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Abstract  

Vanadium oxide nanostructures have been widely researched as a cathode material for Li-ion 

batteries due to their layered structure and shorter Li+ diffusion path lengths, compared to the 

bulk material. Some oxides exhibit charge storage due to capacitive charge compensation and 

many materials with cation insertion regions and rich surface chemistry have complex 

responses to lithiation. Herein, detailed analysis of cyclic voltammetry curves was used to 

distinguish between the charge stored due to lithium intercalation processes, and from 

extrinsic capacitive effects for micron-scale bulk V2O5 and synthesized nano-scale vanadium 

oxide polycrystalline nanorods (poly-NRs) designed to exhibit multivalent surface oxidation 

states. The results demonstrate that at fast scan rates (up to 500 mV/s) the contribution due to 

diffusion-controlled intercalation processes in to micron V2O5 and nanoscale V2O3 are found 

to dominate irrespective of size and multivalent surface chemistry. At slow potential scan 

rates, a greater portion of the redox events are capacitive in nature for the polycrystalline 

nanorods. Low dimensional vanadium oxide structures of V2O5 or V2O3, with greater surface 

area does not automatically increase its (redox) pseudocapacitive behaviour significantly at 

any scan rate, even with multivalent surface oxidation states. 

mailto:c.odwyer@ucc.ie


2 
 

Introduction 

Over the past two decades there has been an intense research effort aimed at identifying 

nanostructured materials for application as electrode materials for Li-ion batteries with 

increased safety, energy density, cycle life and lower cost. [1-7] Nanostructured materials 

have been widely researched for both the cathode and anode, mainly due to their increased 

surface area, when compared to their bulk counterparts, and shorter Li+ diffusion lengths due 

to their nano-scale dimensions [8-14].  

 In recent years there has also been a tremendous increase in research devoted to 

investigating materials that may combine the high energy density of batteries and the long 

cycle life and short charging times of supercapacitors. [15-17] Vanadium oxides represent an 

attractive candidate as a cathode material due to their layered structure and high theoretical 

capacity [18-24] in the V2O5 structure, but it can also intercalate Li into the V2O3 phase. As a 

result of their layered structure [25-28] it may be assumed that the total stored charge for 

vanadium oxide nanostructures in Li-ion battery applications is exclusively due to diffusion-

based intercalation processes associated with well-defined phase changes in bulk crystalline 

V2O5. However, from cyclic voltammetry analysis over a range of different scan rates it is 

possible to determine the contribution of diffusion and capacitive effects to the total stored 

charge [29-33], a charge-compensation effect in metal oxides (even in a Li-ion electrolyte) 

that is still a matter of debate in the literature. Capacitive effects include the charge transfer 

process with surface atoms of the host material, referred to as pseudocapacitance [34] and the 

contribution from the double layer effect [35,29,36]. Note that redox pseudocapacitance 

versus double layer capacitance behave as either Faradaic or non-Faradaic processes. In metal 

oxides such as V2O5, oxygen vacancies have been suggested as a possible mechanism for 

surface chemical redox couples to compensate charge with Li+ without solid state chemical 

changes in the crystal [37], and ‘intercalation’ pseudocapacitance is purported to provide a 
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similar mechanism without layer puckering or volume expansion changes from chemical 

reaction with the cation [17].  

 It is important to determine how significant the contribution for both diffusion-based 

intercalation or alloying reactions versus (any) capacitive effects are on the total stored 

charge to enable a better understanding of how charge is stored in both cathode and anode 

materials [15], particularly when size effects are purported to play a significant role. 

Electrochemical quartz microbalance techniques can fingerprint whether changes in electrode 

mass are found, thus linking the response to intercalation versus double layer capacitance 

storage differences [38]. Understanding how material surface chemistry, size and structure 

can influence the very nature of the electrochemical energy storage mechanisms is critical for 

new and emerging high performance materials. Apart from mechanism identification, the rate 

and voltage dependence of pseudocapacitance versus intercalation may offer charge storage 

options with controllable volumetric changes. Previous pseudocapacitive studies have been 

reported other Li-ion battery materials such as TiO2 [31], MnO2 [39] and MoO3 [40]. The 

pseudocapacitive behaviour of vanadium oxide materials has been reported [41,42], but the 

quantitative assessment of the basis for the charge capacities was not assessed in detail. The 

pseudocapacitive behaviour of vanadium oxide and other transition metal oxide structures 

have previously been inferred from the shape of insertion/removal or even redox peaks in 

cyclic voltammograms. [43,29,44] We quantify the capacitive contributions towards the 

measured current through a systematic analysis of cyclic voltammograms acquired at a range 

of different scan rates. The data define the relative contributions of phase, surface chemistry 

and size on the contributions to intercalation and capacitive processes for vanadium oxide 

battery electrode materials, and is generally applicable to voltammetric measurements of 

many other systems.  
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Here, we detail the formation of vanadium oxide polycrystalline nanorods and 

compare their response to potentiodynamic polarization to that of bulk-size vanadium 

pentoxide crystals. We describe detailed analysis of cyclic voltammetric polarization of 

nanorods with a comparatively richer surface defect chemistry. One significant difference 

between battery and pseudocapacitive materials is that the cycling of battery materials can be 

quite slow, whereas the cycling of pseudocapacitive materials can occur in a matter of 

minutes. [16] Hence, we examined our vanadium oxide samples at slow (0.1 mVs-1) and fast 

