

more importantly, we do not know if the inflammation seen in CSX is a cause or an 

effect. Given that inflammation has the potential to dramatically impact the normal 

functioning of the endothelium and that this is a cornerstone of disease activity in CSX, 
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it does behove us to develop a greater understanding of the role of inflammation in 

this condition. The aim of this thesis was to further study the nature of inflammation in 

CSX by prospectively determining the values of various inflammatory biomarkers at 

different stages of disease activity in a well-defined cohort. We also pursued novel 

biomarkers in the CSX domain in an effort to further delineate the pathways and 

processes involved in CSX. 

 

To this end, we needed to identify a local cohort of suitable patients. We enrolled, for 

the first time in Ireland, a cohort of CSX patients and attempted to thoroughly 

phenotype these patients in greater detail than has been attempted in previous 

studies. This is described in chapter 2, where we also describe our incidence study, 

performed as the incidence of CSX in Ireland was previously undetermined. We 

adhered to an extremely rigid and strict definition of CSX and included several 

questionnaires including an estimate of symptomatology (the Rose Angina 

Questionnaire and SAQ), life stresses (PSS and LTE-Q) and diet (Prudent Food 

Questionnaire). We also examined the data from their cardiac investigations, finding 

that they have an elevated left ventricular end-diastolic pressure; their routine blood 

tests, finding that they have normal autoimmune screens and an elevated 

neutrophil:lymphocyte ratio; and their urine tests, demonstrating that they do not 

have any evidence of microalbuminuia (a marker of glomerular endothelial 

dysfunction). 

 

Having identified an Irish cohort of CSX patients, we first sought to establish that they 

too demonstrated systemic LGI before determining the dynamics of the inflammatory 

biomarkers during the natural history of the disease. We chose the method of 

electrochemiluminescence to determine plasma concentrations of acute phase 

reactants and showed that both CRP and SAA were elevated in our population (Chapter 

3). Most interestingly, we showed the novel finding that there appeared to be an 
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association between CRP concentration and disease severity, with CRP levels falling as 

disease activity waned, indicating that CRP was a state marker in CSX. We also found 

that the endothelium of CSX patients was activated with increased expression of ICAM-

1 and, described for the first time in the literature, VCAM-1. Thus, we had found that 

our patients did indeed exhibit chronic systemic LGI and had evidence of endothelial 

activation. Moreover, the inflammation appeared to mirror disease activity, at least in 

the case of CRP. This supported the notion of potential causality between inflammation 

and CSX. 

 

With the presence of LGI established in our cohort, we then looked at the cytokines 

driving this inflammation to allow consideration as to the origin of this inflammatory 

drive (chapter 4). The cytokine profile hinted at macrophages potentially being the 

culprit cells as we found that IFNγ, IL-6 and TNFα were elevated in CSX. Intriguingly 

only IL-6 decreased as symptoms improved with both TNFα and IFNγ remaining 

elevated throughout the duration of follow-up. The improvement in symptoms was 

accompanied by a drop in the IL-6:IL-10 ratio, perhaps singling out IL-10 as the 

remediating factor in the disease process. 

 

Another feature of CSX is the presence of extensive psychological comorbidity. This 

was borne out in our cohort, where they demonstrated increased perceived stress and 

poor disease-related quality of life. Why are these patients more stressed? Is that their 

baseline? Is it the rigours of having an active disease? In an effort to link this with their 

evident inflammation, we examined the role of tryptophan metabolism in CSX as 

studies in ischaemic heart disease have demonstrated increased activity of IDO in 

depressed and anxious patients post-MI. Using HPLC we demonstrated the original 

finding that our patients did indeed have upregulated IDO activity with consequent 

reductions in plasma tryptophan concentrations (chapter 5), which could impact on 

serotonin bioavailability. This could explain the psychological impact of CSX on the 
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patients and might explain the efficacy of imipramine in the treatment of this 

condition. Furthermore, many products of the IDO-regulated kynurenine pathway have 

the potential to dysregulate endothelial processes. Finally, the kynurenine: tryptophan 

ratio also acted as a state marker of disease activity, normalising at the end of follow-

up in patients who improved. 

 

Having seen the prominent role of inflammation in CSX, we then turned our attention 

to the microRNA transcriptome (chapter 6). We hoped that the analysis of the 

transcriptome might shed further light on the mechanisms at play in CSX 

pathophysiology. We discovered and validated that miR-143 is reduced in Cardiac 

Syndrome X. This microRNA is a critical regulator of VSMC phenotype with a reduction 

of miR-143 being associated with the adoption of a secretory phenotype in VSMCs. 

Secretory VSMCs play a key role in vascular wall remodelling, with medial hypertrophy 

and arteriolosclerosis. This would certainly explain many of the features of CSX 

(reduced coronary flow reserve, reduced vasomotor response to increased shear stress 

and endothelial activation). Furthermore, miR-143 targets endothelial Angiotensin 

Converting Enzyme and it is our contention that the angiotensin system also plays a 

crucial role in CSX pathogenesis.  

 

Finally, we wished to attempt to explain the stimulus for the chronic inflammation seen 

in CSX. One possible trigger for LGI is diet and dyslipidaemia. We used gas 

chromatography to examine the plasma fatty acid profile of our patients in an attempt 

to determine the potential role of SFAs and omega-6 PUFAs in the pathogenesis of CSX 

(chapter 7). We found that our patients had low EPA:AA ratios and a relatively high 

omega-6 fraction in their plasma fatty acids, hinting that relative deficiency of omega-3 

fatty acids may contribute to the pro-inflammatory phenotype that typifies the CSX 

patients. Our patients also had mildly elevated LDL and Total Cholesterol but no 

convincing dietary explanation for CSX emerged from our analysis. 
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8.2 Diagnosing and Treating Cardiac Syndrome X 

Perhaps the greatest limitation of the research undertaken into Cardiac Syndrome X 

since its initial description in 1973 has been the lack of clarity regarding its diagnosis. As 

outlined in chapter 1, there are many possible diverse diagnoses that fall under the 

umbrella of chest pain with normal coronary arteries, with CSX representing a minority 

diagnosis. Physicians were initially disconcerted by the presence of classical anginal 

pain without any obvious disease on coronary angiography but quickly settled on the 

microvasculature as a probable cause. Despite this theory now being largely validated, 

it took 4 decades of contradictory results and inconsistent findings before the literature 

finally came to the consensus that Cardiac Syndrome X existed and was indeed likely 

caused by microvascular dysfunction. This has even led to a change in nomenclature, 

with CSX now also being termed microvascular angina. The main reason for the 

discordance in the reported results was that the definition of CSX had varied greatly 

between studies. Some studies demanded typical angina pectoris, some merely “chest 

pain”, while the presence of a positive stress test was similarly occasionally optional. 

The modern definition of CSX now mandates a positive non-invasive test for myocardial 

ischaemia as well as angina pectoris in the presence of angiographically normal 

epicardial coronary arteries. 

 

The Diagnostic Criteria 

Our study provides interesting evidence in support of the necessity of a positive 

objective stress test in the diagnosis of CSX. By recruiting patients who had typical 

angina with angiographically normal coronary arteries but normal ESTs (the LCSX 

cohort) we were able to establish the ability of an EST to define two distinct 

populations. On one hand we had the CSX population, distinguished by the electrical 

positivity of their exercise stress tests, while on the other we have patients with angina 

and normal coronary arteries but without objective evidence of myocardial ischaemia 

(LCSX). Both groups were similar in terms of traditional cardiac risk factors, 
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demographics and baseline symptoms. The two groups differed clearly, however, in 

terms of the degree of baseline inflammation. In general, the LCSX group 

demonstrated less active LGI with lower CRP (p=0.06), SAA (p=0.05) and ICAM-1 

(p=0.07) than the CSX group. They also had normal TNFα and IFNγ levels. Furthermore, 

their miR-143 levels were similar to those of healthy controls. Most importantly, the 

groups also differed in terms of prognosis as the LCSX patients were more likely to have 

resolution of their symptoms at follow-up than the CSX cohort. Thus, EST results in 

patients with CPNCA have implications for diagnosis and prognosis. The 

interrelationship between active LGI and EST positivity is further reflected in the 

follow-up results in our CSX patient cohort where CRP fell to normal levels in patients 

whose ESTs also normalised. This strongly implies that a positive EST in CSX does not 

simply represent a false positive result, as has been previously suggested.  

 

We chose to be as strict as possible in our diagnosis of CSX so as to avoid the pitfalls 

suffered by so many previous forays into CSX research. We used the ESC definition of 

typical angina pectoris as a prerequisite for diagnosis as this pain is the most likely to 

be truly “cardiac” in origin. By so choosing, we excluded those patients with atypical 

chest symptoms (some of whom undoubtedly also had microvascular angina) and 

precluded the opportunity to determine if the nature of chest pain defined populations 

that differed in terms of inflammation and outcome as much as when defined by EST 

status. Our strict definition, however, certainly contributes to the relatively low 

incidence of CSX we observed in Ireland (1.3% of all angiograms for chest pain). 

Perhaps more importantly, we discovered that patients were not being diagnosed as 

having CSX despite meeting diagnostic criteria. This speaks to the lack of general 

awareness of the condition in Ireland. CSX should be suspected in younger post-

menopausal women with dyslipidaemia presenting with angina and a positive EST and 

if the angiogram proves normal they should be diagnosed as CSX patients require 

active treatment and follow-up. 
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The use of baseline CRP as a biomarker in CSX to aid in its diagnosis also bears scrutiny. 

Our ROC curve analysis shows that CRP is excellent at separating CSX and LCSX patient 

populations with an AUC of 0.815 (p=0.02). A cut off of 1mg/L gave a 71% sensitivity 

and 86% specificity and 2mg/L gave 100% specificity and 40% sensitivity to distinguish 

between CSX and LCSX. Perhaps this might allow the use of CRP to distinguish patients 

with chest pain and normal coronary arteries who are more likely to have persistent 

symptoms and require treatment as they will likely have CSX. This could be more cost-

effective and time-saving than EST, which requires the presence of a physician and 

cardiac technician for its duration.  

 

Prognosis and Treatment in CSX 

Our systematic review of the literature confirms that outcomes for CSX patients are 

generally favourable with low rates of MI and revascularisation but an increased 

incidence of CVA. This should alleviate some of the worry generated by studies in 

patients with demonstrable coronary microvascular dysfunction (as diagnosed by 

coronary reactivity testing), which demonstrated worse cardiovascular outcomes in 

patients with microvascular dysfunction410. It should be noted, however, that patients 

in these studies did not all have a positive stress test and some had obstructive CAD 

and so do not represent a true CSX/MVA population. Our review also showed that the 

majority of CSX patients (>70%) have symptoms at long-term follow-up and that a 

similar number require ongoing anti-anginal use. This was borne out over the course of 

our own study cohort, where we found that 73% of CSX patients were still symptomatic 

at the end of follow-up (almost a year and a half later). 

 

We found that some baseline markers were predictive of a better symptomatic 

outcome. Although it appears obvious, it is satisfying to confirm that patients with 

milder symptoms (such as a higher DTS and better PLS) at baseline have a greater 

likelihood of symptom improvement at follow-up as confirmed by our logistic 
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regression analysis and ROC curve assessment. Therefore, the EST parameters and SAQ 

PLS domain score may also be used to prognosticate for patients. A PLS of >90 selected 

patients who would go on to be subjectively asymptomatic with 100% sensitivity and 

77% specificity (AUC 0.949, p=0.02) while a cut off of >85 selected those who would 

have a negative EST at follow-up with 90% sensitivity and 100% specificity (AUC 0.907, 

p=0.01). Similarly, we showed that CRP, when combined with DTS, formed an excellent 

model to predict normalisation of the EST at follow-up and when combined with the 

PLS provided an extremely effective model for predicting 100% of patients with 

complete symptom resolution. Therefore, the routine measurement of hsCRP could be 

utilised alongside EST and questionnaires during the diagnostic process to help predict 

prognosis. 

 

Quite apart from the physical symptoms, which are importunate, we also found that 

our patients suffered from excessive perceived life stress and endured a sizeable 

impact on their quality of life. These findings highlight the need to effectively diagnose 

CSX to allow for treatment. Such treatment should include agents that improve 

endothelial function (such as aspirin, statins and ACE inhibitors) and that minimise 

angina (e.g. beta-blockers and calcium channel antagonists) but some focus also needs 

to be applied to the psychological aspects of CSX, which also warrant therapy with 

exercise training and psychological interventions. 

 

8.3 Inflammation in CSX 

CSX appears to be intrinsically associated with systemic low grade inflammation and 

although this has been well documented its precise role remains poorly understood. 

The original objective of this thesis was to further evaluate the role of inflammation in 

CSX. In particular, we wanted to see if LGI was causal in CSX. We therefore wished to 

fully assess the nature of inflammation in CSX, the likely pathways and cells involved in 

its activity and the likely stimulus leading to its promotion. To that end we followed the 
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cohort of patients to look at their inflammation over time and have made several 

advances in the field of inflammation in CSX. We established that it is indeed chronic in 

nature, with TNFα, IFNγ and the neutrophil: lymphocyte ratio being persistently 

elevated in our patients. We have confirmed the presence of endothelial activation 

characterised by upregulated VCAM-1 and ICAM-1 expression. We have also seen that 

the IL-6/CRP axis appears to be important in disease activity in terms of both EST 

positivity and symptoms with both IL-6 and CRP normalising with symptom resolution.  

We have also demonstrated the novel finding that Indoleamine 2,3 dioxygenase 

activity, affected by inflammation, is upregulated in CSX.  

 

8.3.1 Is inflammation causative in CSX? 

Bradford- Hill Criteria  

Strength of Association The size of the association as measured by appropriate statistical 

tests e.g. correlation strength, difference in mean etc. 

Temporal Relationship Cause must necessarily always precede an occurrence of the 

disease 

Biological Gradient An increasing amount of exposure increases the risk. There 

should be a direct effect on the risk factor (e.g. inflammation) 

and the disease (CSX) 

Consistency Results are replicated across multiple studies from different 

locations, at different times, using different methods 

Theoretical Plausibility There should be a biologically sound mechanism by which the risk 

could lead to the disease 

Coherence The association should be compatible with existing knowledge 

within the field 

Specificity When a single cause leads to a specific effect. This is not 

essential. 

Experimental Evidence The condition can be altered by an appropriate experimental 

intervention 

Analogy Has something similar been seen in other populations/systems? 

Table 8.1: The Bradford-Hill guidelines for causation 
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The primary point of interest is whether or not inflammation is causative in CSX. Causal 

inference studies utilise the Bradford-Hill criteria, which was initially used to assess the 

role of smoking in lung cancer causation. These criteria are still used today and are 

shown in table 8.1 above. Recently, authors have attempted to condense the criteria 

into more general concepts. One particularly elegant solution was codified by Howick 

et al (see table 8.2 below) and we will use the resultant headings to structure the 

debate regarding the putative causal link between inflammation and CSX. 

 

Howick’s Revised Criteria411 Original 

Criteria 

Direct Evidence Evidence from studies (randomised or non-randomised) that 

show a probabilistic association between exposure and 

outcome that is likely to be causal and not spurious or due to 

confounding. This evidence should have appropriate temporal 

and spatial proximity with dose-responsiveness and 

reversibility. 

Experiment 

Strength 

Temporality 

Biological 

Gradient 

Mechanistic 

Evidence 

A mechanism of action (biological, chemical or mechanical) that 

connects the intervention and outcome 

Biological 

Plausibility 

Parallel Evidence Where the results replicate or are similar to those of previously 

published studies 

Coherence 

Analogy 

Table 8.2: The revised criteria for causal inference 

 

Direct Evidence 

There is a reasonable body of direct evidence supporting the notion of inflammation 

being causal in CSX. Our study design has attempted to minimise the role of 

confounding in our study. The lengthy list of exclusion criteria has attempted to deal 

with this by removing patients with known diseases that lead to LGI (chronic kidney 

disease, chronic liver disease, diabetes mellitus, connective tissue diseases, chronic 

infections etc.). In addition, we matched our patients and controls for age, gender and 
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hyperlipidaemia and there were also no differences in terms of BMI, anti-depressants, 

statins or ACE inhibitor use. Despite all of this matching, the CSX patients had 

consistently greater concentrations of biomarker measures of chronic low grade 

inflammation than the healthy controls. The possibility of an unmeasured confounder 

(such as exercise, adipokines, undiagnosed infectious disease etc) remains, however.  

 

The strength of our findings also must be scrutinised. The measured concentrations of 

the various molecular biomarkers are only modestly elevated in the CSX group. Despite 

that, the findings are statistically significant. For example, the hsCRP levels seen in our 

CSX patients are still within the normal range on a population level but still represent a 

100% relative increase when compared with the healthy controls. The case is similar 

with SAA concentrations. The ICAM-1 and VCAM-1 levels represent only a 25% and 

16% relative increase respectively while IFNγ is increased by 50%, IL-6 by 150% and 

TNFα by 20%. Given the small effect sizes, it is easier for a potential confounder to 

influence the results. Additionally, as this is an observational study, our cohorts may be 

inadvertently influenced by a selection bias. 

 

Perhaps the greatest addition we have made to the understanding of LGI in CSX is the 

demonstration of dose-responsiveness and reversibility in our patients. Our novel 

finding that the degree of inflammation correlated with the severity of symptoms (in 

terms of objective EST parameters) and the finding that an improvement in symptoms 

by both subjective (SAQ) and objective (EST positivity) measures was mirrored by a 

reduction in CRP and IL-6 concentrations certainly strengthen the causal link between 

inflammation and CSX. The potential use of baseline CRP as a prognostic tool also lends 

support to the dose-response criterion. Similarly, previous studies have shown that the 

greater the inflammation, the lower the CFR and FMD412. It should be realised, 

however, that many conditions with much greater activation of the immune system do 

not result in angina pectoris. 
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Temporality is a difficult criterion to meet given the relative infrequency of the 

diagnosis of CSX. One feasible approach would be to follow patients with known 

inflammatory disorders (such as chronic inflammatory rheumatoid conditions) to see if 

they develop microvascular angina. A recently published review reports that coronary 

microvascular dysfunction is prevalent in many chronic inflammatory rheumatoid 

conditions such as rheumatoid arthritis and systemic lupus erythematosus413,414. These 

patients also go on to have many adverse cardiovascular events and in such cases the 

inflammation certainly precedes the disease (microvascular dysfunction). This also 

demonstrates the criterion of Analogy, where inflammation in a non-CSX population 

has led to cardiovascular symptoms. 

