
Title A Large Neighborhood Search approach for the Machine
Reassignment Problem in data centers

Authors Souza, Filipe;Grimes, Diarmuid;O'Sullivan, Barry

Publication date 2022-12-08

Original Citation Souza, F., Grimes, D. and O’Sullivan, B. (2023) ‘A large
neighborhood search approach for the data centre machine
reassignment problem’, AICS2022, in L. Longo and R.
O’Reilly (eds) Artificial Intelligence and Cognitive Science.
Cham: Springer Nature Switzerland, pp. 397–408. https://
doi.org/10.1007/978-3-031-26438-2_3

Type of publication Conference item

Link to publisher's
version

10.1007/978-3-031-26438-2_31

Rights © 2023 The Author(s). Open Access. This chapter is licensed
under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/
by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license and indicate if changes
were made - https://creativecommons.org/licenses/by/4.0/

Download date 2025-06-06 08:15:58

Item downloaded
from

https://hdl.handle.net/10468/14038

https://hdl.handle.net/10468/14038


A Large Neighborhood Search Approach for the
Data Centre Machine Reassignment Problem⋆

Filipe Souza1,2, Diarmuid Grimes2,3, and Barry O’Sullivan1,2

1 Insight SFI Research Centre for Data Analytics, University College Cork, Ireland
f.desouza@cs.ucc.ie

http://www.ucc.ie/
2 SFI Centre for Research Training in Artificial Intelligence

http://www.crt-ai.cs.ucc.ie
3 Munster Technological University, Ireland

http://www.mtu.ie/

Abstract. One of the main challenges in data centre operations in-
volves optimally reassigning running processes to servers in a dynamic
setting such that operational performance is improved. In 2012, Google
proposed the Machine Reassignment Problem in collaboration with the
ROADEF/Euro challenge. A number of complex instances were gener-
ated for evaluating the submissions. This work focuses on new approaches
to solve this problem.
In particular, we propose a Large Neighbourhood Search approach with a
novel, domain-specific heuristic for neighborhood selection. This heuris-
tic uses the unbalanced resource usage on the machines to select the
most promising processes in each iteration. Furthermore, we compare two
search strategies to optimise the sub-problems. The first one is based on
the concept of Limited Discrepancy Search, albeit tailored to large scale
problems; and the second approach involves the standard combination
of constraint programming with random restart strategies.
An empirical evaluation on the widely studied instances from ROADEF
2012 demonstrates the effectiveness of our approach against the state-of-
the-art, with new upper bounds found for three instances.

Keywords: LNS · Neighbourhood Selection · Machine Reassignment
Problem · Limited Discrepancy Search.

1 Introduction

There has been a significant increase in data centers over the past two decades.
Today there are nearly 3000 in the US alone and over 70 in Ireland4. With the in-
crease in streaming services, and the default data acquirement of most websites,

⋆ Supported by SFI Centre for Research Training in Artificial Intelligence under Grant
No. 18/CRT/6223 and SFI under Grant No. 12/RC/2289-P2, co-funded under the
European Regional Development Fund.

4 https://www.statista.com/topics/6165/data-centers



2 F. Souza et al.

etc. this is only expected to increase. In the research community, much research
has naturally focused on reducing the environmental impact of data centers,
with less focus on improving operational performance within data centers.

In 2012 Google proposed a challenge with this latter issue of operation per-
formance in mind, via the ROADEF/Euro Challenge 2012 (Roadef12 ). The gen-
eral goal is the optimisation of a data centre environment for virtualisation and
service configuration. In particular, they proposed the Machine Reassignment
Problem (MRP), which aims to reallocate a set of processes to a set of ma-
chines in order to minimise a multi-objective function subject to a number of
constraints. During the competition a range of optimisation approaches were
proposed and they are summarised by Afsar et al. in [9]. Due to its complexity
and specificity, the MRP has been the focus of many works in the literature in
the decade since, as discussed by Canales et al. [2].

In this paper we present a Large Neighbourhood Search (LNS) with some
specific components to solve the MRP. The main contributions of this work are:
(i) a novel domain specific neighbourhood selection heuristic; and (ii) a novel
search strategy to optimise each LNS sub-problem. With regard to the search
strategy, it relies on the known issue that a heuristic decision is more likely to be
wrong in the beginning of the search because it has less information than deeper
in search.

