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Abstract: The growing popularity of physical activity (PA) applications (apps) in recent years and
the vast amounts of data that they generate present attractive possibilities for surveillance. However,
measurement accuracy is indispensable when tracking PA variables to provide meaningful measures
of PA. The purpose of this study was to examine the steps and distance criterion validity of freeware
accelerometer-based PA smartphone apps, during incremental-intensity treadmill walking and
jogging. Thirty healthy adults (25.9 ± 5.7 years) participated in this cross-sectional study. They were
fitted with two smartphones (one with Android and one with iOS operating systems), each one
simultaneously running four different apps (i.e., Runtastic Pedometer, Accupedo, Pacer, and Argus).
They walked and jogged for 5 min at each of the predefined speeds of 4.8, 6.0, and 8.4 km/h on a
treadmill, and two researchers counted every step taken during trials with a digital tally counter.
Validity was evaluated by comparing each app with the criterion measure using repeated-measures
analysis of variance (ANOVA), mean absolute percentage errors (MAPEs), and Bland–Altman plots.
For step count, Android apps performed slightly more accurately that iOS apps; nevertheless,
MAPEs were generally low for all apps (<5%) and accuracy increased at higher speeds. On the other
hand, errors were significantly higher for distance estimation (>10%). The findings suggest that
accelerometer-based apps are accurate tools for counting steps during treadmill walking and jogging
and could be considered suitable for use as an outcome measure within a clinical trial. However,
none of the examined apps was suitable for measuring distance.

Keywords: accelerometer; accuracy; step count; physical activity measurement; software; operating
system; pedometer; walking; jogging; monitoring

1. Introduction

The World Health Organisation has recently updated the guidelines on physical
activity (PA) and sedentary behaviour [1]. New guidelines for adults now specify a target
range of 150 to 300 min of moderate-intensity and 75 to 150 min of vigorous-intensity
PA, compared with the previous guidelines that focused on achieving at least 150 min
of moderate-intensity or 75 min of vigorous-intensity activity per week [2]. Updated PA
guidelines pose many challenges to PA surveillance; however device-based measures may
facilitate surveillance [3].

The growing popularity of wearable PA monitors and fitness applications (apps) in
recent years and the vast amounts of data that they generate present attractive possibilities
for surveillance [4]. This approach of PA measurement has been currently used in various
settings, before [5] and during the COVID-19 pandemic [6–9]. For example, PA data from
717,527 people across 111 countries, in which step count was measured using smartphones
with in-built accelerometry, showed that the average user walked 4961 steps per day before
the pandemic [5]. Moreover, data from 55,404 users from 187 countries revealed that within
10 days of the pandemic declaration, there was a 5.5% decrease in mean steps, and within
30 days, there was a 27.3% decrease in mean steps [9].

Unfortunately, these consumer-targeted wearable technologies intended for general
wellness purposes are not required to undergo a standardised and transparent evaluation
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process for ensuring their quality and accuracy, and usually product manufacturers present
only the minimum requirements when releasing information [10]. The consequence of an
app lacking evidence-based support depends on its intended use. For example, to provide
meaningful PA estimates, the accurate and reliable assessment derived from wearable
monitors and apps is necessary, for any research study where PA is either an outcome
measure or an intervention. As mentioned by Nelson et al. [11], measurement accuracy
is indispensable when tracking PA variables to provide meaningful measures of PA. The
automation of human health monitoring can be problematic even with evidence-based
apps, but it makes consumers especially vulnerable if there are no scientific data supporting
the apps’ claims [12].

A recent review of treadmill-based validation of step counting wearable technolo-
gies estimated that mean absolute percentage error (MAPE) values were 7% to 11% for
wrist-worn, 1% to 4% for waist-worn, and ≤1% for thigh-worn monitors [13]. Two other
systematic reviews examined the validity of Fitbit and Garmin monitors. Fitbit devices
were likely to meet acceptable accuracy for step count approximately half the time, with a
tendency to underestimate steps in controlled testing and overestimate steps in free-living
settings [14]. Garmin activity trackers were also accurate in step counting, with acceptable
MAPE values, however distance validity was generally low, with MAPE exceeding the
acceptable limits [15].

The validation of PA apps is even more urgent nowadays since apps with low accuracy
and insufficient selection justification [16,17] are used in large observational studies with
big datasets. Two of the previously mentioned studies [5,9] used the Argus Azumio
app to capture large-scale PA data (i.e., steps). However, Brodie et al.’s [17] research
on Argus validity revealed significant undercounting (15–66%) by iOS smartphones and
extraordinarily large error ranges (0–200% of steps taken) for both Android and iOS
smartphones. The authors further suggested that there might be an improved app accuracy
for walks of at least 10 steps for apps installed in newer Android and iPhone models (i.e.,
Android 7.1 compared to Android 8.1).