 

The final component of direct evidence linking LGI to CSX is the demonstration in some 

studies of the effectiveness of inflammation-reducing agents such as statins, exercise 

and ACE inhibitors in improving patients’ symptoms and quality of life. Obviously these 

all have multiple effects other than a reduction in vascular inflammation and so only 

provide indirect evidence but their findings of benefit are consistent. No trials have 

been done in the use of steroids or drugs such as methotrexate in CSX. Interestingly, 

ongoing trials are currently examining the role of methotrexate (CIRT trial) and the 

anti-IL-1β canakinumab (CANTOS trial) in improving cardiovascular outcomes in 

patients with chronic atherosclerosis and MI. These agents both downregulate the IL-

6/CRP inflammatory signalling pathway. Anakinra, another IL-1 antagonist, has been 

shown to improve CFR and endothelial function415. 

 

Mechanistic Evidence  

Our causal hypothesis that LGI leads to endothelial dysfunction and angina is certainly 

coherent with the published literature. As was described in chapter 3, CRP itself has 

many direct effects on the endothelium while the ability of TNFα and IFNγ to activate 

the endothelium is also well-known. Endothelial dysfunction with resultant insufficient 
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microvascular dilation is almost certainly the primary mechanism in CSX. The 

aforementioned study detailing the remedial effects of IL-1 antagonism in restoring 

normal endothelial function solidifies this link. The control of inflammation in 

rheumatoid arthritis also has substantial cardiovascular benefits, again highlighting the 

importance of inflammation in vascular disease416,417. 

 

Parallel Evidence 

The data we have presented in this thesis is certainly consistent with previously 

published results in the CSX population. While we have replicated other data we have 

also contributed many novel findings to the previously published research. It is 

important that similar findings have been found in many different CSX populations (in 

Ireland, Japan, Italy etc.) using different laboratory techniques. We have also shown 

that inflammation is persistent in the CSX population, meaning that LGI is a consistent 

finding in active CSX. 

 

Conclusion 

It must certainly be conceded that systemic low grade inflammation is not specific to 

microvascular angina and is more prominent in many other conditions. It is also true 

that not everyone with inflammation gets resultant angina pectoris and as such LGI 

must not be the only factor involved in CSX. Undoubtedly, however, inflammation plays 

an important role in CSX and meets 5 out of 9 criteria for causation. The control of 

inflammation in CSX is a therapeutic intervention that has not yet been specifically 

pursued. 
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8.3.2 What pathways and cells are involved in the inflammation seen in CSX? 

Our research has suggested that several pathways may be involved in the pathogenesis 

of the inflammation of CSX. There appears to be a basal cytokine drive in these 

patients, with tonic elevation of TNFα and IFNγ. This seems to be punctuated by an 

activation of the IL-6/CRP axis, which may mediate symptomatic periods for patients. 

TNFα is a chief inducer of endothelial activation, upregulating many NFκB-dependent 

inflammatory processes and this process is augmented by IFNγ. Furthermore, IFNγ 

upregulates TGFβ and ET-1 production in the endothelium and may trigger EndMT. 

Thus, the presence of elevated concentrations of these cytokines may lead to an 

endothelium that is activated and vulnerable to further dysfunction.  

 

IL-6 is released from immune cells and from endothelial cells in response to TNFα, 

oxidative stress, vascular injury and Angiotensin II (Ang II) in an NFκB-mediated 

pathway and is a marker of vascular inflammation. IL-6 then induces the expression of 

CRP from the hepatocytes and from endothelial cells themselves. IL-6 also has more 

local effects in the vasculature, mediating monocyte recruitment (via MCP-1) and 

activation in conjunction with increased AngII activity418. It also has the effect of 

upregulating AT1 receptors on the nearby VSMCs, thereby allowing increased 

sensitivity of the VSMCs to circulating AngII, thereby increasing ROS production, 

vasoconstriction and vascular remodelling. As was outlined in section 3.1.1, CRP also 

shows a great ability to alter endothelial biology. As well as activating endothelium it 

has been shown to further upregulate the AT1 receptor, uncouple eNOS activity, 

reduce NOS3 mRNA levels and even induce endothelial apoptosis. It may also blunt the 

normal mechanotransduction necessary for flow-mediated vasodilation by damaging 

the glycocalyx. 

 

The transcriptome analysis in our patients also revealed some possible endothelial 

pathways that might also be implicated in CSX. Although some of the miRNAs identified 
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as being differentially expressed by NGS were not validated by qPCR because of their 

scarcity, the fact that they were differentially expressed by both methods of detection 

hints that they may be dysregulated in CSX. miR-10b regulates endothelial NFκB and 

may be reduced in CSX, while the E26 transcription factor Ets-1 is also modulated by 

miR-200b. Both of these transcription factors regulate endothelial activation. The only 

validated miRNA from our study, miR-143, targets Kruppel-like factor 4, ACE and COX2 

and each of these can modulate endothelial inflammatory activation. Our research is 

the first to confirm the upregulation of the enzyme Indoleamine-2,3-dioxygenase and 

the subsequent activation of the Kynurenine Pathway. This inflammation-responsive 

pathway may be implicated in some of the affective consequences of the CSX disease 

and will be discussed further in section 8.4. 

 

The cellular origin of the cytokines is also difficult to determine with any great 

certainty. It is difficult to look beyond the obvious that there is a relative excess of 

neutrophils in our CSX patients, which may represent a response to stress, either 

physical or psychological, or may be a signal of neutrophilic involvement in CSX. A 

raised NLR has also been noted in other studies in CSX. Although our population had 

normal monocyte levels, other studies into CSX have demonstrated an increased 

number of circulating monocytes in patients with active disease. The idea that CSX is a 

monocyte/macrophage driven disease is attractive as M1 and M4 macrophages are 

known to be stimulated by the contents of atheromatous plaques and are a potent 

source of TNFα and IL-6419. Certainly, the basal IFNγ elevation would prime 

macrophages for activation. This begs the question as to the source of the IFNγ. 

Activated Th1 cells and NK cells are the primary sources of IFNγ but macrophages may 

also produce this important cytokine. Of course, the cells of the vascular wall (VSMCs 

and endothelial cells) may also be potent sources of these pro-inflammatory cytokines 

under suitable conditions and if they are the source this may explain the predominantly 

vascular effects of the LGI in CSX. Cells in adipose tissue are also implicated in the 

sustenance of LGI and represent another potential cellular source. 
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8.3.3 What is the stimulus for inflammation in CSX? 

Cause Examples Effects 

Sleep disturbance Chronic and acute 
sleep deprivation  

Increased IL-6, IL-1 and TNFα 
Sympathetic activation 

Stress and trauma Early childhood 
(abuse, social 
isolation, economic) 
Chronic stressors 

Increased IL-1 and IL-6, apoptosis and Th1 
response 
Reduced CC16 (uteroglobulin) 

Immune Gene 
Polymorphisms 

“Inflammaging” 
HLA haplotype 

Polymorphisms/SNPs in TLRs, IFN, CRP and TNF 
may lead to LGI 

Diet Prudent diet vs 
Western diet 

Whole grains, fish and legumes reduce CRP and 
IL-6 
High glycaemic load food with red meat causes 
the opposite. 
FA intake also mediates inflammation (Omega-
3, Omega-6, SFA) 

Gut Microbiome TLR4 activation via 
LPS/ bacteria 
translocation across 
leaky GI membranes 

Leads to increased IgM and IgA against LPS 
Increased NFκB activation 
Oxidative and Nitrosative Stress with NADPH 
oxidase activation 

Lack of Exercise Sarcopenia 
Sedentary Lifestyle 

Exercise transiently increases Myokines (IL-6) 
but healthy habituation occurs with time 
Exercise reduces leptin and adipokines 

Obesity “Metaflammation” 
Adipokines 

Increases circulating leptin, increases 
Hypothalamic-pituitary-adrenal axis activity, IL-
6 and ROS production 

Smoking Passive and active 
smoking 

Cigarettes contain LPS and induce oxidative and 
nitrosative stress, IL-6, TNFα and CRP 
production 

Atopic Disorders Allergic rhinitis Increased IgE and Th2 response (IL-4, IL-5, IL-13 
and TNFα) 

Periodontal 
diseases 

Dental Caries 
Gingivitis 

High prevalence (47% in US adults) 
Macrophage activation with increased IL-6, IL-8 
and CRP 

Vitamin D Deficiency Supplements reduce TNFα and IL-6 levels as 
well as reducing oxidative stress 

Environmental 
Pollution 

Particulate Matter Increases CRP, COX2 activity, IL-1β release and 
endothelial activation 

Chronic infections H. Pylori 
Mycoplasma 

Increased CRP and homocysteine 

Table 8.3: Selected possible causes of chronic systemic low grade inflammation 



335 
 

The identification of the ultimate cause of the chronic LGI seen in CSX is crucial as this 

may allow one to address the problem of successful therapeutic intervention in CSX. 

Systemic LGI has many potential causes, some of which are shown in table 8.3 above. 

Several of these have already been investigated in published studies. As mentioned 

before, a high prevalence of Helicobacter pylori colonisation has been found in CSX 

patients and this is known to be associated with increased serum hsCRP and 

homocysteine levels420. Obesity and adipokines may also play a role in the initiation 

and maintenance of chronic LGI in a process dubbed metaflammation. Our CSX 

population has a moderately raised BMI (almost 28 kg/m2 on average) but no more so 

than our healthy controls. It is certain, however, that BMI is not an accurate measure 

of adiposity with sarcopenic obesity and the distribution of fat also playing an 

important role on immune activity421. It is interesting, therefore,  that visceral 

associated fat is increased in CSX422. Other markers of increased adiposity, such as 

leptin, are also increased in CSX, although it must be stated that leptin is upregulated 

by inflammation161. Interestingly, insulin resistance has also been demonstrated in CSX 

populations furthering the notion of metaflammation in these patients423. 

 

It is also possible that stress may be the cause of LGI in CSX. We have demonstrated 

that our patients have significantly elevated perceived stress scores when compared to 

the control group while many studies have demonstrated the psychological co-

morbidity suffered by CSX patients. Psychosocial stressors have been shown to elicit 

inflammatory responses in humans including increased IL-6 and IL-1424,425. Early 

childhood trauma such as parental loss, social isolation and economic deprivation may 

also play a role as these have been shown to have lifelong immune repercussions426,427. 

Further evidence for the role of stress in CSX is the finding of upregulated sympathetic 

autonomic activity in this population in the form of ECG changes and abnormal cardiac 

adrenergic nerve function on MIBG scans. To date, the status of the HPA axis in CSX has 

not been investigated. 
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The gut microbiome could also potentially play a role in the chronic inflammation in 

CSX. The Firmicutes/Bacteroidetes ratio appears to be important in oxidative stress and 

inflammation. Similarly, intestinal gram-negative bacteria express LPS on their outer 

membrane and high fat diets have been shown to increase LPS production and 

translocation into the blood. This leads to a chronic low grade metabolic 

endotoxaemia, which can lead to TLR4 activation with resultant macrophage activity 

and increased IL-6 and TNFα release428. Intestinal permeability is increased by stressful 

stimuli that lead to increased HPA axis and sympathetic activation. It is therefore 

possible that increased stress in CSX patients leads to a metabolic endotoxaemia via 

increased intestinal permeability429. 

 

We attempted to examine diet and fatty acids as potential causative agents for the LGI. 

Our patients scored reasonably well on the Fat/Cholesterol control questionnaire but 

were only fair on the Prudent Diet questionnaire. They had elevated LDL and total 

cholesterol but had a normal HDL concentration. We did identify a mild excess of 

omega-6 PUFAs in our patient cohort and they also exhibited a suboptimal EPA:AA and 

omega-6:omega:3 ratios. Dietary interventions into CSX patients may warrant further 

study, although omega-3 and vitamin D supplementation have already shown promise. 

 

Recent studies of CSX patients revealed no differences in terms of genotype 

distributions for the common inflammatory mediators IL-6, TNFα and IL-10 so genetic 

polymorphisms do not appear to play an important role in CSX195,210. Despite this, one 

study has shown that, although IFNγ gene transcriptional activity is not different, IFNγ 

receptor subunit gene expression was higher in CSX than in controls indicating 

increased immune cell sensitivity to IFNγ mediated stimuli21.  
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It may be that inflammation is a self-perpetuating cycle in CSX as subclinical 

atherosclerosis is undoubtedly found in CSX (see 4.16.2). While atherosclerosis is 

initiated by abnormal local rheology, it then forms a nidus of inflammation from which 

a sustained systemic inflammatory signal can be sent. It may simply be that these 

patients are exhibiting a form fruste of coronary atherosclerosis, whereby we observe 

the sub-clinical inflammation without the objective coronary angiographic changes. 

Lifestyle and environmental factors are beyond the scope of this thesis but there we 

observed no excess alcohol intake in our cohort (median 0.0 [0.0 to 5.0 units per 

week]) and no CSX patients were actively smoking. Patients’ sleeping habits and 

exercise regimes were not evaluated while exposure to environmental pollution was 

also not assessed, although 41% of the CSX population lived in a rural setting. 

Doubtless, there is scope to further investigate the potential instigators of 

inflammation in CSX and such research may reveal the key to understanding the 

pathophysiology of this important condition. 

 

8.4 Novel Pathogenic Mechanisms in CSX 

One of the main purposes of this thesis was to examine biomarkers of CSX disease 

activity and then theorise as to possible mechanisms responsible for the observed 

biomarker profile, perhaps giving a new insight into the underlying disease process. In 

this thesis we have corroborated old theories and have also expounded new ones 

based on our original data. We will not recap our evidence that inflammation may act 

as a mediator of disease activity as this is outlined more explicitly in 8.3 above. Instead 

we shall focus on two other novel facets of CSX disease activity. 

 

8.4.1 Indoleamine-2,3-dioxygenase activity 

We are the first to demonstrate that IDO activity is increased in CSX patients. This was 

not an unexpected finding given that IDO is potently induced by IFNγ and that we have 

also demonstrated increased IFNγ levels for the first time in CSX patients. It remains, 
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however, a significant finding as IDO has frequently been implicated as the link 

between inflammatory conditions and affective disorders such as in the bidirectional 

link observed between depression and coronary artery disease430. IDO upregulation 

starves the methoxyindole pathway of tryptophan and without this substrate serotonin 

cannot be synthesised. Reduced serotonin bioavailability could be part of the 

explanation for the high incidence of panic disorders, somatisation and depression 

found in CSX patients228,431. Certainly, serotonergic neurons modulate anxiety 

responses and dysregulation of these circuits can lead to anxiety while reduced plasma 

trypophan and serotonin is associated with depression, anxiety and obsessive 

symptoms432,433. It may also explain the increased perceived stress in our patient 

cohort as well as the disproportionately impaired disease-related quality of life despite 

no significant excess of actual non-disease related life stressors. 

 

Equally, altered serotonin levels may play a role in the abnormalities of pain perception 

in CSX patients, who demonstrate increased peripheral pain sensitivity, reduced 

habituation to painful stimuli and abnormal cortical pain processing. Patients with 

depression also exhibit reduced pain tolerance and greater perceived pain434. The role 

of serotonin in nociception is quite complex, however. Serotonin modulates central 

pain processing, possibly through the action of opioid-releasing neurons as well as 

direct effects435. It may also, however, sensitise peripheral neurons to painful 

stimuli436. Furthermore, tryptophan supplementation has been shown to increase pain 

tolerance levels, implying that a relative lack of this amino acid might reduce pain 

tolerance437. CSX patients are also known to be deficient in melatonin, the other 

product of the methoxyindole pathway. This vasoactive compound has potent anti-

oxidant and atheroprotective properties and reduced tryptophan bioavailability would 

also prevent its production. 
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Another facet of IDO upregulation is the activation of the kynurenine pathway and 

increased concentrations of its products. While we only measured kynurenine and 

kynurenic acid, it stands to reason that kynurenine pathway intermediates such as 3-

hydroxykynurenine are increased in CSX. Several of the metabolites on this pathway 

have the potential to induce endothelial dysfunction, with kynurenine being capable of 

indirectly activating NFκB and 3-HK exacerbating endothelial oxidative stress. COX2 

inhibitors can be used to inhibit IDO activity thereby switching off the kynurenine 

pathway and have been shown to improve endothelial function in IHD but they are 

generally not advised for patients with risk factors for cerebrovascular disease and as 

such should not be used in CSX. The role of anti-depressants in the modulation of pain 

in CSX is proven, highlighting the relevance of the serotonergic system in this disease. 

Further research into the potential role of tryptophan metabolites (including 

melatonin) in CSX should be undertaken. 

 

8.4.2 Microvascular Remodelling 

The term vascular remodelling describes the physical changes that occur in the wall of 

the blood vessels, typically in the tunica media, in response to injurious stimuli such as 

vessel trauma, oxidative stress and inflammation. It results in altered cellular 

populations in the vessel wall and an increase in extracellular matrix (ECM) deposition. 

The characteristics of the blood vessel are also altered in terms of elasticity, effective 

diameter and responsiveness to rheological stimuli. It is typically affected by the 

VSMCs, with input coming from the local endothelial cells and circulating compounds 

with Angiotensin II being a particularly potent stimulus.  

 

VSMCs are not terminally differentiated and retain a plasticity that allows them to 

change from a contractile phenotype, typified by the expression of α-smooth muscle 

actin (α-SMC) and smooth muscle myosin heavy chain (SM-MHC) among other 

specialised contractile proteins, to a secretory phenotype when needed. VSMCs are 
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maintained in a healthy contractile phenotype by the interaction of serum response 

factor (SRF) and its myocardin cofactor with CArG boxes on promoters for the 

contractile genes. The VSMCs are also maintained in a differentiated state through 

Notch-dependent signals from the nearby endothelial cells. Additionally, microRNAs 

have also been noted to regulate VSMC phenotype with miR-143/145 being the most 

important via its downregulation of KLF4 and upregulation of myocardin activity 

through repression of Elk-1. 

 

VSMCs respond to stress by dedifferentiating into secretory cells, thereby losing their 

contractile elements. The cells become larger and produce ECM consisting of collagen 

and fibronectin. They also release matrix metalloproteinases to allow for their 

migration further into the media and even to the sub-intimal space. This leads to 

vascular remodelling with medial hypertrophy and hyalinisation. Such vessels lose their 

ability to adequately vasodilate in response to stimuli and also develop smaller calibre 

lumina. Angiotensin II binds to AT1 receptors and stimulates VSMC growth and ECM 

production via ROS signalling pathways438. As stated above, IL-6 and CRP increase 

VSMC AT1 receptor expression, sensitising them to circulating Angiotensin and 

potentiating its effect on the VSMC phenotype. Predictably, angiotensin receptor 

blockers have been shown to reverse vascular medial hypertrophy when given to 

diabetic patients. 

