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We present a contact-based model to study the spreading of epidemics by means of extending the
dynamic message-passing approach to temporal networks. The shift in perspective from node- to edge-
centric quantities enables accurate modeling of Markovian susceptible-infected-recovered outbreaks on
time-varying trees, i.e., temporal networks with a loop-free underlying topology. On arbitrary graphs, the
proposed contact-based model incorporates potential structural and temporal heterogeneities of the contact
network and improves analytic estimations with respect to the individual-based (node-centric) approach at
a low computational and conceptual cost. Within this new framework, we derive an analytical expression
for the epidemic threshold on temporal networks and demonstrate the feasibility of this method on
empirical data.

DOI: 10.1103/PhysRevX.9.031017 Subject Areas: Complex Systems, Interdisciplinary
Physics, Nonlinear Dynamics

I. INTRODUCTION

Accurate models of disease progression are valuable
tools for public health institutions as they enable detection
of outbreak origins [1–4], assessment of epidemic risk and
vulnerability [5–8], and containment of the spreading at an
early stage [5,9]. Mitigation strategies can thus be evaluated
and employed without the need to run a large number of
Monte Carlo (MC) realizations.
A fundamental challenge tomathematical epidemiologists

is the accurate determination of the critical parameters that
separate local andglobal epidemic outbreaks [10–16]. To this
end, the early Kermack-McKendrick model [17] divides a
population according to the disease status into compartments
of susceptible, infected, and recovered individuals with

mass-action equations to determine the transitions between
them. Since then, a wide range of improvements has been
proposed, including the impact of stochasticity [18–20], non-
Markovian dynamics [21–25], and, notably, heterogeneity in
the contact structure [11,26–30].
In recent years, the availability of mobility and contact

data with a high temporal resolution, so-called temporal
networks, offers another opportunity to improve analytical
predictions [31–36]. The timing of links between nodes
matters, in particular, when the network evolves on a
similar timescale as the spreading dynamics, which led
to an increasing interest in the interplay between disease
and network dynamics [37–42].
One approach to model the states of individual nodes in a

network takes the corresponding probabilities directly as
variables in a set of coupled dynamic equations [7,13,
20,43–47]. We refer to this approach as the individual-
based (IB) model, though it is sometimes also called the
N-intertwined model [20] or quenched mean field [48,49].
However intuitive, the analytic predictability suffers from
the simplifying assumption that epidemic states of adjacent
nodes are independent.
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Recently, a change from a node-centric to an edge-
centric perspective has been discussed within different
frameworks in order to overcome the inherent limitation
of the IB model. These approaches include branching
processes [50], message passing [23,51], belief propagation
[4], and the edge-based compartmental model [39]. So far,
however, edge-centric models are mostly limited to static
topologies. It thus remains an open challenge to simulta-
neously account for topological and temporal properties of
the underlying contact data and hence improve current
predictions of the epidemic threshold [7,52–56].
In this paper, we generalize the dynamic message-passing

approach for discrete-time Markovian susceptible-infected-
recovered (SIR) spreading [51] to time-evolving networks
and derive the epidemic threshold within this new frame-
work. The proposedmodel takes an edge-centric perspective
because the relevant dynamic equations are based on the set
of edges. Furthermore, the framework integrates the com-
plete temporal and topological information of the underlying
network into the epidemicmodel.We refer to our approach as
contact-based (CB) model and compare numerical predic-
tions with thewidely used IBmodel that takes a node-centric
perspective.Within the CB framework, we then derive a new
analytic expression of the epidemic threshold for temporal
networks and show that the edge-centric approach improves
existing results [7,20,43,44,52,53] at a low conceptual and
numerical cost. The CB and IB models have been imple-
mented in PYTHON with the source code available on
Github [57].
The remainder of this paper is structured as follows:

First, we summarize the conceptual framework in Sec. II
and formulate in Sec. III the dynamic equations of the IB
and CB models. Then, we derive the epidemic threshold
for temporal networks within the CB framework in Sec. IV.
We compare the edge- and node-centric approaches against
MC simulations in Sec. V and close with a discussion in
Sec. VI. Appendix A includes an extension to weighted
contacts and heterogeneous epidemiological parameters.
A network analysis of the German cattle-trade data is given
in Appendix B. Further results and applications of the CB
model are summarized in Appendix C.

II. CONCEPTUAL FRAMEWORK

We consider a temporal network G ¼ ½Gð0Þ; Gð1Þ;…;
GðT − 1Þ� with N nodes and T snapshots sampled at a
constant rate. Although both modeling frameworks can,
in principle, account for contact weights that indicate the
strength of a connection, we focus on unweighted networks
for simplicity and refer to Appendix A for an extension of
the model.
Emphasizing the important difference between temporal

and static elements, we refer to contacts as time-stamped
links ðt; k; lÞ ∈ C ⊂ T ×N ×N , thereby denoting with
N , T , and C the set of nodes, time stamps, and contacts,
respectively. We further assume that every contact is of

constant duration and equal to the sampling time of the
temporal network. By edges, we refer to the corresponding
static elements in the time-aggregated network. In other
words, an edge ðk; lÞ ∈ E ⊂ N ×N exists if and only if at
least one (temporal) contact is recorded between k and l.
Here, we denote with E the set of edges. Moreover, we
assume directed edges throughout the paper and represent
an undirected contact as two reciprocal contacts. Following
the convention in Ref. [23], we denote with k → l a directed
edge from k to l, and we indicate edge-based quantities in a
similar fashion.
As the stochastic process, we assume a discrete-time SIR

model, where a node l ∈ N represents an individual that is
either susceptible, infected, or recovered at a given time twith
a corresponding probability SlðtÞ, IlðtÞ, and RlðtÞ, respec-
tively. A susceptible node that is in contact with an infected
neighbor contracts the disease with a constant and uniform
(per time step) probability β. Furthermore, we treat the
transmission events from multiple infected neighbors as
independent, and similarly, we interpret potential (integer)
edge weights as independent infection attempts (see
Appendix A). We do not account for secondary infections
within one time step; i.e., only direct neighbors can be
affected. Once infected, the individual recovers with a uni-
formand constant probabilityμ independently of the infection
process and henceforth acquires a permanent immunity.
Concerning the contact data, we focus our numerical

analysis first on a face-to-face interaction network between
100 conference participants [58]. This so-called proximity
graph has a resolution of 20 s, and the observation time is
limited to the first 24 h. If necessary, we extend the data
set with a periodic boundary condition in time. The time-
resolved contacts enable the study of spreading of airborne
diseases as well as the propagation of ideas and rumors.
As an illustrative example, we present in Fig. 1 the time-

dependent probability that a selected node in the proximity
graph is either susceptible (yellow), infected (red), or recov-
ered (green). The results are derived from 104 MCsimulations

FIG. 1. Illustrative examples of a simulated epidemic outbreak
from a single initially infected node. Colors give the probability
that another arbitrarily selected node is in the susceptible
(yellow), infected (red), or recovered (green) state, respectively.
Simulation parameters: μ ¼ 2.85 × 10−4, β ¼ 100μ, 104 MC
realizations.
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with the same initially infected node. The trajectories reflect
the bursty activity of the underlying temporal network [58]
within the first 12 h and the subsequent inactive nighttime.
As a second source of data with direct relevance to

public health, we consider an excerpt of the national
German livestock database HI-Tier [59]. This temporal
network comprises the movement of cattle between farms
in Germany for the year 2010 with daily resolution.
Within the observation window of 365 days, more than
3 million transactions have been recorded between over
180 000 farms and traders, respectively. For more details
on the graph, see Appendix B. Cattle trade is considered
an important transmission route for livestock-related
diseases such as foot-and-mouth disease (FMD), which
broke out in the United Kingdom in 2001 with an
estimated cost of 8 billion pounds sterling [60].
Therefore, the analysis of the corresponding spatiotempo-
ral graphs is highly relevant to public health institutions.