Regarding the overall validity, a recent review concluded that there is conflicting and
insufficient evidence on the validity and reliability of apps for measuring PA. Nevertheless,
speed and place where the smartphone is carried seem to have an impact on validity, as
absolute errors decreased with higher speeds [18]. For example, Leong and Wong [19]
tested three different apps (Runtastic Pedometer, Pedometer Pacer Works, and Pedometer
Tayatau) carried at three different places (hip level, waist, and upper arm) and for five
different speeds. Steps’ mean percentage difference increased as speed decreased and, in
general, it was higher than 10% for both the Runtastic and Pedometer Pacer Works, except
for Runtastic at higher speeds when carried at the hip level and waist. Furthermore, Orr
et al. [20] used eight different speeds (four for walking and four for running) and three
different apps (Accupedo, Moves, and Runtastic Pedometer) running in a smartphone
carried in the hand. Mean percentage difference was lower than 10% for Accupedo
and Runtastic only during running when compared against manual and self-counting.
Höchsmann et al. [21] assessed six accelerometer apps (Apple Health, Samsung S Health,
Moves, Runtastic Pedometer, Accupedo, and Pacer) running in two different smartphones
(iPhone SE and Samsung Galaxy S6 Edge) at four speeds. In this study, all smartphone
apps showed high accuracy and low variability for all treadmill conditions, independent
of the phone’s position. In general, variability decreased, and accuracy increased with
increasing walking speed.

On the contrary, a study conducted by Konharn et al. [22] in young adults exam-
ined the validity of three apps (Runtastic Pedometer, Footsteps Pedometer, and Walker
Pedometer) and found that the apps were not accurate in counting most of the measured
variables (e.g., steps and distance) and data fell significantly lower in these parameters
than those measured with standard-reference instruments. Xie et al. [23] tested two apps
(Dongdong and Ledongli) running in a smartphone placed in the pocket for two laps of
400 m and reported a mean percentage difference lower than 10% for steps and higher
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than 10% for distance. A final research that evaluated the accuracy of five apps (Moves,
Google-Fit, Runtastic Pedometer, Accupedo, and Samsung S Health) while wearing four
Samsung Galaxy S4 smartphones on various body locations, concluded that Samsung S
Health recorded the lowest mean bias for each given location, while Accupedo at the waist
location recorded the largest mean step overestimation and Accupedo at the hand location
produced the largest step underestimation of all apps and locations [24].

Since there is an apparent potential of PA apps to measure and promote PA [25] and
due to the conflicting validity evidence that currently exists, there is a need to carry out
more studies of high methodological quality. Thus, the purpose of the present study was to
validate step count and distance travelled of eight freeware accelerometer-based apps (four
Android and four iOS apps) in a sample of healthy adults. A secondary purpose was to
compare the validity of similar apps running simultaneously in two operating systems, i.e.,
Android and iOS, since none of the previous research approaches has directly compared
apps running in different operating systems. Based on the evaluation frameworks proposed
by Keadle et al. [26] and Johnston et al. [27], a semi-structured validation study design in
laboratory conditions was used, which included laboratory treadmill walking and jogging
at three incremental intensities (i.e., 4.8, 6.0, and 8.4 km/h).

2. Materials and Methods
2.1. Study Design

This study utilised a cross-sectional, repeated-measures research design, investigat-
ing the differences in recorded steps and distance values for eight PA smartphone apps.
Thirty healthy adults, with no contraindications for exercise and no known orthopaedic
limitations that would prevent them from completing the assessments, participated. All
adults read and signed an informed consent document approved by the Social Research
Ethics Committee of University College Cork, informing them of the risks and benefits of
the study.

Participants reported to the researchers twice. During the first visit, anthropometric
measures were obtained in controlled laboratory settings. For the second visit (i.e., a week
after the first visit), participants returned to the laboratory for treadmill-based walking and
jogging. They were instructed to wear their own sports shoes and clothing.

The participants were fitted with two smartphones (one Samsung Galaxy S8 and one
iPhone 8), each one simultaneously running four different apps. The two smartphones
were strapped close to the body on a waist-worn elastic belt over the left hip, near the
anterior axillary line, and were counterbalanced for anterior and posterior placement
on the hip among participants. All apps were updated with the participants’ age, sex,
height, dominant hand, weight, and step length, and the apps’ software was updated to
the latest available version. Smartphones were set to airplane mode to avoid interactions
with the mobile phone providers (i.e., no data connection), and all apps were activated
simultaneously.

Prior to testing, participants were familiarised with the motorised treadmill, and then
they had to perform three treadmill-based tests. They walked or jogged for 5 min at each
of the predefined speeds of 4.8 km/h (light intensity), 6.0 km/h (moderate intensity), and
8.4 km/h (vigorous intensity) on a treadmill (Zebris FDM-T, Zebris Medical GmbH, Isny,
Germany) with 0◦ incline. All trials were completed on the same day and in a randomised
order, with 5 min of rest between the various conditions, while all apps were paused
simultaneously. The 5 min of each treadmill condition included the time the treadmill
increased the walking or jogging speed. During pause and between the transition from
6.0 to 8.4 km/h, all apps’ specific settings were changed from the walking to the running
option. At the end of each trial, initially data were stored manually, and at a later time,
were uploaded to the related apps’ software.

