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ABSTRACT   

The recently designed Tpx3Cam camera based PLIM (Phosphorescence Lifetime IMaging) macro-imager was tested using 

an array of phosphorescent chemical and biological samples. A series of sensor materials prepared by incorporating the 

phosphorescent O2-sensitive dye, PtBP, into five polymers with different O2 permeability were imaged along with several 

commercial and non-commercial sensors based on PtBP and PtOEPK dyes. The PLIM images showed good lifetime 

contrast between the different materials, and phosphorescence lifetime values obtained were consistent with those 

measured by alternative methods. A panel of live tissues samples stained with PtBP based nanoparticle probe were also 

prepared and imaged under resting conditions and upon inhibition of respiration. The macro-imager showed promising 

results as a tool for PLIM of O2 in chemical and biological samples.  

Keywords: Oxygen Sensing and Imaging; Fluorescence and Phosphorescence Lifetime Imaging (FLIM and PLIM); Time 

Correlated Single Photon Counting (TCSPC); Tpx3Cam camera 

 

1. INTRODUCTION  

Fluorescence Lifetime IMaging (FLIM) is actively used in biomedicine, material science, chemistry, cell biology and other 

applications1–3. FLIM measures fluorescent decay time of endogenous or exogenous fluors which produce lifetime 

response to an analyte of interest or microenvironment. The main advantage of FLIM is that it is essentially independent 

of the fluor concentration and photobleaching, fluctuations in excitation intensity and detector sensitivity, optical properties 

of the sample and measurement geometry. FLIM also has internal referencing capabilities and therefore, can produce 

quantitative, accurate and calibration-free measurements of key biochemical and environmental parameters, such as pH, 

Ca2+, glucose dynamics, etc4–8. While FLIM usually measures short-lived fluors with nanosecond lifetimes, 

Phosphorescent Lifetime IMaging (PLIM)9 measures lifetimes in the s-ms range. Therefore, measured parameters and 

applications for PLIM differ from those of FLIM. PLIM is particularly useful for quenched-phosphorescent sensing and 

imaging of molecular oxygen (O2) in various chemical and biological samples.  

Interest in PLIM has increased in the last years with the development of new phosphorescence based materials and 

applications10–13. It is largely being used in the field of biology to determine oxygenation and O2 consumption in living 

tissue samples14–17. The common detection modalities for PLIM and FLIM include Time Correlated Single Photon 

Counting (TCSPC) which uses the raster scanning technique. Since long (ms range) pixel dwell times are required to record 

the long-lived phosphorescence, TCSPC leads to longer image acquisition times for PLIM applications3,18,19. Fast gated 

CCD/CMOS cameras can also be used for wide-field FLIM and PLIM, but such systems are not single photon sensitive 

and limited by the camera frame rate3,20–25. Wide-field TCSPC-FLIM with single photon avalanche photodiode (SPAD) 

arrays allows single photon detection but needs improvements in detection efficiency, array density and dark count rate26.  
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Moreover, while microscopic imaging is used extensively, macroscopic imaging is less common, despite the high need for 

quantitative imaging of large biological models has increased in recent times. The existing macroscopic imagers are mostly 

intensity based and lack FLIM/PLIM capabilities27. The PLIM/FLIM macro-imager developed by Becker and Hickl 

(Germany) for large samples28 still uses confocal scanning and hence requires long image acquisition times for 

phosphorescent dyes. 

Recently, a new imager based on the Tpx3Cam camera (Amsterdam Scientific Instruments (ASI)) has been developed that 

allows parallel single photon detection and time stamping in each pixel. The Tpx3Cam is based on a novel silicon optical 

sensor29–31 and Timepix3 readout chip32. It has a high quantum efficiency within 400-1000 nm, with time resolution of 1.6 

ns and frame rate greater than 500 MHz. Coupled with an image intensifier, Tpx3cam can record the arrival time and 

photon flux at each pixel simultaneously. The camera is data driven and is based on the SPIDR (Speedy PIxel Detector 

Readout) system33. Excellent performance of Timepix and Timepix3 chips has already been demonstrated in a variety of 

applications, both for the direct charge detection and in optical regime34–39. 

