
Title Context aware mobile cloud services: a user experience oriented
middleware for mobile cloud computing

Authors O'Sullivan, Michael J.;Grigoras, Dan

Publication date 2016-03-29

Original Citation O'Sullivan, M. J. and Grigoras, D. (2016) "Context aware mobile
cloud services: a user experience oriented middleware for mobile
cloud computing", 4th IEEE International Conference on Mobile
Cloud Computing, Services, and Engineering (MobileCloud).
Oxford, United Kingdom, 29 March-1 April.

Type of publication Conference item

Rights © Copyright 2016 IEEE. All rights reserved. Personal use of
this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

Download date 2024-03-28 19:59:35

Item downloaded
from

https://hdl.handle.net/10468/2484

https://hdl.handle.net/10468/2484

Context Aware Mobile Cloud Services: A User

Experience Oriented Middleware for Mobile Cloud

Computing

Michael J. O’Sullivan*

IBM - Ireland,

Airport Business Park, Cork, Ireland

MichaelOSullivan@ie.ibm.com

Dan Grigoras

Department of Computer Science,

University College Cork, Cork, Ireland

grigoras@cs.ucc.ie

Abstract—Existing research on implementing the mobile

cloud computing paradigm is typically based on offloading

demanding computation from mobile devices to cloud-based

servers. A continuous, high quality connection to the cloud

infrastructure is normally required, with frequent high-volume

data transfer, which can have a detrimental impact on the user

experience of the application or service. In this paper, the

Context Aware Mobile Cloud Services (CAMCS) middleware is

presented as a solution that can deliver an integrated user

experience of the mobile cloud to users. Such an experience

respects the resource limitations of the mobile device. This is

achieved by the Cloud Personal Assistant (CPA), the user’s

trusted representative within CAMCS, which completes user-

assigned tasks using existing cloud-based services, with an

asynchronous, disconnected approach. A thin client mobile

application, the CAMCS Client, allows the mobile user to send

descriptions of tasks to his/her CPA, and view task results saved

at the CPA, when convenient. The design and implementation of

the middleware is presented, along with results of experimental

evaluation on Amazon EC2. The resource usage of the CAMCS

client is also studied. Analysis shows that CAMCS delivers an

integrated user experience of mobile cloud applications and

services.

Keywords—mobile, cloud, middleware, distributed system,

services, user experience

I. INTRODUCTION

While there are many different research approaches to
implementing the mobile cloud computing (MCC) paradigm, a
common aspect includes offloading compute-intensive work
to cloud infrastructure. Existing research, particularly in areas
related to Cloudlets [1] and code-offloading techniques [2]
have shown promising results and exciting use-cases.
However, these approaches typically come with their own
requirements and resource costs, such as the presence of a
continuous high-quality network connection to the cloud
infrastructure, which can be difficult to achieve in practice.
The data connection is often used frequently to transfer
considerable data payloads between the mobile device and the
cloud, in the form of application components, code-bases, or
even virtual machine outputs. The requirement of a continuous
connection, and frequent data transfer, can drain the battery of
the mobile device quickly. These requirements result in a
detrimental user experience of the mobile cloud application.

In our previous work [3], requirements were outlined that
should be implemented by future work, in order for MCC
solutions to provide an integrated user experience of the
mobile cloud; such an experience will respect the resource
limitations of the mobile device (a more complete definition is
presented in the previous work). The reference architecture for
a middleware realising this goal was also presented. This
paper presents the complete architecture and implementation
of Context Aware Mobile Cloud Services (CAMCS), a mobile
cloud middleware solution that has been designed to deliver
cloud-based services to mobile users, while respecting the goal
of providing an integrated user experience of mobile cloud
applications and services. CAMCS delivers such an
experience by means of an asynchronous, disconnected
approach, to MCC. This is realised by the Cloud Personal
Assistant (CPA) [4]. Each user of CAMCS is provided with
his/her own CPA. The CPA is the trusted, third party
representative of the mobile user, which completes user-
assigned tasks, received as descriptions from the mobile
device, by working with cloud-based services.