Distance was objectively recorded by the in-built function of the treadmill, and the
results were used as the criterion measure. The criterion measure for steps was two
manual counters who objectively measured steps with the use of a hand-held counter
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device (GOGO Four Digit Hand Tally Counter, atafa.com). For all trials, they observed
the leg movement of the participants and were separated so they could not view each
other’s thumb motion nor hear the “clicking” from the counter device. This prevented
any synchronised counting between the two. The reliability of this method was tested
by comparing a video recording for two walking and running video sequences of two
participants. An intra-class correlation coefficient value of 0.99 was obtained through the
analyses of the video sequences and the steps recorded by the researchers.

2.2. Participants

A power calculation with findings of observed step counts (correlation of 0.50), alpha
two-tailed value of 0.05, and a power of 0.80 indicated a sample size of 29 participants. In
total, 30 healthy adults (n = 11 males, n = 19 females) with an age range of 19–43 years
(25.9 ± 5.7 years), body mass index range of 17.8–30.5 kg/m2 (24.4 ± 3.9 kg/m2) were
screened and participated in the study (with no dropouts).

2.3. Antropometric Assessment

Standing height was measured to the nearest 0.1 cm using a wall-mounted Harpenden
stadiometer (Harpenden, London, UK) using standard procedures. Body mass was mea-
sured with participants in light clothes and bare feet on an electronic scale (Omron BF-511)
to the nearest 0.1 kg. Body mass index was calculated as weight (kg)/height squared (m2).

Regarding step length estimation, the operational definition of a step for specific
use in treadmill-based device validation purposes was used [13]: “a foot strike following
the complete lifting of that foot from the surface of the treadmill belt” (p. 847). The
average walking step length was calculated by performing 20 normal steps and measuring
the distance between the start and end line, then dividing the total distance by 20 steps.
The same procedure was followed to calculate jogging step length. All anthropometric
measurement results are presented in Table 1.

Table 1. Participants’ characteristics (Mean ± SD).

Males (n = 11) Females (n = 19) Total (n = 30)

M ± SD M ± SD M ± SD

Age (years) 26.0 ± 6.6 25.8 ± 5.2 25.9 ± 5.7
Weight (kg) 83.2 ± 16.2 63.4 ± 9.3 70.7 ± 1.7
Height (m) 1.79 ± 0.09 1.64 ± 0.06 1.70 ± 0.10

Body mass index (kg/m2) 24.7 ± 3.7 23.6 ± 3.9 24.4 ± 3.9
Resting heart rate (bpm) 72.5 ± 7.3 68.5 ± 5.5 70.0 ± 6.4
Walking step length (cm) 74.5 ± 6.4 62.2 ± 6.2 66.7 ± 8.6
Running step length (cm) 101.5 ± 7.5 80.9 ± 5.9 88.5 ± 11.9

2.4. Accelerometer-Based Apps

This study used one Samsung Galaxy S8, based on the Android 10.1 operating system,
and one iPhone 8, based on iOS 12.1 operating system. Inclusion criteria for all apps were
retrieved from previous protocols [28,29]: (1) free of charge indefinitely after download,
applications with a free trial period of finite length were excluded; (2) full and efficient
functionality after downloading, without additional software download being necessary;
(3) functionality only through the built-in accelerometer (no GPS or 4G/5G signal); (4)
ability to record the number of steps taken, average speed, total distance, and energy
expenditure; (5) manual input of demographic and anthropometric data (sex, age, weight,
height, and step length for walking and running); (6) manual choice of activity type
(i.e., walking or running); (7) among the most popular and downloadable applications,
according to users’ ratings and number of downloads from the Google Play Store and App
Store; (8) available for use in both Android and iOS smartphones.
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Based on the previously described criteria, four accelerometer-based apps were se-
lected, which were installed in Android and iOS smartphones: Runtastic Pedometer
(Runtastic GmbH/Adidas, Pasching near Linz, Austria), Accupedo (Corusen LLC, Keller,
TX, USA), Pacer (Pacer Health Inc., Miami Lakes, FL, USA), and Argus (Azumio Inc.,
Redwood City, CA, USA).

2.5. Statistical Analysis

Descriptive analyses were conducted to examine associations with the criterion mea-
sures. Six separate repeated-measures analysis of variance (RM-ANOVA) statistical tests
were performed to assess differences between all apps and criterion measures for distance
and step count at 4.8, 6.0, and 8.4 km/h (three RM-ANOVA tests for steps and three for
distance, respectively). When the main RM-ANOVA test statistic was significant (i.e.,
criterion versus all eight apps), post hoc pairwise comparisons with Bonferroni correction
were performed to determine where significant differences existed. The significance level
was set at p < 0.05 and the partial η2 was presented as a measure of effect size for F-tests. A
partial η2 value between 0.01 and 0.06 was associated with a small effect, between 0.06 and
0.14 with a medium effect, and 0.14 or greater with a large effect [30].

