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Abstract— The number and size of data centres being 
constructed continues to grow, in response to increasing demand 
for cloud-based services. In a Data Centre Network (DCN), 
maximizing performance is essential, and network management 
tools that leverage the advantages of Software-Defined 
Networking (SDN) are key to achieving that goal. DCN switches 
are now expected to support the OpenFlow protocol – however, 
performance issues have been observed with hardware switch 
OpenFlow implementations in relation to path establishment for 
new flows, and path modification for existing flows. In particular, 
concerns have been raised regarding the delays in effecting 
changes to hardware flow tables. We report on recent research 
that seeks to address this issue. Specifically, we investigate the 
approach of temporarily tunnelling packets for new flows while 
more efficient non-tunnelled paths are being established, and to 
which the flows are later migrated. Our early results show the 
potential and limitations of this approach. 

Keywords— Software-Defined Networking; Data Centre 
Networks; Network Management; OpenFlow 

I.  INTRODUCTION 
Data Centre Network traffic is expected to increase to 15.3 

Zettabytes per year by 2020, with cloud data centre traffic 
accounting for almost 92% of that figure, according to [1]. As 
data centres grow in both size and number to handle traffic 
demands, the task of managing the network to maximize use of 
resources increases in complexity. Software-Defined 
Networking – and the OpenFlow [2] protocol, in particular – 
has offered the flexibility of dynamically reconfiguring the 
network to meet the constantly changing traffic of a multi-
tenant cloud data centre. 

Most network switch manufacturers currently support 
OpenFlow on their devices, however their implementations 
suffer from some problems. Researchers have shown [2,3] that 
OpenFlow rule modification times vary from device to device, 
and can be significantly large, particularly if rule modification 
requests are received at a high rate, if the rules have different 
priorities, and if flow tables have high occupancy levels.  
Furthermore, if a switch indicates that a rule has been installed 
in its flow tables, the rule may still not affect the forwarding of 
packets in the data plane for some length of time. Such delays 
and uncertainty are unacceptable in a multi-tenant DCN for 
two reasons: 1) distributed application performance is 

degraded, and 2) security is compromised if the destination of 
packets cannot be fully controlled. In contrast to the situation 
with hardware switches, Open vSwitch [5], a widely-used 
open-source software switch, can handle much higher flow-
modification request rates, without the uncertainty as to 
whether a rule has taken effect (see section III for verification).  

Our prototype rule-management system masks the 
shortcomings of hardware switches outlined above by 
temporarily forwarding packets of a new flow through a tunnel 
between software switches, provided across hardware switches. 
Tunnel entry and exit rules are configured as individual flows 
arrive; flows persisting long enough or having special needs 
are migrated to reactively-configured non-tunnelled paths.  

This approach allows new flows to be accepted by the 
network at a higher rate than that of which hardware switches 
may be capable. It provides the opportunity to then establish 
non-tunnelled paths at a flow-rule configuration rate that is 
within the hardware switches capabilities. Each tunnelled flow 
is only migrated to a non-tunnelled path when that path is 
verified as fully configured and active, avoiding packet loss or 
leakage to unexpected destinations. We plan to enhance this 
simple approach to prioritize the flows to be migrated, since 
during an extended period of higher flow-arrival rate, it will not 
be possible to migrate all flows within their lifespan. 

II. RELATED WORK 
One approach to dealing with flow-rule configuration 

delays is to pre-configure all possible paths before any data 
arrives. Since OpenFlow tables typically would not have the 
capacity for a rule for every path, PAST [6] implements pre-
configured per-address spanning trees in the layer-2 forwarding 
tables of switches. Planck [7] adds monitoring and control to 
PAST, and demonstrates those features being used to provide 
redundant paths and rerouting capabilities. Both use switches 
that specifically support programmatic access to the layer-2 
forwarding tables (rather than just to the TCAM tables used by 
OpenFlow). Also, both provide paths between all pairs of 
hosts, rather than only paths that match the security policies 
present in a multi-tenant DCN. PARIS [8] forwards traffic 
through pre-configured summary routes to the core, where 
Equal Cost Multipath (ECMP) routing then decides the route to 
edge switches that have a forwarding entry for every local 
virtual machine (VM). This requires a layer 3 addressing 
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scheme that lends itself to summarisation – not a reasonable 
assumption in a multi-tenant DCN. Although PARIS describes 
an enhancement to support multi-tenancy, it depends on MPLS 
or VLAN tags – increasing the complexity and reducing the 
flexibility of the solution. 

