
Title Unconditionally secure oblivious transfer from real network
behavior

Authors Palmieri, Paolo;Pereira, Olivier

Publication date 2013-11

Original Citation Palmieri, P. and Pereira, O. (2013) 'Unconditionally Secure
Oblivious Transfer from Real Network Behavior', in Sakiyama,
K. & Terada, M. (eds.) Advances in Information and Computer
Security: 8th International Workshop on Security, IWSEC
2013, Okinawa, Japan, November 18-20, 2013, Proceedings.
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 168-182.
doi:10.1007/978-3-642-41383-4_11

Type of publication Conference item

Link to publisher's
version

https://link.springer.com/chapter/10.1007/978-3-642-41383-4_11
- 10.1007/978-3-642-41383-4_11

Rights © Springer-Verlag Berlin Heidelberg 2013. The
final publication is available at Springer via https://
doi.org/10.1007/978-3-642-41383-4_11

Download date 2024-03-29 07:37:50

Item downloaded
from

https://hdl.handle.net/10468/4769

https://hdl.handle.net/10468/4769

Unconditionally Secure Oblivious Transfer
from Real Network Behavior

Paolo Palmieri1,? and Olivier Pereira2

1 Delft University of Technology, Parallel and Distributed Systems Group
Mekelweg 4, 2628 CD Delft, The Netherlands

p.palmieri@tudelft.nl
2 Université catholique de Louvain, UCL Crypto Group
Place du Levant 3, B-1348 Louvain-la-Neuve, Belgium

olivier.pereira@uclouvain.be

Abstract. Secure multi-party computation (MPC) deals with the prob-
lem of shared computation between parties that do not trust each other:
they are interested in performing a joint task, but they also want to
keep their respective inputs private. In a world where an ever-increasing
amount of computation is outsourced, for example to the cloud, MPC is
a subject of crucial importance. However, unconditionally secure MPC
protocols have never found practical application: the lack of realistic
noisy channel models, that are required to achieve security against com-
putationally unbounded adversaries, prevents implementation over real-
world, standard communication protocols.

In this paper we show for the first time that the inherent noise of wire-
less communication can be used to build multi-party protocols that are
secure in the information-theoretic setting. In order to do so, we propose
a new noisy channel, the Delaying-Erasing Channel (DEC), that mod-
els network communication in both wired and wireless contexts. This
channel integrates erasures and delays as sources of noise, and models
reordered, lost and corrupt packets. We provide a protocol that uses the
properties of the DEC to achieve Oblivious Transfer (OT), a fundamental
primitive in cryptography that implies any secure computation. In order
to show that the DEC reflects the behavior of wireless communication,
we run an experiment over a 802.11n wireless link, and gather extensive
experimental evidence supporting our claim. We also analyze the col-
lected data in order to estimate the level of security that such a network
can provide in our model. We show the flexibility of our construction by
choosing for our implementation of OT a standard communication pro-
tocol, the Real-time Transport Protocol (RTP). Since the RTP is used in
a number of multimedia streaming and teleconference applications, we
can imagine a wide variety of practical uses and application settings for
our construction.

? This work was accomplished while the author was at the Crypto Group of the Uni-
versité catholique de Louvain.

1 Introduction

Multi-party computation protocols that are secure against computationally un-
bounded adversaries have seen, up until now, little or no practical use. This is
mainly due to the strong assumptions that need to be satisfied for them to work.
In particular, they require the availability of a noisy channel, the theoretical ab-
straction of an error-prone communication medium, since security can not be
achieved over a clear channel. The aim of this paper is to show that, through
the use of realistic channel models and efficient constructions, we can achieve se-
cure multi-party computation over standard, commonly used network protocols
today.

In a 1-out-of-2 oblivious transfer protocol, Rachel (the receiver) wants to
learn one of the two secret bits b0, b1 that Sam (the sender) knows, but without
revealing to him her selection s. Sam, on the other hand, wants to make sure
that Rachel will not get any information about the other bit in the process.
The first protocol to achieve this over a noisy channel was designed by Crépeau
and Kilian, and used the Binary Symmetric Channel (BSC) [4]. The BSC is
a simple channel model where each binary input has a probability p of being
“flipped” when output: a 0 flipped becomes a 1 and vice versa. Since the BSC
does not provide a realistic model of communication, new channel models have
been subsequently proposed. Most of these models are modifications of the BSC
itself, that introduce more freedom for the attacker in order to increase the
generality of the construction. In particular, the Unfair Noisy Channel (UNC),
proposed by Damgard et al. in 1999 [6] and later improved in 2004 [5], lets
the adversary choose the error probability within a specific (narrow) range. The
Weak Binary Symmetric Channel (WBSC), designed by Wullschleger in [22], lets
a dishonest player know with a certain probability if a bit was received correctly.