(500 mVs-1) scan rates. X-ray photoelectron spectroscopy, X-ray diffraction and electron 

microscopy were used to identify differences in surface chemistry and crystal structure, 

whereby nanorods present multiple vanadium valence states, higher surface area and smaller 

dimensions. We detail how the total charge stored by vanadium oxide electrode materials is 

not exclusively due to intercalation based processes but also capacitive processes. The data 

shows that there is a transition from intercalation-mode reactions to capacitive charge storage 

at slower scan rates in different potential ranges for nanoscale and bulk vanadium oxide 

materials. At higher scan rates, intercalation and diffusion-based reaction processes occur at 

electrode materials on bulk or nanoscale level even with markedly different multivalent 

surface chemistry. Most importantly, the data shows that nanoscale engineering of 

multivalent vanadium oxide does not automatically infer a transition to capacitive behaviour 

in spite of a rich surface chemistry, since the intercalation rate and chemical potentials are 

preferable to surface region storage. 

 

Experimental  

Vanadium oxide nanorods were prepared by annealing vanadium oxide nanotubes (VONTs) 

as previously reported [45,46]. VONTs were synthesised via hydrothermal treatment of a 
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vanadium oxide xerogel mixed with nonylamine. The as-prepared VONTs were then 

annealed to 600 oC in a nitrogen atmosphere, resulting in a structural transformation from 

VONTs to vanadium oxide polycrystalline nanorods (poly-NRs). TEM analysis was 

conducted using a JEOL JEM-2100F TEM operating at 200 kV. SEM analysis was 

performed using a Hitachi S-4800 at an accelerating voltage of 10 kV. The electrochemical 

properties of bulk V2O5 powder and poly-NRs were investigated using a two electrode, 

stainless steel split cell. Bulk V2O5 and Poly-NR electrodes were prepared using the same 

method. A suspension of each powder was prepared by sonication in ethanol. Using a 

micropipette, the suspension was then drop-cast on to 1 cm2 pieces of stainless steel. 

Electrodes were allowed to dry in air for 30 minutes to allow the ethanol to evaporate and 

then heated at 100 oC for 1 hour to increase adhesion between the active material powder and 

the stainless steel substrate. No additional conductive additives or binders were added to the 

various vanadium oxide working electrodes. This electrode formulation allowed direct 

electrochemical examination of the various structures without complications from conductive 

additives and non-uniform mixtures. The mass loading for bulk V2O5 and Poly-NR electrodes 

was ~ 1.0 mg ± 0.2 mg. The counter electrode for all tests was lithium foil. Cyclic 

voltammetry was performed using a BioLogic VSP Potentiostat/Galvanostat using potential 

scan rates in the range 0.1 – 500 mV s-1. All CVs were performed against lithium metal 

counter electrodes and all scans were performed in a potential window of 4.0-1.2 V. The 

electrolyte consisted of a 1 mol dm-3 solution of lithium hexafluorophosphate salts in a 1:1 

(v/v) mixture of ethylene carbonate in dimethyl carbonate. The separator used in all split cell 

tests was a glass fiber separator (El-Cell ECC1-01-0012-A/L, 18 mm diameter, 0.65 mm 

thickness). 

X-ray photoelectron spectroscopy was performed using a Kratos Axis 165 equipped 

with a monochromatic Al source (Kα = 1486.58 eV) with a spot size of 1 mm. The source 
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power was 150 W, the take-off angle was set normal to the sample surface, the construction 

and peak fittings in the narrow region spectra were performed using a Shirley type 

background. Adventitious carbon was used for the charge reference (C 1s) for each 

measurement. XRD analysis was performed using a Phillips Xpert PW3719 diffractometer 

using Cu Kα radiation. (Cu Kα, λ = 0.15418 nm, operation voltage 40 kV, current 40 mA). 

Results and Discussion 

TEM and SEM images of bulk crystalline V2O5 powder and poly-NRs are shown in Figure 1. 

The bulk V2O5 powder consisted of dense micron-scale particles as can be seen in Figure 1a 

and c. Vanadium oxide poly-NRs were prepared by thermal treatment of VONTs. As 

previously reported, poly-NRs consist of a granular agglomeration of nanocrystals of 

vanadium oxide [45] arranged in a polycrystalline nanorod architecture with internal 

mesoporosity. Figure 1b and d indicate that poly-NRs maintain similar nanoscale dimensions 

compared to their nanotube precursor, consequently poly-NRs have a far greater surface area 

than the bulk material. The thickness of the bulk V2O5 and Poly-NR material on the stainless 

steel substrates was ~13.68 and ~12.92 µm, respectively, as shown in tilt-corrected SEM 

images in Figure S1. 