To more thoroughly investigate the apps’ validity, the use of MAPE values and
Bland–Altman limits of agreement analysis was implemented [27]. MAPE values were
also calculated to provide an indicator of overall measurement error (MAPE = ([monitor
measurement-criterion measure]/criterion measure) × 100) and was used as an outcome
measure. A smaller MAPE represents better accuracy. Johnston et al. [27] recommend
MAPE ≤ 5%, if the PA monitor is to be used as an outcome measure within a clinical trial or
as an alternative gold-standard measurement tool for step counting, and MAPE ≤ 10−15%
if the device is being validated for use by the general population.

To further evaluate individual variations in a more systematic way, Bland–Altman
plots with corresponding 95% limits of agreement and fitted lines (from regression analyses
between mean and difference) with their corresponding parameters (i.e., intercept and
slope) were presented [31,32]. Dashed lines represent the 95% prediction interval, and solid
lines represent the mean errors. A fitted line that provides a slope of 0 and an intercept of 0
exemplifies perfect agreement, while a statistically significant slope suggests that there is
proportional systematic bias (i.e., the app gives values that are higher or lower than those
from the criterion by an amount that is proportional to the level of the measured variable).
The statistical analyses were performed with SPSS version 23.0 for Windows (IBM SPSS
Corp., Armonk, NY, USA) and MedCalc 12.7 (MedCalc Software bvba).

3. Results
3.1. Step Count

Participants averaged 569 ± 39 steps when walking at 4.8 km/h, 622 ± 36 steps when
walking at 6.0 km/h, and 751 ± 340 steps when jogging at 8.4 km/h, respectively. The
RM-ANOVA for walking at 4.8 km/h (F(8,232) = 1.94, p = 0.045, η2 = 0.06), 6.0 km/h
(F(8,232) = 3.64, p = 0.001, η2 = 0.11), and jogging at 8.4 km/h (F(8,232) = 6.88, p < 0.001,
η2 = 0.19) were statistically significant, with various effect sizes. The post hoc pairwise
comparisons with Bonferroni corrections showed that all iOS apps, except for Argus iOS at
4.8 km/h (F(1,29) = 3.62, p = 0.067, η2 = 0.11) and 6.0 km/h (F(1,29) = 2.69, p = 0.112,
η2 = 0.09), differed statistically significantly from the criterion during all conditions
(p < 0.05). All Android apps showed similar results with the criterion (p > 0.05) (Table 2).

During walking at 4.8 km/h, the MAPE was low for all apps, ranging from 1.51%
(Accupedo Android and Argus Android) to 3.20% for Argus iOS. During walking at
6.0 km/h and jogging at 8.4 km/h, the MAPE was even lower for all Android apps (0.41–
0.82%) and higher for iOS apps (e.g., 2.75% for Argus iOS at 6.0 km/h). Overall, all the
MAPE values were low (Figure 1).
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Table 2. Results of repeated measures ANOVA for step count and comparison with criterion measure.

4.8 km/h 6.0 km/h 8.4 km/h

M (SD) F p 95% CI M (SD) F p 95% CI M (SD) F p 95% CI

Criterion 569 (39) - - - 622 (36) - - - 751 (40) - - -

Accupedo iOS 562 (56) 12.87 0.001 0.11–
15.02 616 (34) 20.21 <0.001 1.35–

11.25 745 (40) 9.65 0.004 (−0.81)–
12.54

Accupedo Android 566 (42) 1.37 0.251 (−7.07)–
14.07 625 (40) 1.75 0.196 (−9.43)–

4.30 752 (39) 1.16 0.039 (−3.28)–
1.75

Pacer iOS 562 (56) 12.87 0.001 0.11–
15.02 616 (34) 20.21 <0.001 1.35–

11.25 745 (40) 9.65 0.004 (−0.81)–
12.54

Pacer Android 565 (42) 1.55 0.224 (−6.89)–
14.35 625 (40) 1.75 0.196 (−9.43)–

4.30 752 (39) 1.16 0.039 (−3.28)–
1.75

Runtastic iOS 558 (41) 6.22 0.019 (−4.55)–
26.35 616 (34) 20.21 <0.001 1.35–

11.25 743 (41) 7.05 0.013 (−2.83)–
19.90

Runtastic Android 573 (54) 0.25 0.624 (−32.23)–
24.30 625 (40) 1.75 0.196 (−9.43)–

4.30 752 (39) 1.16 0.039 (−3.28)–
1.75

Argus iOS 555 (52) 3.62 0.067 (−12.22)–
40.69 607 (56) 2.69 0.112 (−17.70)–

48.30 745 (40) 9.65 0.004 (−0.81)–
12.54

Argus Android 566 (42) 1.37 0.251 (−7.07)–
14.07 625 (40) 1.75 0.196 (−9.43)–

4.30 752 (39) 1.16 0.039 (−3.28)–
1.75

Note. CI: confidence interval; degrees of freedom: (1,29) for all post hoc tests.
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Figure 1. MAPE (% steps) of PA monitors and apps compared with criterion measure.