Devoflow [9] originally identified the cause of flow-setup 
latency as a bottleneck between the data-plane and the control-
plane, and proposed more autonomy in switches with 
aggressive use of wildcard OpenFlow rules, although security-
sensitive flows must still be handled centrally. The approach of 
giving switches more responsibility is also taken in [10]. Both 
[9] and [10] require modified switch hardware. 

Monocle [11] verifies that flow-rule modifications have 
been applied at the data plane, delaying confirmation from 
OpenFlow switches to the controller until data-plane probes 
have shown the modified rules to be active. It does not make 
any effort to reduce flow-setup time, rather it reflects the true 
flow-setup time. 

Currently the most widely used commercially-available 
solution, VMware NSX [12], treats the physical DCN as an 
‘underlay’, across which tunnels are configured to create an 
‘overlay’ or virtualised network. The underlay network uses a 
traditional routing protocol (e.g. BGP, OSPF, IS-IS) to route 
VXLAN-tunnelled traffic. An SDN controller manages the 
VXLAN tunnels (the overlay network), allocates flows to 
tunnels, and ensures tunnel end-points are advertised through 
the traditional routing protocol. VXLAN carries a significant 
encapsulation overhead. No attempt is made to migrate flows 
to non-tunnelled paths, and underlay network devices are 
relegated to performing simple packet-forwarding. 

III. PROBLEM VERIFICATION 
To verify that software switches could out-perform 

hardware switches at the control plane for flow-rule setup, we 
configured an experimental test-bed using Mininet [13], a 
network emulation tool. We use the Pox [14] OpenFlow 
controller, and Open vSwitch as a software switch (software 
that runs in a hypervisor or in a server operating system and 
that offers switching services to VMs or processes on that 
node). The authors of [3] kindly shared with us code they wrote 
to replicate hardware switch control plane delays (hereafter 
referred to as an emulated hardware switch), developed based 
on data from their tests of actual HP and Pica8 switches. We 
validated our own testing code by reproducing their results. We 
then tested Open vSwitch with the same parameters, to allow 
us to compare the control plane performance of a software 
switch with that of a hardware switch. Results are shown in 
Fig. 1 and summarised numerically in Table 1. 

An experiment is made up of batches, each batch consisting 
of a controller-to-switch request to delete an existing flow rule, 
a request to add a new flow rule, and a barrier request to 
prompt the switch to confirm when it has previous requests 
complete. A batch starts when a barrier reply is received for the 
second previous batch, the aim being to keep the switch busy 
while avoiding overloading it with flow-rule modification 
requests. The figure shows timings from the start of the 
experiment, and illustrate that for each individual batch, the 
delay between the flow-mod request being acknowledged by 

the switch and the arrival of the first data packet forwarded 
following the newly added flow rule is significantly greater on 
a hardware switch as compared to the delay on a software 
switch. Also, there is a substantial periodic delay observed with 
the particular hardware switch being emulated, seen in Fig. 1(a) 
roughly every 18th batch, matching the results in [3]. We refer 
readers to that paper for explanation of causes of these delays. 

IV. PROPOSED APPROACH 
While installing flow rules in hardware switches is 

relatively slow, installing flow rules in software switches is 
fast, as illustrated by Fig. 1 and Table I. Our idea takes 
advantage of the fact that much of the traffic in a DCN is east-
west [14,15] (between servers) and the first and last switches to 
handle packets of a particular flow are often software switches 
in the hypervisors of host servers, but could also be software 
switch processes running in a non-hypervisor operating system. 