Bringing this to the MRP problem, when we assign the first process to the
best machine based on the heuristic, perhaps this machine is the best machine at
this moment because other processes are not assigned yet. While the last process
to be assigned is more likely to be assigned correctly because the heuristic has the
information of all processes already assigned. As the backtracking algorithm uses
depth first search, it spends a long search time relying on the first decision taken
by the heuristic. To overcome this issue, we investigate two search strategies
that do not spend a large amount of time investigating alternatives values for
heuristics decisions that are more likely to be correct.

2 Related Work

Large neighborhood search was first proposed by Shaw in 1998 [13] as a means
of applying constraint programming (CP) techniques to large vehicle routing
problems. In its basic form, an initial solution is generated and then refined in
successive iterations. Each iteration involves firstly selecting a subset of variables
(the neighborhood), whose assignment is relaxed while all other variables have
their assignment fixed to the value in the current solution. The neighborhood of
unassigned variables can then be solved using a systematic approach, like CP or
MIP, to find the optimal solution to the neighborhood given the assignment of
the non-neighborhood variables.

2.1 Machine Reassignment Problem

The Machine Reassignment Problem has received considerable attention in the
literature, in particular the problem as defined by Google in Roadef12. Given



LNS for the data centre MRP 3

an assignment of processes to machines, the problem involves reassigning the
processes to minimise a multi-objective cost function related to the migration of
processes being reassigned. While some recent works (e.g [11]) have tackled the
problem as a multiobjective optimisation problem, we consider the problem in
its classical format as defined by Google. Here, the cost function is converted to
a single objective function using a weighted sum of costs.

The costs are associated with: the resource load above safety capacity on
machines including transient resource usage, where a process uses resources on
both the original machine and the machine of its reassignment; the balance of
resource usage on machines; and costs associated with migrating processes of
services between machine pairs. This problem is further subject to constraints
such as capacity of machines, relationships between process subsets and machine
subsets, etc.

A recent study [2] shows that most current state-of-the-art approaches apply
some variation of local search techniques to address the MRP. They also ob-
served the superiority of the approaches that adapt the search strategy to the
characteristics of each instance.

One of the most effective local search approaches to address the MRP came
from Gavranovic and Buljubasic in [3]. An important component of the technique
was a noising method to help avoid local optima. When the algorithm got stuck
in a local minima, the weight of one of the objectives in the multiobjective cost
function was changed. The search can then escape the local optima as it was
specific to the previous objective function. When a new local optimal is reached,
the approach returns to the original objective function to escape. This approach
was the winner of Roadef12.

A number of LNS approaches for the MRP have been proposed, which are
of particular relevance to this work. Indeed the second place entry was a CP-
based LNS [8]. Mehta et al. investigated both a CP-based LNS and a MIP-
based LNS for the problem, and found the CP-based LNS approach significantly
more effective, particularly on the large-scale instances. This LNS approach does
however have a number of parameters that are highly sensitive to the problem
instance characteristics.

An improved method was proposed in subsequent work [7] to counter the
issue of parameter sensitivity, using a non-model based portfolio approach (ISAC
[6]) to tune the LNS parameters to clusters of similar instances. More recently
another LNS approach was proposed by Brandt et al. [1] where four domain
specific neighbourhood selection heuristics were evaluated, and only small sub-
problems (less than 10 processes) were considered. However, this did not achieve
the same level of performance as that of Mehta et al which is the state of the
art LNS approach.

In terms of overall state-of-the-art, Turky [14] recently proposed two bi-level
hyper-heuristic approaches, the first involving local search and the second in-
volving ant colony optimization. The results presented demonstrated that this
method was able to outperform most approaches on the Roadef12 instances,
achieving a number of new upper bounds for instances.



4 F. Souza et al.

3 Problem Definition

The Machine Reassignment Problem aims to reallocate a set of processes to a set
of machines in order to minimise a multi-objective function subject to a number
of constraints. We describe the problem as follows (due to space limitations, the
reader is referred to the original problem specification 5 for more details).