Bland–Altman results for step count for the three conditions are presented in Table 3,
and all Bland–Altman plots are included in the Supplementary file (Figures S1–S48). For
walking at 4.8 km/h, the plots revealed the narrowest 95% limits of agreement for Accupedo
Android and Argus Android (difference = 3.50 steps), while values were the widest for
Runtastic iOS (difference = 10.90 steps) and Argus iOS (difference = 14.23 steps). During
walking at 6.0 km/h and jogging at 8.4 km/h, the narrowest 95% limits of agreement
were observed for all Android apps (difference = −2.57 and −0.77 steps, respectively), and
values were wider for all iOS apps. The widest values were observed for Argus iOS at
6.0 km/h (difference = 15.30 steps) and Runtastic iOS at 8.4 km/h (difference = 8.53 steps).
The slopes for the fitted lines were not statistically significant (p < 0.05), suggesting that
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there were no significant patterns of proportional systematic steps’ underestimation or
overestimation for these apps.

Table 3. Step count Bland–Altman results at various speeds.

4.8 km/h 6.0 km/h 8.4 km/h

App M diff 95% CI Slope p 95% CI M diff 95% CI Slope p 95% CI M diff 95% CI Slope p 95% CI

Accupedo iOS 7.57 3.25–11.88 0.10 0.063 (−0.01)–
0.21 6.30 3.43–9.17 0.08 0.052 0.00–0.15 5.87 2.00–9.73 0.01 0.789 (−0.09)–0.11

Accupedo
Android 3.50 (−2.62)–9.62 0.01 0.951 (−0.17)–

0.16 −2.57 (−6.54)–1.40 −0.07 0.202 (−0.18)–0.04 −0.77 (−2.22)–0.69 0.01 0.498 (−0.03)–0.05

Pacer iOS 7.57 3.25–11.88 0.10 0.063 (−0.01)–
0.21 6.30 3.43–9.17 0.08 0.052 0.00–0.15 5.87 2.00–9.73 0.01 0.789 (−0.09)–0.11

Pacer Android 3.73 (−2.41)–9.88 −0.01 0.895 (−0.18)–
0.15 −2.57 (−6.54)–1.40 −0.07 0.202 (−0.18)–0.04 −0.77 (−2.22)–0.69 0.01 0.498 (−0.03)–0.05

Runtastic iOS 10.90 1.96–19.84 0.12 0.286 (−0.11)–
0.36 6.30 3.43–9.17 0.08 0.052 0.00–0.15 8.53 1.96–15.11 0.06 0.446 (−0.11)–0.23

Runtastic
Android −3.97 (−20.32)–

12.39 0.18 0.407 (−0.26)–
0.61 −2.57 (−6.54)–1.40 −0.07 0.202 (−0.18)–0.04 −0.77 (−2.22)–0.69 0.01 0.498 (−0.03)–0.05

Argus iOS 14.23 (−1.07)–
29.54 0.15 0.465 (−0.26)–

0.55 15.30 (−3.79)–
34.39 0.29 0.276 (−0.25)–0.83 5.87 2.00–9.73 0.01 0.789 (−0.09)–0.11

Argus Android 3.50 (−2.62)–9.62 −0.01 0.951 (−0.17)–
0.16 −2.57 (−6.54)–1.40 −0.07 0.202 (−0.18)–0.04 −0.77 (−2.22)–0.69 0.01 0.498 (−0.03)–0.05

Note. CI: confidence interval; M diff: Mean difference.

3.2. Distance

Participants averaged 0.39 ± 0.01 km during walking at 4.8 km/h, 0.49 ± 0.01 km
during walking at 6.0 km/h, and 0.69 ± 0.01 km during jogging at 8.4 km/h, respectively.
The RM-ANOVA for walking at 4.8 km/h (F(8,232) = 8.17, p < 0.001, η2 = 0.22), 6.0 km/h
(F(8,232) = 14.55, p < 0.001, η2 = 0.33), and jogging at 8.4 km/h (F(8,232) = 8.19, p < 0.001,
η2 = 0.22) were statistically significant, with large effect sizes. The post hoc pairwise
comparisons with Bonferroni corrections showed that most apps differed statistically
significantly from the criterion at 6.0 km/h and 8.4 km/h (p < 0.05). At 4.8 km/h, only
Argus iOS (F(1,29) = 7.98, p = 0.008, η2 = 0.22), Argus Android (F(1,29) = 11.04, p = 0.002,
η2 = 0.28) and Runtastic Android (F(1.29) = 10.45, p = 0.003, η2 = 0.27) differed statistically
significantly from the criterion. All comparisons with the criterion are presented in Table 4.

