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Abstract—Predicting user behaviour enables user assistant
services provide personalized services to the users. This requires a
comprehensive user model that can be created by monitoring user
interactions and activities. BaranC is a framework that performs
user interface (UI) monitoring (and collects all associated context
data), builds a user model, and supports services that make
use of the user model. A prediction service, Next-App, is built
to demonstrate the use of the framework and to evaluate the
usefulness of such a prediction service. Next-App analyses a user’s
data, learns patterns, makes a model for a user, and finally
predicts, based on the user model and current context, what
application(s) the user is likely to want to use. The prediction
is pro-active and dynamic, reflecting the current context, and is
also dynamic in that it responds to changes in the user model, as
might occur over time as a user’s habits change. Initial evaluation
of Next-App indicates a high-level of satisfaction with the service.

I. INTRODUCTION

Exponentially growing the number of mobile applications
leads users to install many applications on their smart devices.
Apple has reported to have about one million apps released!
and the number of app downloads has reached 100 billion?.
Context-aware recommender services [1], [2] have been pro-
posed to make it easier to find an application based on a
specific location or time. These framework do not seem to
focus on recommendations based on the user’s habit of using
an application. For instance a recommender system (RS) [2]
is proposed ro recommend an application to a user based on
the context for buying/installing. The recommendation seems
to be objective regardless of the user profile and habits.

An intelligent service enables data to flow across an
enterprise system, spanning the devices where valuable data
is gathered from artefacts, to the back-end systems where that
data can be translated into insights and actions. These insights
and actions are the key to constructing a predictive model
to improve User Experience (UX). A comprehensive model
of a user including the corresponding context descriptions
enables adaptive systems to learn about the user [3]. This paper
describes a light-weight recommender service that analyses a
user’s interaction data of using a smartphone, learns how the
user is using applications, and makes a predictive model. The
model can be used to recommend what application(s) might
be used next based on the current context and situations. The
service relies on the BaranC framework [4], [5], [6] that is
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responsible for collecting a user’s data from digitally controlled
internet-enabled devices (e.g. smartphone), storing it to be
shared to a 3rd party service (e.g. our recommender service)
under the user’s control. BaranC provides APIs that allow a
3rd party service to request a user’s data, and access it if the
permission is granted by the user. In this case our service does
not need to care about data collection for a user. This service
receives the data from the BaranC framework and uses it to
make a predictive model for each user.

What distinguishes our work to the existing works is that
we focus on how applications are used by a user and we
recommend subjectively a list of applications a user likely want
to use next based on the user’s habits.

For instance, Alice regularly calls Bob on the weekend,
between 6-9 PM., more specifically when she is home, and she
is not engaged any other activity. An intelligent and context-
aware service could look for a match with the current situation
by looking at the frequent patterns in order to predict and do
preparation for a possible action that best suites the current
context. The action could be providing the contact information
of Bob on all Alice’s devices, making sure she has sufficient
credit to call, or checking the network quality to find the best
and reliable way of making contact.

II. RELATED WORK

Context-aware recommender systems (CARS) [1] proposed
a method of considering context factors (e.g. time, location,
etc.) in recommending an application to a user. It has been
shown that contextual factors strongly influence the recom-
mendations [7]. A hybrid RS is proposed [8] to recommend
what application to install based on what other users installed
for the same context. Based on the classification of [9], context
has two main types, representational (e.g. time, location)
and interactional (e.g. clicks, usage). Most of the current
proposed works [10], [11] seem to focus on recommending an
application to install based on the context and only consider
representational context such as location, time, etc. Nagarajan
et al. [12] present an algorithm, iConRank, in order to rank the
applications based on the recent app sequences. They believe
that the sequence of recent applications is related to the next
application. For instance, if a user uses a ”Contact” application,
he/she is likely to use "Message” or “"Email” application.
They consider interactional context as the foundation of their
algorithm. Another example of a recommender considering in-
teractional context is a music recommender system to provide
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Fig. 1. The Overview of How Next-App service Cooperate with the BaranC Framework

a personalized next track based on a history of music tracks

listened by users [13]. Thirg party o

A. BaranC Framework il Lse > Request(Permissions)
BaranC [4], [5], [6] is a cloud-based, service-oriented, ‘ Requast_permisbion(Thirdbarty permission) Sender/checipermissiont
user monitoring and data analysis framework. It transparently, _ Acgess|permission Granted
efficiently, and implicitly records a user’s activities (interac- Permission.Token
tional context) and representational context data. It analyses the Request{UserModsl, Permission_Tokeg
collected data, extracts information and knowledge from the I Useriadsl
raw data, and enables other IT systems to use the information < =

in order to provide a better (e.g. personalized) service to a
user. BaranC is anStrUCted as a serv1ce—0r1enteq framework Fig. 2. The Sequence Diagram of How a User Permit a 3rd Party Service
and 3rd party services can be built on the top of it. Accessing the Data

Each user has a model that holds user digital activities
including context data. The User Digital Imprint (UDI) is

the user model that underlies BaranC. It is a model with a 13:54 28
manageable, flexible, and scalable data structure that holds Monday 14 Sepiember

various types of data and information. The main focus of the

UDI is to record the user’s digital imprint and by that we qmn
mean to record dynamic user interaction with digital devices.