The core level binding energies for V 2p3/2, V 2p1/2 and O 1s acquired from V2O5 bulk 

powder and poly-NRs are shown in Figure 1e and f, respectively. The V 2p3/2 core-level is 

convoluted with two contributions in bulk powder, and three in poly-NRs. These 

contributions are assigned to V5+ and V4+ and to V3+ in poly-NRs. XPS allows for 

quantitative analysis of surface chemistry, as mentioned above, poly-NRs have a far greater 

surface area than the bulk particles, hence comparing the surface chemistry for both 

vanadium oxide samples was key for comparing their electrochemical performance. 

Secondly, nanoscale V2O3 provides a greater redox capacitance that bulk V2O5, allowing the 

distinction between capacitance and intercalation mode charge compensation to be probed 
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compared to the relatively smaller multivalent surface chemistry of nanoscale V2O5. The 

relative amounts of each vanadium oxidation state present on the surface of bulk V2O5 

particles and poly-NRs are listed in Table 1. Vanadium is predominately in the V5+ oxidation 

state for bulk V2O5 particles, however the data quantify a near equal amount of vanadium in 

V5+ and V4+ oxidation states present on the surface of the poly-NRs. The V3+ oxidation state 

is also observed for poly-NRs, however it is present in the minority, comprising only ~ 21.8 

%. For multivalent contributions to photoelectron emission from vanadium oxides, the 

average vanadium oxidation state can be determined as 13.82 − 0.68[O 1s − V 2p3/2]) [47], 

using the binding energies for the core levels. The average vanadium oxidation state is 5.116 

for bulk V2O5, but 3.484 for poly-NRs in agreement with the V 2p3/2 core level spectra, 

indicating a highly defective surface with a higher density of O vacancies with a net 

multivalent surface.  

 V 2p 3/2 
Sample V(V) V(IV) V(III) 

    
Bulk V2O5 92.1 % 7.9 % - 
Poly-NRs 38.5 % 39.7 % 21.8 % 

 

Table 1. Relative amounts of each vanadium oxidation state present on the surface of Bulk 

V2O5 and Poly-NRs from XPS. 

In order to further probe the structural differences between the bulk V2O5 particles and 

the Poly-NRs, XRD patterns were obtained for each sample. The resulting XRD patterns are 

shown in Figure 1g and h. The XRD pattern for the bulk particles can be indexed to 

orthorhombic V2O5 (JCPDS 00-009-0387) with a Pmmn space grouping. The poly-NR 

pattern has been indexed to rhombohedral V2O3 (JCPDS 00-034-0187) with an R-3c space 

grouping. XPS analysis of the poly-NRs suggested that ~ 78.2 % of vanadium present in the 
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surface was in either a V5+ or V4+ oxidation state, however XRD analysis shows that poly-

NRs are predominately V2O3, which would imply that vanadium is primarily in a V3+ 

oxidation state. The disparity between XPS and XRD results suggests that vanadium oxide is 

present in different phases on the surface and in the core of the poly-NR structure. Various 

vanadium oxide structures containing different bulk and surface phases have been previously 

reported, most notably it has been reported that heating a V2O5 sample for 20 hours at 500 oC 

in an H2/He atmosphere produces V2O3 at the surface, a situation that is plausible by O 

emission from V2O5 that was purported to occur. [48] These conditions are quite similar to 

the poly-NR synthesis process.  

Two additional reflections were observed in the poly-NR XRD pattern (at ~ 36.9 o 

and 40.2 o) which are not present in the rhombohedral V2O3 reference pattern. The peak at 

40.2 o may be related to the vanadium oxide interplanar spacing of the nanoscale grains 

which comprise the poly-NR structure (vide infra). From XPS analysis presented in Table 1, 

it is clear that V5+, V4+ and V3+ oxidation states are all present on the surface of the Poly-

NRs. XRD confirms this and analysis shows that the core of the Poly-NRs is predominately 

V2O3, and two remaining reflections may be indexed to V4O7 (in Figure S2), although 

dominant reflections from this minority phase are not found. 

To further investigate the poly-NR structure a detailed high resolution TEM 

examination was performed to characterize the size of the nanoparticle grains that constitute 

the poly-NRs morphology as well as the (001) interplanar spacing of the grain’s crystalline 

lattice. A TEM image of one full poly-NR is shown in Figure 2a, it can be seen that the 

diameter of a typical poly-NR is ~ 125 nm and the length is ~ 750 nm. The granular 

agglomeration of nanocrystals which comprise the poly-NR structure can be seen in Figure 

2b, with individual nanoparticles circled in dashed red lines. The histogram in Figure 2c, 

presents the variation in nanoparticle diameter over 100 individual measurements from 
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HRTEM images. It was found that the diameter varied from ~ 4.0 to 5.2 nm with the highest 

frequency of counts being observed for a diameter of ~ 4.6 nm. The layered structure of the 

nanoscale grains is shown in Figure 2d and the variation in the interplanar spacing is 

illustrated by the histogram shown in Figure 2e. The variation in the interplanar spacing over 

100 individual measurements was ~ 0.06 nm, indicating that interplanar spacing of the 

nanoscale grains within poly-NRs is consistent throughout the material. From this statistical 

examination it was determined that the most frequent interplanar spacing was ~ 0.224 nm. 