III. DYNAMIC EQUATIONS

In this section, we present the mathematical framework
to model the stochastic SIR process as outlined in the
Introduction and Sec. II. Our main focus is the CB model,
but in order to facilitate a direct comparison between the
node and the edge-based approach, we begin with a short
overview of the IB model.

A. Individual-based model

In the IB model, the marginal probabilities SlðtÞ, IlðtÞ,
and RlðtÞ for all l ∈ N directly enter a set of 3 × N coupled
dynamic equations. The probability for l to contract the
infection from k upon a temporal contact is given by βIkðtÞ.
For convenience, we introduce an indicator function with
ak→lðtÞ ¼ 1 if a (directed) contact from k to l exists at time t
and ak→lðtÞ ¼ 0 otherwise. Then, the probability for node l
to receive no infection at time t from any of its neighbors
factorizes by assumption to

Q
k½1 − βak→lðtÞIkðtÞ� and

k ∈ N . With this result, the marginal probability Slðtþ 1Þ
can be expressed by the probability SlðtÞ to be susceptible
in the previous time step t and not contract the infection
within the interval ½t; tþ 1Þ. In the IB model, the joint
probability factorizes, and we obtain

Slðtþ 1Þ ¼ SlðtÞ
Y
k∈N

½1 − βak→lðtÞIkðtÞ�: ð1Þ

Here, the crucial simplification is to treat the epidemic
states of l and its neighbors as mutually independent,
which is sometimes referred to as neglecting dynamic
correlations [61].
The marginal probability Ilðtþ 1Þ follows from two

independent contributions: (i) The outflux μIlðtÞ indicates
the transition from the infected to the recovered state. (ii) The
influx ΔSlðtÞ ¼ SlðtÞ − Slðtþ 1Þ reflects the probability

that node l is newly infected at time tþ 1. Combining both
contributions leads to

Ilðtþ 1Þ ¼ ð1 − μÞIlðtÞ

þ SlðtÞ
�
1 −

Y
k∈N

½1 − βak→lðtÞIkðtÞ�
�
: ð2Þ

The set of 2 × N coupled dynamic equations (1) and (2)
thus constitutes the IB model for temporal networks. The
remaining marginal probability RlðtÞ to find node l in the
recovered state follows from the conservation condition
SlðtÞ þ IlðtÞ þ RlðtÞ ¼ 1 for all l ∈ N . Finally, we assign a
probability zl ¼ Slð0Þ that node l is initially susceptible, as
well as Ilð0Þ ¼ 1 − zl and Rlð0Þ ¼ 0 throughout the paper.
Though intuitive and, in many cases, sufficient from a

modeling perspective, the limits of the IB model are difficult
to estimate due to the ad hoc factorization of the joint
probability in Eq. (1). Even for the simplest network with
two nodes connected by an undirected static edge, the IB
approach can deviate significantly from the expected out-
come as illustrated in Ref. [62]. In their example, recovery is
neglected for simplicity, and only the first node is infected
initiallywith someprobability 0 < z1 ≤ 1. Counterintuitively,
the probabilities to find each node in the infected state
converge to I1ð∞Þ ¼ I2ð∞Þ ¼ 1 according to the IB model,
independent of the initial condition z1. This convergence
occurs because integrating Eqs. (1) and (2) admits a proba-
bility flux from the outbreak location to the adjacent node and
back to its origin again. This mutual reinfection, coined the
echo chamber effect in Ref. [62], appears because we neglect
the fact that the probability I2 to find the second node in the
infected state is conditioned on the state of the first node, and
thus the factorization in Eq. (1) is not justifiable.
In an arbitrary network, an initially infected node leads

to a cascade of secondary infections within which all
marginal probabilities are highly correlated. An accurate
model excludes these previously infected nodes from
those that can potentially contract the infection in the
future. In the next section, we discuss how a shift from a
node-centric to an edge-centric view can take into account
some such dependencies.

B. Contact-based model

We begin with a slightly different approach to the
marginal probability SlðtÞ. First, we note that l is suscep-
tible at time t, if it was susceptible initially [with probability
Slð0Þ ¼ zl] and has not contracted the infection from any of
its neighbors up to time t. We assign the probabilityΦlðtÞ to
the latter statement. Thus, without introducing any approxi-
mation at this stage, we can write

SlðtÞ ¼ zlΦlðtÞ: ð3Þ
In order to determineΦlðtÞ, we make the assumption that

the underlying time-aggregated graph is a tree (ignoring
directionality). Then, different branches originating in
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node l are independent as long as l remains susceptible, and
thusΦlðtÞ factorizes. However, if node l contracts a disease
from a neighbor k with some probability and passes it on to
another node k0, then the corresponding probabilities Ik and
Ik0 are clearly correlated. A simple solution that allows
different branches to nonetheless be treated as independent
is to prevent a probability flow through the root node in the
first place. From a graph-theoretic perspective, this solution
corresponds to the (virtual) removal of all out-directed
contacts from the root node. This approach does not modify
the dynamics of the node under consideration because it can
still contract the disease, and once infected, the recovery
process is independent of the topology. However, the idea
considerably reduces the amount of bookkeeping that would
otherwise be necessary if we accounted for the correlations
directly. The singular node l is said to be a cavity node or
in the cavity state [23,51], a concept closely related to the
test-node assumption [39] and the idea of cut vertices [63].
With this concept, we can factorize ΨlðtÞ and thus obtain

SlðtÞ ¼ zl
Y
k∈N l

θk→lðtÞ: ð4Þ

Here, we introduce the probability θk→lðtÞ that no disease has
been transmitted fromnode k to the cavity node l up to time t.
The change in perspective towards an edge-centric

analysis introduces new auxiliary dynamic quantities such
as θk→lðtÞ. These quantities are defined on the set of edges
E of the time-aggregated network, and thus the number of
dynamic variables scales with L, the number of edges.
In order to obtain a system of dynamic equations, we

focus on our first edge-centric variable θk→l. Initially, no
disease was transmitted such that θk→lð0Þ ¼ 1 for all edges
ðk; lÞ ∈ E. Henceforth, the dynamic quantity reduces only
(i) upon a temporal contact indicated by ak→lðtÞ and (ii) if
the adjacent node k is infected without having transmitted
the disease earlier to the cavity node l—we denote the
corresponding probability by Ik→lðtÞ. Hence, the out-flow
of probability is given by βak→lðtÞIk→lðtÞ, leading to our
first dynamic equation

θk→lðtþ 1Þ ¼ θk→lðtÞ − βak→lðtÞIk→lðtÞ: ð5Þ
Next, the probability Ik→lðtÞ evolves according to three

contributions. (i) It decreases with the recovery probability
μ and (ii) with the probability β to infect its target node
upon a temporal contact. These processes are independent
and may contribute simultaneously with the joint proba-
bility βμ. (iii) Ik→lðtÞ increases with the probability
ΔSk→lðtÞ ¼ Sk→lðtÞ − Sk→lðtþ 1Þ that k is newly infected
by at least one of its incident neighbors excluding the cavity
node l. In sum and with the initial condition Ik→lð0Þ ¼
1 − zk, these contributions lead to