 

VSMCs may not the only source of activated mesenchymal cells in the vessel walls. 

Endothelial cells may similarly renege on their dedicated endothelial commitment and 

instead lose cell-cell adhesion and migrate into the media, acquiring a smooth muscle-

like phenotype in a process termed Endothelial-Mesenchyme Transition (EndMT). This 

process also leads to vascular remodelling and is promoted by IFNγ activity through 

upregulation of Endothelin-1 and TGFβ439. Interestingly, reduced miR-200 (as was seen 

in our NGS analysis) has been implicated in the initiation of EndMT. 
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We contend that the main structural pathophysiological change responsible for Cardiac 

Syndrome X is microvascular remodelling brought about as a result of VSMC plasticity 

and possible EndMT. Reduced miR-143 leads to derepression of Angiotensin Converting 

Enzyme (with consequent Angiotensin II upregulation) and Kruppel-Like Factor 4, both 

of which are potent stimuli for VSMC phenotype switching. It also leads to increased 

levels of Elk-1, which competes with SRF to bind with myocardin, thereby inhibiting the 

VSMC stimulus to remain differentiated in its contractile state. As a result of all this, 

VSMCs in the microvasculature of CSX patients may de-differentiate into a more 

secretory state typified by their proliferation, migration and production of extracellular 

matrix (ECM), a process also stimulated by IFNγ. This is also fuelled by increased 

Angiotensin-II signalling through the upregulation of AT1 receptors. This results in 

medial hypertrophy with narrowing of the vessel lumen and a resultant reduction in 

coronary flow reserve and increased vessel stiffness. Coronary microvascular 

dysfunction in diabetes mellitus is characterised by VSMC switching and 

arteriolosclerosis/microvascular remodelling and a similar process may occur in CSX.  

 

There is histological evidence to substantiate this theory. Most importantly, 

microvessels in CSX patients demonstrate obvious subendothelial hyalinisation, 

perivascular fibrosis, myointimal proliferation and medial hypertrophy. There is also 

evidence of dermal capillary rarefaction in CSX, which may imply vessel destruction or 

functional rarefaction through remodelling440,441. Additionally, the functional 

impairment resulting from this remodelling can also be noted by the observation of 

increased arterial stiffness and reduced carotid artery distensibility in CSX patients171. 

Importantly, EndMT and VSMC phenotype switching are dynamic and reversible 

processes. It is, therefore, essential to aggressively treat CSX patients with ACE 

inhibitors or angiotensin receptor blockers and statins to maintain the VSMCs in a 

differentiated, contractile phenotype. 
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8.5 Limitations 

The limitations specific to each chapter are expressed in their respective chapters but 

we recount the main limitations here. The overriding limitation is that our study 

population numbers were relatively low and this had a persistent effect throughout the 

entire study in terms of statistical power. As explained in chapter 2, this scenario was 

inevitable given the circumstances of the low incidence in Ireland, the lengthy follow-

up period required and the limited time available to this investigator. Part of the 

problem was the long list of exclusion criteria and exacting standards for diagnosis, 

which limited the study population. There was certainly a trade-off to be made 

between diagnostic integrity and external validity but this was an essential 

compromise, however, as we enrolled a homogenous representative population with a 

robust and reproducible diagnosis that could be reliably made in most clinical settings 

worldwide. Despite this limitation we did detect many significant differences in our 

cohort but a larger sample size would possibly have been of benefit in the analyses 

with a borderline p-value and in investigating correlations between biomarkers and 

clinical parameters. Similarly, the lack of follow-up data for our healthy controls limited 

the statistical tests we could use in the analysis of data from CSX follow-up visits. 

 

A further limitation, in retrospect, was the failure to obtain a thorough psychiatric 

history, perhaps using the Structured Clinical Interview for DSM disorders (SCID) as this 

would have informed our discussion on the psychological impact of CSX more clearly. 

Similarly, all of our patients had their ischaemia diagnosed by a single modality (namely 

the EST). It might have been useful to include patients with positive stress perfusion 

imaging (ECHO, SPECT, CMR or PET) but our recruitment policy merely reflects the 

current diagnostic paradigm used in the Cork cardiology departments. Finally, it is a 

pity that we did not concomitantly recruit patients with atypical chest pain, positive 

EST and angiographically normal arteries as this would have answered the question of 

the relevance of the type of chest pain experienced in CSX, which remains a mystery. 
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8.6 Recommended Areas of Interest for Future Research 

Although we have made several important steps in furthering the understanding of 

coronary microvascular disease in general and CSX in particular, research efforts in this 

area have been hampered by the lack of specific animal models of the condition. This is 

compounded by the fact that research into the coronary circulation is restricted to 

functional assessment rather than anatomic. Many questions have been generated 

from this thesis and several warrant further investigation, not least because behind all 

of this research is a large body of patients with intractable symptoms who require new 

and effective therapies. 

 

Firstly, we should establish the external validity of these findings. Our diagnosis of CSX 

is highly specific and the question of whether these findings can be replicated in similar 

populations is important. The state of the art in CSX is advancing rapidly and soon non-

invasive estimation of coronary flow reserve and microvascular function will be more 

reliable and accurate thus enabling the clinical diagnosis of microvascular angina to be 

made safely. At present, invasive assessment of CFR is the gold-standard but carries 

several procedural risks and has only a IIb recommendation in the latest ESC guidelines, 

indicating that it may be considered in special cases. It will be necessary to 

demonstrate that inflammation is a cornerstone of disease activity in that population 

too. Furthermore, the generalisability of our findings to patients with possible CSX but 

with atypical chest pain is also uncertain and could be confirmed easily. 

 

In terms of further assessing the nature of LGI in CSX, especially given that the 

neutrophil: lymphocyte ratio is elevated, one could employ flow cytometry to assess 

the neutrophilic functional responses in CSX. Specifically, it would be interesting to 

determine if the neutrophils of CSX patients are primed. It is likely that this will be the 

case given the elevation of IL-6 and TNFα in our population. Primed neutrophils change 

shape and become stiffer due to actin cytoskeletal rearrangement. This and other 
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markers of neutrophil priming such as NADPH oxidase activity and CD-11b expression 

can be assessed by flow cytometry and ancillary procedures442,443. Primed neutrophils 

can be a potent source of oxidative stress and vascular damage. The other cells of 

interest would be the cells of the monocyte-macrophage population. Many of the 

cytokines we see in CSX are released by the M1 subtype macrophages. Unfortunately, 

we would need tissue to allow flow cytometric analysis of macrophage subtype. It 

might be feasible, however, to examine the peripheral monocytes to assess the various 

subset populations. The Intermediate monocytes sub-population is pro-inflammatory 

and has high CD14, CD16, CD64 and CX3CR1 expression. Over-representation of this 

monocyte subset would be an important finding in a CSX population.  

 

The stimulus for LGI in CSX is of critical importance. As noted in 8.3.3, there are many 

potential sources for this chronic inflammation. Given that perceived stress was 

elevated in our CSX population and sympathetic nervous system dysregulation is seen 

in many CSX patients, the evaluation of the Hypothalamic-Pituitary-Adrenal (HPA) axis 

in CSX patients might yield some valuable information. The cortisol awakening 

response using salivary cortisol assessment is a well validated tool for the assessment 

of HPA-axis functioning in CSX. Of course, chronic inflammation may also lead to HPA 

dysfunction. Patients should be evaluated for early life stressors as a potential trigger 

for lifelong immune dysregulation. 

 

The gastrointestinal tract as a potential source of low-grade endotoxaemia would also 

be an attractive area of research in CSX. Furthermore, the microbiome also appears to 

play a role in visceral pain hypersensitivity. The composition of the microbiome in CSX 

patients could be assessed using high throughput sequencing techniques in an effort to 

identify dysbiosis as this has been associated with LGI444. Plasma lipopolysaccharide 

levels could also be interrogated alongside the assessment of intestinal permeability 

(which is known to be impaired in stress) to support the notion of translocation of 
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gram-negative bacteria and low-grade endotoxaemia being the cause of the LGI in 

CSX445. Assessment of Peripheral Blood Mononuclear cells (PBMCs) sensitivity to Toll-

like Receptor 4 (TLR4) stimulation would also help to interrogate this hypothesis.  

 

Lifestyle patterns should be assessed in patients using simple questionnaires and 

diaries to assess exercise volume and sleep quantity. The role of diet in CSX could be 

further clarified using red blood corpuscle membrane fatty acid analysis rather than 

plasma analysis as the former reflects longer term dietary fatty acid intake. A more 

detailed dietary questionnaire could be administered and special attention should be 

paid to the assessment of choline intake, given the recent findings that trimethylamine 

N-oxide (TMAO), a choline metabolite, can affect macrophage function in the 

vasculature409.  

 

New treatment avenues could also be explored. Given the reported success of Vitamin 

D supplementation in CSX, a simple study of blood vitamin D levels could provide the 

rationale for vitamin D supplementation in these patients. Similarly, the role for 

omega-3 supplements could be solidified if changes in EPA:AA could be demonstrated 

to correlate with improved functional and clinical measures. Research into other 

potential, albeit potentially harmful, therapies in CSX could include methotrexate and 

tocilizumab to downregulate IL-6 and CRP and hopefully alleviate symptoms.   

 

The further interrogation of the VSMC phenotype switching and endothelial-

mesenchyme transition hypotheses is the most compelling area of interest for me 

personally going forward. Unfortunately, these hypotheses may prove difficult to 

confirm as we have no viable animal model of the condition. Transcatheter myocardial 

biopsies typically only provide ≈2mm of vessels, which tend not to be the resistance 

microvessels and appear only in patches within the biopsy446. It is possible to look at 
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tissue removed during cardiac surgery (such as the left atrial appendage taken during 

coronary artery bypass) but these procedures will obviously not be done in CSX 

patients as they have otherwise healthy hearts. Another possible approach would be to 

examine the myocardin mRNA in circulating PBMCs to assess expression of this pro-

contractile VSCM transcription factor447. Finally, a re-evaluation of miR-10b, miR-199b, 

miR-200a and miR-200b in a larger cohort of CSX patients is indicated to attempt to 

validate our NGS results. Given what we know so far of the vascular biology in CSX, 

there is a logical role for these miRNAs in CSX pathogenesis.  

 

8.7 Conclusions 

We set out to thoroughly investigate the immune phenotype in CSX patients and to 

monitor its changes over time. As well as confirming the chronic nature of 

inflammation in CSX in the form of elevated TNFα and IFNγ, we have narrowed the 

focus down to the IL-6/CRP axis as a potential mediator of acute vascular dysfunction 

and symptoms in patients as it was levels of these biomarkers that altered along with 

changes in symptoms and signs of disease activity. Indeed, we have demonstrated that 

hsCRP may be employed as a biomarker to facilitate the diagnosis and prognosis 

assessment in CSX patients. Unfortunately, we have not been able to adequately 

determine the exact stimulus for this chronic LGI but we have suggested several 

avenues of enquiry that could be pursued. The concept of VSMCs leading to 

microvascular remodelling and dysfunction in CSX is a compelling one that warrants 

further consideration. 

 

Finally, CSX appears to be an importunate condition that impacts on patients’ day-to-

day life and predisposes patients to psychopathology, being associated with increased 

life stress and reduced quality of life. A positive EST is an essential component of its 

diagnostic work-up and unfortunately this condition has been heretofore 

underdiagnosed in Ireland, thereby depriving these patients of suitable therapy.  



347 
 

Bibliography 

1. Lanza GA. Cardiac syndrome X: a critical overview and future perspectives. Heart 
2007;93:159-66. 
2. Dollard J, Kearney P, Clarke G, Moloney G, Cryan JF, Dinan TG. A prospective study of C-
reactive protein as a state marker in Cardiac Syndrome X. Brain, behavior, and immunity 2014. 
3. Lamendola P, Lanza GA, Spinelli A, et al. Long-term prognosis of patients with cardiac 
syndrome X. International journal of cardiology 2010;140:197-9. 
4. Cannon RO, 3rd. The sensitive heart. A syndrome of abnormal cardiac pain perception. 
JAMA : the journal of the American Medical Association 1995;273:883-7. 
5. Zouridakis EG, Cox ID, Garcia-Moll X, Brown S, Nihoyannopoulos P, Kaski JC. Negative 
stress echocardiographic responses in normotensive and hypertensive patients with angina 
pectoris, positive exercise stress testing, and normal coronary arteriograms. Heart 
2000;83:141-6. 
6. Nihoyannopoulos P, Kaski JC, Crake T, Maseri A. Absence of myocardial dysfunction 
during stress in patients with syndrome X. Journal of the American College of Cardiology 
1991;18:1463-70. 
7. Buffon A, Rigattieri S, Santini SA, et al. Myocardial ischemia-reperfusion damage after 
pacing-induced tachycardia in patients with cardiac syndrome X. American journal of 
physiology Heart and circulatory physiology 2000;279:H2627-33. 
8. Rosano GM, Kaski JC, Arie S, et al. Failure to demonstrate myocardial ischaemia in 
patients with angina and normal coronary arteries. Evaluation by continuous coronary sinus pH 
monitoring and lactate metabolism. European heart journal 1996;17:1175-80. 
9. Cadeddu C, Nocco S, Deidda M, Pau F, Colonna P, Mercuro G. Altered transmural 
contractility in postmenopausal women affected by cardiac syndrome X. Journal of the 
American Society of Echocardiography : official publication of the American Society of 
Echocardiography 2014;27:208-14. 
10. Panting JR, Gatehouse PD, Yang GZ, et al. Abnormal subendocardial perfusion in 
cardiac syndrome X detected by cardiovascular magnetic resonance imaging. The New England 
journal of medicine 2002;346:1948-53. 
11. Vermeltfoort IA, Bondarenko O, Raijmakers PG, et al. Is subendocardial ischaemia 
present in patients with chest pain and normal coronary angiograms? A cardiovascular MR 
study. European heart journal 2007;28:1554-8. 
12. Graf S, Khorsand A, Gwechenberger M, et al. Myocardial perfusion in patients with 
typical chest pain and normal angiogram. European journal of clinical investigation 
2006;36:326-32. 
13. Duvernoy CS. Evolving strategies for the treatment of microvascular angina in women. 
Expert review of cardiovascular therapy 2012;10:1413-9. 
14. Lanza GA, Crea F. Primary coronary microvascular dysfunction: clinical presentation, 
pathophysiology, and management. Circulation 2010;121:2317-25. 
15. Heberdon W. Some Account of a disorder of the breast. Medical Transactions 
1772;2:59-67. 
16. Diamond GA. A clinically relevant classification of chest discomfort. Journal of the 
American College of Cardiology 1983;1:574-5. 
17. Kaski JC, Rosano GM, Collins P, Nihoyannopoulos P, Maseri A, Poole-Wilson PA. Cardiac 
syndrome X: clinical characteristics and left ventricular function. Long-term follow-up study. 
Journal of the American College of Cardiology 1995;25:807-14. 



348 
 

18. Di Franco A, Lanza GA, Di Monaco A, et al. Coronary microvascular function and cortical 
pain processing in patients with silent positive exercise testing and normal coronary arteries. 
The American journal of cardiology 2012;109:1705-10. 
19. Phan A, Shufelt C, Merz CN. Persistent chest pain and no obstructive coronary artery 
disease. JAMA : the journal of the American Medical Association 2009;301:1468-74. 
20. Lekakis JP, Papamichael CM, Vemmos CN, Voutsas AA, Stamatelopoulos SF, 
Moulopoulos SD. Peripheral vascular endothelial dysfunction in patients with angina pectoris 
and normal coronary arteriograms. Journal of the American College of Cardiology 1998;31:541-
6. 
21. Sestito A, Lanza GA, Di Monaco A, et al. Relation between cardiovascular risk factors 
and coronary microvascular dysfunction in cardiac syndrome X. Journal of cardiovascular 
medicine (Hagerstown, Md) 2011;12:322-7. 
22. Shufelt CL, Thomson LE, Goykhman P, et al. Cardiac magnetic resonance imaging 
myocardial perfusion reserve index assessment in women with microvascular coronary 
dysfunction and reference controls. Cardiovascular diagnosis and therapy 2013;3:153-60. 
23. Radico F, Cicchitti V, Zimarino M, De Caterina R. Angina Pectoris and Myocardial 
Ischemia in the Absence of Obstructive Coronary Artery Disease: Practical Considerations for 
Diagnostic Tests. JACC Cardiovascular interventions 2014;7:453-63. 
24. Kurita T, Sakuma H, Onishi K, et al. Regional myocardial perfusion reserve determined 
using myocardial perfusion magnetic resonance imaging showed a direct correlation with 
coronary flow velocity reserve by Doppler flow wire. European heart journal 2009;30:444-52. 
25. Lanza GA, Buffon A, Sestito A, et al. Relation between stress-induced myocardial 
perfusion defects on cardiovascular magnetic resonance and coronary microvascular 
dysfunction in patients with cardiac syndrome X. Journal of the American College of Cardiology 
2008;51:466-72. 
26. Spertus JA, Winder JA, Dewhurst TA, et al. Development and evaluation of the Seattle 
Angina Questionnaire: a new functional status measure for coronary artery disease. Journal of 
the American College of Cardiology 1995;25:333-41. 
27. Cosin-Sales J, Pizzi C, Brown S, Kaski JC. C-reactive protein, clinical presentation, and 
ischemic activity in patients with chest pain and normal coronary angiograms. Journal of the 
American College of Cardiology 2003;41:1468-74. 
28. Huang SS, Huang PH, Leu HB, Wu TC, Lin SJ, Chen JW. Serum bilirubin predicts long-
term clinical outcomes in patients with cardiac syndrome X. Heart 2010;96:1227-32. 
29. Vermeltfoort IA, Raijmakers PG, Riphagen, II, et al. Definitions and incidence of cardiac 
syndrome X: review and analysis of clinical data. Clinical research in cardiology : official journal 
of the German Cardiac Society 2010;99:475-81. 
30. Ezhumalai B, Ananthakrishnapillai A, Selvaraj RJ, Satheesh S, Jayaraman B. Cardiac 
syndrome X: Clinical characteristics revisited. Indian heart journal 2015;67:328-31. 
31. Lewis T. Pain in muscular ischemia: Its relation to anginal pain. Archives of internal 
medicine 1932;49:713-27. 
32. Meller ST, Gebhart GF. A critical review of the afferent pathways and the potential 
chemical mediators involved in cardiac pain. Neuroscience 1992;48:501-24. 
33. Camici PG, Pagani M. Cardiac nociception. Circulation 2006;114:2309-12. 
34. Rosen SD, Paulesu E, Wise RJ, Camici PG. Central neural contribution to the perception 
of chest pain in cardiac syndrome X. Heart 2002;87:513-9. 
35. Picano E. The alternative "ischemic" cascade in coronary microvascular disease. 
Cardiologia (Rome, Italy) 1999;44:791-5. 