This d-spacing corresponds to a 2θ angle of ~ 40.2 o and there is a reflection in the XRD 

pattern for Poly-NRs at this angle, as can be seen in Figure 1h.    

It is worth noting that all electrodes used in this test were prepared by drop-casting a 

solution of the active material in ethanol onto the current collector and then drying. No 

conductive additives or binding materials were used in the preparation of the electrodes used 

in this study. The surface of the active material can be buried in slurry cast electrodes, which 

limits electrolyte access to surface redox sites. [44] Capacitive charge processes occur on the 

surface of the active material hence, preparing a slurry with passivating polymeric binders 

may impeded direct comparative assessment of each material. Likewise it can be difficult to 

deconvolute the electrochemical properties of the active material from the electrochemical 

response of the composite electrode. [49] 

Cyclic voltammetry was performed on both bulk V2O5 and poly-NRs at a range of 

different scan rates. The resulting CV curves for bulk V2O5 are shown in Figure 3. CV scans 

using scan rates from 0.1 to 0.5 mV/s are shown in Figure 3a. The cathodic and anodic peaks 

represent lithium insertion and removal peaks respectively. Lithium insertion peaks during 

the initial cathodic scan at 0.1 mV/s were observed at ~3.34, 3.14, 2.32 and 1.65 V. These 

peaks correspond to phase transitions due to the insertion of lithium ions into the layers of 

vanadium oxide [18,19]. It is interesting that these discrete peaks are only observed for the 
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first cycle, from the second cycle onwards, two wide peaks are observed in the cathodic scans 

at ~3.17 and 2.00 V. This suggests that an irreversible reaction occurs during the first cycle, 

which is not observed in the subsequent cycles. This irreversible reaction is most likely the 

formation of a ω-LixV2O5 phase. It has been reported that for galvanostatic tests when bulk 

V2O5 is discharged below 1.9 V an irreversible phase is formed whereby not all of the 

intercalated lithium can be successfully removed upon subsequent charging [50,19,18]. A 

similar process occurred in the faster scan rate range of 1 to 5 mV/s. Discrete peaks were 

observed during the initial scan at a scan rate of 1 mV/s and these were replaced with wide 

peaks as the scan rate was increased to 5 mV/s. The distinct lithium insertion peaks observed 

during the initial cathodic scans at slow scan rates were not observed when the scan rate was 

increased to 10 and 100 mV/s as can be seen in Figure 3c and d.  

Cyclic voltammograms for the poly-NR material are shown in Figure 4. From the 

initial voltammetric curves at 0.1 and 1 mV/s shown in Figure 4a and b, it is clear that the 

phase transitions (defined cathodic peaks) that were observed for bulk V2O5 indicating charge 

compensation by Li insertion and V5+/V4+ redox couple reduction, are found to smoothen and 

extend over a wider potential range for poly-NRs. It has been reported that the small domain 

sizes offered by nanostructure materials can lead to a suppression of phase transitions due to 

reduced intercalation stress, from volume expansion. [49,51] Hence the smaller dimensions 

of the poly-NRs, detailed in Figure 2, may be the reason why the CV curves are much 

smoother than those observed for the bulk V2O5.  It has also been reported that, smooth 

curves may be indicative of an amorphous or a cation-disordered material [52,53], or 

insertion into a range of nanocrystallites with random relative orientations (polycrystalline). 

TEM analysis and XRD analysis (Figure 1) verify that poly-NRs are indeed polycrystalline. 

Similar smoothness in the potential was also found in voltage profiles when poly-NRs were 

galvanostatically discharged and charged [45], as shown in Figure S3.  
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Wide lithium insertion and removal peaks were observed when poly-NRs were cycled 

using scan rates in the range of 0.1 – 0.5 mV/s and 1 – 5 mV/s. In both cases the lithium 

insertion peak was shifted to lower potentials and the lithium removal peak was shifted to 

higher potentials as the scan rate increased. With faster voltage scan rates, the peak current 

also increased as expected. At faster scan rates the CV curves smoothened further as can be 

seen in Figure 4c and d and the potential difference between cathodic and anodic peaks 

increased from ~0.4 V to 1.6 V at 10 mV/s. 