Table 4. Results of repeated measures ANOVA for distance (km) and comparison with criterion measure.

4.8 km/h 6.0 km/h 8.4 km/h

M (SD) F p 95% CI M (SD) F p 95% CI M (SD) F p 95% CI

Criterion 0.39 (0.01) - - - 0.49
(0.01) - - - 0.69

(0.01) - - -

Accupedo iOS 0.41 (0.05) 1.67 0.207 (−0.05)–
0.02

0.46
(0.05) 7.80 0.009 (−0.01)–

0.07
0.63

(0.08) 20.93 <0.001 0.01–
0.11

Accupedo
Android 0.40 (0.07) 0.16 0.696 (−0.05)–

0.04
0.45

(0.04) 24.57 <0.001 0.01–
0.07

0.60
(0.07) 51.03 <0.001 0.05–

0.14

Pacer iOS 0.39 (0.04) 0.73 0.401 (−0.02)–
0.03

0.45
(0.06) 11.99 0.002 0.00–

0.08
0.63

(0.12) 7.39 0.011 (−0.02)–
0.13

Pacer Android 0.38 (0.08) 1.25 0.274 (−0.03)–
0.06

0.43
(0.06) 31.53 <0.001 0.02–

0.11
0.63

(0.13) 6.22 0.019 (−0.03)–
0.15

Runtastic iOS 0.39 (0.10) 0.01 0.923 (−0.06)–
0.06

0.53
(0.14) 1.65 0.209 (−0.13)–

0.06
0.78

(0.17) 7.56 0.010 (−0.20)–
0.03

Runtastic
Android 0.49 (0.16) 10.45 0.003 (−0.20)–

0.01
0.54

(0.09) 6.76 0.15 (−0.10)–
0.02

0.73
(0.12) 3.75 0.063 (−0.12)–

0.03

Argus iOS 0.44 (0.09) 7.98 0.008 (−0.10)–
0.01

0.53
(0.13) 2.44 0.129 (−0.12)–

0.05
0.68

(0.17) 0.19 0.665 (−0.10)–
0.12

Argus Android 0.64 (0.41) 11.04 0.002 (−0.52)–
0.02

0.65
(0.18) 24.67 <0.001 (−0.27)–

(−0.05)
0.77

(0.20) 4.74 0.038 (−0.21)–
0.05

Note. CI: confidence interval; degrees of freedom: (1,29) for all post hoc tests.

Figure 2 reports the MAPE for all iOS and Android apps. During walking at 4.8 km/h,
the magnitude of errors was lower for Pacer iOS (7.46%) and Accupedo iOS (9.69%), while
error rates for all other were above 12.00% (12.26–35.15%). During walking at 6.0 km/h,
the magnitude of errors was lower for Accupedo Android (9.78%), followed by Accupedo
iOS (10.41%). Error rates for the remaining apps ranged from 12.45% to 36.58%. Lastly, all
MAPE values for jogging at 8.4 km/h were higher than 10.0%, ranging from 12.18% for
Accupedo iOS to 21.01% for Argus iOS and Argus Android.
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Figure 2. MAPE (% km) of PA monitors and apps compared with criterion measure.

Bland–Altman results for distance for the three conditions are presented in Table 5, and
all Bland–Altman plots are included in Figures S1–S48. For walking at 4.8 km/h, the plots
revealed the narrowest 95% limits of agreement for Runtastic iOS (difference = 0.00 km)
and Sports Tracker (difference = −0.01 km), and slightly wider values for Accupedo
(difference = −0.02 km) and Accupedo iOS, Accupedo Android, and Pacer iOS
(difference = 0.01 km), while values were the widest for Runtastic Android
(difference = −0.10 km) and Argus Android (difference = −0.25 km). During walking at
6.0 km/h and jogging at 8.4 km/h, the narrowest 95% limits of agreement were observed
for Accupedo iOS and Runtastic iOS at 6.0 km/h (difference = 0.03 km) and for Argus iOS
(difference = 0.01 km) and Runtastic Android at 8.4 km/h (difference = −0.04 km). The
widest values were observed for Argus Android at 6.0 km/h (difference = −0.16 km) and
Accupedo Android at 8.4 km/h (difference = 0.10 km). In general, the slopes for the fitted
lines were not statistically significant (p < 0.05), suggesting that there were no significant
patterns of proportional systematic bias for these apps, except for Accupedo iOS during
walking at both speeds (p = 0.029 and p < 0.001, respectively), Argus iOS at 4.8 km/h
(p < 0.001), and Accupedo Android at 6.0 km/h (p = 0.015).

