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Abstract

Abstract

The thermoelectric figure of merit, ZT , is a dimensionless parameter used to
characterise the efficiency of a thermoelectric material. A material has a high
ZT if its electrical conductivity and Seebeck coefficient are high, and its lattice
thermal conductivity is low. One of the most common techniques to improve
the thermoelectric figure of merit is to suppress lattice thermal conductivity via
nanostructuring. However, this approach often comes with the cost of reduced
electrical conductivity and Seebeck coefficient, resulting in only modest increases
to ZT . Using the first principles Boltzmann transport framework, we show that
driving PbTe-based materials to the verge of the soft mode (ferroelectric) phase
transition could be a powerful strategy to reduce their lattice thermal conductivity
while potentially preserving the electrical properties beneficial for a large ZT .
The proposed concept is based on the induction of considerably softened zone-
centre transverse optical modes, increasing their anharmonic coupling with low-
frequency heat-carrying acoustic phonons and reducing phonon lifetimes at all
frequencies. We illustrate this concept by applying biaxial tensile (001) strain
to PbTe and its alloys with PbSe; and by alloying PbTe with a rhombohedral
material, GeTe, achieving reductions in the lattice thermal conductivity by a
factor of 2 − 3 compared to PbTe. Furthermore, by tuning the chemical com-
position of Pb1−xGexTe alloys, we also investigate the roles of proximity to the
phase transition, mass disorder, and phase of the alloy in reducing the lattice
thermal conductivity. Finally, we take the first steps towards a fully ab initio
calculation of the figure of merit of PbTe-based materials near the phase transition
by considering electron-phonon interactions, and find fair agreement between the
calculated electronic mobility of PbTe and experiment. Furthermore, due to
symmetry forbidden electron-phonon coupling between the extremely soft modes
and the conduction and valence band edges, we anticipate that our outlined
approach may not degrade electronic properties beneficial for a large ZT . This
proposed concept is general and applicable to other thermoelectric materials near
a soft mode phase transition. Thus, we offer a promising new strategy to lower
lattice thermal conductivity and potentially increase thermoelectric efficiency.
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Chapter 1

Introduction

1.1 Thermoelectric materials

Thermoelectrics are an important class of materials that allow for the interconver-
sion of thermal and electrical energy. The generation of a voltage difference due to
a temperature gradient across a material is known as the Seebeck effect [1]. It was
discovered in 1821 by Thomas Johann Seebeck, who observed that the junction
of two dissimilar metals at different temperatures would deflect a compass needle
[2]. Conversely, the Peltier effect is the appearance of a temperature gradient
from the application of an electric current in a material [1]. It was discovered by
Jean-Charles Peltier in 1834, who observed heating/cooling at the junction of two
dissimilar metals when an electric current was applied [2]. The first commercial
application of the thermoelectric effect was an oil burning lamp coupled with
zinc-antimony/constantan thermoelectric elements used to power a radio in 1948
in the USSR [3], which followed from the work of Abram Fedorovich Ioffe.

When a thermal gradient is maintained across a material, free charge carriers
will have higher kinetic energies at the hot end and tend to diffuse towards the cold
end [4]. A thermoelectric power generator thus consists of alternating p- and n-
type thermoelectric legs, connected in series electrically, and connected in parallel
with respect to a heat current [5], see Fig. 1.1 (a) for a model device. Closing
the circuit generates an electric current. Conversely, by applying an electric
current one may drive carriers away from a surface, reducing its temperature.
This is demonstrated in Fig. 1.1 (b) which shows a model device used to pump
heat. Thus, thermoelectrics could be extremely useful for harnessing waste heat
to generate electricity, and may provide an important role in the push for green
energy [1, 5, 6]. The efficient control of thermoelectric energy conversion processes
is particularly desirable as nearly 60% of all energy consumed worldwide is wasted

1



1.1 Thermoelectric materials

Figure 1.1: (a): A model thermoelectric device used to generate electricity from
a heat source. (b) A model thermoelectric device used to pump heat when an
electric current is applied.

in the form of heat [7].
In order to efficiently convert heat to electricity, or vice-versa, we need a

measure of the effectiveness of a thermoelectric material. A good thermoelectric
must be able to maintain a heat difference and easily allow for an electric current
through the device, necessitating a low thermal conductivity and high electrical
conductivity respectively [8]. For power generation, we need a large voltage to be
generated from a heat gradient, requiring a large Seebeck coefficient [8]. Indeed,
the efficiency of a thermoelectric material depends on the dimensionless figure of
merit, ZT [9, 10]:

ZT = σS2

κelec + κlatt
T, (1.1)

where σ is the electrical conductivity, S is the Seebeck coefficient, T is the
temperature, and κelec and κlatt are the thermal conductivities due to charge
carriers and lattice vibrations respectively. σS2 is typically referred to as the
power factor.

The maximum efficiency of a thermoelectric device may be written as a
function of the Carnot efficiency, ηCarnot = (Th − Tc)/Th, and the figure of merit
[1, 10]:

ηmax = ηCarnot

√
1 + ZTavg − 1√
1 + ZTavg + Tc

Th

, (1.2)

where Th and Tc are the absolute temperatures of the hot and cold sides of
the device respectively, and ZTavg is the average figure of merit of the thermo-
electric legs within a device over the operating temperature range. In Fig. 1.2
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1.1 Thermoelectric materials

we reproduce the efficiency ηmax of thermoelectric devices as a function of Th,
taking Tc = 300K, for several ZTavg values ranging from currently available to
optimistic targets. The yellow region highlights the power generation efficiency
and operating temperatures of typical thermoelectric devices available today.
Also included are the efficiencies of several heat sources (geothermal, industrial
waste, solar, nuclear, and coal) in combination with several thermal-to-electric
conversion technologies (organic Rankine, Kalina cycle, Stirling, Brayton, and
steam Rankine) reproduced from data in Refs. [11, 12, 13].
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Figure 1.2: Thermoelectric power generation efficiency versus temperature of the
hot side, taking the cold side as room temperature, for several values of ZTavg.
The yellow region highlights the efficiency of some typical thermoelectric power
generators available today and their approximate range of operating tempera-
tures. Also included are the efficiencies of several conventional mechanical heat
engines as well as the Carnot limit. Adapted from Refs. [11, 12, 13].

Modern thermoelectric devices may operate up to ZT . 1.0 at high tem-
peratures. However, for a typical thermoelectric device with ZTavg∼0.5 and
operating temperatures of Tc = 300 K and Th = 600 K an efficiency of only
ηmax ∼ 6% is achievable for power generation, severely limiting their range of
application [1, 11]. In spite of these limitations thermoelectric devices have
found several niche applications, for example, regulating the temperature of
semiconductor lasers and radioisotope thermoelectric power generators for space
applications [6, 13]. Nevertheless, such low efficiencies have lead to a big drive
within the thermoelectrics community to achieve a target ZT of greater than 2.
Furthermore, by increasing ZT to >3 and assuming a large temperature difference
(Tc = 300 K and Th = 1000 K) one may achieve an efficiency of up to ηmax ∼ 30%
for power generation [1], possibly enabling the application of thermoelectrics in
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1.1 Thermoelectric materials

green energy and waste heat harvesting [12].
However, maximising ZT and expanding the range of applications is not a

trivial task given that thermoelectric properties are heavily intertwined, with an
increase in one not necessarily yielding an enhancement to ZT . Indeed, even
optimising the power factor, σS2, is itself a difficult task. For a degenerate
semiconductor with parabolic bands, assuming that the introduction of a dopant
does not significantly alter the electronic band structure, the Seebeck coefficient
is given by [14]:

S = 8π2k2
B

3eh2 m
∗
DOST

(
π

3n

)2/3
, (1.3)

where kB is the Boltzmann constant, e the electron charge, h the Planck constant,
m∗DOS the density of states effective mass of the carriers, and n the charge carrier
concentration. The electrical conductivity is given by [14]:

σ = neµ, (1.4)

where we assume the mobility µ is independent of n. Thus, while increasing the
carrier concentration will increase σ, S will decrease as dictated by Eq. (1.3).
Careful attention must then be paid when optimising properties of the materials
such as the carrier concentration, to avoid either S or σ falling too low. The
Seebeck coefficient tends to be lower for metals where electrical conductivity
is large, while S is large in poor conductors. This results in optimal power
factors typically being observed in heavily doped semiconductors [11], with carrier
concentrations circa 1019 − 1021 cm−3 [5].

Furthermore, the electrical conductivity and electronic thermal conductivity
are linked via the Wiedemann–Franz law [15]:

κelec
σ

= LT, (1.5)

where L is the Lorenz number, and is approximately π2

3

(
kB
e

)2
for all metals

[16]. Thus an increase to σ must be carefully weighed against the degradation
to ZT from the corresponding increase to thermal conductivity. Since κlatt

is dependent on phononic, rather than electronic properties of the material,
it is usually treated as being largely decoupled from the other thermoelectric
properties of a material. However, conventional strategies to reduce κlatt, such as
nanostructuring to impede phonon transport, can themselves degrade electronic
properties beneficial for a large ZT .

Before proceeding with strategies to improve thermoelectric efficiency, we
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1.2 Optimising thermoelectric performance

Table 1.1: Thermoelectric properties of bulk state-of-the-art materials in the
low, mid, and high temperatures ranges at their optimum carrier concentrations.
Values are shown for alloys of Bi2Te3 at 300 K, PbTe at 700 K, and SiGe at 1100
K, for both p- and n-type. κtotal is the total thermal conductivity.

Material Dopant n κtotal σ |S| ZT Ref.
cm−3 W/mK kS/m µV/K

n-PbTe I 1.7×1019 1.20 56.0 206 1.40 [17]
p-PbTe Na 9.0×1019 1.26 38.9 261 1.47 [18]
n-Bi2(Te,Se)3 − 4.3×1019 1.65 90.4 230 0.85 [19]
p-(Bi,Sb)2Te3 − ∼1019 1.39 98.9 214 0.97 [20]
n-SiGe P 1-3×1020 4.01 50.8 250 0.87 [21]
p-SiGe B 2-4×1020 4.14 33.8 237 0.51 [21]

reproduce the properties of prototypical bulk state-of-the-art thermoelectric ma-
terials at their optimum carrier concentrations in Table 1.1. In the low tem-
perature range up to 500 K, Bi2Te3 alloyed with either Sb2Te3 or Bi2Se3 are
the highest performing thermoelectrics. They achieve a peak ZT∼0.9 at ∼300 K
[19, 20], and are primarily used for thermoelectric cooling applications [22]. In the
mid temperature range of 500 − 900 K, PbTe is the prototypical thermoelectric
material, hitting a peak ZT∼1.4 at ∼700 K [17, 18]. For high temperature
applications at 900− 1300 K SiGe is typically used, reaching ZT∼0.9 for n-type
and ZT∼0.5 for p-type at ∼1100− 1200 K [21].

1.2 Optimising thermoelectric performance

Obtaining a large figure of merit is clearly a considerably difficult task, with
numerous techniques and approaches employed to achieve ZT>2. We first review
the more widely known classes of materials with inherently good thermoelectric
performance. One such class are complex compounds with intrinsically low lattice
thermal conductivity, such as skutterudites, clathrates, and zintl compounds [1,
5, 14, 23]. Their impressive thermoelectric performance is due to features such
as voids in the crystal structure, atomic mismatch within the unit cell, and the
presence of “rattler” atoms which strongly impede phonon transport. However,
we are not limited to these materials only. For example, half-Heusler compounds
lack a complex crystalline structure, resulting in relatively high lattice thermal
conductivity, but possess high power factors due to large carrier effective masses
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[1, 24]. It is the chalcogenide family of compounds that are perhaps the most
famous for offering good thermoelectric performance, due to characteristically
low lattice thermal conductivities [1, 14]. Copper chalcogenides and complex
bismuth chalcogenides are two notable subgroups, but PbTe, SnSe, and Bi2Te3

are perhaps the most prototypical within this family.
In particular, PbTe is a narrow band gap semiconductor that crystallises in the

rocksalt structure. It is the prototypical thermoelectric in the mid temperature
range, achieving ZT∼1.4 at ∼750 K when optimally doped with sodium (hole
density of ∼9×1019 cm−3) or iodine (electron density of ∼2×1019 cm−3) [17,
18, 25]. PbTe possesses an intrinsically low lattice thermal conductivity of ∼2
W/mK at room temperature, which plays a significant role in its impressive
thermoelectric performance. The underlying mechanism for low lattice thermal
conductivity is the strong anharmonic coupling of the heat carrying acoustic
modes with the soft transverse optical (TO) phonon modes, resulting in very short
phonon lifetimes [26, 27, 28]. It is because of these properties that considerable
effort has been expended in studying PbTe-based materials in an effort to enhance
its thermoelectric performance.

There exist several successful strategies within the literature to enhance a
material’s thermoelectric performance even further. To obtain these gains to
ZT , it is common to treat the electronic and phononic properties as being
largely decoupled and respectively optimise them, though obviously a complete
decoupling of these is not possible. For the electronic properties, strategies to
enhance ZT include optimising the carrier concentration via doping, enhancing
charge carrier effective masses, band convergence to increase the degeneracy of
band extrema, and improving the carrier mobility [8, 11, 13, 29]. Optimizing
the electronic local density of states via the introduction of resonant impurities
in semiconductors has also been shown to be a powerful strategy to boost ZT
[30, 31].

While these strategies are general and applicable to a wide range of ther-
moelectrics, we examine their application to PbTe. La and PbI2 doping may
be used to optimise charge carrier density in n-type PbTe [32, 33], while Na
doping optimises hole density in p-type PbTe [18, 34, 35]. The introduction of In
dopants into PbTe maintains its high S by eliminating minority (p-type) carriers
and eliminating the thermal conductivity due to bipolar diffusion of electron hole
pairs [32]. On the other hand, Tl doped PbTe exploits the introduction of resonant
impurity levels near the Fermi level which significantly increases thermoelectric
performance [31]. Furthermore, Pei et al. heavily doped p-type PbSexTe1−x alloys
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to achieve ZT∼1.8 at 850 K, via the convergence of the L and Σ valence band
maxima at a desired temperature by tuning the alloy composition [35]. Such a
“valence band convergence” mechanism also appears to be responsible for the
high ZT of Pb0.13Ge0.87Te nanostructured materials [36]. In fact, recent work by
Hong et al. [37] has predicted a maximum theoretically possible attainable ZT
of 3.1 for PbTe via the optimisation of the carrier density and convergence of
valence band maxima.

Efforts to impede phonon transport and thus reduce the lattice thermal
conductivity also offer substantial opportunities to greatly enhance thermoelectric
performance. Alloying to scatter phonons via atomic mismatch, nanostructuring,
nanocomposites, and scattering of phonons by crystal grain boundaries have all
demonstrated large reductions to κlatt [1, 8, 11, 13, 14, 29]. However, several of
these methods leave all important low-frequency heat carrying phonons unim-
peded. Thus, engineering efficient phonon scattering across the entire spectrum
was recently tackled by fabricating complex IV-VI materials with multi-scale hier-
archical design [34, 38, 39, 40, 41]. This is achieved through the combined action of
mesoscale grain boundaries that scatter low-frequency heat carrying phonons, and
nanoscale precipitates and atomic disorder that affect mid- and high-frequencies.
The use of superlattices, nanowires and low dimensional thermoelectrics have
also been shown to be very promising approaches to boost ZT [11, 42]. In
particular, calculations by Hicks and Dresselhaus show that low-dimensionality
may be exploited to increase the power factor while simultaneously suppressing
the lattice thermal conductivity [9, 43]. Thus, there exists a strong desire within
the community to combine aspects of nanostructuring to improve thermoelectric
performance via a simultaneous improvement of the power factor and thermal
transport [42]. However, in practice such techniques do not often realise a
simultaneous improvement of thermal conductivity and the power factor, while
also being impractical when it comes to large-scale production of thermoelectric
devices [8].

For PbTe, the use of multi-scale hierarchical nanostructuring decreased the
lattice thermal conductivity by a factor of 2-3 and simultaneously enhanced the
power factor, which raised its ZT above the target value of 2 [34, 39, 41]. In
particular, Biswas et al. [34] measured ZT∼2.2 at 900 K in nanostructured PbTe
due to the combined approach of doping with Na, the inclusion SrTe nanoparti-
cles, and the creation of mesoscale grain boundaries with spark plasma sintering.
This thermoelectric performance was aided by an enhanced power factor at high
temperatures, resulting from an increase to the hole carrier density through the
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dissolution of otherwise grain-boundary-confined Na into the bulk matrix [34].
Optimisation of an all-scales design could result in further κlatt reductions, since
nanostructured PbTe without mesoscale grain boundaries can exhibit four to
five times lower κlatt than that of PbTe [44, 45, 46]. Such approaches may also
be combined with band engineering, such as the “valence band convergence”
demonstrated in PbSe1−xTex [35] and nanostructured Pb0.13Ge0.87Te [36], poten-
tially enhancing ZT even further. However, it is often the case that electrical
conductivity and Seebeck coefficient may be negatively affected in that process
due to enhanced electron scattering at the interfaces [34, 39, 45, 46]. It is thus
desirable to establish alternative concepts to realize efficient phonon scattering
in PbTe and related materials throughout the spectrum without degrading their
electronic thermoelectric properties.

One potential strategy to reduce the lattice thermal conductivity while pre-
serving or even enhancing the power factor is to exploit the fascinating properties
of thermoelectric materials near phase transitions. Recent work has shown that
the intrinsically low κlatt of PbTe is due to its proximity to the ferroelectric phase
transition [27, 28]. Furthermore, the record breaking ZT∼2.6 at 900 K in SnSe
has also been linked to its proximity to a soft mode phase transition [47, 48, 49].
The underlying mechanism is the strong anharmonic coupling of the heat carrying
acoustic modes with the soft optical phonon mode. Thus, exploiting the proper-
ties of materials near soft mode phase transitions is an emerging concept that may
offer an alternative strategy in the quest to increase ZT . One advantage of this
approach over other methods discussed previously is the possibility of preserving
the high electrical conductivity and Seebeck coefficient [50] necessary for a large
ZT , owing to weak coupling between the soft phonon modes and electrons.

1.3 Ab initio calculation of thermoelectric
transport properties

Within the thermoelectrics research community, the use of computational meth-
ods offers a unique perspective in the effort to improve thermoelectric perfor-
mance. Atomic simulations from first principles avoid empirical parametrisation
for thermal and charge carrier transport, allowing for the discovery of new ma-
terials with intrinsically low thermal conductivity or high power factors not yet
realised experimentally. Furthermore, the origins of high ZT may be studied in
detail, potentially yielding new approaches to improve a material’s thermoelectric
performance.
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1.3.1 Lattice thermal conductivity

Several different atomistic methods have sought to describe the phenomenon
of thermal transport in bulk materials in recent years. Such methods include
the Boltzmann transport equation (BTE) [51] and molecular dynamics (MD)
[52]. Each approach comes with its own advantages and disadvantages, along
with various flavour of implementation, such as equilibrium molecular dynamics
(EMD) [52], non-equilibrium molecular dynamics (NEMD) [52, 53], the Boltz-
mann transport equation in the relaxation time approximation (BTE-RTA)
[51], and an iterative approach to solving the BTE self-consistently (BTE-SC)
[54, 55, 56, 57, 58, 59, 60, 61].

Molecular dynamics has been a very successful approach to simulate a wide
range of physical phenomena and is particularly advantageous in that it yields
the time evolution of the system and does not require assumptions specific to the
process being investigated. However, MD suffers from several issues, most notably
slow convergence with respect to the size of the system and simulation time. In
order to achieve a converged value for lattice thermal conductivity, work by He et
al. showed that system sizes of at least ∼ 105 atoms for crystalline Si, and ∼ 104

for crystalline Ge were required [62]. In particular, there is debate as to whether
even ∼106 atoms is sufficient to achieve a converged value of κlatt in alloys such as
Si0.5Ge0.5 [62]. It is because of these large system sizes that empirical interatomic
potentials are most often used in MD approaches, limiting the application of
so called ab initio molecular dynamics (AIMD) which incorporates interatomic
forces derived from density functional theory (DFT).

Moving to an approach such as the BTE, we solve several of these issues
associated with MD, and most importantly migrate to a framework where we may
more easily utilise ab initio techniques. The use of first principles calculations
from either DFT or density functional perturbation theory (DFPT) allows us
to design and propose new materials with good thermoelectric performance in
situations where empirical parametrisation is unavailable. Furthermore, we may
treat phonon populations with the quantum, Bose-Einstein distribution function,
compared with their classical treatment under MD. However, the BTE approach
does not come without its downsides. Most significantly, each order of phonon-
phonon interaction must be individually taken into account, typically resulting
in the truncation of anharmonic processes at third order and the neglection
of higher order anharmonic processes. This is in contrast to MD, where all
orders of phonon-phonon interactions are implicitly taken into account during
the simulation. Furthermore, interatomic force constants (IFCs) necessary for
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solving the BTE are calculated at 0 K within DFT/DFPT, losing information
about their temperature dependence. Solving for the lattice thermal conductivity
of a nanostructured material with the BTE would also be impractical given the
size of such systems.

Despite these limitations, the BTE approach has been shown to give lattice
thermal conductivity values in good agreement with experiment [28, 60, 61, 63,
64, 65]. And it is this agreement, coupled with predictive capabilities from the use
of ab initio techniques, that allows us to calculate the lattice thermal conductivity
of new materials. However, when considering materials near the phase transition
like those based on PbTe in this thesis, we must consider the limitations of the
BTE approach as outlined previously, in particular, the effect of 4th and higher
order phonon-phonon interactions. The neglect of these effects results in the
BTE failing to capture the deviation of the lattice thermal conductivity from
the expected temperature dependence of ∼T−1 in simple semiconductors [66].
However, we will still capture important qualitative information on the physics
of thermoelectrics driven near the phase transition, including the all important
interaction between the soft mode and heat carrying acoustic phonons. Thus,
to a first approximation, we may make predictions about the qualitative changes
and trends in the κlatt of PbTe-based materials driven near the ferroelectric phase
transition.

Within the BTE, there are two distinct approaches employed to calculate lat-
tice thermal conductivity, the relaxation time approximation and a self-consistent
iterative procedure. The BTE-RTA is equivalent to the first iteration of the
self-consistent cycle to the BTE-SC [67], and it can adequately capture κlatt

values in the thermoelectric materials studied in this work. Within the RTA,
normal scattering is purely resistive [68]. This typically results in the BTE-
RTA underestimating κlatt compared to the BTE-SC which correctly accounts for
normal processes which play a critical role in redistributing phonons for thermal
relaxation. This is most evident in materials with large thermal conductivities
which typically have weak umklapp scattering in comparison to normal processes.
The RTA fails to adequately capture κlatt for materials such as diamond [61],
graphite [69, 70], and graphene [70], necessitating the use of the BTE-SC. In
systems with lower lattice thermal conductivity umklapp scattering dominates
over normal scattering, and the BTE-RTA falls within 5% of the BTE-SC solution
for silicon, germanium and group III-V semiconductors [65]. It is within this
regime that thermoelectric materials typically fall, and are therefore characterised
quite well by the BTE-RTA [67, 68]. Thus, our approach will be sufficient
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to adequately capture the physics of phonon-phonon interactions and lattice
thermal conductivity, without the need for the extra computational load of a
self-consistent cycle. Further, we note that as temperature increases, umklapp
scattering becomes more significant [71].

Recent work has sought to move beyond some of the limitations in current
implementations of the BTE. These approaches include techniques to capture
temperature dependent interatomic force constants and the effects of 4th and
higher order phonon-phonon interactions. One such method uses a combination
of the temperature dependent effective potential technique and ab initio molecular
dynamics to capture higher order anharmonicity and temperature dependent
interatomic force constants for lattice dynamics calculations [72, 73, 74]. This
was successfully used by Romero et al. [66] to reproduce the increase of the TO
mode with temperature in PbTe. Furthermore, van Roekeghem et al. [75] use an
approach inspired by the self-consistent ab initio lattice dynamics method [76] to
obtain temperature dependence IFCs and partially capture the effects of quartic
anharmonicity, to correctly reproduce the negative thermal expansion of ScF3

with temperature.

1.3.2 Electronic thermoelectric properties

While considerable progress has been made in the ab initio study of lattice thermal
conductivity, transport of charge carriers from first principles remains a consid-
erably more daunting task. This poses a stumbling block in the development of
an easy to use framework for the calculation of ab initio thermoelectric figures of
merit for a wide range of materials. The most acute issue in this regard is the com-
putational cost and difficulty in calculating the scattering rates of charge carriers.
Within semiconductors, the most dominant scattering mechanisms are electron-
phonon interaction, neutral and charged impurity scattering, alloy scattering, and
interface roughness [77, 78]. Typically, calculating electron scattering rates for
these processes has relied on approaches such as empirical deformation potentials
for electron-phonon interaction [79, 80, 81]. One of the simplest approaches is to
treat the electronic lifetime as a free parameter or choose a constant value, the so-
called constant relaxation time approximation [78]. While this approach usually
describes the Seebeck coefficient surprisingly well in a large number of cases, it
notably fails to reproduce the correct sign of the Seebeck coefficient for Li [82].
Furthermore, it fails to describe the electrical conductivity while also failing to
account for their respective temperature and carrier concentration dependences.

Only recently has there been a considerable push by the community to describe
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electron scattering rates from first principles [83, 84, 85, 86, 87, 88, 89]. The
major issue lies with the requirement of very fine sampling of electronic states
in the proximity of the Fermi surface [90], making the calculation of electron-
phonon scattering rates computationally expensive. Wannier interpolation has
been successfully used to sample the Brillouin zone sufficiently densely to achieve
convergence while considerably reducing the computational cost [85, 86, 91].
However, such approaches are limited to non-polar semiconductors, neglecting
materials such as group III-V and II-VI compounds where Fröhlich interaction
dominates [77]. Despite this limitation, the decay of excited electrons in the
prototypical polar semiconductor GaAs from first principles has been obtained
to good agreement with experiment [84].

Only very recent work by Sjakste et al. [88] has extended a Wannier interpola-
tion scheme to take into account Fröhlich interaction using an analytical formula
based off the Vogl model [92]. This approach was recently combined with an
iterative solution to the linearised electron-phonon Boltzmann transport equation
by Liu et al. [93] that captured the electronic mobility of GaAs to excellent
agreement with experiment. By similarly splitting electron-phonon coupling into
short range and long range parts, Zhou and Bernardi [94] also developed an ab
initio approach to calculate the electronic mobility of polar semiconductors. The
computational cost in this case is approximately the same as that of a non-polar
material. However, there remains considerable debate as to whether the RTA
is valid for polar semiconductors with low longitudinal optical frequencies, or
if an iterative solution to the electron-phonon Boltzmann transport equation is
necessary [93, 94].

The approach of Murphy-Armando and Fahy [83] offers an alternative method
to calculate electron-phonon scattering rates in a computationally expeditious
manner. By considering only low-lying valleys in the conduction band relevant
for electron transport the need for very fine sampling of the entire Brillouin zone is
sidestepped. Combined with deformation potential theory [79, 95] the electronic
mobility of n-type SixGe1−x alloys is calculated to excellent agreement with ex-
periment [83]. This approach also allows the strength of different electron-phonon
coupling mechanisms to be easily compared, and is trivial to extend for higher
carrier concentration and higher temperature regimes. This method coupled with
the Fröhlich model of polar-optical scattering offers an excellent starting point
to calculate the electronic mobility of PbTe, constituting the first step towards
ab initio figures of merit of PbTe-based materials near the ferroelectric phase
transition.
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1.4 Thesis outline

The goal of this thesis is to show computationally that it is possible to exploit the
unique properties that arise from proximity to the soft mode (ferroelectric) phase
transition in PbTe to substantially decrease lattice thermal conductivity. We
showed that by driving PbTe-based materials to the verge of the phase transition,
anharmonic coupling between heat carrying acoustic modes and extremely soft-
ened TO modes is substantially increased, leading to considerably shorter phonon
lifetimes across the frequency spectrum. This enables the scattering of phonons
in the whole spectrum without relying on the concept of nanostructuring. We
demonstrate three distinct strategies to achieve this, applying biaxial tensile (001)
strain to PbTe and PbTe’s alloy with PbSe, and furthermore by alloying PbTe
with a rhombohedral group IV-VI material, GeTe. Ultimately, by combining
the effects of increased proximity to the phase transition and mass disorder, we
achieve reductions in lattice thermal conductivity by a factor of 2− 3 compared
to PbTe. Furthermore, we extend the study of Pb1−xGexTe alloys to investigate
the interplay of proximity to the phase transition, mass disorder, and phase of the
alloy in minimizing the lattice thermal conductivity. The role of high symmetry
structures versus their lower symmetry distorted counterparts is also investigated
in this regard. We find that the anharmonic contribution to lattice thermal
conductivity is minimized at the phase transition, and that neither the rocksalt
nor rhombohedral phases is inherently better for suppressing κlatt. The minimal
lattice thermal conductivity of Pb1−xGexTe alloys is reduced by a factor of 3.5
compared to PbTe, and 7.5 compared to GeTe.

We take the first step towards a full ab initio calculation of the thermoelectric
figure of merit by calculating the charge carrier mobility of n-type Ge and PbTe.
We find excellent agreement with experiment for Ge, and reasonable agreement
for PbTe when coupled with the Fröhlich model for polar-optical interaction.
From a symmetry analysis and our DFPT calculations, we also find that electron-
phonon coupling between the TO mode at Γ and the conduction (valence) band
minimum (maximum) is forbidden by symmetry in PbTe. Thus, electronic
properties beneficial for a large ZT may not be degraded by increased proximity
to the phase transition. Coupled with these substantial reductions to κlatt, tuning
PbTe to the verge of the ferroelectric phase transition may be a promising strategy
to greatly enhance thermoelectric performance.

The rest of this thesis is organised as follows.
In chapter 2, we discuss the theoretical background to the Boltzmann trans-

port equation in the relaxation time approximation as used to calculate the lattice
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thermal conductivity and electronic thermoelectric properties. This includes a
discussion of density functional theory, which pertains to computing interatomic
force constants to solve for the lattice thermal conductivity, and the description
of electron-phonon interactions within the DFT formalism. We also include a
brief discussion on modelling alloys in the context of thermal transport.

In chapter 3, we present a first principles study of the lattice thermal con-
ductivity of PbTe-based materials driven to the verge of the ferroelectric phase
transition using biaxial tensile (001) strain and/or alloying. We will discuss
the impact to acoustic-TO phonon anharmonic coupling due to the increased
proximity to the phase transition, and the decrease of phonon lifetimes and lattice
thermal conductivity as a result of the increased acoustic-TO interaction.

In chapter 4, we investigate and quantify the impact of proximity to the fer-
roelectric phase transition and mass disorder on the lattice thermal conductivity
of Pb1−xGexTe alloys by varying their chemical composition. We will argue that
both of these mechanisms, along with the average atomic mass, play a more
crucial role in suppressing lattice thermal conductivity in comparison to effects
arising from differences in the crystal structure between the two phases of the
alloy.

In chapter 5, we calculate the charge carrier mobility of n-type PbTe and Ge
considering the effects of electron-phonon interaction as the first step to obtaining
a full ab initio calculation of the thermoelectric figure of merit. We use first
principles approaches, deformation potential theory, and the Fröhlich model to
achieve this.

In chapter 6, we summarise the main results of this work and give concluding
remarks, followed by a brief outlook on future work.

The original work presented in this thesis has been published in the following
papers:

• Ronan M. Murphy, Éamonn D. Murray, Stephen Fahy, and Ivana Savić,
“Broadband phonon scattering in PbTe-based materials driven near ferro-
electric phase transition by strain or alloying,” Phys. Rev. B, 93, 104304,
2016.

• Ronan M. Murphy, Éamonn D. Murray, Stephen Fahy, and Ivana Savić,
“Ferroelectric phase transition and the lattice thermal conductivity of
Pb1−xGexTe alloys,” Phys. Rev. B, 95, 144302, 2017.

Thermoelectric Properties of PbTe 14 Aoife Rose Murphy



Chapter 2

Computational Methods

In this chapter we present the theoretical background to the first principles
computational methods used in this thesis. We describe the basis of density
functional theory, the main workhorse of this work, and briefly discuss some of
the approximations used in its derivation. This is followed by a discussion of the
Boltzmann transport equation in the relaxation time approximation (BTE-RTA)
as applied to phonons, which allows us to compute the lattice thermal conductiv-
ity. We derive phonon scattering rates due to the anharmonicity of the crystal and
mass disorder. We also briefly discuss the implementation of this approach and
computational details. We finish with the BTE-RTA as applied to charge carriers,
which yields the electronic thermoelectric properties; the electrical conductivity,
Seebeck coefficient, and the electrical contribution to thermal conductivity, and
the charge carrier mobility. This includes the derivation of electron scattering
rates due to electron-phonon coupling in the DFT formalism, and how they may
be calculated from density functional perturbation theory.

2.1 Total energy calculations

2.1.1 Many-body Hamiltonian

We begin by considering the Hamiltonian for a system of electrons and nuclei,
given by:

Ĥ = − ~2

2me

∑
i

∇2
i +

∑
i 6=j

e2

|ri − rj|
+
∑
i,K

QKe
2

|ri −RK |
−
∑
K

~2

2mK

∇2
K +

∑
K 6=J

QKQJe
2

|RK −RJ |
,

(2.1)
where ~ is the Dirac constant, me, ri, and e are the mass, coordinates, and charge
of a given electron i, and mK , RK , and QK are the mass, coordinates, and charge
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of a given nucleus K. The first term is the kinetic energy operator, the second
is the electron-electron interaction, and the third is the potential acting on the
electrons due to the nuclei with charge QK at positions RK , which we label T̂ ,
Û , and V̂ext respectively. The last two terms represent the kinetic energy of the
nuclei and the nuclear-nuclear interaction respectfully.

We exploit the Born-Oppenheimer approximation [96], which separates the
motions of the electrons and nuclei, allowing for a significant simplification of the
above Hamiltonian. It follows that the wavefunction of a solid may be written as
the product of the wavefunctions of the electrons and nuclei:

ψsolid = ψelectrons(ri,RK)ψnuclei(RK). (2.2)

We treat the nuclear coordinates as fixed relative to the much more rapidly
moving electrons, and then solve the time-independent Schrödinger equation for
the system of electrons. Thus, we neglect the kinetic energy of the nuclei and
the nuclear-nuclear interaction for the electronic problem, reducing the above
Hamiltonian to:

Ĥ = − ~2

2me

∑
i

∇2
i +

∑
i 6=j

e2

|ri − rj|
+
∑
i,K

QKe
2

|ri −RK |
. (2.3)

We define the interaction between an electron at ri and an electron at rj as:

U(ri, rj) = e2

|ri − rj|
, (2.4)

with the potential felt by an electron at r due to the nuclei defined as:

Vext(r) =
∑
K

QKe
2

|r−RK |
. (2.5)

Thus, we re-write the Hamiltonian as:

Ĥ = − ~2

2me

∑
i

∇2
i +

∑
i 6=j

U(ri, rj) +
∑
i

Vext(ri) = T̂ + Û + V̂ext. (2.6)

This gives the following many-body Schrödinger equation for a system of Ne

electrons each moving through an external potential Vext(r):
Ne∑

i

(
−~2∇2

i

2m + Vext(ri)
)

+
∑
i 6=j

U(ri, rj)
Ψ(r1, r2..., rNe) = EΨ(r1, r2..., rNe).

(2.7)
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2.1.2 Density functional theory

2.1.2.1 Hohenberg-Kohn theorems

Density Functional Theory (DFT) allows us to map the many-body problem of Ne

interacting electrons into one of a single electron moving in an effective potential.
The foundations of DFT are the Hohenberg-Kohn theorems [97]:

Theorem 1: The external potential on electrons due to nuclei, Vext(r), is, to
within a constant, a unique functional of the electron density n(r). As a result,
the ground state density uniquely determines the external potential and all other
ground state properties of the system.

Theorem 2: There exists a universal functional for the energy E[n] defined in
terms of the density n(r), where the exact ground state is the global minimum
value of this functional.

Thus, we re-write the problem in terms of the electron density, n(r), given by
[98]:

n(r) = Ne

∫
d3r2...d

3rNeΨ∗(r, r2..., rNe)Ψ(r, r2..., rNe). (2.8)

Hohenberg and Kohn showed that there is a one-to-one relationship between the
external potential Vext(r), and the non-degenerate ground state wavefunction Ψ,
and that there is a one-to-one relationship between Ψ and the ground state density
n(r) of an Ne-electron system.

Since all ground state properties are uniquely determined by the electron
density, the total energy may be expressed as a functional of n(r):

EHK [n(r)] = T [n(r)] + U [n(r)] + Vext[n(r)]
= T [n] + U [n] + Vext[n]

= T [n] + U [n] +
∫
n(r)Vext(r)dr

= FHK [n] +
∫
n(r)Vext(r)dr,

(2.9)

where FHK [n] is universal, may be applied to any Vext[n] [98], and includes the
non-classical electron-electron self-interaction correction, exchange and Coulomb
correlation. The energy functional EHK [n] also satisfies the Rayleigh-Ritz varia-
tional principle [99], yielding the ground state energy [98, 100]:

EGS = min
n(r)

EHK [n, Vext], (2.10)

for the ground state electron density under the constraint that the integral of
n(r) equals the total number of electrons.
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While all ground state properties of the system may be determined from the
ground state n(r), in practice we are still left with the task of solving the many-
body Schrödinger equation.

2.1.2.2 Kohn-Sham equations

In 1965, Kohn and Sham transformed the problem of solving the many-body
Schrödinger equation into one of solving an auxiliary system of non-interacting
particles in a self-consistent mean field [101]. In order to do this they introduced
a decomposition of the functional in Eq. (2.9):

FHK [n] = Ts[n] + 1
2

∫
dr n(r)Φ(r) + Exc[n], (2.11)

where Ts[n] is the kinetic energy in the ground state of a system of Ne non-
interacting electrons with density n(r), and Φ(r) = e2 ∫ n(r′)

|r−r′|dr
′ is the classical

Coulomb potential for the electrons, both of which are known explicitly. Exc[n]
is the exchange-correlation energy, and contains all the unknowns for the system:

Exc[n] = (〈T̂ [n]〉 − Ts[n]) +
(
〈Û [n]〉 − 1

2

∫
dr n(r)Φ(r)

)
, (2.12)

where T̂ [n] and Û [n] are defined in Eq. (2.6). The correlation energy is the
difference between the exact and Hartree-Fock energies, and the exchange energy
is due to the Pauli exclusion principle [100, 102, 103]. Overall, Exc[n] is the energy
difference between the kinetic and internal energies of the interacting many-body
problem and the independent particle system with the same charge density n(r).
Solving this explicitly is of tremendous importance for DFT.

Applying the variational principle to Eqs. (2.9) and (2.11) yields [98]:

δE[n]
δn(r) = δTs

δn(r) + Vext(r) + Φ(r) + Vxc[n], (2.13)

with the requirement to retain a constant number of electrons, and where Vxc[n] =
δExc[n]/δn(r). If we compare the above equation to a corresponding auxiliary
system of non-interacting electrons with the same density in a fixed potential
V (r):

δE[n]
δn(r) = δTs

δn(r) + V (r). (2.14)

We see that both Eqs. (2.13) and (2.14) are identical provided:

V (r) = Vext(r) + Φ(r) + Vxc[n], (2.15)
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which we label V KS(r).
The solution for Eq. (2.14) may be obtained by solving the Schrödinger

equation for non-interacting particles:

ĤKSψi(r) =
[
− ~2

2me

∇2 + V KS(r)
]
ψi(r) = εiψi(r), (2.16)

which yields:

n(r) = 2
Ne/2∑
i=1

fi|ψi(r)|2, (2.17)

where the index i denotes the eigenstate with eigenvalue εi. ψi are the Kohn-Sham
(KS) orbitals and fi are the occupation numbers. Eqs. (2.15-2.17) are known as
the Kohn-Sham equations, and may be solved iteratively until self-consistency
is reached between the electron density n(r) and potential V KS(r). The ground
state energy of the system may be written in terms of the Kohn-Sham eigenvalues
εi [99]:

E[n] = 2
Ne/2∑
i=1

εi −
1
2

∫
dr n(r)Φ(r) + Exc[n]−

∫
n(r)Vxc[n]dr. (2.18)

This transforms the problem into one of solving the single particle Schrödinger
equation, which is numerically trivial. However, the exchange-correlation energy,
Exc[n], remains unknown, though various approximations to its form exist - see
section 2.1.5, below.

2.1.3 Plane waves

The many-body problem of a system of electrons has now been reduced to an
effective single particle problem. However, there is still the problem of solving
for an infinite number of electrons moving in a static potential due to an infinite
number of ions. Crystalline materials with a periodic lattice have a periodic
potential which obeys V (r) = V (r + R), where R is any vector of the Bravais
lattice. Thus, we use Bloch’s theorem [16, 104], which states that the electronic
wavefunction at a wavevector k in a periodic solid may be written as the product
of a plane wave and lattice-periodic part [16, 104]:

ψi,k(r) = 1√
Nl

eik·rui,k(r), (2.19)

where Nl is the number of primitive cells, and the lattice periodic part satisfies
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ui,k(r + R) = ui,k(r). This may then be re-written as:

ψi,k(r + R) = eik·Rψi,k(r), (2.20)

which allows us to reproduce the electronic wavefunction with a plane wave
expansion in terms of the reciprocal lattice vector G:

ui,k(r) = 1√
Ω
∑
G
ci,k+Ge

iG·r, (2.21)

where Ω is the primitive cell volume, and ci,k+G are the Fourier coefficients. This
allows us to write the wavefunction in terms of a discrete set of plane waves:

ψi,k(r) = 1√
NlΩ

∑
G
ci,k+Ge

i(k+G)·r. (2.22)

Thus, we may rewrite Eq. (2.16) to obtain a matrix equation for the plane wave
coefficients, ci,k+G [104]:

∑
G′

(
~2

2me

|k + G|2δGG′ + V KS(G−G′)
)
ci,k+G′ = εici,k+G. (2.23)

where δij is the Kronecker delta, which equals 0 for i 6= j and 1 for i = j. The
problem of calculating an infinite number of electronic wavefunctions has now
been cast in terms of a finite number of wavefunctions on an infinite number of
k points with a discrete plane wave basis set.

Electronic wavefunctions will be almost identical at k points very near each
other. Thus, we may approximate the infinite k grid with a finite one, where
each point represents the electronic wavefunction over a small region of k space.
One popular scheme for generating this finite grid of points to accurately capture
the electronic properties and total energy of a system is the Monkhorst and Pack
scheme [105]. In principle, an infinite plane wave basis set is required to expand
the electronic wavefunctions. In practice, we may choose an energy cut-off, taking
only those wavevectors G that satisfy ~2

2me |k +G|2 < Ecut, limiting the expansion
of the plane waves to a finite set. We note that plane waves with kinetic energy
smaller than ~2

2me |k + G|2 are typically more important than those with higher
kinetic energy [104].

Calculations are typically performed within the first Brillouin zone, which is a
uniquely defined primitive cell in reciprocal space, and completely characterises a
periodic solid as per Bloch’s theorem. However, numerically, one must converge
with respect to the k grid density and value of Ecut to ensure an accurate value
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for the total energy of the system.

2.1.4 Pseudopotential approximation

Figure 2.1: Sketch showing the Coulomb potential and real wavefunction in blue
compared to the pseudopotential and pseudowavefunction in red, which match
beyond the cut-off radius rc.

The Kohn-Sham orbitals, ψi, have now been cast in terms of a plane wave
basis set, as discussed. However, describing core electrons can still be quite
a computationally demanding task. This arises from the fact that core and
valence states oscillate rapidly near the nuclei to maintain mutual orthogonality,
necessitating the use of a considerably large basis set. As a result of this rapid
oscillation, valence electrons also have large kinetic energies, which roughly cancel
with the strong Coulomb potential in the core region. This results in the valence
electrons being considerably less bound to the nucleus compared to core electrons.

As the chemical bonding and interatomic forces of a material depend on the
valence states far more than they do on the core states, we may in practice use
the pseudopotential approximation. We replace the core electrons and strong
Coulomb potential with an effective pseudopotential within a cut-off radius rc,
see Fig. 2.1 [106, 107, 108]. The wavefunctions of these core electrons are
also replaced with pseudowavefunctions which vary smoothly in the core region.
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Pseudopotentials and pseudowavefunctions are constructed in a manner such that
outside a specified cut-off radius, rc, they yield the same result for the potential
and wavefunctions as that of the all electron case. Replacing the nucleus and
core electrons with a pseudopotential thus considerably reduces the number of
orbitals (the core orbitals having been removed) and size of the plane wave basis
set when solving for the total energy of the system. This reduces the problem to
that of a much weaker potential acting on valence electrons only.

A pseudopotential is generally constructed with local and non-local parts:

Vps = Vlocal(r) +
∑
lm

Vl(r) |Ylm〉 〈Ylm| , (2.24)

where Ylm are the spherical harmonics, l,m are the angular momentum quantum
numbers, and r is the distance from the nucleus. The local part operates on all
one-particle wavefunctions in the same manner. The non-local part produces a
potential dependent on the quantum numbers l,m of the valence electron, such
that pseudowavefunctions reproduce the same scattering properties as the nucleus
and core electrons.