This allows us to leverage the software switches’ flow rule 
installation speed to mask the slowness of the hardware 
switches, as illustrated in Fig. 2 and outlined here: 

i. Pre-configured tunnels connect software switches 
across the hardware switches in the DCN. A mesh of 
tunnels between all servers is proposed – for 
simplicity, however, the figure shows just two servers 
with a single tunnel between their software switches. 

ii. When a new flow arrives (or a current flow needs to 
be modified), install high priority rules on software 
switches to forward the flow across the appropriate 
tunnel. Then install normal priority rules on software 
and hardware switches to be ready to carry the flow 
on a non-tunnelled path. Flow rules are matched in 
order of priority, so while the high priority rules are 
present, all matching packets will be tunnelled. 

iii. When the non-tunnelled path has been verified, 
remove the high priority rules so that subsequent 
packets of the flow follow the non-tunnelled path. 
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TABLE I.  FLOW-RULE INSTALLATION STATISTICS 

Switch Type Mean Delay (ms) Std. Deviation (ms) 
Emulated Hardware 218.3 132 

Software 11.7 5.5 

(a) Emulated H/W switch (b) S/W switch 

Fig 1. Flow-rule installation delay 



 
Fig. 2. Temporary tunnelling of new flow 

While flows could be left to complete on the tunnelled 
connections (essentially a virtual network solution), there are 
reasons not to: 1) this would lead to an imbalance in traffic 
across the DCN, the architecture of which normally includes 
multiple paths between servers; 2) the ability to have granular 
treatment of flows at intermediate switches (e.g. for QoS, 
security) is impacted; 3) tunnelling imposes a per-packet 
overhead of marking packets by, for example, adding fields, 
consuming bandwidth and processing power, and adding 
latency. In addition, the ability to migrate flows to alternative 
paths can be useful to proactively resolve congestion. 

With our system, there could be several tunnelled paths 
available between any pair of software switches (and this is 
planned for future work), for redundancy in case of switch or 
link failure, and for traffic load distribution. The number of 
tunnels could increase or decrease dynamically according to 
requirements, but should be kept small to control the quantity 
of flow-rules required in hardware switch tables for tunnels, 
especially in a large DCN network. However, all paths through 
the network are available for non-tunnelled flows. Currently, 
our prototype implementation uses one path for tunnelled 
traffic, and a different path, if available, for non-tunnelled. 

Flows that require granular treatment at intermediate 
switches could potentially not be tunnelled at all, or could be 
prioritized for migration to non-tunnelled paths over flows that 
do not require such treatment. 

Our system incurs the overhead of tunnelling to some 
extent. For flows of short duration, all packets may end up 
being tunnelled. For long flows consisting of packets with large 
payloads (e.g. jumbo frames), the overhead of tunnelling is not 
so significant. If long-lived flows of packets with small 
payloads can be identified (planned future work), de-tunnelling 
these will yield the most benefit and so should be prioritized. 

V. EXPERIMENTAL TEST-BED AND IMPLEMENTATION 
We had the use of a single DCN hardware switch in our 

physical test-bed – an Edgecore AS5712-54X running PicOS 
2.6.3. We used a Cisco C200 M2 server and Dell OptiPlex 760, 
both running Ubuntu Linux Server 14.04, with Open vSwitch 
2.7.3 installed. Both had a management interface through 
which the OpenFlow controller exchanges control-plane traffic 
with Open vSwitch, and a Mellanox 10G fibre interface 
connected to the hardware switch to carry data-plane traffic. 

Debian 8 Linux VMs were hosted on the server and PC 
with VirtualBox [17] virtualization software, and were run in 
headless mode for experiments. Each VM had a control 
network interface used for automated control during 
experiments, and a data network interface through which TCP 
connections could be initiated with other VMs. The control 
interface was linked to the physical management interface on 
the host machine, as experiments were controlled from the 
machine on which the controller was located. The data network 
interface was connected to an Open vSwitch bridge through a 
Linux tap interface. The bridge was in turn connected to the 
physical fibre network interface on the host machine. 

Our SDN controller ran in an Ubuntu VM on an Apple 
MacBook Pro. The MacBook was connected to an 8-port 
100Mb/s 3Com switch, to which the management interfaces of 
the server, PC and hardware switch were also connected. 

