
Title Reducing the latency of OpenFlow rule changes in data centre
networks

Authors Sreenan, Cormac J.;Sherwin, Jonathan

Publication date 2018-02-20

Original Citation Sherwin, J. and Sreenan, C. J. (2018) 'Reducing the latency
of OpenFlow rule changes in data centre networks', 21st
International Conference on Innovation in Clouds, Internet and
Networks (ICIN 2018) Paris, France, 20 - 22 February.

Type of publication Conference item

Rights © 2018 the authors.

Download date 2024-04-27 04:16:30

Item downloaded
from

https://hdl.handle.net/10468/5791

https://hdl.handle.net/10468/5791

Reducing the Latency of OpenFlow Rule Changes in
Data Centre Networks

Jonathan Sherwin
Department of Computer Science

Cork Institute of Technology
Cork, Ireland

jonathan.sherwin@cit.ie

Cormac J. Sreenan
Department of Computer Science

University College Cork
Cork, Ireland
cjs@cs.ucc.ie

Abstract— The number and size of data centres being
constructed continues to grow, in response to increasing demand
for cloud-based services. In a Data Centre Network (DCN),
maximizing performance is essential, and network management
tools that leverage the advantages of Software-Defined
Networking (SDN) are key to achieving that goal. DCN switches
are now expected to support the OpenFlow protocol – however,
performance issues have been observed with hardware switch
OpenFlow implementations in relation to path establishment for
new flows, and path modification for existing flows. In particular,
concerns have been raised regarding the delays in effecting
changes to hardware flow tables. We report on recent research
that seeks to address this issue. Specifically, we investigate the
approach of temporarily tunnelling packets for new flows while
more efficient non-tunnelled paths are being established, and to
which the flows are later migrated. Our early results show the
potential and limitations of this approach.

Keywords— Software-Defined Networking; Data Centre
Networks; Network Management; OpenFlow

I. INTRODUCTION
Data Centre Network traffic is expected to increase to 15.3

Zettabytes per year by 2020, with cloud data centre traffic
accounting for almost 92% of that figure, according to [1]. As
data centres grow in both size and number to handle traffic
demands, the task of managing the network to maximize use of
resources increases in complexity. Software-Defined
Networking – and the OpenFlow [2] protocol, in particular –
has offered the flexibility of dynamically reconfiguring the
network to meet the constantly changing traffic of a multi-
tenant cloud data centre.

Most network switch manufacturers currently support
OpenFlow on their devices, however their implementations
suffer from some problems. Researchers have shown [2,3] that
OpenFlow rule modification times vary from device to device,
and can be significantly large, particularly if rule modification
requests are received at a high rate, if the rules have different
priorities, and if flow tables have high occupancy levels.
Furthermore, if a switch indicates that a rule has been installed
in its flow tables, the rule may still not affect the forwarding of
packets in the data plane for some length of time. Such delays
and uncertainty are unacceptable in a multi-tenant DCN for
two reasons: 1) distributed application performance is

degraded, and 2) security is compromised if the destination of
packets cannot be fully controlled. In contrast to the situation
with hardware switches, Open vSwitch [5], a widely-used
open-source software switch, can handle much higher flow-
modification request rates, without the uncertainty as to
whether a rule has taken effect (see section III for verification).

Our prototype rule-management system masks the
shortcomings of hardware switches outlined above by
temporarily forwarding packets of a new flow through a tunnel
between software switches, provided across hardware switches.
Tunnel entry and exit rules are configured as individual flows
arrive; flows persisting long enough or having special needs
are migrated to reactively-configured non-tunnelled paths.

This approach allows new flows to be accepted by the
network at a higher rate than that of which hardware switches
may be capable. It provides the opportunity to then establish
non-tunnelled paths at a flow-rule configuration rate that is
within the hardware switches capabilities. Each tunnelled flow
is only migrated to a non-tunnelled path when that path is
verified as fully configured and active, avoiding packet loss or
leakage to unexpected destinations. We plan to enhance this
simple approach to prioritize the flows to be migrated, since
during an extended period of higher flow-arrival rate, it will not
be possible to migrate all flows within their lifespan.