Norm conserving pseudopotentials are perhaps the most popular choice of
pseudopotential, and come with the stipulation that the norm of each pseu-
dowavefunction is the same as that of the all electron case, both inside and outside
rc [109]. Relativistic effects may also be included in the pseudopotential construc-
tion so that a non-relativistic calculation may reproduce these effects in heavier
atoms where these properties are more relevant [110]. Unless otherwise stated,
all DFT calculations in this thesis use the norm-conserving pseudopotentials of
Hartwigsen, Goedecker and Hutter (HGH) [110].

2.1.5 Exchange-correlation functional

The exchange-correlation energy, Exc, is not explicitly known, adding to the
difficulty of calculating the ground state energy with the DFT formalism. This
has resulted in numerous approaches being employed to gain an approximate
expression for Exc. However, the simplest method to approximate Exc, originally
proposed by Kohn and Sham [101], is still in wide use to this day. If n(r) is
sufficiently slowly varying, Exc may be approximated with the Local Density
Approximation (LDA) [101]:

ELDA
xc [n] =

∫
n(r)εLDA(n(r))d3r (2.25)
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where εLDA(n) is the exchange-correlation energy per particle of a homogeneous
electron gas with density n. The exchange-correlation potential is given by:

V LDA
xc [n] = δELDA

xc [n]
δn(r) = εxc[n] + n(r)∂ε

LDA(n)
∂n

. (2.26)

The LDA is known to give surprisingly good performance, far beyond the
cases it was originally intended for. This good performance originates from its
systematic error cancellation, whereby it typically overestimates the exchange
energy but underestimates the correlation energy [111, 112]. It holds for situations
where the density is almost constant [97], and at high densities where the kinetic
energy dominates the exchange and correlation terms [101]. However, the LDA
will fail in situations where the density varies rapidly. Unless otherwise stated,
all DFT calculations in this work have been performed with the Teter-Pade
parametrisation of the LDA [113].

Another popular choice for the Exc is the generalised gradient approximation
(GGA) [114], which builds upon the LDA by adding a gradient term which
describes the spatial derivative of the charge density. There are many flavours
of implementation, with one of the more popular choices being that of Perdew,
Burke, and Ernzerhof (GGA-PBE) [115]. This idea of building upon previous
approximations for Exc is termed “Jacob’s ladder”, where each higher “rung”
describes an extra level of sophistication [98]. Further, more elaborate choices
for the exchange-correlation energy include meta-GGAs and hybrid functionals,
each advancing up higher “rungs” in turn [116].

2.1.6 Structural relaxation

According to the Hellmann-Feynman theorem [117], the forces on atom K are
given by:

FK = − ∂EF
∂RK

= −〈ψ| ∂ĤF

∂RK

|ψ〉 . (2.27)

where the Hamiltonian ĤF is that for a system of electrons defined previously
with the addition of nuclear-nuclear interaction. Minimising with respect to these
forces allows us to find the equilibrium configuration of a system. Within this
work, structural optimisation carried out in the Abinit code has been performed
with the Broyden-Fletcher-Goldfarb-Shanno minimisation [118].
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2.2 Lattice thermal conductivity

2.2.1 Crystal potential

In this section we derive the lattice dynamics for a general three-dimensional
crystal in terms of interatomic force constants, as detailed in Ref. [51]. We start
from the potential energy V of such a crystal where the lth unit cell lattice
vector is labelled Rl and the bth atom has mass mb. Due to lattice periodicity
we can map the entire crystal from the original basis unit cell with these lattice
vectors. Expanding the potential energy in a Taylor series in powers of the atomic
displacement ulb from its equilibrium position and truncating to third order, we
get:

V =V0 +
∑
lb

∑
α

∂V

∂ulbα

∣∣∣∣∣
0
ulbα + 1

2
∑
lb,l′b′

∑
αβ

∂2V

∂ulbα∂u
l′b′
β

∣∣∣∣∣
0
ulbαu

l′b′

β

+ 1
3!

∑
lb,l′b′,l′′b′′

∑
αβγ

∂3V

∂ulbα∂u
l′b′
β ∂ul′′b′′γ

∣∣∣∣∣
0
ulbαu

l′b′

β ul
′′b′′

γ ,

(2.28)

where α, β, γ are Cartesian directions, and V0 is a constant that we set to zero for
convenience. The second term, the first derivative of the potential energy with
respect to atomic displacement, is zero due to the fact that energy is a minimum
at equilibrium. We now define Φ to be the interatomic force constant tensor. For
the second order derivatives of the energy with respect to atomic displacement,
we get the second order force constants:

Φlb,l′b′

αβ = ∂2V

∂ulbα∂u
l′b′
β

∣∣∣∣∣
0
, (2.29)

and similarly we get the third order forces constants from the third order deriva-
tives of the energy with respect to atomic displacement:

Φlb,l′b′,l′′b′′

αβγ = ∂3V

∂ulbα∂u
l′b′
β ∂ul′′b′′γ

∣∣∣∣∣
0
. (2.30)

Writing the potential energy in terms of the interatomic force constant tensors,
we arrive at:

V = 1
2
∑
lb,l′b′

∑
αβ

Φlb,l′b′

αβ ulbαu
l′b′

β + 1
3!

∑
lb,l′b′,l′′b′′

∑
αβγ

Φlb,l′b′,l′′b′′

αβγ ulbαu
l′b′

β ul
′′b′′

γ (2.31)

where the first term is the harmonic potential, Vharm, and the second term is the
third-order anharmonic potential, Vanh.
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2.2.2 Dynamical matrix

The harmonic approximation treats a crystal as a system of harmonic oscillators
that act independently of each other. The displacements of the harmonic poten-
tial, Vharm in Eq. (2.31), may be written in terms of a set of decoupled normal
vibrational modes. Classically there are 3N such modes for a system of N atoms
with 3 degrees of freedom. Writing the equation of motion for this system:

mb
∂2ulbα
∂t2

= −∂Vharm
∂ulbα

= −
∑
l′b′

∑
β

Φlb,l′b′

αβ ul
′b′

β . (2.32)

By exploiting the translational invariance of the force constant tensor Φ, we may
re-write the force constants in term of the relative position between unit cells,
Φlb,l′b′

αβ = Φ0b,l′b′
αβ , which allows the equation of motion to be rewritten:

mb
∂2ulbα
∂t2

= −
∑
l′b′

∑
β

Φ0b,l′b′
αβ ul

′b′

β . (2.33)

Plane wave solutions may be found to the above equation assuming temporal,
ei(−ωt), and spatial, ei(q.Rl) dependences:

ulbα = 1
√
mb

∑
qs
esαb(q)ei(q.Rl−ωqst), (2.34)

where ωqs is the frequency of a vibrational mode with wavevector q and polarisa-
tion s in the first Brillouin zone. esαb(q) is a polarisation vector that characterises
the motion of atom b. Substituting the above solution into Eq. (2.33) yields:

ω2
qse

s
αb(q) =

∑
b′β

Dbb′

αβ(q)esβb′(q), (2.35)

where Dbb′
αβ(q) is the dynamical matrix, given by:

Dbb′

αβ(q) = 1√
mbmb

′

∑
l′

Φ0b,l′b′
αβ ei(q.Rl). (2.36)

Re-writing Eq. (2.35) as a determinant equation gives a non-trivial solution:

|Dbb′

αβ(q)− ω2
qsδαβδbb′| = 0. (2.37)

Diagonalising the dynamical matrix thus yields the normal mode frequencies,
ωqs, and normal mode eigenvectors, esb(q) for a given q. These normal modes
of the harmonic crystal are called phonons, and have a momentum q, with

Thermoelectric Properties of PbTe 25 Aoife Rose Murphy



2.2 Lattice thermal conductivity

branch index s. There are 3N such eigenvalues ω2
qs, with the branch index

correspondingly taking values s = 1, 2, ..., 3N . Further, the eigenvectors esb(q)
obey the orthonormality and completeness relations:

∑
b,α

e∗sαb(q)es′αb(q) = δss′ , (2.38)

∑
s

e∗sβb′(q)es′αb(q) = δαβδbb′ . (2.39)

Thus, the dispersion relation (frequency dependence of the momentum) may
be obtained throughout the first Brillouin zone. However, expanding the potential
energy V of the crystal up to second order only describes non-interacting phonons.
The inclusion of higher order, anharmonic, terms captures the effects of phonons
interacting with each other, as will be discussed in the following sections.

2.2.3 Second quantisation

To simplify the description of phonon dynamics, we cast the crystal Hamilto-
nian in terms of the phonon creation (â†qs) and annihilation (âqs) operators, so
called second quantisation. To begin, we state the Hamiltonian in terms of the
coordinate ulb and momentum plb variables:

Ĥ =
∑
lb

plb.plb

2mb

+ 1
2
∑
lb,l′b′

∑
αβ

Φlb,l′b′

αβ ulbαu
l′b′

β

+ 1
3!

∑
lb,l′b′,l′′b′′

∑
αβγ

Φlb,l′b′,l′′b′′

αβγ ulbαu
l′b′

β ul
′′b′′

γ

(2.40)

where the second and third terms are the harmonic and anharmonic terms of the
crystal potential respectively.

Initially, we perform a Fourier analysis and obtain ulb and plb in terms of the
wavevector q and normal coordinate operators Xqb and Pqb respectively:

ulb = 1√
Nl

∑
q

Xqbe
iq·Rl , plb = 1√

Nl

∑
q

Pqbe
iq·Rl . (2.41)

The next transformation introduces the polarisation vector esb(q) and casts these
normal coordinate operators in terms of the phonon branch index, s:

Xqs =
∑
b

√
mbe∗sb (q) ·Xqb, Pqs =

∑
b

1
√
mb

esb(q) ·Pqb. (2.42)

Finally, we introduce the phonon creation and annihilation operators:
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â†qs = 1√
2~ωqs

P †qs + i

√
ωqs

2π Xqs, (2.43)

âqs = 1√
2~ωqs

Pqs − i
√
ωqs

2~ X
†
qs, (2.44)

which act on the phonon eigenstates, nqs = n(ωqs), as follows:

â†qs |nqs〉 =
√
nqs + 1 |nqs + 1〉 , (2.45)

âqs |nqs〉 = √nqs |nqs − 1〉 , (2.46)

respectively raising or lowering the occupation of a phonon mode qs.
We may now write the displacement and momentum as [16, 119]:

ulb =
∑
qs

(
~

2mbωqsNl

) 1
2

esb(q)
(
âqs + â†−qs

)
eiq·Rl , (2.47)

plb = −i
∑
qs

(
~mbωqs

2Nl

) 1
2

esb(q)
(
âqs − â†−qs

)
eiq·Rl . (2.48)

Taking the harmonic part of the Hamiltonian in Eq. (2.40), we utilise the trans-
formations above to express it in terms of creation and annihilation operators:

Ĥharm =
∑
qs

~ωqs

(
â†qsâqs + 1

2

)
, (2.49)

which is a sum over harmonic oscillators, with the total energy given as:

E =
∑
qs

(
nqs + 1

2

)
~ωqs. (2.50)

Furthermore, taking the anharmonic potential and applying the transforma-
tions above, we obtain:

Vanh = 1
3!

∑
qs,q′s′,q′′s′′

δG,q+q′+q′′Ψqs,q′s′,q′′s′′

×
(
â†qs − â−qs

)(
â†q′s′ − â−q′s′

)(
â†q′′s′′ − â−q′′s′′

)
,

(2.51)

where:
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Ψqs,q′s′,q′′s′′ = i

(
~3

8Nl

) 1
2 ∑
bb′b′′

∑
αβγ

Φqb,q′b′,q′b′′
αβγ

esαb(q)
√
mbωqs

es
′
βb(q′)√
mb′ωq′s′

es
′′
γb(q′′)√
mb′′ωq′′s′′

,

(2.52)
which represents a summation over three-phonon collision operators, and governs
which three-phonon processes occur as a result of the anharmonicity of the crystal
potential.

2.2.4 Boltzmann transport equation

The general form of the Boltzmann transport equation is written as:

∂f

∂t
= ∂f

∂t

∣∣∣∣∣
force

+ ∂f

∂t

∣∣∣∣∣
diff

+ ∂f

∂t

∣∣∣∣∣
scatt

, (2.53)

where f is associated with the number of particles in the system. The terms on
the right hand side of the equation represent the change in f due to external
forces acting on the particles, diffusion and scattering, respectively.

The lattice thermal conductivity of a material may be calculated using the
Boltzmann transport equation as applied to phonons, where f is the phonon
distribution function nqs. In the absence of a heat current phonons are in their
equilibrium state, and obey Bose-Einstein statistics with the distribution function
given as:

n̄qs = 1
e~ωqs/kBT − 1 . (2.54)

In the presence of a finite temperature gradient, ∇rT , the equilibrium distri-
bution function is perturbed by an amount proportional to ∇rT . Two terms are
responsible for the rate of change of the distribution function, the diffusion and
scattering terms respectively, which must equal zero in the steady state of heat
flow through the material:

∂nqs

∂t

∣∣∣∣∣
diff

+ ∂nqs

∂t

∣∣∣∣∣
scatt

= 0. (2.55)

The diffusion term may be written as ∂nqs
∂t

∣∣∣
diff

= −vqs.∇rT
∂nqs
∂T

where vqs is the
phonon group velocity, yielding the phonon Boltzmann transport equation in its
general form [51, 55, 56]:

− vqs.∇rT
∂nqs

∂T
+ ∂nqs

∂t

∣∣∣∣∣
scatt

= 0, (2.56)
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where the left term describes a system of non-interacting phonons diffusing and
the right term describes all scattering processes of phonons into and out of state
qs. Such processes may be elastic in nature, such as those due to mass disorder,
or inelastic processes due to the crystal anharmonicity, as will be discussed in
more detail in the following sections.

Solving Eq. (2.56) is a difficult task. To simplify this we utilise the relaxation
time approximation (RTA), as follows. The equilibrium distribution function,
n̄qs, does not change with time. Assuming a small deviation of the phonon
distribution from equilibrium in the presence of a small temperature gradient, we
arrive at:

nqs = n̄qs + n′qs, (2.57)

which is the Taylor expansion about the equilibrium n̄qs up to the linear term
n′qs, the perturbed phonon population. We now define τqs as the time taken
for the perturbed states to relax back to equilibrium. This is referred to as the
single mode relaxation time (SMRT) and is a single effective phonon lifetime that
expresses all scattering processes for a given mode under the assumption that all
other modes are in equilibrium. Thus, we re-write the second term in Eq. (2.56)
as:

∂nqs

∂t

∣∣∣∣∣
scatt

= −nqs − n̄qs

τqs
. (2.58)

Secondly, we assume that in steady state the deviation from equilibrium due
to a finite temperature gradient is small such that nqs ≈ n̄qs in the diffusive
term in Eq. (2.56). This allows us to write the linearised Boltzmann transport
equation in the relaxation time approximation (BTE-RTA):

− vqs.∇rT
∂n̄qs

∂T
= nqs − n̄qs

τqs
, (2.59)

which holds for elastic scattering processes, and is also used to approximate the
treatment of inelastic scattering processes.

Under Fourier’s law, the rate of heat flow per unit area may be written as:

Q = −κ∇rT, (2.60)

where κ is the thermal conductivity. More specifically, the heat flow in direction α
due to a temperature gradient in direction β may be written as a sum over phonon
modes of the energy carried by a phonon, its group velocity, and perturbed phonon
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population:
Qα = − 1

NlΩ
∑
qs

~ωqsvqs,αnqs = −καβ|∇T |β. (2.61)

Taking the phonon Boltzmann equation, Eq. (2.56), and assuming a temperature
gradient along β, we obtain:

− vqs,β.|∇T |β
∂nqs

∂T
= nqs − n̄qs

τqs
. (2.62)

Re-writing this, we arrive at an expression for the perturbed phonon population:

nqs − n̄qs =− vqs,β|∇T |β
∂nqs

∂T
τqs, (2.63)

Substituting this expression into Eq. (2.61), we obtain the lattice thermal con-
ductivity:

καβ = 1
NlΩ

∑
qs

~ωqs
∂n̄qs

∂T
vqs,αvqs,βτqs, (2.64)

which we may re-write as a tensor:

κlatt = 1
NlΩ

∑
qs
cqsv

2
qsτqs, (2.65)

where cqs is the quantum heat capacity for a given mode qs [62, 119]:

cqs = ~ωqs
∂n̄qs

∂T
= kB

(
~ωqs

kBT

)2
e~ωqs/kBT

(e~ωqs/kBT − 1)2 . (2.66)

The phonon group velocities vqs are calculated from first order perturbation
theory [62, 119]:

vqs,α = ∂ωqs

∂qα

= 1
2ωqs

∑
bb′

∑
βγ

e∗sβb(q)
∂Dbb′

βγ(q)
∂q

esγb(q). (2.67)

The total lifetime of a given phonon mode may be expressed as a sum of contri-
butions from elastic and inelastic processes, added together using Matthiessen’s
rule [16]:

1
τ totalqs

= 1
τ elasticqs

+ 1
τ inelasticqs

, (2.68)

where elastic processes are those that arise from such effects as boundary scat-
tering, points defects, and mass disorder due to isotopes or alloying. Inelastic
processes are phonon-phonon interactions that arise from the anharmonicity of
the crystal potential. In the following sections, we will derive expressions for τqs
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due to anharmonic (three-phonon) interactions and mass disorder respectively.
We note that typically only anharmonic processes up to third order are treated,
with higher order terms generally being weaker in comparison [120].

2.2.5 Anharmonic phonon lifetimes

The single mode relaxation time may be more formally expressed from the phonon
collision operator acting on the deviation of a given phonon mode qs from equilib-
rium, assuming that all phonon states q′s′ 6= qs are in equilibrium. We begin by
treating ψqs as a measure of the deviation of mode qs from equilibrium. In order
to linearise net scattering rates, we expand the perturbed phonon population nqs

about equilibrium in terms of this first order perturbation:

nqs = 1
e~ωqs/kBT−ψqs − 1 ≈n̄qs −

kBT

~
∂n̄qs

∂ωqs
ψqs

=n̄qs + n̄qs(n̄qs + 1)ψqs,

(2.69)

analogous to Eq. (2.57).
We now take the phonon collision operator P whose elements P q′s′

qs provide a
measure of the transition probability of a mode qs, which we approximate within
the single mode relaxation time as:

(Pψ)qs ≈ Pqs,qsψqs = Γqsψqs = −∂nqs

∂t

∣∣∣∣∣
scatt

(2.70)

where Γqs is the diagonal part of the phonon collision operator Pqs,qs, and includes
the diagonal part of the anharmonic operator and all operators representing
elastic processes. Thus, from Eqs. (2.69) and (2.70)

Γqsψqs = nqs − n̄qs

τqs
= n̄qs(n̄qs + 1)ψqs

τqs
, (2.71)

giving us the single mode relaxation time:

1
τqs

= Γqs

n̄qs(n̄qs + 1) . (2.72)

In this section, we derive the expression for τqs due to three-phonon pro-
cesses, which arise from the third order anharmonicity of the crystal potential in
Eq. (2.31). To begin, we look at this anharmonic potential in terms of phonon
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collision operators as given in Eq. (2.51):

Vanh = 1
3!

∑
qs,q′s′,q′′s′′

δG,q+q′+q′′Ψqs,q′s′,q′′s′′

×
(
â−qsâ−q′s′ â

†
q′′s′′ − â†qsâ−q′s′ â

†
q′′s′′ − â−qsâ

†
q′s′ â

†
q′′s′′

)
,

(2.73)

where we are left with only three terms that do not violate energy and momentum
conservation laws after the expansion of the phonon creation and annihilation
operators.

Figure 2.2: Allowed three-phonon scattering processes given energy and momen-
tum conservation constraints.

These terms represent two distinct scattering processes, class 1 and class 2
events respectively, see Fig. 2.2. Class 1 events are coalescing processes, which
refer to the annihilation of two phonons and the creation of a third. Class 2
events are decay processes, which refer to the annihilation of one phonon and the
creation of two phonons. Thus, for an initial state |i〉 = |nqs, nq′s′ , nq′′s′′〉, the
final state |f〉 is given by:

Class 1 : |f〉 = |nqs − 1, nq′s′ − 1, nq′′s′′ + 1〉 ,
Class 2 : |f〉 = |nqs − 1, nq′s′ + 1, nq′′s′′ + 1〉 ,

(2.74)

Where each process obeys the following energy and momentum conservation
relations:

Class 1 : ~ωqs + ~ωq′s′ = ~ωq′′s′′ ,

q + q′ = q′′ + G,
(2.75)

Class 2 : ~ωqs = ~ωq′s′ + ~ωq′′s′′ ,

q = q′ + q′′ + G,
(2.76)

where G = 0 for normal processes, and G 6= 0 for (Peierl’s resistive) umklapp
scattering, see Fig. 2.3. Normal processes occur within the first Brillouin zone
and conserve phonon momentum. In the limit of constant group velocity, i.e.
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for long-wavelength acoustic modes, such processes do not contribute to thermal
resistance within a material. Conversely umklapp scattering, as termed by Peierls
[121], does not conserve phonon momentum, losing crystal momentum G to the
lattice. This reverses the phonon direction and heat flow, contributing to thermal
resistance within a material.

Figure 2.3: (a): Normal scattering, and (b): Umklapp scattering for class 1
events.

To calculate τqs we use Fermi’s Golden Rule, which gives the transition
probability from states |i〉 → |f〉. From first order quantum perturbation theory,
this scattering rate is given as [122, 123]:

P f
i (3ph) = 2π

~
| 〈f |Vanh |i〉 |2δ(Ef − Ei), (2.77)

where the delta function ensures conservation of energy is maintained.
For class 1 events, where two phonons coalesce to form one new phonon, the

transition probability is:

P q′′s′′
qs,q′s′ =2π

~2 |Ψ−qs,−q′s′,q′′s′′ |2nqsnq′s′(nq′′s′′ + 1)

× δ(−ωqs − ωq′s′ + ωq′′s′′)δG,q+q′+q′′ ,
(2.78)

where the factor of 1
3! in the expression for Vanh is cancelled by the 3! equivalent

terms when summing over phonon wavevectors q,q′,q′′. Similarly, the transition
probability for class 2 events, decay processes, may be written:

P q′s′,q′′s′′
qs =2π

~2 |Ψ−qs,q′s′,q′′s′′ |2nqs(nq′s′ + 1)(nq′′s′′ + 1)

× δ(−ωqs + ωq′s′ + ωq′′s′′)δG,q+q′+q′′ .
(2.79)

Summing over the probabilities of class 1 and class 2 events and including
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the possibility of backscattering, we arrive at the total change in the phonon
distribution due to three-phonon processes:

− ∂nqs

∂t

∣∣∣∣∣
3ph

=
∑

q′s′,q′′s′′

[(
P q′′s′′

qs,q′s′ − P
qs,q′s′
q′′s′′

)
+ 1

2
(
P q′s′,q′′s′′

qs − P qs
q′s′,q′′s′′

)]
, (2.80)

where the factor of 1
2 is to prevent double-counting of indistinguishable class 2

events where q′s′ and q′′s′′ swap order without affecting the phonon distribution.
In order to linearise the net scattering rates for class 1 and class 2 events, we

take the expansion of the perturbed phonon population nqs about equilibrium in
terms of a first order perturbation ψqs from Eq. (2.69). Thus, we may write the
scattering rate for class 1 events as:

P q′′s′′
qs,q′s′ − P

qs,q′s′
q′′s′′ = P̃ q′′s′′

qs,q′s′(ψqs + ψq′s′ − ψq′′s′′) (2.81)

where:
P̃ q′′s′′

qs,q′s′ =2π
~2 |Ψ−qs,−q′s′,q′′s′′ |2n̄qsn̄q′s′(n̄q′′s′′ + 1)

× δ(−ωqs − ωq′s′ + ωq′′s′′)δG,q+q′+q′′ .
(2.82)

Similarly, the scattering rate for class 2 events may be written as:

P q′s′,q′′s′′
qs − P qs

q′s′,q′′s′′ = P̃ q′s′,q′′s′′
qs (ψqs − ψq′s′ − ψq′′s′′), (2.83)

where:
P̃ q′s′,q′′s′′

qs =2π
~2 |Ψ−qs,q′s′,q′′s′′ |2n̄qs(n̄q′s′ + 1)(n̄q′′s′′ + 1)

× δ(−ωqs + ωq′s′ + ωq′′s′′)δG,q+q′+q′′ .
(2.84)

Thus, we may write the total change in phonon population due to anharmonic,
three-phonon processes as:

−∂nqs

∂t

∣∣∣∣∣
3ph

=
∑

q′s′,q′′s′′

[
P̃ q′′s′′

qs,q′s′(ψqs + ψq′s′ − ψq′′s′′)

+ 1
2 P̃

q′s′,q′′s′′
qs (ψqs − ψq′s′ − ψq′′s′′)

]
.

(2.85)

For the single mode relaxation time approximation we assume that all phonon
modes are in equilibrium, except for the phonon mode whose lifetime is being
calculated. We also assume that the contribution from all scattering events may
be expressed as a single effective lifetime. In effect, we set ψs′q′ = ψs

′′
q′′ = 0 in
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Eq. (2.85) to get:

−∂nqs

∂t

∣∣∣∣∣
3ph

=
∑

q′s′,q′′s′′

[
P̃ q′′s′′

qs,q′s′ψqs + 1
2 P̃

q′s′,q′′s′′
qs ψqs

]
= Γqsψqs. (2.86)

From this and Eq. (2.72) it follows that the effective lifetime for a phonon involved
in anharmonic (three-phonon) processes is:

τ−1
qs = 1

n̄qs(n̄qs + 1)
∑

q′s′,q′′s′′

[
P̃ q′′s′′

qs,q′s′ +
1
2 P̃

q′s′,q′′s′′
qs

]
(2.87)

With Eqs. (2.78) and (2.79) we arrive at:

τ−1
qs =2π

~2

∑
q′s′,q′′s′′

|Ψqs,q′s′,q′′s′′ |2δG,q+q′+q′′

×
[
n̄q′s′(n̄q′′s′′ + 1)

(n̄qs + 1) δ(−ωqs − ωq′s′ + ωq′′s′′)

+ 1
2
n̄q′s′n̄q′′s′′

n̄qs
δ(−ωqs + ωq′s′ + ωq′′s′′)

] (2.88)

The above expression for τ−1
qs may be simplified further with the use of two

identities, derived in the absence of a temperature gradient under the condition
that the net scattering rate of back and forward processes is zero at equilibrium:

n̄q′s′ − n̄q′′s′′ = n̄q′s′(n̄q′′s′′ + 1)
(n̄qs + 1) , (2.89)

1 + n̄q′s′ + n̄q′′s′′ = n̄q′s′n̄q′′s′′

n̄qs
. (2.90)

Thus, we obtain the expression for the single mode relaxation time due to
anharmonic (three-phonon) processes:

τ−1
qs =2π

~2

∑
q′s′,q′′s′′

|Ψqs,q′s′,q′′s′′ |2δG,q+q′+q′′

×
[
(n̄q′s′ − n̄q′′s′′)δ(−ωqs − ωq′s′ + ωq′′s′′)

+ 1
2(1 + n̄q′s′ + n̄q′′s′′)δ(−ωqs + ωq′s′ + ωq′′s′′)

] (2.91)

2.2.6 Phonon lifetimes due to mass disorder

In order to model alloys, we employ the virtual crystal approximation (VCA) first
introduced by Abeles [124]. This takes the disordered crystal and treats it as an
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ordered one with average lattice parameters, atomic mass, and interatomic force
constants as per the composition of the alloy. The pseudopotential of this average
atom may be constructed as follows, for a hypothetical alloy AxB1−x [125]:

V VCA
ps = xV A

local(r) + (1− x)V B
local(r)

+
∑
lm

∣∣∣Y A
lm

〉
xV A

l (r)
〈
Y A
lm

∣∣∣+∑
lm

∣∣∣Y B
lm

〉
(1− x)V B

l (r)
〈
Y B
lm

∣∣∣ . (2.92)

Despite being a crude approximation, the VCA works well for chemically similar
atoms, such as those from the same group of the periodic table.

We treat the effect of mass disorder on phonon lifetimes in an alloy via a
perturbing Hamiltonian to the ordered average crystal [126]:

Ĥ = Ĥ0 + ĤI , (2.93)

where Ĥ0 is the Hamiltonian expanded up to the harmonic term of the average
crystal with average mass at atomic site b defined as:

m̄b = 1
Nl

∑
l

mlb =
∑
i

fibmib, (2.94)

where fib and mib are the fraction and the atomic mass of the ith atomic species
occupying atomic site b in the virtual crystal lattice. ĤI is the perturbing
Hamiltonian:

ĤI = 1
2
∑
lb

(mlb − m̄b)(u̇lb)2. (2.95)

Taking the atomic displacement defined in Eq. (2.47) as a function of m̄b, and
substituting into Eq. (2.95) we obtain the following perturbing Hamiltonian:

ĤI = − ~
4Nl

∑
lb

∑
qs,q′s′

(ωqsωq′s′)
1
2

(
mlb − m̄b

m̄b

)
esb(q) · es′b (q′)

×
(
âqsâ

†
−q′s′ + â†−qsâq′s′

)
ei(q+q′)·Rl ,

(2.96)

where the terms â†qsâ
†
−q′s′ and âqsâ−q′s′ in the expansion of the phonon operators

have been omitted due to violation of conservation of energy. Thus, from second
order perturbation theory, we arrive at an effective phonon lifetime due to mass
disorder for a diatomic crystal [126, 127]:

1
τmdqs

= π

2Nl

ω2
qs
∑
q′s′

δ(ωqs − ωq′s′)
∑
b

gb|e∗s
′

b (q′) · esb(q)|2, (2.97)
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where gb is the measure of mass disorder and is given by:

gb =
∑
i

fib

(
1− mib

m̄b

)2
. (2.98)

This expression may then by combined with τanhqs using Matthiessen’s rule,
allowing the lattice thermal conductivity to be solved as per Eq. (2.65). However,
we note that disorder in the force constants due to alloying is not treated in our
implementation of the BTE-RTA due to the challenging nature of the problem
[62, 128].

2.2.7 Implementation

To calculate the lattice thermal conductivity within the BTE-RTA, we must
compute the harmonic and third order anharmonic interatomic force constants.
In our implementation, IFCs are calculated from Hellmann-Feynman forces using
a real-space finite difference supercell approach [63, 129, 130]. These forces are
calculated from the derivative of the potential energy with respect to atomic
displacement:

Flb
α = − ∂V

∂ulbα
, (2.99)

Allowing us to write the harmonic force constants as:

Φlb,l′b′

αβ ' −
Fl′b′

β [ulb]
ulbα

, (2.100)

and similarly the third order anharmonic force constants:

Φlb,l′b′,l′′b′′

αβγ ' −
Fl′′b′′

γ [ulb; ul′b′ ]
ulbαu

l′b′
β

, (2.101)

where Fl′b′

β [ulb] is defined as the atomic force measured at position τl
′b′ under an

atomic displacement ulb in a supercell. Fl′′b′′

γ [ulb; ul′b′ ] is defined as the atomic
force measured at position τl

′′b′′ under a pair of atomic displacements ulb and
ul′b′ in a supercell. These forces are computed under the assumption of a small
atomic displacement, in our case 0.02 Å.

We use the Phonopy and Phono3py codes [119, 129, 130, 131] to generate
a minimal set of atomic displacements from which a full set of harmonic and
third order anharmonic IFCs may be reconstructed using lattice symmetries.
These supercell configurations are passed to the Abinit code [132], where DFT
calculations are performed at 0 K to obtain the Hellman-Feynman forces. These
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forces, Eq. (2.100) and (2.101), form systems of linear equations which may be
solved using the Moore-Penrose pseudoinverse technique within the Phono3py
code [119, 130]. This yields the harmonic and third order anharmonic IFCs
respectively. These IFCs are then passed to an in-house code which calculates the
phonon frequencies, group velocities, lifetimes and ultimately the lattice thermal
conductivity. This code is also responsible for the calculation of other physical
quantities shown in this work, such as mode Grüneisen parameters, thermal
expansion coefficients, and phonon densities of states.

Further calculation details are as follows. All DFT calculations are performed
using the local density approximation (LDA) and Hartwigsen-Goedecker-Hutter
norm-conserving pseudopotentials [110]. Phonon dispersions are generated with
the Phonopy code [129, 133] from the calculated harmonic IFCs. Born effec-
tive charges and dielectric permittivity tensors are calculated using DFPT, as
implemented in Abinit [132, 134, 135]. We accounted for the long range ion-
ion interaction using an interpolation in the calculation of phonon frequencies at
general q points with the non-analytical term correction [136].

2.3 Charge carrier mobility

2.3.1 Boltzmann transport equation

We have already discussed in depth the calculation of the lattice thermal conduc-
tivity, now our attention shifts to the other thermoelectric properties in the figure
of merit, namely the electrical conductivity, Seebeck coefficient, and electronic
thermal conductivity. To model these, we once again return to the Boltzmann
transport equation in the relaxation time approximation. In doing so, we also
derive an expression for the charge carrier mobility, µ, which contains all the
pertinent charge carrier transport information necessary to solve for σ, S, and
κelec. Thus, it suffices to calculate µ as the initial step to obtaining an ab initio
thermoelectric figure of merit when coupled with calculations of κlatt.

Starting from the Boltzmann transport equation, the change in energy carrier
population, fnk = f(εnk), is given for a state k and band n as [78]:

∂fnk

∂t
= −vnk · ∇rT

∂fnk

∂T
− e

~

(
E + 1

c
vnk ×H

)
· ∂fnk

∂k
+ ∂fnk

∂t

∣∣∣∣∣
scatt

, (2.102)

where vnk = 1/~∇kεnk is the electronic group velocity. The first term on the right
hand side is due to diffusion of energy carriers, the second due to the influence
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of electric E or magnetic H fields, with the third due to scattering. We derive
electronic thermoelectric transport properties following a similar procedure to
that as laid out in the previous section for deriving phonon transport.

In their equilibrium configuration, f 0
nk, electrons will obey Fermi-Dirac statis-

tics:

f 0(εnk) = 1
e(εnk−EF)/kBT + 1 , (2.103)

where EF is the Fermi level. We assume a small perturbation of electronic states
from equilibrium and thus may use the relaxation time approximation to obtain
an expression for the scattering rate of electrons analogous to that of phonons
(Eq. (2.58)):

∂fnk

∂t

∣∣∣∣∣
scatt

= −fnk − f 0
nk

τnk
, (2.104)

where τnk is the relaxation time for electronic states. In semiconductors, electron-
phonon coupling and neutral and ionized impurities are the dominant scatter-
ing mechanisms [77]. We neglect the effect of impurity scattering in mobility
calculations, which is only significant at high carrier concentrations or very
low temperatures. Thus, we calculate τnk from the effects of electron-phonon
interaction, as will be discussed in more detail in chapter 5.

Taking external perturbations to be small, we may assume fnk ≈ f 0
nk in the

first and second terms of Eq. (2.102), and coupled with Eq. (2.104):

− vnk · ∇rT
∂f 0

nk
∂T
− e

~

(
E + 1

c
vnk ×H

)
· ∂f

0
nk

∂k
− fnk − f 0

nk
τnk

= 0, (2.105)

where the overall change in charge carrier population is 0 in the steady state.
This is the linearised Boltzmann transport equation for charge carriers in the
relaxation time approximation, equivalent to that for phonons, see Eq. (2.59).
We now assume the absence of all external fields other than a weak electric field
and small thermal gradient, and re-write the above equation as [89]:

fnk = f 0
nk − e

(
∂f 0

nk
∂εnk

)
τnkvnk · E−

(
∂f 0

nk
∂εnk

)
τnkvnk(εnk − µ)∇rT

T
. (2.106)

Within the linear response, the electrical current density is related to external
fields via the thermoelectric transport coefficients, σ, S, Π, and κelec, as [78, 89,
137]:

je = σE− σS∇rT, (2.107)
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with the thermal current density defined as [78, 89, 137]:

jq = σΠE−
(
κelec + TσS2

)
∇rT, (2.108)

where Π = TS is the Peltier coefficient. Strictly speaking, the thermoelectric
transport coefficients are tensorial quantities, however for cubic materials they
reduce to scalars. Within this formalism, E is the effective electric field arising
from an electric and chemical potential gradient, E = ∇r(φ− µ/e) [89].

Starting from Eqs. (2.106) and (2.107) and taking the thermal gradient to be
zero in the charge current density, we write the electrical conductivity as [78, 89]:

σ = 1
NkΩe

2∑
nk

v2
nkτnk

(
−∂f

0
nk

∂εnk

)
, (2.109)

where Nk is the number of k-points. The Seebeck coefficient is defined as the
voltage gradient produced by a given temperature gradient when the electrical
current is zero, and thus [78, 89]:

S = 1
NkΩ

ekB
σ

∑
nk

v2
nkτnk

(
εnk − µ
kBT

)(
−∂f

0
nk

∂εnk

)
. (2.110)

The electrical contribution to thermal conductivity is defined as the heat current
produced per unit of temperature gradient when the electrical current is zero,
and is written from Eqs. (2.106) and (2.108) as [78, 89]:

κelec = 1
NkΩk

2
BT

∑
nk

v2
nkτnk

(
εnk − µ
kBT

)2
(
−∂f

0
nk

∂εnk

)
− TσS2. (2.111)

The charge carrier mobility within the BTE-RTA is given as [87]:

µ = σ

ne
= 1
NkΩ

e

n

∑
nk

v2
nkτnk

(
−∂f

0
nk

∂εnk

)
, (2.112)

where n is the carrier concentration:

n =
∑
nk
f 0
nk. (2.113)

From this the Fermi level is determined for a given charge carrier concentration.
In the calculation of the electronic thermoelectric properties and the charge

carrier mobility, the most cumbersome quantity to compute is the lifetime τnk. In
the following section, we briefly discuss the theoretical ground work behind the
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computation of this quantity from electron-phonon interactions within the DFT
Kohn-Sham formalism.

2.3.2 Electron-phonon coupling

Up to this point we have not considered the dynamics of a coupled electron-
phonon system. To obtain their interaction within the DFT formalism, we
expand the Kohn-Sham potential in terms of an atomic displacement ulb from
their equilibrium positions ulb0 , truncating the expansion to first order [138]:

V KS = V KS(ulb0 ) +
∑
lb

∑
α

∂V KS

∂ulbα
ulbα . (2.114)

The first term is the Kohn-Sham potential due to atoms in their equilibrium
positions, and the second term is the perturbed potential, labelled V KS

pert, which
we re-write as:

V KS
pert =

∑
qs

∑
b

∑
α

N
− 1

2
l

(
mc

mb

) 1
2
lqs
(
âqse

s
αb(q) + â†−qse

∗s
αb(q)

)
eiq·r∂αb,qv

KS, (2.115)

where mc is an arbitrary reference mass, lqs = (~/2mcωqs)1/2 is the “zero-point”
displacement amplitude, and ∂αb,qv

KS is a lattice periodic function defined as
[138]:

∂αb,qv
KS =

∑
l

e−iq·(r−Rl)∂V
KS

∂ulbα

∣∣∣∣∣
r−Rl

. (2.116)

In the second quantisation formalism, the single particle electronic Hamilto-
nian can be written with the unperturbed Kohn-Sham Hamiltonian [138]:

Ĥe =
∑

nk,mk′
〈ψmk′| ĤKS |ψnk〉 ĉ†mk′ ĉnk =

∑
nk
εnkĉ

†
nkĉnk. (2.117)

where ĉ†nk and ĉnk are the electron creation and annihilation operators respec-
tively. This is analogous to the second quantisation of the Hamiltonian for
phonons within the harmonic approximation, see Eq. (2.49). Similarly, the
Hamiltonian due to electron-phonon interaction reads [138]:

Ĥep =
∑

nk,mk′
〈ψmk′ |V KS

pert |ψnk〉 ĉ†mk′ ĉnk

=N−
1
2

l

∑
nk,mk′

∑
qs
lqsHmn(k; qs)

(
ĉ†mk′ ĉnkâqs + ĉ†mk′ ĉnkâ

†
−qs

)
δk+q−k′,G

(2.118)

where the delta function δk+q−k′,G arises from summation over the factor
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ei(k+q−k′)·r [77, 139], and ensures conservation of crystal momentum. Hmn(k; qs)
is the electron-phonon matrix element for an electron scattering event from a
state k and band n to a state k′ and band m via a phonon qs:

Hmn(k; qs) =
∑
b

∑
α

(
mc

mb

) 1
2
esαb(q) 〈umk+q| ∂αb,qvKS |unk〉uc , (2.119)

where the subscript “uc” indicates that the integral is carried out within one
unit cell. unk is normalized to unity in the unit cell and is the lattice periodic
part of ψnk expressed in Bloch form as N−1/2

l unke
ik·r. We calculate the matrix

element 〈umk+q| ∂αb,qvKS |unk〉uc directly from the density functional perturbation
theory method [99, 138] as implemented in Abinit [132, 134, 135], discussed in
the next section. We choose the mass mc to be equal to the mass of the unit
cell for consistency with deformation potential definitions [140]. We note that
our definition of the electron-phonon matrix element is not the typical one given
within the literature, where it is usually defined as gmn(k; qs) = lqsHmn(k; qs)
[87, 89].

Figure 2.4: Allowed electron-phonon scattering processes to first order in the
atomic displacement.

From the electron-phonon interaction Hamiltonian we see that there are two
allowed scattering processes to first order in the atomic displacement. These
represent electron scattering via phonon absorption and electron scattering via
phonon emission respectively, see Fig. 2.4. For an initial state |i〉 = |nk〉 ⊗ |nqs〉,
the final state |f〉 is given by:

Phonon absorption : |f〉 = |mk′〉 ⊗ |nqs − 1〉 ,
Phonon emission : |f〉 = |mk′〉 ⊗ |n−qs + 1〉 ,

(2.120)

where each process obeys the following energy and momentum conservation
relations:

Phonon absorption : εnk + ~ωqs = εmk′ ,

k + q = k′ + G,
(2.121)
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Phonon emission : εnk = εmk′ + ~ω−qs,

k = k′ − q + G,
(2.122)

where G = 0 for normal processes, and G 6= 0 for umklapp scattering.
Under the assumption that phonons are in thermal equilibrium, we use Fermi’s

golden rule to obtain the scattering probability from state |nk〉⊗ |n̄qs〉 to a state
|mk′〉 ⊗ |n̄∓qs ± 1〉 [89]:

Pmk′
nk = 2π

~
1
Nl

∑
qs
l2qs|Hmn(k; qs)|2

[
n̄qsδ (εnk − εmk′ + ~ωqs) δk+q−k′,G

+ (n̄qs + 1)δ (εnk − εmk′ − ~ωqs) δk−q−k′,G

]
.

(2.123)

where the first term describes phonon absorption, and the second phonon emis-
sion. With the above expression we may now write the scattering integral of
Eq. (2.104) in a manner analogous to that of phonons (Eq. (2.80)) in terms of
the transition probability Pmk′

nk , assuming instantaneous, single collisions which
are independent of the driving force [89, 139]:

−∂fnk

∂t

∣∣∣∣∣
scatt

=
∑
mk′

[
fnk(1− fmk′)Pmk′

nk − fmk′(1− fnk)P nk
mk′

]
. (2.124)

The second term is due to back-scattering, and the (1−fmk′) and (1−fnk) terms
are blocking factors which prevent scattering to an already occupied electronic
state. For equilibrium electronic distributions we arrive at the “detailed balance
equation” [139, 141]:

[
f 0
nk(1− f 0

mk′)Pmk′
nk − f 0

mk′(1− f 0
nk)P nk

mk′
]

= 0, (2.125)

which ensures −∂fnk
∂t
|scatt = 0 at equilibrium.

Taking Eqs. (2.123-2.125) and inserting into the linearised Boltzmann trans-
port equation, we arrive at the momentum relaxation time within the RTA [139]:

1
τnk

= 2π
~

1
Nl

∑
mk′

∑
qs

(1− f 0
mk′)

(1− f 0
nk) (1− cos(θkk′))l2qs|Hmn(k; qs)|2

×
[
n̄qsδ (εnk − εmk′ + ~ωqs) δk+q−k′,G

+ (n̄qs + 1)δ (εnk − εmk′ − ~ωqs) δk−q−k′,G

]
,

(2.126)

where θkk′ is the scattering angle, given as [139]:

cos(θkk′) = vmk′ · vnk

|vmk′||vnk|
. (2.127)
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The above expression for the momentum relaxation time is used for intravalley
acoustic phonon scattering, as discussed by Herring [142], which is treated as a
quasi-elastic process [143]. We can approximate the above expression and obtain
the more familiar form for the lifetime of an electronic quasiparticle [87, 89, 139,
143]:

1
τ lnk

= 2π
~

1
Nl

∑
mk′

∑
qs
l2qs|Hmn(k; qs)|2

[
(n̄qs + f 0

mk′)δ (εnk − εmk′ + ~ωqs) δk+q−k′,G

+ (n̄qs + 1− f 0
mk′)δ (εnk − εmk′ − ~ωqs) δk−q−k′,G

]
,

(2.128)
which corresponds approximately to setting (1 − cos(θkk′)) → 1 in Eq. (2.126)
for low doping concentrations. The above expression is valid for processes with
a weak dependence on k and k′, and thus applies to intervalley and intravalley
optical scattering as argued by Herring [142]. Performing the summation over k′,
we arrive at:

1
τ lnk

= 2π
~

1
Nl

∑
mqs

l2qs|Hmn(k; qs)|2
[
(n̄qs + f 0

mk+q)δ (εnk − εmk+q + ~ωqs)

+ (n̄qs + 1− f 0
mk−q)δ (εnk − εmk−q − ~ωqs)

]
.