The area under the CV curves represents the total stored charge during each scan, 

which arises from both faradaic and non-faradaic processes [31] when they occur. The 

specific capacity for bulk V2O5 and poly-NRs at various scan rates was determined from the 

integrated area of each curve according to 

𝐶𝐶 = 1
𝑚𝑚𝑚𝑚(𝑉𝑉𝑐𝑐−𝑉𝑉𝑎𝑎)∫ 𝐼𝐼(𝑉𝑉)𝑑𝑑𝑉𝑉,𝑉𝑉𝑐𝑐

𝑉𝑉𝑎𝑎
  

where Vc and Va are the cathodic and anodic voltage limits, respectively, and 𝑣𝑣 is the scan 

rate as usual. The calculated specific capacities of the cathodic scan for bulk V2O5 and poly-

NRs in a scan rate range from 0.1 to 0.5 mV/s are shown in Figure 5a. It was observed that 

the specific capacity is strongly dependent on the potential scan rate. As the scan rate was 

increased, the specific capacity was found to reduce. This effect may be due to kinetic 

limitations associated with the diffusion of Li+ into thickening lithiated V2O5 bulk crystal 

surfaces (t ~ L2/D). The shorter length scales in poly-NRs improve the rate of lithiation 

(reduction in time with invariant solid state Li+ diffusion constant). The influence of surface 

defect chemistry and overall surface area on redox capacitance storage versus intercalation at 

slow scan rates is ill-defined in many materials (with porosity, conductivity and accessibility 

of electrolyte also important) and the way charge is stored is also potential-dependent.  From 

Figure 5a it is clear that the specific capacity values obtained for poly-NRs were substantially 
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higher than the values obtained for bulk V2O5. There is a significant difference in the particle 

size of the two materials, as shown in Figure 1 and also the crystalline phase of the poly-NRs 

is that of V2O3, although the intercalation rate for nanoscale crystallite is not found to be 

markedly different to nanoscale V2O5; the surface chemistry and size dominantly dictate the 

comparative responses. For the same scan rate the total stored charge is higher for the smaller 

poly-NRs at similar mass loading. The nanoscale dimensions of the poly-NRs offer a larger 

surface area and shorter Li+ diffusion lengths compared to the micron scale bulk particles.  

 The total stored charge can be separated into three components: (i) the faradaic 

contribution from the Li+ transfer process, (ii) the faradaic contribution from the charge 

transfer process with surface atoms, referred to as redox pseudocapacitance involving the 

reduction of the metal (in this case V5+ and V4+ species reduction), but with no 

electrochemically driven phase transition in the crystal, and (iii) the non-faradaic contribution 

at the double layer  [29]. These effects in nanoscale materials, particularly layered, 

multivalent vanadium oxides, are important in correctly analysing cycling and specific 

capacities under potentiodynamic conditions when used as battery positive electrodes [54-

56]. Capacitive effects due to pseudocapacitance and double layer charging can be 

characterized by analysing CV curves at various scan rates according to [36] 

𝑖𝑖(𝑉𝑉, 𝑡𝑡) = 𝑎𝑎𝑣𝑣𝑏𝑏 

where the measured current i obeys a power law relationship with the scan rate v. Both a and 

b are adjustable parameters, b-exponent values are determined from the slope of the plot of 

log (i) vs log (v). There are two well defined conditions for b: b = 0.5 and b = 1.0. When b = 

0.5, the current response is said to be limited by semi-infinite diffusion, which is indicative of 

a faradaic process that may include intercalation, alloying etc. When b = 1.0, the current 

response is representative of a capacitive response [40]. A plot of log (i) vs log (v) for bulk 
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V2O5 and poly-NRs at 1.65 V is shown in Figure 5b, this potential corresponds to the lowest 

potential cathodic peak for bulk V2O5, as can be seen in Figure 3a. The corresponding b-

values for bulk V2O5 and poly-NRs at 1.65 V were determined to be ~0.93 and ~0.56, 

respectively. This suggests that at 1.65 V the current response for bulk V2O5 is primarily 

capacitive in nature whereas the current for poly-NRs at the same potential is due to 

intercalation reactions. As detailed earlier, the specific capacity of poly-NRs under 

galvanostatic discharge is ~ 280 mAh g-1.  The total integrated charge values shown in Figure 

5a ranges from 475 mAh g-1 at 0.1 mV/s to 250 mAh g-1 at 0.5 mV/s. 

 The b-values for bulk V2O5 and poly-NRs from 3.1 – 1.2 V are shown in Figure 5c 

and (d) respectively and are overlaid on the first cathodic scan for each sample at a scan rate 

of 0.1 mV/s. We observed two discrete lithium insertion peaks in the cathodic scan for bulk 

V2O5 at ~2.32 and 1.65 V, as shown in Figure 5c, which correspond to δ-Li1V2O5 and ω-

Li3V2O5 by comparison to the galvanostatic discharge profiles/phase transitions 

[57,58,50,59]. The b-values in the potential range of 2.64 – 2.12 V are ~0.4, indicating that 

the peak observed at 2.32 V arises predominantly from intercalation mode effects. The b-

values in the potential range of 1.86 – 1.33 V are ~0.8, indicating that the peak observed at 

1.65 V arises predominantly from capacitive effects, this potential range also corresponds to 

the phase transition from δ-LixV2O5 to γ-LixV2O5 [60]. These b-exponents indicate that the 

measured current for a cathodic scan for bulk V2O5 contains two distinct regions: (i) from 3.1 

– 2.0 V, the current response is primarily due to intercalation and (ii) from 2.0 – 1.2 V, the 

current response is primarily due to capacitive mode charge storage. A different response was 

observed for poly-NRs as shown in Figure 5d. The average b-value from 3.1 – 1.2 V was ~ 