By means of the CAMCS Client, an Android-based thin-
client mobile application, the mobile user can request his/her
CPA to complete a task, given a name and description.
CAMCS engages in service discovery on behalf of CPAs, to
find an appropriate service to complete the task. The mobile
user can then choose which discovered service they deem
suitable for completing the task, provide input parameters, and
the CPA will work with that cloud service to complete the
work and save the result. The mobile user can view the result
at their leisure. As the CPA is responsible for completing the
task, the user is free to disconnect from the cloud; no
continuous connection is required, and there is no requirement
for frequent or high-volume data transfer.

In this paper, the following contributions are made: the
finalised design and implementation of the complete CAMCS
middleware is presented. Results of the first detailed
experimental evaluation of the performance of the complete
system are also provided, while CAMCS was deployed on
Amazon EC2. The first resource usage evaluation for the
CAMCS Client running on an Android mobile device is also
provided. Finally, an original analysis is presented to
determine if CAMCS meets the requirements outlined in our
previous work for delivering an integrated user experience of
MCC applications and services.

*Research completed while undertaking PhD study at the Department of
Computer Science, University College Cork.

The remainder of the paper is organized as follows:
Section II introduces CAMCS and its features. Section III
presents the design of CAMCS, while Section IV presents the
results of the experimental evaluation of the CAMCS
middleware, and the CAMCS Client. An analysis of CAMCS
against the integrated user experience requirements is
presented in Section V. Related work is presented in Section
VI, followed by the conclusions in Section VII.

II. CONTEXT AWARE MOBILE CLOUD SERVICES

The reference middleware architecture presented in [3] has
been developed into the complete CAMCS solution now
described here. The various features and components
originally proposed were developed to enable the user
experience goal of MCC in a personalised way. These
individual features have been the subject of previous works,
but are now described here briefly for completeness.

A. Cloud Personal Assistant Task Models

CAMCS provides two user task models for CPAs, which
were described in a previous work [5]. The first is the user-
initiated task; the user creates a task with a name and
description using the CAMCS Client installed on his/her
mobile device. The task description is then sent to his/her CPA
in CAMCS to begin the work required. Tasks finish when the
CPA receives a result for the task from the cloud-based
service, which is stored with the CPA. CAMCS notifies the
user of task completion with a Push notification. The user can
then fetch the result from his/her CPA for viewing on the
CAMCS Client. The second model is automatic-task
execution. Here, the CPA can take the initiative to complete
work for the mobile user without an explicit request. Users can
set tasks to run automatically at their CPA, specifying days of
the weeks and times when the CPA should run a task again.
This model supports the goal of disconnected operation.

CPAs store all task details, including services chosen for
task completion, and input parameters previously provided by
the mobile user. A CPA uses the stored information to run
automatic tasks. The mobile user can also signal his/her CPA
to run a previous task at any time, without having to perform
service discovery/selection, and parameter input again.

Task results are based on HTML to give service
developers the flexibility to customise the format of their
service results to their choosing. Services specify a template
HTML result page as part of their description (described
shortly), which can use company specific CSS and JavaScript
files. When a CPA has finished running a task, it fetches a
copy of the result template and writes the JSON result data
into it, converting to HTML markup in the process. This page
is saved on the CAMCS cloud storage, or the user can choose
to store it in his/her own cloud storage provider account (e.g.
Dropbox). Task result pages are viewed using the Android
WebView Activity on the CAMCS Client.

B. Context-Awareness with the Context Processor

As described in our requirements outlined for an integrated
user experience of MCC, CAMCS provides contextual-
awareness support by means of its Context Processor
component, described in a previous work [6].

The Context Processor is included with CAMCS to
provide personalisation of task execution with cloud services,
and task results. When a mobile user chooses a service for
completing a task that can benefit from user context data as an
input, a CPA can pull context-data for their owner from the
Context Processor, and pass this information to the cloud
service, with user consent. The Context Processor stores user
context data as Ontologies in XML. Each user has current and
historical context data stored. Historical context data can be
used to imply current context if the mobile user is
disconnected and unable to provide fresh context data.