(2.129)

Thus, we may calculate ab initio electron-phonon scattering rates on a grid within
the Brillouin zone using the electron-phonon matrix elements. However, such an
approach typically requires very dense sampling of the Brillouin zone [85], and
only very recently has such an approach been extended to polar semiconductors
[88]. Thus, we follow the approach of Murphy-Armando and Fahy [83] using
our knowledge of the electronic band structure to calculate ab initio electron-
phonon momentum relaxation times and scattering rates considering only the
most relevant parts of the Brillouin zone. The details of this approach will be
given in chapter 5.

2.3.3 Density functional perturbation theory

We employ density functional perturbation theory [99, 144, 145] as implemented
in the Abinit code [132, 134, 135] as the main workhorse to calculate electron-
phonon scattering rates, further details of which will be given in chapter 5. DFPT
combines density functional theory with perturbation theory, extending the Kohn-
Sham formalism to allow for ab initio calculation of the derivatives of the total
energy with respect to changes in physical parameters. Below, we reproduce the
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basic formalism of DFPT, as outlined in Ref. [99], and state how the electron-
phonon matrix element Hmn(k; qs) is calculated within this framework.

Within this work, we are most interested in calculating the derivative of energy
with respect to atomic perturbations. However, to generalise the argument, the
external potential acting on the electrons is treated as a differentiable function
of a set of parameters λ = λi, where λi = RK in the case of lattice dynamics.
From the Hellmann-Feynman theorem [117], we may write the first and second
derivatives of the ground-state energy as [99]:

∂E

∂λi
=
∫
nλ(r)∂Vλ(r)

∂λi
dr, (2.130)

∂2E

∂λi∂λj
=
∫
nλ(r)∂

2Vλ(r)
∂λi∂λj

dr +
∫ ∂nλ(r)

∂λi

∂Vλ(r)
∂λj

dr. (2.131)

Solving this requires the computation of the ground state electron density nλ(r)
from DFT along with its linear response to a nuclear distortion ∂nλ(r)/∂λi. To
calculate the latter, we start by linearising the Kohn Sham orbitals of Eq. (2.17),
and assuming double occupied orbitals in this case:

δλn(r) = 4Re
Ne/2∑
n=1

ψ∗n(r)δλψn(r) = 4
Ne/2∑
n=1

∑
m 6=n

ψ∗n(r)ψm(r)〈ψm| δ
λV KS |ψn〉

εn − εm
,

(2.132)
where the finite-difference operator is defined as:

δλF =
∑
i

∂Fλ
∂λi

δλi. (2.133)

The variation of the Kohn-Sham orbitals, δλψn, is obtained with standard
first-order perturbation theory [99]:

(ĤKS − εn)
∣∣∣δλψn〉 = −(δλV KS − δλεn) |ψn〉 , (2.134)

where δλεn = 〈ψn| δλVKS |ψn〉 is the first-order variation of the Kohn-Sham
eigenvalue, and:

δλV KS(r) = δλVext(r) + e2
∫ δλn(r′)
|r− r′|

dr′ + dVxc[n]
dn

∣∣∣∣∣
n=n(r)

δλn(r), (2.135)

is the first-order correction to the self-consistent potential. Eqs. (2.132-2.135)
form a set of self-consistent equations for the perturbed system completely anal-
ogous to the Kohn-Sham equations, Eqs. (2.15-2.17), for solving for the ground-
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state of a system. We note that the self-consistency requirement follows from
the dependence of the right hand side of Eq. (2.134) on the solution of the linear
system [99].

Re-writing Eq. (2.134) in terms of lattice-periodic functions, we arrive at [138]:

(ĤKS
k+q − εnk)

∣∣∣δλunk,q
〉

= −∂αb,qvKS |unk〉+ 〈unk| ∂αb,0vKS |unk〉uc unk, (2.136)

where ĤKS
k+q = e−i(k+q)·rĤKSei(k+q)·r. Thus we obtain directly the electron-

phonon matrix elements Hmn(k; qs) as defined in Eq. (2.119).
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Chapter 3

Lattice thermal conductivity of
PbTe-based materials driven near
the ferroelectric phase transition

3.1 Introduction

3.1.1 Motivation

In this chapter, we show from ab initio calculations a new approach to reduce
the lattice thermal conductivity by exploiting the proximity of certain excellent
thermoelectric materials to a soft mode phase transition. PbTe is energeti-
cally close to the ferroelectric phase transition to the rhombohedral structure,
which corresponds to the frozen-in atomic motion of the transverse optical (TO)
mode along [111] direction [146]. Consequently, TO phonons have relatively
low frequencies at the zone centre (≈ 1 THz), and interact strongly with heat
carrying acoustic modes [26, 27, 28]. These effects lead to unusually small
lifetimes of TO and acoustic modes, and result in PbTe’s intrinsically low lattice
thermal conductivity [28]. Although the sensitivity to the volume changes of
the calculated transverse optical modes and the κlatt of PbTe has been reported
[26, 66, 147, 148], the thermal transport properties of PbTe materials near the
ferroelectric phase transition, and specific proposals how to achieve them, have
never been investigated.

Here we show from first principles that a significant lattice thermal conduc-
tivity reduction and efficient scattering throughout the phonon spectrum can be
achieved by driving PbTe and its alloys to the verge of the ferroelectric phase
transition. These effects can be induced by applying biaxial tensile (001) strain
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to PbTe or its alloys with another rocksalt IV-VI material, such as PbSe. We
also present an alternative route to drive PbTe materials near the ferroelectric
transition without using strain: alloying of PbTe with a rhombohedral IV-VI
material, such as GeTe. Enhanced phonon scattering across the spectrum in all
these materials arises due to the TO softening associated with the increased prox-
imity to the phase transition, which causes much stronger anharmonic acoustic-
TO interaction than in PbTe and PbSe1−xTex alloys. In addition to this key
effect, alloy disorder further scatters high-frequency phonons in Pb1−xGexTe and
strained PbSe1−xTex alloys near the phase transition, similarly as in PbSe1−xTex
alloys [149].

Overall, we find that the lattice thermal conductivities of PbTe, PbSe1−xTex,
and Pb1−xGexTe alloys tuned to the verge of the phase transition as described will
be significantly decreased compared to PbTe (by a factor of 2− 3). These results
show that exploiting the proximity of PbTe to the ferroelectric phase transition is
a powerful strategy to achieve lattice thermal conductivity reductions comparable
to those achieved in all-scale structured materials with record ZT values [34, 39].

3.1.2 Calculation details

Harmonic and third order anharmonic IFCs at 0 K were calculated from
Hellmann-Feynman forces computed on 216 atom supercells, using an energy
cut-off of 15 Ha and 4 shifted 2 × 2 × 2 reciprocal space grids for electronic
states. To account for the long-range interatomic interaction in PbTe based ma-
terials [150], we imposed a cut-off on the interaction at 8 nearest neighbour shells
(NNs) for anharmonic IFCs of PbTe, PbSe0.5Te0.5 and Pb0.51Ge0.49Te. We tested
decreasing the range of anharmonic IFCs to 5 NNs, and found that this affected
the lattice thermal conductivity by less than 5%. Subsequently, to decrease the
computational load, we cut-off the interaction at 5 NNs for Pb1−xGexTe alloys
with 0 < x < 0.49 and 10 NNs for strained PbTe and PbSe0.5Te0.5, which is
equivalent to the 5 NNs cut-off in their equilibrium counterparts. The trunca-
tion of anharmonic IFCs breaks translational invariance of the crystal, which is
enforced by identifying independent IFCs, and correcting them using a Lagrange
multipliers technique [67, 151] which maintains all symmetry properties of the
crystal. We performed lattice thermal conductivity calculations on 40×40×40 q
point grids. Disorder in the force constants due to alloying is not treated in our
implementation of the BTE-RTA due to the challenging nature of the problem
[62, 128]. Therefore, the ratios of κlatt between PbTe and PbTe-based materials
near the phase transition obtained here should be interpreted as the lower limit
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to their actual values [152].

3.1.3 Verification of approach
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Figure 3.1: Phonon dispersions of PbTe: calculated using a 216 atom supercell
at 0 K (solid black line), calculated using a 64 atom supercell at 0 K (dashed red
line), and measured by Cochran et al. [153] at 300 K (blue circles).
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Figure 3.2: Lattice thermal conductivity of PbTe as a function of temperature:
calculated using a supercell with 216 atoms (solid black line), calculated using
a supercell with 64 atoms (dashed red line), and measured by Devyatkova et
al. [154] (blue circles) and by El-Sharkawy et al. [155] (green rectangles).

To verify the validity of our approach, we calculated the phonon band
structure and the lattice thermal conductivity of PbTe, and compared them
with experiments. Harmonic and anharmonic IFCs of PbTe were calculated on
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supercells with 64 and 216 atoms, and we found that it is necessary to use 216
atom supercells to obtain better convergence of the quantities of interest. Our
computed phonon dispersion of PbTe is in good agreement with inelastic neutron
scattering (INS) measurements of Cochran et al. [153], as illustrated in Fig. 3.1. In
contrast, PbTe INS measurements of Delaire et al. [27] exhibit features that were
ascribed to phonon-phonon interaction terms beyond the third order considered
here. This indicates that our approach is more accurate for lower temperatures
(100-300 K), where higher order anharmonic terms are less prominent.

Our calculated κlatt of PbTe is ∼ 30% larger than the experimental values ob-
tained on undoped (∼ 1017 cm−3) single- and poly-crystalline PbTe samples using
the absolute steady-state technique in the temperature range 100-300 K [154], see
Fig. 3.2. Since the κlatt of PbTe is very sensitive to the lattice constant changes
within the accuracy of the DFT-LDA pseudopotential approach (∼ 1%), we deem
this agreement very good. On the other hand, our calculated κlatt of PbTe is
in better agreement with the κlatt measured on undoped poly-crystalline PbTe
samples using the plane temperature waves technique for temperatures 300-600
K [155], see Fig. 3.2. This improved agreement may be somewhat fortuitous,
since the departure of the measured κlatt values from the ∼ T−1 dependence for
temperatures larger than 300 K may be due to stronger higher order anharmonic
terms, as argued in Ref. [66].

3.2 PbTe materials driven near the phase tran-
sition

3.2.1 Strained PbTe

To determine the amount of biaxial (001) strain which will push PbTe to the verge
of the phase transition, we calculated the TO phonon frequencies at the zone cen-
tre as a function of (001) strain. Strain was simulated by constraining the lattice
constant a‖ in the [100] and [010] direction, and relaxing the lattice constant a⊥
in the [001] direction. The amount of strain is defined as η = (a‖− a0)/a0, where
a0 is the equilibrium lattice constant of PbTe obtained from structural relaxation
in DFT. Since (001) strain reduces the symmetry of the rocksalt structure to
tetragonal, the degeneracy of the two TO modes is lifted. Strictly speaking,
these modes do not have pure TO character, but for simplicity, we will use this
term.

We found that η = 1.15% will soften one of the TOmodes from the equilibrium
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Figure 3.3: Phonon dispersions at 0 K for PbTe (solid black lines) and PbTe
driven to the verge of the phase transition by tensile (001) strain of η = 1.15%
(dashed red lines). Frequencies of the soft transverse optical modes at the zone
centre, TO(Γ), are represented with circles for PbTe, and rectangles/diamonds
for PbTe driven to the transition.

value of ∼ 1 THz down to ∼ 0.1 THz, and consequently bring PbTe close to the
phase transition. This is illustrated in Fig. 3.3 that compares the phonon band
structures of PbTe (solid black lines) and strained PbTe at the verge of the phase
transition (dashed red lines) along high symmetry lines for the cubic symmetry.
The other TO mode will also become softer due to applied strain, but to a lesser
extent. The frequencies of the optical modes in strained PbTe close to the zone
centre show directional dependence, which is a consequence of the non-analytic
nature of the ion-ion interaction [156].

3.2.2 Strained PbSe0.5Te0.5 alloy

PbSe1−xTex alloys can be tuned near the phase transition in a similar manner
as PbTe, by changing the amount of applied tensile (001) strain. Since these
alloys are formed by mixing of two rocksalt materials, their TO(Γ) frequencies
are bounded by those of PbTe and PbSe (∼ 1 THz and ∼ 1.2 THz, respectively).
Subsequently, they cannot be driven to the phase transition by changing the alloy
composition, and they need to be strained to achieve this effect. Here we focused
on the x = 0.5 composition since it has the lowest lattice thermal conductivity of
the composition range [149], but we note that the same strategy may be applied
to any other composition. Our calculations show that an extremely soft TO
mode can be induced in PbSe0.5Te0.5 using tensile (001) strain of η = 1.32%, see
Fig. 3.4.
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Figure 3.4: Phonon dispersions at 0 K for PbSe0.5Te0.5 (solid black lines) and
PbSe0.5Te0.5 driven to the verge of the phase transition by tensile (001) strain
of η = 1.32% (dashed red lines). TO(Γ) frequencies are shown in circles for
PbSe0.5Te0.5, and rectangles/diamonds for PbSe0.5Te0.5 driven to the transition.
Phonon dispersions for alloys were calculated using the virtual crystal approxi-
mation.

3.2.3 Pb1−xGexTe alloys
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Figure 3.5: Phonon dispersions at 0 K for PbTe (solid black lines), PbSe0.5Te0.5
(dash-dotted blue lines), and Pb0.51Ge0.49Te alloy at the verge of the phase
transition (dashed red lines). TO(Γ) frequencies are represented with circles
for PbTe, diamonds for PbSe0.5Te0.5, and rectangles for Pb0.51Ge0.49Te. Phonon
dispersions for alloys were calculated using the virtual crystal approximation.

The proximity to the ferroelectric phase transition of PbTe materials can be
dramatically increased not only by applying strain to PbTe and its alloys with
other rocksalt IV-VI materials, but also by alloying PbTe with other rhombo-
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hedral IV-VI materials, e.g. GeTe. Pb1−xGexTe alloys are markedly different
from PbSe1−xTex alloys because they undergo the ferroelectric phase transition
from the rhombohedral to the rocksalt structure with temperature [157]. Conse-
quently, their proximity to the phase transition and softening of TO modes can be
dramatically increased by varying the alloy composition and temperature, unlike
in the case of PbSe1−xTex. The temperature at which the transition between the
two phases occurs in Pb1−xGexTe alloys decreases as the Ge content decreases,
from ∼ 670 K at x = 1 down to 0 K at x ≈ 0.01 [157].

The temperature that brings Pb1−xGexTe alloy near the phase transition for
any composition x > 0.01 could be determined by computing the temperature
dependence of the TO frequencies at the zone centre. Conversely, one could
determine the amount of Ge that drives Pb1−xGexTe close to the transition for
any temperature T < 670 K by calculating the same frequencies as a function of
the alloy composition. Our approach, however, does not capture the temperature
effects on phonon frequencies due to the zero temperature representation of struc-
tural properties and IFCs. Nevertheless, it should describe well the qualitative
changes to the lattice thermal conductivity of Pb1−xGexTe alloys at the brink
of the phase transition with respect to that of PbTe as argued in the following.
Our calculations show that varying the alloy composition within our model does
induce the ferroelectric phase transition. We find that the degenerate TO modes
of Pb1−xGexTe alloys become much softer than those of equilibrium PbTe and
PbSe1−xTex (see Figs. 3.3 and 3.4, respectively) for the composition of x = 0.49.
This effect is illustrated in Fig. 3.5: the TO(Γ) frequency of Pb0.51Ge0.49Te is
∼ 0.1 THz, which is one order of magnitude lower than those of equilibrium
PbTe and PbSe1−xTex alloys. Since the transition temperature of Pb0.51Ge0.49Te
is ∼ 450 K [157], such a phonon band structure and the associated transition
should describe reasonably well the lattice thermal conductivity of Pb0.51Ge0.49Te
near this temperature. The phase transition in our model of Pb1−xGexTe alloys
occurs for the composition of x = 0.492, which is characterised by imaginary
frequencies of TO modes.

3.3 Impact on phonon lifetimes

3.3.1 Strained PbTe

The strain-engineered phonon band structure of PbTe that maximizes the TO(Γ)
softening decreases the phonon lifetimes, τ , roughly by a factor of∼ 2 with respect
to PbTe throughout the frequency spectrum. This is shown in Fig. 3.6 and its
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Figure 3.6: Anharmonic phonon lifetimes at 300 K and their averaged values
(inset) as a function of frequency for PbTe (black pluses and solid line) and PbTe
driven to the verge of the phase transition by tensile (001) strain of η = 1.15%
(red crosses and dashed line).

inset, which represent the anharmonic (three-phonon) lifetimes, τanh, at 300 K
and their averaged values over frequency, respectively. The averaged phonon
lifetimes have been defined as:

〈τ〉 =
∑
qs
τqsδ(ω − ωqs)/

∑
qs
δ(ω − ωqs). (3.1)

Remarkably, the lifetimes of strained PbTe are smaller than those of PbTe even for
low frequency phonons that are difficult to scatter with commonly used strategies
to reduce κlatt, such as nanostructuring. Recently, it has been argued that
low frequency phonons were efficiently scattered in multiple-scales structures by
mesoscale grain boundaries [34, 38, 39, 40]. Our strategy achieves the same effect
without any need for complex hierarchical design.

3.3.2 Strained PbSe0.5Te0.5 alloy

The anharmonic lifetimes of PbSe0.5Te0.5 alloy driven near the phase transition
via strain are also significantly reduced with respect to those of PbSe0.5Te0.5,
see Fig. 3.7. Strained PbSe0.5Te0.5 alloys also provide an additional advantage
for enhanced phonon scattering compared to strained PbTe. Mass disorder scat-
ters high-frequency phonons more efficiently than the three-phonon interactions,
similarly as in PbSe0.5Te0.5 [149], further reducing the effective lifetimes at high
frequencies, see Fig. 3.8.
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Figure 3.7: Anharmonic phonon lifetimes at 300 K and their averaged values
(inset) as a function of frequency for PbSe0.5Te0.5 (black pluses and solid line)
and PbSe0.5Te0.5 driven to the verge of the phase transition by tensile (001) strain
of η = 1.32% (red crosses and dashed line).

Figure 3.8: Frequency dependence of the mass disorder and phonon-phonon
contributions to the phonon lifetimes (black pluses and red crosses, respectively)
of PbSe0.5Te0.5 driven to the verge of the phase transition by tensile (001) strain
of η = 1.32%.

3.3.3 Pb0.51Ge0.49Te alloy

The anharmonic lifetimes of Pb0.51Ge0.49Te alloy near the phase transition are also
considerably lower than those of PbTe and PbSe0.5Te0.5. The TO(Γ) frequencies
of PbTe and PbSe0.5Te0.5 are comparable (see Fig. 3.5), which leads to their
similar three-phonon contributions to τ . This effect is illustrated in Fig. 3.9 that
compares the anharmonic lifetimes of PbTe (black pluses) and PbSe0.5Te0.5 (blue
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Figure 3.9: Anharmonic phonon lifetimes at 300 K and their averaged values (in-
set) as a function of frequency for PbTe (black pluses and solid line), PbSe0.5Te0.5
(blue crosses and dash-dotted line), and Pb0.51Ge0.49Te alloy at the verge of the
phase transition (red circles and dashed line).

Figure 3.10: Frequency dependence of the mass disorder and three-phonon
contributions to the phonon lifetimes at 300 K (black pluses and red crosses,
respectively) of Pb0.51Ge0.49Te alloy at the verge of the phase transition.

crosses). In sharp contrast, Pb0.51Ge0.49Te alloy is energetically much closer to
the phase transition, which results in its much lower TO frequencies near the zone
centre (Fig. 3.5) and reduced τanh across the spectrum and particularly at low
frequencies (red circles in Fig. 3.9). This finding further suggests that extremely
soft TO modes near Γ have a highly beneficial role in effective scattering of a
wide range of phonon frequencies. As in strained PbSe0.5Te0.5, mass disorder in
Pb0.51Ge0.49Te alloy is more efficient in scattering high-frequency phonons than
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the phonon-phonon interaction, which results in an additional phonon lifetime
decrease at high frequencies, see Fig. 3.10.

3.3.4 Impact of soft TO mode

The large decrease in the phonon lifetimes of PbTe driven near the ferroelectric
phase transition via strain or alloying is a direct consequence of the softening of
the TO modes and their increased anharmonic coupling with acoustic modes. To
demonstrate this effect, we calculated explicitly the acoustic-TO contribution to
the total anharmonic linewidth (inverse of the lifetime) in PbTe, strained PbTe
and Pb0.51Ge0.49Te at 300 K, shown in Fig. 3.11. We computed the acoustic-TO
contribution to the total linewidth for all frequencies by accounting for the triplets
of interacting states that contain at least one acoustic and one TO mode. For
each wavevector, we labelled the two lowest phonon modes as transverse acoustic
(TA) modes, and the highest mode as longitudinal optical (LO) mode. Since
the ordering of TO and longitudinal acoustic (LA) modes changes throughout
the Brillouin zone in all the materials considered (see Fig. 3.3, Fig. 3.4, and
Fig. 3.5), we distinguished between them using the following procedure. We
determined which one of those three states is mostly longitudinal by projecting
their eigenvectors onto the corresponding wave vector, and classified it as LA
mode, while the other two states were labelled as TO modes.

We found that the acoustic-TO contribution to the anharmonic linewidth
dominates over the other contributions across the spectrum in equilibrium and
strained PbTe, and in PbTe alloyed with GeTe. It accounts for ∼ 70% of the
anharmonic linewidth of acoustic and LO modes (except for the ∼ 2 − 3 THz
range), and for nearly 100% of the anharmonic linewidth of TO modes (see
Fig. 3.11). Furthermore, by driving PbTe near the phase transition via strain
or alloying, the acoustic-TO contribution to the anharmonic linewidth typically
increases by a factor of 2 − 3 throughout the spectrum, and up by a factor of
10 − 100 for some frequencies. This is illustrated in Fig. 3.12 by comparing
these contributions for strained PbTe and Pb0.51Ge0.49Te to that of PbTe. We
conclude that extremely soft TO modes generated by driving PbTe near the phase
transition considerably increase the anharmonic acoustic-TO interaction, which
in turn substantially reduces the phonon lifetimes.

Both the increased phase space and coupling strength are responsible for the
increase of the acoustic-TO contribution to the linewidth by driving PbTe to the
verge of the phase transition. The phase space for the three-phonon scattering
is related to the energy and momentum conservation of these processes [158].
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Figure 3.11: The total anharmonic linewidth at 300 K as a function of frequency
(black crosses) together with its contribution from the scattering processes that
involve both acoustic and transverse optical (TO) modes (red crosses) and the
contribution from all other scattering processes (green crosses) for (a) acoustic
modes in PbTe, (b) optical modes in PbTe, (c) acoustic modes in strained PbTe,
(d) optical modes in strained PbTe, (e) acoustic modes in Pb0.51Ge0.49Te, and (f)
optical modes in Pb0.51Ge0.49Te. The acoustic-TO contribution to the anharmonic
linewidth dominates over the other contributions in all these materials.

The coupling strength can be quantified using the expression for the three-
phonon linewidth without the energy conservation terms [63]. Our analysis
of the phase space and the coupling strength associated with the acoustic-TO
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Figure 3.12: The ratio of the acoustic-transverse optical (TO) contribution to
the total anharmonic linewidth of strained PbTe and Pb0.51Ge0.49Te with respect
to PbTe at 300 K versus mode frequency of strained PbTe and Pb0.51Ge0.49Te,
respectively. (a) Acoustic modes in strained PbTe, (b) optical modes in
strained PbTe, (c) acoustic modes in Pb0.51Ge0.49Te, and (d) optical modes in
Pb0.51Ge0.49Te. The acoustic-TO contribution to the anharmonic linewidth of
the materials driven near phase transitions is larger than that of PbTe.

interaction similar to that for the linewidths shows that they both increase by
straining and/or alloying PbTe, and thus lead to the increase of the acoustic-TO
contribution to the linewidth.

We also found that a relatively small number of soft TO modes near the zone
centre that interact strongly with acoustic modes play a disproportionally large
role in determining the linewidth of PbTe driven near the phase transition. To
illustrate this effect, we calculated the contribution to the anharmonic linewidth
due to the coupling of acoustic modes with the TO modes within the sphere
centred at Γ with the radius of 1/3 of the Γ-X distance (∼ 1/27 volume of the
Brillouin zone), here labelled as TO1 modes. Our results for PbTe, strained
PbTe and Pb0.51Ge0.49Te at 300 K are illustrated in Fig. 3.13. Even though TO1

modes contribute to only ∼ 1.3% of the total number of modes, the acoustic-TO1
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Figure 3.13: The total anharmonic linewidth at 300 K as a function of frequency
(black crosses) together with its contribution from the scattering processes that
involve both acoustic and transverse optical modes close to the zone centre (la-
belled as TO1 modes, see text for explanation) (red crosses) and the contribution
from all other scattering processes (green crosses) for (a) acoustic modes in PbTe,
(b) optical modes in PbTe, (c) acoustic modes in strained PbTe, (d) optical modes
in strained PbTe, (e) acoustic modes in Pb0.51Ge0.49Te, and (f) optical modes in
Pb0.51Ge0.49Te. The frequencies of TO1 modes correspond to red crosses within
black boxes. The acoustic-TO1 contribution represents a considerable fraction of
the anharmonic linewidth in all these materials.
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Figure 3.14: The ratio of the acoustic-transverse optical modes close to the zone
centre (labelled as TO1 modes, see text for explanation) contribution to the total
anharmonic linewidth of strained PbTe and Pb0.51Ge0.49Te with respect to PbTe
at 300 K versus mode frequency of strained PbTe and Pb0.51Ge0.49Te, respectively.
(a) Acoustic modes in strained PbTe, (b) optical modes in strained PbTe, (c)
acoustic modes in Pb0.51Ge0.49Te, and (d) optical modes in Pb0.51Ge0.49Te. The
acoustic-TO1 contribution to the anharmonic linewidth of the materials driven
near phase transitions is larger than that of PbTe.

contribution accounts for ∼ 20 − 30% of the anharmonic linewidth throughout
the spectrum, and for ∼ 100% of the anharmonic linewidth of TO1 modes.
Additionally, by driving PbTe close to the phase transition via strain or alloying
with GeTe, the acoustic-TO1 contribution to the anharmonic linewidth typically
increases by a factor of 2− 3 across the spectrum, and up by a factor of 102− 107

for some frequencies, as shown in Fig. 3.14. These findings reveal an important
contribution of extremely soft TO modes close to Γ in increasing the anharmonic
acoustic-TO interaction and reducing the phonon lifetimes in PbTe materials near
the phase transition.
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3.4 Impact on thermal conductivity

3.4.1 Strained PbTe
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Figure 3.15: Lattice thermal conductivity versus temperature for PbTe (solid
black line), PbTe driven near the phase transition by tensile (001) strain of η =
1.15% (dotted red line), PbSe0.5Te0.5 (dashed green line), PbSe0.5Te0.5 driven
near the transition by tensile (001) strain of η = 1.32% (dash-dotted blue line),
and Pb0.51Ge0.49Te alloy near the transition (dash-double dotted purple line).
Conductivity for strained materials is shown for the out-of-plane direction.
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Figure 3.16: Out-of-plane lattice thermal conductivity of PbTe at 300 K as a
function of (001) strain. Inset: Lowest transverse optical mode frequency at the
zone centre, TO(Γ), for PbTe at 0 K versus (001) strain.

A factor of ∼ 2 reduction of the phonon lifetimes at all frequencies in PbTe
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strained near the phase transition leads to the reduction in the out-of-plane lattice
thermal conductivity by a factor of 1.5 with respect to equilibrium. This is
represented in Fig. 3.15 for the temperature range 100−600 K, where solid black
and dotted red lines correspond to the κlatt of equilibrium and strain-driven PbTe,
respectively. The difference in the τanh and κlatt reductions is due to the larger
group velocities of TO mode phonons in strained PbTe. Interestingly, in the in-
plane direction, this difference becomes very small and the κlatt decreases by a
factor of 1.9. We also computed the out-of-plane κlatt dependence on the amount
of (001) strain at 300 K, see Fig. 3.16. The κlatt decrease directly correlates with
the TO(Γ) softening shown in the inset, in agreement with our conclusion that
softer TO modes lead to more effective phonon scattering.

The efficiency of the proposed concept in reducing the thermal conductivity
of PbTe is comparable to that of alloying with PbSe. Our computed κlatt of
PbSe0.5Te0.5 (dashed green line in Fig. 3.15) is also a factor of 1.5 lower than that
of PbTe, in agreement with a previous calculation [149]. Accounting for disorder
in the force constants would increase the value of this factor [62, 128, 152] closer
to experiments (∼ 2 at 300 K [154, 159]). We emphasize that two very different
mechanisms cause the low lattice thermal conductivity in these two types of
materials. Strained PbTe benefits from the enhanced anharmonic acoustic-TO
interaction across the spectrum, while alloy disorder in PbSe0.5Te0.5 blocks the
flow of high-frequency phonons only.

The low lattice thermal conductivity of strained PbTe originates from the
softer TO modes near the zone centre and their increased anharmonic interac-
tion with acoustic modes with respect to equilibrium. To illustrate this effect
more quantitatively, we artificially replaced the acoustic-TO1 contribution to the
linewidth of strained PbTe with that of PbTe in its κlatt calculation at 300 K. The
κlatt values obtained using this procedure are ∼ 7% larger than those of strained
PbTe. This result shows that TO1 modes, which contribute only ∼ 1.3% to
the total number of modes but interact strongly with acoustic phonons, produce
a much stronger effect on the κlatt than one would expect from their relative
number.

3.4.2 Strained PbSe0.5Te0.5 alloy

The strategy of exploiting extremely soft TO modes to reduce the lattice thermal
conductivity of PbTe will become as effective as all-scale structuring [34, 39, 41]
if it is combined with alloying. This approach simultaneously incorporates the
mechanisms of enhanced anharmonic acoustic-TO interaction and alloy disorder
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to reduce lattice thermal conductivity more effectively. We find that driving
PbSe0.5Te0.5 to the brink of the phase transition via tensile (001) strain will reduce
its out-of-plane κlatt by a factor of at least 2.4 with respect to PbTe (dash-dotted
blue line in Fig. 3.15). If we neglect mass disorder in our calculations, the κlatt of
strained PbSe0.5Te0.5 is 1.5 times lower than that of PbTe (similarly to strained
PbTe) due to the increased acoustic-TO interaction. However, mass disorder
is more efficient in scattering high-frequency phonons of strained PbSe0.5Te0.5,
and causes an additional κlatt decrease by a factor of 1.6 compared to its values
without mass disorder. The actual reduction to lattice thermal conductivity of
strained PbSe0.5Te0.5 with respect to PbTe will be even larger than the factor of
2.4 computed here, due to disorder in the force constants [152].

3.4.3 Pb0.51Ge0.49Te alloy
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Figure 3.17: Lattice thermal conductivity of Pb1−xGexTe alloys at 450 K as a
function of Ge content x: full calculation (black crosses), calculation without mass
disorder (red circles) and linearly interpolated values between those calculated for
PbTe and GeTe (dashed green line). Inset: TO(Γ) frequency of Pb1−xGexTe at
0 K versus Ge content x.

The concept of combining ultra soft TO modes and alloying to substantially
reduce the lattice thermal conductivity of PbTe can also be realized without strain
e.g. by tuning the composition of Pb1−xGexTe alloys to bring them near the
phase transition at desired temperatures. These conditions can be achieved only
in alloys of PbTe with another rhombohedral material, such as GeTe. As already
discussed, Pb0.51Ge0.49Te alloy remains close to the transition at all temperatures
in our calculations, thus describing the κlatt appropriately only near the transition
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temperature of ∼ 450 K [157]. Our results show that the κlatt of Pb0.51Ge0.49Te
alloy (dash-double dotted purple line in Fig. 3.15) will be at least 2.9 times lower
than the κlatt of PbTe at 450 K, even lower than that of strained PbSe0.5Te0.5.

The very low lattice thermal conductivity of Pb0.51Ge0.49Te alloy stems from
both the increased anharmonic acoustic-TO interaction and strong alloy scatter-
ing. Fig. 3.17 and its inset show the κlatt values and the TO(Γ) frequencies
of Pb1−xGexTe alloys at 450 K as a function of the alloy composition x for
0 ≤ x ≤ 0.49 (black crosses), where the rocksalt phase is energetically favourable.
This figure also shows the corresponding κlatt computed by neglecting mass
disorder (red circles). We note that if soft TO modes were not induced in
Pb1−xGexTe alloys, their κlatt without mass disorder would roughly be equal
to the linearly interpolated values between the lattice thermal conductivities of
their parent materials, for example, in the case of PbSe1−xTex. The interpolated
values between our calculated κlatt for PbTe and GeTe at 450 K are shown in the
dashed green line in Fig. 3.17. Our calculated value for the isotropically averaged
lattice thermal conductivity of GeTe at 450 K is 3.27 W/mK. The increased
TO softening in Pb1−xGexTe with x leads to the larger reduction of the κlatt
values that neglect mass disorder with respect to the interpolated values, by up
to a factor of 1.6 for x = 0.49. Additionally, the relatively large mass difference
between Pb and Ge atoms results in a large κlatt decrease with respect to the
case when mass disorder is neglected, by up to a factor of 2.6 for Pb0.51Ge0.49Te.
We conclude that the extra softening of TO modes in Pb1−xGexTe alloys with
respect to PbTe together with strong mass disorder makes them more suitable
materials for achieving low lattice thermal conductivity compared to PbSe1−xTex
alloys.

The group velocities of acoustic modes in Pb1−xGexTe alloys increase con-
siderably as the Ge content increases, unlike the group velocities of PbTe and
PbSe0.5Te0.5 under increasing biaxial tensile (001) strain (see Figs. 3.3, 3.4,
and 3.5). This is the reason why the κlatt of Pb1−xGexTe without mass disorder
does not decrease monotonously with x, as opposed to the κlatt of increasingly
strained PbTe, see Figs. 3.16 and 3.17. Furthermore, the lattice thermal con-
ductivity values without mass disorder for Pb1−xGexTe are larger than those of
strained PbTe and PbSe0.5Te0.5 because of the larger group velocities.

Similarly to strained PbTe, a small number of soft TO modes close to the zone
centre, which interact more strongly with acoustic modes as Pb1−xGexTe alloys
are driven to the phase transition by increasing x, have a relatively large effect
on their thermal conductivity. We quantify this by substituting the acoustic-
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TO1 contribution to the anharmonic linewidth of Pb0.51Ge0.49Te with that of
equilibrium PbTe in its κlatt calculation that neglects mass disorder. This results
in an ∼ 18% larger value at 300 K than that of Pb0.51Ge0.49Te, which is even
larger than the corresponding increase in strained PbTe.

3.4.4 Impact to phonon mean free paths
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Figure 3.18: Normalised cumulative lattice thermal conductivity plotted as a
function of phonon mean free path for PbTe (black), strained PbTe, η = 1.15%
(red), PbSe0.5Te0.5 (green), and strained PbSe0.5Te0.5, η = 1.32% (blue).

The mean free path (MFP) of a phonon describes the average travelling
distance between two phonon scattering events, and is defined as [149]:

Λqs = vqsτqs. (3.2)

To quantify the contribution to the lattice thermal conductivity from phonons
with various MFPs, we calculate the cumulative κlatt by summing over phonon
modes with a MFP shorter than a value Λ [149]:

κlatt(Λ) = 1
NqΩ

Λqs<Λ∑
qs

cqsvqsΛqs, (3.3)

where Nq is the number of q-points. Applying biaxial (001) strain to PbTe
and PbSe0.5Te0.5 considerably shortens the MFPs of phonons contributing to
lattice thermal conductivity compared to PbTe and PbSe0.5Te0.5 respectively,
see Fig. 3.18. This arises from the increased acoustic-TO interaction near the
phase transition which scatters phonons with longer MFPs (lower frequencies),
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and causes a redistribution of the accumulation curve to shorter MFPs (higher
frequencies).

Looking at the phonon mean free paths in terms of reducing lattice thermal
conductivity even further via nanostructuring to increase phonon scattering, one
would need to go to very small length scales to achieve a sizeable reduction.
Approximately 20% of the lattice thermal conductivity of PbTe and PbSe0.5Te0.5

arises from phonons with MFPs larger than 10 nm, see Fig. 3.18. Thus, nanos-
tructures of characteristic length 10 nm would only reduce the lattice thermal
conductivity of these unstrained materials at most by ∼20%. In strained PbTe
and strained PbSe0.5Te0.5 the achievable reduction falls to < 10% for nanos-
tructures of this length. Aiming for a reduction of about 25% would require
scattering phonons whose MFP is greater than 3 nm for the strained materials, a
difficult scale to nanostructure on. Since biaxial tensile (001) strain is so effective
at reducing the mean free paths of phonons contributing to the lattice thermal
conductivity, it makes it considerably more difficult to increase phonon scattering
via nanostructuring.

3.5 Discussion

The proposed concept of increasing the proximity of PbTe to the ferroelectric
phase transition to reduce the lattice thermal conductivity is general and would
also be applicable to other materials close to soft zone centre optical mode
transitions. It can be achieved by using strain, alloying, and possibly also by
nanostructuring. Our proposal may be realized experimentally, for example, by
metastable growth of Pb1−xGexTe solid solutions [157], or by depositing a thin
film of PbTe or PbSe1−xTex alloys on a flexible polymer substrate [160, 161],
and applying biaxial tensile (001) strain directly to the polymer. We note that
the mechanical stability of the tensile strained materials very near the transition
may be compromised. Nevertheless, the proposed concept will hold even if the
materials are not driven very close to the transition, although their κlatt reductions
will be smaller, as illustrated in Figs. 3.16 and 3.17.

3.5.1 Higher order anharmonicity

Even if higher than third order anharmonicity terms were non-negligible for PbTe
materials driven to the transition, the proposed concept would remain valid.
However, the lattice thermal conductivity reductions would be lower than our
results, particularly at higher temperatures. The main implication of higher
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anharmonic terms on the thermal properties of PbTe is shifting the TO modes
upwards, resulting in the well known TO frequency increase with temperature
[27, 66, 162, 163]. This will weaken the anharmonic acoustic-TO interaction,
which may result in somewhat higher κlatt values than those predicted here. This
effect may become more evident for T > 300 K in the case of PbTe [66], and
it may manifest at even lower T for the materials near the phase transition.
Consequently, the actual κlatt reduction may decrease with T with respect to our
calculations.

Experimentally, Pb0.51Ge0.49Te undergoes the phase transition from the rhom-
bohedral to the rocksalt structure at ∼ 450 K [157], while it is rocksalt for
all temperatures in our calculations. Higher order anharmonicity terms would
further stabilize the rocksalt phase in our virtual crystal simulations [66], due to
the hardening of the TO modes. This indicates that using an alloy model beyond
this approximation may be necessary to accurately describe the temperature
behaviour of the κlatt of Pb0.51Ge0.49Te. This, however, will not change the main
implication of our work that tuning the composition of Pb1−xGexTe alloys to drive
the material near the phase transition at a certain temperature will substantially
decrease its κlatt at that temperature. The measured lattice thermal conductivity
values of some of the Pb1−xGexTe materials reported in Ref. [164] indeed exhibit
pronounced dips near the transition temperature, and thus support our argument.

3.5.2 Phase segregation

Low lattice thermal conductivity and high figure of merit have been recently
reported in Pb1−xGexTe materials with phase separated regions and nanoscale
features [36, 165, 166]. Since no dips in the κlatt values close to the transi-
tion temperature have been observed in these materials, their κlatt reduction
is likely dominated by phonon scattering at the interfaces. Our study shows
that substantial κlatt reductions can also be obtained in random Pb1−xGexTe
alloys without any phase separation, which may also be beneficial for electronic
transport properties. More systematic studies across all compositions could
resolve whether random alloys would be more efficient thermoelectric materials
than nanostructured/phase separated materials for certain composition ranges.

3.6 Summary

With first principles calculations, we predict that driving PbTe-based materials
to the verge of the ferroelectric phase transition will be a powerful strategy

Thermoelectric Properties of PbTe 68 Aoife Rose Murphy



3.6 Summary

to impede phonon transport in the entire frequency spectrum and considerably
reduce lattice thermal conductivity. We demonstrate this strategy using two dis-
tinct approaches, applying biaxial tensile (001) strain to PbTe and PbSe0.5Te0.5,
and furthermore by alloying PbTe with a rhombohedral material, GeTe. The
proposed concept is based on the induced softening of the transverse optical
modes at the zone centre, whose increased anharmonic interaction with heat
carrying acoustic modes enhances phonon scattering. Furthermore, by combining
increased proximity to the phase transition and mass disorder through alloying,
we achieve reductions to the lattice thermal conductivity by a factor of 2 − 3
compared to PbTe. Thus, the efficiency of this approach in reducing lattice
thermal conductivity rivals that of all-scale hierarchical architecturing [34]. The
presented strategy is general, and it would also be applicable to other materials
close to soft zone centre optical mode transitions.
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Chapter 4

Lattice thermal conductivity of
Pb1−xGexTe alloys

4.1 Introduction

4.1.1 Motivation

In this chapter, we investigate the impact of proximity to the ferroelectric phase
transition on the lattice thermal conductivity of Pb1−xGexTe alloys. This is
inspired by the lack of a quantitative description within the literature on the effect
that the proximity to a soft mode phase transition has on a material’s intrinsic
lattice thermal conductivity. Pb1−xGexTe alloys undergo a soft optical mode
transition between the rocksalt and rhombohedral phases as a function of the
composition and temperature [157], and are known for their high thermoelectric
performance [36, 164, 165, 166, 167, 168]. By tuning their composition, we
investigate the interplay of proximity to the phase transition, mass disorder and
crystal structure in minimising the lattice thermal conductivity of these alloys. In
particular, the investigation of the role of the crystal structure is partly inspired
by recent work highlighting the effect of high symmetry and so-called resonant
bonding in producing an intrinsically low lattice thermal conductivity in materials
such as PbTe [150, 169, 170].

Our first principles virtual-crystal calculations show that the phase transition
minimizes the anharmonic component of lattice thermal conductivity due to
extremely soft optical modes which maximize the anharmonic acoustic-optical
coupling, especially for low-frequency phonons. Mass disorder additionally re-
duces κlatt via scattering of mid- and high-frequencies, which flattens the drop
in the anharmonic κlatt over a wide range of compositions and moves the κlatt
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minimum away from the phase transition, into the rhombohedral phase of the
alloy. Furthermore, we find a continuous change of the total and anharmonic
lattice thermal conductivity between the rocksalt and rhombohedral phases char-
acteristic of the second-order phase transition. We argue that the structure and its
degree of resonant bonding are less crucial for lowering the κlatt in these alloys than
the proximity to the phase transition, average atomic mass and mass disorder.
Our findings highlight the potential of combining soft optical modes and alloying
to design materials with low lattice thermal conductivity and potentially high
ZT .

4.1.2 Calculation details

Harmonic and third order anharmonic IFCs at 0 K were calculated from
Hellmann-Feynman forces computed on 4 × 4 × 4 (128 atom) supercells, with
an energy cut-off of 15 Ha. We calculated all IFCs within this supercell without
imposing any additional cut-off on their range. Electronic states are described
using 2 × 2 × 2 4 shifted reciprocal space grids for alloy compositions x ≤ 0.51,
while 2 × 2 × 2 reciprocal space grids are used for all other compositions. We
performed lattice thermal conductivity calculations on 20× 20× 20 q point grids
in the Brillouin zone, having verified that that the use of 40 × 40 × 40 grids
changes the κlatt values no more than ∼2.3% with respect to 20 × 20 × 20 grids
for selected Pb1−xGexTe compositions (x = 0.00, 0.49, 0.51, 1.00).

We used 4×4×4 (128 atom) supercells as they best reproduced the expected
physical behaviour of the second-order phase transition in Pb1−xGexTe alloys. We
found that the continuity of harmonic interatomic force constants at the phase
transition leads to physically sensible phonon dispersions in the rhombohedral
phase. In 2 × 2 × 2 cubic (64 atom) supercells discontinuities were found in the
long-range IFCs (4th and 8th nearest neighbour) for the rocksalt and rhombohe-
dral structures very near the phase transition, x = 0.49 and x = 0.51 respectively.
This resulted in imaginary frequencies for the lowest transverse acoustic mode
near Γ in the rhombohedral structures near the phase transition. These instabili-
ties were found to persist for larger supercells such as 3×3×3 cubic (216 atoms),
5× 5× 5 (256 atoms) and 4× 4× 4 cubic (512 atoms). On the other hand, using
density functional perturbation theory, we found that the frequencies of transverse
acoustic modes for rhombohedral structures near the phase transition exhibit
oscillations about the physically correct linear dependence on the wave vector near
Γ along the Γ− X direction. While these oscillations decreased in magnitude with
denser wave vector grids, they nevertheless remained for rhombohedral Brillouin
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zone grid sizes up to 12 × 12 × 12. While this suggests that larger supercells
would be required to overcome these issues, such calculations would presently be
computationally very demanding. Thus, we chose 4×4×4 (128 atom) supercells
as they possess continuity in the IFCs at the second-order phase transition, and
exhibit the physically correct linear dependence of the acoustic mode frequencies
on the wave vectors near Γ. However, further investigation is necessary to better
understand the effect of these long range interactions in Pb1−xGexTe alloys.