We have a set of machines m ∈ M that can be assigned processes. Each
machine has strict capacity restrictions Cm,r on its different resources (r ∈ R),
e.g. CPU, Load, Disk. Machines also have associated safety capacities SCm,r per
resource that can be exceeded but incur a penalty in so doing. Machines are fur-
ther grouped into locations (l ∈ L), which are disjoint sets of machines. Similarly
machines are grouped into neighborhoods (n ∈ N). Locations and neighborhoods
handle different requirements that will be described subsequently.

Running on the machines are a set of processes (p ∈ P ). Each process has
associated resource requirements (REp,r). Processes are grouped into services
(s ∈ S). Two processes of the same service cannot be assigned to the same
machine. Processes of the same services have to be spread across machines in
a minimum number of locations (spreadMins). Furthermore, services can have
dependencies, if service s1 depends on service s2 then processes of s1 must be
assigned to machines in the neighborhood of machines handling processes of s2.

Unbalanced resource usage is penalised according to balance rules b ∈ B. b is
characterized by (br1, br2, btarget), the two related resources and the acceptable
imbalance between them. A solution A is an assignment of ∀p ∈ P to a machine
m ∈M . We will formally represent the assignment byMCp = m for each process
p, while the original machine assignment is denoted by MOp.

The MRP multiobjective function to minimise involves five different costs.
The first cost is the load cost, the usage of machine resources above the safety
capacity. The second cost is the balance cost, i.e. the imbalance of resources
usage in each machine.

The final three costs are related to the cost of migrating a process from its
original machine MOp to a new machine MCp. The first of these is the process
move cost, where each process has an associated fixed cost to deter moving it. The
second migration cost is the service move cost, which aims to penalise solutions
that don’t have moves balanced across services. The final cost is the machine
move cost, which has a penalty depending on the pair of machines involved in a
move.

The MRP problem can thus be modeled as:

– LC =
∑

r∈R weightLCr ∗ (
∑

m∈M max(0, Um,r − SCm,r))
– BC =

∑
b∈B weightBCb∗(

∑
m∈M max(0, btarget∗(Cm,br1−Um,br1)− (Cm,br2−

Um,br2)))
– PrMC = weightPMC ∗ (

∑
p∈P ∧ MOp ̸=MCp

PMCp)

– SMC = weightSMC ∗maxs∈S

∑
p∈s ∧ MOp ̸=MCp

1

– MaMC = weightMMC ∗
∑

p∈P MMCMOp,MCp

5 https://www.roadef.org/challenge/2012/files/problem definition v1.pdf



LNS for the data centre MRP 5

minimize
∑

LC +BC + PrMC +MaMC + SMC (1)

subject to: MCp ∈M ∀p ∈ P
(2)

Um,r + TUm,r ≤ Cm,r ∀m ∈M,∀r ∈ R
(3)

MCp ̸= MCj ∀p, j ∈ s,∀s ∈ S, p ̸= j
(4)∑

l∈L

min(1,
∑

p∈S ∧ MCp∈l

1) ≥ spreadMins ∀s ∈ S

(5)

min(1,
∑

p1∈s1 ∧ MCp1∈n

1) ≤ min(1,
∑

p2∈s2 ∧ MCp2∈n

1) ∀n ∈ N, s1 depends s2

(6)

Constraint 2 enforces that each process is assigned to a machine. Constraint
3 ensures that the machine resources are not overloaded, where resource us-
age of resource r on machine m is given by Um,r =

∑
p∈P ∧ MCp=m rep,r and

transient resource usage is defined by TUm,r =
∑

p∈P ∧ MCp ̸=m ∧ MOp=m rep,r.
Constraint 4 establishes that processes from the same service cannot be assigned
for the same machine. Constraint 5 defines that the set of processes from a ser-
vice have to be assigned to machines in a minimum number of different locations.
Constraint 6 assures that if service s1 has a dependency of service s2, each pro-
cess in s1 has to be assigned for machines in the same neighbourhood of those
process of s2.

4 Proposed Algorithm

We implemented a Large Neighbourhood Search (LNS) for the MRP and com-
pared two approaches for optimising the sub-problems within a CP solver. The
first method is a random restart strategy (RRS ) where search is restarted based
on a failure threshold. We added a stochastic component to the variable/value
ordering heuristics by choosing randomly amongst the top x choices of the heuris-
tic. Therefore each restart is likely to explore a different part of the search space.
This approach runs a backtracking search for a number of times, in each of them
the failure threshold is increased based on maxFails. The termination criteria
is a maximum failure threshold.