Analysing the UDI enables better understanding of a user [3] f’n’z:f,?suf ?Z‘;,‘ﬁﬂg:ﬂed

and provides the basis for personalized services [14], [15].

We can use a user model or presence in order to change our o g oot

services and systems behaviour.

Third party services can request a user’s model. BaranC
provides the user with a full control on the data collection and
sharing, so that it is the user who permits a service (Figure 2)
to access what data and for how long.

III. APPLICATION RECOMMENDATION SERVICE
(NEXT-APP)

A demonstrator is implemented to demonstrate how a
3rd party service can cooperate with the BaranC framework
(Figure 1). A service is designed to collect a user’s data, and
make a predictive model of what application is more likely
to be used based on the current context. The service has four Fig. 3. Next-App Notification User Interface Showing Four Predictions
components, Data Handler, Pattern Recognizer, Rule Learner,
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and Recommender. There are various work show why and
where the next application prediction is important [16], [12].
The recommender systems, adaptive services, and context-
aware applications are examples that use next user action’s
prediction [14].

An android application (Next-App; Figure 3) is imple-
mented to use this service. Once a user starts using Next-App,
and provides it the required permissions to access his/her data,
the Next-App can start requesting the user data (UDI) from
the BaranC framework. The Data Handler component peri-
odically requests a user’s up-to-date data/model. The Pattern
Recognizer component, then, extracts frequent patterns (User’s
habits) from the data. Machine learning is used for prediction.
The Association Rule technique [17], [18] is selected in order
to make a predictive model in this work. This technique takes
advantage of a sets of rules and a predictive class for a set of
rules. The Rule learner component uses the extracted patterns
(a set of rules from the history of application usage of the
user by considering the context data as the observers of the
classification) and creates a predictive model for each user.
The predictive model can then be used by the Recommender
component in order to predict the next N applications the user
is likely to use based on his/her habits and also the context. For
instance, if a user regularly uses an application between 8.00
PM to 11.00 PM, then the Next-App application recommends
that application to the user at that time. The Next-App appli-
cation is a notification based service. It pro-actively predicts
and shows a notification containing a list of recommendations.
The user can select one of the recommendations to open and
use the application. The same scenario can be used to predict
the next person to contact.

Figure 4 shows a graphical representation of the frequent
patterns of a user that the Pattern Recognizer component
extracts from the user’s data(received from the BaranC frame-
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work). It shows the patterns and user’s habits by considering
time of day, day of week, or day-type(weekdays, weekend) as
an observer. This figure shows how many times an application
is used a specific time. Figure 5 also shows the patterns
of duration a user spends on an application at a specific
time. These patterns provide the basis of making rules for a
predictive model. Time is one part of the context that is used
in our prediction model. Any sensor data (e.g. Accelerometer,
Gyroscope, Light) and any information extract from the sensor
data (e.g. movement status) could be a part of the context in
our predictive model. The predictive model is dynamic and
will be updated based on the user’s changes in behaviour.

In this work we used the patterns of the Pattern Recognizer
component to pro-actively predict the next application(s) a user
will probably use. At the time that a user is expected to be
using the device, the algorithm predicts in a more frequent
cycle, and predict less frequently when the device is not
expected to be used to save the battery life.

This work also uses a predictive Markov model in order
to improve the prediction(s) accuracy. Using the extracted
patterns, a Markov chain model is created for each user.
Figure 6 shows a partial Markov chain for a user. It shows
the probabilities of the sequence of application(s) to be used
after each other. For instance, the Google+ app is (4%) likely
to be used after AccuWeather app. The model provides an
overview of application(s) chain regardless of the context data.
We create a Hidden Markov chain model using the context data
as observers to validate our predictions.

IV. EVALUATION

Six users were requested to use Next-App service in order
to evaluate the prediction accuracy. As the service is designed
to use a user’s model (UDI) for prediction, an assumption
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is that the participants already have a UDI model in BaranC
framework. Our users have two months collected data in the
BaranC framework. The application pro-actively predicts based
on the current context and provides the recommendation in
the notification bar (Figure 3). We count how many times
a user uses our prediction(s) to open an application. The
application provides an In-App rating service that lets a user
to like or dislike a list of recommendations. Figure 7 reports
the acceptance rate of the predictions, the positive (number
of likes) and negative (number of dislikes) rating that were
recorded in In-App rating. It shows that the users take 30% of
the predictions in average. It also reports a good positive rating
versus the negative rating. Finally we provided a questionnaire
to each user in order to ask their opinions about the service and
its usefulness. Figure 8 shows a summary of the questionnaire.
It shows a positive feedback to the service’s presentation,
usefulness, and prediction accuracy.

V. CONCLUSION

An interaction-centred user monitoring framework,
BaranC, is introduced. A 3rd party service, Next-App, a
service to predict the next application(s) a user is likely to
use based on the current context is presented. The UDI is a
digital record of the user’s digital life that is used as a data
model and the basis of our predictive model. This work shows
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that a user’s data and a subjective analysis can be used to
understand the user better and act accordingly to conveniently
provide personalized services, providing the right service at
the right time to the right user.
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