Ik→lðtþ 1Þ ¼ ð1 − μÞ½1 − βak→lðtÞ�Ik→lðtÞ þ ΔSk→lðtÞ:
ð6Þ

Finally, we consider the probability Sk→lðtÞ that node k,
adjacent to the cavity node l, is susceptible. Since k is not
affected by the state of l, it stays susceptible if it does not
contract the disease from any of its remaining, incident
neighbors j ∈ N knl. It has been shown in Ref. [64] that the
corresponding probability Φk→lðtÞ ¼

Q
j∈N knl θj→kðtÞ fac-

torizes, and thus, similar to Eq. (3), we find Sk→lðtÞ ¼
zlΦk→lðtÞ or, equivalently,

Sk→lðtþ 1Þ ¼ zk
Y

j∈N knl
θj→kðtþ 1Þ: ð7Þ

The disease progression in the CB framework is fully
characterized by Eqs. (5) and (6), a set of 2L coupled
equations. Equation (7) is introduced here for convenience
only and can be substituted into Eq. (6). Next, we return to
the node-centric quantities. To this end, we note that SlðtÞ
has already been determined in Eq. (4). The remaining
marginals Il and Rl are equivalent to the IB model and given
by the conservation condition, as well as the transition to the
recovered state in Eqs. (8) and (9), respectively:

Ilðtþ 1Þ ¼ 1 − Slðtþ 1Þ − Rlðtþ 1Þ; ð8Þ

Rlðtþ 1Þ ¼ RlðtÞ þ μIlðtÞ: ð9Þ
The CB model is exact for temporal networks, where

the undirected, time-aggregated graph has a tree structure
and is therefore loop-free. Most realistic networks, how-
ever, contain a large number of loops such as triangles in
social graphs, where two friends are likely to have many
more friends in common. Here, the CB model nevertheless
appears to be “unreasonably effective” (cf. Ref. [65]) and
improves predictions significantly with respect to the IB
approach as we will see in Sec. V. For further extensions
to the model that include heterogeneous infection and
recovery probabilities, as well as weighted contacts, see
Appendix A.

IV. EPIDEMIC THRESHOLD

The parameters that mark the epidemic threshold can be
derived by examining small perturbations around the
disease-free state. If such perturbations die out, then any
outbreak remains local, but if the perturbation grows, then a
global epidemic may occur. We consider a linearization of
the dynamic equations (5)–(7), which will give rise to a
criticality condition, determining the epidemic threshold.
We begin with the ansatz θk→lðtÞ ¼ 1 − δk→lðtÞ and
zl ¼ 1 − ϵl, where δk→lðtÞ; ϵl ≪ 1 are small perturbations
around the disease-free state for all nodes l and edges ðk; lÞ.
Thus, Eq. (5) becomes

δk→lðtþ 1Þ ¼ δk→lðtÞ þ βak→lðtÞIk→lðtÞ: ð10Þ
In Eq. (7), we keep the linear terms of the Taylor

expansion, which transforms the product into a correspond-
ing sum:
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Sk→lðtþ 1Þ ¼ ð1 − ϵkÞ
Y

j∈N knl
½1 − δj→kðtþ 1Þ� ð11aÞ

≈ 1 − ϵk −
X

j∈N knl
δj→kðtþ 1Þ ð11bÞ

¼ Sk→lðtÞ þ β
X

j∈N knl
aj→kðtÞIj→kðtÞ: ð11cÞ

In Eq. (11b), we substituted the dynamic equation (10)
and identified Sk→lðtÞ in the next step. From the resulting
Eq. (11c), we can read the linearized form of ΔSk→l, which
allows us to decouple the dynamic equations for Ik→l:

Ik→lðtþ 1Þ ≈ ð1 − μÞ½1 − βak→lðtÞ�Ik→lðtÞ
þ β

X
j∈N knl

aj→kðtÞIj→kðtÞ: ð12Þ

Next, we rewrite the remaining set of L dynamic
equations in a compact, matrix-based formulation and
therefore introduce the vectors IðtÞ and aðtÞ with elements
Ik→lðtÞ and ak→lðtÞ, respectively. To this end, we also
express the linear operation

P
j∈N knl aj→kðtÞ in Eq. (12),

which acts on the elements Ik→lðtÞ of the state vector,
through the temporal unweighted nonbacktracking matrix
BðtÞ:

Bk→l;j→k0 ðtÞ ¼
�
aj→k0 ðtÞ if k0 ¼ k; and j ≠ l

0 otherwise:
ð13Þ

In other words, Bk→l;j→k0 ðtÞ ¼ 1 if the contact ðt; j; k0Þ at
time t is incident on the edge ðk; lÞ (implying k0 ¼ k), and
additionally j ≠ l. Otherwise, we have Bk→l;j→k0 ðtÞ ¼ 0.
It is only the nonbacktracking property j ≠ l that sets B
apart from the adjacency matrix of the ordinary line graph.
For temporal networks, a subtle distinction has to be made
between the first and the second index of the L × L
dimensional matrix B: The first corresponds to an out-
directed (static) edge ðk; lÞ ∈ E of the underlying aggre-
gated network and can be interpreted as a potential contact
in the future. The second, however, is an incident
(temporal) contact ðt; j; k0Þ ∈ C from node j to k0 at time
t. We also introduce the diagonal matrix diag(1 − βaðtÞ),
with diagonal elements given by the vector 1 − βaðtÞ.
Here, we denote by 1 the vector of all ones. With these
definitions, we rewrite Eq. (12) as

Iðtþ 1Þ ¼ ½ð1 − μÞdiag(1 − βaðtÞ)þ βBðtÞ�IðtÞ: ð14Þ

The explicit solution to the state vector IðTÞ at final
observation time T is formally given by IðTÞ ¼
Pðβ; μÞIð0Þ, where the so-called infection propagator
P [54] is introduced for notational convenience:

Pðβ; μÞ ¼
YT−1
t¼0

½ð1 − μÞdiag(1 − βaðtÞ)þ βBðtÞ�: ð15Þ

In order to evaluate the asymptotic behavior, we assume
a periodic boundary condition in time, i.e., BðtÞ ¼
Bðtþ TÞ. This allows us to assess the vulnerability of
the temporal network through the spectral radius of the
propagator P. In particular, we find that a SIR-type out-
break is asymptotically stable under small perturbations,
i.e., remains confined to a small set of nodes, as long as
the spectral radius satisfies ρ½Pðβ; μÞ� < 1. Thus, the phase
transition is given by the criticality condition

1 ¼ ρ

�YT−1
t¼0

½ð1 − μÞdiag(1 − βaðtÞ)þ βBðtÞ�
�
: ð16Þ

Note that for irreducible and non-negative matrices, the
largest eigenvalue is simple and positive according to the
Perron-Frobenius theorem [66]. Assuming 0 ≤ β, μ < 1, a
sufficient condition for temporal networks is to restrict
contacts to the giant strongly connected component
(GSCC) of the underlying time-aggregated graph. In
Sec. V B, we fix the recovery probability μ and determine
the critical infection probability βcrit as the root of fðβÞ ¼
1 − ρ½Pðβ; μÞ� for different empirical networks.
We conclude this section with a discussion on the static

network limit. In the so-called quenched regime, the disease
evolves on a much faster timescale than the dynamic
topology and thus operates on an effectively static network
with BðtÞ≡ Bð0Þ≡ B and aðtÞ≡ 1 for all times t. As in
the temporal analysis, we restrict the network to the GSCC
so that the Perron-Frobenius theorem [66] applies. In this
limit, the dynamic equations (5)–(7) reduce to the dynamic
message-passing formulation in Ref. [51]. Moreover,
Eq. (15) now becomes a product

