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Abstract—Existing research on implementing the mobile 

cloud computing paradigm is typically based on offloading 

demanding computation from mobile devices to cloud-based 

servers. A continuous, high quality connection to the cloud 

infrastructure is normally required, with frequent high-volume 

data transfer, which can have a detrimental impact on the user 

experience of the application or service. In this paper, the 

Context Aware Mobile Cloud Services (CAMCS) middleware is 

presented as a solution that can deliver an integrated user 

experience of the mobile cloud to users. Such an experience 

respects the resource limitations of the mobile device. This is 

achieved by the Cloud Personal Assistant (CPA), the user’s 

trusted representative within CAMCS, which completes user-

assigned tasks using existing cloud-based services, with an 

asynchronous, disconnected approach. A thin client mobile 

application, the CAMCS Client, allows the mobile user to send 

descriptions of tasks to his/her CPA, and view task results saved 

at the CPA, when convenient. The design and implementation of 

the middleware is presented, along with results of experimental 

evaluation on Amazon EC2. The resource usage of the CAMCS 

client is also studied. Analysis shows that CAMCS delivers an 

integrated user experience of mobile cloud applications and 

services. 
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I.  INTRODUCTION 

While there are many different research approaches to 
implementing the mobile cloud computing (MCC) paradigm, a 
common aspect includes offloading compute-intensive work 
to cloud infrastructure. Existing research, particularly in areas 
related to Cloudlets [1] and code-offloading techniques [2] 
have shown promising results and exciting use-cases. 
However, these approaches typically come with their own 
requirements and resource costs, such as the presence of a 
continuous high-quality network connection to the cloud 
infrastructure, which can be difficult to achieve in practice. 
The data connection is often used frequently to transfer 
considerable data payloads between the mobile device and the 
cloud, in the form of application components, code-bases, or 
even virtual machine outputs. The requirement of a continuous 
connection, and frequent data transfer, can drain the battery of 
the mobile device quickly. These requirements result in a 
detrimental user experience of the mobile cloud application. 

In our previous work [3], requirements were outlined that 
should be implemented by future work, in order for MCC 
solutions to provide an integrated user experience of the 
mobile cloud; such an experience will respect the resource 
limitations of the mobile device (a more complete definition is 
presented in the previous work). The reference architecture for 
a middleware realising this goal was also presented. This 
paper presents the complete architecture and implementation 
of Context Aware Mobile Cloud Services (CAMCS), a mobile 
cloud middleware solution that has been designed to deliver 
cloud-based services to mobile users, while respecting the goal 
of providing an integrated user experience of mobile cloud 
applications and services. CAMCS delivers such an 
experience by means of an asynchronous, disconnected 
approach, to MCC. This is realised by the Cloud Personal 
Assistant (CPA) [4]. Each user of CAMCS is provided with 
his/her own CPA. The CPA is the trusted, third party 
representative of the mobile user, which completes user-
assigned tasks, received as descriptions from the mobile 
device, by working with cloud-based services.  

By means of the CAMCS Client, an Android-based thin-
client mobile application, the mobile user can request his/her 
CPA to complete a task, given a name and description. 
CAMCS engages in service discovery on behalf of CPAs, to 
find an appropriate service to complete the task. The mobile 
user can then choose which discovered service they deem 
suitable for completing the task, provide input parameters, and 
the CPA will work with that cloud service to complete the 
work and save the result. The mobile user can view the result 
at their leisure. As the CPA is responsible for completing the 
task, the user is free to disconnect from the cloud; no 
continuous connection is required, and there is no requirement 
for frequent or high-volume data transfer. 

In this paper, the following contributions are made: the 
finalised design and implementation of the complete CAMCS 
middleware is presented. Results of the first detailed 
experimental evaluation of the performance of the complete 
system are also provided, while CAMCS was deployed on 
Amazon EC2. The first resource usage evaluation for the 
CAMCS Client running on an Android mobile device is also 
provided. Finally, an original analysis is presented to 
determine if CAMCS meets the requirements outlined in our 
previous work for delivering an integrated user experience of 
MCC applications and services. 

*Research completed while undertaking PhD study at the Department of 
Computer Science, University College Cork. 