Lately, the Tpx3Cam has been configured into a simple PLIM macro-imager setup41. To achieve single photon sensitivity 

the camera was coupled to a Cricket® adapter with inbuilt image intensifier. Emission filter and lens was coupled to the 

cricket unit. A super-bright red LED was used to provide pulsed excitation to image 18×18 mm sample area. The resulting 

system has a compact and flexible design, similar to a standard photographic camera. The imager underwent a basic 

characterization with planar phosphorescent O2 sensors and a resolution plate mask. The spatial resolution of the system 

was assessed using several image acquisition and image processing algorithms to optimise the resolution and performance 

of the system for the wide-field PLIM. The resolving power was found to be 12.7 lp/mm with line width of 39.4 μm41. The 

instrument response function (IRF) was also measured, which gave a temporal resolution of the system of 30.6 ns 

(FWHM)41.  

In this study we aimed to further investigate the fast macroscopic wide-field PLIM imager and demonstrate its utility in 

several important applications. Thus, it was used to characterize an array of homemade, commercial and non-commercial 

phosphorescent solid-state materials designed for the lifetime-based sensing of O2, and a set of biological samples 

comprising live tissue stained with a O2 sensitive phosphorescent probe. The performance and accuracy of the PLIM and 

lifetime measurements were analysed and compared with alternative O2 measurement and imaging systems.  

2. METHODS 

2.1 Materials 

Polystyrene (PS), poly(methyl methacrylate) (PMMA), polyvinyl chloride (PVC) and poly(vinylidene chloride) (PVDC) 

polymers were from Sigma-Aldrich, hydrogel D4 was from Degussa. Pt (II)-benzoporphyrin dye (PtBP) was provided by 

Luxcel Biosciences. The commercial O2 sensors were from Mocon (Optech® stickers42) and Pyroscience43. The LDPE 

and PLA based PtBP sensors 44 and PtOEPK-PS sensor spotted on microporous membrane and filter paper45,46 were 

prepared as described in the corresponding papers. 

Antimycin A (Complex III inhibitor), NaN3 (Complex IV inhibitor) and DMEM media were from Sigma-Aldrich, 

plasticware was from Sarstedt (Ireland). The NanO2-IR probe (10 mg/mL stock in H2O) was from Luxcel Biosciences 

(Cork, Ireland), Working solution of NanO2-IR (1 mg/mL) was prepared by diluting the stock with DMEM media 

supplemented with 10 mM glucose, 2 mM L-glutamine and 10 mM HEPES (pH=7.2), immediately prior to use.  

 

2.2 PLIM macro-imager setup 

The design of the Tpx3Cam PLIM macro-imager is described elsewhere41. Briefly, the Cricket® adapter with inbuilt image 

intensifier, power supply and back-end relay optics (Photonis, Merignac, France), and a 760 nm bandpass emission filter 

(25 mm, Edmund Optics, York, UK) provided a compact and flexible design to the imager. The Tpx3Cam was coupled to 

one end of the Cricket® and a 50 mm Navitar NMV-50M11" lens to the other. The imager was placed in an upright 

position, such that it can image the samples placed at a distance of ~80 mm from the lens. The block-diagram of the setup 

is shown in Figure 1. A 5 mm super-bright red LED with central wavelength at 627 nm (Parts Express, Springboro, OH) 

was used to excite the samples. The LED was operated in a pulsed mode which was synchronized with the camera by two 

pulse generators. To control the temperature of the samples, a dry bath/block heater (Thermo Fisher Scientific, Carlsbad, 
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CA) was used, which was normally set up at 37oC. The system was enclosed in a black box to protect it from the ambient 

light. 

 

 

Figure 1. Experimental setup of the Tpx3Cam imager showing its upright orientation. 

 

2.3 Data processing 

The operational parameters, alignment and focus of the system was tuned by the SophyTM software provided by ASI. A 

custom-designed software was used to acquire the raw data from the Tpx3Cam imager in a binary format. The data was 

processed by a C-language program with sub-pixel centroiding41,47. TRI2 software was used to fit the resulting data matrix 

for each camera pixel with two-exponential function to determine lifetime values. 

2.4 Sample preparation 

An array of phosphorescent coatings based on Polystyrene (PS), poly(methyl methacrylate) (PMMA), polyvinyl chloride 

(PVC) and poly(vinylidene chloride) (PVDC) were prepared from the corresponding cocktails. Each cocktail, which 

contained 0.25 mg/ml of Pt (II)-benzoporphyrin (PtBP), 5% w/w of the polymer in tetrahydrofuran (THF), was spotted on 

2x2 cm pieces of polyester film, 70 µm thick (Mylar®, Du Pont). Seven serial 1:3 dilutions of each dye were prepared and 

spotted in a similar manner. Other forms of PtBP sensors spotted on microporous PVDF membrane (Millipore) and 

absorbed in silicon glass beads were also produced. 