Our method that only accounts for third order anharmonic terms does not
account for the temperature dependence of structural parameters and IFCs. As
a result, we do not capture the phase transition in Pb1−xGexTe alloys from the
rhombohedral to rocksalt phases with increasing temperature at a given com-
position [157]. The temperature at which the phase transition occurs increases
as a function of Ge content, from 0 K at x ≈ 0.01 to ∼670 K for x = 1 [157].
Nonetheless, we find that the phonon dispersions, thermal expansion coefficients,
and κlatt of PbTe and GeTe agree fairly well with experimental data, as will be
demonstrated next. Furthermore, our model captures the soft optical mode phase
transition as a function of the alloy composition, as we will show in the following
section. This suggests that our approach will correctly predict qualitative changes
in the κlatt of Pb1−xGexTe alloys by varying x.

4.1.3 Verification of approach

To verify the validity of our approach, we compare our calculated phonon band
structure, thermal expansion coefficients and lattice thermal conductivity on 4×
4 × 4 (128 atom) supercells for PbTe and GeTe with experimental data. We
also included the validation of our computed third-order IFCs through Grüneisen
parameter calculations.

The phonon dispersion of PbTe for 128 atom supercells is in good agreement
with the inelastic neutron scattering measurements of Cochran et al. [153] (see
Fig. 4.1), except for transverse modes along Γ-X and Γ-K directions. Our com-
puted dispersion for 216 atom cubic supercells does not exhibit such deviations
from the experiment. However, as discussed earlier, we can describe correctly the
second order phase transition behaviour across the whole range of alloy composi-
tions only using 128 atom supercells. Our calculated phonon dispersion of GeTe
for 128 atom supercells is shown in Fig. 4.2. To the best of our knowledge, there
are no reports of the measured phonon dispersions of GeTe in the literature. Our
computed frequencies of zone centre Raman active modes compare well with the
measurements of Refs. [171, 172] at 300 K. We also calculated the phonon density
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Figure 4.1: Phonon dispersions of PbTe: calculated using a 128 atom supercell
at 0 K (solid black line), calculated using a 216 atom supercell at 0 K (dashed
red line), and measured by Cochran et al. [153] at 300 K (blue circles).
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Figure 4.2: Phonon dispersions of GeTe: calculated using a 128 atom supercell
at 0 K (solid black line), and the frequencies of zone centre Raman active modes
measured by Fons et al. [171] at 300 K (blue circles) and Steigmeier et al. [172]
at 300 K (red squares).

of states of GeTe (Fig. 4.3), which is in good agreement with the experimental
results of Refs. [173, 174]. Our phonon dispersion of GeTe also agrees well with
a previous density functional perturbation theory calculation [175].

We verified the accuracy of our computed third-order anharmonic interatomic
force constants by calculating the mode Grüneisen parameters of Pb1−xGexTe
alloys using two different approaches. Mode Grüneisen parameters are defined
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Figure 4.3: Phonon density of states for GeTe: calculated using a 128 atom
supercell at 0 K (solid black line), measured by Wdowik et al. [173] and Pereira
et al. [174]. The integral of the density of states over frequency is normalized to
unity.

Figure 4.4: Mode Grüneisen parameters as a function of frequency obtained using
finite difference (black pluses) and perturbative approaches (red crosses) for (a)
GeTe, (b) PbTe, (c) Pb0.49Ge0.51Te, and (d) Pb0.51Ge0.49Te.
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as:
γqs = −d(logωqs)

d(log Ω) = Ω
ωqs

∂ωqs

∂Ω . (4.1)

To calculate γqs, we used a finite difference approach that requires computing
phonon frequencies at different crystal volumes using Eq. (4.1). We also used
a first-order perturbative approach to express Grüneisen parameters in terms of
third-order anharmonic IFCs [59, 176]:

γqs = − 1
6ω2

qs

∑
lb,l′b′,l′′b′′

∑
αβγ

Φlb,l′b′,l′′b′′

αβγ

e∗sαb(q)esβb′(q)
√
mbmb

′ eiq·Rl′τl
′′b′′

γ . (4.2)

Eq. (4.2) is derived under the assumptions that the crystal is cubic, and the
atomic positions within the crystal remain fixed upon volume changes. This
condition is not fully satisfied for rhombohedral lattices. Consequently, to
compare the mode Grüneisen parameters obtained with Eq. (4.2) with those
of the finite difference approach for nearly cubic Pb1−xGexTe alloys, we varied
only their lattice constants in the finite difference calculations. Fig. 4.4 shows
the Grüneisen parameters in the whole Brillouin zone obtained using the two
described approaches for GeTe, PbTe, and the alloy compositions near the phase
transition, Pb0.49Ge0.51Te and Pb0.51Ge0.49Te. The results obtained from the two
approaches agree very well with each other for all these materials, which confirms
the accuracy of our computed third-order IFCs.
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Figure 4.5: Linear thermal expansion coefficient of PbTe as a function of tem-
perature: calculated using a 128 atom supercell (solid black line), measured by
Dalven [177] (blue circles), and measured by Novikova and Abrikosov, Ref [153]
and references therein (red squares).

Thermoelectric Properties of PbTe 75 Aoife Rose Murphy



4.1 Introduction

We also computed the linear thermal expansion coefficient of PbTe as [51]:

α = 1
3NqΩB

∑
qs
cqsγqs, (4.3)

where B is the bulk modulus. Our calculated bulk modulus of PbTe is 47.94 GPa,
from the Burch-Murnaghan equation of state. Fig. 4.5 shows the linear thermal
expansion coefficient of PbTe versus temperature obtained with the Grüneisen
parameters computed using the perturbative approach, and illustrates good
agreement with the measurements on single crystalline PbTe samples [153, 177].

We also derived the generalized expressions for the thermal expansion coeffi-
cients of the rhombohedral lattice in a similar manner as done in Ref. [178], and
calculated these coefficients for GeTe. The relative positions of Ge and Te atoms
within the rhombohedral primitive cell are (0, 0, 0) and (0.5 + r, 0.5 + r, 0.5 + r)
with r = 0.0237 in our calculations, and the angle between the lattice vectors is
φ = 60◦ − θ with θ = 1.2093◦. The change of the zero temperature total energy
with respect to the small deviations of the lattice constant a, the angle φ and the
Te displacement along the [111] direction r is given as:

∆E =1
2Caa(∆a)2 + 1

2Cφφ(∆φ)2 + 1
2Crr(∆r)

2

+ Caφ(∆a)(∆φ) + Car(∆a)(∆r) + Cφr(∆φ)(∆r).
(4.4)

We calculate the symmetric matrix [C] using density functional theory, and find
its inverse matrix [S] = [C]−1. The thermal expansion coefficients for a, φ and r
can be expressed as:

αa = 1
Nqa

∑
qs
cqs

(
Saa
a
γaqs + Saφ

φ
γφqs + Sar

r
γrqs

)
, (4.5)

αφ = 1
Nqφ

∑
qs
cqs

(
Saφ
a
γaqs + Sφφ

φ
γφqs + Sφr

r
γrqs

)
, (4.6)

αr = 1
Nqr

∑
qs
cqs

(
Sar
a
γaqs + Sφr

φ
γφqs + Srr

r
γrqs

)
, (4.7)

respectively, where we write generalized Grüneisen parameters as:

γaqs = −∂(logωqs)
∂(log a) , (4.8)

γφqs = −∂(logωqs)
∂(log φ) , (4.9)
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Table 4.1: Thermal expansion coefficients α of GeTe at 300 K for lattice constant
A, the angle between the lattice vectors Φ, and the Te atom position along
the [111] direction R in the non-primitive pseudo-cubic lattice. The thermal
expansion coefficients from Refs. [179, 180, 181, 182, 183] were extracted by
linearly fitting the measured lattice parameters between ∼ 300 K and ∼ 400−550
K.

αA αΦ αR
(10−6 K−1) (10−6 K−1) (10−6 K−1)

Our results (single crystal) 12.3 7.7 15.5
Ref. [179] (single crystal) 13.4 23.3 16.9
Refs. [180, 181] (powder) 12.9 27.6 49.5
Ref. [182] (powder) 18.7 23.0 −
Ref. [183] (powder) 17.4 32.3 −

γrq, = −∂(logωqs)
∂(log r) . (4.10)

Finally, for comparison with experiment, we transformed the obtained expressions
into the coordinate system of the non-primitive pseudo-cubic lattice vectors where
the lattice constant is given as A = a(3 − 2 cosφ)1/2, the angle between lattice
vectors is cos Φ = (2 cosφ− 1)/(3− 2 cosφ), and the Te position along the [111]
direction is R = 0.25− r/2. The comparison of our computed thermal expansion
coefficients for A, Φ and R of GeTe at 300 K with the experimental values
[179, 180, 181, 182, 183] is given in Table 4.1. We extracted the experimental
coefficients by linearly fitting the reported lattice parameters between ∼ 300 K
and∼ 400−550 K. Our computed thermal expansion coefficients are in reasonable
agreement with experiments. We ascribe the discrepancies to our zero temper-
ature representation of structural parameters and IFCs and the quasiharmonic
approximation, as well as the uncertainties in fitting the sparse experimental
data.

For PbTe, our calculated κlatt is ∼20% larger than the κlatt of undoped
single- and poly-crystalline PbTe for 100 − 300 K [154], see Fig. 4.6. For higher
temperatures of 300−700 K, we see very good agreement between our calculated
κlatt and experiment [155]. We note that our κlatt calculated with a 128 atom
supercell also agrees to within∼7% of the value calculated on a 216 atom supercell
with a cutoff of 8 nearest neighbours for anharmonic IFCs.

GeTe has a large electronic contribution to the total thermal conductivity.
Nath et al. [184] and Levin et al. [182] estimated the lattice contribution by sub-
tracting the electrical contribution from the measured total thermal conductivity
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Figure 4.6: Lattice thermal conductivity of PbTe as a function of temperature:
calculated using a supercell with 128 atoms (solid black line), calculated using a
supercell with 216 atoms (dashed red line), measured by Devyatkova et al. [154]
(blue circles), and measured by El-Sharkawy et al. [155] (green squares).
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Figure 4.7: Lattice thermal conductivity of GeTe as a function of temperature:
calculated using a 128 atom supercell (solid black line), measured by Nath et al.
[184] (blue circles), and measured by Levin et al. [182] (red squares).

using the Wiedemann-Franz law. Within a temperature range of 100−300 K, our
computed κlatt is in very good agreement with that of a 9000 Å GeTe film with a
hole concentration of ∼ 1020 cm−3 measured using a transient technique [184], see
Fig. 4.7. However, for 300−500K the κlatt of the same GeTe film measured using a
steady-state technique [184] is a factor of ∼ 2 lower than our calculated κlatt. This
factor of ∼ 2 difference is also seen for the κlatt of GeTe with a hole concentration
of ∼ 8×1020 cm−3 measured with the flash thermal diffusivity method [182] for
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300− 700 K. However, our model does not capture the phase transition in GeTe
from the rhombohedral to rocksalt phases at ∼670 K [157, 182] due to the zero
temperature representation of structural parameters and IFCs. Thus, we would
expect some disagreement between our calculations and the experimental data at
higher temperatures.

4.2 Pb1−xGexTe and the ferroelectric phase
transition

4.2.1 Virtual crystal model

Figure 4.8: The rocksalt and rhombohedral structures of PbTe and GeTe, respec-
tively. The differences between the two structures are the position of Te atom
along the trigonal [111] axis and the angle between the primitive lattice vectors.
The rocksalt phase is a special case of the rhombohedral phase with the relative
Te position of (0.5, 0.5, 0.5) within the primitive cell, and the angle of 60◦.

PbTe crystallizes in the rocksalt structure, while GeTe forms a rhombohedral
structure, shown in Fig. 4.8. The relative positions of Pb and Te atoms within
the rocksalt primitive cell are (0, 0, 0) and (0.5, 0.5, 0.5), and the angle between
the lattice vectors is φ = 60◦. In the rhombohedral lattice, the relative position
of the second atom is (0.5 + r, 0.5 + r, 0.5 + r), and the angle is φ = 60◦ − θ.
Consequently, the rhombohedral lattice has a trigonal symmetry with respect to
the [111] direction. In GeTe, the relative Te position is (0.52, 0.52, 0.52), and the
angle is φ = 58.8◦ [185, 186]. Thus, the rocksalt phase is a special case of the
rhombohedral phase with r = 0 and θ = 0◦. By varying the alloy composition,
PbxGe1−xTe alloys will undergo a second order phase transition between the
rocksalt and rhombohedral phases. A typical feature of the second order phase
transition is a continuous change of the values of various physical quantities at
the phase transition.
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Figure 4.9: (a) Total energy of the rocksalt and rhombohedral phases of
PbxGe1−xTe as a function of the alloy composition x. (b) Difference between
the total energy of the rocksalt and rhombohedral phases as a function of x. The
rocksalt structure is a special case of the rhombohedral structure, and they are
identical for x < 0.492.
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Figure 4.10: Calculated structural parameters as a function of Pb1−xGexTe alloy
composition: (a) lattice constant, (b) rhombohedral angle, and (c) sublattice
position in the crystal lattice coordinates.

The total energy of both the rocksalt and rhombohedral phases of PbxGe1−xTe
alloys versus Ge concentration, as well as their energy difference, are illustrated in
Fig. 4.9. The two curves coincide for x < 0.492 since the rocksalt phase is a special
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case of the rhombohedral phase with the relative Te position of (0.5, 0.5, 0.5)
within the primitive unit cell, and the angle between the primitive lattice vectors
of 60◦. Consequently, the relaxation of the rhombohedral structure for x < 0.492
results in the rocksalt structure, which is consistent with the second order phase
transition. For x > 0.492, the rhombohedral phase has a lower total energy than
the rocksalt phase, and is thus energetically preferable. The phase transition thus
takes place at x = 0.492.

The calculated structural parameters of Pb1−xGexTe alloys using the virtual
crystal approximation are shown in Fig. 4.10 as a function of chemical composi-
tion. The lattice constant, the angle between the primitive lattice vectors, and
the Te position along the [111] direction all vary continuously as a function of
the alloy composition, as expected for the second-order phase transition. Te
displacement changes most rapidly with the alloy composition, indicating that
it is the primary order parameter for this phase transition. We note that the
displacement of the Te atom along the [111] direction corresponds to the TO
mode [146].

4.2.2 Impact on phonon frequencies
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Figure 4.11: The frequency of the lowest transverse optical mode at the zone
centre, TO(Γ), as a function of Pb1−xGexTe alloy composition.

We illustrate the alloy composition at which the phase transition occurs for
Pb1−xGexTe alloys within our model by plotting the frequency of the lowest
transverse optical mode at Γ, TO(Γ), as a function of x, see Fig. 4.11. The phase
transition takes place for x = 0.492, when the frequency of TO(Γ) becomes
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≈0 THz. For 0 ≤ x < 0.492 where the rocksalt structure is energetically
preferable, the TO(Γ) frequency decreases smoothly with increasing x, from
∼1.0 THz in PbTe to ∼0.2 THz for x = 0.49. For 0.492 < x ≤ 1, where
the rhombohedral structure is favourable, the TO(Γ) frequency decreases almost
linearly with decreasing x, from ∼2.0 THz in GeTe to ∼0.4 THz at x = 0.51. We
note that since the transition temperature of Pb0.5Ge0.5Te is ∼450 K [157], our
model best describes the soft TO modes and κlatt of Pb1−xGexTe alloys near this
temperature.

Figure 4.12: Cartoon of the total energy versus Te atomic displacement from its
equilibrium position in the rocksalt structure along the [111] direction for: (a)
the rocksalt phase, and (b) the rhombohedral phase.

In the immediate vicinity of the structural transition, the TO(Γ) frequency is
higher in the rhombohedral phase compared to the rocksalt phase by a factor of
∼
√
2 (for x = 0.491 and x = 0.493, respectively, see Fig. 4.11). To explain this

factor analytically, we examine the total energy of the atomic motion of the TO
mode in Pb1−xGexTe virtual alloys, which can be represented by the displacement
of the Te atom from its equilibrium position in the rocksalt structure along the
[111] direction.

We assume that the energy potential of such Te motion is of the form:

V (z) = 1
2kz

2 + Az4, (4.11)

where k and A are the harmonic and quartic spring constants, respectively.
Near the phase transition, we assume that the small harmonic spring constant k
changes its sign from positive to negative, keeping the same absolute value. This
physically corresponds to changing the sign of a small restoring force which keeps
atoms in one phase when positive, and causes the transition into a different phase
when negative. We assume that the anharmonic spring constant A is positive and
does not change in this process.
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We find the potential extrema from:

∂V

∂z
= kz + 4Az3 = 0, (4.12)

which gives

z = 0 or z = ±i
√

k

4A. (4.13)

For k > 0, z = 0 is the only real minimum, which physically corresponds to the
high-symmetry rocksalt phase (see Fig. 4.12 (a)). For k < 0, z = 0 is a local
maximum, and the minima occur for z = ±(|k|/(4A))1/2, which correspond to
the frozen-in displacement of the Te atom in the [111] direction and the distorted
rhombohedral structure, shown in Fig. 4.12 (b).

Since the curvature of the potential varies as the square of the frequency
(∂2V /∂z2 ∼ ω2), we find its values at the potential minima for the rocksalt phase
at z = 0 and for the rhombohedral phase at z = ±(|k|/(4A))1/2:

∂2V

∂z2

∣∣∣∣
z=0

= |k|, k > 0; (4.14)

∂2V

∂z2

∣∣∣∣
z=±

√
|k|
4A

= 2|k|, k < 0. (4.15)

With ∂2V /∂z2 ∼ ω2
TO, we finally obtain:

ωTO(x = 0.493)
ωTO(x = 0.491) ∼

√
2. (4.16)

Thus, the frequency of the TO mode at Γ differs by a factor ∼
√

2 between the
rhombohedral Pb1−xGexTe alloy very near the phase transition, x = 0.493, and
its rocksalt counterpart, x = 0.491.

In addition to dramatic softening of TO(Γ) modes, we illustrate the full
impact of increased proximity to the phase transition on the phonon dispersions of
Pb1−xGexTe alloys. Fig. 4.13 compares the phonon dispersions of two structures
in the rhombohedral phase, GeTe and a composition on the verge of the phase
transition, Pb0.49Ge0.51Te. Similarly, in the rocksalt phase we compare PbTe and
Pb0.51Ge0.49Te, see Fig. 4.14. Away from the zone centre, phonon frequencies
become significantly lower as the value of x decreases in both the rocksalt and
rhombohedral phases. This change in phonon frequency is largely due to the
heavier mass as the alloy composition varies from GeTe to PbTe. At the phase
transition, the phonon dispersions of the rocksalt and rhombohedral structures
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Figure 4.13: Phonon band structures at 0 K for GeTe (solid black line) and
an alloy in the rhombohedral structure near the phase transition, Pb0.49Ge0.51Te
(dashed red line). The frequencies of the soft transverse optical phonon modes
at the zone centre, TO(Γ), are highlighted in black circles for GeTe and red
rectangles for Pb0.49Ge0.51Te.
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Figure 4.14: Phonon band structures at 0 K for PbTe (solid black line) and an
alloy in the rocksalt structure near the phase transition, Pb0.51Ge0.49Te (dashed
red line). The frequencies of the soft transverse optical phonon modes at the zone
centre, TO(Γ), are highlighted in black circles for PbTe and red rectangles for
Pb0.51Ge0.49Te.

are remarkably similar, see Fig. 4.15. This is due to the fact that the soft optical
mode phase transition in Pb1−xGexTe alloys is second-order, which can also be
seen from the continuous change in lattice parameters as a function of x as shown
previously.
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Figure 4.15: Phonon band structures at 0 K for alloy compositions in the rocksalt
and rhombohedral phases near the phase transition: Pb0.51Ge0.49Te (solid black
line) and Pb0.49Ge0.51Te (dashed red line), respectively.

4.3 Impact on phonon lifetimes

Figure 4.16: Anharmonic phonon lifetimes at 450 K and their averaged values
(inset) as a function of frequency for GeTe (black pluses and solid line) and a
rhombohedral alloy near the phase transition, Pb0.49Ge0.51Te (red crosses and
dashed line).

The extremely soft TO modes at the ferroelectric phase transition minimize
the anharmonic phonon lifetimes of Pb1−xGexTe alloys in both the rocksalt and
rhombohedral phases. In the rhombohedral phase, three-phonon lifetimes are
reduced by a factor of∼2 in Pb0.49Ge0.51Te compared to GeTe at 450 K (Fig. 4.16).
This reduction is maintained across the entire frequency spectrum, which is more
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Figure 4.17: Anharmonic phonon lifetimes at 450 K and their averaged values
(inset) as a function of frequency for PbTe (black pluses and solid line) and a
rocksalt alloy near the phase transition, Pb0.51Ge0.49Te (red crosses and dashed
line).

Figure 4.18: Anharmonic phonon lifetimes at 450 K and their averaged values
(inset) as a function of frequency for rocksalt Pb0.51Ge0.49Te (black pluses and
solid line) and rhombohedral Pb0.49Ge0.51Te (red crosses and dashed line).

clearly shown in the inset of Fig. 4.16 where averaged anharmonic lifetimes are
plotted versus frequency. In the rocksalt phase, anharmonic τ are also minimized
at the phase transition, as illustrated by their comparison for Pb0.51Ge0.49Te and
PbTe in Fig. 4.17. However, in this case the reduction is mainly concentrated
to lower frequencies. The significant decrease of τanh at the phase transition
offers new alternatives in the search for techniques to suppress lifetimes across
the frequency spectrum. Furthermore, the τanh of the rocksalt and rhombohedral
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structures in the vicinity of the phase transition are very similar (Fig. 4.18). This
similarity is a direct result of the second-order phase transition, and results in
the continuous change of τanh as the alloy composition is varied.

Figure 4.19: The acoustic-transverse optical (TO) contribution to the total
anharmonic linewidth at 300 K versus frequency for (a) GeTe (black pluses) and
a rhombohedral alloy near the phase transition, Pb0.49Ge0.51Te (red crosses), (b)
PbTe (black pluses) and a rocksalt alloy near the phase transition, Pb0.51Ge0.49Te
(red crosses), and (c) rocksalt Pb0.51Ge0.49Te (black pluses) and rhombohedral
Pb0.49Ge0.51Te (red crosses).

To understand how the acoustic-TO anharmonic interaction changes with
increased proximity to the phase transition, we calculated explicitly the acoustic-
TO contribution to the total anharmonic linewidth in PbTe, Pb0.51Ge0.49Te,
Pb0.49Ge0.51Te and GeTe at 300 K, see Fig. 4.19, following the same procedure as
described in the previous chapter. We found that the acoustic-TO contribution
to the anharmonic linewidth dominates over the other contributions across the
spectrum in all these materials. Further, the maximal softening of the TOmode at
the zone centre is directly responsible for the maximal strength of the anharmonic
coupling of TO modes with heat-carrying acoustic modes and the minimisation
of anharmonic lifetimes at the phase transition. In the rhombohedral phase,
this contribution becomes maximal at the phase transition as illustrated in
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4.3 Impact on phonon lifetimes

Fig. 4.19 (a) by comparing GeTe and an alloy composition very near the phase
transition, Pb0.49Ge0.51Te. This is also the case for the rocksalt phase, as shown
in Fig. 4.19 (b) by comparing PbTe and Pb0.51Ge0.49Te. The strength of the
acoustic-TO contribution to the anharmonic linewidth is very similar for the two
structures very close to the phase transition, see Fig. 4.19 (c), which is a typical
feature of the second-order phase transition.
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Figure 4.20: (a) Phonon lifetimes due to mass disorder versus frequency for
three select compositions: Pb0.40Ge0.60Te (black pluses), Pb0.30Ge0.70Te (red
crosses), and Pb0.10Ge0.90Te (blue circles). (b) Calculated phonon density of
states for Pb0.40Ge0.60Te (solid black line), Pb0.30Ge0.70Te (dashed red line), and
Pb0.10Ge0.90Te (dotted blue line). The integral of the density of states over
frequency is normalized to unity.

Figure 4.21: Phonon lifetimes due to anharmonic processes (black crosses) and
mass disorder (red pluses) as a function of frequency for Pb0.49Ge0.51Te.

The effect of mass disorder on phonon lifetimes in Pb1−xGexTe alloys is
strongest for x ≈ 0.6. The strength of mass disorder is given as g = ∑

i fi(1 −
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Figure 4.22: Phonon lifetimes due to mass disorder versus frequency for the rock-
salt and rhombohedral structures very near the phase transition: Pb0.51Ge0.49Te
(black pluses) and Pb0.49Ge0.51Te (red crosses), respectively.

mi/m̄)2 (Eq. (2.98)) where fi and mi are the concentration and atomic mass of
species i, and m̄ is its average mass [64, 126, 127, 149]. It can be derived analyti-
cally that g reaches a maximum for x = mPb/(mGe +mPb) = 0.74. Nevertheless,
the larger density of states for compositions with smaller Ge content shifts the
composition at which the overall scattering due to mass disorder is strongest to
x ≈ 0.6, see Fig. 4.20. Mass disorder is more effective at scattering mid- and
high-frequency phonons in comparison to anharmonic processes. However, at
low frequencies, anharmonic τ are smaller than those due to mass disorder by
several orders of magnitude (see Fig. 4.21). This highlights the effectiveness of
the strategy of combining soft modes and alloying to design materials with low
thermal conductivity. Furthermore, the lifetimes due to mass disorder of the
structures on the verge of the phase transition are very similar as a result of the
second-order nature of the phase transition, see Fig. 4.22.

4.4 Impact on thermal conductivity

4.4.1 Pb1−xGexTe alloys

The ferroelectric phase transition minimizes the anharmonic contribution to
the lattice thermal conductivity of Pb1−xGexTe alloys in both the rocksalt and
rhombohedral phases. This is shown by the unfilled symbols in Fig. 4.23, which
represents the anharmonic κlatt as a function of x at 450 K. In the rhombohedral
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Figure 4.23: Lattice thermal conductivity of Pb1−xGexTe as a function of alloy
composition at 450 K. The unfilled symbols show the thermal conductivity due
to anharmonic (three-phonon) processes only, and the filled symbols show the
thermal conductivity due to anharmonic processes and mass disorder. Black
circles show the thermal conductivity in the rocksalt phase and its isotropic
average in the rhombohedral phase. Red up and blue down triangles show the
thermal conductivity perpendicular and parallel to the trigonal [111] axis in the
rhombohedral phase, respectively.

phase, the anharmonic κlatt of the composition very near the phase transition,
x = 0.51, decreases by a factor of ∼ 2.4 (∼ 1.8) in the direction perpendicular
(parallel) to the trigonal [111] axis with respect to GeTe. These reductions are
a direct result of the substantial decrease in the anharmonic τ of Pb0.49Ge0.51Te
(see Fig. 4.16), and are further enhanced by its lower group velocities due to
the heavier average atomic mass. The anisotropy in the anharmonic κlatt of the
rhombohedral structures decreases from ∼ 29% in GeTe towards zero at the phase
transition. In the rocksalt phase, the anharmonic κlatt initially slightly increases
for low values of x, and then decreases as x becomes larger. This effect is due to
the larger group velocities competing with the reduced phonon lifetimes as the
proximity to the phase transition is increased with x. Overall, there is a modest
reduction by a factor of ∼1.05 in the anharmonic κlatt at x = 0.49 with respect
to that of PbTe. This results in the asymmetric reductions of the anharmonic
κlatt for the rocksalt and rhombohedral phases (see Fig. 4.23). Importantly, the
anharmonic κlatt changes continuously as the alloy undergoes the second-order
phase transition as a result of the continuous variation of phonon lifetimes and
group velocities.

Neglecting the average mass difference among Pb1−xGexTe compositions re-

Thermoelectric Properties of PbTe 90 Aoife Rose Murphy



4.4 Impact on thermal conductivity

 0

 1

 2

 3

0.0  0.2  0.4  0.6  0.8 1.0
 0

 1

 2

 3

Rocksalt Rhombohedral

T
h

er
m

al
 c

o
n

d
u

ct
iv

it
y

 (
W

/m
K

)

T
O

(Γ
) 

fr
eq

u
en

cy
 (

T
H

z)

x (Ge content)

450 K κ
κ⊥          
κ||         

 0

 1

 2

 3

0.0  0.2  0.4  0.6  0.8 1.0
 0

 1

 2

 3

Rocksalt Rhombohedral

T
h

er
m

al
 c

o
n

d
u

ct
iv

it
y

 (
W

/m
K

)

T
O

(Γ
) 

fr
eq

u
en

cy
 (

T
H

z)

x (Ge content)

450 K ωTO(Γ)

Figure 4.24: Anharmonic contribution to the lattice thermal conductivity of
Pb1−xGexTe as a function of the alloy composition at 450 K, where the group IV
element mass of each alloy composition is artificially set to that of Pb0.5Ge0.5Te.
Black circles show the thermal conductivity in the rocksalt phase, while red up
and blue down triangles show the thermal conductivity perpendicular and parallel
to the trigonal [111] axis in the rhombohedral phase, respectively. Also shown in
green crosses is the frequency of the lowest transverse optical mode at the zone
centre for the same mass of the group IV element as described above.

moves the asymmetric reductions in the anharmonic lattice thermal conductivity
for the two phases, and further highlights its minimisation at the phase tran-
sition. This is illustrated in Fig. 4.24, where the mass difference is ignored by
artificially setting the group IV element mass of each alloy composition to that of
Pb0.5Ge0.5Te. The anharmonic κlatt decreases smoothly with increased proximity
to the phase transition mostly due to reduced anharmonic τ , which results in
a factor of ∼1.5 reduction in both the rocksalt and rhombohedral phases with
respect to x = 0 and x = 1. Therefore, the minimisation of anharmonic κlatt
at the phase transition would be more pronounced for alloys with soft optical
modes whose overall mass difference is smaller than that of Pb1−xGexTe alloys,
or for bulk materials driven to the phase transition via pressure or strain, as
discussed in the previous chapter. However, the κlatt of such materials may not
be as low as reported here since mass disorder would be irrelevant or weaker than
in Pb1−xGexTe.

Mass disorder significantly reduces the lattice thermal conductivity of
Pb1−xGexTe alloys, thereby flattening the dip in its anharmonic contribution and
shifting the minimum away from the phase transition (Fig. 4.23). The minimal
κlatt occurs at x ≈ 0.6 in our model where the scattering due to mass disorder is
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4.4 Impact on thermal conductivity

maximized, and near the composition where the phase transition occurs (x = 0.5).
Our results illustrate a general trend that the minimal κlatt in alloys with soft
optical modes will be determined by the interplay among anharmonicity, average
mass and mass disorder, and it will not necessarily occur at the phase transition.
We find factors of ∼7.7 and ∼3.6 reduction in the isotropically averaged κlatt at its
minimal value at 450 K with respect to GeTe and PbTe respectively. Interestingly,
for the alloy composition of x = 0.9, scattering due to mass disorder is relatively
strong at high frequencies due to the high density of states (see Fig. 4.20) resulting
in the κlatt value which is comparable to the κlatt minimum at x ≈ 0.6. We note
that disorder in the force constants would further suppress the lattice thermal
conductivity values reported here [152].

4.4.2 Frequency contribution to thermal conductivity
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Figure 4.25: The contribution to the anharmonic lattice thermal conductivity
κcon(ω) at 450 K as a function of phonon frequency. κcon(ω) is shown for (a)
GeTe parallel and perpendicular to the trigonal axis (dotted and solid black
lines) and Pb0.49Ge0.51Te parallel and perpendicular to the trigonal axis (dotted
and solid red lines), (b) PbTe (solid black line) and Pb0.51Ge0.49Te (solid red line),
(c) Pb0.51Ge0.49Te (solid black line) and Pb0.49Ge0.51Te parallel and perpendicular
to the trigonal axis (dotted and solid red lines).
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4.4 Impact on thermal conductivity

In this section we investigate the contribution to the anharmonic lattice
thermal conductivity as a function of phonon frequency, κcon(ω), in Pb1−xGexTe
alloys. We define this contribution as:

κcon(ω) = 1
NqΩ

∑
qs
cqsv

2
qsτqsδ(ω − ωqs), (4.17)

where the anharmonic lattice thermal conductivity is then given as κlatt =∫
κcon(ω)dω.
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Figure 4.26: The contribution to the anharmonic lattice thermal conductiv-
ity κcon(ω) at 450 K as a function of normalised phonon frequency for GeTe
parallel and perpendicular to the trigonal axis (dotted and solid black lines),
Pb0.49Ge0.51Te parallel and perpendicular to the trigonal axis (dotted and solid
red lines), Pb0.51Ge0.49Te (solid blue line), and PbTe (solid green line).

The contribution to the anharmonic lattice thermal conductivity from low-
frequency (. 1.5 THz) phonons is minimised at the phase transition in
Pb1−xGexTe alloys, see Fig. 4.25(a-c). Fig. 4.25(a) compares κcon(ω) of GeTe
and the composition x = 0.51 very near the phase transition in the rhombohedral
phase, while Fig. 4.25(b) compares κcon(ω) of PbTe and the composition x = 0.49
in the rocksalt phase. In the rhombohedral phase, κcon(ω) of the composition
x = 0.51 decreases by a factor of ∼3 (∼2) perpendicular (parallel) to the trigonal
axis in the low frequency regime compared to GeTe, see Fig. 4.26, which shows
κcon(ω) as a function of the phonon frequency normalised such that the highest
longitudinal optical mode frequency for each composition is 1 respectively. In
the rocksalt phase, κcon(ω) of x = 0.49 similarly decreases by a factor of ∼2 in
comparison to PbTe. The minimisation of κcon(ω) in the low frequency regime
follows as a direct result of the maximally softened TO(Γ) frequency at the phase
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Figure 4.27: Calculated phonon density of states for GeTe (solid black line),
Pb0.49Ge0.51Te (solid red line), Pb0.51Ge0.49Te (solid blue line), and PbTe (solid
green line).

transition and its maximised anharmonic coupling with heat carrying acoustic
mode phonons, as demonstrated previously. The frequency contribution to the
anharmonic lattice thermal conductivity of Pb0.49Ge0.51Te and Pb0.51Ge0.49Te
is almost identical, see Fig. 4.25(c), due to the continuous change of phonon
frequencies at the second order phase transition.

The contribution to the anharmonic lattice thermal conductivity from high
frequency phonons is approximately the same for all compositions of Pb1−xGexTe
alloys, see Fig. 4.26. This demonstrates that the maximally softened TO(Γ) at
the phase transition predominantly reduces the phonon lifetimes of low-frequency
phonon modes, leaving higher frequencies relatively unaffected. Interestingly
κcon(ω) due to phonons in the mid-frequency regime (∼0.5 in normalised phonon
frequency, see Fig. 4.26) increases with increased proximity to the phase tran-
sition. This is due to an increase in the density of states for mid-frequency
phonons in those compositions at the phase transition versus those of PbTe and
GeTe respectively, see Fig. 4.27.

4.4.3 Impact of structure and resonant bonding

If the overall mass difference in Pb1−xGexTe alloys could be ignored, the an-
harmonic lattice thermal conductivity would be comparably suppressed in the
rocksalt and rhombohedral structures with similar proximity to the phase tran-
sition. This is shown in Fig. 4.24, where the dependence of the anharmonic
κlatt on x is compared with that of the TO(Γ) frequency when the group IV
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element mass of each alloy composition is set to that of Pb0.5Ge0.5Te. Here we
consider the TO(Γ) frequency as a rough measure of the proximity to the phase
transition of both rocksalt and rhombohedral phases. The anharmonic κlatt of
a rhombohedral structure is comparable to that of the rocksalt structure with a
similar TO(Γ) frequency, and it is notably even lower in the direction parallel
to the trigonal axis. This is in contrast with the previous reports that high
symmetry phases have lower κlatt compared to their lower symmetry counterparts
[49, 71, 150]. However, these studies did not attempt to tune the proximity to the
phase transition of these materials to fully investigate this effect. Our analysis
suggests that the proximity to the phase transition, average atomic mass and mass
disorder are more dominant mechanisms for the thermal conductivity reduction
in Pb1−xGexTe alloys than the symmetry of the phase.

Our findings are in partial disagreement with the recent claims that stronger
resonant bonding leads to lower lattice thermal conductivity in rocksalt IV-VI
and rhombohedral group-V materials [150]. Resonant bonding is characterized
by half-saturated p-bonds typical for these materials, which results in delocalised
electron densities and large electronic polarisabilities [150, 169, 170, 187]. This
leads to large values of the harmonic IFCs for the 4th and 8th nearest neighbours
(NNs) [150, 188], which correspond to the 2nd and 3rd NNs along the [001] direc-
tion in the rocksalt structure, respectively. Such non-monotonically decreasing
harmonic IFCs can only be present due to the change in electronic distribution
with atomic displacement as per the Hellmann-Feynman theorem [150]. It has
been argued that, the larger the magnitude of these long-range IFCs (i.e. the
stronger the degree of resonant bonding), the softer the TO mode and lower the
κlatt of these materials [150].

The electronic polarisability relates a small external perturbation to the
resulting change in electron density [189] and is defined as the dipole moment
per unit volume of the crystal cell [16]. The Born effective charge (BEC) tensor
relates, at linear order, the macroscopic polarisation Pmac per unit cell created
along the direction β due to a displacement in the direction α of atoms belonging
to the sublattice l assuming zero electric field [134]:

Z∗l,βα = Ω
|e|

∂Pmac,β
∂ulα(q = 0) . (4.18)

The dielectric permittivity tensor relates Pmac and the macroscopic electric field
εmac,β in the linear regime. Neglecting the contribution from ionic displacements,
we only consider the contribution to the dielectric permittivity tensor from the
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electronic polarisation, dubbed the high-frequency dielectric constant [134]:

ε∞,αβ = δαβ −
4π
Ω

∂2Eel
∂ε∗α∂εβ

(4.19)

where Eel is the total electronic energy of the system, and εα and εβ are the
electric fields along α and β respectively. “High-frequency” in this context
means high-frequency with respect to lattice vibrational frequencies, but low
compared with atomic excitation frequencies [16]. Thus, the BEC tensor relates
the change in polarisation due to lattice displacements, while the high frequency
dielectric permittivity tensor relates changes in the polarisation due to changes
in the electronic density. Further details of the computation of Born effective
charges and dielectric constants from DFPT within the Abinit code are given in
Refs. [134, 135].
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Figure 4.28: Born effective charge as a function of Pb1−xGexTe alloy composition
in the rocksalt phase (red crosses), perpendicular to the trigonal [111] axis in
the rhombohedral phase (green squares), and parallel to the trigonal axis in the
rhombohedral phase (blue circles).

We found that the electronic polarisability of Pb1−xGexTe alloys is indeed
maximized at the phase transition, which is indicative of very strong resonant
bonding [150, 169, 187]. This is illustrated by plotting BECs as a function of
the alloy composition, Fig. 4.28. BECs are typically viewed as an indicator of
ferroelectric instability, and have been found to be considerably larger than nom-
inal ionic values in ferroelectric or nearly ferroelectric materials [190, 191, 192].
In the case of Pb1−xGexTe alloys, BECs are more than twice the nominal ionic
value of +2 for Pb and Ge, and -2 for Te. As proximity to the phase transition is
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Figure 4.29: High-frequency dielectric constant as a function of Pb1−xGexTe alloy
composition in the rocksalt phase (red crosses), perpendicular to the trigonal axis
in the rhombohedral phase (green squares), and parallel to the trigonal axis in
the rhombohedral phase (blue circles).

increased, there is a considerable increase in BECs, indicative of the increase in
electronic polarisability. The high-frequency dielectric constants are also large
in Pb1−xGexTe alloys (see Fig. 4.29), further illustrating the large electronic
polarisability. The dielectric constants increase substantially, almost doubling
in value from PbTe to GeTe, due to their inverse dependence on the average
electronic gap [193].

Figure 4.30: Nearest neighbours within the rocksalt structure of PbTe along the
[001] direction, and their counterparts for the rhombohedral structure of GeTe.

We also find that long-range harmonic IFCs along the [001] direction are
maximized at the phase transition in Pb1−xGexTe alloys where the lattice thermal
conductivity is minimized. The traces of the harmonic IFC tensors for several
different alloy compositions are shown in Figs. 4.31 and 4.32 for the rhombohedral
and rocksalt phases, respectively. In both phases, we see particularly strong IFCs
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atomic distance for several Pb1−xGexTe alloy compositions in the rocksalt phase.

at ∼3 Å, ∼6 Å, and ∼9 Å, which correspond to the 1st, 4th, and 8th NNs in the
rocksalt structure respectively, and their rhombohedral equivalents. IFCs change
continuously between the rocksalt and rhombohedral phases as a consequence of
the second-order phase transition. This can be seen by comparing the IFCs of
Pb0.49Ge0.51Te with those of Pb0.51Ge0.49Te, as shown in Fig. 4.31. As proximity
to the phase transition increases, the magnitudes of the 4th and 8th equivalent
neighbour IFCs increase substantially and reach maximum values at the phase
transition. As discussed earlier, the TO(Γ) frequency reaches its minimal value at
the phase transition, and the maximized anharmonic coupling between soft TO
and acoustic modes results in the minimal κlatt. Thus, we observe the correlation
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between the large long-range IFCs along the [001] direction and the substantially
reduced κlatt as proposed in Ref. [150].

However, in spite of weaker resonant bonds, the anharmonic lattice thermal
conductivity values of the rhombohedral structures are as low as for the rocksalt
structures with a similar proximity to the phase transition when their average
mass difference is neglected. The short-range IFCs which correspond to the 1st

NN increase rapidly in the rhombohedral phase with increasing x with respect
to the 4th and 8th IFCs, as shown in Fig. 4.31. The relative change between
the short-range and the long-range IFCs is much smaller in the rocksalt than
in the rhombohedral phase, which indicates much weaker resonant bonding in
the rhombohedral structures due to the Te displacement. This stark difference
in the strength of resonant bonding between the two phases does not result in
larger values of the anharmonic κlatt of rhombohedral structures compared to
rocksalt structures with the same average mass (Fig. 4.24). This conclusion is
at variance with the previous argument that stronger resonant bonding causes
lower lattice thermal conductivity in rocksalt IV-VI and rhombohedral group-V
materials [150].

4.5 Discussion

4.5.1 Temperature dependence

Under the assumption of the displacive second-order phase transition,
Pb1−xGexTe alloys transform between the rocksalt and rhombohedral phases as
a function of both the composition and temperature [157]. Consequently, the
anharmonic contribution to the lattice thermal conductivity of Pb1−xGexTe will
be minimized at different compositions as a function of temperature. Similarly,
the anharmonic lattice thermal conductivity for a given x will have a dip in the
vicinity of the corresponding transition temperature. The accurate treatment
of these effects would require extending our model to include the temperature
dependence of IFCs, for example, in Refs. [66, 74]. Including temperature
dependent IFCs in our model would thus result in the shift of the composition
at which the phase transition occurs to larger values of x as the temperature
increases. Additionally, the electronic thermal conductivity will be significant in
Ge-rich alloys due to a large intrinsic vacancy concentration that effectively dopes
the material [182, 184]. This combined with mass disorder will lead to a less
pronounced dip in the total thermal conductivity. Nevertheless, the measured
total thermal conductivities of some of the Pb1−xGexTe materials reported in
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Refs. [164, 167] exhibit dips near the transition temperature.

4.5.2 Structure of Pb1−xGexTe alloys
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Figure 4.33: The quasi-binary phase diagram of Pb1−xGexTe alloys, reproduced
from experimental data from Ref. [157] and references therein. The miscibility
gap is shown with black circles, the liquidus and solidus temperatures are shown
in black squares for each alloy composition.

The experimental preparation of single phase Pb1−xGexTe alloys must be
handled with great care to avoid phase separation. In Fig. 4.33 we show the
miscibility gap of Pb1−xGexTe, reproduced from experimental data as measured
by Hohnke et al. [157]. This demonstrates the limits of the two-phase region,
and yields complete solid solubility above 843 K. In order to retain a single
phase alloy, it was necessary to anneal samples at 873 K for a period of 100-
200 hours followed by rapid quenching on a time scale of ∼1 second [157]. This
procedure was successfully applied to all compositions but Pb0.40Ge0.60Te, where
the authors were unable to retain a single phase alloy, due to extremely rapid
phase dissociation of the alloy. The authors stress that while extremely fast
quench rates are necessary, annealling times of 18-24 hours may be sufficient to
retain a single phase [157].