The remainder of the paper is organized as follows: 
Section II introduces CAMCS and its features. Section III 
presents the design of CAMCS, while Section IV presents the 
results of the experimental evaluation of the CAMCS 
middleware, and the CAMCS Client. An analysis of CAMCS 
against the integrated user experience requirements is 
presented in Section V. Related work is presented in Section 
VI, followed by the conclusions in Section VII. 

II. CONTEXT AWARE MOBILE CLOUD SERVICES 

The reference middleware architecture presented in [3] has 
been developed into the complete CAMCS solution now 
described here. The various features and components 
originally proposed were developed to enable the user 
experience goal of MCC in a personalised way. These 
individual features have been the subject of previous works, 
but are now described here briefly for completeness. 

A. Cloud Personal Assistant Task Models 

CAMCS provides two user task models for CPAs, which 
were described in a previous work [5]. The first is the user-
initiated task; the user creates a task with a name and 
description using the CAMCS Client installed on his/her 
mobile device. The task description is then sent to his/her CPA 
in CAMCS to begin the work required. Tasks finish when the 
CPA receives a result for the task from the cloud-based 
service, which is stored with the CPA. CAMCS notifies the 
user of task completion with a Push notification. The user can 
then fetch the result from his/her CPA for viewing on the 
CAMCS Client. The second model is automatic-task 
execution. Here, the CPA can take the initiative to complete 
work for the mobile user without an explicit request. Users can 
set tasks to run automatically at their CPA, specifying days of 
the weeks and times when the CPA should run a task again. 
This model supports the goal of disconnected operation. 

CPAs store all task details, including services chosen for 
task completion, and input parameters previously provided by 
the mobile user. A CPA uses the stored information to run 
automatic tasks. The mobile user can also signal his/her CPA 
to run a previous task at any time, without having to perform 
service discovery/selection, and parameter input again. 

Task results are based on HTML to give service 
developers the flexibility to customise the format of their 
service results to their choosing. Services specify a template 
HTML result page as part of their description (described 
shortly), which can use company specific CSS and JavaScript 
files. When a CPA has finished running a task, it fetches a 
copy of the result template and writes the JSON result data 
into it, converting to HTML markup in the process. This page 
is saved on the CAMCS cloud storage, or the user can choose 
to store it in his/her own cloud storage provider account (e.g. 
Dropbox). Task result pages are viewed using the Android 
WebView Activity on the CAMCS Client. 

B. Context-Awareness with the Context Processor 

As described in our requirements outlined for an integrated 
user experience of MCC, CAMCS provides contextual-
awareness support by means of its Context Processor 
component, described in a previous work [6].  

The Context Processor is included with CAMCS to 
provide personalisation of task execution with cloud services, 
and task results. When a mobile user chooses a service for 
completing a task that can benefit from user context data as an 
input, a CPA can pull context-data for their owner from the 
Context Processor, and pass this information to the cloud 
service, with user consent. The Context Processor stores user 
context data as Ontologies in XML. Each user has current and 
historical context data stored. Historical context data can be 
used to imply current context if the mobile user is 
disconnected and unable to provide fresh context data. 

The CAMCS Client collects context data from the sensors 
of the mobile device. With the user’s consent (by switching 
the feature on in the client Settings), a background service 
runs and collects context data, such as user location and 
activity, at set intervals provided by the user. These updates 
are sent to CAMCS, which stores the collected data for the 
user on behalf of his/her CPA with the Context Processor. 

CAMCS also supports a feature known as Context 
Profiles. A user can set different profiles to be active at his/her 
CPA at any given time. These profiles can influence the tasks 
that a CPA carries out automatically. For example, a work 
profile can allow some automatic tasks, such as fetch the 
traffic on the user’s route to work, to run during the week, but 
not during the weekend. 