The CAMCS Client collects context data from the sensors
of the mobile device. With the user’s consent (by switching
the feature on in the client Settings), a background service
runs and collects context data, such as user location and
activity, at set intervals provided by the user. These updates
are sent to CAMCS, which stores the collected data for the
user on behalf of his/her CPA with the Context Processor.

CAMCS also supports a feature known as Context
Profiles. A user can set different profiles to be active at his/her
CPA at any given time. These profiles can influence the tasks
that a CPA carries out automatically. For example, a work
profile can allow some automatic tasks, such as fetch the
traffic on the user’s route to work, to run during the week, but
not during the weekend.

C. Service Discovery and Consumption

CAMCS differs from other common MCC models, in that
it relies on existing services deployed on cloud infrastructures.
These services are deployed using common SOA web-service
technologies and styles such as the Simple Object Access
Protocol (SOAP) and RESTful architecture, and are capable of
delivering useful information and functionality to users. Such
services are not suitable for direct human-consumption, as
they are commonly described with XML-based technologies
such as WSDL. CAMCS uses a custom user-oriented mobile
cloud service description format for describing existing web-
based services [5]. These feature user-friendly service
descriptions, which allow the mobile user to take part in the
service discovery process, to find a service that his/her CPA
can use to complete a task. This format also allows users to
provide input parameters to services, with user-friendly names
and descriptions of parameters shown through the CAMCS
Client. These can be ordinary data parameters, or contextual
parameters.

III. DESIGN

The final architectural design of CAMCS is shown in Fig.
1. The original components proposed in the reference
architecture, and new supporting components, have been
developed for CAMCS into three layers; the Management
Layer, the CPA Layer, and the Execution Layer. A flow
diagram showing how the execution of a new task uses the
components in the three layers is shown in Fig. 2. Also shown
is the interaction required between the mobile user through
their mobile device with the CAMCS Client, and CAMCS.

A. Management Layer

The Management Layer contains common components
shared by all CPAs to support their operation. Some of these

FIG. 1. A detailed view of the components of CAMCS, which can be divided
into three layers. The Management Layer contains many components shared
by all CPAs. The CPA Layer contains the CPAs, along with components that
each CPA has a unique copy of, and finally, the Execution Layer contains
components used during task execution.

CPA components are interfaces to allow CPAs to
communicate with a specific component of CAMCS, such as
the User Context Manager, which directs CPAs to the Context
Processor. The other CPA components wrap their own
functionality, such as the Notification Manager. A CPA uses
the components in the Management Layer via the CPA
Manager. The CPA Manager is also used for authenticating
user access to CPAs when requests are received from the
mobile device, using password-based HTTP authentication.
Some of the main components are now briefly described:

 Discovery Handler

The Discovery Handler encapsulates all functionality
related to Service Discovery. A CPA passes the user-provided
task description to the handler, which contacts and queries the
service registry over HTTP, with the task description. The
registry returns a list of discovered services for the task to the
CPA.

 Task Starter

Once the mobile user has chosen a service and provided all
the input parameters, a CPA passes this information to the
Task Starter. The Task Starter creates a Task Executable for
executing the task, and passes a map containing the user
provided parameters.

B. CPA Layer

The CPA Layer contains a CPA for every user. The data
for all CPAs are stored in a backend database. Every CPA
contains its own unique copy of the following components:

 Task Manager

The Task Manager stores a CPA’s Current Tasks and
Completed Tasks, making up the task history. All operations,

such as creating new tasks, storing of selected services and
input parameters, and retrieving task results, take place
through the Task Manager.

 Account Manager

The Account Manager stores a user's credentials for
connecting his/her CPA to third-party cloud services, which
are used for features such as context awareness. The Account
Manager also contains the operations to contact those services,
and push/pull information to/from them. This was presented in
a previous work [7].

C. Execution Layer

The Execution Layer contains all the components related
to task execution on behalf of CPAs:

 Task Executable

Task Executables are used to run tasks, and are created by
the Task Starter. The Task Executable, using all task
information provided by the user, is the component that makes
the remote call to the cloud-services over HTTP, passing the
parameter information. It also prepares the result data
retrieved back from the service for storage within CAMCS on
behalf of a CPA.