Q
T−1
t¼0 Pfastðβ; μÞ ¼

½Pfastðβ; μÞ�T of T identical, single time-step propagators

Pfastðβ; μÞ ¼ ð1 − μÞð1 − βÞ1þ βB; ð17Þ

where 1 ¼ diagð1Þ denotes the identity matrix.
The spectral radius in Eq. (16) factorizes to

ρ½Pfastðβ; μÞT � ¼ ρ½Pfastðβ; μÞ�T , and it follows that the
criticality condition Eq. (16) reduces to ρ½Pfastðβ; μÞ� ¼ 1.
Furthermore, we find from basic linear algebra that
ρ½Pfastðβ; μÞ� ¼ ð1 − μÞð1 − βÞ þ βρðBÞ, and hence we
obtain the corresponding static threshold condition

�
β

β þ μ − βμ

�
crit;fast

¼ 1

ρðBÞ : ð18Þ

The criticality condition in Eq. (18) deviates from the
continuous-time result in Refs. [16,23]. In the derivation
presented here, the term βμ in Eq. (18) accounts for the
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simultaneous events when a node infects a neighbor and
recovers within the same time step.
In contrast to the quenched regime, one can also consider

the so-called annealed limit. Then, parameters β and μ are
sufficiently small such that no more than one infection or
recovery event can take place within the observation time.
Therefore, we expand the infection propagator to the first
order in β and μ and obtain

Pslowðβ; μÞ ¼ ð1 − TμÞ1 − TβdiagðāÞ þ TβB̄: ð19Þ

Here, ā ¼ 1=T
P

t aðtÞ and B̄ ¼ 1=T
P

t BðtÞ denote the
corresponding time-averaged quantities. It is insightful to
evaluate simple bounds for the set of parameters ðβ; μÞcrit;slow
that satisfy the threshold condition ρðPslowÞ ¼ 1 in the
annealed limit. With 1=T ≤ ā ≤ 1 for all elements in ā,
we thus find

�
β

β þ μ

�
crit;slow

≤
1

ρðB̄Þ ≤
�

β

β=T þ μ

�
crit;slow

: ð20Þ

Assuming the upper bound in Eq. (20) overestimates the
outbreak risk and can be considered a conservative choice
from an epidemiological perspective. This limit is realized
for a temporal network where every edge appears exactly
once within the observation time, hence ā ¼ 1=T. The
lower bound in Eq. (20) is exact in the case of a static
network (thus ā ¼ 1) and corresponds to the continuous-
time result in Ref. [16]. However, this limit underestimates
the outbreak risk, and therefore we conclude with a note of
caution when applying results from static network theory
directly to time-varying topologies.

V. APPLICATION

A big advantage common to both the node-centric IB
and edge-centric CB modeling framework is a significant
reduction in computational complexity compared to MC
simulations. The CB model requires iteration through all
edges at every time step, and thus the time complexity
scales with OðLTÞ. The IB formulation and a single MC
realization require OðC̄TÞ, where C̄ denotes the average
number of active contacts, which can be significantly
smaller than L. Stochastic MC simulations, on the other
hand, require a large number of realizations in order to
provide reliable statistics. The computational disadvantage
of MC simulations becomes even more apparent when we
consider a complex quantity such as the epidemic thresh-
old, which requires multiple ensemble averages for differ-
ent sets of epidemic parameters in order to fit the critical
infection probability (see Sec. V B). Equally important,
however, is the accuracy of our analytic approach.
Therefore, in this section, we compare estimations from
the IB and CB mean-field model with MC simulations
using empirical data as introduced in Sec. II.

A. Numerical analysis of the mean-field dynamics

We begin with an analysis on the level of individual
nodes. In Fig. 2, we show the cumulative infection prob-
ability for a small number of example nodes from the
conference data set given the same outbreak location.
The selection is intended to present qualitatively different
trajectories, also demonstrating that deviations between the
two models vary considerably. TheMC result (blue curve) in
Fig. 2(a) corresponds to the introductory example in
Fig. 1. Here, a comparison with the analytic estimation shows
that theCB approach leads to a substantial improvement to the
IBmodel.Also inFigs. 2(b)–2(d), the trajectories are erratic, as
they reflect the sudden changes in the underlying topology,
highly individual and yet well approximated by the CB
model. For all nodes in the network, we find that the CB
model gives a closer upper bound to MC simulations
because, unlike the IB framework, it accounts for dynamic
correlations between nearest-neighbor states.
Dynamic mean-field models such as the IB and CB

framework provide realistic expectation values only if
stochastic fluctuations are negligible. In order to illustrate
the limitations, we study epidemic outbreaks for three
different initially infected nodes in Figs. 3(a)–3(c), respec-
tively. The left column gives the time-resolved distribution
of the outbreak size, and the right column presents the final
distribution at the end of the three-day observation period.
For the ensemble average (blue line), we consider only
realizations with more than 20 infected nodes overall.
This threshold separates outbreaks that die out early due
to stochastic fluctuations and thus permits a direct com-
parison with estimations from the IB and CB frameworks in
green and red, respectively.
We choose the outbreak locations such that the degree of

stochasticity increases from top to bottom. In Fig. 3(a1), we

FIG. 2. Epidemic trajectories for four exemplary individual
nodes. We compare the cumulative infection probability from
MC simulations (blue line) with estimations from the CB model
(red dashed line) and the IB approach (green dotted line).
Simulated results are averaged over 104 MC realizations with
the same outbreak location and disease parameters as in Fig. 1.
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find a narrow distribution around the ensemble average,
which is well approximated by the mean-field models.
Minor outbreaks due to early extinctions are well separated
in Fig. 3(a2) from large epidemics. In Fig. 3(b), the initially
infected node leads to realizations with considerably
stronger fluctuations, and in Fig. 3(c), it is barely possible
to separate early extinctions at all. Additionally, we observe
a second source of stochastic variation, namely, the time at
which a disease escalates and hence evolves into a global
epidemic. As a consequence, early outbreak sizes may be
overestimated significantly before the analytic trajectory
approaches the expectation value again [see Fig. 3(c1)].
Remarkably, the performance of both mean-field models

varies significantly with the outbreak location, even for the
basic reproduction number R0 well above the epidemic
threshold. At the late phase of an outbreak, however, the
mean-field models provide good approximations, and con-
sistently with Fig. 2, we find that the CB model outperforms
the IB approach. In Appendix C, we demonstrate how a
sufficiently large number of initially infected individuals
significantly improves the predictability.

Another source of stochasticity is the choice of disease
parameters β and μ, respectively. We focus on the final
outbreak size, averaged over all outbreak locations. The
distribution as a function of the infection probability β (see
Fig. 4) shows a percolation-like transition from localized
spreading to epidemics that affect a considerable fraction of
the network. We apply the same threshold as in Fig. 3 for a
direct comparison between the averaged outbreak size and
the mean-field models for β > 0.02. Here, we find that the
difference between the expected size and the CB estimation
is close to negligible, whereas the IB model consistently
overestimates the expected value.
A comparison at low values of the infection probability β

becomes unreliable as stochasticity impedes a reasonable
distinction between minor and global outbreaks. In order to
illustrate the effect, we present in Fig. 5 the outbreak-size
distribution for different values of β as marked by the
arrows in Fig. 4. This representation highlights the tran-
sition from the subcritical to the supercritical parameter
domain: The unimodal distribution in Fig. 5(a) character-
izes localized outbreaks, whereas the bimodal distribution
in Fig. 5(d) clearly separates early extinctions and global
epidemics. Next, we focus on the critical infection prob-
ability that marks the transition.