C. Service Discovery and Consumption 

CAMCS differs from other common MCC models, in that 
it relies on existing services deployed on cloud infrastructures. 
These services are deployed using common SOA web-service 
technologies and styles such as the Simple Object Access 
Protocol (SOAP) and RESTful architecture, and are capable of 
delivering useful information and functionality to users. Such 
services are not suitable for direct human-consumption, as 
they are commonly described with XML-based technologies 
such as WSDL. CAMCS uses a custom user-oriented mobile 
cloud service description format for describing existing web-
based services [5]. These feature user-friendly service 
descriptions, which allow the mobile user to take part in the 
service discovery process, to find a service that his/her CPA 
can use to complete a task. This format also allows users to 
provide input parameters to services, with user-friendly names 
and descriptions of parameters shown through the CAMCS 
Client. These can be ordinary data parameters, or contextual 
parameters. 

III. DESIGN 

The final architectural design of CAMCS is shown in Fig. 
1.  The original components proposed in the reference 
architecture, and new supporting components, have been 
developed for CAMCS into three layers; the Management 
Layer, the CPA Layer, and the Execution Layer. A flow 
diagram showing how the execution of a new task uses the 
components in the three layers is shown in Fig. 2. Also shown 
is the interaction required between the mobile user through 
their mobile device with the CAMCS Client, and CAMCS. 

A. Management Layer 

The Management Layer contains common components 
shared by all CPAs to support their operation. Some of these  



 

FIG. 1. A detailed view of the components of CAMCS, which can be divided 
into three layers. The Management Layer contains many components shared 
by all CPAs. The CPA Layer contains the CPAs, along with components that 
each CPA has a unique copy of, and finally, the Execution Layer contains 
components used during task execution. 

CPA components are interfaces to allow CPAs to 
communicate with a specific component of CAMCS, such as 
the User Context Manager, which directs CPAs to the Context 
Processor. The other CPA components wrap their own 
functionality, such as the Notification Manager. A CPA uses 
the components in the Management Layer via the CPA 
Manager. The CPA Manager is also used for authenticating 
user access to CPAs when requests are received from the 
mobile device, using password-based HTTP authentication. 
Some of the main components are now briefly described: 

 Discovery Handler 

The Discovery Handler encapsulates all functionality 
related to Service Discovery. A CPA passes the user-provided 
task description to the handler, which contacts and queries the 
service registry over HTTP, with the task description. The 
registry returns a list of discovered services for the task to the 
CPA. 

 Task Starter 

Once the mobile user has chosen a service and provided all 
the input parameters, a CPA passes this information to the 
Task Starter. The Task Starter creates a Task Executable for 
executing the task, and passes a map containing the user 
provided parameters. 

B. CPA Layer 

The CPA Layer contains a CPA for every user. The data 
for all CPAs are stored in a backend database. Every CPA 
contains its own unique copy of the following components: 

 Task Manager 

The Task Manager stores a CPA’s Current Tasks and 
Completed Tasks, making up the task history. All operations, 

such as creating new tasks, storing of selected services and 
input parameters, and retrieving task results, take place 
through the Task Manager. 

 Account Manager 

The Account Manager stores a user's credentials for 
connecting his/her CPA to third-party cloud services, which 
are used for features such as context awareness. The Account 
Manager also contains the operations to contact those services, 
and push/pull information to/from them. This was presented in 
a previous work [7]. 

C. Execution Layer 

The Execution Layer contains all the components related 
to task execution on behalf of CPAs: 

 Task Executable 

Task Executables are used to run tasks, and are created by 
the Task Starter. The Task Executable, using all task 
information provided by the user, is the component that makes 
the remote call to the cloud-services over HTTP, passing the 
parameter information. It also prepares the result data 
retrieved back from the service for storage within CAMCS on 
behalf of a CPA. 

 Task Listener 

The Task Listener listens for task events such as task 
completion, or a task error. It notifies the CPA of these events 
(so that the CPA can notify the mobile user with the 
Notification Manager). It is also responsible for passing the 
task result from the Task Executable, back to the CPA for 
storage with the Task Manager. 

IV. EVALUATION 

CAMCS was deployed on the free tier of Amazon EC2 for 
evaluation. The CAMCS Client, running on Android-based 
mobile devices, is also evaluated in terms of resource usage. 
The free tier instances used in these evaluations are of type 
t2.micro. These are categorised as general-purpose instances, 
featuring an Intel Xeon CPU burstable to 3GHz, 1GB 
memory, “low” network performance, and no elastic block 
storage (EBS) optimisation.  