 Task Listener

The Task Listener listens for task events such as task
completion, or a task error. It notifies the CPA of these events
(so that the CPA can notify the mobile user with the
Notification Manager). It is also responsible for passing the
task result from the Task Executable, back to the CPA for
storage with the Task Manager.

IV. EVALUATION

CAMCS was deployed on the free tier of Amazon EC2 for
evaluation. The CAMCS Client, running on Android-based
mobile devices, is also evaluated in terms of resource usage.
The free tier instances used in these evaluations are of type
t2.micro. These are categorised as general-purpose instances,
featuring an Intel Xeon CPU burstable to 3GHz, 1GB
memory, “low” network performance, and no elastic block
storage (EBS) optimisation.

A. CAMCS Middleware Evaluation

A CAMCS Docker image was used to run CAMCS within
Docker Containers on the EC2 instances. This initial setup
was used to create a custom Amazon Machine Image (AMI),
which was used as a template for launching new EC2
instances where auto-scaling was used during these
experiments.

For load testing CAMCS, Apache JMeter was used to
simulate mobile users sending task descriptions to his/her
CPA, to find a service to play a game of N-Queens, for a
random value of N. A description of the N-Queens service
running on another EC2 instance was manually inserted into
the CAMCS registry before experiments began. Therefore, the
sequence of events for the experiments are 1) CAMCS
receiving the task from a user (a JMeter thread here), 2)
perform service discovery to find the service, 3) contact the
service to play the N-Queens game for the random N, 4)

FIG. 2. A sequence diagram showing how the components of CAMCS are
used by CPAs to complete a task. The solid lines show the main flow of steps
through the system. The dashed lines show steps where the user is notified of
an event using the Notification Manager. The dotted line shows where the
user provides more information before the main flow can proceed.

obtain the result (time taken to solve for random N) and return
it to the JMeter “user”.

It is important to note for these experiments, that they do
not represent the expected way a mobile user would interact
with CAMCS and his/her CPA. CAMCS provides an
asynchronous, disconnected approach to task completion,
making it difficult to gauge performance. For these
experiments, CAMCS was effectively made synchronous.
Once the task was received by CAMCS, no call-backs are
made to mobile devices for users to choose a service, provide
input parameters, and view results. Service discovery,
execution, and the returning of task results, all occurred in a
sequential, blocking fashion for these experiments. For this
purpose, the concept of Anonymous CPAs was introduced;
these are CPAs that are not tied to individual users; rather,
they sit waiting to complete tasks received from any user.

JMeter was started with 1000 users and a ramp-up period
of 60 seconds. The horizontal auto-scaling policies were set as
follows: launch 1 new instance each time the average CPU
utilisation of an instance was greater than or equal to 85% for
a continuous period of 5 minutes, and terminate 1 EC2
instance when the average CPU utilisation dropped to 50% or
lower for a continuous period of 5 minutes. The actual service
discovery and consumption calls over HTTP were disabled, so
that only the task processing performance was measured.

Fig. 3 shows the CPU utilization for the first instance used
in the experiment; the CPU utilization jumps to 100%
immediately. After 5 minutes, the scale-up alarm is fired, and
at the 10-minute point, the second instance has become
flagged as InService. After this, both instances achieved
utilisation of approximately 75% for the duration of the test
when they were both InService.

JMeter results showed that with 1000 users, before the
second instance became InService, with 34650 sample

requests at that point, average response time was 16.3 seconds,
with throughput at 55.4 requests per second. The response
time is twice that of the response time for 500 users, although
with comparable throughput (500-user experiment omitted due
to space constraints). The other metrics captured at the end of
the test show with two instances in service, average response
time dropped to 11.3 seconds over 146444 sample requests
made during the test, and the throughput increased to 78.1
requests per second.