0.60 indicating that the measured current was primarily due to intercalation reactions. The 

highest b-value obtained was ~0.69, which occurred at 2.24 V, and suggests that, during the 

cathodic scan, the current arises from diffusion controlled Li+ insertion reactions mixed with 
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contributions from capacitive effects. However the b-values indicate that the majority fraction 

of the total stored charge is due to intercalation mode processes. As mentioned above there 

are two well defined conditions for b. However b-values other than these have previously 

been reported. [40,31,61,17,49] It is quite common for b-values to be limited to a selected 

range of the potential window, as opposed to the full voltage range, most likely because b-

values outside of this range may be either >0.5 or >1.0. Also, the b-values are calculated for a 

few points along this decreased potential window. Herein, we present b-values which have 

been calculated at every potential along cathodic scan (with similar voltage resolution as the 

scan rate) and consequently the b-values are presented as a smooth line, and in the case of the 

bulk V2O5 particles b-values which are below 0.5 are presented.  

 From analysis of CV curves obtained at various scan rates it is possible to determine 

quantitatively the diffusion-based intercalation and capacitive contributions to the current 

response. The current response i, at a fixed potential V can be described as the combination of 

capacitive effects (k1v) and diffusion controlled insertion (k2v1/2) according to [62,35]: 

𝑖𝑖(𝑉𝑉, 𝑡𝑡) =  𝑘𝑘1𝑣𝑣 + 𝑘𝑘2𝑣𝑣1/2 

where v is the scan rate. By determining k1 and k2 it is possible to distinguish between the 

currents arising from Li+ insertion and those occurring from capacitive processes. The 

voltage profiles for the intercalation (blue area) and capacitive (red area) currents were 

compared with the total measured current (grey area) for bulk V2O5 and poly-NRs for scan 

rates in the range 0.1 - 100 mV/s, as shown in Figure 6. Note, that electrode polarization 

effects at higher scan rates that cause a sloping of the overall voltammogram are not 

accounted for in the analysis.  Anodic capacitive processes do not occur in parallel with 

cathodic intercalation processes in the actual electrode. For bulk V2O5, at a scan rate of 0.1 

mV/s, there is a wide peak in the capacitive curve at ~ 1.75 V, this is in agreement with the b-
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values calculated for bulk V2O5, shown in Figure 5c. At 1.75 V the calculated b-value was ~ 

0.90 which indicates that the measured current at that potential was primarily from capacitive 

effects, even at slow potential scan rates. This broad peak may also be indicative of a charge-

transfer process similar to intercalation pseudocapacitance [40,63]. Importantly, while slow 

scan rates for any size material are often ascribed to intercalation reactions and processes 

similar to those found under galvanostatic conditions, the b-exponent analysis confirms that 

for large crystals of active material, the electrochemical response should not be pre-emptively 

ascribed to diffusion-limited insertion, intercalation, or alloying processes by default at all 

voltages under voltammetric polarization. 

A larger contribution  from intercalation effects can be seen in the CV curves for 

poly-NRs compared to bulk V2O5 in similar potential ranges at slow scan rates (Figure S4). 

As previously mentioned, poly-NRs have a significantly larger surface area and a richer 

multivalent surface chemistry than bulk V2O5 particles and their nanoscale dimensions allow 

shorter Li+ diffusion lengths. Hence, there was a larger contribution from intercalation to the 

measured current for poly-NRs. This observation is in close agreement with the b-values 

calculated for poly-NRs. The average b-value for poly-NRs was ~0.60, indicating that 

intercalation processes were dominating the contribution to the measured current. At 

transition metal oxide surfaces including vanadium oxide, pseudocapacitive contributions 

from redox processes with Li+, particularly with O-vacancy defective high surface area poly-

NRs [37], can significantly contribute to the overall electrochemical energy storage 

mechanism at higher potentials, compared to larger bulk crystals, whose capacitive charge at 

similar scan rates is observed at lower potentials. At the higher scan rates (1-100 mV s-1), we 

find a size and surface chemistry influence on the energy storage mechanism over the entire 

potential range.  From Figure 6, a dominance of intercalation is found at higher scan rates for 

the poly-NRs, confirming that at all potentials, reduced size accommodates intercalation even 
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at faster potential scan rates, with less capacitive contributions at any potential or slower scan 

rate, for nanoscale vanadium oxide.  

The specific capacity and the relative contributions associated with lithium insertion 

and capacitive processes for bulk V2O5 and poly-NRs for the cathodic section of each scan 

were calculated from the data in Figure 3 and 4. The intercalation and capacitive 

contributions towards the total cathodic specific capacity for bulk V2O5 and poly-NRs are 

shown in Figure 7. The data presented in Figure 7 was acquired from four separate CV scans 

for bulk V2O5 and poly-NRs, in four separate scan rate ranges. Thus, there is an increase in 

the specific capacity for both materials at 1, 10 and 100 mV/s, which also provides an 

opportunity to observe the capacity fade under potentiodynamic condition in each scan rate 

range, while providing the relative capacitive to intercalation-mode contributions to this 

capacity. For bulk V2O5, the % specific capacity due to intercalation processes increased as 

the scan rate increased, from 75.3 % at 0.1 mV/s to 78.5 % at 100 mV/s, as shown in Figure 