A. CAMCS Middleware Evaluation 

A CAMCS Docker image was used to run CAMCS within 
Docker Containers on the EC2 instances. This initial setup 
was used to create a custom Amazon Machine Image (AMI), 
which was used as a template for launching new EC2 
instances where auto-scaling was used during these 
experiments. 

For load testing CAMCS, Apache JMeter was used to 
simulate mobile users sending task descriptions to his/her 
CPA, to find a service to play a game of N-Queens, for a 
random value of N. A description of the N-Queens service 
running on another EC2 instance was manually inserted into 
the CAMCS registry before experiments began. Therefore, the 
sequence of events for the experiments are 1) CAMCS 
receiving the task from a user (a JMeter thread here), 2) 
perform service discovery to find the service, 3) contact the 
service to play the N-Queens game for the random N, 4)  



 

FIG. 2. A sequence diagram showing how the components of CAMCS are 
used by CPAs to complete a task. The solid lines show the main flow of steps 
through the system. The dashed lines show steps where the user is notified of 
an event using the Notification Manager. The dotted line shows where the 
user provides more information before the main flow can proceed. 

obtain the result (time taken to solve for random N) and return 
it to the JMeter “user”. 

It is important to note for these experiments, that they do 
not represent the expected way a mobile user would interact 
with CAMCS and his/her CPA. CAMCS provides an 
asynchronous, disconnected approach to task completion, 
making it difficult to gauge performance. For these 
experiments, CAMCS was effectively made synchronous. 
Once the task was received by CAMCS, no call-backs are 
made to mobile devices for users to choose a service, provide 
input parameters, and view results. Service discovery, 
execution, and the returning of task results, all occurred in a 
sequential, blocking fashion for these experiments. For this 
purpose, the concept of Anonymous CPAs was introduced; 
these are CPAs that are not tied to individual users; rather, 
they sit waiting to complete tasks received from any user. 

JMeter was started with 1000 users and a ramp-up period 
of 60 seconds. The horizontal auto-scaling policies were set as 
follows: launch 1 new instance each time the average CPU 
utilisation of an instance was greater than or equal to 85% for 
a continuous period of 5 minutes, and terminate 1 EC2 
instance when the average CPU utilisation dropped to 50% or 
lower for a continuous period of 5 minutes. The actual service 
discovery and consumption calls over HTTP were disabled, so 
that only the task processing performance was measured. 

Fig. 3 shows the CPU utilization for the first instance used 
in the experiment; the CPU utilization jumps to 100% 
immediately. After 5 minutes, the scale-up alarm is fired, and 
at the 10-minute point, the second instance has become 
flagged as InService. After this, both instances achieved 
utilisation of approximately 75% for the duration of the test 
when they were both InService.  

JMeter results showed that with 1000 users, before the 
second instance became InService, with 34650 sample 

requests at that point, average response time was 16.3 seconds, 
with throughput at 55.4 requests per second. The response 
time is twice that of the response time for 500 users, although 
with comparable throughput (500-user experiment omitted due 
to space constraints). The other metrics captured at the end of 
the test show with two instances in service, average response 
time dropped to 11.3 seconds over 146444 sample requests 
made during the test, and the throughput increased to 78.1 
requests per second.  

The metrics also show a decrease in the median response 
time from 17.1 seconds to 2.7 seconds, while the 95% 
confidence interval increased from 18.8 seconds to 30 
seconds, which is explained by the response time graph from 
JMeter (omitted due to space constraints). With one instance 
InService, the average response time for requests is between 
17 and 18 seconds. Once instance two comes into service at 
the 10-minute point, the response times are shown to become 
far more erratic, between 2 and 35 seconds. This appears to be 
the result of the AWS load balancer. JMeter showed a request 
error rate of 2% at the end of the test. These errors came from 
requests that ended with HTTP errors such as "connection 
reset", "connected timed out", or "the target server failed to 
respond". Note that because of the default JMeter settings, 
any-failed requests were not re-tried. With no load-balancer in 
use, running the same test with 1000 users on only one EC2 
server (not shown), these errors and erratic response times do 
not appear, and the error rate remains at 0%. 