Our controller implementation was written in Python, and 
based on Pox. A simple client/server Java application to create 
a configurable number of new TCP connections per second as 
required was deployed on the Debian VMs. A TCP connection 
comprises two uni-directional flows, requiring flow rules to be 
configured for both. Our controller configures the rules for the 
two flows as soon as a packet_in event for a new TCP 
connection is received. Flow-rule addition requests are sent for 
the inbound flow first, and then the outbound flow, to reduce 
the likelihood of packet_in events for the same flow being 
generated by switches other than the first one on the path. The 
controller keeps track of all active flows, using the information 
to ignore duplicate packet_in events, to migrate flows to non-
tunnelled paths as necessary, and to verify a non-tunnelled path 
before migrating a flow to it. For now, since we are focused on 
control-plane performance, TCP connections are established 
and remain open until the end of the experiment, but no data is 
sent through the connections. 

The controller verifies non-tunnelled paths through the use 
of probe packets. When a flow-rule is added to the last switch 
on a non-tunnelled path, a higher priority rule with the same 
match criteria is added to redirect matched packets to the 
controller. The controller sends probe packets through the first 
switch on the path, and when it successfully receives a probe 
back from the last switch, the higher priority rule is removed.  

Experiments were automated via a Python script interacting 
with all components through the management switch. The 
script prepared the Debian VMs (added static ARP entries for 
each other VM, started packet captures), started the SDN 
controller and a packet capture on the MacBook, and started 
the client/server TCP connection generator. At the end of the 
experiment, the same script collected the packet captures and 
metrics recorded by the controller, processed and analysed the 
data and generated graphs.  

For tunnelling, we use MPLS labels. We chose MPLS 
because the overhead it introduces is low compared to other 
tunnelling methods, it is supported by all versions of 
OpenFlow, and requires no special NIC or switch support. 
When the switches initially connect to the controller, the 
hardware switches are configured with flow rules to forward 
packets between ports through which software switches are 
reachable, based on MPLS label values. When the controller 



learns of a new flow, it configures rules on the software 
switches to label packets of that flow before forwarding to a 
hardware switch, and remove labels from packets of the flow 
received from a hardware switch. Although we just had a 
single hardware switch for our experiments, the controller code 
is designed for a spine-leaf DCN topology, and has been 
functionally tested with that topology in Mininet. 

Our system specifies a mesh of tunnels between servers, 
however a set of tunnels that terminate at the same point can 
share the same MPLS label. Therefore, for n servers, a leaf 
switch requires n rules: n – 1 rules to forward packets towards 
all remote servers, but only 1 rule to deliver packets from all 
remote servers to the directly connected server. Packets are 
forwarded by leaf switches such that all labelled packets a 
single spine switch receives share the same tunnel end-point – 
requiring only 1 rule on the spine switch for forwarding. 

VI. EXPERIMENTAL TESTING AND RESULTS 
Each experiment ran for 20 seconds, long enough to verify 

whether our approach could maintain deterministic results for a 
given flow arrival rate beyond the initial start-up. Flow tables 
were cleared before the experiment started. Experiments were 
run with a range of TCP connection arrival rates. Note that one 
TCP connection consists of two unidirectional flows, and is 
handled as follows. When the first packet of a TCP connection 
arrives at a software switch, since there are no matching rules it 
is forwarded to the controller. The controller then configures 
rules on all switches on both the outgoing and return paths to 
allow the connection to be established as quickly as possible. 

To evaluate our approach, we ran experiments where flows 
were initially tunnelled, and later migrated to non-tunnelled 
paths. For comparison, we ran experiments with the same test-
bed setup with the only change being that flows were not 
tunnelled at all, and more experiments where the flows were 
tunnelled but never migrated from the tunnels. Fig. 4 shows 
TCP connection setup delay with rates of 30, 70 and 90 new 
connections per second, for the three scenarios: flows not 
tunnelled at all, flows tunnelled for their lifetime, flows 
tunnelled initially, but later migrated to a non-tunnelled path. 
To measure connection setup delay, we record the time at 
which the client sends a TCP SYN packet, and the time that it 
receives a SYN/ACK in return. While this measure disregards 
the time required for the final ACK of the TCP 3-way 
handshake, it captures the time taken for the flow-rules for 
outbound and inbound paths to be configured. 

In the three graphs of Fig. 4, the TCP connection delay 
rises dramatically (note that the y-axis is plotted on a log scale) 
for non-tunnelled operation – i.e. when flow-rules must be 
added to the hardware switch for each arriving connection. 
Even for a relatively low arrival rate of 30 connections per 
second, the delay incurred as the hardware switch queues up 
requests to add flow rules causes the TCP connection setup 
delay to rise exponentially. As expected, the situation only 
deteriorates with higher arrival rates of 70 and 90 TCP 
connections per second. 