7a. The contribution due to intercalation processes increased further for poly-NRs, from 82.7 

% at 0.1 mV/s to 93.3 % at 100 mV/s (Figure 7b). The increased contribution from 

intercalation processes at faster scan rates for poly-NRs compared to bulk V2O5 is most likely 

due to the smaller poly-NR particle size in spite of a richer surface chemistry that often 

facilitates surface redox capacitance at the surface. The larger bulk particles have longer Li+ 

diffusion lengths within the crystal to unreacted V2O5 lattice sites during discharge compared 

to poly-NRs, consequently at faster scan rates the diffusion and subsequent intercalation 

processes occur to the same extent over different time scales (~t1/2 for intercalation, ~t for 

capacitive contributions), which may account for the decreased intercalation contribution. A 

recent study [64] confirmed that nanoscale V2O5 with dimensions <10 nm on carbon 

backbone structures began to show capacitive-like effects. Here, we unequivocally 
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determined the rate dependence for nanoscale V2O5 with defined defect chemistry, compared 

to bulk materials, and also as a function of the applied potential.  

The contribution due to cation intercalation and phase conversion processes increased 

with increased scan rate, consequently the % of specific capacity due to capacitive effects 

(redox and any intercalation pseudocapacitance without a phase change) reduced. For bulk 

V2O5 the capacitive contribution significantly decreased from ~89.0 to 33.0 mAh g-1 for scan 

rates from 0.1 to 100 mV/s and for poly-NRs the capacitive contribution decreased even 

further from ~80.7 to 5.7 mAh g-1. This suggests that for both bulk micron scale V2O5 

particles and nanoscale vanadium oxide poly-NRs capacitive charge storage becomes less 

significant at fast scan rates (100 mV/s). When cycled at slower scan rates (0.1 – 0.5 mV/s), 

the specific capacity contribution due to capacitive processes (in mAh g-1) remained almost 

unchanged with increased scan rate, as shown in Figure 7a and b. For bulk V2O5 the 

capacitive contribution decreased from ~89.0 to 70.4 mAh g-1 for scan rates from 0.1 to 0.5 

mV/s and for poly-NRs the capacitive contribution decreased from ~80.7 to 78.4 mAh g-1. 

This suggests that at slow scan rates, capacitive contributions are not significantly affected by 

increased cycling at successively faster scan rates. The capacitive processes may not be as 

destructive to both bulk V2O5 and poly-NRs as the intercalation process can be.  

It is clear from Figure 7 that over a wide range of scan rates, contributions to the 

measured current from intercalation processes are dominant for both bulk V2O5 and poly-

NRs. This implies that engineering micron-scale bulk V2O5 particles with primarily one 

valence to form nanoscale multivalent vanadium oxide poly-NRs does not result in capacitive 

processes dominating over intercalation processes when cycled electrochemically. As 

discussed earlier, poly-NRs are comprised of nanoscale grains of vanadium oxide. The 

capacitive and intercalative contributions towards the total stored charge for poly-NR 

electrodes presented in Figure 7(b) suggests that at faster potential scan rates there is a 
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preference for intercalation charge storage which is most likely being facilitated by the 

reduced diffusion path lengths of the poly-NRs. Consequently, for poly-NR samples the 

capacitive contribution decreases with increasing scan rates. 

We note that the nanoscale form of the material is the V2O3 phase, which does not 

possess the dominant layered, cation-insertion regions of V2O5, yet the reduced dimension in 

certain voltage ranges and scan rates promote intercalation over capacitance storage even for 

the highly multivalent surface. This is an important finding as it suggests that making a 

material smaller and altering its phase does not automatically result in a shift towards 

pseudocapacitive behaviour even under faster voltage sweeps, as has been reported for TiO2 

[31] and MoO3 [40]. It was previously suggested by Simon et al. [15] that preparing 

nanoscale forms of battery materials does not necessarily transform them into oxide 

supercapacitors because their faradaic redox peaks and galvanostatic profiles remain battery-

like. This suggestion is in good agreement with our results whereby preparing a nanoscale 

vanadium oxide structure did not result in a domination of capacitive charge storage. 

A schematic representation of the proposed charge storage mechanisms during cyclic 

voltammetry for bulk V2O5 particles and poly-NRs is shown in Figure 8. At fast scan rates 

(~100 mV/s), a lower quantity of Li+ ions are inserted into the larger bulk V2O5 particles than 

the poly-NRs, due to the increased surface area and shorter Li+ diffusion path lengths of the 

nanorods. Consequently, more specific charge is stored due to diffusion processes for poly-

NRs than for the bulk particles. It may be expected that there would be a significant increase 

in surface charge storage with increased surface area for poly-NRs, however their nanoscale 

dimensions also provide shorter diffusion lengths with more regions in direct contact with the 

electrolyte and hence, the diffusion process dominates. 
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By comparing reveal that the response of small, high surface area, multivalent oxides 

to lithium insertion at different rates and voltages include both intercalation and capacitive 

contributions to the total stored charge. While the approach is applicable to any material in 

principle, proper evaluation of new and existing materials and their charge storage 

mechanisms is important in distinguishing the true performance metrics of materials and the 

nature of the Fardaic and non-Faradaic capacitance processes in electrochemical energy 

storage materials. 