Recall that no user will be blocked and waiting on his/her 
mobile device for between 11 and 16 seconds for a task to 
complete. The model is asynchronous and non-blocking; the 
user is notified when each step of the task execution process 
completes. Task results load in seconds similar to any 
webpage. 

The evaluation shows that CAMCS can scale and handle a 
high volume of growing users, although longer response times 
show the value of using the appropriate number of instances to 
handle the load, and the right instance type for the compute 
intensive operations. This is not the case here with the 
t2.micro type, which is not categorized by AWS for compute-
intensive applications. 

B. CAMCS Client Evaluation 

Evaluation on the mobile device takes place with the 
CAMCS Client application. These experiments take place on a 
Google Nexus 5 device, running Android 4.4.4 KitKat. All of 
the operations on the CAMCS Client are maintained 
asynchronous for the evaluation, as this is how the mobile user 
would interact with CAMCS. 

To evaluate an example of using the CAMCS Client to 
perform task work, a new task was created for fetching events 
data from a calendar, using our sample Google Calendar 
service. The experiment was performed twice; once on a Wi-
Fi connection, and once on a 3G cellular connection. The 
results were almost identical, and so only the cellular results 
are shown here, as cellular performance is typically the 
bottleneck with other MCC solutions. Metrics were recorded 
with the Trepn Profiler for Android [8]. A base-line power 
consumption of 1.5W was recorded for the duration of the  



 

FIG. 3 AWS CloudWatch CPU Utilisation Graph for EC2 Instance One, with 
1000 users and horizontal auto-scaling, captured at the end of the experiment, 
showing the initial average CPU utilisation of 100% followed by a decrease to 
approximately 70% after the second instance became InService. 

work. Spikes were present each time network activity 
occurred, for the most part up towards 3W, with others spiking 
to 5.5W. A total of 5KB of data was sent to the CPA, while 
the client received 377.91KB from the CPA. By far, most of 
the data received is from the result HTML page being fetched 
and displayed. The profiler shows that the size of the result 
HTML file for the test individual's calendar was 372.37KB. 

The Trepn Profiler application running on the Android 
device also recorded measurements during the test. Peak 
memory usage for the CAMCS Client during the interaction 
was 24.7MB, and CPU utilisation averaged at 2.21%. These 
results highlight the low data transfer requirements of the 
CAMCS Client, and re-enforce the objective that the client 
does not perform any compute-intensive work. 

V. USER EXPERIENCE ANALYSIS 

The requirements for an integrated user experience that 
were presented in our previous work [3] will now be recalled. 
Based on the evaluation results presented, we determine if 
CAMCS meets these requirements. 

1. The approach has to address the latency between the 
device and the cloud infrastructure 

By only transferring small amounts of data, and 
disconnecting between each step when completing a task, the 
effects of latency are not noticeable to the end user. 

2. The approach has to minimise bandwidth utilisation 

As with addressing the latency requirement above, the 
small amount of data transferred between the mobile device 
and CAMCS in the course of completing a task, CAMCS 
meets this requirement because of its low data transfer 
requirements. 

3. Device workload overhead must be minimised 

For the most part the work of the CAMCS Client simply 
involves collecting data or actions from the mobile user to 
send to their CPA within CAMCS, or presenting output from 
the CPA. The CAMCS Client evaluation section showed little 
resource usage during the required steps.  

4. The approach must gracefully handle mobility 
aspects such as disconnection 

CAMCS with its disconnected and asynchronous task 
execution model has been guided by the principle of 
disconnected operation from the beginning. As the mobile 
device is not responsible for any aspect of the work involved 
with completing a task aside from user input, CAMCS meets 
this mobility requirement. 

5. Provisioning for context awareness must play a 
central role 

User context data can be used for both service discovery 
and task execution. Context can be retrieved from the mobile 
device and other sources, such as social networks. Support is 
included in the user-oriented service description format for 
context parameters, allowing services to describe what context 
data inputs they can receive. In the absence of fresh context, 
new context can be inferred from historical context data.  