The question of whether there is a displacive or order-disorder soft mode phase
transition in GeTe remains open. Older work on this topic suggested a displacive
phase transition in GeTe [179, 194] with temperature. However, recent work has
highlighted the pitfalls of techniques used in determining its nature [171]. This
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lead to the conclusions of Matsunaga et al. [195] that an order-disorder model is
more consistent with experiment when GeTe films are probed on shorter length
scales than previous works. However, a thorough investigation by Wdowik et
al. [173] has shown that perfectly ordered single crystalline GeTe undergoes a
displacive phase transition with temperature. Experimental observations of an
order-disorder phase transition [195] may be due to local defect structures in
polycrystalline GeTe films. Thus, we have assumed a displacive second-order
phase transition for Pb1−xGexTe alloys within our model.

Furthermore, there exists considerable debate within the literature as to
whether PbTe crystallizes in the ideal rocksalt structure at all temperatures,
or forms local structural dipoles with increasing temperature [162]. This is
supported by Kastberg et al. [196] who claim that the Pb atom off centres by
as much as ∼0.3 Å at room temperature. However, this view is contradicted
by Zhang et al. [197] who attribute the experimental observations to large
amplitude thermal vibrations. Supporting data from extended x-ray absorption
fine structure spectroscopy finds no evidence for an off-centring of the Pb atom
[198]. Further work by Chen et al. [199] claims to have put the issue to rest
after finding no appreciable breaking of the local or global symmetry in PbTe.
Thus, we have assumed within our model that no such local structural dipoles
(also termed ferroelectric nanodomains) form in the rocksalt phase of Pb1−xGexTe
alloys, giving an ideal rocksalt structure.

4.6 Summary

We predict from first principles virtual-crystal simulations that the anharmonic
contribution to the lattice thermal conductivity of Pb1−xGexTe alloys is mini-
mized at the phase transition due to the maximized acoustic-optical anharmonic
interaction. The total lattice thermal conductivity is further reduced due to mass
disorder, which shifts the minimum value into the rhombohedral phase towards
the composition at which scattering due to mass disorder is strongest. The total
lattice thermal conductivity and its anharmonic contribution change continuously
between the rocksalt and rhombohedral phases of the alloy as characteristic for
the second-order phase transition. We show that lattice thermal conductivity
is comparably suppressed in the rocksalt and rhombohedral structures with a
similar proximity to the phase transition. Consequently, we argue that the
structure and its degree of resonant bonding are less critical effects for suppressing
lattice thermal conductivity in comparison to proximity to the phase transition,
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4.6 Summary

average atomic mass, and mass disorder. Thus, tuning the soft optical modes of
Pb1−xGexTe alloys and other materials near soft optical mode phase transitions
may be a promising strategy to increase their thermoelectric figure of merit.
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Chapter 5

Electron-phonon coupling and
mobility of n-type Ge and PbTe

5.1 Introduction

Up to this point, we have concerned ourselves with the computation of lattice
thermal conductivity, largely ignoring other thermoelectric properties, namely the
electrical conductivity, Seebeck coefficient, and electronic thermal conductivity.
In this chapter, we take the first steps in calculating these quantities with the
ultimate goal of predicting the thermoelectric figure of merit of PbTe-based
materials driven near the ferroelectric phase transition. We start by calculating
the electronic mobility, which contains all the information pertinent to electronic
transport properties necessary to compute ZT when coupled with lattice thermal
conductivity calculations. We present results of these mobility calculations for n-
type PbTe and Ge, which serves as a check to ensure correct implementation of the
theory, and compare these results to experiment for the low carrier concentration
and low temperature regime.

Remaining within the BTE-RTA framework, we calculate electronic lifetimes
considering the effects of electron-phonon coupling on the low energy states near
the conduction band minimum [83]. To achieve this, we use first principles
techniques [83, 200] and deformation potential theory [79, 95, 201, 202, 203, 204].
This approach also easily allows us to compare the relative strength of different
electron-phonon coupling mechanisms, such as intervalley, intravalley acoustic
and polar optical scattering. In parallel, we present a discussion of the theoretical
descriptions of the electronic band structures of PbTe and Ge. In contrast to Ge,
the electronic bands of PbTe are notoriously difficult to reproduce within the
DFT-LDA framework due to an inversion of the ordering of states at the band
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5.2 Electronic band structure of Ge and PbTe

gap when the effects of spin orbit interaction are taken into account [205, 206, 207].
Thus, we explore methods beyond DFT such as hybrid functionals to reproduce
the band gap and effective masses of PbTe in agreement with experiment.

We find intravalley acoustic scattering to be the most dominant mechanism
for electron-phonon coupling in Ge, and obtain excellent agreement for electronic
mobility compared to experiment. From our calculations in PbTe polar optical
scattering is the most dominant electron-phonon coupling mechanism in the low
temperature and low carrier concentration regime, with several other scattering
mechanisms forbidden by symmetry. Our calculated mobility of PbTe is in good
agreement with experiment up to 200 K for low carrier concentrations. However,
our calculated mobility differs from experiment by a factor of∼2 at 300 K. Further
work is necessary to resolve these discrepancies, and obtain an accurate ab initio
description of the electronic mobility of PbTe.

5.2 Electronic band structure of Ge and PbTe

In this work, we limit ourselves to considering n-type Ge and PbTe in the low
temperature and low carrier concentration regime. Within this limit, conduction
band minima typically display an energy dispersion in k-vector near the band
edge of the form:

E(k) = Ec +
~2∆k2

‖

2m∗‖
+ ~2∆k2

⊥
2m∗⊥

. (5.1)

where Ec is the energy of the band edge, and ∆k‖ and ∆k⊥ are the compo-
nents of k parallel and perpendicular to the k-vector of the valley minimum,
km. Charge carriers behave as free electrons with effective masses m∗‖ or m∗⊥
depending on the direction of motion; along the longitudinal axis parallel to km,
or along the transverse axes perpendicular to km. We verify this assumption and
extract the values of m∗‖ and m∗⊥ from first principle calculations of the electronic
band structure, along with values of the band gap. We then compare these
quantities to experiment before proceeding with calculations of the electronic
transport properties of Ge and PbTe. Unless otherwise stated, all calculations
following this are performed using HGH pseudopotentials [110] with the Teter-
Pade parametrisation [113] of the LDA exchange-correlation functional [97], using
the Abinit code [132].

Ge has an indirect band gap between the valence band maximum at Γ and
conduction band minimum at L, see Fig. 5.1, which shows the electronic band
structure calculated without spin orbit interaction (SOI). The value of the band

Thermoelectric Properties of PbTe 104 Aoife Rose Murphy



5.2 Electronic band structure of Ge and PbTe

-4

-2

 0

 2

 4

Γ L W X Γ K X

E
ne

rg
y 

(e
V

)
(a)

-1

 0

 1

Γ L W X Γ K X

E
ne

rg
y 

(e
V

)

(b)

Figure 5.1: Electronic band structure of Ge, calculated using the LDA and HGH
pseudopotentials excluding spin orbit interaction (a) showing several valence and
conduction band states, and (b) zoomed in near the conduction band minimum
to highlight the energy ordering of the L, Γ, and ∆ valleys. The energies of the
valence band maximum (blue dashed line) and conduction band minimum (red
dashed line) are also highlighted.

Table 5.1: Electronic band gap and conduction band effective electron masses at
L of Ge calculated using the LDA functional compared to experiment.

Ge LDA (exc. SOI) Experiment
Eg (eV) 0.261 0.744[208]

m∗,c,L‖ /me 1.639 1.640[209]

m∗,c,L⊥ /me 0.083 0.082[209]

gap is considerably underestimated compared to experiment, see Table 5.1, due to
the well known tendency of the LDA functional to underestimate the electronic
band gap in a range of semiconductors [210, 211]. Since the conduction band
minimum in Ge is at the L point, we extract the effective electron masses along
the directions parallel to L (L → Γ) and perpendicular to L (L → W), labelled
m∗,c,L‖ and m∗,c,L⊥ respectively. We find that these effective electron masses
are in extremely good agreement with experiment using the LDA functional.
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This excellent agreement results from the fact that Ge is an indirect band-gap
semiconductor where the conduction band minimum is not energetically close to
other states of the same crystal momentum. Thus, the LDA functional should
characterise electron transport properties involving the L valley very well in Ge.
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Figure 5.2: Electronic band structure of PbTe, calculated using the LDA and
HGH pseudopotentials (a) excluding spin orbit interaction, and (b) including
spin orbit interaction. The energies of the valence band maximum (blue dashed
line) and conduction band minimum (red dashed line) are also highlighted.

In contrast to Ge, PbTe has a direct narrow band gap at the L point
[212, 213, 214], see Fig. 5.2, which shows the electronic band structure of PbTe
calculated excluding SOI in Fig. 5.2(a), and including SOI in Fig. 5.2(b). Within
the LDA, the inclusion of SOI pushes the Σ valley (along the Γ-K direction)
upwards to become the valence band maximum forming an indirect band gap
with the conduction band minimum at L, at odds with experimental observations
[212, 213, 214].

The LDA excluding SOI overestimates the band gap in PbTe, yielding a value
about twice that of experiment, see Table 5.2. This is due to the lack of relativistic
effects which results in an opening of the band gap, counteracting the effect
of the LDA underestimation of the band gap energy [205, 206]. Nevertheless,
effective electron masses are in very good agreement with experiment. Thus,
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Table 5.2: Direct electronic band gap and effective electron masses of PbTe
calculated using the LDA functional including and excluding spin orbit interaction
compared to experimental values measured at 4 K. The sign of the band gap is
determined from the ordering of electronic states at L, as explained in the text.

PbTe LDA LDA Experiment 1 Experiment 2
(exc. SOI) (inc. SOI) Ref. [212] Ref. [213]

Eg (eV) 0.54 −0.32 0.19a 0.19a

m∗,v‖ /me 0.294 0.834 0.255 0.310
m∗,v⊥ /me 0.023 0.622 0.024 0.022
m∗,c‖ /me 0.216 5.295 0.210 0.240
m∗,c⊥ /me 0.037 0.031 0.021 0.024

a increasing to ∼0.3 eV at room temperature [214].

for calculating electronic transport properties of PbTe, we anticipate that the
LDA excluding SOI may give reasonable results within the DFT level of theory.
However, we note that the energy separation of the 1st and 2nd conduction band
states without SOI is considerably smaller than in the case including SOI, which
may lead to inaccuracies in the electron-phonon matrix element calculations.

We confirmed the presence of a positive electronic band gap in PbTe when
SOI is excluded by calculating wavefunction overlaps as follows. Considering
only the 1st electronic states on either side of the Fermi level at zero temperature
(set to 0 eV, see Fig. 5.2) respectively, we labelled the periodic part of the
wavefunction of the state with the lower energy |uk,h〉, and the periodic part
of the wavefunction of the state with the higher energy |uk,e〉. We then computed
the overlap between the periodic part of the wavefunction at L of the lower energy
band, |uL,h〉, with |uk,h〉 and |uk,e〉 respectively, and the overlap of the periodic
part of the wavefunction at L of the higher energy band, |uL,e〉, with |uk,h〉 and
|uk,e〉 respectively, see Figs. 5.3(a) and 5.3(c). The wavevector k is along the Γ-
L-W line, which corresponds to the directions along which we extract the values
of m∗‖ (L → Γ) and m∗⊥ (L → W). We found that the state at L with the lower
energy overlaps more strongly with the lower energy state along Γ-L-W than the
higher energy state, and thus it mainly exhibits the character of the valence band.
Similarly, the state at L with the higher energy overlaps more strongly with the
higher energy state along Γ-L-W, and thus mainly exhibits the character of the
conduction band. This confirms the correct ordering of states at L and a positive
band gap in PbTe when SOI is excluded, and verifies that our effective electron
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Figure 5.3: Electronic band structure of PbTe along the Γ-L-W line calculated
using the LDA (a) excluding SOI and (b) including SOI. A solid red (blue)
line shows a state whose character mostly corresponds to that of the conduction
(valence) band as deduced from wavefunction overlaps. The overlaps of the cell
periodic parts of the wavefunctions between the 1st electronic states counting
upward (labelled as e) and downward (labelled as h) from the zero temperature
Fermi level at L and those states at k are shown (c) excluding SOI and (d)
including SOI. The following wavefunction overlaps are plotted: | 〈uL,e|uk,e〉 |2
(dot-dashed black line), | 〈uL,e|uk,h〉 |2 (dotted red line), | 〈uL,h|uk,h〉 |2 (large-
dashed blue line), | 〈uL,h|uk,e〉 |2 (small-dashed green line).

masses are extracted from physically correct states.
The combination of LDA’s tendency to underestimate the band gap and the

effects of SOI result in an inverted band gap in PbTe. When relativistic effects
are taken into account the previously degenerate 2nd and 3rd conduction and
valence band states split, see Fig. 5.2. This spin orbit splitting causes the valence
band maximum to be repelled upward, while the conduction band minimum is
repelled downward [205, 206]. The resulting band gap is underestimated to such a
degree that the topmost valence band and bottommost conduction band become
interchanged and mix heavily at L [205, 206], which is an issue well known in the
lead chalcogenides [207]. To confirm that this is indeed the case in our calculations
when SOI is included, we again computed the previously defined overlap of the
cell periodic parts of the wavefunctions, see Figs. 5.3(b) and 5.3(d). We found
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that the state at L above the zero temperature Fermi level overlaps more strongly
with the state below the Fermi level away from L, thus |uL,e〉 mainly exhibits the
character of the valence band. Conversely, the state at L below the Fermi level
overlaps more strongly with the state above the Fermi level away from L, thus
|uL,h〉 mainly exhibits the character of the conduction band. This confirms the
presence of an inverted band gap, and as a result, effective masses calculated with
this approach are in very poor agreement with experiment, see Table 5.2.
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Figure 5.4: (a) Bottommost conduction band state of Ge calculated using LDA-
HGH (solid black line) relative to the band minimum, compared to the parabolic
bands fit shown with red and blue dashed lines, for 2/5 of the line L→Γ (parallel
to L) and 1/5 of the line L→W (perpendicular to L). (b) Bottommost conduction
band state of PbTe calculated using LDA-HGH (solid black line) relative to the
band minimum compared to the parabolic bands fit shown with red and blue
dashed lines, for 1/5 of the line L→Γ and 1/5 of the line L→W.

We find that the assumption of parabolic bands holds extremely well for both
Ge and PbTe up to a value of∼0.1 eV, see Figs. 5.4(a) and 5.4(b), which should be
sufficient for transport calculations below 300 K and at low carrier concentrations
circa 1018 cm−3. We determined the parabolic bands by fitting Eq. (5.1) to our
calculated DFT electronic bands in the vicinity of the conduction band minimum,
which also yields the effective electron masses as given previously. In Ge, the
conduction band has almost perfect parabolic behaviour up to energy values of
∼0.3 eV. On the other hand, there are clear deviations from parabolic behaviour
at energies larger than ∼0.1 eV in PbTe, which is most striking along the L→W
lines for energies higher than ∼0.2 eV. However, this non-parabolicity will only
become significant in the high temperature or high carrier concentration regimes,
outside the scope of this work.

Turning our attention to the LDA description of electronic polarisability in
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Table 5.3: Born effective charges and high-frequency dielectric constant of PbTe
calculated with the LDA excluding and including SOI compared to experimental
measurements.

Z∗ (e) ε∞

LDA (exc. SOI) 6.35 34.85
LDA (inc. SOI) 7.47 70.35
Experiment [153, 215] 6.5 31.81

PbTe, the LDA excluding SOI gives values of the Born effective charges and high-
frequency dielectric constant of PbTe in excellent agreement with experiment,
see Table 5.3. On the other hand, the LDA including SOI overestimates the
experimental BECs by ∼ 20%, and gives a value over twice that of experiment
for the high-frequency dielectric constant. In the latter case, the overestimation
is likely due to the closing of the average electronic gap [193], which results from
the repulsion of valence (conduction) states upwards (downwards) when SOI is
taken into consideration. Thus, we anticipate that parameters derived from the
LDA excluding SOI characterise polar optical scattering more accurately than
those obtained from the case including SOI.

5.3 Modelling electronic mobility

The charge carrier mobility within the BTE-RTA is given in Eq. (2.112). First,
we convert the sum over k to an integral over energy:

µ = e

n

∫
dE

∑
n

ρ(E)
(
−∂f

0(E)
∂E

)
v2
nk(E)τnk(E). (5.2)

where ρ(E) is the density of states per spin. Then, we make a number of
assumptions to simplify this expression. Since we are dealing with the linear
(ohmic) regime, we assume carriers are in thermal equilibrium and obey Maxwell-
Boltzmann statistics, where f 0 = e−(Ek−EF)/kBT [200]. This is the approximate
form of the Fermi-Dirac distribution valid when Ek − EF � kBT . The carrier
velocity vk = 1/~∇kE(k) and density of states may be obtained taking the
parabolic band approximation (see Eq. (5.1)), valid for the low temperature and
low carrier concentration regime as discussed, where conduction only happens
through the bottom degenerate conduction bands.

Thus, summing over the longitudinal and transverse directions, we obtain the
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electron mobility as [83, 200]:

µ = 4
9
eNv

kBTn

 1
m∗‖

+ 2
m∗⊥

∫ ∞
Ec

dEe
−E−EF

kBT (E − Ec)ρ(E)τ(E), (5.3)

where Nv is the valley degeneracy, and the density of states per spin at the carrier
energy E is given as [83]:

ρ(E) =
(m∗‖)1/2m∗⊥

√
E − Ec√

2π2~3
Θ(E − Ec), (5.4)

where Θ(E − Ec) is the unit step function, 0 if E − Ec < 0, 1 otherwise. The
carrier concentration is given as [83]:

n = 2Nv(m∗‖)1/2m∗⊥

(
kBT

2π~2

) 3
2

e
EF−Ec
kBT , (5.5)

In practise Eq. (5.3) does not need to be integrated up to infinity, instead we
integrate up to 10 kBT which is sufficient to capture finite electronic occupations
due to the exponential decay of the Boltzmann distribution. τ(E) is calculated
summing over the scattering rates of different electron-phonon coupling mecha-
nisms using Matthiessen’s rule, whose details are given next.

5.4 Electron-phonon coupling

When calculating electron scattering rates due to electron-phonon coupling, we
are only considering n-type Ge and PbTe in the low temperature and low carrier
concentration regime. Thus, we only consider electronic transport involving the
L valleys, i.e.: scattering within an L valley via an acoustic or optical phonon,
and between non-equivalent L valleys. We note that scattering involving the Γ
and ∆ valleys in Ge will become significant at higher temperatures and carrier
concentrations, see Fig. 5.1. However it is trivial to extend the theory to take
these valleys into consideration. Similarly, in PbTe other conduction band valleys
may become significant only at very high temperatures or carrier concentrations,
see Fig. 5.2. Given that PbTe is a polar semiconductor, we must also consider
the Fröhlich interaction (polar optical phonon scattering).

We divide these scattering mechanisms into three groups based on the com-
putational approach used to obtain electron scattering rates. We first consider
scattering between non-equivalent L valleys (intervalley), see Fig. 5.5, and scat-
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Intravalley scattering in PbTe

Figure 5.5: Cartoon illustrating (a) scattering between L valleys (intervalley) via
an X-point phonon and (b) scattering within an L valley (intravalley) in the limit
of q → 0 in PbTe.

tering within an L valley due to an optical phonon (intravalley optical), following
the approach outlined by Murphy-Armando and Fahy [83]. For intravalley
acoustic scattering, we turn to the deformation potential theory approach of
Herring and Vogt [79, 83, 95, 200]. In both cases, we calculate electron-phonon
coupling elements using the DFPT method implemented in the Abinit code
[132, 134, 135]. Finally, to describe polar-optical scattering we turn to the Fröhlich
model as described in Ref. [77]. To reiterate, all DFT calculations from here on are
performed with the LDA exchange-correlation excluding spin orbit interaction,
unless otherwise stated.

5.4.1 Intervalley and intravalley optical scattering

We begin by returning to the electron scattering rate defined in Eq. 2.128 and
setting the electronic populations f 0

mk′ to zero in the limit of low doping, which
we re-write as [83]:

1
τ lnk

= 2π
~

1
Nl

∑
mk′

∑
qs
l2qs
(
F kk′
nm (εmk′ − εnk)n̄qsΘ(εmk′ − εnk)

×F kk′
nm (εnk − εmk′)(n̄qs + 1)Θ(εnk − εmk′)

)
,

(5.6)

where lqs = (~/2mcωqs)1/2, and we have defined:

F kk′
nm (E) =

∑
s

∣∣∣Hmn(k; qs)
∣∣∣2δ(E − ~ωqs), (5.7)

in terms of the electron-phonon matrix elements Hmn(k; qs), defined previously
in Eq. (2.119). The first term in Eq. (5.6) is due to phonon absorption and the
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second due to phonon emission.
For intervalley and intravalley optical scattering near the conduction band

valley minima, where carriers are concentrated, the electron phonon coupling
elements have a weak dependence on k and k′. Thus, we may approximate
F kk′
nm as effectively being from a valley α (state |ψnk〉) to valley β (state |ψmk′〉),
F kk′
nm ≈ Fαβ [83]. This allows us to calculate the scattering rate for an entire

valley from that of the valley minima, and use Eq. (5.6) instead of the momentum
relaxation time [142].

Converting Eq. (5.6) from a summation over k′ to an integral over energy, and
using the density of states in Eq. (5.4), the scattering rate for phonon absorption
is [83]:

1
τ l,−α→β(Ek)

=
nvΩ

√
(m∗,β⊥ )2m∗,β‖

~2
√

2πmc

∫ ∞
Ek

dEk′

√
Ek′ − Eβ

c Fαβ(Ek′ − Ek)
Ek′ − Ek

n(Ek′ − Ek),

(5.8)
and for phonon emission [83]:

1
τ l,+α→β(Ek)

=
nvΩ

√
(m∗,β⊥ )2m∗,β‖

~2
√

2πmc

∫ Ek

Eβc

dEk′

√
Ek′ − Eβ

c Fαβ(Ek − Ek′)
Ek − Ek′

(n(Ek−Ek′)+1),

(5.9)
where Ω is the volume of the primitive cell, and Eβ

c is the minimum energy of
the valley β. nv is the number of valleys an electron can scatter to, and equals
1 for intravalley scattering, and 3 for intervalley scattering. Ek and Ek′ are the
energies of the initial and final states, and Ek′ −Ek and Ek−Ek′ are the phonon
energies for the two processes respectively. Integration is performed up to a value
of Ek +10kBT . For Ge, intervalley scattering via an X-point phonon is limited to
the LA and LO polarisations as per selection rules [216]. Electron scattering rates
due to these types of electron-phonon coupling for Ge are plotted in Fig. 5.6.

The deformation potentials for intervalley and optical intravalley scattering
are defined as a function of electron-phonon matrix elements as [83]:

D =
√∑

s

∣∣∣Hmn(k; qs)
∣∣∣2 (5.10)

where s is over optical modes for intravalley optical scattering, DopL, and s is over
all modes for intervalley scattering, DLL. We note that in Ge s is only summed
over longitudinal modes for intervalley scattering due to selection rules [216]. For
Ge, we find excellent agreement with previous values from the literature and good
agreement with experiment, see Table 5.4.
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Figure 5.6: Electron scattering rates in an L valley as a function of electronic
energy at 300 K in Ge. Scattering is due to electron-phonon coupling from
intervalley emission (solid black line) and absorption (dashed red line), and
intravalley optical emission (dotted blue line) and absorption (dot-dashed green
line).

Table 5.4: Intervalley and intravalley optical deformation potentials for Ge com-
pared to previous calculations from the literature and experiment.

Our results Previous
calculations

Experiment

[83] [80, 217]
DLL(eV/Å) 1.12 1.11 3.00
DopL(eV/Å) 5.09 5.11 5.50

Calculated intervalley and intravalley optical scattering rates are zero for
PbTe, due to the fact that scattering between L valley minima via an X phonon,
and scattering within an L valley via a Γ phonon is forbidden by symmetry
[218, 219]. In PbTe, the centre of inversion is the Pb or Te site, and thus all X-
point and Γ-point phonons have odd parity under inversion symmetry [220]. Odd
parity phonons can only couple between electronic states of opposite parity, i.e.
odd and even electronic states [220]. Thus, the electron-phonon matrix elements
for intervalley and intravalley optical scattering in the conduction band vanish
exactly at the L point. This is in contrast to Ge where optical phonons at X
and Γ have even parity under inversion symmetry, since the centre of inversion
is between two Ge atoms, and contribute to the electron-phonon scattering rate.
We note that this argument also holds for scattering between L points in the
valence band in PbTe, while interband scattering (between the conduction and
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valence bands) is allowed. Crucially, intervalley scattering via an X phonon and
intravalley scattering via a Γ phonon remain forbidden by symmetry when spin
orbit interaction is taken into account, as confirmed by our DFPT calculations.

5.4.2 Intravalley acoustic scattering

5.4.2.1 Deformation potential theory

To calculate electronic scattering rates due to long-wavelength acoustic mode
phonons, we employ the deformation potential approach introduced by Bardeen
and Shockley [95], which was generalised by Herring and Vogt [79] to include
transverse as well as longitudinal phonons. We follow the procedure outlined by
Fischetti and Laux [200] and Murphy-Armando and Fahy [83]. The fundamental
idea of deformation potential theory is that the matrix element k → k ± q for
absorption or emission of a long-wavelength acoustic phonon is practically equal
to the shift of the band energy which would be produced from a homogeneous
strain equal in magnitude to the local strain at a point r due to a phonon qs.
A deformation potential thus describes the change in electronic band energies at
different parts of the Brillouin zone due to static distortions of the lattice.

To express this idea in another way, the expectation value of the partial
derivative of the electronic Hamiltonian with respect to acoustic displacement
may be approximated as [95]:

∂He

∂u(r)u(r) ≈ ∂εnk

∂u(r)u(r) (5.11)

where ∂εnk/∂u(r) is the shift of the electronic energy of a non-degenerate band
due to a static displacement of the unit cell u(r), and is related to the deformation
potentials of the crystal. We may describe the interaction between electrons and
acoustic phonons with a slowly varying potential dependent on the deformation
potential tensor Ξαβ [77, 79]:

Ĥep =
∑
αβ

εαβ(r)Ξαβ, (5.12)

where ε(r) is the local strain tensor at r, given as εαβ = 1
2(∂uα

∂rβ
+ ∂uβ

∂rα
) [221].

The displacement u(r) of acoustic modes is written as [77]:

u(r) = N
− 1

2
l

∑
qs
lqses(q)

(
âqs + â†−qs

)
eiq·r, (5.13)
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where es(q) is the unit polarisation vector. The strain tensor components then
read [77]:

εαβ(r) = N
− 1

2
l

∑
qs

i

2 lqs
(
âqs + â†−qs

) (
esα(q)qβ + esβ(q)qα

)
eiq·r. (5.14)

Substituting into Eq. (5.12) we arrive at the Hamiltonian describing interaction
between electrons and long-wavelength acoustic mode phonons [77]:

Ĥep = N
− 1

2
l

∑
qs

i

2 lqs
(
âqs + â†−qs

)
eiq·r

∑
αβ

Ξαβ

(
esα(q)qβ + esβ(q)qα

)
. (5.15)

We then insert the above Hamiltonian into Fermi’s Golden Rule to obtain the
electron scattering rate:

1
τ lnk

=2π
~

1
Nl

∑
mk′

∑
qs
l2qs
∣∣∣ 〈umk′ |

1
2
∑
αβ

Ξαβ

(
esα(q)qβ + esβ(q)qα

)
|unk〉uc

∣∣∣2
×
((
n̄qs + 1

2 ∓
1
2

)
δ (εnk − εmk′ ± ~ωqs) δk±q−k′,G

)
,

(5.16)

where the upper sign is for phonon absorption, and the lower for phonon emission.
The cell periodic part of the Bloch function, unk, does not vary rapidly with k
over states near the band edge, where charge carriers are concentrated. Thus we
may assume unk ≈ unk±q to obtain 〈umk±q|unk〉uc = 1 for parabolic bands [77].
For simplicity, we define C = 1/2∑αβ Ξαβ

(
esαb(q)qβ + esβb(q)qα

)
to obtain:

1
τ lnk

= 2π
~

1
Nl

∑
mk′

∑
qs
l2qs|C|2

((
n̄qs + 1

2 ∓
1
2

)
δ (εnk − εmk′ ± ~ωqs) δk±q−k′,G

)
.

(5.17)
We now consider the momentum relaxation time for a simple case, a longitu-

dinal phonon in a cubic crystal with a spherical band following the approach in
chapter 3 of Ref. [77]. For the Γ valley shear strains do not produce a change in
energy, and thus it can be shown that C = ΞΓ

dq, where Ξd is the dilatation
deformation potential and corresponds to the shift in band energy due to a
dilatation in the two directions normal to the axis of the valley in consideration.
We may approximate n̄qs ≈ (kBT )/(~ωqs), assuming that the energy of a phonon
is much less than the energy of an electron. It follows in the limit of n̄qs � 1 that
the rates of phonon emission and absorption processes become identical. Finally,
neglecting the phonon energy ~ωqs in the argument of the delta function since
only very low energy phonons are involved (the quasi-elastic approximation) [142],
and accounting for the factor (1− cos(θkk′)), the momentum relaxation time for
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absorption or emission processes in this case is given as [77]:

1
τ

= (2m∗,Γ) 3
2kBT

4π~4cL
(ΞΓ

d )2
√
Ek − Ec, (5.18)

where m∗,Γ is the effective mass of the Γ valley, and cL is the average elastic
constant for longitudinal modes.

Herring and Vogt generalised deformation potential theory to include lon-
gitudinal and transverse acoustic phonons in a semiconductor with anisotropic
scattering [79, 95]. Considering the Γ, L and X valleys of a cubic material,
the deformation potential tensor consists of two linearly independent terms, Ξd,
and Ξu. Ξu is the uniaxial deformation potential, and corresponds to a uniaxial
stretch along the direction of the valley in consideration, and a corresponding
compression perpendicular to this so that volume is preserved. For the [111] L
valley, the diagonal terms of the deformation potential tensor are given as [79]:

Ξαα = ΞL
d + ΞL

u

3 , (5.19)

with the non-diagonal terms (α 6= β) given as [79]:

Ξαβ = ΞL
u

3 . (5.20)

In this case, the electron-phonon coupling Hamiltonian can be written as [83,
201, 202]:

Hep = ΞL
dTr[ε(r)] + ΞL

u(k̂L · ε(r) · k̂L). (5.21)

where k̂L is a unit vector parallel to the k-vector of the L valley.
Herring and Vogt obtained the angular dependences of the momentum relax-

ation times for anisotropic valleys by interpolating the calculated squared matrix
elements along symmetry directions of the phonon wavevector with spherical
harmonics. For the directions parallel and perpendicular to the k-vector of a
given valley these momentum relaxation rates are written as [79]:

1
τ‖

=
3(m∗‖m∗2⊥ ) 1

2kBT

2 3
2π~4cl

√
Ek − Ec

[
ξ‖Ξ2

d + η‖ΞdΞu + ζ‖Ξ2
u

]
, (5.22)

1
τ⊥

=
3(m∗‖m∗2⊥ ) 1

2kBT

2 3
2π~4cl

√
Ek − Ec

[
ξ⊥Ξ2

d + η⊥ΞdΞu + ζ⊥Ξ2
u

]
, (5.23)

where cl = c12 + 2c44 + 3
5(c11 − c12 − 2c44). ξ‖, η‖, ζ‖, ξ⊥, η⊥ and ζ⊥ are the

deformation potential coefficients, defined in terms of elastic constants, effective
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masses, and integrals over the scattering probability, as per Table VI of Ref. [79].
We have taken elastic constants from experimental measurements of Ge [222]
and PbTe [223, 224] at room temperature respectively. Our calculated values of
these coefficients are given in Table 5.5, which for Ge agree very well with those
reported in Ref. [79].

Table 5.5: Calculated deformation potential coefficients for the L valleys of Ge
and PbTe.

ξ‖ η‖ ζ‖ ξ⊥ η⊥ ζ⊥

Ge 1.23 2.32 1.17 1.31 1.63 0.91
PbTe 1.57 2.83 2.34 1.36 1.46 2.31

Given the above expressions for the momentum relaxation times in terms
of deformation potentials, we now detail how Ξu and Ξd may be calculated.
Contrasting the electron scattering rate of Eq. (5.17) with that of Eq. (2.128), we
find:

C = 1
2
∑
αβ

Ξαβ

(
esα(q)qβ + esβ(q)qα

)
= Hnn(k; qs), (5.24)

where C is determined by the phonon strain tensor and the acoustic deformation
potentials. This may be calculated using the DFPT method implemented in the
Abinit code [132, 134, 135], as previously discussed.

We now deduce values of C in terms of Ξu and Ξd accounting for the directions
of the strain polarisations (given in Table III of Ref. [79]) and q. For a transverse
acoustic phonon along [010] we obtain:

C = 1
3ΞL

uq, (5.25)

and for a longitudinal acoustic phonon along [01̄1] we obtain:

C = ΞL
dq. (5.26)

These values of C/q hold to be constant in the limit of q → 0, with C deviating
from linear behaviour at larger q. Thus, we extract the deformation potentials
from the linear term of a quadratic fit to Hnn(k; qs) versus |q| for the specified
phonon direction and polarisation. For the L valley we calculate the electron-
phonon matrix elements coupling states L and L + q (labelled as L → L + q),
as well as the matrix elements coupling states L− q/2 and L + q/2 (labelled as
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L−q/2→ L+ q/2). We then extract the deformation potentials from quadratic
fits to both sets of coupling elements respectively.

5.4.2.2 Deformation potentials of Ge and PbTe
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Figure 5.7: Calculated electron-phonon intravalley matrix elements in Ge as a
function of phonon momentum |q|, for transitions L→ L+q (red crosses) and L−
q/2→ L+ q/2 (blue pluses). These yield (a) the uniaxial deformation potential,
where 3C = ΞL

u|q| for an acoustic transverse phonon along [010], and (b) the
dilatation deformation potential, where C = ΞL

d |q| for an acoustic longitudinal
phonon along [01̄1]. Quadratic fits to the matrix elements are shown with solid
red and dashed blue lines. a0 is the lattice constant of Ge.

Table 5.6: Deformation potentials for Ge compared to previous results from the
literature and experiment. Deformation potentials are extracted from a quadratic
fit to the L → L + q matrix elements, and also from a quadratic fit to the
L− q/2→ L + q/2 matrix elements (in brackets).

Our results Previous calculations Experiment
ΞL
u (eV) 16.67 (16.83) 16.98[83], 16.80[200] 16.20[225]

ΞL
d (eV) −6.46 (−6.54) −6.27[83], −4.43[200] −12.30[226]

The deformation potentials of Ge agree very well with previous results from
the literature, and reasonably well with experiment, see Table 5.6. Fig. 5.7(a)
shows the electron-phonon matrix elements for transitions L → L + q and L −
q/2→ L+q/2 for a transverse acoustic phonon along [010], and Fig. 5.7(b) shows
the matrix elements for these same transitions for a longitudinal acoustic phonon
along [01̄1]. As the q-vector becomes larger, the deviations from linearity, and
thus from the deformation potential approximation, become larger. Along [010]
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the deviation from linearity is relatively small, and the agreement between the
matrix elements coupling states L→ L + q and L− q/2→ L + q/2 is excellent,
see Fig. 5.7(a). However, along q = [01̄1] there is a substantial deviation from
linearity, and a significant disparity between the L→ L+q and L−q/2→ L+q/2
matrix elements, see Fig. 5.7(b). Nevertheless, as q → 0 we see that the linear
terms of the quadratic fits to the L → L + q and L − q/2 → L + q/2 matrix
elements are nearly identical, resulting in values of ΞL

u and ΞL
d which differ by

no more than ∼ 2% from each other respectively, see Table 5.6. We note that
this approach yields the absolute values of the deformation potentials only. Their
signs are determined from an alternative method that calculates the energy shift
of the conduction band due to strain, and will be discussed later in section 5.7.
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Figure 5.8: Calculated electron-phonon intravalley matrix elements in PbTe as
a function of phonon momentum |q|, for transitions L → L + q (red crosses)
and L− q/2 → L + q/2 (blue pluses). These yield (a) the uniaxial deformation
potential, where 3C = |ΞL

u||q| for an acoustic transverse phonon along [010],
and (b) the dilatation deformation potential, where C = |ΞL

d ||q| for an acoustic
longitudinal phonon along [01̄1]. Quadratic fits to the matrix elements are shown
with solid red and dashed blue lines. a0 is the lattice constant of PbTe.

Fig. 5.8(a) shows the electron-phonon matrix elements of PbTe for transitions
L → L + q and L − q/2 → L + q/2 for a transverse acoustic phonon along
[010], and Fig. 5.8(b) shows the matrix elements for these same transitions for a
longitudinal acoustic phonon along [01̄1]. The uniaxial deformation potential of
PbTe agrees reasonably well with experimental values and very well with respect
to a previously calculated value of ΞL

u = 8.29 eV [227], see Table 5.7. A value
of ΞL

u = 3 eV was obtained from piezoresistance measurements on n-type PbTe,
whereas a value of ΞL

u = 4.5 eV was obtained from the ultrasonic technique, see
Refs. [228, 229] and references therein. There is a small deviation from linearity of
the electron-phonon matrix elements along [010] in PbTe, and excellent agreement
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Table 5.7: Deformation potentials for PbTe compared to previous results from the
literature and experiment. Deformation potentials are extracted from a quadratic
fit to the L → L + q matrix elements, and also from a quadratic fit (where we
enforce a positive linear term and neglect the matrix elements that are very close
to zero) to the L− q/2→ L + q/2 matrix elements (in brackets).

Our results Previous calculation Experiment
ΞL
u (eV) 7.23 (7.37) 8.29 [227] 3, 4.5 [228]

ΞL
d (eV) 1.92 (0.08) −4.36 [227] 21− 22a [228]

a Obtained by fitting a model to electronic transport measurements.

between the L→ L+q and L−q/2→ L+q/2 coupling elements, see Fig. 5.8(a),
with a ∼ 2% difference in our calculated values of ΞL

u. However, along [01̄1] there
is a break from linearity and a noticeable difference between the L → L + q
and L − q/2 → L + q/2 coupling elements, see Fig. 5.8(b). In particular, the
matrix elements L − q/2 → L + q/2 increase rapidly with q and its first order
term goes to zero as q → 0, see the blue crosses in Fig. 5.8(b). In this case, we
calculate a value of ΞL

d = 0.08 eV from a quadratic fit to the L− q/2→ L + q/2
transition where we enforce the linear term to be positive and neglect the matrix
elements that are very close to zero. On the other hand, our extracted value of
ΞL
d from the L → L + q transition is 1.92 eV. Again, we deduced the sign from

an alternative calculation of band shifts due to strain as described in section
5.7. Our calculated values of ΞL

d are in reasonable agreement with the previously
calculated value of ΞL

d = −4.36 eV [227]. However, they are in poor agreement
with the value of ΞL

d = 21 − 22 eV estimated by Ravich et al. [228] by fitting a
model to electronic transport measurements. This discrepancy will be discussed
in more detail in a later section. We note that the previously calculated values
of ΞL

u = 8.29 eV and ΞL
d = −4.36 eV were obtained from first principles with an

early, non-self-consistent augmented plane wave method [227].

5.4.3 Fröhlich interaction

In polar semiconductors there is another electron-phonon coupling mechanism to
consider: Fröhlich interaction. This arises from the longitudinal optical motion
of two oppositely charged ions generating a macroscopic electric field with which
electrons interact. This interaction is so strong that polar optical scattering is
the most dominant mechanism in group III-V and II-VI compounds [77].

For PbTe we need an estimate of the strength of Fröhlich interaction to
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compare with intravalley acoustic scattering to see how both mechanisms limit
the electronic mobility. Thus, we turn to the Fröhlich model as laid out in chapter
3 of Ref. [77]. The basic polar interaction energy is given by [77]:

Ĥ = − 1
ε0

∫
D(R) ·P(R)dR. (5.27)

where ε0 is the permittivity of free space. D(R) is the electric displacement at
R associated with an electron at r, which we take as simply [77]:

D(R) = −∇
(

ē

4π|r−R|
e−q0|r−R|

)
, (5.28)

where q0 is the reciprocal Debye screening length, and ē is the electronic charge
containing its sign. P(R) = e∗ulbopt/Ω is the polarisation for an optical displace-
ment and e∗ is the magnitude of the Born effective charge on the atoms [77]:

e∗ =
(
mrΩω2

0ε
2
0

( 1
ε∞
− 1
εs

)) 1
2
, (5.29)

where εs is the static dielectric constant, mr is the reduced mass of the two atoms
in the unit cell, Ω is the primitive cell volume, and ω0 is the longitudinal optical
mode frequency at Γ.

Thus, for a long-wavelength optical displacement, we obtain the Hamiltonian
[77]:

Ĥ = −N−
1
2

l

∑
qs

ēe∗

Ωε0
q

q2 + q2
0

∑
b

(
~

2mbωqs

) 1
2

esb(q)
(
âqs + â†−qs

)
eiq·r. (5.30)

This may be inserted into Fermi’s Golden Rule to obtain the momentum relax-
ation time:

1
τ

= Ω
8π2mrω0

(
ēe∗

Ωε0

)2

×
∫ q2

(q2 + q2
0)2

((
n̄qs + 1

2 ∓
1
2

)
δ (εnk − εmk′ ± ~ωqs) δk±q−k′,G

)
dk′,

(5.31)
where we assume parabolic bands, and again the upper sign in the above equation
is for phonon absorption processes, with the lower for phonon emission. However,
we note that the momentum relaxation time may not be valid for polar-optical
phonon scattering due to the large energy exchange that takes place between
electrons and phonons. In principle, the BTE should be solved self-consistently
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to account for these processes. Nevertheless, since PbTe has a very small LO
frequency (∼14 meV) compared to most other materials, the use of the momentum
relaxation time may be appropriate for all but the lowest temperatures.

Within the low carrier concentration regime, we may neglect the effects of
screening, and set q0 = 0. Thus, we obtain the momentum relaxation rate [77]:

1
τ

= e2ω0

4π~vk

( 1
ε∞
− 1
εs

)(
n(ω0)

(
1 + ~ω0

Ek

) 1
2

+ [n(ω0) + 1]
(

1− ~ω0

Ek

) 1
2

+ ~ω0

Ek

[
− n(ω0) sinh−1

(
Ek
~ω0

) 1
2

+ [n(ω0) + 1] sinh−1
(
Ek
~ω0
− 1

) 1
2
])
.

(5.32)
where the phonon absorption and emission terms have been weighted by the re-
spective changes in momentum. We implement this model of Fröhlich interaction
for PbTe in the following section, and obtain the electronic mobility limited by
polar optical interaction.

5.5 Electron mobility

We calculate electronic lifetimes τ summing over electron-phonon coupling mech-
anisms using Matthiessen’s rule [16]:

1
τ

= 1
τintervalley

+ 1
τintravalley optical

+ 1
τintravalley acoustic

+ 1
τpolar optical

. (5.33)

We then calculate the electronic mobilities of Ge and PbTe inserting τ into
Eq. (5.3).

Intravalley acoustic scattering is by far the most dominant contribution lim-
iting the electronic mobility of Ge, see Fig. 5.9. We note that intravalley optical
scattering becomes more significant with higher temperatures, while even at room
temperature intervalley scattering does not play a significant role. We also find
very good agreement for the electronic mobility of Ge compared with experimen-
tal measurements of a single crystalline sample with a carrier concentration of
2.4×1014 cm−3 at room temperature [230], see Fig. 5.10. The contribution due to
ionized impurity scattering has been subtracted from experimental measurements
assuming it follows the Brooks-Herring relation [80].

The electronic mobility of PbTe limited by polar optical scattering is one order
of magnitude lower than that of intravalley acoustic scattering, see Fig. 5.11. In
our model, the contributions of intervalley and intravalley optical scattering are
zero, forbidden by symmetry as discussed. While there remain questions as to the

Thermoelectric Properties of PbTe 123 Aoife Rose Murphy



5.5 Electron mobility

10
4

10
5

10
6

10
7

 100  150  200  250  300

M
o

b
il

it
y

 (
cm

2
/V

s)

Temperature (K)

Intervalley
Intravalley optical
Intravalley acoustic
Total

Figure 5.9: The calculated electronic mobilities of Ge limited by intervalley (green
dot-dashed line), intravalley optical (dashed red line) and intravalley acoustic
(dotted blue line) scattering. The total electronic mobility of Ge limited by
electron-phonon coupling is shown by the solid black line.
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Figure 5.10: Calculated electronic mobility of Ge compared to measurements of
a single crystalline sample by Glicksman [230].

reliability of the calculated deformation potentials of PbTe, notably Ξd, it is clear
that Fröhlich interaction is by far the most dominant electron-phonon scattering
mechanism in PbTe for low temperatures and low doping concentrations. Further,
we find good agreement between the electronic mobility of PbTe compared to
experimental measurements at 100− 200 K of a single crystalline sample with a
carrier concentration of 1×1018 cm−3 by Allgaier and Scanlon [231], see Fig. 5.12.
However, at 300 K our calculated mobility differs from experiment by a factor of
∼2.