B. Epidemic threshold

In Fig. 6(a), we present the region of small β from Fig. 4
in order to focus on the transition from localized outbreaks
to the sudden emergence of global epidemics. We deter-
mine the critical infection probability βcrit (vertical blue
line) from the maximum of the relative standard deviation
[54], also known as the coefficient of variation [see blue
line in Fig. 6(b)]:

FIG. 3. Left column: Time-resolved and normalized outbreak-
size distributions for three different initially infected nodes.
Epidemic parameters are as in Fig. 1 and 104 MC realizations.
The expectation value (blue line) assumes a cutoff at 20% of the
population size (black dashed line). The CB and IB models are
presented as a red dashed and green dotted line, respectively.
Right column: Outbreak-size distribution at the final observation
time in logarithmic scale with corresponding expectation values.

FIG. 4. Distribution of final outbreak sizes as a function of
the infection probability β. We perform 105 MC realizations for
every value of β, each starting with one randomly chosen
outbreak location. For β > 0.02, we show the averaged final
outbreak size (blue line) with a cutoff at 20% of the population
size. Estimations from the CB and IB models are presented as red
dashed and green dotted lines, respectively. Labeled arrows
at the bottom mark infection probabilities that correspond to
Figs. 5(a)–5(d), respectively.
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cv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hσ2i − hσi2

p
hσi : ð21Þ

Here, we denote with hσi and hσ2i the first and second
moments of the outbreak-size distribution. The coefficient
of variation captures the intuition that fluctuations domi-
nate the outbreak-size distribution close to the transition.
Indeed, cv diverges at the critical point for infinitely large
networks, indicating a second-order phase transition [67].
Analytically, we determine βcrit from the spectral cri-

terion in Eq. (16) for the CB model and similarly within the
IB framework [54,68]. The comparison in Fig. 6 shows that

the IB and CB models, marked by a red dashed and green
dotted line, respectively, underestimate the critical infection
probability from MC simulations (blue line) and thus
overestimate the outbreak risk. Consistent with our pre-
vious results, we can state that a shift from a node- to an
edge-centric framework improves the analytic prediction.
In Appendix C, we present similar results for different
values of the recovery probability μ. Next, we continue with
a realistic application of the epidemic threshold to the
German cattle-trade network.

1. Application to German cattle trade

We now consider a completely different data set, where
the system size is large and contacts are sparse over time.
Our example is a cattle-trade network, where the movements
of animals between farms in Germany are recorded on a
daily basis. Next, we isolate the trade within each federal
state of Germany as visualized in Fig. 7 and restrict trade to
the GSCC of the underlying aggregated graph. Disregarding
the smallest networks (those with less than 27 nodes), we
thus obtain 12 time-varying graphs with sizes varying from
254 to 27 863 nodes and highly heterogeneous topological
and temporal features (see Appendix B).
As in the previous section, we assume that premises can

be either susceptible, infected, or recovered, and trade events
facilitate the transmission of a disease. Unlike before,
however, we take into account the number of traded animals
during each transaction, i.e., the weight wk→l of a (temporal)
contact from node k to l. To this end, we modify the infection
propagator in Eq. (15) and replace β by 1 − ð1 − βÞwk→l (see
Appendix A for more information). In a potential outbreak,
we assume that an infected node is detected with a constant
probability μ each day, after which it would be isolated and
thus removed from the network. As a consequence, highly

FIG. 5. Distribution of final outbreak sizes for β ¼ 0.003, 0.01,
0.02, and 0.1, respectively. For β ¼ 0.02 and 0.1, we mark part of
the distribution with outbreak sizes below the given threshold of
20% by a lighter color tone and neglect this contribution to the
averaged value (blue vertical line). The expected outbreak size
from MC simulations and the estimations from the CB and IB
models are plotted as blue, red dashed, and green dotted vertical
lines, respectively.

FIG. 7. (a) Cattle trade within Germany. Weighted edges
correspond to directed trade relations within the year 2010,
whereas the color indicates the accumulated number of traded
animals. (b) Cattle trade within the federal states of Germany. We
confine the underlying time-aggregated graph to the GSCC and
visualize here only edges with a flux of at least 50 animals.

FIG. 6. Estimation of the critical infection probability βcrit.
(a) Outbreak-size distribution as in Fig. 4 for small values of β.
The vertical blue, red dashed, and green dotted lines mark the

critical value according to MC simulations (βðMCÞ
crit ), the CB model

(βðCBÞcrit ), and the IB approach (βðIBÞcrit ), respectively. (b) From the
distribution in (a), we derive the coefficient of variation (blue line,
left axis) and the mean outbreak size (grey dashed line, right
axis).
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infectious diseases such as FMD can be modeled as SIR-
type epidemics [60].
In Fig. 8, we compare the critical infection probability

similar to Fig. 6 for six selected federal states with different

transition characteristics. The critical value derived from
MC simulations varies between βcrit ¼ 0.018 [Bavaria
(BY)] and βcrit ¼ 1.0 [Saxony (SN)]. The latter indicates
that outbreaks remain localized for every choice of β due to
sparse intrastate trade.
As a potential application to public health institutions, we

present in Fig. 9(a) the spatial variation of the epidemic risk
in terms of βcrit. The quantitative comparison in Fig. 9(b)
demonstrates that spectral methods provide a lower bound
with a varying degree of accuracy depending on the network
details. Despite their heterogeneity in size and activity, we
find for all networks that the CB model outperforms the
IB approach. The detailed results for all states as well as a
similar analysis for μ−1 ¼ 120 are available in Appendix C.

VI. CONCLUSION

In this paper, we have presented the CB model for
epidemic SIR spreading on temporal networks as a
conceptually similar framework to the widely used IB
approach. Derived from the message-passing framework
[23,51], it inherits its accuracy on loop-free topologies
and improves analytic estimations with respect to the IB
approach for arbitrary time-evolving graphs. Moreover,
the focus on edge-based quantities that are updated in
discrete time steps allows a seamless integration of temporal
interactions. Structurally similar to the node-centric IB
model, the proposed CB approach poses a low conceptual
barrier and admits application on large graphs.
Importantly, the accuracy of the CB model improves

existing approximations of the epidemic threshold, which is
a crucial risk measure for public health institutions. To this
end, we have studied the largest eigenvalue of the infection
propagator matrix, which determines the disease propaga-
tion in the low prevalence limit and takes into account the
full temporal and topological information up to the obser-
vation time. The largest eigenvalue can be easily found
through repeated matrix multiplications, i.e., the so-called
power method. Without relying on extensive MC simu-
lations and a subsequent parameter fit, the critical value can
thus be estimated with efficient, vectorizable tools from
linear algebra that are available for most high-level pro-
gramming languages.
In the application section, we focused first on a social

contact graph that can be used to analyze the propagation of
airborne diseases as well as the spread of information. Our
comparison between MC simulations and analytic estima-
tions from the CB and IB models followed a bottom-up
approach: We looked at (i) epidemic trajectories of individ-
ual nodes, (ii) averaged trajectories given the same outbreak
location, and (iii) the final outbreak size for a range of
infection probabilities and with random initial condition.
In all cases, the CB model provides a closer upper bound to
MC simulations than the widely used IB model. All results
based on the conference data set can be reproduced using the
PYTHON code provided in Ref. [57].