6. The solution must uniquely cater for the mobile user, 
rather than the desktop user 

CAMCS addresses mobility concerns such as 
disconnection, unlike other solutions where desktop VMs are 
used. CAMCS takes advantage of unique mobile features. The 
resource requirements of CAMCS on the mobile device also 
respect the limited supply of energy and bandwidth available 
to the mobile device. Task results based on HTML web pages, 
can be displayed on all mobile devices with web browsers. 

7. The thin client on the mobile must provide an 
adaptive UI and services 

The CAMCS Client features a task sending decision maker 
to respect the current resource status of the mobile device [9]. 
The decision maker considers network signal strength, the size 
of the data to be sent, the battery status, and task priority. The 
algorithm is zero-overhead, performing no network profiling 
aside from reading GSM signal strength already available. 
Tasks descriptions will be sent to CAMCS either immediately, 
or queued until the network quality improves.  

8. A standards-based solution must be used 

CAMCS works with existing service technologies, such as 
RESTful services. WSDL files that are used to describe 
SOAP-based services can easily be translated into the user-
oriented mobile cloud service description format used by this 
work, as all the elements of the service description format 
have an equivalent markup in WSDL.  

VI. RELATED WORK 

Many MCC solutions do not typically respect the user 
experience requirement that CAMCS was designed with from 
the outset. The Cloudlet architecture [1] uses low-resource 
compute infrastructure placed around Wi-Fi access points 
where many mobile users gather, such as at a coffee shop. 
Cloudlet approaches are based on virtual machines, and may 
be demanding on the device battery because of the continuous 
connectivity requirement, and frequent data transfer. Code-
offloading and application partitioning approaches [2] [10] 
will offload methods of mobile application code-bases, or 



components of a partitioned application, to the cloud 
infrastructure for execution there, with results returned to the 
mobile device. These approaches will also not function 
without a continuous connection to the cloud. Performance 
results on cellular networks are shown to be extremely poor, 
or not evaluated. This is crucial for the mobility aspect of the 
user experience. CAMCS evaluations showed identical 
performance on both Wi-Fi and cellular networks, because the 
disconnected approach and low data-transfer requirements. 

Middleware approaches with SOA include a mobile cloud 
middleware [11] which performs result optimisations between 
XML and JSON-based web services. The solution required the 
mobile user to know the WSDL URL of the service, and the 
type of service (SOAP/RESTful). CAMCS hides such 
complexity. Another middleware [12] provides an adapter 
between a specific set of different cloud-based services, to 
format requests to those services correctly. CAMCS is 
designed to work with all cloud-based services. The Avatar 
middleware [13] uses a copy of the mobile operating system in 
the cloud as a virtual machine, known as an Avatar. Mobile 
applications can run either entirely on the Avatar, or 
components can be split between the Avatar and the mobile 
device.  

Consumer products that deliver cloud-based services 
include Google Now [14], and Apple Siri [15]. Google Now 
can provide useful information such as current weather and 
traffic with a specific set of services, similar to CAMCS. 
However, Google Now carries out its work on the mobile 
device, rather than in the cloud as with CAMCS. Google Now 
only works with some service providers; with CAMCS, any 
developer can offer a service. Apple Siri is voice-based, and 
requires an Internet connection for voice recognition to extract 
user queries; it will not operate without an active connection. 

VII. CONCLUSIONS 

In this paper, the Context Aware Mobile Cloud Services 
(CAMCS) middleware was presented as a solution that 
delivers an integrated user experience of the mobile cloud, by 
respecting the limited resources available on mobile devices. 
This is achieved by means of the Cloud Personal Assistant 
(CPA). CPAs are representatives of mobile users within 
CAMCS that use cloud-based services to complete tasks 
assigned to them in a disconnected, asynchronous fashion. 
Tasks are received by CPAs as descriptions sent from the 
CAMCS Client running on the mobile device. 

The following contributions were made: The features of 
CAMCS were described: task models, contextual-awareness 
support, and the user-oriented service discovery and 
consumption processes. The final design and implementation 
of CAMCS was also presented. An evaluation was presented 
using load testing while deployed on Amazon EC2, showing 
the performance benefits of scaling. The CAMCS Client was 
also analysed, showing the low resource usage in terms of 
power consumption and network activity. Finally, analysis of 
the results showed that CAMCS met the requirements outlined 
in our previous work for an integrated user experience. 