349 
 

36. Yilmaz A, Athanasiadis A, Mahrholdt H, et al. Diagnostic value of perfusion 
cardiovascular magnetic resonance in patients with angina pectoris but normal coronary 
angiograms assessed by intracoronary acetylcholine testing. Heart 2010;96:372-9. 
37. de Vries J, DeJongste MJ, Jessurun GA, Jager PL, Staal MJ, Slart RH. Myocardial 
perfusion quantification in patients suspected of cardiac syndrome X with positive and negative 
exercise testing: a [13N]ammonia positron emission tomography study. Nuclear medicine 
communications 2006;27:791-4. 
38. Tweddel AC, Martin W, Hutton I. Thallium scans in syndrome X. Br Heart J 1992;68:48-
50. 
39. Kao CH, Wang SJ, Ting CT, Chen YT. Tc-99m sestamibi myocardial SPECT in syndrome X. 
Clinical nuclear medicine 1996;21:280-3. 
40. Galiuto L, Sestito A, Barchetta S, et al. Noninvasive evaluation of flow reserve in the left 
anterior descending coronary artery in patients with cardiac syndrome X. The American journal 
of cardiology 2007;99:1378-83. 
41. Rinkevich D, Belcik T, Gupta NC, Cannard E, Alkayed NJ, Kaul S. Coronary 
autoregulation is abnormal in syndrome X: insights using myocardial contrast 
echocardiography. Journal of the American Society of Echocardiography : official publication of 
the American Society of Echocardiography 2013;26:290-6. 
42. Atmaca Y, Ozdemir AO, Ozdol C, et al. Angiographic evaluation of myocardial perfusion 
in patients with syndrome X. The American journal of cardiology 2005;96:803-5. 
43. Arbogast R, Bourassa MG. Myocardial function during atrial pacing in patients with 
angina pectoris and normal coronary arteriograms. Comparison with patients having significant 
coronary artery disease. The American journal of cardiology 1973;32:257-63. 
44. Crake T, Canepa-Anson R, Shapiro L, Poole-Wilson PA. Continuous recording of 
coronary sinus oxygen saturation during atrial pacing in patients with coronary artery disease 
or with syndrome X. Br Heart J 1988;59:31-8. 
45. Buchthal SD, den Hollander JA, Merz CN, et al. Abnormal myocardial phosphorus-31 
nuclear magnetic resonance spectroscopy in women with chest pain but normal coronary 
angiograms. The New England journal of medicine 2000;342:829-35. 
46. Yagmur J, Acikgoz N, Cansel M, Ermis N, Karakus Y, Kurtoglu E. Assessment of the left 
ventricular systolic function in cardiac syndrome X using speckle tracking echocardiography. 
Anatolian journal of cardiology 2015. 
47. Anselmi M, Golia G, Marino P, et al. Comparison of left ventricular function and 
volumes during transesophageal atrial pacing combined with two-dimensional 
echocardiography in patients with syndrome X, atherosclerotic coronary artery disease, and 
normal subjects. The American journal of cardiology 1997;80:1261-5. 
48. Panza JA, Laurienzo JM, Curiel RV, et al. Investigation of the mechanism of chest pain in 
patients with angiographically normal coronary arteries using transesophageal dobutamine 
stress echocardiography. Journal of the American College of Cardiology 1997;29:293-301. 
49. Maseri A, Crea F, Kaski JC, Crake T. Mechanisms of angina pectoris in syndrome X. 
Journal of the American College of Cardiology 1991;17:499-506. 
50. Lanza GA, Stazi F, Colonna G, et al. Circadian variation of ischemic threshold in 
syndrome X. The American journal of cardiology 1995;75:683-6. 
51. Lanza GA, Manzoli A, Pasceri V, et al. Ischemic-like ST-segment changes during Holter 
monitoring in patients with angina pectoris and normal coronary arteries but negative exercise 
testing. The American journal of cardiology 1997;79:1-6. 



350 
 

52. Lanza GA, Sestito A, Sgueglia GA, et al. Effect of spinal cord stimulation on spontaneous 
and stress-induced angina and 'ischemia-like' ST-segment depression in patients with cardiac 
syndrome X. European heart journal 2005;26:983-9. 
53. Calabro P, Willerson JT, Yeh ET. Inflammatory cytokines stimulated C-reactive protein 
production by human coronary artery smooth muscle cells. Circulation 2003;108:1930-2. 
54. De Rosa S, Cirillo P, Pacileo M, Di Palma V, Paglia A, Chiariello M. Leptin stimulated C-
reactive protein production by human coronary artery endothelial cells. Journal of vascular 
research 2009;46:609-17. 
55. Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circulation 
research 2005;97:512-23. 
56. Wang Y, Dimitrakopoulos P. Normal Force Exerted on Vascular Endothelial Cells. 
Physical Review Letters 2006;96:028106. 
57. Lipowsky HH, Kovalcheck S, Zweifach BW. The distribution of blood rheological 
parameters in the microvasculature of cat mesentery. Circulation research 1978;43:738-49. 
58. Anderson TJ, Uehata A, Gerhard MD, et al. Close relation of endothelial function in the 
human coronary and peripheral circulations. Journal of the American College of Cardiology 
1995;26:1235-41. 
59. Tousoulis D, Davies GJ, Asimakopoulos G, et al. Vascular cell adhesion molecule-1 and 
intercellular adhesion molecule-1 serum level in patients with chest pain and normal coronary 
arteries (syndrome X). Clinical cardiology 2001;24:301-4. 
60. Senen K, Ileri M, Alper A, et al. Increased levels of soluble adhesion molecules E-
selectin and P-selectin in patients with cardiac syndrome X. Angiology 2005;56:273-7. 
61. Piatti P, Fragasso G, Monti LD, et al. Acute intravenous L-arginine infusion decreases 
endothelin-1 levels and improves endothelial function in patients with angina pectoris and 
normal coronary arteriograms: correlation with asymmetric dimethylarginine levels. Circulation 
2003;107:429-36. 
62. Lanza GA, Sestito A, Cammarota G, et al. Assessment of systemic inflammation and 
infective pathogen burden in patients with cardiac syndrome X. The American journal of 
cardiology 2004;94:40-4. 
63. Rasmi Y, Raeisi S, Seyyed Mohammadzad MH. Association of inflammation and 
cytotoxin-associated gene a positive strains of helicobacter pylori in cardiac syndrome x. 
Helicobacter 2012;17:116-20. 
64. Tondi P, Santoliquido A, Di Giorgio A, et al. Endothelial dysfunction as assessed by flow-
mediated dilation in patients with cardiac syndrome X: role of inflammation. European review 
for medical and pharmacological sciences 2011;15:1074-7. 
65. Bund SJ, Tweddel A, Hutton I, Heagerty AM. Small artery structural alterations of 
patients with microvascular angina (syndrome X). Clinical science (London, England : 1979) 
1996;91:739-43. 
66. Osamichi S, Kouji K, Yoshimaro I, et al. Myocardial glucose metabolism assessed by 
positron emission tomography and the histopathologic findings of microvessels in syndrome X. 
Circulation journal : official journal of the Japanese Circulation Society 2004;68:220-6. 
67. Zorc-Pleskovic R, Vraspir-Porenta O, Zorc M, Milutinovic A, Petrovic D. Inflammatory 
changes in small blood vessels in the endomyocardium of cardiac syndrome X in female 
patients with increased C-reactive protein. Folia biologica 2008;54:30-2. 
68. Mizia-Stec K, Haberka M, Mizia M, et al. Coronary artery calcium score assessed by a 64 
multislice computed tomography and early indexes of functional and structural vascular 
remodeling in cardiac syndrome X patients. Journal of nuclear cardiology : official publication 
of the American Society of Nuclear Cardiology 2008;15:655-62. 



351 
 

69. Vasile E, Tomita Y, Brown LF, Kocher O, Dvorak HF. Differential expression of thymosin 
beta-10 by early passage and senescent vascular endothelium is modulated by VPF/VEGF: 
evidence for senescent endothelial cells in vivo at sites of atherosclerosis. FASEB journal : 
official publication of the Federation of American Societies for Experimental Biology 
2001;15:458-66. 
70. Ogami M, Ikura Y, Ohsawa M, et al. Telomere shortening in human coronary artery 
diseases. Arteriosclerosis, thrombosis, and vascular biology 2004;24:546-50. 
71. Minamino T, Komuro I. Vascular cell senescence: contribution to atherosclerosis. 
Circulation research 2007;100:15-26. 
72. Miyauchi H, Minamino T, Tateno K, Kunieda T, Toko H, Komuro I. Akt negatively 
regulates the in vitro lifespan of human endothelial cells via a p53/p21-dependent pathway. 
The EMBO journal 2004;23:212-20. 
73. Okuda K, Khan MY, Skurnick J, Kimura M, Aviv H, Aviv A. Telomere attrition of the 
human abdominal aorta: relationships with age and atherosclerosis. Atherosclerosis 
2000;152:391-8. 
74. Vasa M, Breitschopf K, Zeiher AM, Dimmeler S. Nitric oxide activates telomerase and 
delays endothelial cell senescence. Circulation research 2000;87:540-2. 
75. Wagner M, Hampel B, Bernhard D, Hala M, Zwerschke W, Jansen-Durr P. Replicative 
senescence of human endothelial cells in vitro involves G1 arrest, polyploidization and 
senescence-associated apoptosis. Experimental gerontology 2001;36:1327-47. 
76. Barbato E. Role of adrenergic receptors in human coronary vasomotion. Heart 
2009;95:603-8. 
77. Rosen SD, Dritsas A, Bourdillon PJ, Camici PG. Analysis of the electrocardiographic QT 
interval in patients with syndrome X. The American journal of cardiology 1994;73:971-2. 
78. Leonardo F, Fragasso G, Rosano GM, Pagnotta P, Chierchia SL. Effect of atenolol on QT 
interval and dispersion in patients with syndrome X. The American journal of cardiology 
1997;80:789-90. 
79. Kaski JC, Crea F, Nihoyannopoulos P, Hackett D, Maseri A. Transient myocardial 
ischemia during daily life in patients with syndrome X. The American journal of cardiology 
1986;58:1242-7. 
80. Rosano GM, Ponikowski P, Adamopoulos S, et al. Abnormal autonomic control of the 
cardiovascular system in syndrome X. The American journal of cardiology 1994;73:1174-9. 
81. Lanza GA, Giordano A, Pristipino C, et al. Abnormal cardiac adrenergic nerve function in 
patients with syndrome X detected by [123I]metaiodobenzylguanidine myocardial scintigraphy. 
Circulation 1997;96:821-6. 
82. Camici PG, Marraccini P, Gistri R, Salvadori PA, Sorace O, L'Abbate A. Adrenergically 
mediated coronary vasoconstriction in patients with syndrome X. Cardiovascular drugs and 
therapy / sponsored by the International Society of Cardiovascular Pharmacotherapy 
1994;8:221-6. 
83. Botker HE, Sonne HS, Schmitz O, Nielsen TT. Effects of doxazosin on exercise-induced 
angina pectoris, ST-segment depression, and insulin sensitivity in patients with syndrome X. 
The American journal of cardiology 1998;82:1352-6. 
84. Cox ID, Hann CM, Kaski JC. Low dose imipramine improves chest pain but not quality of 
life in patients with angina and normal coronary angiograms. European heart journal 
1998;19:250-4. 
85. Shapiro LM, Crake T, Poole-Wilson PA. Is altered cardiac sensation responsible for chest 
pain in patients with normal coronary arteries? Clinical observation during cardiac 
catheterisation. British medical journal (Clinical research ed) 1988;296:170-1. 



352 
 

86. Chauhan A, Mullins PA, Thuraisingham SI, Taylor G, Petch MC, Schofield PM. Abnormal 
cardiac pain perception in syndrome X. Journal of the American College of Cardiology 
1994;24:329-35. 
87. Pasceri V, Lanza GA, Buffon A, Montenero AS, Crea F, Maseri A. Role of abnormal pain 
sensitivity and behavioral factors in determining chest pain in syndrome X. Journal of the 
American College of Cardiology 1998;31:62-6. 
88. Turiel M, Galassi AR, Glazier JJ, Kaski JC, Maseri A. Pain threshold and tolerance in 
women with syndrome X and women with stable angina pectoris. The American journal of 
cardiology 1987;60:503-7. 
89. Valeriani M, Sestito A, Pera DL, et al. Abnormal cortical pain processing in patients with 
cardiac syndrome X. European heart journal 2005;26:975-82. 
90. Sestito A, Lanza GA, Le Pera D, et al. Spinal cord stimulation normalizes abnormal 
cortical pain processing in patients with cardiac syndrome X. Pain 2008;139:82-9. 
91. Piche M, Chen JI, Roy M, Poitras P, Bouin M, Rainville P. Thicker posterior insula is 
associated with disease duration in women with irritable bowel syndrome (IBS) whereas 
thicker orbitofrontal cortex predicts reduced pain inhibition in both IBS patients and controls. 
The journal of pain : official journal of the American Pain Society 2013;14:1217-26. 
92. Asbury EA, Creed F, Collins P. Distinct psychosocial differences between women with 
coronary heart disease and cardiac syndrome X. European heart journal 2004;25:1695-701. 
93. Corlando A, Marraccini P, Gistri R, Lorenzoni R, Camici P. [Psychological and social 
aspects in women with syndrome X]. Giornale italiano di cardiologia 1991;21:705-12. 
94. Ruggeri A, Taruschio G, Loricchio ML, Samory G, Borghi A, Bugiardini R. [The correlation 
between the clinical characteristics and psychological status in syndrome X patients]. 
Cardiologia (Rome, Italy) 1996;41:551-7. 
95. Cornwall A, Donderi DC. The effect of experimentally induced anxiety on the 
experience of pressure pain. Pain 1988;35:105-13. 
96. Kemp HG, Jr. Left ventricular function in patients with the anginal syndrome and 
normal coronary arteriograms. The American journal of cardiology 1973;32:375-6. 
97. Kemp HG, Jr., Vokonas PS, Cohn PF, Gorlin R. The anginal syndrome associated with 
normal coronary arteriograms. Report of a six year experience. The American journal of 
medicine 1973;54:735-42. 
98. Lichtlen PR, Bargheer K, Wenzlaff P. Long-term prognosis of patients with anginalike 
chest pain and normal coronary angiographic findings. Journal of the American College of 
Cardiology 1995;25:1013-8. 
99. Cannon RO, 3rd, Epstein SE. "Microvascular angina" as a cause of chest pain with 
angiographically normal coronary arteries. The American journal of cardiology 1988;61:1338-
43. 
100. Graf S, Khorsand A, Gwechenberger M, et al. Typical chest pain and normal coronary 
angiogram: cardiac risk factor analysis versus PET for detection of microvascular disease. 
Journal of nuclear medicine : official publication, Society of Nuclear Medicine 2007;48:175-81. 
101. Chauhan A, Mullins AM, Thuraisingham SI, Petch MC, Schofield PM. Clinical 
presentation and functional prognosis in syndrome X. British Heart Journal 1993:346-51. 
102. Gulati M, Cooper-DeHoff RM, McClure C, et al. Adverse cardiovascular outcomes in 
women with nonobstructive coronary artery disease: a report from the Women's Ischemia 
Syndrome Evaluation Study and the St James Women Take Heart Project. Archives of internal 
medicine 2009;169:843-50. 



353 
 

103. Tritto I, Lanza GA, Kaski JC, et al. Long term prognosis of patients with cardiac 
syndrome X: data from the Italian Registry of Syndrome X (RISX).  European Society of 
Cardiology Congress; . Barcelona, Spain. 
104. Bugiardini R, Manfrini O, Pizzi C, Fontana F, Morgagni G. Endothelial function predicts 
future development of coronary artery disease: a study of women with chest pain and normal 
coronary angiograms. Circulation 2004;109:2518-23. 
105. Di Monaco A, Lanza GA, Bruno I, et al. Usefulness of impairment of cardiac adrenergic 
nerve function to predict outcome in patients with cardiac syndrome X. The American journal 
of cardiology 2010;106:1813-8. 
106. Radice M, Giudici V, Marinelli G. Long-term follow-up in patients with positive exercise 
test and angiographically normal coronary arteries (syndrome X). The American journal of 
cardiology 1995;75:620-1. 
107. Shintani S, Nishiyama Y, Yamamoto K, Koga Y. Different long-term course between 
chest pain and exercise-induced ST depression in syndrome X. Japanese heart journal 
2003;44:471-9. 
108. Sun SS, Huang JL, Tsai SC, Ho YJ, Kao CH. The higher likelihood of developing 
cardiomegaly during follow-up in patients with syndrome X and abnormal thallium-201 
myocardial perfusion SPECT. The international journal of cardiovascular imaging 2001;17:271-
8. 
109. Delcour KS, Khaja A, Chockalingam A, Kuppuswamy S, Dresser T. Outcomes in patients 
with abnormal myocardial perfusion imaging and normal coronary angiogram. Angiology 
2009;60:318-21. 
110. Leu HB, Lin CP, Lin WT, Wu TC, Lin SJ, Chen JW. Circulating mononuclear superoxide 
production and inflammatory markers for long-term prognosis in patients with cardiac 
syndrome X. Free radical biology & medicine 2006;40:983-91. 
111. Sgueglia GA, Sestito A, Spinelli A, et al. Long-term follow-up of patients with cardiac 
syndrome X treated by spinal cord stimulation. Heart 2007;93:591-7. 
112. Bemiller CR, Pepine CJ, Rogers AK. Long-Term Observations in Patients with Angina and 
Normal Coronary Arteriograms. Circulation 1973;47:36-43. 
113. Opherk D, Schuler G, Wetterauer K, Manthey J, Schwarz F, Kubler W. Four-year follow-
up study in patients with angina pectoris and normal coronary arteriograms ("syndrome X"). 
Circulation 1989;80:1610-6. 
114. Romeo F, Rosano GM, Martuscelli E, Lombardo L, Valente A. Long-term follow-up of 
patients initially diagnosed with syndrome X. The American journal of cardiology 1993;71:669-
73. 
115. Hamon M, Baron JC, Viader F, Hamon M. Periprocedural stroke and cardiac 
catheterization. Circulation 2008;118:678-83. 
116. Werner N, Zahn R, Zeymer U. Stroke in patients undergoing coronary angiography and 
percutaneous coronary intervention: incidence, predictors, outcome and therapeutic options. 
Expert review of cardiovascular therapy 2012;10:1297-305. 
117. Vermeltfoort IA, Teule GJ, van Dijk AB, Muntinga HJ, Raijmakers PG. Long-term 
prognosis of patients with cardiac syndrome X: a review. Netherlands heart journal : monthly 
journal of the Netherlands Society of Cardiology and the Netherlands Heart Foundation 
2012;20:365-71. 
118. Lanza GA, Colonna G, Pasceri V, Maseri A. Atenolol versus amlodipine versus 
isosorbide-5-mononitrate on anginal symptoms in syndrome X. The American journal of 
cardiology 1999;84:854-6, A8. 