FIG. 8. Detailed threshold analysis for six selected federal
states with μ ¼ 1=28 (cf. Table I). We show the simulated mean
outbreak size (grey line, right axis) and coefficient of variation
(blue line, left axis) averaged over all initially infected nodes. The
critical infection probability fromMC simulations are shown, and
the IB and CB models are presented as vertical blue, green dotted,
and red dashed lines, respectively.

FIG. 9. (a) Spatial variation of epidemic risk due to cattle trade
in Germany for μ ¼ 1=28. Federal states are colored according to
the critical infection probability βcrit as determined from MC
simulations, the CB and IB models, respectively (see Figs. 8 and
19 for details). The city states Berlin (B), Hamburg (HH), and
Bremen (HB), as well as Saarland (SL), are excluded due to the
small network size (see Table I). (b) Critical infection probability
βcrit in logarithmic scale, sorted from high (left) to low risk
(right). Results from MC simulations, and the CB and IB models
are presented as groups of blue, red, and green bars, respectively.
Disclaimer: A realistic vulnerability analysis requires, for in-
stance, heterogeneous recovery probabilities and complex coun-
termeasures (see Appendix B for details).
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As a particularly important application, we then com-
pared analytic estimations of the critical infection proba-
bility with extensive MC simulations. To this end, we
included a case study of livestock trade within 12 federal
states in Germany with highly heterogeneous character-
istics in terms of size, density, and temporal activity.
Consistently, we found that the CB model improves the
previously proposed lower bound at a low conceptual and
computational cost.
Many excellent results have already been derived within

the IB framework for empirical networks and in the context
of random graphs (see Ref. [69] for a recent review) that
can further improve the CB model. We therefore expect that
the conceptual simplicity of the CB framework allows us to
integrate features such as non-Markovianity [22], stochas-
tic effects [70], and estimations of uncertainty [71] that are
important to realistic disease models on temporal networks.
Also, first steps towards higher-order models that go
beyond the tree-graph assumption have been proposed in
the context of percolation theory [72] and diffusive trans-
port [73,74], and we expect these improvements to be
applicable to the CB model as well.
The data are available on [75], and using the source code

in Ref. [57], results of this paper can be easily reproduced.
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APPENDIX A: WEIGHTED NETWORKS AND
HETEROGENOUS INFECTION AND

RECOVERY PROBABILITIES

In order to improve the predictive power of a network
model, it is often required to take into account additional
information. In the main article, we focus on the temporal
dimension. However, another important piece of informa-
tion is the weight of a contact. The interpretation of weight
can range from passenger numbers in the global air traffic
network to the impedance in a network of electric compo-
nents. The distribution of weights in static as well as
temporal empirical networks often shows a broad tail [76],
and as such, the averaged edge weight can become mean-
ingless because of large fluctuations. It is therefore often
required to account for heterogeneous edge weights explic-
itly in epidemiological models. However, depending on
the interpretation, weights may enter the model in different
ways. Typically, a time-dependent edge weight wk→lðtÞ is
considered similar to the conductivity between two nodes k

and l in an electric circuit. Translated to an epidemiological
context, we would thus scale the infection probability
linearly; i.e., βak→lðtÞ becomes βwk→lðtÞ in a weighted
network. Another approach, popular in the context of
random walks and disease spreading, is to interpret an
integer-valued weight wk→lðtÞ as a number of parallel and
unweighted edges that connect k with l [7,46]. From an
epidemiological viewpoint, this idea would translate to
wk→l independent attempts to transmit the disease at time
t. Here, the infection probability βak→lðtÞ becomes 1−
ð1 − βÞwk→lðtÞ in the weighted case. In the main article, we
apply the latter interpretation to calculate the epidemic risk
in the context of livestock trade (see Fig. 9). Here, weights
correspond to the number of animals traded, each of which
can infect the target population independently. For small
probabilities β ≪ 1, the adjusted infection probability
simplifies to 1 − ð1 − βÞwk→lðtÞ ≈ βwk→lðtÞ.
A second source of heterogeneity that is commonly

considered includes heterogeneous infection and recovery
probabilities, denoted as βk→l and μk, respectively. With
these modifications, the dynamic equations (5)–(7) from
the main text translate to

θk→lðtþ 1Þ ¼ θk→lðtÞ − Ψk→lðtÞIk→lðtÞ; ðA1aÞ

Sk→lðtþ 1Þ ¼ zk
Y

j∈N knl
θj→kðtþ 1Þ; ðA1bÞ

Ik→lðtþ 1Þ ¼ ð1 − μkÞ½1 −Ψk→lðtÞ�Ik→lðtÞ þ ΔSk→lðtÞ:
ðA1cÞ

Here, Ψk→lðtÞ denotes the probability that k infects l at
time t given that the former is infected and has not yet
transmitted the disease. For weighted networks, we can
choose Ψk→lðtÞ ¼ βk→lwk→lðtÞ or Ψk→lðtÞ ¼ 1 − ð1 −
βk→lÞwk→lðtÞ as discussed above. The linearization of
Eqs. (A1a)–(A1c) around the disease-free state leads to

Iðtþ 1Þ ¼ diag½ð1 − μÞ∘(1 −ΨðtÞ)�IðtÞ þ BβðtÞIðtÞ:
ðA2Þ

Here, the circle denotes the elementwise product. Moreover,
the L-dimensional vectors μ and ΨðtÞ integrate the node-
and edge-dependent values μk and Ψk→lðtÞ, respectively. We
also generalize the temporal nonbacktracking matrix BβðtÞ
from Eq. (13) to the weighted one:

½BβðtÞ�k→l;j→k0 ¼
�Ψj→k0 ðtÞ if k0 ¼ k; and j ≠ l

0 otherwise:
ðA3Þ

The largest eigenvalue ρ of the infection propagator
determines the asymptotic stability for small perturbations
around the disease-free state. Accounting for heterogeneity
in β, μ, and contact weights, the criticality condition Eq. (16)
from the main text reads
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1 ¼ ρ

�YT−1
t¼0

fdiag½ð1 − μÞ∘(1 −ΨðtÞ)� þ BβðtÞg
�
: ðA4Þ

Assuming β≡ βk→l for all edges k → l, we can deter-
mine from Eq. (A4) the critical (homogeneous) infection
probability βcrit given a weighted, temporal network with
heterogeneous recovery probabilities μk. Similarly, one can
assume μ≡ μk for all nodes k and thus derive the critical
(homogeneous) value μcrit with heterogeneity in the infec-
tion probability βk→l.