 

Conclusions 

From cyclic voltammetry analysis of bulk V2O5 crystals and vanadium oxide polycrystalline 

nanorods at a wide range of potential scan rates, we determined that the specific capacity 

(total stored charge) for poly-NRs was significantly higher than for bulk V2O5.The 

quantitative contribution due to intercalation processes and capacitive contributions to the 

total stored charge was determined for each material by analysis of the measured current 

versus the rate of change of discharge and charging potentials. The measured current for the 

micron-scale bulk particles exhibited a larger contribution from capacitive effects than the 

nano-scale vanadium oxide poly-NRs at the same scan rates even though the nanorods were 

found to exhibit a richer surface chemistry with multiple V5+/V4+ and V4+/V3+ redox couples. 

This is in close agreement with b-values determined from the power law dependence of 

current on scan rate and shows that by using a nano-scale vanadium oxide structure and 

increasing the surface area, does not significantly increase pseudocapacitive behaviour. This 

is most likely due to the shorter Li+ diffusion path lengths available to the nanoscale poly-

NRs and a preference for intercalation compared to surface redox pseudocapacitance with 

multivalent surface species. 
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Four key findings from this study are as follows: (i) Charge storage for V2O5 

structures is not exclusively due to intercalation processes, capacitive charge storage also 

occurs, (ii) Capacitive effects are more significant at slower scan rates for vanadium oxide 

materials of bulk and nanoscale size irrespective of phase, (iii) The measured current for bulk 

V2O5 materials and also V2O3 nanoscale poly-NRs is predominately due to diffusion 

processes at all potentials. Considerable capacitive contribution to multivalent nanoscale 

materials is found above 3 V for poly-NRs at slow scan rates where the multivalent surface 

chemistry dominates over short solid state diffusion distances for cations, (iv) Making a 

vanadium oxide structures smaller, and increasing the surface area does not automatically 

significantly increase its (redox) pseudocapacitive behaviour at any scan rate, as determined 

from capacitive contributions towards the measured current. 
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Figure 1. TEM images of (a) bulk V2O5 and (b) poly-NRs. SEM images of (c) bulk V2O5 and 
(d) poly-NRs. XPS V 2p and O 1s core-level emission spectra (e) of V2O5 bulk crystals and 
(f) of poly-NRs. XRD pattern of (g) bulk V2O5 and (h) poly-NRs. 

  



26 
 

 

Figure 2. (a) TEM image of a typical poly-NR, (b) TEM image showing vanadium oxide 
nanoparticles which comprise the poly-NRs, (c) Frequency of nanoparticle diameter, (d) 
TEM image showing the vanadium oxide interplanar spacing present in poly-NRs (e) 
Frequency of vanadium oxide interplanar spacing. 
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Figure 3. Cyclic voltammograms of bulk V2O5 at various scan rates: (a) 0.1 – 0.5 mV/s, (b) 1 
– 5 mV/s, (c) 10 – 50 mV/s, (d) 100 – 500 mV/s. 
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Figure 4. Cyclic voltammograms of poly-NRs at various scan rates: (a) 0.1 – 0.5 mV/s, (b) 1 
– 5 mV/s, (c) 10 – 50 mV/s, (d) 100 – 500 mV/s. 
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Figure 5. (a) Specific capacity as a function of scan rate for bulk V2O5 and poly-NRs. 
(theoretical capacities for LiXV2O5, where x = 1,2,3 are shown with dashed lines) (b) log (i) 
as a function of log (ν) for bulk V2O5 and poly-NRs at 1.65 V in the cathodic scan. Calculated 
b-values for (c) bulk V2O5 and (d) poly-NRs, overlaid on the first cathodic scan for each 
sample at a scan rate of 0.1 mV/s. 
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Figure 6. Intercalation (blue) and capacitive (red) contributions to the total measured current 
(black) for bulk V2O5 and poly-NRs at scans rates of 0.1 mV/s (a) and (b), 1 mV/s (c) and (d), 
10 mV/s (e) and (f) and 100 mV/s (g) and (h). The capacitance contributions found with 
opposite polarity of current (or outside the area of the measured current in grey) are a 
consequence of the deconvolution from the measured current. The sum of indicative 
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intercalation and capacitive contributions at each potential equals the actual measured current 
(grey). 

 

Figure 7. Intercalation (blue) and capacitive (red) contributions to specific capacity for (a) 
bulk V2O5 and (b) poly-NRs. Data were acquired from four cycles in each of four cells using 
scan rate ranges of 0.1-0.5 mV/s, 1-5 mV/s, 10-50 mV/s and 100-500 mV/s.  
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Figure 8. Schematic representation of proposed charge storage mechanisms for bulk V2O5 
particles and poly-NRs. 

 