Table 5. Distance Bland–Altman results at various speeds.

4.8 km/h 6.0 km/h 8.4 km/h

App M diff 95% CI Slope p 95% CI M diff 95% CI Slope p 95% CI M diff 95% CI Slope p 95% CI

Accupedo
iOS −0.01 (−0.03)–0.01 3.53 0.029 0.38–6.68 0.03 0.01–0.05 1.74 <0.001 0.85–2.63 0.06 0.03–0.09 −0.47 0.653 (−2.56)–1.63

Accupedo
Android −0.01 (−0.03)–0.02 −0.75 0.731 (−5.17)–3.67 0.04 0.02–0.06 0.94 0.015 0.20–1.68 0.10 0.07–0.12 0.48 0.644 (−1.63)–2.59

Pacer iOS 0.01 (−0.01)–0.02 0.84 0.485 (−1.60)–3.28 0.04 0.02–0.06 0.59 0.310 (−0.58)–1.76 0.06 0.01–0.10 −1.34 0.413 (−4.64)–1.96
Pacer

Android 0.02 (−0.01)–0.04 −0.50 0.833 (−5.30)–4.30 0.07 0.04–0.09 0.76 0.189 (−0.39)–1.91 0.06 0.01–0.11 1.60 0.400 (2.23)–5.43

Runtastic
iOS 0.00 (−0.03)–0.04 −4.09 0.157 (−9.86)–1.67 −0.03 (−0.09)–0.02 1.09 0.401 (−1.53)–3.72 −0.09 (−0.15)–

(−0.02) 4.78 0.500 0.01–9.54

Runtastic
Android −0.10 (−0.16)–

(−0.04) 4.25 0.410 (−6.15)–
14.65 −0.04 (−0.08)–

(−0.01) 0.93 0.239 (−0.65)–2.52 −0.04 (−0.08)–0.00 −3.06 0.053 (−6.17)–0.05

Argus iOS −0.04 (−0.07)–
(−0.01) −8.00 <0.001 (−9.28)–3.72 −0.04 (−0.09)–0.01 0.46 0.701 (−1.96)–2.87 0.01 (−0.05)–0.08 −2.29 0.344 (−7.16)–2.58

Argus
Android −0.25 (−0.40)–

(−0.10) 20.16 0.111 (−4.96)–
45.27 −0.16 (−0.22)–

(−0.09) −0.27 0.864 (3.48)–2.94 −0.08 (−0.15)–
(−0.01) −1.29 0.650 (−7.07)–4.49

Note. CI: confidence interval; M diff: Mean difference.
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4. Discussion

The aim of the present study was to examine the validity of four iOS and four Android
PA apps in measuring steps and distance during incremental-intensity treadmill walking
and jogging in a sample of healthy adults. To our knowledge, this is the first study
to examine and directly compare these estimates between the two major smartphone
operating systems.

The primary finding regarding step count was that all freeware accelerometer-based
apps were valid in all conditions, with MAPE values well below 5%, and no systematic
biases were observed. The lowest error was estimated for all Android apps during jogging
at 8.4 km/h, while iOS apps had slightly higher errors compared to the criterion measure.
The highest error was observed for Argus iOS during walking. Furthermore, no systematic
biases were observed for these apps. Regarding distance validity, it was found that Android
and iOS apps were not valid in all conditions, with high individual errors (>10%). The
lowest errors were observed for Pacer iOS and Accupedo iOS during walking at 4.8 km/h,
while highest errors were estimated for Runtastic and Argus apps.

Some previous validation studies for step count concluded that PA apps were likely to
meet acceptable accuracy levels [19–21,33] and accuracy increased at higher speeds [18,21].
The results of the current study supported previous findings. All iOS and Android apps
improved their step accuracy at higher speed (i.e., 8.4 km/h), compared to the walking
trials. Furthermore, the errors in all conditions were low, resulting in comparable results
with studies on wearable PA monitors’ validity [13,34,35]. Based on Johnston et al.’s [27]
recommendations, these apps installed in Samsung Galaxy S8 and iPhone 8 smartphones
have the potential to be used as step outcome measures within clinical trials or as alternative
gold-standard measurement tools for step counting. More validation studies should be
carried out to further support this outcome.

When comparing iOS and Android apps, Android apps performed slightly more
accurately than iOS ones. To our knowledge, no previous studies have directly compared
the same apps installed in the two operating systems. One previous study [33] examined
the step validity of the Moves app in Samsung Galaxy S4 and iPhone 5s smartphones and
found that data from the apps in the two operating systems were only slightly different
than observed step counts in two trials (500 step and 1500 steps). In this study, Accupedo,
Pacer, Runtastic, and Argus Android apps were more valid than similar iOS apps in all
conditions. However, both iOS and Android apps showed high accuracy levels regarding
step count with no systematic errors. Furthermore, all apps had lower errors than the ones
estimated in previous studies (e.g., Runtastic, Accupedo, and Pacer [19–22,24]; Argus [17]).
This significant improvement may be attributed to updated smartphone hardware and
software, as well as to improved app step detection algorithms, because in the current
research protocol, newer smartphones, operating systems, and apps were included (e.g.,
iPhone 8 vs. iPhone 5s and SE; Samsung Galaxy S8 vs. Samsung Galaxy S4).