II. RELATED WORK
One approach to dealing with flow-rule configuration

delays is to pre-configure all possible paths before any data
arrives. Since OpenFlow tables typically would not have the
capacity for a rule for every path, PAST [6] implements pre-
configured per-address spanning trees in the layer-2 forwarding
tables of switches. Planck [7] adds monitoring and control to
PAST, and demonstrates those features being used to provide
redundant paths and rerouting capabilities. Both use switches
that specifically support programmatic access to the layer-2
forwarding tables (rather than just to the TCAM tables used by
OpenFlow). Also, both provide paths between all pairs of
hosts, rather than only paths that match the security policies
present in a multi-tenant DCN. PARIS [8] forwards traffic
through pre-configured summary routes to the core, where
Equal Cost Multipath (ECMP) routing then decides the route to
edge switches that have a forwarding entry for every local
virtual machine (VM). This requires a layer 3 addressing

Jonathan Sherwin is funded by Cork Institute of Technology.
Cormac J. Sreenan is funded by Science Foundation Ireland.

scheme that lends itself to summarisation – not a reasonable
assumption in a multi-tenant DCN. Although PARIS describes
an enhancement to support multi-tenancy, it depends on MPLS
or VLAN tags – increasing the complexity and reducing the
flexibility of the solution.

Devoflow [9] originally identified the cause of flow-setup
latency as a bottleneck between the data-plane and the control-
plane, and proposed more autonomy in switches with
aggressive use of wildcard OpenFlow rules, although security-
sensitive flows must still be handled centrally. The approach of
giving switches more responsibility is also taken in [10]. Both
[9] and [10] require modified switch hardware.

Monocle [11] verifies that flow-rule modifications have
been applied at the data plane, delaying confirmation from
OpenFlow switches to the controller until data-plane probes
have shown the modified rules to be active. It does not make
any effort to reduce flow-setup time, rather it reflects the true
flow-setup time.

Currently the most widely used commercially-available
solution, VMware NSX [12], treats the physical DCN as an
‘underlay’, across which tunnels are configured to create an
‘overlay’ or virtualised network. The underlay network uses a
traditional routing protocol (e.g. BGP, OSPF, IS-IS) to route
VXLAN-tunnelled traffic. An SDN controller manages the
VXLAN tunnels (the overlay network), allocates flows to
tunnels, and ensures tunnel end-points are advertised through
the traditional routing protocol. VXLAN carries a significant
encapsulation overhead. No attempt is made to migrate flows
to non-tunnelled paths, and underlay network devices are
relegated to performing simple packet-forwarding.

III. PROBLEM VERIFICATION
To verify that software switches could out-perform

hardware switches at the control plane for flow-rule setup, we
configured an experimental test-bed using Mininet [13], a
network emulation tool. We use the Pox [14] OpenFlow
controller, and Open vSwitch as a software switch (software
that runs in a hypervisor or in a server operating system and
that offers switching services to VMs or processes on that
node). The authors of [3] kindly shared with us code they wrote
to replicate hardware switch control plane delays (hereafter
referred to as an emulated hardware switch), developed based
on data from their tests of actual HP and Pica8 switches. We
validated our own testing code by reproducing their results. We
then tested Open vSwitch with the same parameters, to allow
us to compare the control plane performance of a software
switch with that of a hardware switch. Results are shown in
Fig. 1 and summarised numerically in Table 1.

An experiment is made up of batches, each batch consisting
of a controller-to-switch request to delete an existing flow rule,
a request to add a new flow rule, and a barrier request to
prompt the switch to confirm when it has previous requests
complete. A batch starts when a barrier reply is received for the
second previous batch, the aim being to keep the switch busy
while avoiding overloading it with flow-rule modification
requests. The figure shows timings from the start of the
experiment, and illustrate that for each individual batch, the
delay between the flow-mod request being acknowledged by

the switch and the arrival of the first data packet forwarded
following the newly added flow rule is significantly greater on
a hardware switch as compared to the delay on a software
switch. Also, there is a substantial periodic delay observed with
the particular hardware switch being emulated, seen in Fig. 1(a)
roughly every 18th batch, matching the results in [3]. We refer
readers to that paper for explanation of causes of these delays.

IV. PROPOSED APPROACH
While installing flow rules in hardware switches is

relatively slow, installing flow rules in software switches is
fast, as illustrated by Fig. 1 and Table I. Our idea takes
advantage of the fact that much of the traffic in a DCN is east-
west [14,15] (between servers) and the first and last switches to
handle packets of a particular flow are often software switches
in the hypervisors of host servers, but could also be software
switch processes running in a non-hypervisor operating system.