354 
 

119. Fragasso G, Chierchia SL, Pizzetti G, et al. Impaired left ventricular filling dynamics in 
patients with angina and angiographically normal coronary arteries: effect of beta adrenergic 
blockade. Heart 1997;77:32-9. 
120. Cannon Iii RO, Watson RM, Rosing DR, Epstein SE. Efficacy of calcium channel blocker 
therapy for angina pectoris resulting from small-vessel coronary artery disease and abnormal 
vasodilator reserve. The American journal of cardiology 1985;56:242-6. 
121. Ozcelik F, Altun A, Ozbay G. Antianginal and anti-ischemic effects of nisoldipine and 
ramipril in patients with syndrome X. Clinical cardiology 1999;22:361-5. 
122. Tagliamonte E, Rigo F, Cirillo T, et al. Effects of ranolazine on noninvasive coronary flow 
reserve in patients with myocardial ischemia but without obstructive coronary artery disease. 
Echocardiography (Mount Kisco, NY) 2015;32:516-21. 
123. Mehta PK, Goykhman P, Thomson LE, et al. Ranolazine improves angina in women with 
evidence of myocardial ischemia but no obstructive coronary artery disease. JACC 
Cardiovascular imaging 2011;4:514-22. 
124. Bairey Merz CN, Handberg EM, Shufelt CL, et al. A randomized, placebo-controlled trial 
of late Na current inhibition (ranolazine) in coronary microvascular dysfunction (CMD): impact 
on angina and myocardial perfusion reserve. European heart journal 2015. 
125. Chen JW, Lee WL, Hsu NW, et al. Effects of short-term treatment of nicorandil on 
exercise-induced myocardial ischemia and abnormal cardiac autonomic activity in 
microvascular angina. The American journal of cardiology 1997;80:32-8. 
126. IvaVillano A, Di Franco A, Nerla R, et al. Effects of Ivabradine and Ranolazine in Patients 
With Microvascular Angina Pectoris. The American journal of cardiology 2013. 
127. Pizzi C, Manfrini O, Fontana F, Bugiardini R. Angiotensin-converting enzyme inhibitors 
and 3-hydroxy-3-methylglutaryl coenzyme A reductase in cardiac Syndrome X: role of 
superoxide dismutase activity. Circulation 2004;109:53-8. 
128. Kaski JC, Rosano G, Gavrielides S, Chen L. Effects of angiotensin-converting enzyme 
inhibition on exercise-induced angina and ST segment depression in patients with 
microvascular angina. Journal of the American College of Cardiology 1994;23:652-7. 
129. Russell SJ, Di Stefano EM, Naffati MT, Brown O, Saltissi S. The effects of the angiotensin 
II receptor (type I) antagonist irbesartan in patients with cardiac syndrome X. Heart 
2007;93:253-4. 
130. Fabian E, Varga A, Picano E, Vajo Z, Ronaszeki A, Csanady M. Effect of simvastatin on 
endothelial function in cardiac syndrome X patients. The American journal of cardiology 
2004;94:652-5. 
131. K Kayakiayikcioglu M, Payzin S, Yavuzgil O, Kultursay H, Can LH, Soydan I. Benefits of 
statin treatment in cardiac syndrome-X1. European heart journal 2003;24:1999-2005. 
132. Emdin M, Picano E, Lattanzi F, l'Abbate A. Improved exercise capacity with acute 
aminophylline administration in patients with syndrome X. Journal of the American College of 
Cardiology 1989;14:1450-3. 
133. Yoshio H, Shimizu M, Kita Y, et al. Effects of short-term aminophylline administration 
on cardiac functional reserve in patients with syndrome X. Journal of the American College of 
Cardiology 1995;25:1547-51. 
134. Radice M, Giudici V, Pusineri E, et al. Different effects of acute administration of 
aminophylline and nitroglycerin on exercise capacity in patients with syndrome X. The 
American journal of cardiology 1996;78:88-92. 
135. Asbury EA, Slattery C, Grant A, Evans L, Barbir M, Collins P. Cardiac rehabilitation for 
the treatment of women with chest pain and normal coronary arteries. Menopause (New York, 
NY) 2008;15:454-60. 



355 
 

136. Eriksson BE, Tyni-Lenne R, Svedenhag J, et al. Physical training in Syndrome X: physical 
training counteracts deconditioning and pain in Syndrome X. Journal of the American College of 
Cardiology 2000;36:1619-25. 
137. Tyni-Lenne R, Stryjan S, Eriksson B, Berglund M, Sylven C. Beneficial therapeutic effects 
of physical training and relaxation therapy in women with coronary syndrome X. Physiotherapy 
research international : the journal for researchers and clinicians in physical therapy 2002;7:35-
43. 
138. Asbury EA, Collins P. Psychosocial factors associated with noncardiac chest pain and 
cardiac syndrome X. Herz 2005;30:55-60. 
139. Kisely SR, Campbell LA, Yelland MJ, Paydar A. Psychological interventions for 
symptomatic management of non-specific chest pain in patients with normal coronary 
anatomy. Cochrane database of systematic reviews (Online) 2012;6:CD004101. 
140. Cunningham C, Brown S, Kaski JC. Effects of transcendental meditation on symptoms 
and electrocardiographic changes in patients with cardiac syndrome X. The American journal of 
cardiology 2000;85:653-5, A10. 
141. Kronhaus KD, Lawson WE. Enhanced external counterpulsation is an effective 
treatment for Syndrome X. International journal of cardiology 2009;135:256-7. 
142. Jadhav S, Ferrell W, Greer IA, Petrie JR, Cobbe SM, Sattar N. Effects of metformin on 
microvascular function and exercise tolerance in women with angina and normal coronary 
arteries: a randomized, double-blind, placebo-controlled study. Journal of the American 
College of Cardiology 2006;48:956-63. 
143. Dietrich CG, Laupichler S, Stanzel S, et al. Origin of and therapeutic approach to cardiac 
syndrome X: results of the proton pump inhibitor therapy for angina-like lingering pain trial 
(PITFALL trial). World journal of gastroenterology : WJG 2008;14:6506-12. 
144. Bozcali E, Babalik E, Himmetoglu S, Mihmanli I, Toprak S. omega-3 fatty acid treatment 
in cardiac syndrome X: a double-blind, randomized, placebo-controlled clinical study. Coronary 
artery disease 2013;24:328-33. 
145. Andishmand A, Ansari Z, Soltani MH, Mirshamsi H, Raafat S. Vitamin D replacement 
therapy in patients with cardiac syndrome X. Perfusion 2015;30:60-3. 
146. Radice M, Giudici V, Albertini A, Mannarini A. Usefulness of changes in exercise 
tolerance induced by nitroglycerin in identifying patients with syndrome X. American heart 
journal 1994;127:531-5. 
147. Lanza GA, Manzoli A, Bia E, Crea F, Maseri A. Acute effects of nitrates on exercise 
testing in patients with syndrome X. Clinical and pathophysiological implications. Circulation 
1994;90:2695-700. 
148. Russo G, Di Franco A, Lamendola P, et al. Lack of effect of nitrates on exercise stress 
test results in patients with microvascular angina. Cardiovascular drugs and therapy / 
sponsored by the International Society of Cardiovascular Pharmacotherapy 2013;27:229-34. 
149. Vasan RS. Biomarkers of cardiovascular disease: molecular basis and practical 
considerations. Circulation 2006;113:2335-62. 
150. Atmaca Y, Ozdol C, Turhan S, Vurgun K, Duzen V, Erol C. The association of elevated 
white blood cell count and C-reactive protein with endothelial dysfunction in cardiac syndrome 
X. Acta cardiologica 2008;63:723-8. 
151. Timurkaynak T, Balcioglu S, Arslan U, Kocaman SA, Cengel A. Plasma homocysteine 
level in cardiac syndrome X and its relation with duke treadmill score. Saudi medical journal 
2008;29:364-7. 



356 
 

152. Sen N, Poyraz F, Tavil Y, et al. Carotid intima-media thickness in patients with cardiac 
syndrome X and its association with high circulating levels of asymmetric dimethylarginine. 
Atherosclerosis 2009;204:e82-5. 
153. Calabro P, Golia E, Yeh ET. CRP and the risk of atherosclerotic events. Semin 
Immunopathol 2009;31:79-94. 
154. Tenekecioglu E, Yilmaz M, Demir S, et al. HDL-cholesterol is associated with systemic 
inflammation in cardiac syndrome X. Minerva medica 2015;106:133-41. 
155. Li JJ, Zhu CG, Nan JL, et al. Elevated circulating inflammatory markers in female patients 
with cardiac syndrome X. Cytokine 2007;40:172-6. 
156. Lin C-P, Lin W-T, Leu H-B, Wu T-C, Chen J-W. Differential mononuclear cell activity and 
endothelial inflammation in coronary artery disease and cardiac syndrome X. International 
journal of cardiology 2003;89:53-62. 
157. On YK, Park R, Hyon MS, Kim SK, Kwon YJ. Are low total serum antioxidant status and 
elevated levels of C-reactive protein and monocyte chemotactic protein-1 associated with 
cardiac syndrome X? Circulation journal : official journal of the Japanese Circulation Society 
2005;69:1212-7. 
158. Acikgoz N, Ermis N, Yagmur J, et al. Uric acid level and its association with carotid 
intima-media thickness in patients with cardiac syndrome X. Medical principles and practice : 
international journal of the Kuwait University, Health Science Centre 2012;21:115-9. 
159. Elbasan Z, Sahin DY, Gur M, et al. Serum uric acid and slow coronary flow in cardiac 
syndrome X. Herz 2013;38:544-8. 
160. Okyay K, Cengel A, Sahinarslan A, et al. Plasma asymmetric dimethylarginine and L-
arginine levels in patients with cardiac syndrome X. Coronary artery disease 2007;18:539-44. 
161. Jadhav ST, Ferrell WR, Petrie JR, et al. Microvascular function, metabolic syndrome, 
and novel risk factor status in women with cardiac syndrome X. The American journal of 
cardiology 2006;97:1727-31. 
162. Hoffmann E, Assennato P, Donatelli M, Colletti I, Valenti TM. Plasma endothelin-1 
levels in patients with angina pectoris and normal coronary angiograms. American heart 
journal 1998;135:684-8. 
163. Huang PH, Chen YH, Chen YL, Wu TC, Chen JW, Lin SJ. Vascular endothelial function and 
circulating endothelial progenitor cells in patients with cardiac syndrome X. Heart 
2007;93:1064-70. 
164. Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. Journal of 
health and social behavior 1983;24:385-96. 
165. Motrico E, Moreno-Kustner B, de Dios Luna J, et al. Psychometric properties of the List 
of Threatening Experiences--LTE and its association with psychosocial factors and mental 
disorders according to different scoring methods. Journal of affective disorders 2013;150:931-
40. 
166. Spertus JA, Jones P, McDonell M, Fan V, Fihn SD. Health status predicts long-term 
outcome in outpatients with coronary disease. Circulation 2002;106:43-9. 
167. Mark DB, Hlatky MA, Harrell FE, Jr., Lee KL, Califf RM, Pryor DB. Exercise treadmill score 
for predicting prognosis in coronary artery disease. Annals of internal medicine 1987;106:793-
800. 
168. Nelson MD, Szczepaniak LS, Wei J, et al. Diastolic dysfunction in women with signs and 
symptoms of ischemia in the absence of obstructive coronary artery disease: a hypothesis-
generating study. Circulation Cardiovascular imaging 2014;7:510-6. 



357 
 

169. Pasqui AL, Puccetti L, Di Renzo M, et al. Structural and functional abnormality of 
systemic microvessels in cardiac syndrome X. Nutrition, metabolism, and cardiovascular 
diseases : NMCD 2005;15:56-64. 
170. Ashkinazi IY, Vershinina EA. Pain sensitivity in chronic psychoemotional stress in 
humans. Neurosci Behav Physiol 1999;29:333-7. 
171. Arroyo-Espliguero R, Mollichelli N, Avanzas P, et al. Chronic inflammation and 
increased arterial stiffness in patients with cardiac syndrome X. European heart journal 
2003;24:2006-11. 
172. Recio-Mayoral A, Rimoldi OE, Camici PG, Kaski JC. Inflammation and microvascular 
dysfunction in cardiac syndrome X patients without conventional risk factors for coronary 
artery disease. JACC Cardiovascular imaging 2013;6:660-7. 
173. Luo C, Li Y, Liu D, Hu C, Du Z. The association of brachial flow-mediated dilation and 
high-sensitivity C-reactive protein levels with Duke treadmill score in patients with suspected 
microvascular angina. Experimental and clinical cardiology 2012;17:197-201. 
174. Hein TW, Qamirani E, Ren Y, Xu X, Thengchaisri N, Kuo L. Selective activation of lectin-
like oxidized low-density lipoprotein receptor-1 mediates C-reactive protein-evoked 
endothelial vasodilator dysfunction in coronary arterioles. Circulation research 2014;114:92-
100. 
175. Devaraj S, Yun JM, Adamson G, Galvez J, Jialal I. C-reactive protein impairs the 
endothelial glycocalyx resulting in endothelial dysfunction. Cardiovascular research 
2009;84:479-84. 
176. Pasceri V, Willerson JT, Yeh ET. Direct proinflammatory effect of C-reactive protein on 
human endothelial cells. Circulation 2000;102:2165-8. 
177. Hein TW, Singh U, Vasquez-Vivar J, Devaraj S, Kuo L, Jialal I. Human C-reactive protein 
induces endothelial dysfunction and uncoupling of eNOS in vivo. Atherosclerosis 2009;206:61-
8. 
178. Fichtlscherer S, Rosenberger G, Walter DH, Breuer S, Dimmeler S, Zeiher AM. Elevated 
C-reactive protein levels and impaired endothelial vasoreactivity in patients with coronary 
artery disease. Circulation 2000;102:1000-6. 
179. Nabata A, Kuroki M, Ueba H, et al. C-reactive protein induces endothelial cell apoptosis 
and matrix metalloproteinase-9 production in human mononuclear cells: Implications for the 
destabilization of atherosclerotic plaque. Atherosclerosis 2008;196:129-35. 
180. Dullaart RPF, de Boer JF, Annema W, Tietge UJF. The inverse relation of HDL anti-
oxidative functionality with serum amyloid a is lost in metabolic syndrome subjects. Obesity 
2013;21:361-6. 
181. Liuzzo G, Biasucci LM, Gallimore JR, et al. The prognostic value of C-reactive protein 
and serum amyloid a protein in severe unstable angina. The New England journal of medicine 
1994;331:417-24. 
182. Johnson BD, Kip KE, Marroquin OC, et al. Serum amyloid A as a predictor of coronary 
artery disease and cardiovascular outcome in women: the National Heart, Lung, and Blood 
Institute-Sponsored Women's Ischemia Syndrome Evaluation (WISE). Circulation 2004;109:726-
32. 
183. Lakota K, Mrak-Poljsak K, Bozic B, Tomsic M, Sodin-Semrl S. Serum amyloid A activation 
of human coronary artery endothelial cells exhibits a neutrophil promoting molecular profile. 
Microvascular research 2013;90:55-63. 
184. Hua S, Song C, Geczy CL, Freedman SB, Witting PK. A role for acute-phase serum 
amyloid A and high-density lipoprotein in oxidative stress, endothelial dysfunction and 
atherosclerosis. Redox report : communications in free radical research 2009;14:187-96. 



358 
 

185. Witting PK, Song C, Hsu K, et al. The acute-phase protein serum amyloid A induces 
endothelial dysfunction that is inhibited by high-density lipoprotein. Free radical biology & 
medicine 2011;51:1390-8. 
186. Wang X, Chai H, Wang Z, Lin PH, Yao Q, Chen C. Serum amyloid A induces endothelial 
dysfunction in porcine coronary arteries and human coronary artery endothelial cells. 
American journal of physiology Heart and circulatory physiology 2008;295:H2399-408. 
187. Lawson C, Wolf S. ICAM-1 signaling in endothelial cells. Pharmacological reports : PR 
2009;61:22-32. 
188. Wohrle J, Nusser T, Merkle N, et al. Myocardial perfusion reserve in cardiovascular 
magnetic resonance: Correlation to coronary microvascular dysfunction. Journal of 
cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic 
Resonance 2006;8:781-7. 
189. Cook-Mills JM, Marchese ME, Abdala-Valencia H. Vascular cell adhesion molecule-1 
expression and signaling during disease: regulation by reactive oxygen species and 
antioxidants. Antioxidants & redox signaling 2011;15:1607-38. 
190. Cook-Mills JM, Marchese ME, Abdala-Valencia H. Vascular Cell Adhesion Molecule-1 
Expression and Signaling During Disease: Regulation by Reactive Oxygen Species and 
Antioxidants. Antioxidants & redox signaling 2011;15:1607-38. 
191. Shim BJ, Lee DH, Youn HJ. Increased soluble vascular adhesion molecule-1 
concentration is associated with impaired coronary flow reserve in cardiac syndrome X. Heart 
and vessels 2014;29:723-31. 
192. Desideri G, Gaspardone A, Gentile M, Santucci A, Gioffre PA, Ferri C. Endothelial 
activation in patients with cardiac syndrome X. Circulation 2000;102:2359-64. 
193. Yoshimoto R, Fujita Y, Kakino A, Iwamoto S, Takaya T, Sawamura T. The discovery of 
LOX-1, its ligands and clinical significance. Cardiovascular drugs and therapy / sponsored by the 
International Society of Cardiovascular Pharmacotherapy 2011;25:379-91. 
194. Kushner I, Rzewnicki D, Samols D. What does minor elevation of C-reactive protein 
signify? The American journal of medicine 2006;119:166 e17-28. 
195. Demir B, Onal B, Ozyazgan S, et al. Does Inflammation Have a Role in the Pathogenesis 
of Cardiac Syndrome X? A Genetic-Based Clinical Study With Assessment of Multiple Cytokine 
Levels. Angiology 2015. 
196. Ranta V, Orpana A, Carpen O, Turpeinen U, Ylikorkala O, Viinikka L. Human vascular 
endothelial cells produce tumor necrosis factor-alpha in response to proinflammatory cytokine 
stimulation. Critical care medicine 1999;27:2184-7. 
197. Matsubara T, Ziff M. Increased superoxide anion release from human endothelial cells 
in response to cytokines. Journal of immunology (Baltimore, Md : 1950) 1986;137:3295-8. 
198. Hou T, Tieu BC, Ray S, et al. Roles of IL-6-gp130 Signaling in Vascular Inflammation. 
Current cardiology reviews 2008;4:179-92. 
199. Esteve E, Castro A, Lopez-Bermejo A, Vendrell J, Ricart W, Fernandez-Real JM. Serum 
interleukin-6 correlates with endothelial dysfunction in healthy men independently of insulin 
sensitivity. Diabetes care 2007;30:939-45. 
200. Didion SP, Kinzenbaw DA, Schrader LI, Chu Y, Faraci FM. Endogenous interleukin-10 
inhibits angiotensin II-induced vascular dysfunction. Hypertension 2009;54:619-24. 
201. Gunnett CA, Heistad DD, Faraci FM. Interleukin-10 protects nitric oxide-dependent 
relaxation during diabetes: role of superoxide. Diabetes 2002;51:1931-7. 
202. Kinzenbaw DA, Chu Y, Pena Silva RA, Didion SP, Faraci FM. Interleukin-10 protects 
against aging-induced endothelial dysfunction. Physiological reports 2013;1:e00149. 