The second approach is a variation of Limited Discrepancy Search (LDS)
[4], which we refer to as Restricted Domain Search (RDS ). Note in our case
we do not have the objective of proving optimality in each neighbourhood, our
objective is to find the best possible solution for the neighbourhood in a small
execution time. Thus, the idea behind this approach is to equally investigate
every variable in the sub-problem.

Algorithm 1 describes the proposed RDS approach. It is a recursive function
that, in each call, selects one process and investigates the D best machines to



6 F. Souza et al.

assign the selected process to. When all processes are assigned, it checks whether
the current solution is better than the best solution so far. If so, it updates the
best solution with the current solution. Note this is based on a similar logic to
LDS but rather than return to the top of the search tree at each increase of
deviation, RDS performs its deviations in depth first search. The reason for this
difference with LDS is the cost of propagation of assignments at the top of the
search tree for problems of this nature.

Algorithm 1: RestrictedDomainSearch()

if qttUnassignedProcesses == 0 then
if oldObjectiveCost > currentObjectiveCost then

solutionSubProblem← saveSolution() ;
end

else
process← selectAndRemoveProcess() ;
UnassignedProcesses−− ;
updateDomain(process) ;
if domain(process) == 0 then

Failures + + ;
else

discrepancy← 0 ;
while domain(process) > 0 & checkT ime() & discrepancy <=
MaxDiscrepancy & qttFailures <= MaxFailures do

machine← selectAndRemoveMachine(process) ;
if isConsistent(process,machine) then

assignProcessToMachine(process,machine) ;
propagateConstraints(machine) ;
RestrictedDomainSearch() ;
discrepancy + + ;
unassignProcess(process,machine) ;

else
Failures + + ;

end

end

end
UnassignedProcesses + + ;

end

4.1 Adaptive Neighbourhood Size

An important parameter of Large Neighbourhood Search is the size of each neigh-
bourhood. A very large neighbourhood requires too much time to be optimised
which results in a poor investigation of other neighbourhoods. On the other hand
too small a neighbourhood can result in getting stuck in local minima.



LNS for the data centre MRP 7

There are many approaches in the literature that address this problem by
implementing an adaptive large neighborhood search, e.g. [10, 12, 5]. In this work
a simple adaptive neighbourhood size method is used primarily for escaping local
minima. A relatively small initial neighbourhood size is used until search reaches
a local minimum, whereupon the neighbourhood size is increased until it leaves
the local minimum, and the original neighbourhood size is then restored.

4.2 Neighbourhood Selection:

To define which variables should be relaxed on each iteration, our LNS approach
focuses on the unbalanced usage of resources in each machine. The idea is that
if a machine has an unbalanced usage, where the proportion of capacity used by
one resource differs greatly from other resources, it is likely a better solution can
be achieved by reassigning processes of this machine.

However, this heuristic does not consider all components of the multi-objective
function. Therefore, we alternated with a heuristic based on the maximum ma-
chine cost. Algorithms 2 and 3 show the process to create the sub-problems.

Algorithm 2: Create subProblem Unbalanced Machine

numMachine← (random()%(subProblemSize/2)) + 1 ;
machine← getUnbalancedMachine() ;
while unassignedProcessQtt < numProcesses do

if (numProcesses >= (subProblemSize/numMachine)) then
numProcesses← 0 ;
machine← getUnbalancedMachine() ;

end
if isHeuristicUsed then

process← getMaxCostProcess(machine) ;
else

process← randomProcess(machine) ;
end

unassignProcess(process) ;
addToSubProblem(process) ;

end

4.3 Variable And Value Ordering Heuristic

To select the variable we used the well known Fail First heuristic, that simply
orders the variable based on minimising domain size. This heuristic is robust and
widely used in CP solvers. Furthermore, this heuristic also indirectly incorporates
the knowledge of “Big Processes First” highlighted by the winner of Roadef12 [3],
larger processes are harder to assign to machines due to the capacity constraint,
therefore the domain of possible machines for these processes is smaller.

For the value ordering heuristic we implemented an approximation of the
minimum cost of assigning the process to a machine. This heuristic has a high



8 F. Souza et al.

accuracy at the bottom of the search tree but loses accuracy as we approach
the root. To alleviate this issue towards the root, ties were broken based on the
number of remaining unassigned processes that could be placed on the machine.