This allows us to leverage the software switches’ flow rule
installation speed to mask the slowness of the hardware
switches, as illustrated in Fig. 2 and outlined here:

i. Pre-configured tunnels connect software switches
across the hardware switches in the DCN. A mesh of
tunnels between all servers is proposed – for
simplicity, however, the figure shows just two servers
with a single tunnel between their software switches.

ii. When a new flow arrives (or a current flow needs to
be modified), install high priority rules on software
switches to forward the flow across the appropriate
tunnel. Then install normal priority rules on software
and hardware switches to be ready to carry the flow
on a non-tunnelled path. Flow rules are matched in
order of priority, so while the high priority rules are
present, all matching packets will be tunnelled.

iii. When the non-tunnelled path has been verified,
remove the high priority rules so that subsequent
packets of the flow follow the non-tunnelled path.

0 20 40 60 80 100
Batch #

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
el

ap
se

d
(s

ec
on

ds
)

First Data Packet
Flow-m od Request
Com plete

0 20 40 60 80 100
Batch #

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
el

ap
se

d
(s

ec
on

ds
)

First Data Packet
Flow-m od Request
Com plete

TABLE I. FLOW-RULE INSTALLATION STATISTICS

Switch Type Mean Delay (ms) Std. Deviation (ms)
Emulated Hardware 218.3 132

Software 11.7 5.5

(a) Emulated H/W switch (b) S/W switch

Fig 1. Flow-rule installation delay

Fig. 2. Temporary tunnelling of new flow

While flows could be left to complete on the tunnelled
connections (essentially a virtual network solution), there are
reasons not to: 1) this would lead to an imbalance in traffic
across the DCN, the architecture of which normally includes
multiple paths between servers; 2) the ability to have granular
treatment of flows at intermediate switches (e.g. for QoS,
security) is impacted; 3) tunnelling imposes a per-packet
overhead of marking packets by, for example, adding fields,
consuming bandwidth and processing power, and adding
latency. In addition, the ability to migrate flows to alternative
paths can be useful to proactively resolve congestion.

With our system, there could be several tunnelled paths
available between any pair of software switches (and this is
planned for future work), for redundancy in case of switch or
link failure, and for traffic load distribution. The number of
tunnels could increase or decrease dynamically according to
requirements, but should be kept small to control the quantity
of flow-rules required in hardware switch tables for tunnels,
especially in a large DCN network. However, all paths through
the network are available for non-tunnelled flows. Currently,
our prototype implementation uses one path for tunnelled
traffic, and a different path, if available, for non-tunnelled.

Flows that require granular treatment at intermediate
switches could potentially not be tunnelled at all, or could be
prioritized for migration to non-tunnelled paths over flows that
do not require such treatment.

Our system incurs the overhead of tunnelling to some
extent. For flows of short duration, all packets may end up
being tunnelled. For long flows consisting of packets with large
payloads (e.g. jumbo frames), the overhead of tunnelling is not
so significant. If long-lived flows of packets with small
payloads can be identified (planned future work), de-tunnelling
these will yield the most benefit and so should be prioritized.

V. EXPERIMENTAL TEST-BED AND IMPLEMENTATION
We had the use of a single DCN hardware switch in our

physical test-bed – an Edgecore AS5712-54X running PicOS
2.6.3. We used a Cisco C200 M2 server and Dell OptiPlex 760,
both running Ubuntu Linux Server 14.04, with Open vSwitch
2.7.3 installed. Both had a management interface through
which the OpenFlow controller exchanges control-plane traffic
with Open vSwitch, and a Mellanox 10G fibre interface
connected to the hardware switch to carry data-plane traffic.

Debian 8 Linux VMs were hosted on the server and PC
with VirtualBox [17] virtualization software, and were run in
headless mode for experiments. Each VM had a control
network interface used for automated control during
experiments, and a data network interface through which TCP
connections could be initiated with other VMs. The control
interface was linked to the physical management interface on
the host machine, as experiments were controlled from the
machine on which the controller was located. The data network
interface was connected to an Open vSwitch bridge through a
Linux tap interface. The bridge was in turn connected to the
physical fibre network interface on the host machine.

Our SDN controller ran in an Ubuntu VM on an Apple
MacBook Pro. The MacBook was connected to an 8-port
100Mb/s 3Com switch, to which the management interfaces of
the server, PC and hardware switch were also connected.