APPENDIX B: GERMAN CATTLE-TRADE
NETWORK

The system of traceability of cattle in the EU requires
that each animal is identified with ear tags and that each
movement, birth, or death event has to be reported within
7 days of the event to the national livestock database. We
consider an excerpt of the national German livestock
database HI-Tier [59] for the year 2010. The database is
administered by the Bavarian State Ministry for Agriculture
and Forestry on behalf of the German Federal States. It
records 3.2 million animal movements with a total of
13.4 million traded animals between 183 454 premises,
such as farms, pastures, slaughterhouses, and traders within
the observation window. The location of each animal
holding was provided at the resolution of the municipality.
We consider each trade event between two premises a
temporal contact, and we identify an edge if at least one
contact has been recorded. The distribution of edges is
highly heterogeneous in terms of geography, degree, and
weight. In Fig. 10(a), we observe clusters of trade activity
mostly within and between North Rhine-Westphalia (NW),
Lower Saxony (NI), Baden-Württemberg (BW), and
Bavaria (BY). The number of trading partners, i.e., the
node degree, is broadly distributed as demonstrated in
Fig. 10(b). Here, we differentiate between in, out, and total
degree. Similarly, we find a broad distribution of edge
weights in Fig. 10(c), i.e., the number of traded animals
along a given edge.
The geographic distribution of nodes in Fig. 11(a) shows

dense regions in the northwest and southeast including the
above-mentioned federal states NW, NI, BW, and BY.
Here, we also find the largest premises in terms of total
traded animals: In Fig. 11(c), color and size indicate the
node strength, i.e., the aggregated trade volume. The
heterogeneous distribution of strength also becomes ap-
parent in Fig. 11(d) where in, out, and total strength are
analyzed separately. Finally, we observe in Fig. 11(b) the
net flux, i.e., the difference between in- and out-directed
trade volume. We display only nodes with at least 500
traded animals in Figs. 11(b) and 11(c).
From a temporal perspective, we find that trade fluc-

tuates between 102 and 104 active nodes, i.e., farms with at
least one trade event on a given day, whereas minima

FIG. 10. Degree and weight analysis of cattle trade in the year
2010. Trade data are aggregated from 2010-01-01 to 2010-12-31.
(a) Visualization of edges using geolocation with at least 50
animals traded along each link. The color and edge width indicate
the aggregated edge weight. (b) Complementary cumulative
distribution function (CCDF) of in, out, and total degree.
(c) CCDF of the edge-weight distribution.

FIG. 11. Node strength and flux analysis of cattle trade in the
year 2010. (a) Geographic location of all 183 454 premises that
have been recorded. (b) Color indicates net animal flux, i.e., the
difference between in- and out-directed animal flux. Node size
corresponds to the sum of both [see diagram (c)]. (c) Color and
size indicate the total node strength, i.e., the sum of incoming and
outgoing animals. (d) CCDF of the in, out, and total strength.
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appear regularly on the weekends [see Fig. 12(a)]. The
weekly pattern is also apparent in the interactivation time
distribution, i.e., the time interval between two successive
trade events for a given node (see Fig. 12). Here, we find a
broad distribution of activity with peaks around 7, 14, and
21 days.
The geographic risk analysis in Sec. V B 1 requires us

to separate the network into subgraphs that correspond
to the intrastate trade (see Fig. 7). The largest eigenvalue
of the corresponding infection propagator allows us to
evaluate the outbreak risk within a federal state due to
the local movement of infected animals. In Table I, we
list the names of all 16 federal states of Germany
together with the corresponding ISO abbreviation and
basic statistics: the number of nodes, (static) edges, and (temporal) contacts in the GSCC. The city states Berlin,

Hamburg, and Bremen as well as Saarland, which is a
particularly small state in terms of nodes, are marked
with an asterisk and are not considered for risk analysis
in Fig. 9.
Separating the trade network into subgraphs as visual-

ized in Fig. 7(b) inevitably reduces the outbreak risk as
the neglected cross-border edges would otherwise facili-
tate the disease transmission. In Fig. 13(a), we find that a
considerable fraction of trade is directed across federal
states and has thus been removed. This case applies, in
particular, to the federal states NI, NW, and BW. Similarly,
we find that the ratio between intrastate and in-directed
trade lies between 0.6 (NW) and 0.9 (BY). Thus, we
conclude that a considerable fraction of trade across
borders is being neglected in the geographic risk analysis
in Fig. 9.
It is also important to stress that we use the same

parameter μ across all federal states and thus assume a
uniform detection probability. In reality, federal states with
a large number of premises tend to enforce stricter hygiene
and intervention standards so that the actual epidemic risk
for states such as BY and NW is much lower. A realistic
evaluation for public health must therefore include hetero-
geneous recovery (detection) probabilities on the level of
states or individual nodes as discussed in Ref. [77] and
Appendix A, as well as a complex disease response that

FIG. 12. Temporal analysis cattle trade in the year 2010.
(a) Number of premises that trade at least once on a given
day. (b) Interevent time distribution, i.e., the interval between
subsequent trade events of an arbitrary farm. Vertical lines
indicate 7, 14, and 21 days.

FIG. 13. Error estimation after restricting trade to the federal
states. (a) Intrastate trade in terms of trade volume relative to total
trade as red bars. Yellow bars on the top indicate the fraction of
incoming animals. All bars together sum up to 100%. (b) Sum of
internal and incoming trade volume normalized for each federal
state. See Table I for a list of states and their abbreviations.

TABLE I. Federal states of Germany and the corresponding
abbreviation, together with basic network statistics: number of
nodes, number of (static) edges, and number of (temporal)
contacts. In all cases, we confined the network to the GSCC.
We mark the smallest networks, i.e., the city states Berlin,
Hamburg, and Bremen, as well as Saarland, with an asterisk.

Federal state
ISO
code Nodes Edges Contacts

Schleswig-Holstein SH 3570 13 541 49 748
Hamburg* HH 2 2 8
Lower Saxony NI 12 838 61 044 272 579
Bremen* HB 4 6 21
North Rhine-Westphalia NW 9826 42 835 209 677
Hesse HE 3622 12 498 51 287
Rhineland-Palatinate RP 1526 5386 29 184
Baden-Württemberg BW 9168 34 434 150 171
Bavaria BY 27 863 128 596 550 047
Saarland* SL 26 52 343
Berlin* BE 0 0 0
Brandenburg BB 715 2144 11 535
Mecklenburg-
Vorpommern

MV 844 2852 21 864

Saxony SN 690 1935 12 369
Saxony-Anhalt ST 254 714 3422
Thuringia TH 344 957 5361
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includes trade restrictions, increased awareness, and higher
biosecurity.

APPENDIX C: FURTHER APPLICATIONS

From the detailed, node-level infection trajectory, we can
estimate the infection arrival time from a given outbreak
location to all remaining nodes. For that purpose, we extend
the contact sequence periodically in time until the infection
probabilities are negligible. Then, we derive the infection
arrival time to a single node from the corresponding
cumulative infection probability (see Fig. 2) as follows:
(i) The discrete derivative of the cumulative infection
probability gives the probability distribution to contract
the infection at a given time step. (ii) The expectation value
of the probability distribution gives the mean infection
arrival time at a single node, corresponding to a scatter
point in Fig. 14(a). Here, we compare the expected values
from MC simulations with the estimated infection arrival
times given by the CB and IB models, respectively. In a
perfect prediction, the scattered values would lie on the
diagonal, but, as the contact network is far from a treelike
structure, the models estimate infection arrival times
smaller than the observed values. The comparison between
the IB and CB frameworks in Fig. 14(b) shows a consid-
erably smaller relative deviation of CB estimations from the
corresponding MC simulations for the given set of disease
parameters and outbreak locations.
Another application focuses on the vulnerability of

nodes with respect to a given outbreak location. Again,
we assume an infinite time horizon and compare the
cumulative probability that a node has been infected in
the limit t → ∞. As before, we find a good correlation
between simulations and the estimated vulnerability in

Fig. 15, whereas the CB model consistently outperforms
the IB approach and overestimates the expected values
surprisingly little given that the underlying aggregated
network is fairly dense (the average degree is hki ≈ 19)
and far from being treelike.