Algorithm 3: getUnbalancedMachine()

if machineIndicesSize == 0 or solutionWasImproved then
solutionWasImproved← FALSE ;
machineIndicesSize = machineIndices.size() ;
if useFirstSort then

useFirstSort← FALSE ;
machineIndices← machinesSortedByResourcesAvaliable() ;

else
useFirstSort← TRUE ;
machineIndices← machinesSortedByMachineCost() ;

end

end
if isHeuristicUsed then

isHeuristicUsed← FALSE ;
machineIndicesSize← machineIndicesSize− 1 ;
machine← machineIndices[machineIndicesSize] ;

else
isHeuristicUsed← TRUE ;
machine← randomMachine() ;

end

4.4 Early Search Noise Strategy

The double use of transient resources when migrating a process is an important
aspect that must be considered in this problem. On some instances it can result
in local optimal solutions that are very difficult to escape, as many machines
will be overloaded with double use of transient resources. To avoid a premature
convergence for some of those intermediate solutions, we added an extra com-
ponent to the objective function to discourage process moves with a high level
of transient resource usage. The weight of this component is reduced each time
the algorithm reaches a fixed threshold of iterations without improvement, and
set to 0 on the last 20% of the search runtime.

5 Evaluation

The experiments were run on a Ubuntu 18.04.3 LTS (GNU/Linux 4.15.0-70-
generic) with 16 Core and 32GB. All runs had a runtime cutoff of 5 minutes per
instance. Furthermore, as the proposed approach has stochastic components, the
presented results are the average of 5 runs with different seeds. Table 1 presents
the parameter configurations that were used to run the experiments.



LNS for the data centre MRP 9

Table 1: Configurations parameters for the benchmark experiment.

Parameter Value

Runtime 300 seconds
Initial Neighbourhood Size 10 processes
Threshold of Non-improvement 50 iterations
Failure Threshold 400
Limit of Deviation 2

The experiments used the three sets of instances from Roadef12, where each
set has 10 instances. The ‘A’ instance set is composed of smaller instances with a
maximum of 1,000 processes and 100 Machines. The other two sets of instances
are more complex and larger, with up to 50,000 processes and 5,000 machines.

5.1 Results

We first investigated the neighborhood search method, comparing Restricted
Domain Search (RDS) with Random Restarted Search (RRS) on a range of
neighbourhoods across the 30 instances. We observed that on a total of 271,219
neighbourhoods where one of these approaches managed to find a better (and
improving) solution, RDS found better solutions in 54% of the neighbourhoods
while RRS found better solutions in 46% of the neighbourhoods.

Furthermore, as we can see in Figure 1, RDS is consistently faster than RRS
across all Roadef12 instances when the same neighborhoods were explored. This
behaviour can be explained by the fact that every time the search is restarted
in RRS, the algorithm has to assign many variables and propagate constraints
before the search starts to have complete solutions or failures, which considerably
increases the run-time when compared with RDS. We finally tested each search
method independently (5 runs, 5 mins per run per instance) and found that RRS,
while performing relatively well, never found better solutions on an instance
when compared to RDS. These results demonstrate the quality of our novel
RDS approach.

Fig. 1: Comparing the average Run-time of RDS and RRS in the same neigh-
bourhoods.



10 F. Souza et al.

Table 2: Average cost results and % gap to best known solution for RDS-
LNS compared with state of the art. Best known solution taken from [14, 2].
All approaches had a 5 minute cutoff per run. CP-LNS and RDS-LNS run on
same machine, results are average of 5 runs. NLS and Ant-HH results taken from
paper, former is average of 100 runs, latter is average of 31 runs. Bold indicates
best amongst the four comparison approaches according to the given metric.