There are several outstanding issues with our calculation that must be resolved
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Figure 5.11: The calculated electronic mobilities of PbTe limited by intravalley
acoustic (dotted blue line) and polar optical (dashed red line) scattering. The
total electronic mobility of PbTe due to electron-phonon coupling is shown by
the solid black line.
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Figure 5.12: Calculated electronic mobility of PbTe compared to experimental
measurements by Allgaier and Scanlon [231].

to obtain good agreement with experiment at room temperature. The most
notable of these issues is the discrepancy between our calculated deformation
potentials for PbTe and their values within the literature [227, 228]. This may
stem from the inaccurate energy separation of the 1st and 2nd conduction band
states in LDA without SOI, potentially leading to errors with the calculation of
electron-phonon matrix elements. Thus, a higher level of theory is required to
properly describe the electronic band structure of PbTe before progress may be
made on this issue.
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5.6 Electronic band structure from hybrid func-
tionals

There exist multiple issues with the LDA description of the electronic band struc-
ture of PbTe for the purposes of calculating electronic transport due to electron-
phonon coupling. These include the mixing of states at the band gap when SOI
is included, which results in poor description of effective electron masses, or the
inaccurate energy separation of the 1st and 2nd conduction bands when SOI is
neglected. Thus we move to a higher level of theory beyond DFT to reproduce
the electronic band structure of PbTe, in order to accurately describe the energy
separation and curvature of the states near the band gap. We use the Vienna
ab initio simulation package (VASP) [232, 233] to perform our electronic band
structure calculations, which has recently been expanded to include a number
of hybrid functionals [234]. The basis set for the one-electron wave functions is
constructed with the Projector Augmented Wave (PAW) method [235, 236], a
generalised form of the pseudopotential. In its standard mode VASP performs
a fully relativistic calculation for core electron states, and treats valence states
using a scalar relativistic approximation [237]. The effects of spin orbit coupling
are included with a second variation procedure [237]. We note that we read in
VASP’s wavefunction files with the use of the WaveTrans code [238, 239]. All
calculations presented from here on are performed with the VASP code, except
where noted.

Hybrid functionals are constructed replacing some proportion of exchange and
correlation energies from DFT with those from the exact Hartree-Fock solution
[240], significantly improving the accuracy of electronic structure properties com-
pared to experiment. One possible method to determine this mixing proportion
of DFT and Hartree-Fock terms is by fitting to a dataset of measured atomisation
energies, such as is done for B3LYP [237, 241]. Alternatively, in the case of PBE0,
the correlation energy is taken as per DFT, with the exchange energy consisting
of a portion a from Hartree-Fock theory, with the remaining portion (1−a) from
DFT [241]:

EPBE0
xc = aEHF

x + (1− a)EPBE
x + EPBE

c , (5.34)

where the value of the mixing parameter was found to be a = 1/4 from pertur-
bation theory [241]. The inclusion of exchange energy only from Hartree-Fock
theory helps to cancel out some of the notorious single electron “self interaction
error” [242]. However, the computation of long-range integrals can be expensive in
large solids and systems with metallic properties. Heyd, Scuseria, and Ernzerhof
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[243] introduced the concept of a screened hybrid functional, modifying PBE0 to
achieve significantly lower computational cost. A screened Coulomb potential is
used to screen the long range part of the Hartree-Fock exchange, which is then
replaced with the corresponding long range exchange as per DFT:

EHSE
xc = 1

4E
HF,SR
x (µ) + 3

4E
PBE,SR
x (µ) + EPBE,LR

x (µ) + EPBE
c (5.35)

where SR and LR signify short range and long range terms respectively. µ is
the range separation parameter which determines the screening, and thus defines
the range of Hartree-Fock correction. It has been empirically determined that a
value of µ ≈ 0.2 − 0.3 Å−1 is optimum for predicting electronic band structure
properties [243, 244]. In VASP, setting µ = 0.3 Å−1 gives the HSE03 functional,
and setting µ = 0.2 Å−1 yields the HSE06 functional [243, 245, 246, 247].

The effectiveness of screened hybrid functionals [243] in capturing structural,
elastic, and electronic properties has previously been shown for a wide range
of semiconductors [244, 248, 249]. In particular, the documented ability of the
HSE03 functional to correctly reproduce the band gap and correct ordering of
states with the inclusion of SOI in lead chalcogenides [205] is the main motivation
for its use in this work. We show the electronic band structure of PbTe calculated
with the HSE03 functional including SOI in Fig. 5.13.
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Figure 5.13: Electronic band structure of PbTe, calculated using the HSE03
hybrid functional and PAW potentials including spin orbit interaction. The
energies of the valence band maximum (blue dashed line) and conduction band
minimum (red dashed line) are also highlighted.

The HSE03 functional including SOI reproduces the band gap and effective
electron masses of PbTe to excellent agreement with experiment and previous
hybrid functional and quasi-particle self-consistent GW (QSGW ) calculations,
see Table 5.8. The agreement of the band gap with experiment is improved by
the inclusion of the semicore 5d10 electrons of Pb in the valence region alongside
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Table 5.8: The electronic band gap and effective electron masses of PbTe calcu-
lated with the PBE, HSE03, and HSE06 functionals respectively including SOI
compared to HSE03 and quasi-particle self-consistent GW calculations from the
literature and experiment, “+sc” signifies the inclusion of semicore electrons (5d10

of Pb) in the valence region.

PBEa HSE03a HSE06a HSE03b QSGW Exp. 1 Exp. 2
(+sc) (+sc) (+sc) [205] [207] [212] [213]

Eg (eV) 0.081 0.237 0.325 0.20 0.29 0.19c 0.19c

m∗,v‖ /me 0.618 0.341 0.411 0.296 0.338 0.255 0.310
m∗,v⊥ /me 0.184 0.030 0.036 0.029 0.029 0.024 0.022
m∗,c‖ /me 0.362 0.246 0.277 0.223 0.247 0.210 0.240
m∗,c⊥ /me 0.120 0.027 0.033 0.027 0.027 0.021 0.024

a Calculated using the theoretically predicted lattice constant.
b Calculated using the low temperature experimental lattice constant.
c increasing to ∼0.3 eV at room temperature [214].

the 6s26p2 states of Pb and 5s25p4 states of Te typically included in ab initio
pseudopotential calculations. The excellent agreement of the effective masses
with experiment is in part due to the fact that HSE03 functional obtains the
correct ordering of states at the band gap, which we confirmed by computing
the previously defined overlap of the cell periodic parts of the wavefunctions. We
found that the wavefunction of the state at L below the band gap has the character
of the valence band, while the state above the band gap has the character of the
conduction band, see Figs. 5.14(a) and 5.14(c). Thus, there is no mixing of the
conduction and valence bands as seen using the LDA with SOI, see Fig. 5.15(b)
[205]. Furthermore, the valence band maximum is found at L, not Σ as was the
case for the LDA including SOI. The HSE03 functional also captures a much larger
energy separation of the 1st and 2nd conduction band states compared to the LDA
without SOI, see Fig. 5.15(a). This potentially resolves any issues whereby the
2nd conduction band is interfering with the calculation of electron-phonon matrix
elements near the conduction band minimum. The HSE03 functional obtains a
band gap and effective masses that are in better agreement with experiment than
those calculated using the HSE06 functional. Thus, we use the HSE03 hybrid
functional for calculations of PbTe here on.

The PBE functional including SOI obtains a very narrow band gap and poor
effective masses compared to experiment, see Table 5.8, further demonstrating
the necessity of moving to a higher level of theory beyond DFT-LDA/PBE.
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Figure 5.14: Electronic band structure of PbTe along the Γ-L-W line including
SOI calculated using (a): the HSE03 hybrid functional, and (b): the PBE func-
tional. A solid red (blue) line shows a state whose character mostly corresponds
to that of the conduction (valence) band as deduced from wavefunction overlaps.
The overlaps of the cell periodic parts of the wavefunctions between the 1st
electronic states counting upward (labelled as e) and downward (labelled as h)
from the zero temperature Fermi level at L and those states at k are shown for (c):
the HSE03 hybrid functional and (d): the PBE functional. The following wave-
function overlaps are plotted: | 〈uL,e|uk,e〉 |2 (dot-dashed black line), | 〈uL,e|uk,h〉 |2
(dotted red line), | 〈uL,h|uk,h〉 |2 (large-dashed blue line), | 〈uL,h|uk,e〉 |2 (small-
dashed green line).

Interestingly, using the theoretically predicted 0 K lattice constant of 6.568 Å,
we obtain a positive band gap of 0.08 eV with this functional, unlike for LDA-
HGH calculations which include SOI, see Table 5.2. However, using a room
temperature experimental value of 6.443 Å [205], we predict a negative band gap
of −0.04 eV with the PBE functional. We confirmed mixing of the conduction
and valence band states by computing the previously defined overlaps of the
cell periodic parts of the wavefunctions of the states above and below the zero
temperature Fermi level at this experimental lattice constant, see Figs. 5.14(b)
and 5.14(d), in agreement with the literature [205]. This suggests that the DFT-
PBE framework is extremely sensitive to the value of the lattice parameter used,
with small changes to its value resulting in a positive or negative band gap. Thus,
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Figure 5.15: Electronic bands for PbTe calculated using the HSE03 functional
including SOI (solid black lines) compared with those calculated using the LDA
functional (a) excluding SOI (dashed blue lines) and (b) including SOI (dashed
red lines).

the PBE is insufficient to describe the electron band structure of PbTe, requiring
the use of hybrid functionals.

Table 5.9: Hydrostatic pressure gap coefficients for PbTe calculated with the
LDA, PBE, and HSE03 functionals with and without SOI, compared to experi-
mental measurements at 4 K, 7 K, and 300 K. Pressure was simulated by setting
the lattice constant to 0.999×a0, where a0 is its theoretically predicted equilibrium
value.

dEg/dP (inc. SOI) dEg/dP (exc. SOI)
(×10−6 eV/Bar) (×10−6 eV/Bar)

LDAa +2.1 −4.6
PBE −4.9 −4.7
HSE03 −7.0 −
Exp. [215, 218, 224] −7.4, −7.5 −7.4, −7.5

a calculated with Abinit

We further confirm the accurate description of the electronic band structure
of PbTe using the HSE03 functional by comparing the calculated hydrostatic
pressure gap coefficient with experiment, which is defined as the change in
the electronic band gap with respect to pressure, dEg/dP . The value of this
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coefficient calculated with the HSE03 functional for PbTe compares very well
with experimental data and describes a decreasing band gap with pressure, see
Table 5.9. Thus, we expect that the hybrid functional will adequately capture
changes in the electronic band structure due to strain or pressure, of particular
importance when computing deformation potentials in the following section. The
PBE functional also captures the correct sign of dEg/dP at the theoretical lattice
constant, however its magnitude is in poor agreement with experiment. The
calculated value with the LDA including SOI yields an increasing band gap with
pressure due to the inverted ordering of the conduction and valence bands and
heavy mixing of states at the band gap [205].

5.7 Deformation potentials from band shifts
due to strain using hybrid functionals

In this section we calculate the deformation potentials of Ge and PbTe following
the pioneering work of van de Walle and Martin [201, 202, 203, 204] on band
shifts due to strain in semiconductors. We use this as an alternative method to
compute the deformation potentials of PbTe in order to resolve the discrepancy
between our calculated values using DFPT and those within the literature. Fur-
thermore, coupling this method with hybrid functionals which give a much better
representation of electronic states near the band gap compared to LDA allows
us to include the effects of spin orbit coupling. The approach of van de Walle
and Martin has been applied to a wide range of semiconductors to capture band
offsets at semiconductor interfaces and deformation potentials to good agreement
with experiment.

The calculation of Ξu is relatively straightforward, given that we need only find
the energy splitting between previously degenerate valleys in a strained material.
On the other hand, Ξd is significantly more involved as it requires knowledge of
the conduction band energy shift under strain on an absolute scale [250].

5.7.1 Uniaxial deformation potential

Under uniaxial strain along [111] the L valleys of a cubic material cease to be
degenerate and shift in energy proportional to the uniaxial deformation potential
and the applied strain. These shifts in energy at the L point may be derived from
Eq. (5.21), which yields the change in energy of the conduction bands [201, 202]:
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∆E[111]
c = 2ΞL

uεxy, (5.36)

∆E[1̄11],[11̄1],[111̄]
c = −2

3ΞL
uεxy, (5.37)

allowing us to write the uniaxial deformation potential:

ΞL
u = 3∆EL

8εxy
(5.38)

where ∆EL is the energy difference between previously degenerate L valleys.
To calculate this energy splitting from DFT, we strain the lattice constant

parallel to the trigonal axis, a0,‖, and hold constant at a value a‖. We then
contract the lattice constant perpendicular to the trigonal axis, a0,⊥, to a value
a⊥ such that the volume of the primitive cell remains constant. Strain is then
defined as [201, 202]:

εxy = 1
3

(
a⊥ − a0,⊥

a0,⊥
−
a‖ − a0,‖

a0,‖

)
. (5.39)

Table 5.10: Uniaxial deformation potential of Ge calculated from the splitting
of previously degenerate L-valleys under strain using the LDA and HGH pseu-
dopotentials in Abinit. ΞL

u is compared to our values calculated using DFPT,
previous calculations from the literature, and experiment.

Ge
Band splitting DFPT Previous

calculations
Experiment

ΞL
u (eV) 15.80 16.67 16.98[83],16.80[200] 16.2 [225]

The calculated ΞL
u for Ge using this method is 15.8 eV, which agrees very

well with our calculated value from DFPT and with respect to experiment, see
Table 5.10. We note the excellent agreement between our two calculated values
which are both performed within the LDA-HGH framework. For PbTe, the
values calculated using different exchange-correlation functionals are broadly in
agreement with each other, and in reasonable agreement with experiment and a
previous calculation, see Table 5.11. In particular, ΞL

u calculated with the HSE03
functional agrees fairly well with the LDA results both from band splitting due
to strain and DFPT. When SOI is taken into consideration at the LDA level of
theory, we calculate a value of ΞL

u = 7.73 eV from strain induced band splitting,
in excellent agreement with the value calculated excluding SOI. This indicates
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Table 5.11: Uniaxial deformation potential of PbTe calculated from the splitting
of previously degenerate L-valleys under strain for the LDA, PBE (inc. SOI),
and HSE03 (inc. SOI) functionals. They are compared to our values calculated
using DFPT, a previous calculation from the literature, and experiment.

PbTe
Band splitting DFPT Previous

calculation
Experiment

ΞL
u (eV) LDAa: 7.99 7.23 8.29 [227] 3, 4.5 [228]

LDA+SOIa: 7.73
PBE: 7.25
HSE03: 5.48

a calculated with Abinit

that the character of the states at the band gap is not so important for the
calculated value of ΞL

u since the conduction and valence bands at L move either
downward or upward according to Eqs. (5.36) and (5.37) due to mirror symmetry.
Furthermore, the value of ΞL

u for PbTe calculated with the LDA from strain
induced splitting agrees extremely well with our value from DFPT, which both
use the same pseudopotentials and functional.

5.7.2 Dilatation deformation potential

Within deformation potential theory and using Eq. (5.21) we may write the shift
of the conduction band minimum at L for an isotropic deformation as [201, 202]:

∆EL
c =

(
Ξd + 1

3Ξu

)
¯̄1 : ¯̄ε = ac

¯̄1 : ¯̄ε (5.40)

where ¯̄1 is the unit tensor, and ¯̄ε is the strain tensor. ac is the hydrostatic
deformation potential for the conduction band, and refers to changes of the
electronic bands under strain or pressure on an absolute scale [250]. However,
due to the long range nature of the Coulomb interaction the zero of energy is
undefined for a bulk crystal, resulting in no intrinsic energy scale with which to
reference energy levels [251]. To get around this issue, we calculate ac following
the procedure of van de Walle and Martin [201, 202].

We start by performing separate calculations of the bulk unstrained and
strained material to obtain the conduction band energies at L for either case,
EL
c (0) and EL

c (ε) respectively. These calculations also yield the total potential
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acting on the electrons, defined as the sum of ionic, Hartree, and exchange-
correlation potentials [201], the averages of which we denote as V (0) and V (ε)
respectively. Next, we construct a heterostructure which consists of unstrained
and strained materials meeting at an interface, which allows us to obtain the
average total potential energies of either region, V ′(0) and V ′(ε) respectively, on
an absolute scale. We then align the total potentials of the bulk calculations
to those of the heterostructure, yielding the absolute splitting of the conduction
band energies. Thus, we may write the hydrostatic deformation potential for the
conduction band as:

ac = ∆EL
c

ε
= 1
ε

((
EL
c (ε)− V (ε)

)
−
(
EL
c (0)− V (0)

)
+
(
V ′(ε)− V ′(0)

))
. (5.41)
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Figure 5.16: Total average potential V (z) for an 8-atom Ge heterostructure
consisting of unstrained and strained regions meeting at a (001) interface. The
solid blue (red) lines show the total average potential of the unstrained (strained)
region, with average potential energies V ′(0) and V ′(ε) respectively. The total
average potential for each value of z in the bulk unstrained and strained material
are shown with dashed black lines, aligned to the heterostructure such that
V (0) = V ′(0) and V (ε) = V ′(ε) respectively.

For calculations presented here, we construct a (001) interface between the
unstrained and strained regions, with 1% of strain applied perpendicular to the
interface. Our calculations of the bulk unstrained and strained materials are
performed on 4 atom supercells. The heterostructure is then grown by repeating
4 atom supercells of the unstrained and strained material along the z-direction
to the desired length. The average potential at each value of z along the [001]-
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direction is defined as:

V (z) = 1
Na2

∫ ∫
V (r)dxdy. (5.42)

We show this average potential V (z) for an 8-atom Ge heterostructure in Fig. 5.16,
highlighting the unstrained and strained regions. The average potentials of bulk
unstrained and strained Ge are overlaid on top (dashed black lines), shifted
upwards/downwards in energy such that V (0) = V ′(0) and V (ε) = V ′(ε) respec-
tively. We note the deviation of the average potential of the heterostructure from
bulk behaviour in the vicinity of the interface. We assume that the atoms occupy
the ideal positions of the strained structures. However, this is not the case for
all interfaces, with certain directions producing a change in internal displacement
parameter dependent on orientation. This is of particular importance for polar
interfaces, where the change in atomic position produces a dipole shift [203, 252].

The use of a supercell introduces periodicity into the heterostructure calcu-
lation, the size of which must be converged in order to restore bulk behaviour
for the average potential away from the interface. However, we found that our
calculated values of ac did not converge with respect to increasing supercell size
as anticipated. This numerical instability was due to the sparse set of computed
points defining the average potential V (z) in the heterostructure calculation,
and the fact that these output points did not necessarily align to the peaks
and troughs of V (z). This introduced inconsistencies in the extraction of the
values of V ′(0) and V ′(ε). Thus, we performed a cubic spline interpolation of the
average potential using Gnuplot, to generate a sufficiently dense set of points.
We extracted the average potential energies from the centre of the unstrained
and strained regions of the heterostructure, where the average potential is most
bulk-like. In doing so, we defined the region over which the average potential
energy is calculated to be a 4-atom subsection of the supercell of the unstrained
and strained parts of the heterostructure respectively. This procedure yielded
convergence with respect to increasing supercell size.

Our calculated value of ΞL
d = −7.15 eV for Ge agrees very well with previous

calculations and with experiment, see Table 5.12. We also find very good agree-
ment between our calculated values from band shifts due to strain and those
calculated previously with DFPT which both use the same pseudopotential and
functional. This serves as an additional check of both methods and demonstrates
that there are no significant errors within the implementation. We note that
convergence with respect to supercell size is of particular importance, however,
a supercell size larger than 12 atoms is sufficient to get a reasonably converged
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value, as previously claimed [201].

Table 5.12: Dilatation deformation potential of Ge calculated from the energy
shift of the L-valley under strain using the LDA and HGH pseudopotentials
in Abinit. ΞL

d is compared to our values calculated using DFPT, previous
calculations from the literature, and experiment.

Ge
Band shift DFPT Previous

calculations
Experiment

ΞL
d (eV) −7.15 −6.46 −6.27[83],−4.43[200] −12.30[226]

The calculated value of ΞL
d = 0.47 eV for PbTe using the band shift method

for the LDA functional without SOI is in fair agreement with the corresponding
calculated values using DFPT of 0.08 eV and 1.92 eV, see Table 5.13, further
highlighting the difficulties with extracting this parameter from first principles.
However, since our calculated values of ΞL

d are small compared to typical values
of this deformation potential in other semiconductors, and our values calculated
using DFPT and from band offsets fall within ∼1 eV of each other, we deem
their agreement good. The HSE03 functional yields a value of ΞL

d = 0.78 eV,
comparable to the values of ΞL

d calculated with the LDA and PBE functionals,
see Table 5.14. This is despite the fact that it obtains a more accurate description
of the electronic band structure compared to DFT methods. However, our
calculated values of ΞL

d remain in poor agreement with the value of 21-22 eV
obtained by Ravich et al. [228]. Nevertheless, the consistency of our calculated
values suggests this discrepancy with the literature is unlikely to be due to an
error in our implementation of either approach.

Indeed, we note that there may be issues with the values of the deformation
potentials obtained by Ravich et al [228]. In extracting the deformation potentials
of PbTe, Ravich et al. assumed that the electronic mobility as a function of carrier
density at 77 K is entirely limited by three scattering mechanisms: impurity
scattering, polar optical scattering, and acoustic phonon scattering. Using exper-
imental parameters for the former two mechanisms, the electron mobility limited
by these is subtracted from the experimental values. An effective deformation
potential is then obtained by fitting a model to the remaining mobility which is
assumed to be entirely due to acoustic phonon scattering. Thus, the discrepancy
between our calculated deformation potentials and those estimated by Ravich et
al. may be due to the more severe approximations used in that model versus
ours, for example, neglecting the anisotropy in the momentum relaxation times.
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Table 5.13: Deformation potentials of PbTe calculated from the energy shift of
the L-valley under strain using the LDA and HGH pseudopotentials excluding
SOI in Abinit. They are compared to our values calculated using DFPT, and
previous results from the literature, and experiment.

PbTe
Band shift DFPT Previous

calculation
Experiment

ΞL
u (eV) 7.99 7.23 8.29 [227] 3, 4.5 [228]

ΞL
d (eV) 0.47 1.92 −4.36 [227] 21− 22a [228]

a Obtained by fitting a model to electronic transport measurements.

Table 5.14: Dilatation deformation potentials for PbTe calculated using the LDA
functional excluding/including SOI in Abinit and with the PBE and HSE03
functionals including SOI in VASP, shown for multiple supercell sizes.

PbTe ΞL
d (eV)

Supercell size LDA LDA PBE HSE03
(atoms) exc. SOI inc. SOI
8 3.67 2.41 −1.73 −1.20
16 −0.66 −2.32 −0.13 −0.22
24 0.21 −1.91 0.01 0.91
32 0.35 −1.69 −0.12 0.69
40 0.39 −1.66 −0.20 0.78
48 0.47 −1.55 −0.22 −

Since our calculated values of the deformation potentials of PbTe using hybrid
functionals are in good agreement with those calculated using the LDA excluding
SOI, the calculated mobility of PbTe using the HSE03 functional is very similar
to that of the LDA without SOI, see Fig. 5.12. While intravalley scattering via a
Γ phonon and intervalley scattering via an X phonon is forbidden by symmetry,
the higher order contribution to these mechanisms may be significant. However,
within the work of Ravich et al. [228, 229] and in the work presented here, the
effect of this higher order contribution is taken to be zero. Thus, we are currently
investigating the strength of the second order terms to non-polar optical and
intervalley scattering in PbTe. Other possible reasons for the discrepancy of
our calculated mobilities with experiment are the use of the Maxwell-Boltzmann
distribution, parabolic approximation, as well as the temperature dependence
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of the effective masses that was not accounted for in this work. Furthermore,
while the HSE03 functional obtains an electronic band structure of PbTe that
compares very well to experiment, formally speaking GW yields a more accurate
description. In future work, calculating the deformation potentials of PbTe using
the GW method may yield different results to those presented here, or at the
very least serve as an additional check of our approach.

5.8 Electronic properties of PbTe-based mate-
rials near the phase transition

While we are not yet certain about the dominant transport processes in PbTe,
our calculations allow for speculation on the impact to electronic thermoelectric
properties as a result of increased proximity to the ferroelectric phase transition.
We anticipate that driving PbTe-based materials to the verge of the phase
transition via strain or alloying could preserve their high electrical conductiv-
ity and Seebeck coefficient while suppressing the lattice thermal conductivity.
Our DFT calculations using HGH pseudopotentials with the LDA exchange-
correlation show that biaxial tensile (001) strain of ∼ 1% practically does not
change the electronic band structure of PbTe and PbSe0.5Te0.5 close to the con-
duction (valence) band minimum (maxima). Further, we find that the electronic
band structure of Pb0.51Ge0.49Te in the vicinity of the conduction (valence) band
minimum (maxima) is very similar to that of PbTe. Symmetry analysis [218] and
our DFPT [132, 134, 135] calculations show that the electron-phonon coupling
elements for the conduction band minimum or the valence band maximum with
TO modes at Γ in PbTe are zero. These results indicate that the electronic
transport properties of PbTe strained close to the phase transition may not be
deteriorated by the TO softening.

Driving Pb1−xGexTe and strained PbSe1−xTex close to the phase transition
substantially reduces the lattice thermal conductivity partly due to mass disorder.
However, electronic properties beneficial for a large ZT may also be hampered as a
result of increased alloy scattering of the carriers, which we have not considered in
our discussion of carrier mobility. Nevertheless, it is possible that the reduction to
lattice thermal conductivity will outweigh the potential degradation to electrical
conductivity and Seebeck coefficient, resulting in a substantial increase to ZT ,
similar to Si1−xGex alloys [253].
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5.9 Summary

Using first principles approaches we calculate the mobility of n-type Ge and
PbTe in the low temperature and low carrier concentration regime. We find
excellent agreement for the calculated electronic mobility of Ge compared to
experiment. Our deformation potentials are consistent when calculated using
DFPT and from band shifts due to strain, demonstrating the robustness of
the methods employed within this chapter. We find good agreement with the
experimental values of the mobility of PbTe at low temperatures up to 200 K and
low doping concentrations circa 1018 cm−3 when our first principles calculations
are coupled with the use of the Fröhlich model for polar optical scattering.
Further, we see that intravalley acoustic scattering is substantially less important
in PbTe compared to Fröhlich interaction within the low carrier density and
low temperature regime, and that intervalley and intravalley optical scattering
processes are forbidden by symmetry. Nevertheless, resolving the discrepancies
between our calculations and experiments at higher temperatures requires further
work. Finally, while these calculations shine light on the great difficulties inherent
in calculating electronic transport properties in PbTe, they also form the basis for
future ab initio calculations of the thermoelectric figure of merit in PbTe-based
materials.
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Chapter 6

Conclusion

6.1 Conclusion

The aim of this thesis was to propose and investigate a new strategy which could
improve the thermoelectric performance of PbTe and PbTe-based materials by
exploiting their proximity to the ferroelectric phase transition, which gives rise to
their intrinsically low lattice thermal conductivity. We have done this using first
principles calculations of the lattice thermal conductivity within the Boltzmann
transport framework. While we primarily focused on the impact on thermal
transport arising from increased proximity to the phase transition, we have also
taken the first steps to obtain electronic thermoelectric properties using ab initio
calculations. This will form the basis of future calculations of the full impact
of driving PbTe-based materials near the phase transition on the thermoelectric
figure of merit.

We have predicted that driving PbTe to the verge of the ferroelectric phase
transition via biaxial tensile (001) strain or alloying will be an effective strategy
to impede phonon flow in the entire frequency spectrum, and thus to considerably
reduce the lattice thermal conductivity. This proposed concept is based on the
induced softening of the transverse optical modes at the zone centre, whose
increased anharmonic interaction with heat carrying acoustic modes enhances
phonon scattering. We have demonstrated this strategy by applying biaxial
tensile (001) strain to PbTe to induce a maximally softened TO mode at the
zone centre, substantially increasing anharmonic acoustic-TO interaction. As
a direct result of this anharmonic phonon lifetimes are reduced by a factor of
∼2 across the frequency spectrum, and we achieve a reduction in the lattice
thermal conductivity by a factor of 1.5. Subsequently, we applied biaxial tensile
(001) strain to PbSe0.5Te0.5 alloy and found a reduction in the lattice thermal
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conductivity by a factor of ∼2.4 with respect to that of PbTe. This decrease arises
from the combination of reduced anharmonic phonon lifetimes and mass disorder.
Finally, we alloyed PbTe with a rhombohedral material, GeTe, demonstrating a
strategy to drive PbTe towards the verge of the phase transition which does not
rely on strain. Ultimately, in PbGe0.51Te0.49 alloy we achieve a reduction in the
lattice thermal conductivity by a factor of ∼2.9 with respect to that of PbTe at
450 K, rivalling the reductions achieved through the use of all-scale hierarchical
architecturing [34]. The presented strategy is general, and would be applicable
to other materials close to soft zone centre optical mode transitions.

Furthermore, we have shown explicitly that the substantial decrease of the
anharmonic phonon lifetimes in strained PbTe and PbTe alloys driven to the
phase transition is a direct consequence of the maximally softened TO modes
and their increased anharmonic coupling with acoustic modes. We found that the
acoustic-TO contribution to the linewidth dominates over all other contributions
for PbTe, and increases by a factor of 2−3 throughout the spectrum in PbTe
driven to the verge of the phase transition via biaxial tensile (001) strain or
alloying with GeTe. Furthermore, we found that a relatively small number of soft
TO modes near the zone centre that interact strongly with acoustic modes play
a disproportionally large role in shortening phonon lifetimes.

We further investigated and quantified the impact of proximity to the fer-
roelectric phase transition on the lattice thermal conductivity of Pb1−xGexTe
alloys. We show that the role of anharmonic scattering in limiting lattice thermal
conductivity of Pb1−xGexTe alloys is maximized at the phase transition due to
the maximized acoustic-optical anharmonic interaction. The total lattice thermal
conductivity is further reduced due to mass disorder, which shifts the minimum
value away from the phase transition into the rhombohedral composition, where
phonon lifetimes due to mass disorder are shortest. Neglecting the mass difference
of Pb1−xGexTe alloys, the anharmonic lattice thermal conductivity is comparably
suppressed in the rocksalt and rhombohedral phases of the alloy with similar
proximities to the phase transition. We thus argue that the structure and
its degree of resonant bonding are less critical for suppressing lattice thermal
conductivity in these alloys compared with proximity to the phase transition,
average atomic mass, and mass disorder.

Moreover, we find that the electronic polarisability of Pb1−xGexTe alloys
is maximized at the phase transition, indicative of very strong resonant bond-
ing [150, 169, 187]. IFCs along the [001] direction are also maximised at the
phase transition, which coincides with the minimization of the anharmonic lat-
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tice thermal conductivity of Pb1−xGexTe alloys. Further, our analysis of the
behaviour of short and long range IFCs indicates weaker resonant bonding in the
rhombohedral phase compared to the rocksalt one, all of which are consistent with
previous reports [150]. However, our lattice thermal conductivity calculations
are at variance with the argument that stronger resonant bonding leads to lower
thermal conductivity [150]. While it is clear that resonant bonding plays a role
in determining the lattice thermal conductivities of group IV-VI and group V
materials, more remains to be done before this effect is fully understood.

We have taken the first steps towards a full ab initio calculation of the
thermoelectric figure of merit for PbTe by calculating the mobility of n-type
Ge and PbTe limited by electron-phonon interaction. Our calculated electronic
mobility for Ge is in very good agreement with experiment. For PbTe, our
calculated mobility is in good agreement with experiment at low temperatures up
to 200 K and low doping concentrations circa 1018 cm−3 when our first principles
calculations are coupled with the use of the Fröhlich model for polar optical
scattering. However at room temperature our calculated mobility differs from
experiment by a factor of ∼2. Disagreements between our results and those
within the literature motivated the use of hybrid functionals for PbTe, enabling
the inclusion of spin-orbit interaction and capturing the band gap and effective
electron masses in excellent agreement with experiment. We found that our
calculated deformation potentials, either from DFPT or from band shifts due to
strain, agree well with each other. However, further work is necessary to resolve
the discrepancies between our calculations and experiments at higher temper-
atures. Nevertheless, our presented calculations form the basis for future first
principles calculations of the thermoelectric efficiency of PbTe-based materials
driven near the phase transition.

By exploiting the proximity of PbTe to the ferroelectric phase transition we
have demonstrated a new strategy to substantially reduce the lattice thermal
conductivity. This may be combined with mass disorder to bring about even
larger reductions. Due to the symmetry forbidden electron-phonon coupling
between the TO mode at Γ and the valence band maximum and conduction band
minimum in PbTe [218], electronic properties beneficial for a high figure of merit
may not be hindered by increased proximity to the phase transition. Thus, this
approach offers new opportunities for suppressing lattice thermal conductivity
and potentially greatly enhancing thermoelectric efficiency.
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Below are some thoughts on the potential directions of future research stemming
from this work.

• The most important effect that was neglected in our lattice thermal con-
ductivity calculations is higher than third order anharmonicity. This is of
considerable importance for describing the zone centre transverse optical
modes in PbTe-based materials near the phase transition, particularly at
higher temperatures. One of the current state of the art methods to take
such effects into account is the temperature-dependent effective potential
approach of Hellman et al. [72, 73, 74] which uses ab initio molecular
dynamics. Temperature dependent IFCs calculated using this approach
combined with a solution to the Boltzmann transport equation beyond the
relaxation time approximation [59, 60] may be used for future calculations.

• For electronic thermoelectric transport, considerable work remains before a
reliable ab initio calculation of the figure of merit of PbTe-based materials
near the phase transition is obtained. In addition to the approach presented
in this thesis, one of the most promising developments for future calculations
is the EPW code [254] to compute electron-phonon scattering rates. This
makes use of Wannier interpolation schemes [85, 86, 91] to sample the
Brillouin zone sufficiently densely and, as of its most recent version, contains
a first principles treatment of Fröhlich interaction [88, 255], essential for
polar semiconductors. However, this approach must be combined with an
accurate description of the electronic band structure and electron-phonon
matrix elements of PbTe, while the current EPW implementation includes
only the insufficiently accurate LDA/PBE framework.

• SnSe is the current record-breaking thermoelectric material, reaching
ZT ∼2.6 at 900 K [47]. It undergoes a soft mode phase transition with tem-
perature, which coincides with a minimized lattice thermal conductivity and
maximised power factor. While SnSe has been the subject of much research,
there exists no thorough quantification of the interplay of proximity to the
phase transition, temperature, and phase in minimizing the lattice thermal
conductivity. An analysis similar to that of Pb1−xGexTe alloys in this work
combined with a study of its electronic transport properties would thus be of
significant importance in the drive to improve thermoelectric performance.
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• There is a growing trend in the literature towards the use of machine-
learning algorithms and high-throughout calculations to scan thousands of
materials for desirable properties. Such an approach was used recently
by van Roekeghem et al. [256] to scan hundreds of semiconducting com-
pounds in the search for low thermal conductivity materials that are also
mechanically stable at high temperatures. Phonon dispersions for hundreds
of materials may be computed quickly and scanned for potential new ma-
terials with high thermoelectric efficiency. In the spirit of this, there are
a few features of phonon band structures indicative of low lattice thermal
conductivity arising from our work: soft modes at the zone centre and high
TO-LO splitting.

• Recent studies have reported extremely low lattice thermal conductivity
values in marginally stable rocksalt structures [71, 150, 257, 258], in which it
has been claimed that the phenomenon of resonant bonding plays a key role
for group IV-VI compounds [150, 169, 170, 187]. Chemically similar near-
rocksalt compounds, such as rhombohedral GeTe and orthorhombic SnSe
similarly possess low lattice thermal conductivity and have also been linked
to this phenomenon. Despite these indications, there remains a lack of a
quantitative description within the literature of the exact role of resonant
bonding and good thermoelectric performance. Thus, future work may
revolve around a more thorough description of this phenomenon.

Thermoelectric Properties of PbTe 144 Aoife Rose Murphy



Bibliography

[1] J. R. Sootsman, D.-Y. Chung and M. G. Kanatzidis. New and Old Concepts in
Thermoelectric Materials. Angewandte Chemie International Edition, oct 2009.
vol. 48, pages 8616. URL http://dx.doi.org/10.1002/anie.200900598.

[2] http://www.thermoelectrics.caltech.edu/thermoelectrics/history.html.

[3] M. Vedernikov and E. Iordanishvili. A.F. Ioffe and origin of modern semiconduc-
tor thermoelectric energy conversion. In Seventeenth International Conference
on Thermoelectrics. Proceedings ICT98 (Cat. No.98TH8365). IEEE, 1998 pages
37–42. URL http://dx.doi.org/10.1109/ICT.1998.740313.

[4] Z. H. Dughaish. Lead telluride as a thermoelectric material for thermoelectric
power generation. Physica B: Condensed Matter, sep 2002. vol. 322, pages 205.
URL http://dx.doi.org/10.1016/S0921-4526(02)01187-0.

[5] G. J. Snyder and E. S. Toberer. Complex thermoelectric materials. Nature
Materials, feb 2008. vol. 7, pages 105. URL http://dx.doi.org/10.1038/

nmat2090.

[6] L. E. Bell. Cooling, Heating, Generating Power, and Recovering Waste Heat
with Thermoelectric Systems. Science, sep 2008. vol. 321, pages 1457. URL
http://dx.doi.org/10.1126/science.1158899.

[7] https://flowcharts.llnl.gov.

[8] A. J. Minnich, M. S. Dresselhaus, Z. F. Ren and G. Chen. Bulk nanostructured
thermoelectric materials: current research and future prospects. Energy & Envi-
ronmental Science, 2009. vol. 2, pages 466. URL http://dx.doi.org/10.1039/

b822664b.

[9] L. D. Hicks and M. S. Dresselhaus. Effect of quantum-well structures on the
thermoelectric figure of merit. Physical Review B, may 1993. vol. 47, pages
12727. URL https://doi.org/10.1103/PhysRevB.47.12727.

145

http://dx.doi.org/10.1002/anie.200900598
http://dx.doi.org/10.1109/ICT.1998.740313
http://dx.doi.org/10.1016/S0921-4526(02)01187-0
http://dx.doi.org/10.1038/nmat2090
http://dx.doi.org/10.1038/nmat2090
http://dx.doi.org/10.1126/science.1158899
http://dx.doi.org/10.1039/b822664b
http://dx.doi.org/10.1039/b822664b
https://doi.org/10.1103/PhysRevB.47.12727


BIBLIOGRAPHY

[10] D. Nemir and J. Beck. On the Significance of the Thermoelectric Figure of
Merit Z. Journal of Electronic Materials, sep 2010. vol. 39, pages 1897. URL
http://dx.doi.org/10.1007/s11664-009-1060-4.

[11] A. Shakouri. Recent Developments in Semiconductor Thermoelectric Physics and
Materials. Annual Review of Materials Research, aug 2011. vol. 41, pages 399.
URL http://dx.doi.org/10.1146/annurev-matsci-062910-100445.

[12] C. B. Vining. An inconvenient truth about thermoelectrics. Nature Materials,
feb 2009. vol. 8, pages 83. URL http://dx.doi.org/10.1038/nmat2361.

[13] M. Zebarjadi, K. Esfarjani, M. S. Dresselhaus, Z. F. Ren and G. Chen. Perspec-
tives on thermoelectrics: from fundamentals to device applications. Energy &
Environmental Science, 2012. vol. 5, pages 5147. URL http://dx.doi.org/10.

1039/C1EE02497C.

[14] G. Tan, L.-D. Zhao and M. G. Kanatzidis. Rationally Designing High-
Performance Bulk Thermoelectric Materials. Chemical Reviews, aug 2016. vol.
116, pages 12123. URL http://dx.doi.org/10.1021/acs.chemrev.6b00255.

[15] R. Franz and G. Wiedemann. Ueber die Wärme-Leitungsfähigkeit der Metalle.
Annalen der Physik, 1853. vol. 165, pages 497. URL http://dx.doi.org/10.

1002/andp.18531650802.

[16] N. Ashcroft and N. Mermin. Solid State Physics. Holt, Rinehart and Winston,
1976. URL https://books.google.ie/books?id=1C9HAQAAIAAJ.

[17] A. D. LaLonde, Y. Pei and G. J. Snyder. Reevaluation of PbTe1−xIx as high
performance n-type thermoelectric material. Energy & Environmental Science,
2011. vol. 4, page 2090. URL http://dx.doi.org/10.1039/c1ee01314a.

[18] Y. Pei, A. LaLonde, S. Iwanaga and G. J. Snyder. High thermoelectric figure of
merit in heavy hole dominated PbTe. Energy & Environmental Science, 2011.
vol. 4, pages 2085. URL http://dx.doi.org/10.1039/c0ee00456a.

[19] M. Carle, P. Pierrat, C. Lahalle-Gravier, S. Scherrer and H. Scherrer. Trans-
port properties of n-type Bi2(Te1−xSex)3 single crystal solid solutions (x≤0.05).
Journal of Physics and Chemistry of Solids, 1995. vol. 56, pages 201. URL
http://dx.doi.org/10.1016/0022-3697(94)00166-9.

[20] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto,
D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren. High-
Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride
Bulk Alloys. Science, 2008. vol. 320. URL http://dx.doi.org/10.1126/

science.1156446.

Thermoelectric Properties of PbTe 146 Aoife Rose Murphy

http://dx.doi.org/10.1007/s11664-009-1060-4
http://dx.doi.org/10.1146/annurev-matsci-062910-100445
http://dx.doi.org/10.1038/nmat2361
http://dx.doi.org/10.1039/C1EE02497C
http://dx.doi.org/10.1039/C1EE02497C
http://dx.doi.org/10.1021/acs.chemrev.6b00255
http://dx.doi.org/10.1002/andp.18531650802
http://dx.doi.org/10.1002/andp.18531650802
https://books.google.ie/books?id=1C9HAQAAIAAJ
http://dx.doi.org/10.1039/c1ee01314a
http://dx.doi.org/10.1039/c0ee00456a
http://dx.doi.org/10.1016/0022-3697(94)00166-9
http://dx.doi.org/10.1126/science.1156446
http://dx.doi.org/10.1126/science.1156446


BIBLIOGRAPHY

[21] C. B. Vining. Silicon Germanium. In D. Rowe (editor), CRC Handbook of Ther-
moelectrics, pages 329–338. CRC Press, 1995. URL https://books.google.ie/

books?id=Crtjc-luHlEC.

[22] J. P. Heremans, M. S. Dresselhaus, L. E. Bell and D. T. Morelli. When thermo-
electrics reached the nanoscale. Nature Nanotechnology, jul 2013. vol. 8, pages
471. URL http://dx.doi.org/10.1038/nnano.2013.129.

[23] G. S. Nolas, J. Poon and M. Kanatzidis. Recent developments in bulk thermoelec-
tric materials. MRS Bulletin, mar 2006. vol. 31, pages 199. URL http://www.

scopus.com/inward/record.url?scp=33645384900&partnerID=8YFLogxK.

[24] C. Uher, J. Yang, S. Hu, D. T. Morelli and G. P. Meisner. Transport properties
of pure and doped MNiSn (M=Zr, Hf). Physical Review B, apr 1999. vol. 59,
pages 8615. URL http://dx.doi.org/10.1103/PhysRevB.59.8615.

[25] A. D. LaLonde, Y. Pei, H. Wang and G. J. Snyder. Lead telluride alloy
thermoelectrics. Materials Today, nov 2011. vol. 14, pages 526. URL http:

//dx.doi.org/10.1016/S1369-7021(11)70278-4.

[26] J. An, A. Subedi and D. J. Singh. Ab initio phonon dispersions for PbTe. Solid
State Communications, dec 2008. vol. 148, pages 417. URL http://dx.doi.

org/10.1016/j.ssc.2008.09.027.

[27] O. Delaire, J. Ma, K. Marty, A. F. May, M. A. McGuire, M.-H. Du, D. J. Singh,
A. Podlesnyak, G. Ehlers, M. D. Lumsden and B. C. Sales. Giant anharmonic
phonon scattering in PbTe. Nature Materials, jun 2011. vol. 10, pages 614. URL
http://dx.doi.org/10.1038/nmat3035.

[28] T. Shiga, J. Shiomi, J. Ma, O. Delaire, T. Radzynski, A. Lusakowski, K. Es-
farjani and G. Chen. Microscopic mechanism of low thermal conductivity in
lead telluride. Physical Review B, apr 2012. vol. 85, page 155203. URL
http://dx.doi.org/10.1103/PhysRevB.85.155203.

[29] D. Selli, S. E. Boulfelfel, P. Schapotschnikow, D. Donadio and S. Leoni. Hier-
archical thermoelectrics: crystal grain boundaries as scalable phonon scatterers.
Nanoscale, jan 2016. vol. 8, pages 3729. URL http://dx.doi.org/10.1039/

C5NR05279C.

[30] G. D. Mahan and J. O. Sofo. The best thermoelectric. Proceedings of the National
Academy of Sciences, 1996. vol. 93, pages 7436. URL http://www.pnas.org/

content/93/15/7436.abstract.