The metrics also show a decrease in the median response
time from 17.1 seconds to 2.7 seconds, while the 95%
confidence interval increased from 18.8 seconds to 30
seconds, which is explained by the response time graph from
JMeter (omitted due to space constraints). With one instance
InService, the average response time for requests is between
17 and 18 seconds. Once instance two comes into service at
the 10-minute point, the response times are shown to become
far more erratic, between 2 and 35 seconds. This appears to be
the result of the AWS load balancer. JMeter showed a request
error rate of 2% at the end of the test. These errors came from
requests that ended with HTTP errors such as "connection
reset", "connected timed out", or "the target server failed to
respond". Note that because of the default JMeter settings,
any-failed requests were not re-tried. With no load-balancer in
use, running the same test with 1000 users on only one EC2
server (not shown), these errors and erratic response times do
not appear, and the error rate remains at 0%.

Recall that no user will be blocked and waiting on his/her
mobile device for between 11 and 16 seconds for a task to
complete. The model is asynchronous and non-blocking; the
user is notified when each step of the task execution process
completes. Task results load in seconds similar to any
webpage.

The evaluation shows that CAMCS can scale and handle a
high volume of growing users, although longer response times
show the value of using the appropriate number of instances to
handle the load, and the right instance type for the compute
intensive operations. This is not the case here with the
t2.micro type, which is not categorized by AWS for compute-
intensive applications.

B. CAMCS Client Evaluation

Evaluation on the mobile device takes place with the
CAMCS Client application. These experiments take place on a
Google Nexus 5 device, running Android 4.4.4 KitKat. All of
the operations on the CAMCS Client are maintained
asynchronous for the evaluation, as this is how the mobile user
would interact with CAMCS.

To evaluate an example of using the CAMCS Client to
perform task work, a new task was created for fetching events
data from a calendar, using our sample Google Calendar
service. The experiment was performed twice; once on a Wi-
Fi connection, and once on a 3G cellular connection. The
results were almost identical, and so only the cellular results
are shown here, as cellular performance is typically the
bottleneck with other MCC solutions. Metrics were recorded
with the Trepn Profiler for Android [8]. A base-line power
consumption of 1.5W was recorded for the duration of the

FIG. 3 AWS CloudWatch CPU Utilisation Graph for EC2 Instance One, with
1000 users and horizontal auto-scaling, captured at the end of the experiment,
showing the initial average CPU utilisation of 100% followed by a decrease to
approximately 70% after the second instance became InService.

work. Spikes were present each time network activity
occurred, for the most part up towards 3W, with others spiking
to 5.5W. A total of 5KB of data was sent to the CPA, while
the client received 377.91KB from the CPA. By far, most of
the data received is from the result HTML page being fetched
and displayed. The profiler shows that the size of the result
HTML file for the test individual's calendar was 372.37KB.

The Trepn Profiler application running on the Android
device also recorded measurements during the test. Peak
memory usage for the CAMCS Client during the interaction
was 24.7MB, and CPU utilisation averaged at 2.21%. These
results highlight the low data transfer requirements of the
CAMCS Client, and re-enforce the objective that the client
does not perform any compute-intensive work.

V. USER EXPERIENCE ANALYSIS

The requirements for an integrated user experience that
were presented in our previous work [3] will now be recalled.
Based on the evaluation results presented, we determine if
CAMCS meets these requirements.

1. The approach has to address the latency between the
device and the cloud infrastructure

By only transferring small amounts of data, and
disconnecting between each step when completing a task, the
effects of latency are not noticeable to the end user.

2. The approach has to minimise bandwidth utilisation

As with addressing the latency requirement above, the
small amount of data transferred between the mobile device
and CAMCS in the course of completing a task, CAMCS
meets this requirement because of its low data transfer
requirements.

3. Device workload overhead must be minimised

For the most part the work of the CAMCS Client simply
involves collecting data or actions from the mobile user to
send to their CPA within CAMCS, or presenting output from
the CPA. The CAMCS Client evaluation section showed little
resource usage during the required steps.

4. The approach must gracefully handle mobility
aspects such as disconnection

CAMCS with its disconnected and asynchronous task
execution model has been guided by the principle of
disconnected operation from the beginning. As the mobile
device is not responsible for any aspect of the work involved
with completing a task aside from user input, CAMCS meets
this mobility requirement.