In contrast, the performance for ‘tunnelled without 
migration’ is maintained at a reasonably stable delay of around 
10ms at an arrival rate of up to 70 TCP connections per second. 

With this approach, only the software switches are required to 
add flow rules before the SYN packet can reach the server, and 
the SYN/ACK response can get to the client. In Fig. 4(c), there 
is a blip in the results for ‘tunnelled without migration’ near the 
end of the experiment, coming up to TCP connection #1400. 
The raw data indicates that this was a short-lived anomaly, and 
the connection delay appears to be returning to the levels 
observed before the blip, but it is too close to the end of the 
experiment to be definitive. We conjecture that the blip is due 
to another process running on the server or PC causing our 
controller to be briefly starved of resources. 

Our ‘tunnelled with migration’ approach fares well at an 
arrival rate of 30 TCP connections per second, with delay 
comparable to ‘tunnelled without migration’ in Fig. 4(a). The 
cost of migrating flows from tunnelled to non-tunnelled paths 
starts to weigh in Fig 4(b), but note that the TCP connection 
setup latency is maintained at less than 100ms for the full 
experiment for ‘tunnelled with migration’. While migrating 
flows incurs a cost for TCP connection setup, clearly that cost 
can be balanced out over the lifetime of a connection through 
utilisation of redundant paths and by the elimination of 
tunnelling overhead after a flow is migrated. 

The results in Fig. 4(c) for an arrival rate of 90 connections 
per second, with TCP connection setup delay rising without an 
upper limit for all scenarios, show that the capabilities of our 
implementation are exceeded. Having profiled our controller 
code, we can say that this is because as new flows arrive, our 
data structure tracking current flows grows, and takes longer to 
search to make sure that a packet received as part of packet_in 

 

 

 
 

Fig 4. Rolling mean TCP connection setup delay at various 
arrival rates 

 
 



message doesn’t belong to an existing flow. With re-designed 
code, we are confident we can reduce the search time. There 
will still be a point at which the number of concurrent flows 
limits the TCP connection arrival rate that can be supported. 

For comparison, the authors of [16] found a per-switch 
arrival rate of up to 60 flows per second (equivalent to 30 TCP 
connections per second) in DCNs they analysed – our approach 
has already surpassed that. More recently, a figure of up to 500 
flows per second at a single DCN switch has been quoted in 
[15] by a hyperscale data-centre operator, giving us a target to 
aim for. As Open vSwitch is quoted as supporting a flow-rule 
update rate of 42,000 per second [18], we are optimistic about 
our system achieving a DCN-appropriate level of performance. 

VII. CONCLUSIONS AND FUTURE WORK 
Our results show clearly the benefit of reducing the 

dependence on hardware switches’ capability to handle flow-
rule additions, and we provide a mechanism for doing so that 
leverages the capabilities of software switches. The results we 
present here represent initial work, and will improve with 
refinement of our implementation. More than that, they 
indicate to us the potential of extending our approach to 
accommodate flow-rule removals and modifications, in an 
integrated flow-rule management system intended to meet 
demanding performance requirements. The approach of 
initially tunnelling a flow will allow flows to be accepted as 
they arrive at rates seen in very large data centres, giving space 
in time for the flow migration function to selectively queue up 
and prioritize flow-rule requests for hardware switches at the 
controller to deliver them at a rate that matches the switches 
capabilities, minimizing the latency of request completion. 

Our next step is to improve the design of our code to use 
more efficient data structures and to make the performance of 
the event-driven code that handles packet_in events more 
independent of the periodically-run code that configures and 
verifies non-tunnelled paths before migrating tunnelled flows 
to them. Then we intend to investigate how to select flows for 
migration, mechanisms for prioritising the migration, and 
develop an algorithm for delivery of flow rule modification 
requests at a controlled rate within the capabilities of the 
receiving switches. We will expand our testing to situations 
where switch flow tables are pre-populated, we will use DCN 
packet traces, and we hope to access more hardware switches.  
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