359 
 

203. Neri M, Fineschi V, Di Paolo M, et al. Cardiac oxidative stress and inflammatory 
cytokines response after myocardial infarction. Current vascular pharmacology 2015;13:26-36. 
204. Memon S, Chhabra L, Masrur S, Parker MW. Allergic acute coronary syndrome (Kounis 
syndrome). Proceedings (Baylor University Medical Center) 2015;28:358-62. 
205. Shimokawa H, Seto M, Katsumata N, et al. Rho-kinase-mediated pathway induces 
enhanced myosin light chain phosphorylations in a swine model of coronary artery spasm. 
Cardiovascular research 1999;43:1029-39. 
206. Hung MJ, Cherng WJ, Yang NI, Cheng CW, Li LF. Relation of high-sensitivity C-reactive 
protein level with coronary vasospastic angina pectoris in patients without hemodynamically 
significant coronary artery disease. The American journal of cardiology 2005;96:1484-90. 
207. Katayama N, Nakao K, Horiuchi K, Kasanuki H, Honda T. [Disease activities and serum C-
reactive protein levels in patients with vasospastic angina pectoris]. Journal of cardiology 
2005;46:63-70. 
208. Gullestad L, Ueland T, Vinge LE, Finsen A, Yndestad A, Aukrust P. Inflammatory 
cytokines in heart failure: mediators and markers. Cardiology 2012;122:23-35. 
209. Granger JP. An emerging role for inflammatory cytokines in hypertension. American 
Journal of Physiology - Heart and Circulatory Physiology 2006;290:H923-H4. 
210. Dabek J, Kulach A, Wilczok T, Mazurek U, Jakubowski D, Gasior Z. Transcriptional 
activity of genes encoding interferon gamma (IFNgamma) and its receptor assessed in 
peripheral blood mononuclear cells in patients with cardiac syndrome X. Inflammation 
2007;30:125-9. 
211. Dollard J, Kearney P, Dinan TG. Cardiac syndrome X in Ireland: incidence and 
phenotype. Irish journal of medical science 2015. 
212. Pasceri V, Cheng JS, Willerson JT, Yeh ET. Modulation of C-reactive protein-mediated 
monocyte chemoattractant protein-1 induction in human endothelial cells by anti-
atherosclerosis drugs. Circulation 2001;103:2531-4. 
213. Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword. 
Nat Rev Immunol 2006;6:508-19. 
214. Demirkol S, Balta S, Unlu M, et al. Neutrophils/lymphocytes ratio in patients with 
cardiac syndrome X and its association with carotid intima-media thickness. Clinical and applied 
thrombosis/hemostasis : official journal of the International Academy of Clinical and Applied 
Thrombosis/Hemostasis 2014;20:250-5. 
215. Bhat T, Teli S, Rijal J, et al. Neutrophil to lymphocyte ratio and cardiovascular diseases: 
a review. Expert review of cardiovascular therapy 2013;11:55-9. 
216. Okyay K, Yilmaz M, Yildirir A, et al. Relationship between neutrophil-to-lymphocyte 
ratio and impaired myocardial perfusion in cardiac syndrome X. European review for medical 
and pharmacological sciences 2015;19:1881-7. 
217. Yurtdas M, Yaylali YT, Aladag N, et al. Heart rate recovery after exercise and its relation 
with neutrophil-to-lymphocyte ratio in patients with cardiac syndrome X. Coronary artery 
disease 2014. 
218. Liu JJ, Chen JR, Bradley CJ, Xie B, Johnston CI, Buxton BF. Autologous neutrophil derived 
supernatants inhibit endothelium dependent relaxation in human coronary bypass graft. 
Cardiovascular research 1994;28:1353-9. 
219. Assadi M, Saghari M, Ebrahimi A, et al. The relation between Helicobacter pylori 
infection and cardiac syndrome X: a preliminary study. International journal of cardiology 
2009;134:e124-5. 



360 
 

220. Gholamrezanezhad A, Kolahdoozan S, Mirpour S. Comments on "The relation between 
Helicobacter pylori infection and cardiac syndrome X: a preliminary study", Assadi M, et al. 
International journal of cardiology 2010;141:114-5; author reply 5-6. 
221. Erdamar H, Sen N, Tavil Y, et al. The effect of nebivolol treatment on oxidative stress 
and antioxidant status in patients with cardiac syndrome-X. Coronary artery disease 
2009;20:238-4. 
222. Gur M, Yildiz A, Demirbag R, et al. Paraoxonase and arylesterase activities in patients 
with cardiac syndrome X, and their relationship with oxidative stress markers. Coronary artery 
disease 2007;18:89-95. 
223. Pauletto P, Rattazzi M. Inflammation and hypertension: the search for a link. 
Nephrology Dialysis Transplantation 2006;21:850-3. 
224. Wassmann S, Stumpf M, Strehlow K, et al. Interleukin-6 induces oxidative stress and 
endothelial dysfunction by overexpression of the angiotensin II type 1 receptor. Circulation 
research 2004;94:534-41. 
225. Kahaleh MB, Fan PS. Effect of cytokines on the production of endothelin by endothelial 
cells. Clinical and experimental rheumatology 1997;15:163-7. 
226. Ogita H, Liao J. Endothelial function and oxidative stress. Endothelium : journal of 
endothelial cell research 2004;11:123-32. 
227. Kayikcioglu M, Saygi S, Azarsiz E, Can LH, Kultursay H, Sozmen EY. Serum paraoxonase 1 
activity and oxidative markers of LDL in patients with cardiac syndrome X. Acta cardiologica 
2007;62:245-9. 
228. Altintas E, Yigit F, Taskintuna N. The impact of psychiatric disorders with cardiac 
syndrome X on quality of life: 3 months prospective study. International journal of clinical and 
experimental medicine 2014;7:3520-7. 
229. Kaski JC, Aldama G, Cosin-Sales J. Cardiac syndrome X. Diagnosis, pathogenesis and 
management. American journal of cardiovascular drugs : drugs, devices, and other 
interventions 2004;4:179-94. 
230. Schroecksnadel K, Kaser S, Ledochowski M, et al. Increased degradation of tryptophan 
in blood of patients with rheumatoid arthritis. The Journal of rheumatology 2003;30:1935-9. 
231. Thomas SR, Stocker R. Redox reactions related to indoleamine 2,3-dioxygenase and 
tryptophan metabolism along the kynurenine pathway. Redox report : communications in free 
radical research 1999;4:199-220. 
232. King NJ, Thomas SR. Molecules in focus: indoleamine 2,3-dioxygenase. The 
international journal of biochemistry & cell biology 2007;39:2167-72. 
233. Blaschitz A, Gauster M, Fuchs D, et al. Vascular endothelial expression of indoleamine 
2,3-dioxygenase 1 forms a positive gradient towards the feto-maternal interface. PLoS One 
2011;6:e21774. 
234. Moffett JR, Namboodiri MA. Tryptophan and the immune response. Immunology and 
cell biology 2003;81:247-65. 
235. Murr C, Grammer TB, Kleber ME, Meinitzer A, März W, Fuchs D. Low serum tryptophan 
predicts higher mortality in cardiovascular disease. European journal of clinical investigation 
2015;45:247-54. 
236. Niinisalo P, Oksala N, Levula M, et al. Activation of indoleamine 2,3-dioxygenase-
induced tryptophan degradation in advanced atherosclerotic plaques: Tampere vascular study. 
Annals of medicine 2010;42:55-63. 
237. Niinisalo P, Raitala A, Pertovaara M, et al. Indoleamine 2,3-dioxygenase activity 
associates with cardiovascular risk factors: the Health 2000 study. Scandinavian journal of 
clinical and laboratory investigation 2008;68:767-70. 



361 
 

238. Wirleitner B, Rudzite V, Neurauter G, et al. Immune activation and degradation of 
tryptophan in coronary heart disease. European journal of clinical investigation 2003;33:550-4. 
239. Eleftheriadis T, Antoniadi G, Liakopoulos V, Stefanidis I, Galaktidou G. Plasma 
indoleamine 2,3-dioxygenase concentration is increased in hemodialysis patients and may 
contribute to the pathogenesis of coronary heart disease. Renal failure 2012;34:68-72. 
240. Darcy CJ, Davis JS, Woodberry T, et al. An observational cohort study of the kynurenine 
to tryptophan ratio in sepsis: association with impaired immune and microvascular function. 
PLoS One 2011;6:e21185. 
241. Pedersen ER, Midttun O, Ueland PM, et al. Systemic markers of interferon-gamma-
mediated immune activation and long-term prognosis in patients with stable coronary artery 
disease. Arteriosclerosis, thrombosis, and vascular biology 2011;31:698-704. 
242. Swardfager W, Herrmann N, Dowlati Y, et al. Indoleamine 2,3-dioxygenase activation 
and depressive symptoms in patients with coronary artery disease. Psychoneuroendocrinology 
2009;34:1560-6. 
243. Maes M, Galecki P, Verkerk R, Rief W. Somatization, but not depression, is 
characterized by disorders in the tryptophan catabolite (TRYCAT) pathway, indicating increased 
indoleamine 2,3-dioxygenase and lowered kynurenine aminotransferase activity. Neuro 
endocrinology letters 2011;32:264-73. 
244. Schroecksnadel K, Winkler C, Wirleitner B, Schennach H, Fuchs D. Aspirin down-
regulates tryptophan degradation in stimulated human peripheral blood mononuclear cells in 
vitro. Clinical and experimental immunology 2005;140:41-5. 
245. Clarke G, Fitzgerald P, Cryan JF, Cassidy EM, Quigley EM, Dinan TG. Tryptophan 
degradation in irritable bowel syndrome: evidence of indoleamine 2,3-dioxygenase activation 
in a male cohort. BMC gastroenterology 2009;9:6. 
246. Pedersen ER, Svingen GF, Schartum-Hansen H, et al. Urinary excretion of kynurenine 
and tryptophan, cardiovascular events, and mortality after elective coronary angiography. 
European heart journal 2013;34:2689-96. 
247. Pedersen ER, Tuseth N, Eussen SJ, et al. Associations of plasma kynurenines with risk of 
acute myocardial infarction in patients with stable angina pectoris. Arteriosclerosis, 
thrombosis, and vascular biology 2015;35:455-62. 
248. Sulo G, Vollset SE, Nygard O, et al. Neopterin and kynurenine-tryptophan ratio as 
predictors of coronary events in older adults, the Hordaland Health Study. International journal 
of cardiology 2013;168:1435-40. 
249. Altun A, Yaprak M, Aktoz M, Vardar A, Betul UA, Ozbay G. Impaired nocturnal synthesis 
of melatonin in patients with cardiac syndrome X. Neuroscience letters 2002;327:143-5. 
250. Paulis L, Simko F, Laudon M. Cardiovascular effects of melatonin receptor agonists. 
Expert opinion on investigational drugs 2012;21:1661-78. 
251. Dominguez-Rodriguez A, Abreu-Gonzalez P, Sanchez-Sanchez JJ, Kaski JC, Reiter RJ. 
Melatonin and circadian biology in human cardiovascular disease. Journal of pineal research 
2010;49:14-22. 
252. Reiter RJ, Tan DX, Paredes SD, Fuentes-Broto L. Beneficial effects of melatonin in 
cardiovascular disease. Annals of medicine 2010;42:276-85. 
253. Favero G, Rodella LF, Reiter RJ, Rezzani R. Melatonin and its atheroprotective effects: a 
review. Molecular and cellular endocrinology 2014;382:926-37. 
254. Dominguez-Rodriguez A, Abreu-Gonzalez P, Garcia-Gonzalez MJ, Samimi-Fard S, Kaski 
JC, Reiter RJ. Light/dark patterns of soluble vascular cell adhesion molecule-1 in relation to 
melatonin in patients with ST-segment elevation myocardial infarction. Journal of pineal 
research 2008;44:65-9. 



362 
 

255. Lissoni P, Pittalis S, Rovelli F, Roselli M, Ardizzoia A. Modulation of cytokine production 
from TH2-lymphocytes and monocytes by the pineal neurohormone melatonin. Oncology 
reports 1996;3:541-3. 
256. Rodella LF, Favero G, Rossini C, et al. Aging and vascular dysfunction: beneficial 
melatonin effects. Age (Dordrecht, Netherlands) 2013;35:103-15. 
257. Petrosillo G, Colantuono G, Moro N, et al. Melatonin protects against heart ischemia-
reperfusion injury by inhibiting mitochondrial permeability transition pore opening. American 
journal of physiology Heart and circulatory physiology 2009;297:H1487-93. 
258. Halaris A. Inflammation, heart disease, and depression. Current psychiatry reports 
2013;15:400. 
259. Keszthelyi D, Troost FJ, Jonkers DM, et al. Visceral hypersensitivity in irritable bowel 
syndrome: evidence for involvement of serotonin metabolism--a preliminary study. 
Neurogastroenterology and motility : the official journal of the European Gastrointestinal 
Motility Society 2015;27:1127-37. 
260. Bueno L, de Ponti F, Fried M, et al. Serotonergic and non-serotonergic targets in the 
pharmacotherapy of visceral hypersensitivity. Neurogastroenterology and motility : the official 
journal of the European Gastrointestinal Motility Society 2007;19:89-119. 
261. Delvaux M, Louvel D, Mamet JP, Campos-Oriola R, Frexinos J. Effect of alosetron on 
responses to colonic distension in patients with irritable bowel syndrome. Alimentary 
pharmacology & therapeutics 1998;12:849-55. 
262. Poitras P, Riberdy Poitras M, Plourde V, Boivin M, Verrier P. Evolution of visceral 
sensitivity in patients with irritable bowel syndrome. Digestive diseases and sciences 
2002;47:914-20. 
263. Mayer EA, Berman S, Derbyshire SW, et al. The effect of the 5-HT3 receptor antagonist, 
alosetron, on brain responses to visceral stimulation in irritable bowel syndrome patients. 
Alimentary pharmacology & therapeutics 2002;16:1357-66. 
264. Gulcin I. Measurement of antioxidant ability of melatonin and serotonin by the DMPD 
and CUPRAC methods as trolox equivalent. Journal of enzyme inhibition and medicinal 
chemistry 2008;23:871-6. 
265. Sakakibara K, Kinoshita H, Mori Y, et al. L-Kynurenine Causes Hypotension Via 
Vasodilation Mediated by KCNQ Voltage Sensitive K+ Channels in Rats.  American Society of 
Anaesthesiology2013. 
266. Wang Y, Liu H, McKenzie G, et al. Kynurenine is an endothelium-derived relaxing factor 
produced during inflammation. Nature medicine 2010;16:279-85. 
267. Opitz CA, Litzenburger UM, Sahm F, et al. An endogenous tumour-promoting ligand of 
the human aryl hydrocarbon receptor. Nature 2011;478:197-203. 
268. Sherr DH. Another important biological function for the aryl hydrocarbon receptor. 
Arteriosclerosis, thrombosis, and vascular biology 2011;31:1247-8. 
269. Sallee M, Dou L, Cerini C, Poitevin S, Brunet P, Burtey S. The aryl hydrocarbon receptor-
activating effect of uremic toxins from tryptophan metabolism: a new concept to understand 
cardiovascular complications of chronic kidney disease. Toxins 2014;6:934-49. 
270. Qureshi I, Chen H, Brown AT, et al. Homocysteine-induced vascular dysregulation is 
mediated by the NMDA receptor. Vascular medicine (London, England) 2005;10:215-23. 
271. Duran C, San Martin A. Do endothelial cells eat tryptophan to die? Circulation research 
2014;114:406-8. 
272. Wejksza K, Rzeski W, Turski WA. Kynurenic acid protects against the homocysteine-
induced impairment of endothelial cells. Pharmacological reports : PR 2009;61:751-6. 