5. Provisioning for context awareness must play a
central role

User context data can be used for both service discovery
and task execution. Context can be retrieved from the mobile
device and other sources, such as social networks. Support is
included in the user-oriented service description format for
context parameters, allowing services to describe what context
data inputs they can receive. In the absence of fresh context,
new context can be inferred from historical context data.

6. The solution must uniquely cater for the mobile user,
rather than the desktop user

CAMCS addresses mobility concerns such as
disconnection, unlike other solutions where desktop VMs are
used. CAMCS takes advantage of unique mobile features. The
resource requirements of CAMCS on the mobile device also
respect the limited supply of energy and bandwidth available
to the mobile device. Task results based on HTML web pages,
can be displayed on all mobile devices with web browsers.

7. The thin client on the mobile must provide an
adaptive UI and services

The CAMCS Client features a task sending decision maker
to respect the current resource status of the mobile device [9].
The decision maker considers network signal strength, the size
of the data to be sent, the battery status, and task priority. The
algorithm is zero-overhead, performing no network profiling
aside from reading GSM signal strength already available.
Tasks descriptions will be sent to CAMCS either immediately,
or queued until the network quality improves.

8. A standards-based solution must be used

CAMCS works with existing service technologies, such as
RESTful services. WSDL files that are used to describe
SOAP-based services can easily be translated into the user-
oriented mobile cloud service description format used by this
work, as all the elements of the service description format
have an equivalent markup in WSDL.

VI. RELATED WORK

Many MCC solutions do not typically respect the user
experience requirement that CAMCS was designed with from
the outset. The Cloudlet architecture [1] uses low-resource
compute infrastructure placed around Wi-Fi access points
where many mobile users gather, such as at a coffee shop.
Cloudlet approaches are based on virtual machines, and may
be demanding on the device battery because of the continuous
connectivity requirement, and frequent data transfer. Code-
offloading and application partitioning approaches [2] [10]
will offload methods of mobile application code-bases, or

components of a partitioned application, to the cloud
infrastructure for execution there, with results returned to the
mobile device. These approaches will also not function
without a continuous connection to the cloud. Performance
results on cellular networks are shown to be extremely poor,
or not evaluated. This is crucial for the mobility aspect of the
user experience. CAMCS evaluations showed identical
performance on both Wi-Fi and cellular networks, because the
disconnected approach and low data-transfer requirements.

Middleware approaches with SOA include a mobile cloud
middleware [11] which performs result optimisations between
XML and JSON-based web services. The solution required the
mobile user to know the WSDL URL of the service, and the
type of service (SOAP/RESTful). CAMCS hides such
complexity. Another middleware [12] provides an adapter
between a specific set of different cloud-based services, to
format requests to those services correctly. CAMCS is
designed to work with all cloud-based services. The Avatar
middleware [13] uses a copy of the mobile operating system in
the cloud as a virtual machine, known as an Avatar. Mobile
applications can run either entirely on the Avatar, or
components can be split between the Avatar and the mobile
device.

Consumer products that deliver cloud-based services
include Google Now [14], and Apple Siri [15]. Google Now
can provide useful information such as current weather and
traffic with a specific set of services, similar to CAMCS.
However, Google Now carries out its work on the mobile
device, rather than in the cloud as with CAMCS. Google Now
only works with some service providers; with CAMCS, any
developer can offer a service. Apple Siri is voice-based, and
requires an Internet connection for voice recognition to extract
user queries; it will not operate without an active connection.

VII. CONCLUSIONS

In this paper, the Context Aware Mobile Cloud Services
(CAMCS) middleware was presented as a solution that
delivers an integrated user experience of the mobile cloud, by
respecting the limited resources available on mobile devices.
This is achieved by means of the Cloud Personal Assistant
(CPA). CPAs are representatives of mobile users within
CAMCS that use cloud-based services to complete tasks
assigned to them in a disconnected, asynchronous fashion.
Tasks are received by CPAs as descriptions sent from the
CAMCS Client running on the mobile device.