Our controller implementation was written in Python, and
based on Pox. A simple client/server Java application to create
a configurable number of new TCP connections per second as
required was deployed on the Debian VMs. A TCP connection
comprises two uni-directional flows, requiring flow rules to be
configured for both. Our controller configures the rules for the
two flows as soon as a packet_in event for a new TCP
connection is received. Flow-rule addition requests are sent for
the inbound flow first, and then the outbound flow, to reduce
the likelihood of packet_in events for the same flow being
generated by switches other than the first one on the path. The
controller keeps track of all active flows, using the information
to ignore duplicate packet_in events, to migrate flows to non-
tunnelled paths as necessary, and to verify a non-tunnelled path
before migrating a flow to it. For now, since we are focused on
control-plane performance, TCP connections are established
and remain open until the end of the experiment, but no data is
sent through the connections.

The controller verifies non-tunnelled paths through the use
of probe packets. When a flow-rule is added to the last switch
on a non-tunnelled path, a higher priority rule with the same
match criteria is added to redirect matched packets to the
controller. The controller sends probe packets through the first
switch on the path, and when it successfully receives a probe
back from the last switch, the higher priority rule is removed.

Experiments were automated via a Python script interacting
with all components through the management switch. The
script prepared the Debian VMs (added static ARP entries for
each other VM, started packet captures), started the SDN
controller and a packet capture on the MacBook, and started
the client/server TCP connection generator. At the end of the
experiment, the same script collected the packet captures and
metrics recorded by the controller, processed and analysed the
data and generated graphs.

For tunnelling, we use MPLS labels. We chose MPLS
because the overhead it introduces is low compared to other
tunnelling methods, it is supported by all versions of
OpenFlow, and requires no special NIC or switch support.
When the switches initially connect to the controller, the
hardware switches are configured with flow rules to forward
packets between ports through which software switches are
reachable, based on MPLS label values. When the controller

learns of a new flow, it configures rules on the software
switches to label packets of that flow before forwarding to a
hardware switch, and remove labels from packets of the flow
received from a hardware switch. Although we just had a
single hardware switch for our experiments, the controller code
is designed for a spine-leaf DCN topology, and has been
functionally tested with that topology in Mininet.

Our system specifies a mesh of tunnels between servers,
however a set of tunnels that terminate at the same point can
share the same MPLS label. Therefore, for n servers, a leaf
switch requires n rules: n – 1 rules to forward packets towards
all remote servers, but only 1 rule to deliver packets from all
remote servers to the directly connected server. Packets are
forwarded by leaf switches such that all labelled packets a
single spine switch receives share the same tunnel end-point –
requiring only 1 rule on the spine switch for forwarding.

VI. EXPERIMENTAL TESTING AND RESULTS
Each experiment ran for 20 seconds, long enough to verify

whether our approach could maintain deterministic results for a
given flow arrival rate beyond the initial start-up. Flow tables
were cleared before the experiment started. Experiments were
run with a range of TCP connection arrival rates. Note that one
TCP connection consists of two unidirectional flows, and is
handled as follows. When the first packet of a TCP connection
arrives at a software switch, since there are no matching rules it
is forwarded to the controller. The controller then configures
rules on all switches on both the outgoing and return paths to
allow the connection to be established as quickly as possible.

To evaluate our approach, we ran experiments where flows
were initially tunnelled, and later migrated to non-tunnelled
paths. For comparison, we ran experiments with the same test-
bed setup with the only change being that flows were not
tunnelled at all, and more experiments where the flows were
tunnelled but never migrated from the tunnels. Fig. 4 shows
TCP connection setup delay with rates of 30, 70 and 90 new
connections per second, for the three scenarios: flows not
tunnelled at all, flows tunnelled for their lifetime, flows
tunnelled initially, but later migrated to a non-tunnelled path.
To measure connection setup delay, we record the time at
which the client sends a TCP SYN packet, and the time that it
receives a SYN/ACK in return. While this measure disregards
the time required for the final ACK of the TCP 3-way
handshake, it captures the time taken for the flow-rules for
outbound and inbound paths to be configured.