For the preparation of the biological samples, protocols involving animals were approved by the University College Cork 

Animal Experimentation Ethics Committee, and all the experiments were conducted under the license from the Irish 

Government in accordance with national and EU legislation (European Directive 2010/63/EU). On the day of the 

experiment, 4-week-old AE19130/1276 female mice (Envigo, UK) were sacrificed, fresh tissue samples of large and small 

intestine were quickly dissected, washed with PBS and placed in DMEM media equilibrated at 37oC. One set of the 

extracted tissues was then transferred into mini-dishes and submerged into 2 ml of DMEM containing NanO2-IR (1 mg/ml) 

for 30 min for surface staining. The other set of tissues submerged in dye in a similar manner was treated with AntA/NaN3 

inhibitors of respiration for 30 min before imaging. The experiments with the treated and untreated samples were repeated 

three times with identical tissue samples to confirm the consistency of the data. 

3. RESULT AND DISCUSSION 

3.1 Imaging of the different senor materials 

The series of homemade polymeric phosphorescent coatings spotted on the polyester films were first imaged with the 

Tpx3Cam imager. Each spot contained ~83 ng of PtBP dye. The image was acquired under normal air conditions (22oC, 

20.86% O2) with LED at 4V and 50 ns pulse width and 20 s integration time. The intensity and the PLIM images of the 

sensor film are shown in Figure 2a and 2b respectively. The intensity images (Figure 2a) showed the significant fluctuations 
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in the optical signal across each spot, so they did not show the clear differences in their luminescence quenching. 

Conversely, the PLIM images (Figure 2b) showed much better stability of the lifetime signals and excellent contrast 

between the different polymers.  

To deoxygenate the coatings, the same film with spotted sensors was soaked in a phosphate-sulfite buffer. The intensity 

and PLIM images acquired are shown in Figure 2c, d. As expected, the difference in lifetime values and contrast between 

the different sensor coatings was largely reduced, and the lifetime signals for all the sensors approached ~50 µs, which 

corresponds to the unquenched lifetime of PtBP. It should be noted that during the preparation of the sensor samples, one 

coating (PS based) detached from the film support as a result of the rough handling, so it could not be imaged and seen on 

Fig. 2c,d.  

 

Figure 2. Images of the polymer based phosphorescent coating spotted on polyester film (spot size~ 2-3 mm): in the 

oxygenated state in (a) intensity and (b) lifetime(µs) scale; in the de-oxygenated state in (c) intensity and (d) PLIM (µs) 

mode, 22oC. 

 

To determine the sensitivity of the imager, the phosphorescent coatings containing different dilutions of PtBP dye (1:3 

serial dilutions) in PS spotted on the polyester film were imaged under the ambient temperature and oxygenation conditions 

(22oC, 20.86% O2). The amount of the dye per spot ranged from 250-0.34 ng (serial 3-fold dilutions). The Tpx3Cam imager 

was sensitive to the first 5 dilutions and Figure 3 represents the variation in the intensity and lifetime recorded for these 

spots. While there was a variation in the intensity, the lifetime remained stable at decreasing concentrations.  

 

Figure 3. Variation of the intensity and lifetime for Polystyrene based PtBP dye with increasing dilutions.  
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Several other commercial and non-commercial sensors based on PtBP dye were also imaged under normal conditions, 

using the LED power 4V, pulse width 50 nm and integration time 20 s. Figure 4a shows photographic images of the 

different sensors, while Figure 4b shows their PLIM images. The PVDF membrane (12.9±0.9 µs), bead sensor (13.3±0.4 

µs) and the sensor from Pyroscience (13.5±0.6 µs) all showed similar lifetime values and variability (S.D.), whereas higher 

lifetime values were noted for the Optech® sensor (15.4±0.4 µs) and for the membrane sheet (19.9±0.07 µs).  