The following contributions were made: The features of
CAMCS were described: task models, contextual-awareness
support, and the user-oriented service discovery and
consumption processes. The final design and implementation
of CAMCS was also presented. An evaluation was presented
using load testing while deployed on Amazon EC2, showing
the performance benefits of scaling. The CAMCS Client was
also analysed, showing the low resource usage in terms of
power consumption and network activity. Finally, analysis of
the results showed that CAMCS met the requirements outlined
in our previous work for an integrated user experience.

In future work, CAMCS can be extended to support
additional service models. Also of interest are groups of CPAs
collaborating to complete large tasks together, and task results
feeding into other tasks as input data.

ACKNOWLEDGMENT

The PhD Research of Michael J. O’Sullivan was funded by
the EMBARK Initiative of the Irish Research Council.

REFERENCES

[1] M. Satyanarayanan, P. Bahl, R. Caceres, N. Davies, “The case for VM-
based cloudlets in mobile computing”, IEEE Pervasive Computing,
2009; 8(4), pp. 14-23.

[2] E. Cuervo, A. Balasubramanian, D.-K. Cho, A. Wolman, S. Saroiu, R.
Chandra, et al, “MAUI: making smartphones last longer with code
offload”, in Proceedings of the 8th international conference on Mobile
systems, applications, and services, San Francisco, California, USA.
1814441, ACM, 2010, pp. 49-62.

[3] M. J. O’Sullivan, D. Grigoras, “User experience of mobile cloud
applications – current state and future directions”, in Proceedings of the
12th International Symposium on Parallel and Distributed Computing,
Bucharest, Romania, 27-30 June, 2013, pp. 85-92.

[4] M. J. O’Sullivan, D. Grigoras, “The cloud personal assistant for
providing services to mobile clients”, in Proceedings of IEEE 7th
International Symposium on Service Oriented System Engineering
(SOSE), Redwood City, San Francisco Bay, California, USA, 2013, pp.
477-484.

[5] M. J. O’Sullivan, D. Grigoras, “Delivering mobile cloud services to the
user: description, discovery, and consumption”, in Proceedings of IEEE
4th International Conference on Mobile Services (MS), New York City,
New York, USA, 2015, pp. 49-56.

[6] M. J. O’Sullivan, D. Grigoras, “Mobile cloud contextual awareness with
the cloud personal assistant, in Proceedings of the 2nd International
Conference on Future Internet of Things and Cloud (FiCloud-2014),
Barcelona, Spain, 27-29th August, 2014, pp. 82-89.

[7] M. J. O’Sullivan, D. Grigoras, “Mobile cloud application models
facilitated by the cpa”, EAI Endorsed Transactions on Scalable
Information Systems, 15(4), 2015.

[8] Trepn Profiler for Android.
https://developer.qualcomm.com/software/trepn-power-profiler Last
Accessed 25/11/15.

[9] M. J. O’Sullivan, D. Grigoras, “Integrating mobile and cloud resources
management using the cloud personal assistant, Simulation Modelling
Practice and Theory, Vol. 50, pp. 20-41, January 2015, ISSN 1569-

[10] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso, “Calling the
cloud: Enabling mobile phones as interfaces to cloud applications”,
Middleware 2009, pp. 83-102.

[11] Q. Wang, R. Deters, “SOA's Last mile-connecting smartphones to the
service cloud”, in Proceedings of the IEEE International Conference on
Cloud Computing (CLOUD), Bangalore, India, 21-25 September, 2009,
pp. 80-87.

[12] H. Flores, S. N. Srirama and C. Paniagua, “A generic middleware
framework for handling process intensive hybrid cloud services from
mobiles”, Proceedings of the 9th International Conference on Advances
in Mobile Computing and Multimedia, Ho Chi Minh City, Vietnam,
2095715, ACM, 2011, pp. 87-94.

[13] C. Borcea, X. Ding, N. Gehani, R. Curtmola, MA Khan, and H.
Debnath, “Avatar: mobile distributed computing in the cloud”, in
Proceedings of 3rd IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering (MobileCloud); March 30-April
3, 2015, pp. 151-156.

[14] Google Now. https://www.google.com/landing/now/ Last Accessed
25/11/15.

[15] Apple Siri. https://support.apple.com/en-ie/HT204389 Last Accessed
25/11/15.