In the three graphs of Fig. 4, the TCP connection delay
rises dramatically (note that the y-axis is plotted on a log scale)
for non-tunnelled operation – i.e. when flow-rules must be
added to the hardware switch for each arriving connection.
Even for a relatively low arrival rate of 30 connections per
second, the delay incurred as the hardware switch queues up
requests to add flow rules causes the TCP connection setup
delay to rise exponentially. As expected, the situation only
deteriorates with higher arrival rates of 70 and 90 TCP
connections per second.

In contrast, the performance for ‘tunnelled without
migration’ is maintained at a reasonably stable delay of around
10ms at an arrival rate of up to 70 TCP connections per second.

With this approach, only the software switches are required to
add flow rules before the SYN packet can reach the server, and
the SYN/ACK response can get to the client. In Fig. 4(c), there
is a blip in the results for ‘tunnelled without migration’ near the
end of the experiment, coming up to TCP connection #1400.
The raw data indicates that this was a short-lived anomaly, and
the connection delay appears to be returning to the levels
observed before the blip, but it is too close to the end of the
experiment to be definitive. We conjecture that the blip is due
to another process running on the server or PC causing our
controller to be briefly starved of resources.

Our ‘tunnelled with migration’ approach fares well at an
arrival rate of 30 TCP connections per second, with delay
comparable to ‘tunnelled without migration’ in Fig. 4(a). The
cost of migrating flows from tunnelled to non-tunnelled paths
starts to weigh in Fig 4(b), but note that the TCP connection
setup latency is maintained at less than 100ms for the full
experiment for ‘tunnelled with migration’. While migrating
flows incurs a cost for TCP connection setup, clearly that cost
can be balanced out over the lifetime of a connection through
utilisation of redundant paths and by the elimination of
tunnelling overhead after a flow is migrated.

The results in Fig. 4(c) for an arrival rate of 90 connections
per second, with TCP connection setup delay rising without an
upper limit for all scenarios, show that the capabilities of our
implementation are exceeded. Having profiled our controller
code, we can say that this is because as new flows arrive, our
data structure tracking current flows grows, and takes longer to
search to make sure that a packet received as part of packet_in

Fig 4. Rolling mean TCP connection setup delay at various
arrival rates

message doesn’t belong to an existing flow. With re-designed
code, we are confident we can reduce the search time. There
will still be a point at which the number of concurrent flows
limits the TCP connection arrival rate that can be supported.

For comparison, the authors of [16] found a per-switch
arrival rate of up to 60 flows per second (equivalent to 30 TCP
connections per second) in DCNs they analysed – our approach
has already surpassed that. More recently, a figure of up to 500
flows per second at a single DCN switch has been quoted in
[15] by a hyperscale data-centre operator, giving us a target to
aim for. As Open vSwitch is quoted as supporting a flow-rule
update rate of 42,000 per second [18], we are optimistic about
our system achieving a DCN-appropriate level of performance.

VII. CONCLUSIONS AND FUTURE WORK
Our results show clearly the benefit of reducing the

dependence on hardware switches’ capability to handle flow-
rule additions, and we provide a mechanism for doing so that
leverages the capabilities of software switches. The results we
present here represent initial work, and will improve with
refinement of our implementation. More than that, they
indicate to us the potential of extending our approach to
accommodate flow-rule removals and modifications, in an
integrated flow-rule management system intended to meet
demanding performance requirements. The approach of
initially tunnelling a flow will allow flows to be accepted as
they arrive at rates seen in very large data centres, giving space
in time for the flow migration function to selectively queue up
and prioritize flow-rule requests for hardware switches at the
controller to deliver them at a rate that matches the switches
capabilities, minimizing the latency of request completion.

Our next step is to improve the design of our code to use
more efficient data structures and to make the performance of
the event-driven code that handles packet_in events more
independent of the periodically-run code that configures and
verifies non-tunnelled paths before migrating tunnelled flows
to them. Then we intend to investigate how to select flows for
migration, mechanisms for prioritising the migration, and
develop an algorithm for delivery of flow rule modification
requests at a controlled rate within the capabilities of the
receiving switches. We will expand our testing to situations
where switch flow tables are pre-populated, we will use DCN
packet traces, and we hope to access more hardware switches.

ACKNOWLEDGMENT
We thank Dr Fatima Gunning of the Tyndall National

Institute under SFI research grant 13/CDA/2103 for access to
testbed facilities; Łukasz Łukowski and Mark Basham from
Edgecore Networks for technical assistance with the Edgecore
Networks AS5712-54X switch; Tom Sheffield from Pica8
networks for the trial license of the PicOS 2.6.3 software; and
BT TSO for the loan of the Edgecore Network Switches.