Cost︷ ︸︸ ︷ % Gap = 100* (Cost - BK)/BK︷ ︸︸ ︷
Instances BK Cost Ant-HH[14] NLS[3] CP-LNS[8] RDS-LNSAnt-HH NLS CPLNSRDS

a1 1 44306501 44306501 44306501 44306501 44306501 0.0 0.0 0.0 0.0
a1 2 777532177 777532179 778142261 778654913 777680794 0.0 0.0 0.0 0.0
a1 3 583005715 583005715 583006320 583005829 583005836 0.0 0.0 0.0 0.0
a1 4 244875200 244875200 259815285 254185892 249753518 0.0 6.0 4.0 2.0
a1 5 727578306 727578306 727578311 727578311 727578311 0.0 0.0 0.0 0.0
a2 1 161 165 333 201 159 2.0 107.0 25.0 -1.0
a2 2 720671511 720671511 740140535 803912789 765776193 0.0 3.0 12.0 6.0
a2 3 1182260491 1190713410 1210207120 1304726522 1245045531 1.0 2.0 10.0 5.0
a2 4 1680368560 1680368560 1680629156 1683592281 1683447864 0.0 0.0 0.0 0.0
a2 5 307150821 307150821 317804454 339471433 362894481 0.0 3.0 11.0 18.0

b 1 3291069365 3291069365 3343410128 3339134760 3352472777 0.0 2.0 1.0 2.0
b 2 1010949451 1015482891 1015561513 1024629389 1028734683 0.0 0.0 1.0 2.0
b 3 156519816 156691279 157737166 157512118 159219336 0.0 1.0 1.0 2.0
b 4 4677792536 4677792536 4677981438 4677833576 4677858641 0.0 0.0 0.0 0.0
b 5 922944510 922944510 923905512 923721068 930511569 0.0 0.0 0.0 1.0
b 6 9525851389 9525851389 9525934654 9525870196 9525853048 0.0 0.0 0.0 0.0
b 7 14834456020 14834456193 14835328102 14853146933 14878044937 0.0 0.0 0.0 0.0
b 8 1214291129 1214291141 1214453127 1214589052 1214526543 0.0 0.0 0.0 0.0
b 9 15885437252 15885437252 15885693227 15885768231 15885669118 0.0 0.0 0.0 0.0
b 10 18048187105 18048187105 18048711483 18069108773 18130155888 0.0 0.0 0.0 0.0

x 1 3030246091 3044411001 3065081130 3106902032 3102713793 0.0 1.0 3.0 2.0
x 2 1002379317 1002379317 1003356104 1015807185 1010454229 0.0 0.0 1.0 1.0
x 3 69970 75155 341508 811958 136036 7.0 388.0 1060.0 94.0
x 4 4721586142 4721586142 4721856521 4721635533 4721697878 0.0 0.0 0.0 0.0
x 5 54132 57974 160418 100449 53899 7.0 196.0 86.0 -0.0
x 6 9546936159 9546936159 9546972261 9546952069 9546938475 0.0 0.0 0.0 0.0
x 7 14252476500 14252476500 14253212517 14397486190 14349370657 0.0 0.0 1.0 1.0
x 8 29193 32014 147269 65953 30678 10.0 404.0 126.0 5.0
x 9 16125531142 16125531142 16125760293 16125916363 16125823486 0.0 0.0 0.0 0.0
x 10 17815045320 17815981156 17815072367 17839540583 17903620248 0.0 0.0 0.0 0.0

The results of RDS-LNS is given, along with comparison results from other
approaches in the literature, in Table 2. In particular we present results for the
best LNS approach from the literature (CP-LNS [8]), the winner of Roadef12
(NLS [3]), and the current state of the art (Ant-HH [14]). We also provide the
reference best known solution (BK Cost) for each instance.



LNS for the data centre MRP 11

For the CP-LNS approach, we ran their code with the same experimental
setup on the same machine as our experiments. The results for the other two
methods were taken from their respective references. Both used a 5 minute run-
time cutoff but NLS is an average of 100 runs, while Ant-HH is an average of 31
runs.

The results for each method on each instance are given in terms of average
objective value across runs, and in terms of gap to the best known solution.
Looking at the gap, the first point to note is that RDS-LNS was within 2% of
the best known solution in its average performance on 25/30 instances, and less
than 1% for 17 of these.