The extruded LDPE and PLA sensor pellets and films based on the PtBP phosphor (Figure 4c) were also analysed, under 

the same optical settings. The PLIM images of the sensors are shown in Figure 4d. The PLA pellet and film in Figure 4d 

cannot be differentiated due to thresholding limits. The lifetime values for the PLA sensors (36.5±0.4 µs) was significantly 

higher than for the LDPE sensors (13.7±0.1 µs), in agreement with the reported data44. 

The PtOEPK-PS based O2 sensors48, which are spectrally compatible with the Tpx3Cam set-up, were also imaged. Their 

photographic and PLIM images are shown in Figure 4e,f, respectively. The two different sensor types (spots on filter paper 

and PVDF membrane support) produced similar mean lifetimes and standard deviation of 15.8±0.2 µs and 15.4±0.15 µs 

respectively. These results are also consistent with other reported data45,46. 

 

Figure 4. Sets of commercial and custom-made O2 sensors imaged with the Tpx3Cam imager. (a) Photograph and (b) PLIM 

image of the PtBP based sensors in various forms; (c) Photograph and (d) PLIM image of LDPE-PLA based PtBP 

sensors and (e) Photograph and (f) PLIM image of the two PtOPEK based sensors.  
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3.2 Biological samples 

Several live tissue samples isolated from mice (post-mortem) were stained with the soluble phosphorescent probe, NanO2-

IR, and then imaged. For these physiological measurements the temperature-controlled stage was set at 37oC. The 

photograph of the specimen of a large intestine is shown in Figure 5a and the corresponding intensity images in Figure 5b. 

The respective PLIM images of the untreated (respiring) and treated (with blocked mitochondrial respiration) large 

intestine are shown in Figure 5c,d. Although there is no drastic change in the color of the two PLIM images, the small shift 

in lifetime values clearly reflects the difference in respiration for the two tissue samples. The regions of higher lifetimes 

in Figure 5c inform on the level of depletion of local O2 due to cell respiration. The boxplot in Figure 5e shows that the 

inhibitors had a lower effect on this tissue sample but still there is a prominent shift in the median lifetime value (24.41 µs 

and 20.55 µs for the treated and untreated samples, respectively).  

 

Figure 5. Images of the samples of a large intestine stained with NanO2-IR probe by the topical application: (a) Photograph, 

(b) intensity images and PLIM images of the (c) respiring and (d) non-respiring tissue samples. (e) Boxplots 

representing the comparison between the median lifetimes of the treated and untreated large intestine (LI) samples from 

mice (10 values each). 

Thus, we can conclude that the imager recognizes small physiologically relevant shifts in the lifetime values of O2 sensitive 

probes; a longer staining period for the biological samples is expected to produce better lifetime contrast between samples. 

Upon proper calibration of the probe, the map of O2 distribution within this biological sample can be obtained by converting 

the lifetime values into O2 concentrations.  

4. CONCLUSION 

A series of homemade solid-state phosphorescent O2 sensors based on PtBP and PtOEPK phosphorescent dyes embedded 

in the different polymers were imaged on the new PLIM macro-imager, along with the other commercial and non-

commercial sensors, using image acquisition time of 20 seconds. The different sensor materials showed high brightness 

and good lifetime contrast due to the different selection of polymers. The lifetime values obtained for the other sensors 

were in agreement with their previous studies. PLIM of the sensors with progressively increasing dilutions of the 

phosphorescent dye and decreasing optical signals from the coating demonstrated their high sensitivity and stability. The 

initial PLIM applications with ex-vivo samples of live animal tissue also showed promising results, despite of the much 

weaker phosphorescence intensity signals. Tissue treatment with model inhibitors of respiration produced the anticipated 

changes in lifetime values: shorter lifetimes for non-respiring samples.  

Overall, the new macro-imager based on Tpx3Cam demonstrated good functionality and operational performance, and it 

looks promising for PLIM applications including in vivo imaging of tissue oxygenation. The Cricket® adapter couples the 

camera with the image intensifier and optical lens. This provides proper rigid alignment of the key optoelectronic 

components and produces a compact and flexible measurement unit for PLIM. The imager has fast data acquisition time 

(~a few seconds), can image objects up to several centimeters in size with high spatial resolution and flexible geometry 

(vertical, horizontal and tilted configurations are possible). The system is well-suited for various biomedical applications 

compatible with wide-field PLIM. Its initial characterization with ex-vivo tissue samples provide evidence that it can be 

applied to biological samples in vivo and can be used in physiological studies with various tissue and disease models.  
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