363 
 

273. Wang Q, Zhang M, Ding Y, et al. Activation of NAD(P)H oxidase by tryptophan-derived 
3-hydroxykynurenine accelerates endothelial apoptosis and dysfunction in vivo. Circulation 
research 2014;114:480-92. 
274. Laugeray A, Launay JM, Callebert J, Surget A, Belzung C, Barone PR. Evidence for a key 
role of the peripheral kynurenine pathway in the modulation of anxiety- and depression-like 
behaviours in mice: focus on individual differences. Pharmacology, biochemistry, and behavior 
2011;98:161-8. 
275. Maes M, Verkerk R, Bonaccorso S, Ombelet W, Bosmans E, Scharpe S. Depressive and 
anxiety symptoms in the early puerperium are related to increased degradation of tryptophan 
into kynurenine, a phenomenon which is related to immune activation. Life sciences 
2002;71:1837-48. 
276. Orlikov AB, Prakhye IB, Ryzov IV. Kynurenine in blood plasma and DST in patients with 
endogenous anxiety and endogenous depression. Biological psychiatry 1994;36:97-102. 
277. Guo S, Vecsei L, Ashina M. The L-kynurenine signalling pathway in trigeminal pain 
processing: a potential therapeutic target in migraine? Cephalalgia : an international journal of 
headache 2011;31:1029-38. 
278. Curto M, Lionetto L, Fazio F, Mitsikostas DD, Martelletti P. Fathoming the kynurenine 
pathway in migraine: why understanding the enzymatic cascades is still critically important. 
Internal and emergency medicine 2015;10:413-21. 
279. Fallarino F, Grohmann U, You S, et al. The combined effects of tryptophan starvation 
and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory 
phenotype in naive T cells. Journal of immunology (Baltimore, Md : 1950) 2006;176:6752-61. 
280. Eskandarian R, Malek M, Mousavi SH, Babaei M. Association of Helicobacter pylori 
infection with cardiac syndrome X. Singapore medical journal 2006;47:704-6. 
281. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms 
and intercellular transfer of microRNAs in living cells. The Journal of biological chemistry 
2010;285:17442-52. 
282. Pigati L, Yaddanapudi SC, Iyengar R, et al. Selective release of microRNA species from 
normal and malignant mammary epithelial cells. PLoS One 2010;5:e13515. 
283. Diehl P, Fricke A, Sander L, et al. Microparticles: major transport vehicles for distinct 
microRNAs in circulation. Cardiovascular research 2012;93:633-44. 
284. Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of 
circulating microRNAs independent of vesicles in human plasma. Proceedings of the National 
Academy of Sciences of the United States of America 2011;108:5003-8. 
285. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are 
transported in plasma and delivered to recipient cells by high-density lipoproteins. Nature cell 
biology 2011;13:423-33. 
286. Sun X, He S, Wara AK, et al. Systemic delivery of microRNA-181b inhibits nuclear factor-
kappaB activation, vascular inflammation, and atherosclerosis in apolipoprotein E-deficient 
mice. Circulation research 2014;114:32-40. 
287. Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. MicroRNA-126 regulates 
endothelial expression of vascular cell adhesion molecule 1. Proceedings of the National 
Academy of Sciences of the United States of America 2008;105:1516-21. 
288. Harris TA, Yamakuchi M, Kondo M, Oettgen P, Lowenstein CJ. Ets-1 and Ets-2 regulate 
the expression of microRNA-126 in endothelial cells. Arteriosclerosis, thrombosis, and vascular 
biology 2010;30:1990-7. 
289. Suarez Y, Wang C, Manes TD, Pober JS. Cutting edge: TNF-induced microRNAs regulate 
TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human 



364 
 

endothelial cells: feedback control of inflammation. Journal of immunology (Baltimore, Md : 
1950) 2010;184:21-5. 
290. Ni CW, Qiu H, Jo H. MicroRNA-663 upregulated by oscillatory shear stress plays a role 
in inflammatory response of endothelial cells. American journal of physiology Heart and 
circulatory physiology 2011;300:H1762-9. 
291. Zhou J, Wang K-C, Wu W, et al. MicroRNA-21 targets peroxisome proliferators-
activated receptor-α in an autoregulatory loop to modulate flow-induced endothelial 
inflammation. Proceedings of the National Academy of Sciences 2011. 
292. Hamik A, Lin Z, Kumar A, et al. Kruppel-like factor 4 regulates endothelial inflammation. 
The Journal of biological chemistry 2007;282:13769-79. 
293. Wu W, Xiao H, Laguna-Fernandez A, et al. Flow-Dependent Regulation of Kruppel-Like 
Factor 2 Is Mediated by MicroRNA-92a. Circulation 2011;124:633-41. 
294. Loyer X, Potteaux S, Vion AC, et al. Inhibition of microRNA-92a Prevents Endothelial 
Dysfunction and Atherosclerosis in Mice. Circulation research 2013. 
295. Davis-Dusenbery BN, Chan MC, Reno KE, et al. down-regulation of Kruppel-like factor-4 
(KLF4) by microRNA-143/145 is critical for modulation of vascular smooth muscle cell 
phenotype by transforming growth factor-beta and bone morphogenetic protein 4. The Journal 
of biological chemistry 2011;286:28097-110. 
296. Kumar A, Lin Z, SenBanerjee S, Jain MK. Tumor necrosis factor alpha-mediated 
reduction of KLF2 is due to inhibition of MEF2 by NF-kappaB and histone deacetylases. 
Molecular and cellular biology 2005;25:5893-903. 
297. Gur M, Yildiz A, Demirbag R, et al. Increased lymphocyte deoxyribonucleic acid damage 
in patients with cardiac syndrome X. Mutation research 2007;617:8-15. 
298. Fleissner F, Jazbutyte V, Fiedler J, et al. Short communication: asymmetric 
dimethylarginine impairs angiogenic progenitor cell function in patients with coronary artery 
disease through a microRNA-21-dependent mechanism. Circulation research 2010;107:138-43. 
299. Yamakuchi M. MicroRNA Regulation of SIRT1. Frontiers in physiology 2012;3:68. 
300. Pillarisetti S. A review of Sirt1 and Sirt1 modulators in cardiovascular and metabolic 
diseases. Recent patents on cardiovascular drug discovery 2008;3:156-64. 
301. Li L, Gao P, Zhang H, et al. SIRT1 inhibits angiotensin II-induced vascular smooth muscle 
cell hypertrophy. Acta biochimica et biophysica Sinica 2011;43:103-9. 
302. Gracia-Sancho J, Villarreal G, Jr., Zhang Y, Garcia-Cardena G. Activation of SIRT1 by 
resveratrol induces KLF2 expression conferring an endothelial vasoprotective phenotype. 
Cardiovascular research 2010;85:514-9. 
303. Mattagajasingh I, Kim CS, Naqvi A, et al. SIRT1 promotes endothelium-dependent 
vascular relaxation by activating endothelial nitric oxide synthase. Proceedings of the National 
Academy of Sciences of the United States of America 2007;104:14855-60. 
304. Ito T, Yagi S, Yamakuchi M. MicroRNA-34a regulation of endothelial senescence. 
Biochemical and biophysical research communications 2010;398:735-40. 
305. Marin T, Gongol B, Chen Z, et al. Mechanosensitive microRNAs—role in endothelial 
responses to shear stress and redox state. Free Radical Biology and Medicine 2013;64:61-8. 
306. Menghini R, Casagrande V, Cardellini M, et al. MicroRNA 217 modulates endothelial 
cell senescence via silent information regulator 1. Circulation 2009;120:1524-32. 
307. Choi SE, Kemper JK. Regulation of SIRT1 by MicroRNAs. Molecules and cells 2013. 
308. Yamakuchi M. MicroRNA Regulation of SIRT1. Frontiers in physiology 2012;3:68. 
309. Rane S, He M, Sayed D, et al. Downregulation of miR-199a derepresses hypoxia-
inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac 
myocytes. Circulation research 2009;104:879-86. 



365 
 

310. Eades G, Yao Y, Yang M, Zhang Y, Chumsri S, Zhou Q. miR-200a regulates SIRT1 
expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary 
epithelial cells. The Journal of biological chemistry 2011;286:25992-6002. 
311. Gao J, Wang WY, Mao YW, et al. A novel pathway regulates memory and plasticity via 
SIRT1 and miR-134. Nature 2010;466:1105-9. 
312. Sessa WC. eNOS at a glance. Journal of cell science 2004;117:2427-9. 
313. Morawietz H, Talanow R, Szibor M, et al. Regulation of the endothelin system by shear 
stress in human endothelial cells. The Journal of physiology 2000;525 Pt 3:761-70. 
314. Inoue A, Yanagisawa M, Takuwa Y, Mitsui Y, Kobayashi M, Masaki T. The human 
preproendothelin-1 gene. Complete nucleotide sequence and regulation of expression. The 
Journal of biological chemistry 1989;264:14954-9. 
315. Jacobs ME, Wingo CS, Cain BD. An emerging role for microRNA in the regulation of 
endothelin-1. Frontiers in physiology 2013;4:22. 
316. Li D, Yang P, Li H, et al. MicroRNA-1 inhibits proliferation of hepatocarcinoma cells by 
targeting endothelin-1. Life sciences 2012;91:440-7. 
317. Li D, He B, Zhang H, et al. The inhibitory effect of miRNA-1 on ET-1 gene expression. 
FEBS letters 2012;586:1014-21. 
318. Li D, Yang P, Xiong Q, et al. MicroRNA-125a/b-5p inhibits endothelin-1 expression in 
vascular endothelial cells. Journal of hypertension 2010;28:1646-54. 
319. Yeligar S, Tsukamoto H, Kalra VK. Ethanol-induced expression of ET-1 and ET-BR in liver 
sinusoidal endothelial cells and human endothelial cells involves hypoxia-inducible factor-
1alpha and microrNA-199. Journal of immunology (Baltimore, Md : 1950) 2009;183:5232-43. 
320. Kalani M. The importance of endothelin-1 for microvascular dysfunction in diabetes. 
Vascular health and risk management 2008;4:1061-8. 
321. Böhm F, Pernow J. The importance of endothelin-1 for vascular dysfunction in 
cardiovascular disease. Cardiovascular research 2007;76:8-18. 
322. Kaski JC, Elliott PM, Salomone O, et al. Concentration of circulating plasma endothelin 
in patients with angina and normal coronary angiograms. Br Heart J 1995;74:620-4. 
323. Cox ID, Salomone O, Brown SJ, Hann C, Kaski JC. Serum endothelin levels and pain 
perception in patients with cardiac syndrome X and in healthy controls. The American journal 
of cardiology 1997;80:637-40. 
324. Rippe C, Blimline M, Magerko KA, et al. MicroRNA changes in human arterial 
endothelial cells with senescence: relation to apoptosis, eNOS and inflammation. Experimental 
gerontology 2012;47:45-51. 
325. Magenta A, Greco S, Gaetano C, Martelli F. Oxidative stress and microRNAs in vascular 
diseases. International journal of molecular sciences 2013;14:17319-46. 
326. Yoo JK, Kim CH, Jung HY, Lee DR, Kim JK. Discovery and characterization of miRNA 
during cellular senescence in bone marrow-derived human mesenchymal stem cells. 
Experimental gerontology 2014;58:139-45. 
327. Bonifacio LN, Jarstfer MB. MiRNA profile associated with replicative senescence, 
extended cell culture, and ectopic telomerase expression in human foreskin fibroblasts. PLoS 
One 2010;5. 
328. Nagayama M, Fujita Y, Kanai T, et al. Changes in myocardial lactate metabolism during 
ramp exercise in patients with effort angina and microvascular angina. Japanese circulation 
journal 1996;60:876-88. 
329. Jackson G, Richardson PJ, Atkinson L, Armstrong P, Oram S. Angina with normal 
coronary arteriograms. Value of coronary sinus lactate estimation in diagnosis and treatment. 
Br Heart J 1978;40:976-8. 



366 
 

330. Yin C, Salloum FN, Kukreja RC. A novel role of microRNA in late preconditioning: 
upregulation of endothelial nitric oxide synthase and heat shock protein 70. Circulation 
research 2009;104:572-5. 
331. Robinson MD, Smyth GK. Moderated statistical tests for assessing differences in tag 
abundance. Bioinformatics (Oxford, England) 2007;23:2881-7. 
332. Neth P, Nazari-Jahantigh M, Schober A, Weber C. MicroRNAs in flow-dependent 
vascular remodelling. Cardiovascular research 2013;99:294-303. 
333. Tsukerman P, Stern-Ginossar N, Gur C, et al. MiR-10b downregulates the stress-
induced cell surface molecule MICB, a critical ligand for cancer cell recognition by natural killer 
cells. Cancer research 2012;72:5463-72. 
334. Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP. Weak seed-pairing stability 
and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nature 
structural & molecular biology 2011;18:1139-46. 
335. Liu X, Dong C, Jiang Z, et al. MicroRNA-10b downregulation mediates acute rejection of 
renal allografts by derepressing BCL2L11. Experimental cell research 2015;333:155-63. 
336. Fang Y, Shi C, Manduchi E, Civelek M, Davies PF. MicroRNA-10a regulation of 
proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. 
Proceedings of the National Academy of Sciences of the United States of America 
2010;107:13450-5. 
337. Tugal D, Jain MK, Simon DI. Endothelial KLF4: crippling vascular injury? Journal of the 
American Heart Association 2014;3:e000769. 
338. Yoshida T, Yamashita M, Horimai C, Hayashi M. Deletion of Kruppel-like factor 4 in 
endothelial and hematopoietic cells enhances neointimal formation following vascular injury. 
Journal of the American Heart Association 2014;3:e000622. 
339. Zheng B, Han M, Wen J-K. Role of Krüppel-like factor 4 in phenotypic switching and 
proliferation of vascular smooth muscle cells. IUBMB life 2010;62:132-9. 
340. Fan Y, Guo Y, Zhang J, et al. Kruppel-like factor-11, a transcription factor involved in 
diabetes mellitus, suppresses endothelial cell activation via the nuclear factor-kappaB signaling 
pathway. Arteriosclerosis, thrombosis, and vascular biology 2012;32:2981-8. 
341. Cordes KR, Sheehy NT, White MP, et al. miR-145 and miR-143 regulate smooth muscle 
cell fate and plasticity. Nature 2009;460:705-10. 
342. Zhao W, Zhao S-P, Zhao Y-H. MicroRNA-143/-145 in Cardiovascular Diseases. BioMed 
Research International 2015;2015:9. 
343. Rangrez AY, Massy ZA, Metzinger-Le Meuth V, Metzinger L. miR-143 and miR-145: 
molecular keys to switch the phenotype of vascular smooth muscle cells. Circulation 
Cardiovascular genetics 2011;4:197-205. 
344. Kohlstedt K, Trouvain C, Boettger T, Shi L, Fisslthaler B, Fleming I. AMP-activated 
protein kinase regulates endothelial cell angiotensin-converting enzyme expression via p53 and 
the post-transcriptional regulation of microRNA-143/145. Circulation research 2013;112:1150-
8. 
345. Boettger T, Beetz N, Kostin S, et al. Acquisition of the contractile phenotype by murine 
arterial smooth muscle cells depends on the Mir143/145 gene cluster. The Journal of clinical 
investigation 2009;119:2634-47. 
346. Dahan D, Ekman M, Larsson-Callerfelt AK, et al. Induction of angiotensin-converting 
enzyme after miR-143/145 deletion is critical for impaired smooth muscle contractility. 
American journal of physiology Cell physiology 2014;307:C1093-101. 
347. Gomez I, Foudi N, Longrois D, Norel X. The role of prostaglandin E2 in human vascular 
inflammation. Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA) 2013;89:55-63. 



367 
 

348. Callegari E, Elamin BK, D'Abundo L, et al. Anti-tumor activity of a miR-199-dependent 
oncolytic adenovirus. PLoS One 2013;8:e73964. 
349. Yang J, Xu W-w, Hu S-j. Heart Failure: Advanced Development in Genetics and 
Epigenetics. BioMed Research International 2015;2015:11. 
350. Chen T, Margariti A, Kelaini S, et al. MicroRNA-199b Modulates Vascular Cell Fate 
During iPS Cell Differentiation by Targeting the Notch Ligand Jagged1 and Enhancing VEGF 
Signaling. Stem cells (Dayton, Ohio) 2015;33:1405-18. 
351. Hu J, Discher DJ, Bishopric NH, Webster KA. Hypoxia regulates expression of the 
endothelin-1 gene through a proximal hypoxia-inducible factor-1 binding site on the antisense 
strand. Biochemical and biophysical research communications 1998;245:894-9. 
352. Powell SR, Herrmann J, Lerman A, Patterson C, Wang X. The ubiquitin-proteasome 
system and cardiovascular disease. Progress in molecular biology and translational science 
2012;109:295-346. 
353. Zhou Q, Yang L, Larson S, et al. Decreased miR-199 augments visceral pain in patients 
with IBS through translational upregulation of TRPV1. Gut 2015. 
354. Baumgarten A, Bang C, Pregla R, et al. TWIST-1 and Its Target, the miR 199/214 Cluster, 
Are Down-Regulated in Dilated Cardiomyopathy Resulting in Increased Proteasome Activity in 
Human Myocardium. Journal of Cardiac Failure;17:S8. 
355. Zhan Y, Brown C, Maynard E, et al. Ets-1 is a critical regulator of Ang II-mediated 
vascular inflammation and remodeling. The Journal of clinical investigation 2005;115:2508-16. 
356. Wendlandt EB, Graff JW, Gioannini TL, McCaffrey AP, Wilson ME. The role of 
microRNAs miR-200b and miR-200c in TLR4 signaling and NF-kappaB activation. Innate 
immunity 2012;18:846-55. 
357. Chimenti C, Sale P, Verardo R, et al. High prevalence of intramural coronary infection in 
patients with drug-resistant cardiac syndrome X: comparison with chronic stable angina and 
normal controls. Heart 2010;96:1926-31. 
358. Yoneda O, Imai T, Goda S, et al. Fractalkine-mediated endothelial cell injury by NK cells. 
Journal of immunology (Baltimore, Md : 1950) 2000;164:4055-62. 
359. Selathurai A, Deswaerte V, Kanellakis P, et al. Natural killer (NK) cells augment 
atherosclerosis by cytotoxic-dependent mechanisms. Cardiovascular research 2014;102:128-
37. 
360. Szerafin T, Erdei N, Fulop T, et al. Increased cyclooxygenase-2 expression and 
prostaglandin-mediated dilation in coronary arterioles of patients with diabetes mellitus. 
Circulation research 2006;99:e12-7. 
361. Chenevard R, Hurlimann D, Bechir M, et al. Selective COX-2 inhibition improves 
endothelial function in coronary artery disease. Circulation 2003;107:405-9. 
362. Magenta A, Cencioni C, Fasanaro P, et al. miR-200c is upregulated by oxidative stress 
and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell death and 
differentiation 2011;18:1628-39. 
363. Bairey Merz CN, Pepine CJ. Syndrome X and microvascular coronary dysfunction. 
Circulation 2011;124:1477-80. 
364. Boucher JM, Peterson SM, Urs S, Zhang C, Liaw L. The miR-143/145 cluster is a novel 
transcriptional target of Jagged-1/Notch signaling in vascular smooth muscle cells. The Journal 
of biological chemistry 2011;286:28312-21. 
365. Spin JM, Maegdefessel L, Tsao PS. Vascular smooth muscle cell phenotypic plasticity: 
focus on chromatin remodelling. Cardiovascular research 2012;95:147-55. 