Thermoelectric Properties of PbTe 147 Aoife Rose Murphy

https://books.google.ie/books?id=Crtjc-luHlEC
https://books.google.ie/books?id=Crtjc-luHlEC
http://dx.doi.org/10.1038/nnano.2013.129
http://www.scopus.com/inward/record.url?scp=33645384900&partnerID=8YFLogxK
http://www.scopus.com/inward/record.url?scp=33645384900&partnerID=8YFLogxK
http://dx.doi.org/10.1103/PhysRevB.59.8615
http://dx.doi.org/10.1016/S1369-7021(11)70278-4
http://dx.doi.org/10.1016/S1369-7021(11)70278-4
http://dx.doi.org/10.1016/j.ssc.2008.09.027
http://dx.doi.org/10.1016/j.ssc.2008.09.027
http://dx.doi.org/10.1038/nmat3035
http://dx.doi.org/10.1103/PhysRevB.85.155203
http://dx.doi.org/10.1039/C5NR05279C
http://dx.doi.org/10.1039/C5NR05279C
http://www.pnas.org/content/93/15/7436.abstract
http://www.pnas.org/content/93/15/7436.abstract


BIBLIOGRAPHY

[31] J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoen-
phakdee, S. Yamanaka and G. J. Snyder. Enhancement of Thermoelectric Effi-
ciency in PbTe by Distortion of the Electronic Density of States. Science, jul 2008.
vol. 321, pages 554. URL http://dx.doi.org/10.1126/science.1159725.

[32] Y. Gelbstein, Z. Dashevsky and M. Dariel. High performance n-type PbTe-based
materials for thermoelectric applications. Physica B: Condensed Matter, 2005.
vol. 363, pages 196. URL http://dx.doi.org/10.1016/j.physb.2005.03.022.

[33] Y. Pei, J. Lensch-Falk, E. S. Toberer, D. L. Medlin and G. J. Snyder. High
Thermoelectric Performance in PbTe Due to Large Nanoscale Ag2Te Precipitates
and La Doping. Advanced Functional Materials, jan 2011. vol. 21, pages 241.
URL http://dx.doi.org/10.1002/adfm.201000878.

[34] K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P.
Dravid and M. G. Kanatzidis. High-performance bulk thermoelectrics with all-
scale hierarchical architectures. Nature, sep 2012. vol. 489, pages 414. URL
http://dx.doi.org/10.1038/nature11439.

[35] Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen and G. J. Snyder. Convergence of
electronic bands for high performance bulk thermoelectrics. Nature, may 2011.
vol. 473, pages 66. URL http://dx.doi.org/10.1038/nature09996.

[36] D. Wu, L.-D. Zhao, S. Hao, Q. Jiang, F. Zheng, J. W. Doak, H. Wu, H. Chi,
Y. Gelbstein, C. Uher, C. Wolverton, M. Kanatzidis and J. He. Origin of the
High Performance in GeTe-Based Thermoelectric Materials upon Bi2Te3 Doping.
Journal of the American Chemical Society, aug 2014. vol. 136, pages 11412. URL
http://dx.doi.org/10.1021/ja504896a.

[37] M. Hong, Z.-G. Chen, Y. Pei, L. Yang and J. Zou. Limit of zT enhancement in
rocksalt structured chalcogenides by band convergence. Physical Review B, oct
2016. vol. 94, page 161201. URL http://dx.doi.org/10.1103/PhysRevB.94.

161201.

[38] Y. Lee, S.-H. Lo, J. Androulakis, C.-I. Wu, L.-D. Zhao, D.-Y. Chung, T. P.
Hogan, V. P. Dravid and M. G. Kanatzidis. High-Performance Tellurium-Free
Thermoelectrics: All-Scale Hierarchical Structuring of p-Type PbSe–MSe Sys-
tems (M = Ca, Sr, Ba). Journal of the American Chemical Society, apr 2013.
vol. 135, pages 5152. URL http://dx.doi.org/10.1021/ja400069s.

[39] L. D. Zhao, H. J. Wu, S. Q. Hao, C. I. Wu, X. Y. Zhou, K. Biswas, J. Q.
He, T. P. Hogan, C. Uher, C. Wolverton, V. P. Dravid and M. G. Kanatzidis.
All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band
convergence and suppresses bipolar thermal transport for high performance.

Thermoelectric Properties of PbTe 148 Aoife Rose Murphy

http://dx.doi.org/10.1126/science.1159725
http://dx.doi.org/10.1016/j.physb.2005.03.022
http://dx.doi.org/10.1002/adfm.201000878
http://dx.doi.org/10.1038/nature11439
http://dx.doi.org/10.1038/nature09996
http://dx.doi.org/10.1021/ja504896a
http://dx.doi.org/10.1103/PhysRevB.94.161201
http://dx.doi.org/10.1103/PhysRevB.94.161201
http://dx.doi.org/10.1021/ja400069s


BIBLIOGRAPHY

Energy & Environmental Science, 2013. vol. 6, page 3346. URL http://dx.

doi.org/10.1039/c3ee42187b.

[40] G. Tan, L.-D. Zhao, F. Shi, J. W. Doak, S.-H. Lo, H. Sun, C. Wolverton, V. P.
Dravid, C. Uher and M. G. Kanatzidis. High Thermoelectric Performance of p-
Type SnTe via a Synergistic Band Engineering and Nanostructuring Approach.
Journal of the American Chemical Society, may 2014. vol. 136, pages 7006. URL
http://dx.doi.org/10.1021/ja500860m.

[41] L.-D. Zhao, V. P. Dravid and M. G. Kanatzidis. The panoscopic approach to
high performance thermoelectrics. Energy & Environmental Science, 2014. vol. 7,
pages 251. URL http://dx.doi.org/10.1039/C3EE43099E.

[42] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang,
Z. F. Ren, J.-P. Fleurial and P. Gogna. New Directions for Low-Dimensional
Thermoelectric Materials. Advanced Materials, apr 2007. vol. 19, pages 1043.
URL http://dx.doi.org/10.1002/adma.200600527.

[43] L. D. Hicks and M. S. Dresselhaus. Thermoelectric figure of merit of a one-
dimensional conductor. Physical Review B, jun 1993. vol. 47, pages 16631. URL
http://dx.doi.org/10.1103/PhysRevB.47.16631.

[44] M. G. Kanatzidis. Nanostructured Thermoelectrics: The New Paradigm? Chem-
istry of Materials, feb 2010. vol. 22, pages 648. URL http://dx.doi.org/10.

1021/cm902195j.

[45] P. F. P. Poudeu, J. D’Angelo, H. Kong, A. Downey, J. L. Short, R. Pcionek,
T. P. Hogan, C. Uher and M. G. Kanatzidis. Nanostructures versus Solid
Solutions: Low Lattice Thermal Conductivity and Enhanced Thermoelectric
Figure of Merit in Pb9.6Sb0.2Te10−xSex Bulk Materials. Journal of the American
Chemical Society, nov 2006. vol. 128, pages 14347. URL http://dx.doi.org/

10.1021/ja0647811.

[46] J. Androulakis, C.-H. Lin, H.-J. Kong, C. Uher, C.-I. Wu, T. Hogan, B. A.
Cook, T. Caillat, K. M. Paraskevopoulos and M. G. Kanatzidis. Spinodal
Decomposition and Nucleation and Growth as a Means to Bulk Nanostruc-
tured Thermoelectrics: Enhanced Performance in Pb1−xSnxTe-PbS. Journal
of the American Chemical Society, 2007. vol. 129, pages 9780. URL http:

//dx.doi.org/10.1021/ja071875h.

[47] L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton,
V. P. Dravid and M. G. Kanatzidis. Ultralow thermal conductivity and high
thermoelectric figure of merit in SnSe crystals. Nature, apr 2014. vol. 508, pages
373. URL http://dx.doi.org/10.1038/nature13184.

Thermoelectric Properties of PbTe 149 Aoife Rose Murphy

http://dx.doi.org/10.1039/c3ee42187b
http://dx.doi.org/10.1039/c3ee42187b
http://dx.doi.org/10.1021/ja500860m
http://dx.doi.org/10.1039/C3EE43099E
http://dx.doi.org/10.1002/adma.200600527
http://dx.doi.org/10.1103/PhysRevB.47.16631
http://dx.doi.org/10.1021/cm902195j
http://dx.doi.org/10.1021/cm902195j
http://dx.doi.org/10.1021/ja0647811
http://dx.doi.org/10.1021/ja0647811
http://dx.doi.org/10.1021/ja071875h
http://dx.doi.org/10.1021/ja071875h
http://dx.doi.org/10.1038/nature13184


BIBLIOGRAPHY

[48] C. W. Li, J. Hong, A. F. May, D. Bansal, S. Chi, T. Hong, G. Ehlers and
O. Delaire. Orbitally driven giant phonon anharmonicity in SnSe. Nature Physics,
dec 2015. vol. 11, pages 1063. URL http://dx.doi.org/10.1038/nphys3492.

[49] J. M. Skelton, L. A. Burton, S. C. Parker, A. Walsh, C.-E. Kim, A. Soon, J. Buck-
eridge, A. A. Sokol, C. R. A. Catlow, A. Togo and I. Tanaka. Anharmonicity
in the High-Temperature Cmcm Phase of SnSe: Soft Modes and Three-Phonon
Interactions. Physical Review Letters, aug 2016. vol. 117, page 075502. URL
http://dx.doi.org/10.1103/PhysRevLett.117.075502.

[50] L.-D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V. P.
Dravid, C. Uher, G. J. Snyder, C. Wolverton and M. G. Kanatzidis. Ultrahigh
power factor and thermoelectric performance in hole-doped single-crystal SnSe.
Science, jan 2016. vol. 351, pages 141. URL http://dx.doi.org/10.1126/

science.aad3749.

[51] G. P. Srivastava. The Physics of Phonons. Taylor & Francis Group, New York,
U.S.A., 1990. URL https://books.google.ie/books?id=OE-bHd2gzVgC.

[52] P. K. Schelling, S. R. Phillpot and P. Keblinski. Comparison of atomic-level
simulation methods for computing thermal conductivity. Physical Review B, apr
2002. vol. 65, page 144306. URL http://dx.doi.org/10.1103/PhysRevB.65.

144306.

[53] F. Müller-Plathe. A simple nonequilibrium molecular dynamics method for
calculating the thermal conductivity. The Journal of Chemical Physics, 1997.
vol. 106, page 6082. URL http://dx.doi.org/10.1063/1.473271.

[54] M. Omini and A. Sparavigna. An iterative approach to the phonon Boltzmann
equation in the theory of thermal conductivity. Physica B: Condensed Matter, jul
1995. vol. 212, pages 101. URL http://dx.doi.org/10.1016/0921-4526(95)

00016-3.

[55] M. Omini and A. Sparavigna. Beyond the isotropic-model approximation in the
theory of thermal conductivity. Physical Review B, apr 1996. vol. 53, pages 9064.
URL http://dx.doi.org/10.1103/PhysRevB.53.9064.

[56] M. Omini and A. Sparavigna. Heat transport in dielectric solids with diamond
structure. Il Nuovo Cimento D, 1997. vol. 19, pages 1537. URL https://www.

sif.it/riviste/ncd/econtents/1997/019/10/article/5.

[57] A. Sparavigna. Influence of isotope scattering on the thermal conductivity of
diamond. Physical Review B, jan 2002. vol. 65, page 064305. URL http://dx.

doi.org/10.1103/PhysRevB.65.064305.

Thermoelectric Properties of PbTe 150 Aoife Rose Murphy

http://dx.doi.org/10.1038/nphys3492
http://dx.doi.org/10.1103/PhysRevLett.117.075502
http://dx.doi.org/10.1126/science.aad3749
http://dx.doi.org/10.1126/science.aad3749
https://books.google.ie/books?id=OE-bHd2gzVgC
http://dx.doi.org/10.1103/PhysRevB.65.144306
http://dx.doi.org/10.1103/PhysRevB.65.144306
http://dx.doi.org/10.1063/1.473271
http://dx.doi.org/10.1016/0921-4526(95)00016-3
http://dx.doi.org/10.1016/0921-4526(95)00016-3
http://dx.doi.org/10.1103/PhysRevB.53.9064
https://www.sif.it/riviste/ncd/econtents/1997/019/10/article/5
https://www.sif.it/riviste/ncd/econtents/1997/019/10/article/5
http://dx.doi.org/10.1103/PhysRevB.65.064305
http://dx.doi.org/10.1103/PhysRevB.65.064305


BIBLIOGRAPHY

[58] A. Sparavigna. Lattice thermal conductivity in cubic silicon carbide. Physical
Review B, nov 2002. vol. 66, page 174301. URL http://dx.doi.org/10.1103/

PhysRevB.66.174301.

[59] D. A. Broido, A. Ward and N. Mingo. Lattice thermal conductivity of silicon
from empirical interatomic potentials. Physical Review B, jul 2005. vol. 72, page
014308. URL http://dx.doi.org/10.1103/PhysRevB.72.014308.

[60] D. A. Broido, M. Malorny, G. Birner, N. Mingo and D. A. Stewart. Intrinsic lattice
thermal conductivity of semiconductors from first principles. Applied Physics
Letters, dec 2007. vol. 91, page 231922. URL http://dx.doi.org/10.1063/1.

2822891.

[61] A. Ward, D. A. Broido, D. A. Stewart and G. Deinzer. Ab initio theory of the
lattice thermal conductivity in diamond. Physical Review B, sep 2009. vol. 80,
page 125203. URL http://dx.doi.org/10.1103/PhysRevB.80.125203.

[62] Y. He, I. Savić, D. Donadio and G. Galli. Lattice thermal conductivity of
semiconducting bulk materials: atomistic simulations. Physical Chemistry Chem-
ical Physics, 2012. vol. 14, page 16209. URL http://dx.doi.org/10.1039/

c2cp42394d.

[63] K. Esfarjani, G. Chen and H. T. Stokes. Heat transport in silicon from first-
principles calculations. Physical Review B, aug 2011. vol. 84, page 085204. URL
http://dx.doi.org/10.1103/PhysRevB.84.085204.

[64] J. Garg, N. Bonini, B. Kozinsky and N. Marzari. Role of Disorder and Anhar-
monicity in the Thermal Conductivity of Silicon-Germanium Alloys: A First-
Principles Study. Physical Review Letters, jan 2011. vol. 106, page 045901. URL
http://dx.doi.org/10.1103/PhysRevLett.106.045901.

[65] L. Lindsay, D. A. Broido and T. L. Reinecke. Ab initio thermal transport in
compound semiconductors. Physical Review B, apr 2013. vol. 87, page 165201.
URL http://dx.doi.org/10.1103/PhysRevB.87.165201.

[66] A. H. Romero, E. K. U. Gross, M. J. Verstraete and O. Hellman. Thermal
conductivity in PbTe from first principles. Physical Review B, jun 2015. vol. 91,
page 214310. URL http://dx.doi.org/10.1103/PhysRevB.91.214310.

[67] W. Li, L. Lindsay, D. A. Broido, D. A. Stewart and N. Mingo. Thermal conduc-
tivity of bulk and nanowire Mg2SixSn1−x alloys from first principles. Physical
Review B, nov 2012. vol. 86, page 174307. URL http://dx.doi.org/10.1103/

PhysRevB.86.174307.

Thermoelectric Properties of PbTe 151 Aoife Rose Murphy

http://dx.doi.org/10.1103/PhysRevB.66.174301
http://dx.doi.org/10.1103/PhysRevB.66.174301
http://dx.doi.org/10.1103/PhysRevB.72.014308
http://dx.doi.org/10.1063/1.2822891
http://dx.doi.org/10.1063/1.2822891
http://dx.doi.org/10.1103/PhysRevB.80.125203
http://dx.doi.org/10.1039/c2cp42394d
http://dx.doi.org/10.1039/c2cp42394d
http://dx.doi.org/10.1103/PhysRevB.84.085204
http://dx.doi.org/10.1103/PhysRevLett.106.045901
http://dx.doi.org/10.1103/PhysRevB.87.165201
http://dx.doi.org/10.1103/PhysRevB.91.214310
http://dx.doi.org/10.1103/PhysRevB.86.174307
http://dx.doi.org/10.1103/PhysRevB.86.174307


BIBLIOGRAPHY

[68] L. Lindsay. First Principles Peierls-Boltzmann Phonon Thermal Transport: A
Topical Review. Nanoscale and Microscale Thermophysical Engineering, aug
2016. vol. 20, pages 67. URL http://dx.doi.org/10.1080/15567265.2016.

1218576.

[69] G. Fugallo, A. Cepellotti, L. Paulatto, M. Lazzeri, N. Marzari and F. Mauri.
Thermal Conductivity of Graphene and Graphite: Collective Excitations and
Mean Free Paths. Nano Letters, nov 2014. vol. 14, pages 6109. URL http:

//dx.doi.org/10.1021/nl502059f.

[70] L. Lindsay, W. Li, J. Carrete, N. Mingo, D. A. Broido and T. L. Reinecke.
Phonon thermal transport in strained and unstrained graphene from first prin-
ciples. Physical Review B, apr 2014. vol. 89, page 155426. URL http:

//dx.doi.org/10.1103/PhysRevB.89.155426.

[71] M. D. Nielsen, V. Ozolins and J. P. Heremans. Lone pair electrons minimize
lattice thermal conductivity. Energy & Environmental Science, 2013. vol. 6,
pages 570. URL http://dx.doi.org/10.1039/C2EE23391F.

[72] O. Hellman, I. A. Abrikosov and S. I. Simak. Lattice dynamics of anharmonic
solids from first principles. Physical Review B, nov 2011. vol. 84, page 180301.
URL http://dx.doi.org/10.1103/PhysRevB.84.180301.

[73] O. Hellman, P. Steneteg, I. A. Abrikosov and S. I. Simak. Temperature dependent
effective potential method for accurate free energy calculations of solids. Physical
Review B, mar 2013. vol. 87, page 104111. URL http://dx.doi.org/10.1103/

PhysRevB.87.104111.

[74] O. Hellman and I. A. Abrikosov. Temperature-dependent effective third-order
interatomic force constants from first principles. Physical Review B, oct 2013.
vol. 88, page 144301. URL http://dx.doi.org/10.1103/PhysRevB.88.144301.

[75] A. van Roekeghem, J. Carrete and N. Mingo. Anomalous thermal conductivity
and suppression of negative thermal expansion in ScF3. Physical Review B, jul
2016. vol. 94, page 020303. URL http://dx.doi.org/10.1103/PhysRevB.94.

020303.

[76] P. Souvatzis, O. Eriksson, M. I. Katsnelson and S. P. Rudin. Entropy Driven
Stabilization of Energetically Unstable Crystal Structures Explained from First
Principles Theory. Physical Review Letters, mar 2008. vol. 100, page 095901.
URL http://dx.doi.org/10.1103/PhysRevLett.100.095901.

[77] B. K. Ridley. Quantum Processes in Semiconductors. Oxford University Press,
fourth edn., 1999. URL https://books.google.ie/books?id=am1R-6dsI%5C_

4C.

Thermoelectric Properties of PbTe 152 Aoife Rose Murphy

http://dx.doi.org/10.1080/15567265.2016.1218576
http://dx.doi.org/10.1080/15567265.2016.1218576
http://dx.doi.org/10.1021/nl502059f
http://dx.doi.org/10.1021/nl502059f
http://dx.doi.org/10.1103/PhysRevB.89.155426
http://dx.doi.org/10.1103/PhysRevB.89.155426
http://dx.doi.org/10.1039/C2EE23391F
http://dx.doi.org/10.1103/PhysRevB.84.180301
http://dx.doi.org/10.1103/PhysRevB.87.104111
http://dx.doi.org/10.1103/PhysRevB.87.104111
http://dx.doi.org/10.1103/PhysRevB.88.144301
http://dx.doi.org/10.1103/PhysRevB.94.020303
http://dx.doi.org/10.1103/PhysRevB.94.020303
http://dx.doi.org/10.1103/PhysRevLett.100.095901
https://books.google.ie/books?id=am1R-6dsI%5C_4C
https://books.google.ie/books?id=am1R-6dsI%5C_4C


BIBLIOGRAPHY

[78] T. J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J. V. Badding and J. O.
Sofo. Transport coefficients from first-principles calculations. Physical Review B,
sep 2003. vol. 68, page 125210. URL http://dx.doi.org/10.1103/PhysRevB.

68.125210.

[79] C. Herring and E. Vogt. Transport and Deformation-Potential Theory for Many-
Valley Semiconductors with Anisotropic Scattering. Physical Review, feb 1956.
vol. 101, pages 944. URL http://dx.doi.org/10.1103/PhysRev.101.944.

[80] C. Jacoboni and L. Reggiani. The Monte Carlo method for the solution of charge
transport in semiconductors with applications to covalent materials. Reviews of
Modern Physics, jul 1983. vol. 55, pages 645. URL http://dx.doi.org/10.

1103/RevModPhys.55.645.

[81] A. Abramo, L. Baudry, R. Brunetti, R. Castagne, M. Charef, F. Dessenne,
P. Dollfus, R. Dutton, W. Engl, R. Fauquembergue, C. Fiegna, M. Fischetti,
S. Galdin, N. Goldsman, M. Hackel, C. Hamaguchi, K. Hess, K. Hennacy,
P. Hesto, J. Higman, T. Iizuka, C. Jungemann, Y. Kamakura, H. Kosina,
T. Kunikiyo, S. Laux, Hongchin Lin, C. Maziar, H. Mizuno, H. Peifer, S. Ra-
maswamy, N. Sano, P. Scrobohaci, S. Selberherr, M. Takenaka, Ting-Wei Tang,
K. Taniguchi, J. Thobel, R. Thoma, K. Tomizawa, M. Tomizawa, T. Vogelsang,
Shiuh-Luen Wang, Xiaolin Wang, Chiang-Sheng Yao, P. Yoder and A. Yoshii.
A comparison of numerical solutions of the Boltzmann transport equation for
high-energy electron transport silicon. IEEE Transactions on Electron Devices,
sep 1994. vol. 41, pages 1646. URL http://dx.doi.org/10.1109/16.310119.

[82] B. Xu and M. J. Verstraete. First Principles Explanation of the Positive Seebeck
Coefficient of Lithium. Physical Review Letters, may 2014. vol. 112, page 196603.
URL http://dx.doi.org/10.1103/PhysRevLett.112.196603.

[83] F. Murphy-Armando and S. Fahy. First-principles calculation of carrier-phonon
scattering in n-type Si1−xGex alloys. Physical Review B, jul 2008. vol. 78, page
035202. URL http://dx.doi.org/10.1103/PhysRevB.78.035202.

[84] J. Sjakste, N. Vast and V. Tyuterev. Ab Initio Method for Calculating Electron-
Phonon Scattering Times in Semiconductors: Application to GaAs and GaP.
Physical Review Letters, dec 2007. vol. 99, page 236405. URL http://dx.doi.

org/10.1103/PhysRevLett.99.236405.

[85] F. Giustino, M. L. Cohen and S. G. Louie. Electron-phonon interaction using
Wannier functions. Physical Review B, oct 2007. vol. 76, page 165108. URL
http://dx.doi.org/10.1103/PhysRevB.76.165108.

Thermoelectric Properties of PbTe 153 Aoife Rose Murphy

http://dx.doi.org/10.1103/PhysRevB.68.125210
http://dx.doi.org/10.1103/PhysRevB.68.125210
http://dx.doi.org/10.1103/PhysRev.101.944
http://dx.doi.org/10.1103/RevModPhys.55.645
http://dx.doi.org/10.1103/RevModPhys.55.645
http://dx.doi.org/10.1109/16.310119
http://dx.doi.org/10.1103/PhysRevLett.112.196603
http://dx.doi.org/10.1103/PhysRevB.78.035202
http://dx.doi.org/10.1103/PhysRevLett.99.236405
http://dx.doi.org/10.1103/PhysRevLett.99.236405
http://dx.doi.org/10.1103/PhysRevB.76.165108


BIBLIOGRAPHY

[86] F. Giustino, J. R. Yates, I. Souza, M. L. Cohen and S. G. Louie. Electron-Phonon
Interaction via Electronic and Lattice Wannier Functions: Superconductivity in
Boron-Doped Diamond Reexamined. Physical Review Letters, jan 2007. vol. 98,
page 047005. URL http://dx.doi.org/10.1103/PhysRevLett.98.047005.

[87] O. D. Restrepo, K. Varga and S. T. Pantelides. First-principles calculations of
electron mobilities in silicon: Phonon and Coulomb scattering. Applied Physics
Letters, may 2009. vol. 94, page 212103. URL http://dx.doi.org/10.1063/1.

3147189.

[88] J. Sjakste, N. Vast, M. Calandra and F. Mauri. Wannier interpolation of the
electron-phonon matrix elements in polar semiconductors: Polar-optical coupling
in GaAs. Physical Review B, aug 2015. vol. 92, page 054307. URL http:

//dx.doi.org/10.1103/PhysRevB.92.054307.

[89] M. Fiorentini and N. Bonini. Thermoelectric coefficients of n-doped silicon from
first principles via the solution of the Boltzmann transport equation. Physical
Review B, aug 2016. vol. 94, page 085204. URL http://dx.doi.org/10.1103/

PhysRevB.94.085204.

[90] M. Lüders, M. A. L. Marques, N. N. Lathiotakis, A. Floris, G. Profeta, L. Fast,
A. Continenza, S. Massidda and E. K. U. Gross. Ab initio theory of supercon-
ductivity. I. Density functional formalism and approximate functionals. Physical
Review B, jul 2005. vol. 72, page 024546. URL http://dx.doi.org/10.1103/

PhysRevB.72.024545.

[91] M. Calandra, G. Profeta and F. Mauri. Adiabatic and nonadiabatic phonon
dispersion in a Wannier function approach. Physical Review B, oct 2010. vol. 82,
page 165111. URL http://dx.doi.org/10.1103/PhysRevB.82.165111.

[92] P. Vogl. Microscopic theory of electron-phonon interaction in insulators or
semiconductors. Physical Review B, jan 1976. vol. 13, pages 694. URL
http://dx.doi.org/10.1103/PhysRevB.13.694.

[93] T.-H. Liu, J. Zhou, B. Liao, D. J. Singh and G. Chen. First-principles mode-
by-mode analysis for electron-phonon scattering channels and mean free path
spectra in GaAs. Physical Review B, feb 2017. vol. 95, page 075206. URL
http://dx.doi.org/10.1103/PhysRevB.95.075206.

[94] J.-J. Zhou and M. Bernardi. Ab initio electron mobility and polar phonon
scattering in GaAs. Physical Review B, nov 2016. vol. 94, page 201201. URL
http://dx.doi.org/10.1103/PhysRevB.94.201201.

Thermoelectric Properties of PbTe 154 Aoife Rose Murphy

http://dx.doi.org/10.1103/PhysRevLett.98.047005
http://dx.doi.org/10.1063/1.3147189
http://dx.doi.org/10.1063/1.3147189
http://dx.doi.org/10.1103/PhysRevB.92.054307
http://dx.doi.org/10.1103/PhysRevB.92.054307
http://dx.doi.org/10.1103/PhysRevB.94.085204
http://dx.doi.org/10.1103/PhysRevB.94.085204
http://dx.doi.org/10.1103/PhysRevB.72.024545
http://dx.doi.org/10.1103/PhysRevB.72.024545
http://dx.doi.org/10.1103/PhysRevB.82.165111
http://dx.doi.org/10.1103/PhysRevB.13.694
http://dx.doi.org/10.1103/PhysRevB.95.075206
http://dx.doi.org/10.1103/PhysRevB.94.201201


BIBLIOGRAPHY

[95] J. Bardeen and W. Shockley. Deformation Potentials and Mobilities in Non-Polar
Crystals. Physical Review, oct 1950. vol. 80, pages 72. URL http://dx.doi.

org/10.1103/PhysRev.80.72.

[96] M. Born and R. Oppenheimer. Zur Quantentheorie der Molekeln. Annalen der
Physik, 1927. vol. 389, pages 457. URL http://dx.doi.org/10.1002/andp.

19273892002.

[97] P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas. Physical Review, nov
1964. vol. 136, pages B864. URL http://dx.doi.org/10.1103/PhysRev.136.

B864.

[98] R. O. Jones. Density functional theory: Its origins, rise to prominence, and
future. Reviews of Modern Physics, aug 2015. vol. 87, pages 897. URL http:

//dx.doi.org/10.1103/RevModPhys.87.897.

[99] S. Baroni, S. de Gironcoli, A. Dal Corso and P. Giannozzi. Phonons and
related crystal properties from density-functional perturbation theory. Reviews
of Modern Physics, jul 2001. vol. 73, pages 515. URL http://dx.doi.org/10.

1103/RevModPhys.73.515.

[100] R. O. Jones and O. Gunnarsson. The density functional formalism, its applica-
tions and prospects. Reviews of Modern Physics, jul 1989. vol. 61, pages 689.
URL http://dx.doi.org/10.1103/RevModPhys.61.689.

[101] W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange and
Correlation Effects. Physical Review, nov 1965. vol. 140, pages A1133. URL
http://dx.doi.org/10.1103/PhysRev.140.A1133.

[102] P.-O. Löwdin. Quantum Theory of Many-Particle Systems. III. Extension of the
Hartree-Fock Scheme to Include Degenerate Systems and Correlation Effects.
Physical Review, mar 1955. vol. 97, pages 1509. URL http://dx.doi.org/10.

1103/PhysRev.97.1509.

[103] V. Sahni. Physical interpretation of density-functional theory and of its represen-
tation of the Hartree-Fock and Hartree theories. Physical Review A, mar 1997.
vol. 55, pages 1846. URL http://dx.doi.org/10.1103/PhysRevA.55.1846.

[104] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. D. Joannopoulos. It-
erative minimization techniques for ab initio total-energy calculations: molecular
dynamics and conjugate gradients. Reviews of Modern Physics, oct 1992. vol. 64,
pages 1045. URL http://dx.doi.org/10.1103/RevModPhys.64.1045.

[105] H. J. Monkhorst and J. D. Pack. Special points for Brillouin-zone integrations.
Physical Review B, jun 1976. vol. 13, pages 5188. URL http://dx.doi.org/10.

1103/PhysRevB.13.5188.

Thermoelectric Properties of PbTe 155 Aoife Rose Murphy

http://dx.doi.org/10.1103/PhysRev.80.72
http://dx.doi.org/10.1103/PhysRev.80.72
http://dx.doi.org/10.1002/andp.19273892002
http://dx.doi.org/10.1002/andp.19273892002
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/RevModPhys.87.897
http://dx.doi.org/10.1103/RevModPhys.87.897
http://dx.doi.org/10.1103/RevModPhys.73.515
http://dx.doi.org/10.1103/RevModPhys.73.515
http://dx.doi.org/10.1103/RevModPhys.61.689
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.97.1509
http://dx.doi.org/10.1103/PhysRev.97.1509
http://dx.doi.org/10.1103/PhysRevA.55.1846
http://dx.doi.org/10.1103/RevModPhys.64.1045
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1103/PhysRevB.13.5188


BIBLIOGRAPHY

[106] J. C. Phillips. Energy-Band Interpolation Scheme Based on a Pseudopotential.
Physical Review, nov 1958. vol. 112, pages 685. URL http://dx.doi.org/10.

1103/PhysRev.112.685.

[107] J. C. Phillips and L. Kleinman. New Method for Calculating Wave Functions in
Crystals and Molecules. Physical Review, oct 1959. vol. 116, pages 287. URL
http://dx.doi.org/10.1103/PhysRev.116.287.

[108] W. E. Pickett. Pseudopotential methods in condensed matter applications.
Computer Physics Reports, apr 1989. vol. 9, pages 115. URL http://dx.doi.

org/10.1016/0167-7977(89)90002-6.

[109] D. R. Hamann, M. Schlüter and C. Chiang. Norm-Conserving Pseudopotentials.
Physical Review Letters, nov 1979. vol. 43, pages 1494. URL http://dx.doi.

org/10.1103/PhysRevLett.43.1494.

[110] C. Hartwigsen, S. Goedecker and J. Hutter. Relativistic separable dual-space
Gaussian pseudopotentials from H to Rn. Physical Review B, aug 1998. vol. 58,
pages 3641. URL http://dx.doi.org/10.1103/PhysRevB.58.3641.

[111] W. Kohn. Nobel Lecture: Electronic structure of matter—wave functions and
density functionals. Reviews of Modern Physics, oct 1999. vol. 71, pages 1253.
URL http://dx.doi.org/10.1103/RevModPhys.71.1253.

[112] M. Schlesinger. Modern Aspects of Electrochemistry No. 44: Modelling and
Numerical Simulations II. Springer New York, 2009. URL http://dx.doi.

org/10.1007/978-0-387-49586-6.

[113] S. Goedecker, M. Teter and J. Hutter. Separable dual-space Gaussian pseu-
dopotentials. Physical Review B, jul 1996. vol. 54, pages 1703. URL http:

//dx.doi.org/10.1103/PhysRevB.54.1703.

[114] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J.
Singh and C. Fiolhais. Atoms, molecules, solids, and surfaces: Applications of
the generalized gradient approximation for exchange and correlation. Physical
Review B, sep 1992. vol. 46, pages 6671. URL http://dx.doi.org/10.1103/

PhysRevB.46.6671.

[115] J. P. Perdew, K. Burke and M. Ernzerhof. Generalized Gradient Approximation
Made Simple. Physical Review Letters, oct 1996. vol. 77, pages 3865. URL
http://dx.doi.org/10.1103/PhysRevLett.77.3865.

[116] F. Furche and J. P. Perdew. The performance of semilocal and hybrid density
functionals in 3d transition-metal chemistry. The Journal of Chemical Physics,
jan 2006. vol. 124, page 044103. URL http://dx.doi.org/10.1063/1.2162161.

Thermoelectric Properties of PbTe 156 Aoife Rose Murphy

http://dx.doi.org/10.1103/PhysRev.112.685
http://dx.doi.org/10.1103/PhysRev.112.685
http://dx.doi.org/10.1103/PhysRev.116.287
http://dx.doi.org/10.1016/0167-7977(89)90002-6
http://dx.doi.org/10.1016/0167-7977(89)90002-6
http://dx.doi.org/10.1103/PhysRevLett.43.1494
http://dx.doi.org/10.1103/PhysRevLett.43.1494
http://dx.doi.org/10.1103/PhysRevB.58.3641
http://dx.doi.org/10.1103/RevModPhys.71.1253
http://dx.doi.org/10.1007/978-0-387-49586-6
http://dx.doi.org/10.1007/978-0-387-49586-6
http://dx.doi.org/10.1103/PhysRevB.54.1703
http://dx.doi.org/10.1103/PhysRevB.54.1703
http://dx.doi.org/10.1103/PhysRevB.46.6671
http://dx.doi.org/10.1103/PhysRevB.46.6671
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1063/1.2162161


BIBLIOGRAPHY

[117] R. P. Feynman. Forces in Molecules. Physical Review, aug 1939. vol. 56, pages
340. URL http://dx.doi.org/10.1103/PhysRev.56.340.

[118] H. B. Schlegel. Optimization of equilibrium geometries and transition structures.
Journal of Computational Chemistry, jun 1982. vol. 3, pages 214. URL http:

//dx.doi.org/10.1002/jcc.540030212.

[119] A. Togo, L. Chaput and I. Tanaka. Distributions of phonon lifetimes in Brillouin
zones. Physical Review B, mar 2015. vol. 91, page 094306. URL http://dx.

doi.org/10.1103/PhysRevB.91.094306.

[120] D. J. Ecsedy and P. G. Klemens. Thermal resistivity of dielectric crystals due to
four-phonon processes and optical modes. Physical Review B, jun 1977. vol. 15,
pages 5957. URL http://dx.doi.org/10.1103/PhysRevB.15.5957.

[121] R. E. Peierls. Quantum Theory of Solids. Clarendon Press, Oxford, 1955. URL
https://books.google.ie/books?id=WvPcBUsSJBAC.

[122] P. A. M. Dirac. The Quantum Theory of the Emission and Absorption of Radia-
tion. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, mar 1927. vol. 114, pages 243. URL http://dx.doi.org/10.1098/

rspa.1927.0039.

[123] E. Fermi. Nuclear Physics. University of Chicago Press, 1950. URL https:

//books.google.ie/books?id=WQtkYCWTcicC.

[124] B. Abeles. Lattice Thermal Conductivity of Disordered Semiconductor Alloys
at High Temperatures. Physical Review, sep 1963. vol. 131, pages 1906. URL
http://dx.doi.org/10.1103/PhysRev.131.1906.

[125] P. Ghosez, D. Desquesnes, X. Gonze and K. M. Rabe. First-principles study of
lattice instabilities in BaxSr1−xTiO3. In AIP Conference Proceedings, vol. 535.
AIP, 2000 pages 102–110. URL http://dx.doi.org/10.1063/1.1324445.

[126] S.-i. Tamura. Isotope scattering of dispersive phonons in Ge. Physical Review B,
jan 1983. vol. 27, pages 858. URL http://dx.doi.org/10.1103/PhysRevB.27.

858.

[127] S.-i. Tamura. Isotope scattering of large-wave-vector phonons in GaAs and InSb:
Deformation-dipole and overlap-shell models. Physical Review B, jul 1984. vol. 30,
pages 849. URL http://dx.doi.org/10.1103/PhysRevB.30.849.

[128] T. Murakami, T. Shiga, T. Hori, K. Esfarjani and J. Shiomi. Importance of local
force fields on lattice thermal conductivity reduction in PbTe1−xSexalloys. EPL
(Europhysics Letters), may 2013. vol. 102, page 46002. URL http://dx.doi.

org/10.1209/0295-5075/102/46002.

Thermoelectric Properties of PbTe 157 Aoife Rose Murphy

http://dx.doi.org/10.1103/PhysRev.56.340
http://dx.doi.org/10.1002/jcc.540030212
http://dx.doi.org/10.1002/jcc.540030212
http://dx.doi.org/10.1103/PhysRevB.91.094306
http://dx.doi.org/10.1103/PhysRevB.91.094306
http://dx.doi.org/10.1103/PhysRevB.15.5957
https://books.google.ie/books?id=WvPcBUsSJBAC
http://dx.doi.org/10.1098/rspa.1927.0039
http://dx.doi.org/10.1098/rspa.1927.0039
https://books.google.ie/books?id=WQtkYCWTcicC
https://books.google.ie/books?id=WQtkYCWTcicC
http://dx.doi.org/10.1103/PhysRev.131.1906
http://dx.doi.org/10.1063/1.1324445
http://dx.doi.org/10.1103/PhysRevB.27.858
http://dx.doi.org/10.1103/PhysRevB.27.858
http://dx.doi.org/10.1103/PhysRevB.30.849
http://dx.doi.org/10.1209/0295-5075/102/46002
http://dx.doi.org/10.1209/0295-5075/102/46002


BIBLIOGRAPHY

[129] A. Togo, F. Oba and I. Tanaka. First-principles calculations of the ferroelastic
transition between rutile-type and CaCl2-type SiO2 at high pressures. Physical
Review B, oct 2008. vol. 78, page 134106. URL http://dx.doi.org/10.1103/

PhysRevB.78.134106.

[130] L. Chaput, A. Togo, I. Tanaka and G. Hug. Phonon-phonon interactions in
transition metals. Physical Review B, sep 2011. vol. 84, page 094302. URL
http://dx.doi.org/10.1103/PhysRevB.84.094302.

[131] A. Togo, L. Chaput, I. Tanaka and G. Hug. First-principles phonon calculations
of thermal expansion in Ti3SiC2, Ti3AlC2, and Ti3GeC2. Physical Review B, may
2010. vol. 81, page 174301. URL http://dx.doi.org/10.1103/PhysRevB.81.

174301.

[132] X. Gonze, B. Amadon, P. M. Anglade, J. M. Beuken, F. Bottin, P. Boulanger,
F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch, L. Genovese, P. Ghosez,
M. Giantomassi, S. Goedecker, D. R. Hamann, P. Hermet, F. Jollet, G. Jomard,
S. Leroux, M. Mancini, S. Mazevet, M. J. T. Oliveira, G. Onida, Y. Pouillon,
T. Rangel, G. M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M. J. Verstraete,
G. Zerah and J. W. Zwanziger. ABINIT: First-principles approach to material
and nanosystem properties. Computer Physics Communications, dec 2009. vol.
180, pages 2582. URL http://dx.doi.org/10.1016/j.cpc.2009.07.007.

[133] A. Togo and I. Tanaka. First principles phonon calculations in materials science.
Scripta Materialia, 2015. vol. 108, pages 1. URL http://dx.doi.org/10.1016/

j.scriptamat.2015.07.021.

[134] X. Gonze and C. Lee. Dynamical matrices, Born effective charges, dielectric
permittivity tensors, and interatomic force constants from density-functional
perturbation theory. Physical Review B, apr 1997. vol. 55, pages 10355. URL
http://dx.doi.org/10.1103/PhysRevB.55.10355.

[135] X. Gonze. First-principles responses of solids to atomic displacements and
homogeneous electric fields: Implementation of a conjugate-gradient algorithm.
Physical Review B, apr 1997. vol. 55, pages 10337. URL http://dx.doi.org/

10.1103/PhysRevB.55.10337.

[136] Y. Wang, J. J. Wang, W. Y. Wang, Z. G. Mei, S. L. Shang, L. Q. Chen and Z. K.
Liu. A mixed-space approach to first-principles calculations of phonon frequencies
for polar materials. Journal of Physics: Condensed Matter, 2010. vol. 22, page
202201. URL http://dx.doi.org/10.1088/0953-8984/22/20/202201.

Thermoelectric Properties of PbTe 158 Aoife Rose Murphy

http://dx.doi.org/10.1103/PhysRevB.78.134106
http://dx.doi.org/10.1103/PhysRevB.78.134106
http://dx.doi.org/10.1103/PhysRevB.84.094302
http://dx.doi.org/10.1103/PhysRevB.81.174301
http://dx.doi.org/10.1103/PhysRevB.81.174301
http://dx.doi.org/10.1016/j.cpc.2009.07.007
http://dx.doi.org/10.1016/j.scriptamat.2015.07.021
http://dx.doi.org/10.1016/j.scriptamat.2015.07.021
http://dx.doi.org/10.1103/PhysRevB.55.10355
http://dx.doi.org/10.1103/PhysRevB.55.10337
http://dx.doi.org/10.1103/PhysRevB.55.10337
http://dx.doi.org/10.1088/0953-8984/22/20/202201


BIBLIOGRAPHY

[137] G. Benenti, G. Casati, K. Saito and R. S. Whitney. Fundamental aspects of
steady-state conversion of heat to work at the nanoscale. Physics Reports, 2017.
vol. 694, pages 1. URL http://dx.doi.org/10.1016/J.PHYSREP.2017.05.008.

[138] F. Giustino. Electron-phonon interactions from first principles. Reviews of
Modern Physics, feb 2017. vol. 89, page 015003. URL http://dx.doi.org/

10.1103/RevModPhys.89.015003.

[139] T. Gunst, T. Markussen, K. Stokbro and M. Brandbyge. First-principles
method for electron-phonon coupling and electron mobility: Applications to two-
dimensional materials. Physical Review B, jan 2016. vol. 93, page 035414. URL
http://dx.doi.org/10.1103/PhysRevB.93.035414.

[140] W. G. Vandenberghe and M. V. Fischetti. Deformation potentials for band-to-
band tunneling in silicon and germanium from first principles. Applied Physics
Letters, jan 2015. vol. 106, page 013505. URL http://dx.doi.org/10.1063/1.

4905591.

[141] T. Kawamura and S. Das Sarma. Phonon-scattering-limited electron mobilities in
AlxGa1−xAs/GaAs heterojunctions. Physical Review B, feb 1992. vol. 45, pages
3612. URL http://dx.doi.org/10.1103/PhysRevB.45.3612.

[142] C. Herring. Transport Properties of a Many-Valley Semiconductor. Bell System
Technical Journal, mar 1955. vol. 34, pages 237. URL http://dx.doi.org/10.

1002/j.1538-7305.1955.tb01472.x.

[143] K. Kaasbjerg, K. S. Thygesen and K. W. Jacobsen. Unraveling the acoustic
electron-phonon interaction in graphene. Physical Review B, apr 2012. vol. 85,
page 165440. URL http://dx.doi.org/10.1103/PhysRevB.85.165440.

[144] S. Baroni, P. Giannozzi and A. Testa. Green’s-function approach to linear
response in solids. Physical Review Letters, may 1987. vol. 58, pages 1861.
URL http://dx.doi.org/10.1103/PhysRevLett.58.1861.

[145] X. Gonze. Adiabatic density-functional perturbation theory. Physical Review A,
aug 1995. vol. 52, pages 1096. URL http://dx.doi.org/10.1103/PhysRevA.

52.1096.

[146] K. M. Rabe and J. D. Joannopoulos. Ab initio relativistic pseudopotential study
of the zero-temperature structural properties of SnTe and PbTe. Physical Review
B, aug 1985. vol. 32, pages 2302. URL http://dx.doi.org/10.1103/PhysRevB.

32.2302.

[147] Y. Zhang, X. Ke, C. Chen, J. Yang and P. R. C. Kent. Thermodynamic properties
of PbTe, PbSe, and PbS: First-principles study. Physical Review B, jul 2009.
vol. 80, page 024304. URL http://dx.doi.org/10.1103/PhysRevB.80.024304.