The statement regarding the higher accuracy of newer versions was also supported in
Brodie et al.’s [17] study, even though the examined app (i.e., Argus Azumio) was found to
have extraordinarily large error ranges for both Android and iOS smartphones. However,
similar errors were not estimated in the present study, even though Argus iOS had the
highest error between all apps (e.g., 3.20% in 4.8 km/h). Definitely, more high-quality
studies should be conducted to further examine the validity of this specific app, mainly
because Argus is used in large observational studies with big step count datasets [5,9] and
accurate data are more important than low-quality big data in PA monitoring.

A new finding in this study was that most apps had comparable (or even similar)
estimates for step count. In previous studies, step differences between the various apps
under examination were significant, and these differences were mainly because apps used
proprietary methods to detect steps and, hence, differences may exist in the types of
movements that are captured as steps, resulting in step count variability [36]. Currently,
most apps use the smartphones’ built-in step counter sensors, and this approach potentially
affects all apps that use these sensors to provide similar step count estimates. Furthermore,
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the smartphones’ position did not impact step detection accuracy, as all smartphones were
placed close to the body, around the waist. It is uncertain whether the accuracy would
further increase if smartphones were placed in a different position, i.e., around the arm or
in the pocket.

Regarding distance validity, all accelerometer-based iOS and Android apps had large
individual and group errors for all conditions, usually above 10%, and some apps had
systematic errors in various conditions (e.g., Accupedo iOS). Argus apps were the most
inaccurate ones, with large MAPE over 20%. These findings are consistent with previous
studies, as most PA activity trackers and apps have been found accurate with step counts
but lacked accuracy in reporting distance [18,35]. The errors in distance estimation might
be a result of inaccurate initial step detection, inappropriate algorithm(s) for the trans-
formation of step count into distance, and/or step length variability during PA. Taking
into account that all apps were initially valid in step counting and the same step length
was used (which was included in the conversion algorithm), it seems possible that apps
used different proprietary distance estimation algorithms, which were not valid. On the
contrary, GPS-based apps are more accurate when it comes to distance estimation [37,38],
so GPS-based apps should be used instead of accelerometer-based apps when the primary
outcome measure is distance.

The main strengths of this study included the criterion-specific selection of freeware
accelerometer-based apps available for use in both iOS and Android smartphones and the
comparison to criterion measures. Other strengths included a sample consisting of adults,
submaximal treadmill walking and jogging trials, and randomisation of these activities to
prevent systematic bias in the measurement. Furthermore, the jogging activity was per-
formed at a high speed (i.e., 8.4 km/h), which was not usually selected in previous studies.
Lastly, the results were presented according to the selected speeds, so that researchers
have direct access to speed-specific results to facilitate future systematic reviews and meta-
analyses. Future validation studies may follow a similar methodological approach to select
and examine newer PA apps, installed in newer smartphones and operating systems. The
results can further guide the consumers in the selection of the most appropriate and valid
app(s) to use for capturing steps and distance during PA.

Limitations of this study included the sample size consisting of healthy participants,
while future research approaches should include more semi- or un-structured activities
in a free-living environment. In addition, future studies should examine the validity of
apps during activities of daily living, preferably over a time frame of 2–4 days to assess the
suitability of these devices to be used for long-term accelerometry. As mentioned by Brodie
et al. [17], to definitively determine the extent that smartphone apps undercount/overcount
non-stereotypical gait, walks by larger people, females, and people from different ethnic
groups, and much larger heterogeneous samples are required. Finally, the role of the
smartphone’s optimal position on the human body during exercise should be further
investigated.

5. Conclusions

PA tracking monitors and freeware apps have the potential to capture real-time PA
data and have been shown to increase daily PA, but the reliability and validity of numerous
commercially available apps remain unclear. In this validation study, all accelerometer-
based iOS and Android apps returned a high level of step consistency and accuracy during
incremental-intensity treadmill walking and jogging and could be considered suitable
for use as an outcome measure within a clinical trial. On the other hand, none of these
apps was suitable for measuring distance, and GPS-based apps should be used when
distance is the primary outcome measure. Since new monitors and apps are released to
the consumer market every year, promising improved measurements and user experience,
similar high-quality studies should be continuously conducted to generate scientific data
supporting the apps’ validity.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/technologies9030055/s1, Figures S1–S48: All Bland–Altman plots for step count and distance
comparisons with criterion measure (48 plots in total) for the three conditions (i.e., 4.8, 6.0, and 8.4
km/h).
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