368 
 

366. Romero LI, Zhang DN, Herron GS, Karasek MA. Interleukin-1 induces major phenotypic 
changes in human skin microvascular endothelial cells. Journal of cellular physiology 
1997;173:84-92. 
367. Shmilovich H, Deutsch V, Roth A, Miller H, Keren G, George J. Circulating endothelial 
progenitor cells in patients with cardiac syndrome X. Heart 2007;93:1071-6. 
368. Mosseri M, Yarom R, Gotsman MS, Hasin Y. Histologic evidence for small-vessel 
coronary artery disease in patients with angina pectoris and patent large coronary arteries. 
Circulation 1986;74:964-72. 
369. Michelakakis NA, Petropoulou EN, Lazaros GA, et al. Comparison of endothelin-1 levels 
at rest and during exercise between patients with cardiac syndrome-X and healthy people. Acta 
cardiologica 1998;53:3-6. 
370. Fernandes ES, Liang L, Smillie SJ, et al. TRPV1 deletion enhances local inflammation and 
accelerates the onset of systemic inflammatory response syndrome. Journal of immunology 
(Baltimore, Md : 1950) 2012;188:5741-51. 
371. Szolcsanyi J, Oroszi G, Nemeth J, Szilvassy Z, Blasig IE, Tosaki A. Functional and 
biochemical evidence for capsaicin-induced neural endothelin release in isolated working rat 
heart. European journal of pharmacology 2001;419:215-21. 
372. Czikora A, Lizanecz E, Bako P, et al. Structure-activity relationships of vanilloid receptor 
agonists for arteriolar TRPV1. British journal of pharmacology 2012;165:1801-12. 
373. Kark T, Bagi Z, Lizanecz E, et al. Tissue-specific regulation of microvascular diameter: 
opposite functional roles of neuronal and smooth muscle located vanilloid receptor-1. 
Molecular pharmacology 2008;73:1405-12. 
374. Plant TD, Zollner C, Mousa SA, Oksche A. Endothelin-1 potentiates capsaicin-induced 
TRPV1 currents via the endothelin A receptor. Experimental biology and medicine (Maywood, 
NJ) 2006;231:1161-4. 
375. Davda RK, Stepniakowski KT, Lu G, Ullian ME, Goodfriend TL, Egan BM. Oleic acid 
inhibits endothelial nitric oxide synthase by a protein kinase C-independent mechanism. 
Hypertension 1995;26:764-70. 
376. Moers A, Schrezenmeir J. Palmitic acid but not stearic acid inhibits NO-production in 
endothelial cells. Experimental and clinical endocrinology & diabetes : official journal, German 
Society of Endocrinology [and] German Diabetes Association 1997;105 Suppl 2:78-80. 
377. Sanders TA, Lewis FJ, Goff LM, Chowienczyk PJ. SFAs do not impair endothelial function 
and arterial stiffness. The American journal of clinical nutrition 2013;98:677-83. 
378. Mozaffarian D, Katan MB, Ascherio A, Stampfer MJ, Willett WC. Trans Fatty Acids and 
Cardiovascular Disease. New England Journal of Medicine 2006;354:1601-13. 
379. Han SN, Leka LS, Lichtenstein AH, Ausman LM, Schaefer EJ, Meydani SN. Effect of 
hydrogenated and saturated, relative to polyunsaturated, fat on immune and inflammatory 
responses of adults with moderate hypercholesterolemia. J Lipid Res 2002;43:445-52. 
380. de Roos NM, Bots ML, Katan MB. Replacement of dietary saturated fatty acids by trans 
fatty acids lowers serum HDL cholesterol and impairs endothelial function in healthy men and 
women. Arteriosclerosis, thrombosis, and vascular biology 2001;21:1233-7. 
381. Schwingshackl L, Hoffmann G. Monounsaturated fatty acids and risk of cardiovascular 
disease: synopsis of the evidence available from systematic reviews and meta-analyses. 
Nutrients 2012;4:1989-2007. 
382. Aslibekyan S, Wiener HW, Havel PJ, et al. DNA Methylation Patterns Are Associated 
with n-3 Fatty Acid Intake in Yup'ik People. The Journal of nutrition 2014. 
383. Adkins Y, Kelley DS. Mechanisms underlying the cardioprotective effects of omega-3 
polyunsaturated fatty acids. The Journal of nutritional biochemistry 2010;21:781-92. 



369 
 

384. Zhao Y, Joshi-Barve S, Barve S, Chen LH. Eicosapentaenoic acid prevents LPS-induced 
TNF-alpha expression by preventing NF-kappaB activation. Journal of the American College of 
Nutrition 2004;23:71-8. 
385. Crosby AJ, Wahle KW, Duthie GG, Morrice PC. Regulation of glutathione peroxidase 
(GSHPx) activity in human vascular endothelial cells by fatty acids. Biochemical Society 
transactions 1996;24:176S. 
386. Omura M, Kobayashi S, Mizukami Y, et al. Eicosapentaenoic acid (EPA) induces Ca(2+)-
independent activation and translocation of endothelial nitric oxide synthase and endothelium-
dependent vasorelaxation. FEBS letters 2001;487:361-6. 
387. Goodfellow J, Bellamy MF, Ramsey MW, Jones CJ, Lewis MJ. Dietary supplementation 
with marine omega-3 fatty acids improve systemic large artery endothelial function in subjects 
with hypercholesterolemia. Journal of the American College of Cardiology 2000;35:265-70. 
388. Hashimoto M, Hossain S, Yamasaki H, Yazawa K, Masumura S. Effects of 
eicosapentaenoic acid and docosahexaenoic acid on plasma membrane fluidity of aortic 
endothelial cells. Lipids 1999;34:1297-304. 
389. Ramsden CE, Zamora D, Leelarthaepin B, et al. Use of dietary linoleic acid for secondary 
prevention of coronary heart disease and death: evaluation of recovered data from the Sydney 
Diet Heart Study and updated meta-analysis. BMJ (Clinical research ed) 2013;346. 
390. Zheng X, Zinkevich NS, Gebremedhin D, et al. Arachidonic acid-induced dilation in 
human coronary arterioles: convergence of signaling mechanisms on endothelial TRPV4-
mediated Ca2+ entry. Journal of the American Heart Association 2013;2:e000080. 
391. Simopoulos AP. The importance of the ratio of omega-6/omega-3 essential fatty acids. 
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 2002;56:365-79. 
392. Okahara K, Sun B, Kambayashi J. Upregulation of prostacyclin synthesis-related gene 
expression by shear stress in vascular endothelial cells. Arteriosclerosis, thrombosis, and 
vascular biology 1998;18:1922-6. 
393. Duah E, Adapala RK, Al-Azzam N, et al. Cysteinyl leukotrienes regulate endothelial cell 
inflammatory and proliferative signals through CysLT(2) and CysLT(1) receptors. Scientific 
reports 2013;3:3274. 
394. Gaibazzi N, Ziacchi V. Reversibility of stress-echo induced ST-segment depression by 
long-term oral n-3 PUFA supplementation in subjects with chest pain syndrome, normal wall 
motion at stress-echo and normal coronary angiogram. BMC cardiovascular disorders 2004;4:1. 
395. Bozcali E, Babalik E, Himmetoglu S, Mihmanli I, Toprak S. omega-3 fatty acid treatment 
in cardiac syndrome X: a double-blind, randomized, placebo-controlled clinical study. Coronary 
artery disease 2013. 
396. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification 
of total lipides from animal tissues. The Journal of biological chemistry 1957;226:497-509. 
397. Park PW, Goins RE. In Situ Preparation of Fatty Acid Methyl Esters for Analysis of Fatty 
Acid Composition in Foods. Journal of Food Science 1994;59:1262-6. 
398. Kang MJ, Shin MS, Park JN, Lee SS. The effects of polyunsaturated:saturated fatty acids 
ratios and peroxidisability index values of dietary fats on serum lipid profiles and hepatic 
enzyme activities in rats. The British journal of nutrition 2005;94:526-32. 
399. Superko HR, Superko SM, Nasir K, Agatston A, Garrett BC. Omega-3 fatty acid blood 
levels: clinical significance and controversy. Circulation 2013;128:2154-61. 
400. Rupp H, Wagner D, Rupp T, Schulte LM, Maisch B. Risk stratification by the "EPA+DHA 
level" and the "EPA/AA ratio" focus on anti-inflammatory and antiarrhythmogenic effects of 
long-chain omega-3 fatty acids. Herz 2004;29:673-85. 



370 
 

401. Evans SJ, Kamali M, Prossin AR, et al. Association of plasma omega-3 and omega-6 
lipids with burden of disease measures in bipolar subjects. J Psychiatr Res 2012;46:1435-41. 
402. Dooper MM, van Riel B, Graus YM, M'Rabet L. Dihomo-gamma-linolenic acid inhibits 
tumour necrosis factor-alpha production by human leucocytes independently of 
cyclooxygenase activity. Immunology 2003;110:348-57. 
403. Tripathy D, Mohanty P, Dhindsa S, et al. Elevation of free fatty acids induces 
inflammation and impairs vascular reactivity in healthy subjects. Diabetes 2003;52:2882-7. 
404. Liu QM, Zhou SH, Qi SS, Zhao SP, Minghuib L. Significance of the lipid profile and 
endothelium-dependent vasodilatation in the pathogenesis of microvascular angina. Cardiology 
journal 2008;15:324-8. 
405. Tselepis AD, Elisaf M, Goudevenos J, et al. Lipid profile in patients with microvascular 
angina. European journal of clinical investigation 1996;26:1150-5. 
406. Shinde DD, Kim KB, Oh KS, et al. LC-MS/MS for the simultaneous analysis of arachidonic 
acid and 32 related metabolites in human plasma: Basal plasma concentrations and aspirin-
induced changes of eicosanoids. Journal of chromatography B, Analytical technologies in the 
biomedical and life sciences 2012;911:113-21. 
407. Vinolo MA, Rodrigues HG, Nachbar RT, Curi R. Regulation of inflammation by short 
chain fatty acids. Nutrients 2011;3:858-76. 
408. Moreau NM, Goupry SM, Antignac JP, et al. Simultaneous measurement of plasma 
concentrations and 13C-enrichment of short-chain fatty acids, lactic acid and ketone bodies by 
gas chromatography coupled to mass spectrometry. Journal of chromatography B, Analytical 
technologies in the biomedical and life sciences 2003;784:395-403. 
409. Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine 
promotes cardiovascular disease. Nature 2011;472:57-63. 
410. von Mering GO, Arant CB, Wessel TR, et al. Abnormal coronary vasomotion as a 
prognostic indicator of cardiovascular events in women: results from the National Heart, Lung, 
and Blood Institute-Sponsored Women's Ischemia Syndrome Evaluation (WISE). Circulation 
2004;109:722-5. 
411. Howick J, Glasziou P, Aronson JK. The evolution of evidence hierarchies: what can 
Bradford Hill's ‘guidelines for causation’ contribute? Journal of the Royal Society of Medicine 
2009;102:186-94. 
412. Vaccarino V, Khan D, Votaw J, et al. Inflammation is related to coronary flow reserve 
detected by positron emission tomography in asymptomatic male twins. Journal of the 
American College of Cardiology 2011;57:1271-9. 
413. Faccini A, Kaski JC, Camici PG. Coronary microvascular dysfunction in chronic 
inflammatory rheumatoid diseases. European heart journal 2016. 
414. Recio-Mayoral A, Mason JC, Kaski JC, Rubens MB, Harari OA, Camici PG. Chronic 
inflammation and coronary microvascular dysfunction in patients without risk factors for 
coronary artery disease. European heart journal 2009;30:1837-43. 
415. Ikonomidis I, Tzortzis S, Lekakis J, et al. Lowering interleukin-1 activity with anakinra 
improves myocardial deformation in rheumatoid arthritis. Heart 2009;95:1502-7. 
416. Choi HK, Hernan MA, Seeger JD, Robins JM, Wolfe F. Methotrexate and mortality in 
patients with rheumatoid arthritis: a prospective study. Lancet 2002;359:1173-7. 
417. Naranjo A, Sokka T, Descalzo MA, et al. Cardiovascular disease in patients with 
rheumatoid arthritis: results from the QUEST-RA study. Arthritis research & therapy 
2008;10:R30. 
418. Brasier AR. The nuclear factor-kappaB-interleukin-6 signalling pathway mediating 
vascular inflammation. Cardiovascular research 2010;86:211-8. 



371 
 

419. Chinetti-Gbaguidi G, Colin S, Staels B. Macrophage subsets in atherosclerosis. Nature 
reviews Cardiology 2015;12:10-7. 
420. Ishida Y, Suzuki K, Taki K, et al. Significant association between Helicobacter pylori 
infection and serum C-reactive protein. International Journal of Medical Sciences 2008;5:224-9. 
421. Hsieh CJ, Wang PW, Chen TY. The relationship between regional abdominal fat 
distribution and both insulin resistance and subclinical chronic inflammation in non-diabetic 
adults. Diabetology & metabolic syndrome 2014;6:49. 
422. Gedikli O, Ozturk M, Turan OE, Ilter A, Hosoglu Y, Kiris G. Epicardial adipose tissue 
thickness is increased in patients with cardiac syndrome X. International journal of clinical and 
experimental medicine 2014;7:194-8. 
423. Botker HE, Frobert O, Moller N, Christiansen E, Schmitz O, Bagger JP. Insulin resistance 
in cardiac syndrome X and variant angina: influence of physical capacity and circulating lipids. 
American heart journal 1997;134:229-37. 
424. Maes M, Song C, Lin A, et al. The effects of psychological stress on humans: increased 
production of pro-inflammatory cytokines and a Th1-like response in stress-induced anxiety. 
Cytokine 1998;10:313-8. 
425. Steptoe A, Hamer M, Chida Y. The effects of acute psychological stress on circulating 
inflammatory factors in humans: a review and meta-analysis. Brain, behavior, and immunity 
2007;21:901-12. 
426. Baumeister D, Akhtar R, Ciufolini S, Pariante CM, Mondelli V. Childhood trauma and 
adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and 
tumour necrosis factor-[alpha]. Mol Psychiatry 2015. 
427. Berk M, Williams LJ, Jacka FN, et al. So depression is an inflammatory disease, but 
where does the inflammation come from? BMC medicine 2013;11:1-16. 
428. Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic 
endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. 
Diabetes 2008;57:1470-81. 
429. de Punder K, Pruimboom L. Stress Induces Endotoxemia and Low-Grade Inflammation 
by Increasing Barrier Permeability. Frontiers in Immunology 2015;6:223. 
430. Murr C, Ledochowski M, Fuchs D. Chronic immune stimulation may link ischemic heart 
disease with depression. Circulation 2002;105:e83. 
431. Rosen SD. Hearts and minds: psychological factors and the chest pain of cardiac 
syndrome X. European heart journal 2004;25:1672-4. 
432. Dell'Osso B, Buoli M, Baldwin DS, Altamura AC. Serotonin norepinephrine reuptake 
inhibitors (SNRIs) in anxiety disorders: a comprehensive review of their clinical efficacy. Human 
psychopharmacology 2010;25:17-29. 
433. Gauthier C, Hassler C, Mattar L, et al. Symptoms of depression and anxiety in anorexia 
nervosa: links with plasma tryptophan and serotonin metabolism. Psychoneuroendocrinology 
2014;39:170-8. 
434. Klauenberg S, Maier C, Assion HJ, et al. Depression and changed pain perception: hints 
for a central disinhibition mechanism. Pain 2008;140:332-43. 
435. Hamza M, Dionne RA. Mechanisms of non-opioid analgesics beyond cyclooxygenase 
enzyme inhibition. Current molecular pharmacology 2009;2:1-14. 
436. Sommer C. Serotonin in pain and analgesia: actions in the periphery. Molecular 
neurobiology 2004;30:117-25. 
437. Seltzer S, Stoch R, Marcus R, Jackson E. Alteration of human pain thresholds by 
nutritional manipulation and L-tryptophan supplementation. Pain 1982;13:385-93. 



372 
 

438. Irani K. Angiotensin II-stimulated vascular remodeling: the search for the culprit 
oxidase. Circulation research 2001;88:858-60. 
439. Chrobak I, Lenna S, Stawski L, Trojanowska M. Interferon-gamma promotes vascular 
remodeling in human microvascular endothelial cells by upregulating endothelin (ET)-1 and 
transforming growth factor (TGF) beta2. Journal of cellular physiology 2013;228:1774-83. 
440. Antonios TF, Kaski JC, Hasan KM, Brown SJ, Singer DR. Rarefaction of skin capillaries in 
patients with anginal chest pain and normal coronary arteriograms. European heart journal 
2001;22:1144-8. 
441. Feihl F, Liaudet L, Waeber B, Levy BI. Hypertension: a disease of the microcirculation? 
Hypertension 2006;48:1012-7. 
442. van Eeden SF, Klut ME, Walker BA, Hogg JC. The use of flow cytometry to measure 
neutrophil function. Journal of immunological methods 1999;232:23-43. 
443. Condliffe AM, Chilvers ER, Haslett C, Dransfield I. Priming differentially regulates 
neutrophil adhesion molecule expression/function. Immunology 1996;89:105-11. 
444. Karlsson F, Tremaroli V, Nielsen J, Backhed F. Assessing the human gut microbiota in 
metabolic diseases. Diabetes 2013;62:3341-9. 
445. Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the 
barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. 
Frontiers in Cellular Neuroscience 2015;9:392. 
446. Beltrame JF, Crea F, Camici P. Advances in coronary microvascular dysfunction. Heart, 
lung & circulation 2009;18:19-27. 
447. Kontaraki JE, Kochiadakis GE, Marketou ME, et al. Early cardiac gene transcript levels in 
peripheral blood mononuclear cells reflect severity in stable coronary artery disease. Hellenic 
journal of cardiology : HJC = Hellenike kardiologike epitheorese 2014;55:119-25. 

 

 

  



373 
 

Appendix I 

 

 

Figure I.1: Consent form as approved by the Clinical Research Ethics Committee for the Cork Teaching 
Hospitals 



374 
 

 

Figure I.2: Patient information sheet displayed in waiting rooms and outpatient departments 
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Figure I.3: The poster detailing the inclusion and exclusion criteria, which was displayed in the back of 
the catheterisation laboratories. 
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Figure I.4: WHO Rose Angina Questionnaire 
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Figure I.5: Cohen’s Perceived Stress Scale (PSS) and Brugha’s List of Threatening Experiences 
Questionnaire. 



378 
 

 

Figure I.6: Sample page of the Seattle Angina Questionnaire 
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Figure I.7: Prudent Diet Questionnaire 
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Appendix II 
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