1. Trajectories averaged over outbreak locations

For some applications, we may be interested in the
trajectory of a global epidemic, averaged over outbreak
locations. A sufficiently large number of initially infected
nodes would then avoid complications with the early
outbreak phase [39,78]. In this case, we adjust the MC
simulations such that every node is infected independently
with a given probability 1 − zl ¼ 1 − z, ∀ l ∈ N at t ¼ 0.
As for the analytic approach, we only need to set a
corresponding homogeneous initial condition, and thus
the computational complexity remains the same as in the
previous case of one initially infected node.
In Fig. 16 (left column), we observe a narrow, time-

dependent distribution of cumulatively infected nodes
around the mean value for three different infection prob-
abilities. Without applying any additional threshold, we
find a close agreement between the averaged trajectory, and
the CB and IB models in all cases. In contrast to Fig. 3 of
the main text, we observe in Fig. 16 (right column) only one
peak in the distribution due to the large number of initially
infected nodes.
One potential application is to calculate the vulnerability

of a node as discussed in Ref. [6]. Here, the vulnerability is
defined as the probability that a given node is eventually
infected by a disease that started somewhere in the network.
The value can be used to rank nodes in order to prioritize
surveillance or vaccination measures to the nodes that are
most likely to contract the disease when resources are
limited. In Fig. 17, every curve represents the vulnerability

FIG. 14. (a) Comparison between simulated and estimated
mean infection arrival times. We extend the data set periodically
in time until the outbreak dies out. The discrete derivative of the
cumulative infection probabilities (see Fig. 2) yields the infection
arrival probabilities of which we take the average value for every
node. Results according to the CB and IB models are visualized
as red circles and green crosses, respectively. The epidemic starts
from the same outbreak origin and disease parameters as in Fig. 1.
(b) Histogram over the relative deviation from the simulated
infection arrival times. The numerical values are averaged over
105 realizations.

FIG. 15. (a) Comparison between simulated and estimated
vulnerability. We compute the cumulative infection probability
in the limit t → ∞, also denoted as vulnerability. The comparison
with CB and IB estimations is visualized by red circles and green
crosses, respectively. Each value corresponds to the vulnerability
of a node given the same outbreak location and disease para-
meters as in Fig. 1. (b) Relative deviation of the estimated values
with respect to MC simulations. The numerical values are
averaged over 105 realizations.
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of one node as a function of the infection probability β.
These results are derived from the CB model, given an
initial infection probability of 1 − z ¼ 0.2. The individual
colors correspond to the degree of the node in the under-
lying time-aggregated graph and serve as a guide to the eye.
Interestingly, we find that the ranking, as estimated by the
CB model, may change with increasing infection proba-
bilities β as can be seen from the highlighted curve in
Fig. 17. This effect has been observed earlier in the context
of static networks [6] and indicates that network properties
alone are often not sufficient to rank nodes as they do not
take into account details of the dynamic system.

2. Additional numerical results

The analysis of the conference data set in the main text
was limited to a single value of the recovery probability
with μ ¼ 2.85 × 10−4. This choice corresponds to an
expected infectious period of about 19.5 h. In addition
to the analysis of the main text, we present in Fig. 18
similar results for different values of μ. The left, middle,
and right columns correspond to Figs. 4, 6(a), and
6(b), respectively. In all cases, the CB model gives a closer
bound to MC simulations as compared to the IB approach.
Next, we complete the analysis in Fig. 8 of the main text

on the epidemic threshold for the example of the animal
trade network. Again, we assume μ ¼ 1=28 and provide in
Fig. 19 a detailed analysis of all federal states, excluding
the city states Berlin, Hamburg, and Bremen. The left and
middle columns in Fig. 19 provide a similar analysis to
Figs. 6(a) and 6(b) of the main text, respectively. In other
words, we present the distribution of outbreak sizes for
different values of the infection probability β (left column)
from which we derive the coefficient of variation cv (blue
line, middle column). The right column presents values of
cv that are close to the peak and a quadratic fit (green line,
right column) that determines the numerical estimation of
the critical infection probability (blue vertical line). This
value can be compared to spectral estimations from the
mean-field models. In agreement with previous results, we
find that the criticality condition in Eq. (16) of the CB
model (see main text) improves previous results of the IB
approach.

FIG. 16. Cumulative infection probability with a large fraction
of initially infected nodes for three different values of β and the
same outbreak location as in Fig. 3(a). Left column [panels
(a1)–(c1)]: Time-evolving distribution (linear scale) of cumu-
latively infected individuals for infection probabilities β ¼ 0.01,
0.02, and 0.1, respectively. We average over outbreak locations
with 20% of the network initially infected at random. The mean
outbreak size (blue line), averaged over 105 realizations and
with a standard deviation below 10−4, can thus be compared to
the CB and IB models (red dashed and green dotted lines,
respectively) with no threshold applied. Right column [panels
(a2)–(c2)]: Final distribution (logarithmic scale) together with
the averaged values.

FIG. 17. Vulnerability as a function of the infection probability
β estimated from the CB model. Each curve represents the
vulnerability of a node, i.e., the probability to contract the
infection from a set of randomly chosen outbreak locations.
Here, we estimate the vulnerability according to the CB model.
Starting from an initial infection probability of 1 − z ¼ 0.2, we
propagate the infection over time until convergence. We stop
when the largest increase in vulnerability after 24 h falls below
10−3. The colors indicate the degree of each node in the
underlying time-aggregated graph. Moreover, the behavior of
one selected node is highlighted.
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Finally, we provide an additional analysis of the epidemic
threshold for the cattle-trade datawith μ ¼ 1=120. Results in
Fig. 20 are akin to our previous analysis in Fig. 19, except for
SL. Here, the spectral condition in Eq. (16) of the CB model
predicts that every outbreak remains localized, i.e., βCBcrit ¼ 1,
whereas MC simulations suggest a transition to global
epidemics, hence βMC

crit < 1. We attribute the inconsistency
to the small size of the network (26 nodes). The spectral

approach implicitly assumes an infinitely large network,
which is clearly violated in this case.
We summarize the results for μ ¼ 1=120 in Fig. 21,

akin to Fig. 9 of the main text. The risk map in Fig. 21(a)
visualizes the spatial variability of the outbreak risk,
and each group of blue, red, and green bars in Fig. 21(b)
provides a quantitative comparison between MC results,
the CB model, and the IB approach, respectively.

FIG. 18. Comparison between MC simulations and the mean-field models for different values of μ. Every row assumes a fixed
recovery probability μ with decreasing values from top to bottom: μ ¼ 4.63 × 10−4, μ ¼ 3.47 × 10−4, μ ¼ 2.78 × 10−4,
μ ¼ 2.31 × 10−4, and μ ¼ 1.16 × 10−4. These values correspond to an expected infection period of 12, 16, 20, 24, and 48 h.
The left column, middle column, and right column correspond to Figs. 4, 6(a), and 6(b), respectively, of the main text.
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FIG. 19. Detailed analysis of the epidemic threshold for the cattle-trade network with μ ¼ 1=28. The central black line separates the
figure into two panels. Every row (in a panel) provides results for a single federal state in Germany, excluding the city states Berlin,
Bremen, and Hamburg. Left column: Outbreak-size distribution as a function of the infection probability β. Vertical blue, red, and green
lines mark the critical infection probability according to MC simulations, and the CB and IB models, respectively. Middle column:
Coefficient of variation cv (blue line, left axis), mean outbreak size (green dashed line, right axis). Right column: Selected values of cv
for infection probabilities close to the critical value. The quadratic fit (green line) estimates the maximum and hence βcrit.
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FIG. 20. Detailed analysis of the epidemic threshold for the cattle-trade network with μ ¼ 1=120. The analysis is akin to
Fig. 19.
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