REFERENCES

[1] Cisco Global Cloud Index: Forecast and Methodology, 2015–2020
White Paper. Available: http://www.cisco.com/c/dam/en/us/solutions

/collateral/service-provider/global-cloud-index-gci/white-paper-c11-
738085.pdf

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, S. Shenker, J. Turner, "OpenFlow: enabling innovation in
campus networks," SIGCOMM Computer Communications Review,
vol. 38, no. 2, pp. 69-74, 2008.

[3] M. Kuźniar, P. Perešíni, and D. Kostić, "What you need to know about
SDN flow tables," from Passive and Active Measurement Conference
2015, in Lecture Notes in Computer Science, vol. 8995, 2015, pp. 347-
359.

[4] K. He, J. Khalid, A. Gember-Jacobson, S. Das, C. Prakash, A. Akella, L.
E. Li, M. Thottan, "Measuring control plane latency in SDN-enabled
switches," presented at the Proceedings of the 1st ACM SIGCOMM
Symposium on Software Defined Networking Research, Santa Clara,
California, 2015.

[5] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme, J.
Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, M. Casado, "The
design and implementation of Open vSwitch," in Proceedings of the
12th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2015, 2015, pp. 117-130.

[6] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter, "Past: Scalable
ethernet for data centers," in CoNEXT 2012 - Proceedings of the 2012
ACM Conference on Emerging Networking Experiments and
Technologies, 2012, pp. 49-60.

[7] J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Felter, K. Agarwal, J.
Carter, R. Fonseca, "Planck: Millisecond-scale monitoring and control
for commodity networks," in SIGCOMM 2014 - Proceedings of the
2014 ACM Conference on Special Interest Group on Data
Communication, 2014, pp. 407-418.

[8] D. Arora, T. Benson, and J. Rexford, "ProActive routing in scalable data
centers with PARIS," in DCC 2014 - Proceedings of the ACM
SIGCOMM 2014 Workshop on Distributed Cloud Computing, 2014, pp.
5-10.

[9] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, "DevoFlow: Scaling flow management for high-
performance networks," in Proceedings of the ACM SIGCOMM 2011
Conference, SIGCOMM'11, 2011, pp. 254-265.

[10] H. Mekky, F. Hao, S. Mukherjee, Z. L. Zhang, and T. V. Lakshman,
"Application-aware data plane processing in SDN," in HotSDN 2014 -
Proceedings of the ACM SIGCOMM 2014 Workshop on Hot Topics in
Software Defined Networking, 2014, pp. 13-18.

[11] P. Perešíni, M. Kuźniar, and D. Kostić, "Monocle: Dynamic, Fine-
Grained Data Plane Monitoring," in CoNEXT'15 - Proceedings of the
2015 ACM International Conference on Emerging Network Experiments
and Technologies, 2015.

[12] VMware, “VMware NSX Network Virtualization and Security
Platform”. Available: https://www.vmware.com/products/nsx

[13] B. Lantz, B. Heller, and N. McKeown, "A network in a laptop: Rapid
prototyping for software-defined networks," in Proceedings of the 9th
ACM Workshop on Hot Topics in Networks, Hotnets-9, 2010.

[14] M. McCauley. (2013). The POX Controller. Available:
https://www.github.com/noxrepo/pox

[15] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, "Inside the
Social Network's (Datacenter) Network," in Internet Security &
Encryption Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, London, United Kingdom,
2015.

[16] T. Benson, A. Akella, and D. A. Maltz, "Network traffic characteristics
of data centers in the wild," in Proceedings of the ACM SIGCOMM
Internet Measurement Conference, IMC, 2010, pp. 267-280.

[17] Virtualbox.org, “Oracle VM VirtualBox”. Available:
https://www.virtualbox.org

[18] A. L. Aliyu, P. Bull, and A. Abdallah, "Performance implication and
analysis of the OpenFlow SDN protocol," in Proceedings - 31st IEEE
International Conference on Advanced Information Networking and
Applications Workshops, WAINA 2017, 2017, pp. 391-396.

	I. Introduction
	II. Related Work
	III. Problem Verification
	IV. Proposed Approach
	V. Experimental Test-Bed and Implementation
	VI. Experimental Testing and Results
	VII. Conclusions and Future Work
	Acknowledgment
	References