In future work, CAMCS can be extended to support 
additional service models. Also of interest are groups of CPAs 
collaborating to complete large tasks together, and task results 
feeding into other tasks as input data. 

ACKNOWLEDGMENT 

The PhD Research of Michael J. O’Sullivan was funded by 
the EMBARK Initiative of the Irish Research Council. 

REFERENCES 

[1] M. Satyanarayanan, P. Bahl, R. Caceres, N. Davies, “The case for VM-
based cloudlets in mobile computing”, IEEE Pervasive Computing, 
2009; 8(4), pp. 14-23. 

[2] E. Cuervo, A. Balasubramanian, D.-K. Cho, A. Wolman, S. Saroiu, R. 
Chandra, et al, “MAUI: making smartphones last longer with code 
offload”, in Proceedings of the 8th international conference on Mobile 
systems, applications, and services, San Francisco, California, USA. 
1814441, ACM, 2010, pp. 49-62. 

[3] M. J. O’Sullivan, D. Grigoras, “User experience of mobile cloud 
applications – current state and future directions”, in Proceedings of the 
12th International Symposium on Parallel and Distributed Computing, 
Bucharest, Romania, 27-30 June, 2013, pp. 85-92. 

[4] M. J. O’Sullivan, D. Grigoras, “The cloud personal assistant for 
providing services to mobile clients”, in Proceedings of IEEE 7th 
International Symposium on Service Oriented System Engineering 
(SOSE), Redwood City, San Francisco Bay, California, USA, 2013, pp. 
477-484. 

[5] M. J. O’Sullivan, D. Grigoras, “Delivering mobile cloud services to the 
user: description, discovery, and consumption”, in Proceedings of IEEE 
4th International Conference on Mobile Services (MS),  New York City, 
New York, USA, 2015, pp. 49-56. 

[6] M. J. O’Sullivan, D. Grigoras, “Mobile cloud contextual awareness with 
the cloud personal assistant, in Proceedings of the 2nd International 
Conference on Future Internet of Things and Cloud (FiCloud-2014), 
Barcelona, Spain, 27-29th August, 2014, pp. 82-89. 

[7] M. J. O’Sullivan, D. Grigoras, “Mobile cloud application models 
facilitated by the cpa”, EAI Endorsed Transactions on Scalable 
Information Systems, 15(4), 2015. 

[8] Trepn Profiler for Android. 
https://developer.qualcomm.com/software/trepn-power-profiler Last 
Accessed 25/11/15. 

[9] M. J. O’Sullivan, D. Grigoras, “Integrating mobile and cloud resources 
management using the cloud personal assistant, Simulation Modelling 
Practice and Theory, Vol. 50, pp. 20-41, January 2015, ISSN 1569- 

[10] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso, “Calling the 
cloud: Enabling mobile phones as interfaces to cloud applications”, 
Middleware 2009, pp. 83-102. 

[11] Q. Wang, R. Deters, “SOA's Last mile-connecting smartphones to the 
service cloud”, in Proceedings of the IEEE International Conference on 
Cloud Computing (CLOUD), Bangalore, India, 21-25 September, 2009, 
pp. 80-87. 

[12] H. Flores, S. N. Srirama and C. Paniagua, “A generic middleware 
framework for handling process intensive hybrid cloud services from 
mobiles”, Proceedings of the 9th International Conference on Advances 
in Mobile Computing and Multimedia, Ho Chi Minh City, Vietnam, 
2095715, ACM, 2011, pp. 87-94. 

[13] C. Borcea, X. Ding, N. Gehani, R. Curtmola, MA Khan, and H. 
Debnath, “Avatar: mobile distributed computing in the cloud”, in 
Proceedings of 3rd IEEE International Conference on Mobile Cloud 
Computing, Services, and Engineering (MobileCloud); March 30-April 
3, 2015, pp. 151-156. 

[14] Google Now. https://www.google.com/landing/now/ Last Accessed 
25/11/15. 

[15] Apple Siri. https://support.apple.com/en-ie/HT204389 Last Accessed 
25/11/15. 

 