Comparing our approach with the other methods in the table, we first con-
sider the other LNS approach. This is most directly comparable both because
it’s a CP-based LNS approach, and because experiments were performed un-
der identical conditions. RDS-LNS found better results than CP-LNS in 17/30
instances, and had identical averages for two others. Of the remaining 11 in-
stances that CP-LNS had better results, RDS-LNS was within 1% for all but
one (instance a2 5). Results were also impressive in comparison Roadef12 winner
NLS[3], our approach outperformed their approach on 13/30 instances, while for
the majority of the other 17 instances the RDS-LNS results are within 2%. Fi-
nally, comparing against the current SOA, Ant-HH[14], RDS-LNS only managed
to perform better on 3/30 instances. However, RDS-LNS was within 1% for all
but nine instances, and within 10% for all but two of those nine.

Even more importantly, despite the amount of research that has been dedi-
cated to these instances in the past decade, upon further analysis of our results
we found that RDS-LNS improved on the best known solution [14, 2] for three
instances (a2 1, x 5 and x 8). Indeed, as can be seen in Table reftable:Result,
the average performance alone was better than the best known. Based on the
best solution among our 5 runs, the new upper bounds found were 153, 45922,
and 28564 respectively (equating to roughly 5%, 15%, and 2% reductions in cost
compared to the current best known cost). This is even more noteworthy given
that some of the other approaches in the literature had a 30 minute cutoff [1], or
had many more runs, e.g. 31 [14] and 100 [3] and did not find such best solutions
for these three instances.

6 Conclusion

In this paper, we proposed a new Large Neighbourhood Search approach for the
Machine Reassignment Problem with a novel domain specific neighbourhood op-
erator, and novel search strategy for the subproblems. Our empirical evaluation
demonstrated the quality of the approach on a well studied problem set, resulting
in improvement on best known solution for three of the thirty instances. Compar-
ison of our results against other state-of-the-art demonstrated the effectiveness
of RDS-LNS. Further analysis of the sub-problem optimisation strategies showed
the superiority of the proposed Restricted Domain Search when compared with
a standard random restart strategy.



12 F. Souza et al.

References

1. Brandt, F., Speck, J., Völker, M.: Constraint-based large neighborhood search for
machine reassignment. Annals of Operations Research 242(1), 63–91 (2016)

2. Canales, D., Rojas-Morales, N., Riff, M.C.: A survey and a classification of recent
approaches to solve the google machine reassignment problem. IEEE Access 8,
88815–88829 (2020)

3. Gavranović, H., Buljubašić, M.: An efficient local search with noising strategy for
google machine reassignment problem. Annals of Operations Research 242(1), 19–
31 (2016)

4. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: IJCAI (1). pp.
607–615 (1995)

5. He, K., Tole, K., Ni, F., Yuan, Y., Liao, L.: Adaptive large neighborhood search
for circle bin packing problem. arXiv preprint arXiv:2001.07709 (2020)

6. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC—instance-specific al-
gorithm configuration. In: ECAI 2010, pp. 751–756. IOS Press (2010)

7. Malitsky, Y., Mehta, D., O’Sullivan, B., Simonis, H.: Tuning parameters of large
neighborhood search for the machine reassignment problem. In: International Con-
ference on Integration of Constraint Programming, Artificial Intelligence, and Op-
erations Research. pp. 176–192. Springer (2013)

8. Mehta, D., O’Sullivan, B., Simonis, H.: Comparing solution methods for the ma-
chine reassignment problem. In: International Conference on Principles and Prac-
tice of Constraint Programming. pp. 782–797. Springer (2012)

9. Murat Afsar, H., Artigues, C., Bourreau, E., Kedad-Sidhoum, S.: Machine reas-
signment problem: the roadef/euro challenge 2012 (2016)

10. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transportation science 40(4),
455–472 (2006)

11. Saber, T., Gandibleux, X., O’Neill, M., Murphy, L., Ventresque, A.: A comparative
study of multi-objective machine reassignment algorithms for data centres. Journal
of Heuristics 26(1), 119–150 (2020)

12. Sacramento, D., Pisinger, D., Ropke, S.: An adaptive large neighborhood search
metaheuristic for the vehicle routing problem with drones. Transportation Research
Part C: Emerging Technologies 102, 289–315 (2019)

13. Shaw, P.: Using constraint programming and local search methods to solve ve-
hicle routing problems. In: International conference on principles and practice of
constraint programming. pp. 417–431. Springer (1998)

14. Turky, A.: Bi-level hyper-heuristic approaches for combinatorial optimisation prob-
lems. Ph.D. thesis, RMIT University (2019)