Thermoelectric Properties of PbTe 159 Aoife Rose Murphy

http://dx.doi.org/10.1016/J.PHYSREP.2017.05.008
http://dx.doi.org/10.1103/RevModPhys.89.015003
http://dx.doi.org/10.1103/RevModPhys.89.015003
http://dx.doi.org/10.1103/PhysRevB.93.035414
http://dx.doi.org/10.1063/1.4905591
http://dx.doi.org/10.1063/1.4905591
http://dx.doi.org/10.1103/PhysRevB.45.3612
http://dx.doi.org/10.1002/j.1538-7305.1955.tb01472.x
http://dx.doi.org/10.1002/j.1538-7305.1955.tb01472.x
http://dx.doi.org/10.1103/PhysRevB.85.165440
http://dx.doi.org/10.1103/PhysRevLett.58.1861
http://dx.doi.org/10.1103/PhysRevA.52.1096
http://dx.doi.org/10.1103/PhysRevA.52.1096
http://dx.doi.org/10.1103/PhysRevB.32.2302
http://dx.doi.org/10.1103/PhysRevB.32.2302
http://dx.doi.org/10.1103/PhysRevB.80.024304


BIBLIOGRAPHY

[148] J. M. Skelton, S. C. Parker, A. Togo, I. Tanaka and A. Walsh. Thermal physics
of the lead chalcogenides PbS, PbSe, and PbTe from first principles. Physical
Review B, may 2014. vol. 89, page 205203. URL http://dx.doi.org/10.1103/

PhysRevB.89.205203.

[149] Z. Tian, J. Garg, K. Esfarjani, T. Shiga, J. Shiomi and G. Chen. Phonon
conduction in PbSe, PbTe, and PbTe1−xSex from first-principles calculations.
Physical Review B, may 2012. vol. 85, page 184303. URL http://dx.doi.org/

10.1103/PhysRevB.85.184303.

[150] S. Lee, K. Esfarjani, T. Luo, J. Zhou, Z. Tian and G. Chen. Resonant bonding
leads to low lattice thermal conductivity. Nature Communications, apr 2014.
vol. 5, page 3525. URL http://dx.doi.org/10.1038/ncomms4525.

[151] K. Esfarjani and H. T. Stokes. Method to extract anharmonic force constants
from first principles calculations. Physical Review B, apr 2008. vol. 77, page
144112. URL http://dx.doi.org/10.1103/PhysRevB.77.144112.

[152] P. G. Klemens. The Scattering of Low-Frequency Lattice Waves by Static
Imperfections. Proceedings of the Physical Society. Section A, dec 1955. vol. 68,
pages 1113. URL http://dx.doi.org/10.1088/0370-1298/68/12/303.

[153] W. Cochran, R. A. Crowley, G. Dolling and M. M. Elcombe. The Crystal
Dynamics of Lead Telluride. Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences, 1966. vol. 293, page 433. URL
http://dx.doi.org/10.1098/rspa.1966.0182.

[154] E. D. Devyatkova and I. A. Smirnov. The Effect of Halogen Additions on the
Thermal Conductivity of Lead Telluride. Soviet Physics Solid State, USSR, 1962.
vol. 3, pages 1666.

[155] A. A. El-Sharkawy, A. M. Abou El-Azm, M. I. Kenawy, A. S. Hillal and H. M.
Abu-Basha. Thermophysical properties of polycrystalline PbS, PbSe, and PbTe
in the temperature range 300-700 K. International Journal of Thermophysics,
1983. vol. 4, pages 261. URL http://dx.doi.org/10.1007/BF00502357.

[156] X. Gonze, J.-C. Charlier, D. C. Allan and M. P. Teter. Interatomic force constants
from first principles: The case of α-quartz. Physical Review B, nov 1994. vol. 50,
pages 13035. URL http://dx.doi.org/10.1103/PhysRevB.50.13035.

[157] D. Hohnke, H. Holloway and S. Kaiser. Phase relations and transformations in
the system PbTe-GeTe. Journal of Physics and Chemistry of Solids, 1972. vol. 33,
pages 2053. URL http://dx.doi.org/10.1016/S0022-3697(72)80235-X.

Thermoelectric Properties of PbTe 160 Aoife Rose Murphy

http://dx.doi.org/10.1103/PhysRevB.89.205203
http://dx.doi.org/10.1103/PhysRevB.89.205203
http://dx.doi.org/10.1103/PhysRevB.85.184303
http://dx.doi.org/10.1103/PhysRevB.85.184303
http://dx.doi.org/10.1038/ncomms4525
http://dx.doi.org/10.1103/PhysRevB.77.144112
http://dx.doi.org/10.1088/0370-1298/68/12/303
http://dx.doi.org/10.1098/rspa.1966.0182
http://dx.doi.org/10.1007/BF00502357
http://dx.doi.org/10.1103/PhysRevB.50.13035
http://dx.doi.org/10.1016/S0022-3697(72)80235-X


BIBLIOGRAPHY

[158] L. Lindsay and D. A. Broido. Three-phonon phase space and lattice thermal
conductivity in semiconductors. Journal of Physics: Condensed Matter, apr 2008.
vol. 20, page 165209. URL http://dx.doi.org/10.1088/0953-8984/20/16/

165209.

[159] E. D. Devyatkova and V. V. Tikhonov. Scattering of Phonons and Electrons in
Solid Solutions. Soviet Physics Solid State, USSR, 1965. vol. 7, pages 1427.

[160] J. Akhtar, M. Afzaal, M. A. Vincent, N. A. Burton, I. H. Hillier and P. O’Brien.
Low temperature CVD growth of PbS films on plastic substrates. Chemical
Communications, 2011. vol. 47, page 1991. URL http://dx.doi.org/10.1039/

c0cc05036a.

[161] I. Grozdanov. Deposition of Electrically Conductive, Microwave Shielding, and
IR-Detecting Inorganic Coatings on Polymer Films. Chemistry Letters, mar 1994.
vol. 23, pages 551. URL http://dx.doi.org/10.1246/cl.1994.551.

[162] E. S. Božin, C. D. Malliakas, P. Souvatzis, T. Proffen, N. A. Spaldin, M. G.
Kanatzidis and S. J. L. Billinge. Entropically stabilized local dipole formation
in lead chalcogenides. Science, dec 2010. vol. 330, pages 1660. URL http:

//dx.doi.org/10.1126/science.1192759.

[163] C. W. Li, O. Hellman, J. Ma, A. F. May, H. B. Cao, X. Chen, A. D. Christianson,
G. Ehlers, D. J. Singh, B. C. Sales and O. Delaire. Phonon Self-Energy and Origin
of Anomalous Neutron Scattering Spectra in SnTe and PbTe Thermoelectrics.
Physical Review Letters, apr 2014. vol. 112, page 175501. URL http://dx.doi.

org/10.1103/PhysRevLett.112.175501.

[164] Z. Lu, J. Li, C. Wang, Y. Li, F. Liu and W. Ao. Effects of Mn substitution on
the phases and thermoelectric properties of Ge0.8Pb0.2Te alloy. Journal of Alloys
and Compounds, feb 2015. vol. 621, pages 345. URL http://dx.doi.org/10.

1016/j.jallcom.2014.09.198.

[165] Y. Gelbstein, J. Davidow, S. N. Girard, D.-Y. Chung and M. Kanatzidis. Con-
trolling Metallurgical Phase Separation Reactions of the Ge0.87Pb0.13Te Alloy for
High Thermoelectric Performance. Advanced Energy Materials, jun 2013. vol. 3,
pages 815. URL http://dx.doi.org/10.1002/aenm.201200970.

[166] S. Li, J. Li, Q. Wang, L. Wang, F. Liu and W. Ao. Synthesis and thermoelectric
properties of the (GeTe)1−x(PbTe)x alloys. Solid State Sciences, feb 2011. vol. 13,
pages 399. URL http://dx.doi.org/10.1016/j.solidstatesciences.2010.

11.045.

Thermoelectric Properties of PbTe 161 Aoife Rose Murphy

http://dx.doi.org/10.1088/0953-8984/20/16/165209
http://dx.doi.org/10.1088/0953-8984/20/16/165209
http://dx.doi.org/10.1039/c0cc05036a
http://dx.doi.org/10.1039/c0cc05036a
http://dx.doi.org/10.1246/cl.1994.551
http://dx.doi.org/10.1126/science.1192759
http://dx.doi.org/10.1126/science.1192759
http://dx.doi.org/10.1103/PhysRevLett.112.175501
http://dx.doi.org/10.1103/PhysRevLett.112.175501
http://dx.doi.org/10.1016/j.jallcom.2014.09.198
http://dx.doi.org/10.1016/j.jallcom.2014.09.198
http://dx.doi.org/10.1002/aenm.201200970
http://dx.doi.org/10.1016/j.solidstatesciences.2010.11.045
http://dx.doi.org/10.1016/j.solidstatesciences.2010.11.045


BIBLIOGRAPHY

[167] Y. Gelbstein and J. Davidow. Highly efficient functional GexPb1−xTe based
thermoelectric alloys. Physical Chemistry Chemical Physics, aug 2014. vol. 16,
pages 20120. URL http://dx.doi.org/10.1039/C4CP02399D.

[168] S. Perumal, S. Roychowdhury and K. Biswas. High performance thermoelectric
materials and devices based on GeTe. Journal of Materials Chemistry C, 2016.
vol. 4, pages 7520. URL http://dx.doi.org/10.1039/C6TC02501C.

[169] G. Lucovsky and R. M. White. Effects of Resonance Bonding on the Properties of
Crystalline and Amorphous Semiconductors. Physical Review B, jul 1973. vol. 8,
pages 660. URL http://dx.doi.org/10.1103/PhysRevB.8.660.

[170] K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson and M. Wuttig.
Resonant bonding in crystalline phase-change materials. Nature Materials, aug
2008. vol. 7, pages 653. URL http://dx.doi.org/10.1038/nmat2226.

[171] P. Fons, A. V. Kolobov, M. Krbal, J. Tominaga, K. S. Andrikopoulos, S. N.
Yannopoulos, G. A. Voyiatzis and T. Uruga. Phase transition in crystalline
GeTe: Pitfalls of averaging effects. Physical Review B, oct 2010. vol. 82, page
155209. URL http://dx.doi.org/10.1103/PhysRevB.82.155209.

[172] E. Steigmeier and G. Harbeke. Soft phonon mode and ferroelectricity in GeTe.
Solid State Communications, aug 1970. vol. 8, pages 1275. URL http://dx.

doi.org/10.1016/0038-1098(70)90619-8.

[173] U. D. Wdowik, K. Parlinski, S. Rols and T. Chatterji. Soft-phonon mediated
structural phase transition in GeTe. Physical Review B, jun 2014. vol. 89, page
224306. URL http://dx.doi.org/10.1103/PhysRevB.89.224306.

[174] P. Bauer Pereira, I. Sergueev, S. Gorsse, J. Dadda, E. Müller and R. P. Hermann.
Lattice dynamics and structure of GeTe, SnTe and PbTe. Physica Status Solidi
(b), jul 2013. vol. 250, pages 1300. URL http://dx.doi.org/10.1002/pssb.

201248412.

[175] R. Shaltaf, E. Durgun, J.-Y. Raty, P. Ghosez and X. Gonze. Dynamical, dielectric,
and elastic properties of GeTe investigated with first-principles density functional
theory. Physical Review B, nov 2008. vol. 78, page 205203. URL http://dx.

doi.org/10.1103/PhysRevB.78.205203.

[176] J. Fabian and P. B. Allen. Thermal Expansion and Grüneisen Parameters of
Amorphous Silicon: A Realistic Model Calculation. Physical Review Letters, sep
1997. vol. 79, pages 1885. URL http://dx.doi.org/10.1103/PhysRevLett.

79.1885.

Thermoelectric Properties of PbTe 162 Aoife Rose Murphy

http://dx.doi.org/10.1039/C4CP02399D
http://dx.doi.org/10.1039/C6TC02501C
http://dx.doi.org/10.1103/PhysRevB.8.660
http://dx.doi.org/10.1038/nmat2226
http://dx.doi.org/10.1103/PhysRevB.82.155209
http://dx.doi.org/10.1016/0038-1098(70)90619-8
http://dx.doi.org/10.1016/0038-1098(70)90619-8
http://dx.doi.org/10.1103/PhysRevB.89.224306
http://dx.doi.org/10.1002/pssb.201248412
http://dx.doi.org/10.1002/pssb.201248412
http://dx.doi.org/10.1103/PhysRevB.78.205203
http://dx.doi.org/10.1103/PhysRevB.78.205203
http://dx.doi.org/10.1103/PhysRevLett.79.1885
http://dx.doi.org/10.1103/PhysRevLett.79.1885


BIBLIOGRAPHY

[177] R. Dalven. A review of the semiconductor properties of PbTe, PbSe, PbS and
PbO. Infrared Physics, dec 1969. vol. 9, pages 141. URL http://dx.doi.org/

10.1016/0020-0891(69)90022-0.

[178] P. K. Schelling and P. Keblinski. Thermal expansion of carbon structures.
Physical Review B, jul 2003. vol. 68, page 035425. URL http://dx.doi.org/

10.1103/PhysRevB.68.035425.

[179] T. Chattopadhyay, J. X. Boucherle and H. G. von Schnering. Neutron diffraction
study on the structural phase transition in GeTe. Journal of Physics C: Solid
State Physics, 1987. vol. 20, pages 1431. URL http://dx.doi.org/10.1088/

0022-3719/20/10/012.

[180] T. Chatterji, C. M. N. Kumar and U. D. Wdowik. Anomalous temperature-
induced volume contraction in GeTe. Physical Review B, feb 2015. vol. 91, page
054110. URL http://dx.doi.org/10.1103/PhysRevB.91.054110.

[181] D. Yang, T. Chatterji, J. A. Schiemer and M. A. Carpenter. Strain coupling,
microstructure dynamics, and acoustic mode softening in germanium telluride.
Physical Review B, apr 2016. vol. 93, page 144109. URL http://dx.doi.org/

10.1103/PhysRevB.93.144109.

[182] E. M. Levin, M. F. Besser and R. Hanus. Electronic and thermal transport in
GeTe: A versatile base for thermoelectric materials. Journal of Applied Physics,
aug 2013. vol. 114, page 083713. URL http://dx.doi.org/10.1063/1.4819222.

[183] H. Wiedemeier and P. A. Siemers. The Thermal Expansion of GeS and GeTe.
Zeitschrift für anorganische und allgemeine Chemie, jun 1977. vol. 431, pages
299. URL http://dx.doi.org/10.1002/zaac.19774310134.

[184] P. Nath and K. L. Chopra. Thermal conductivity of amorphous and crystalline
Ge and GeTe films. Physical Review B, oct 1974. vol. 10, pages 3412. URL
http://dx.doi.org/10.1103/PhysRevB.10.3412.

[185] A. Onodera, I. Sakamoto, Y. Fujii, N. Moˆri and S. Sugai. Structural and electri-
cal properties of GeSe and GeTe at high pressure. Physical Review B, oct 1997.
vol. 56, pages 7935. URL http://dx.doi.org/10.1103/PhysRevB.56.7935.

[186] J. Goldak, C. S. Barrett, D. Innes and W. Youdelis. Structure of Alpha GeTe.
The Journal of Chemical Physics, may 1966. vol. 44, pages 3323. URL http:

//dx.doi.org/10.1063/1.1727231.

[187] P. B. Littlewood and V. Heine. The infrared effective charge in IV-VI compounds.
I. A simple one-dimensional model. Journal of Physics C: Solid State Physics,

Thermoelectric Properties of PbTe 163 Aoife Rose Murphy

http://dx.doi.org/10.1016/0020-0891(69)90022-0
http://dx.doi.org/10.1016/0020-0891(69)90022-0
http://dx.doi.org/10.1103/PhysRevB.68.035425
http://dx.doi.org/10.1103/PhysRevB.68.035425
http://dx.doi.org/10.1088/0022-3719/20/10/012
http://dx.doi.org/10.1088/0022-3719/20/10/012
http://dx.doi.org/10.1103/PhysRevB.91.054110
http://dx.doi.org/10.1103/PhysRevB.93.144109
http://dx.doi.org/10.1103/PhysRevB.93.144109
http://dx.doi.org/10.1063/1.4819222
http://dx.doi.org/10.1002/zaac.19774310134
http://dx.doi.org/10.1103/PhysRevB.10.3412
http://dx.doi.org/10.1103/PhysRevB.56.7935
http://dx.doi.org/10.1063/1.1727231
http://dx.doi.org/10.1063/1.1727231


BIBLIOGRAPHY

nov 1979. vol. 12, pages 4431. URL http://dx.doi.org/10.1088/0022-3719/

12/21/011.

[188] M. P. Jiang, M. Trigo, I. Savić, S. Fahy, É. D. Murray, C. Bray, J. Clark,
T. Henighan, M. Kozina, M. Chollet, J. M. Glownia, M. C. Hoffmann, D. Zhu,
O. Delaire, A. F. May, B. C. Sales, A. M. Lindenberg, P. Zalden, T. Sato,
R. Merlin and D. A. Reis. The origin of incipient ferroelectricity in lead tel-
luride. Nature Communications, jul 2016. vol. 7, page 12291. URL http:

//dx.doi.org/10.1038/ncomms12291.

[189] M. Cohen and S. Louie. Fundamentals of Condensed Matter Physics. Cam-
bridge University Press, 2016. URL https://books.google.ie/books?id=

KC3xCwAAQBAJ.

[190] W. Zhong, R. D. King-Smith and D. Vanderbilt. Giant LO-TO splittings in
perovskite ferroelectrics. Physical Review Letters, may 1994. vol. 72, pages 3618.
URL http://dx.doi.org/10.1103/PhysRevLett.72.3618.

[191] P. Ghosez, J.-P. Michenaud and X. Gonze. Dynamical atomic charges: The case
of ABO3 compounds. Physical Review B, sep 1998. vol. 58, pages 6224. URL
http://dx.doi.org/10.1103/PhysRevB.58.6224.

[192] U. V. Waghmare, N. A. Spaldin, H. C. Kandpal and R. Seshadri. First-principles
indicators of metallicity and cation off-centricity in the IV-VI rocksalt chalco-
genides of divalent Ge, Sn, and Pb. Physical Review B, mar 2003. vol. 67, page
125111. URL http://dx.doi.org/10.1103/PhysRevB.67.125111.

[193] M. S. Hybertsen and S. G. Louie. Ab initio static dielectric matrices from the
density-functional approach. I. Formulation and application to semiconductors
and insulators. Physical Review B, apr 1987. vol. 35, pages 5585. URL http:

//dx.doi.org/10.1103/PhysRevB.35.5585.

[194] K. M. Rabe and J. D. Joannopoulos. Theory of the structural phase transition of
GeTe. Physical Review B, oct 1987. vol. 36, pages 6631. URL http://dx.doi.

org/10.1103/PhysRevB.36.6631.

[195] T. Matsunaga, P. Fons, A. V. Kolobov, J. Tominaga and N. Yamada. The order-
disorder transition in GeTe: Views from different length-scales. Applied Physics
Letters, dec 2011. vol. 99, page 231907. URL http://dx.doi.org/10.1063/1.

3665067.

[196] S. Kastbjerg, N. Bindzus, M. Søndergaard, S. Johnsen, N. Lock, M. Christensen,
M. Takata, M. A. Spackman and B. Brummerstedt Iversen. Direct Evidence of
Cation Disorder in Thermoelectric Lead Chalcogenides PbTe and PbS. Advanced

Thermoelectric Properties of PbTe 164 Aoife Rose Murphy

http://dx.doi.org/10.1088/0022-3719/12/21/011
http://dx.doi.org/10.1088/0022-3719/12/21/011
http://dx.doi.org/10.1038/ncomms12291
http://dx.doi.org/10.1038/ncomms12291
https://books.google.ie/books?id=KC3xCwAAQBAJ
https://books.google.ie/books?id=KC3xCwAAQBAJ
http://dx.doi.org/10.1103/PhysRevLett.72.3618
http://dx.doi.org/10.1103/PhysRevB.58.6224
http://dx.doi.org/10.1103/PhysRevB.67.125111
http://dx.doi.org/10.1103/PhysRevB.35.5585
http://dx.doi.org/10.1103/PhysRevB.35.5585
http://dx.doi.org/10.1103/PhysRevB.36.6631
http://dx.doi.org/10.1103/PhysRevB.36.6631
http://dx.doi.org/10.1063/1.3665067
http://dx.doi.org/10.1063/1.3665067


BIBLIOGRAPHY

Functional Materials, nov 2013. vol. 23, pages 5477. URL http://dx.doi.org/

10.1002/adfm.201300722.

[197] Y. Zhang, X. Ke, P. R. C. Kent, J. Yang and C. Chen. Anomalous Lattice
Dynamics near the Ferroelectric Instability in PbTe. Physical Review Letters, oct
2011. vol. 107, page 175503. URL http://dx.doi.org/10.1103/PhysRevLett.

107.175503.

[198] T. Keiber, F. Bridges and B. C. Sales. Lead Is Not Off Center in PbTe: The
Importance of r-Space Phase Information in Extended X-Ray Absorption Fine
Structure Spectroscopy. Physical Review Letters, aug 2013. vol. 111, page 095504.
URL http://dx.doi.org/10.1103/PhysRevLett.111.095504.

[199] Y. Chen, X. Ai and C. A. Marianetti. First-Principles Approach to Nonlinear
Lattice Dynamics: Anomalous Spectra in PbTe. Physical Review Letters, sep
2014. vol. 113, page 105501. URL http://dx.doi.org/10.1103/PhysRevLett.

113.105501.

[200] M. V. Fischetti and S. E. Laux. Band structure, deformation potentials, and
carrier mobility in strained Si, Ge, and SiGe alloys. Journal of Applied Physics,
1996. vol. 80, pages 2234. URL http://dx.doi.org/10.1063/1.363052.

[201] C. G. Van de Walle and R. M. Martin. Theoretical calculations of heterojunction
discontinuities in the Si/Ge system. Physical Review B, oct 1986. vol. 34, pages
5621. URL http://dx.doi.org/10.1103/PhysRevB.34.5621.

[202] C. G. Van de Walle. Band lineups and deformation potentials in the model-
solid theory. Physical Review B, jan 1989. vol. 39, pages 1871. URL http:

//dx.doi.org/10.1103/PhysRevB.39.1871.

[203] C. G. Van de Walle and R. M. Martin. Theoretical study of band offsets at
semiconductor interfaces. Physical Review B, may 1987. vol. 35, pages 8154.
URL http://dx.doi.org/10.1103/PhysRevB.35.8154.

[204] C. G. Van de Walle and R. M. Martin. “Absolute” deformation potentials:
Formulation and ab initio calculations for semiconductors. Physical Review
Letters, apr 1989. vol. 62, pages 2028. URL http://dx.doi.org/10.1103/

PhysRevLett.62.2028.

[205] K. Hummer, A. Grüneis and G. Kresse. Structural and electronic properties of
lead chalcogenides from first principles. Physical Review B, may 2007. vol. 75,
page 195211. URL http://dx.doi.org/10.1103/PhysRevB.75.195211.

[206] S.-H. Wei and A. Zunger. Electronic and structural anomalies in lead chalco-
genides. Physical Review B, may 1997. vol. 55, pages 13605. URL http:

//dx.doi.org/10.1103/PhysRevB.55.13605.

Thermoelectric Properties of PbTe 165 Aoife Rose Murphy

http://dx.doi.org/10.1002/adfm.201300722
http://dx.doi.org/10.1002/adfm.201300722
http://dx.doi.org/10.1103/PhysRevLett.107.175503
http://dx.doi.org/10.1103/PhysRevLett.107.175503
http://dx.doi.org/10.1103/PhysRevLett.111.095504
http://dx.doi.org/10.1103/PhysRevLett.113.105501
http://dx.doi.org/10.1103/PhysRevLett.113.105501
http://dx.doi.org/10.1063/1.363052
http://dx.doi.org/10.1103/PhysRevB.34.5621
http://dx.doi.org/10.1103/PhysRevB.39.1871
http://dx.doi.org/10.1103/PhysRevB.39.1871
http://dx.doi.org/10.1103/PhysRevB.35.8154
http://dx.doi.org/10.1103/PhysRevLett.62.2028
http://dx.doi.org/10.1103/PhysRevLett.62.2028
http://dx.doi.org/10.1103/PhysRevB.75.195211
http://dx.doi.org/10.1103/PhysRevB.55.13605
http://dx.doi.org/10.1103/PhysRevB.55.13605


BIBLIOGRAPHY

[207] A. Svane, N. E. Christensen, M. Cardona, A. N. Chantis, M. van Schilfgaarde
and T. Kotani. Quasiparticle self-consistent GW calculations for PbS, PbSe, and
PbTe: Band structure and pressure coefficients. Physical Review B, jun 2010.
vol. 81, page 245120. URL http://dx.doi.org/10.1103/PhysRevB.81.245120.

[208] M. S. Hybertsen and S. G. Louie. Electron correlation in semiconductors and
insulators: Band gaps and quasiparticle energies. Physical Review B, oct 1986.
vol. 34, pages 5390. URL http://dx.doi.org/10.1103/PhysRevB.34.5390.

[209] R. N. Dexter, H. J. Zeiger and B. Lax. Cyclotron Resonance Experiments in
Silicon and Germanium. Physical Review, nov 1956. vol. 104, pages 637. URL
http://dx.doi.org/10.1103/PhysRev.104.637.

[210] J. P. Perdew. Density functional theory and the band gap problem. International
Journal of Quantum Chemistry, jun 1985. vol. 28, pages 497. URL http://dx.

doi.org/10.1002/qua.560280846.

[211] J. Ma and L.-W. Wang. Using Wannier functions to improve solid band gap
predictions in density functional theory. Scientific Reports, apr 2016. vol. 6, page
24924. URL http://dx.doi.org/10.1038/srep24924.

[212] H. Pascher and G. Bauer. Optical Properties and Low-Dimensional Systems of
IV-VI Semiconductors. In D. Khokhlov (editor), Lead Chalcogenides: Physics and
Applications, pages 211–298. Taylor & Francis, New York, 2003. URL https:

//books.google.ie/books?id=y4P4Kf399l8C.

[213] R. Dalven. Electronic Structure of PbS, PbSe, and PbTe. In H. Ehrenre-
ich, F. Seitz and D. Turnbull (editors), Solid State Physics, vol. 28, pages
179–224. Academic Press, 1974. URL http://dx.doi.org/10.1016/S0081-

1947(08)60203-9.

[214] Y. W. Tsang and M. L. Cohen. Calculation of the Temperature Dependence of
the Energy Gaps in PbTe and SnTe. Physical Review B, feb 1971. vol. 3, pages
1254. URL http://dx.doi.org/10.1103/PhysRevB.3.1254.

[215] N. M. Ravindra and V. K. Srivastava. Properties of PbS, PbSe, and PbTe.
Physica Status Solidi (a), mar 1980. vol. 58, pages 311. URL http://dx.doi.

org/10.1002/pssa.2210580139.

[216] J. L. Birman, M. Lax and R. Loudon. Intervalley-Scattering Selection Rules in
III-V Semiconductors. Physical Review, may 1966. vol. 145, pages 620. URL
http://dx.doi.org/10.1103/PhysRev.145.620.

[217] C. Jacoboni, F. Nava, C. Canali and G. Ottaviani. Electron drift velocity and
diffusivity in germanium. Physical Review B, jul 1981. vol. 24, pages 1014. URL
http://dx.doi.org/10.1103/PhysRevB.24.1014.

Thermoelectric Properties of PbTe 166 Aoife Rose Murphy

http://dx.doi.org/10.1103/PhysRevB.81.245120
http://dx.doi.org/10.1103/PhysRevB.34.5390
http://dx.doi.org/10.1103/PhysRev.104.637
http://dx.doi.org/10.1002/qua.560280846
http://dx.doi.org/10.1002/qua.560280846
http://dx.doi.org/10.1038/srep24924
https://books.google.ie/books?id=y4P4Kf399l8C
https://books.google.ie/books?id=y4P4Kf399l8C
http://dx.doi.org/10.1016/S0081-1947(08)60203-9
http://dx.doi.org/10.1016/S0081-1947(08)60203-9
http://dx.doi.org/10.1103/PhysRevB.3.1254
http://dx.doi.org/10.1002/pssa.2210580139
http://dx.doi.org/10.1002/pssa.2210580139
http://dx.doi.org/10.1103/PhysRev.145.620
http://dx.doi.org/10.1103/PhysRevB.24.1014


BIBLIOGRAPHY

[218] M. Schlüter, G. Martinez and M. L. Cohen. Pressure and temperature dependence
of electronic energy levels in PbSe and PbTe. Physical Review B, jul 1975. vol. 12,
pages 650. URL http://dx.doi.org/10.1103/PhysRevB.12.650.

[219] M. L. Cohen and V. Heine. The Fitting of Pseudopotentials to Experimental Data
and Their Subsequent Application. In H. Ehrenreich, F. Seitz and D. Turnbull
(editors), Solid State Physics: Advances in Research and Applications., pages
37–248. Elsevier Science, 1970. URL https://books.google.ie/books?id=

eyb2hkpLjYwC&dq.

[220] M. S. Dresselhaus, G. Dresselhaus and A. Jorio. Group Theory: Application
to the Physics of Condensed Matter. Springer Berlin Heidelberg, 2008. URL
https://books.google.ie/books?id=sKaH8vrfmnQC.

[221] P. Y. Yu and M. Cardona. Fundamentals of Semiconductor: Physics and Ma-
terials Properties. Springer Berlin Heidelberg, third edn., 2005. URL https:

//books.google.ie/books?id=4VQMswEACAAJ.

[222] O. H. Nielsen and R. M. Martin. Stresses in semiconductors: Ab initio calculations
on Si, Ge, and GaAs. Physical Review B, sep 1985. vol. 32, pages 3792. URL
http://dx.doi.org/10.1103/PhysRevB.32.3792.

[223] B. Houston, R. E. Strakna and H. S. Belson. Elastic Constants, Thermal Expan-
sion, and Debye Temperature of Lead Telluride. Journal of Applied Physics, jul
1968. vol. 39, pages 3913. URL http://dx.doi.org/10.1063/1.1656874.

[224] I. I. Zasavitskii, E. A. de Andrada e Silva, E. Abramof and P. J. McCann. Optical
deformation potentials for PbSe and PbTe. Physical Review B, sep 2004. vol. 70,
page 115302. URL http://dx.doi.org/10.1103/PhysRevB.70.115302.

[225] I. Balslev. Influence of Uniaxial Stress on the Indirect Absorption Edge in Silicon
and Germanium. Physical Review, mar 1966. vol. 143, pages 636. URL http:

//dx.doi.org/10.1103/PhysRev.143.636.

[226] D. Mirlin, V. Sapega, I. Karlik and R. Katilius. Hot photoluminescence spec-
troscopy investigations of L-valley splitting and intervalley scattering in uniaxially
stressed gallium arsenide. Solid State Communications, mar 1987. vol. 61, pages
799. URL http://dx.doi.org/10.1016/0038-1098(87)90481-9.

[227] L. G. Ferreira. Deformation Potentials of Lead Telluride. Physical Review, mar
1965. vol. 137, pages A1601. URL http://dx.doi.org/10.1103/PhysRev.137.

A1601.

[228] Y. I. Ravich, B. A. Efimova and V. I. Tamarchenko. Scattering of Current Carriers
and Transport Phenomena in Lead Chalcogenides II. Experiment. Physica Status

Thermoelectric Properties of PbTe 167 Aoife Rose Murphy

http://dx.doi.org/10.1103/PhysRevB.12.650
https://books.google.ie/books?id=eyb2hkpLjYwC&dq
https://books.google.ie/books?id=eyb2hkpLjYwC&dq
https://books.google.ie/books?id=sKaH8vrfmnQC
https://books.google.ie/books?id=4VQMswEACAAJ
https://books.google.ie/books?id=4VQMswEACAAJ
http://dx.doi.org/10.1103/PhysRevB.32.3792
http://dx.doi.org/10.1063/1.1656874
http://dx.doi.org/10.1103/PhysRevB.70.115302
http://dx.doi.org/10.1103/PhysRev.143.636
http://dx.doi.org/10.1103/PhysRev.143.636
http://dx.doi.org/10.1016/0038-1098(87)90481-9
http://dx.doi.org/10.1103/PhysRev.137.A1601
http://dx.doi.org/10.1103/PhysRev.137.A1601


BIBLIOGRAPHY

Solidi (b), feb 1971. vol. 43, pages 453. URL http://dx.doi.org/10.1002/

pssb.2220430202.

[229] Y. I. Ravich, B. A. Efimova and V. I. Tamarchenko. Scattering of Current Carriers
and Transport Phenomena in Lead Chalcogenides I. Theory. Physica Status
Solidi (b), jan 1971. vol. 43, pages 11. URL http://dx.doi.org/10.1002/

pssb.2220430102.

[230] M. Glicksman. Mobility of Electrons in Germanium-Silicon Alloys. Physical
Review, jul 1958. vol. 111, pages 125. URL http://dx.doi.org/10.1103/

PhysRev.111.125.

[231] R. S. Allgaier and W. W. Scanlon. Mobility of Electrons and Holes in PbS, PbSe,
and PbTe between Room Temperature and 4.2°K. Physical Review, aug 1958.
vol. 111, pages 1029. URL http://dx.doi.org/10.1103/PhysRev.111.1029.

[232] G. Kresse and J. Furthmüller. Efficiency of ab initio total energy calculations for
metals and semiconductors using a plane-wave basis set. Computational Materials
Science, jul 1996. vol. 6, pages 15. URL http://dx.doi.org/10.1016/0927-

0256(96)00008-0.

[233] G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set. Physical Review B, oct 1996. vol. 54,
pages 11169. URL http://dx.doi.org/10.1103/PhysRevB.54.11169.

[234] J. Paier, R. Hirschl, M. Marsman and G. Kresse. The Perdew–Burke–Ernzerhof
exchange-correlation functional applied to the G2-1 test set using a plane-wave
basis set. The Journal of Chemical Physics, jun 2005. vol. 122, page 234102.
URL http://dx.doi.org/10.1063/1.1926272.

[235] P. E. Blöchl. Projector augmented-wave method. Physical Review B, dec 1994.
vol. 50, pages 17953. URL http://dx.doi.org/10.1103/PhysRevB.50.17953.

[236] G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projector
augmented-wave method. Physical Review B, jan 1999. vol. 59, pages 1758. URL
http://dx.doi.org/10.1103/PhysRevB.59.1758.

[237] J. Hafner. Ab initio simulations of materials using VASP: Density-functional
theory and beyond. Journal of Computational Chemistry, oct 2008. vol. 29,
pages 2044. URL http://dx.doi.org/10.1002/jcc.21057.

[238] http://www.andrew.cmu.edu/user/feenstra/wavetrans/.

[239] R. M. Feenstra, N. Srivastava, Q. Gao, M. Widom, B. Diaconescu, T. Ohta, G. L.
Kellogg, J. T. Robinson and I. V. Vlassiouk. Low-energy electron reflectivity

Thermoelectric Properties of PbTe 168 Aoife Rose Murphy

http://dx.doi.org/10.1002/pssb.2220430202
http://dx.doi.org/10.1002/pssb.2220430202
http://dx.doi.org/10.1002/pssb.2220430102
http://dx.doi.org/10.1002/pssb.2220430102
http://dx.doi.org/10.1103/PhysRev.111.125
http://dx.doi.org/10.1103/PhysRev.111.125
http://dx.doi.org/10.1103/PhysRev.111.1029
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1063/1.1926272
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1002/jcc.21057


BIBLIOGRAPHY

from graphene. Physical Review B, jan 2013. vol. 87, page 041406. URL http:

//dx.doi.org/10.1103/PhysRevB.87.041406.

[240] R. M. Martin. Electronic Structure: Basic Theory and Practical Methods.
Cambridge University Press, 2004. URL https://books.google.ie/books?id=

dmRTFLpSGNsC.

[241] J. P. Perdew, M. Ernzerhof and K. Burke. Rationale for mixing exact exchange
with density functional approximations. The Journal of Chemical Physics, 1996.
vol. 105, pages 9982. URL http://dx.doi.org/10.1063/1.472933.

[242] J. P. Perdew and A. Zunger. Self-interaction correction to density-functional
approximations for many-electron systems. Physical Review B, 1981. vol. 23,
page 5048. URL https://doi.org/10.1103/PhysRevB.23.5048.

[243] J. Heyd, G. E. Scuseria and M. Ernzerhof. Hybrid functionals based on a screened
Coulomb potential. The Journal of Chemical Physics, may 2003. vol. 118, pages
8207. URL http://dx.doi.org/10.1063/1.1564060.

[244] J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber and J. G. Ángyán.
Screened hybrid density functionals applied to solids. The Journal of Chemical
Physics, apr 2006. vol. 124, page 154709. URL http://dx.doi.org/10.1063/

1.2187006.

[245] J. Heyd and G. E. Scuseria. Efficient hybrid density functional calculations in
solids: Assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid
functional. The Journal of Chemical Physics, jul 2004. vol. 121, pages 1187.
URL http://dx.doi.org/10.1063/1.1760074.

[246] J. Heyd, G. E. Scuseria and M. Ernzerhof. Erratum: “Hybrid functionals based
on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. The Journal
of Chemical Physics, jun 2006. vol. 124, page 219906. URL http://dx.doi.org/

10.1063/1.2204597.

[247] A. V. Krukau, O. A. Vydrov, A. F. Izmaylov and G. E. Scuseria. Influence of the
exchange screening parameter on the performance of screened hybrid functionals.
The Journal of Chemical Physics, dec 2006. vol. 125, page 224106. URL http:

//dx.doi.org/10.1063/1.2404663.

[248] J. Heyd, J. E. Peralta, G. E. Scuseria and R. L. Martin. Energy band gaps and
lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid
functional. The Journal of Chemical Physics, nov 2005. vol. 123, page 174101.
URL http://dx.doi.org/10.1063/1.2085170.

Thermoelectric Properties of PbTe 169 Aoife Rose Murphy

http://dx.doi.org/10.1103/PhysRevB.87.041406
http://dx.doi.org/10.1103/PhysRevB.87.041406
https://books.google.ie/books?id=dmRTFLpSGNsC
https://books.google.ie/books?id=dmRTFLpSGNsC
http://dx.doi.org/10.1063/1.472933
https://doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1063/1.1564060
http://dx.doi.org/10.1063/1.2187006
http://dx.doi.org/10.1063/1.2187006
http://dx.doi.org/10.1063/1.1760074
http://dx.doi.org/10.1063/1.2204597
http://dx.doi.org/10.1063/1.2204597
http://dx.doi.org/10.1063/1.2404663
http://dx.doi.org/10.1063/1.2404663
http://dx.doi.org/10.1063/1.2085170


BIBLIOGRAPHY

[249] J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber and J. G. Ángyán.
Erratum: “Screened hybrid density functionals applied to solids” [J. Chem. Phys.
124, 154709 (2006)]. The Journal of Chemical Physics, dec 2006. vol. 125, page
249901. URL http://dx.doi.org/10.1063/1.2403866.

[250] J. A. Vergés, D. Glötzel, M. Cardona and O. K. Andersen. Absolute Hydrostatic
Deformation Potentials of Tetrahedral Semiconductors. Physica Status Solidi
(b), oct 1982. vol. 113, pages 519. URL http://dx.doi.org/10.1002/pssb.

2221130217.

[251] L. Kleinman. Comment on the average potential of a Wigner solid. Physical
Review B, dec 1981. vol. 24, pages 7412. URL http://dx.doi.org/10.1103/

PhysRevB.24.7412.

[252] K. Kunc and R. M. Martin. Atomic structure and properties of polar Ge-
GaAs(100) interfaces. Physical Review B, sep 1981. vol. 24, pages 3445. URL
http://dx.doi.org/10.1103/PhysRevB.24.3445.

[253] B. Abeles, D. S. Beers, G. D. Cody and J. P. Dismukes. Thermal Conductivity of
Ge-Si Alloys at High Temperatures. Physical Review, jan 1962. vol. 125, pages 44.
URL http://dx.doi.org/10.1103/PhysRev.125.44.

[254] S. Poncé, E. Margine, C. Verdi and F. Giustino. EPW: Electron–phonon coupling,
transport and superconducting properties using maximally localized Wannier
functions. Computer Physics Communications, dec 2016. vol. 209, pages 116.
URL http://dx.doi.org/10.1016/j.cpc.2016.07.028.

[255] C. Verdi and F. Giustino. Fröhlich Electron-Phonon Vertex from First Principles.
Physical Review Letters, oct 2015. vol. 115, page 176401. URL http://dx.doi.

org/10.1103/PhysRevLett.115.176401.

[256] A. van Roekeghem, J. Carrete, C. Oses, S. Curtarolo and N. Mingo. High-
Throughput Computation of Thermal Conductivity of High-Temperature Solid
Phases: The Case of Oxide and Fluoride Perovskites. Physical Review X, dec
2016. vol. 6, page 041061. URL http://dx.doi.org/10.1103/PhysRevX.6.

041061.

[257] D. T. Morelli, V. Jovovic and J. P. Heremans. Intrinsically Minimal Thermal
Conductivity in Cubic I−V−VI2 Semiconductors. Physical Review Letters, jul
2008. vol. 101, page 035901. URL http://dx.doi.org/10.1103/PhysRevLett.

101.035901.

[258] E. J. Skoug and D. T. Morelli. Role of Lone-Pair Electrons in Producing Minimum
Thermal Conductivity in Nitrogen-Group Chalcogenide Compounds. Physical

Thermoelectric Properties of PbTe 170 Aoife Rose Murphy

http://dx.doi.org/10.1063/1.2403866
http://dx.doi.org/10.1002/pssb.2221130217
http://dx.doi.org/10.1002/pssb.2221130217
http://dx.doi.org/10.1103/PhysRevB.24.7412
http://dx.doi.org/10.1103/PhysRevB.24.7412
http://dx.doi.org/10.1103/PhysRevB.24.3445
http://dx.doi.org/10.1103/PhysRev.125.44
http://dx.doi.org/10.1016/j.cpc.2016.07.028
http://dx.doi.org/10.1103/PhysRevLett.115.176401
http://dx.doi.org/10.1103/PhysRevLett.115.176401
http://dx.doi.org/10.1103/PhysRevX.6.041061
http://dx.doi.org/10.1103/PhysRevX.6.041061
http://dx.doi.org/10.1103/PhysRevLett.101.035901
http://dx.doi.org/10.1103/PhysRevLett.101.035901


BIBLIOGRAPHY

Review Letters, nov 2011. vol. 107, page 235901. URL http://dx.doi.org/10.

1103/PhysRevLett.107.235901.

Thermoelectric Properties of PbTe 171 Aoife Rose Murphy

http://dx.doi.org/10.1103/PhysRevLett.107.235901
http://dx.doi.org/10.1103/PhysRevLett.107.235901

	List of Figures
	List of Tables
	Acknowledgements
	Abstract
	Introduction
	Thermoelectric materials
	Optimising thermoelectric performance
	Ab initio calculation of thermoelectric transport properties
	Lattice thermal conductivity
	Electronic thermoelectric properties

	Thesis outline

	Computational Methods
	Total energy calculations
	Many-body Hamiltonian
	Density functional theory
	Hohenberg-Kohn theorems
	Kohn-Sham equations

	Plane waves
	Pseudopotential approximation
	Exchange-correlation functional
	Structural relaxation

	Lattice thermal conductivity
	Crystal potential
	Dynamical matrix
	Second quantisation
	Boltzmann transport equation
	Anharmonic phonon lifetimes
	Phonon lifetimes due to mass disorder
	Implementation

	Charge carrier mobility
	Boltzmann transport equation
	Electron-phonon coupling
	Density functional perturbation theory


	Lattice thermal conductivity of PbTe-based materials driven near the ferroelectric phase transition
	Introduction
	Motivation
	Calculation details
	Verification of approach

	PbTe materials driven near the phase transition
	Strained PbTe
	Strained PbSe0.5Te0.5 alloy
	Pb1-xGexTe alloys

	Impact on phonon lifetimes
	Strained PbTe
	Strained PbSe0.5Te0.5 alloy
	Pb0.51Ge0.49Te alloy
	Impact of soft TO mode

	Impact on thermal conductivity
	Strained PbTe
	Strained PbSe0.5Te0.5 alloy
	Pb0.51Ge0.49Te alloy
	Impact to phonon mean free paths

	Discussion
	Higher order anharmonicity
	Phase segregation

	Summary

	Lattice thermal conductivity of Pb1-xGexTe alloys
	Introduction
	Motivation
	Calculation details
	Verification of approach

	Pb1-xGexTe and the ferroelectric phase transition
	Virtual crystal model
	Impact on phonon frequencies

	Impact on phonon lifetimes
	Impact on thermal conductivity
	Pb1-xGexTe alloys
	Frequency contribution to thermal conductivity
	Impact of structure and resonant bonding

	Discussion
	Temperature dependence
	Structure of Pb1-xGexTe alloys

	Summary

	Electron-phonon coupling and mobility of n-type Ge and PbTe
	Introduction
	Electronic band structure of Ge and PbTe
	Modelling electronic mobility
	Electron-phonon coupling
	Intervalley and intravalley optical scattering
	Intravalley acoustic scattering
	Deformation potential theory
	Deformation potentials of Ge and PbTe

	Fröhlich interaction

	Electron mobility
	Electronic band structure from hybrid functionals
	Deformation potentials from band shifts due to strain using hybrid functionals
	Uniaxial deformation potential
	Dilatation deformation potential

	Electronic properties of PbTe-based materials near the phase transition
	Summary

	Conclusion
	Conclusion
	Outlook

	Bibliography