While these constructions ease the assumptions needed to build OT from a
theoretical point of view, they hardly make the channel models closer to any
real communication channel. To address this problem, recent constructions use
noisy channels that try to model common transmission errors occurring in actual
networks. In particular, the use of transmission delays as source of noise has been
proposed in [12], where Palmieri and Pereira provide a protocol for achieving
oblivious transfer over the Binary Discrete-time Delaying Channel (BDDC). A
modified version of the protocol, secure against malicious players, has later been
introduced by Cheong and Miyaji [1].

The suitability of the BDDC to model packet reordering over IP networks has
been shown in [13]. However, the BDDC does not take into account the possibil-
ity of packets being lost, which is a common occurrence in real communication
settings. Moreover, it does not limit the number of times a packet can be de-
layed: however unlikely, it is possible for a packet to be delayed indefinitely. The
behavior of a real packet-switching network would be instead to drop a packet
after a certain time, usually called time to live (TTL).

1.1 Contribution

In this paper we propose a new noisy channel, the Delaying-Erasing Channel
(DEC). The DEC integrates delays and erasures (lost packets) and introduces a
limit to the number of possible delays. This channel, while being based on dis-
crete times like its predecessors, addresses the lacks of the BDDC, and provides a
realistic model for network communication, in both wireless and wired settings.
We propose a protocol for achieving oblivious transfer over the DEC, and we
study the security of the construction against both semi-honest and malicious
adversaries.

The main goal of the DEC is to finally provide a realistic noisy channel model
for network communication. In order to show that the DEC achieves this goal,
we conduct an experiment simulating our OT protocol over a wireless network,
and we collect extensive statistical evidence that supports our claims of security
and flexibility for the construction. We analyze the collected data using several
standard tools for entropy estimation, whose results confirm the suitability of
the wireless medium to be used as a noisy channel. Our implementation of OT is
based on the Real-time Transport Protocol (RTP), an application layer protocol
frequently used for the streaming of multimedia content.

1.2 Outline of the Paper

In section 2 we give a security definition of oblivious transfer In section 3 we
introduce the Delaying-Erasing Channel (DEC), and we provide a protocol im-
plementing oblivious transfer over it. In section 3.2 we prove the security of the
construction in the semi-honest setting, while in 3.3 we discuss the case of mali-
cious adversaries. In section 4 we show that packets transmitted over a 802.11n
wireless link show a behavior consistent with the channel definition. We ana-
lyze the experimental results and measure the entropy of the network errors in
section 4.4.

2 Preliminaries

For a protocol to successfully implement oblivious transfer, three conditions must
be satisfied after an execution: the receiver, Rachel, learns the value of the cho-
sen bit bs (correctness); the sender, Sam, learns nothing about the value of the
selection bit s (security for Rachel); the receiver learns no further information
about the value of the other bit b1−s (security for Sam) [4]. When proving the
security of our construction, we use the security definition of oblivious transfer
provided in [12]. The definition uses the concept of prediction advantage, a mea-
sure of the advantage that an adversary has in guessing a secret bit by using all
the information available to him. We use the notation found in [21].

Definition 1. ([21]) Let PXY be a distribution over {0, 1} × Y. The maximal
bit prediction advantage of X from Y is

PredAdv (X | Y) = 2 ·max
f

Pr [f (Y) = X]− 1 . (1)

The view of a player consists of all the information that the player learns dur-
ing the protocol execution. The sender, the receiver and the potential adversary
all have different views. The security definition for OT follows.

Definition 2. [12] A protocol Π between a sender and a receiver, where the
sender inputs (b0, b1) ∈ {0, 1} and outputs nothing, and the receiver inputs s ∈
{0, 1} and outputs S, securely computes 1-2 oblivious transfer with an error
of at most ε, assuming that U and V represent the sender and receiver views
respectively, if the following conditions are satisfied:

– (Correctness) If both players are honest, we have

Pr [S = bs] ≥ 1− ε . (2)

– (Security for Sam) For an honest sender and an honest (but curious) receiver
we have

PredAdv (b1−s | V, s) ≤ ε . (3)

– (Security for Rachel) For an honest receiver and an honest (but curious)
sender we have

PredAdv (s | U, b0, b1) ≤ ε . (4)

3 Delaying-Erasing Channel

The channel model we propose combines the erasure and delaying channels. It
takes into account the possibility for an input string to be delayed or to be lost
(that is, erased). The channel also sets a limit to the number of delays that an
input can suffer, and considers lost (erased) any string delayed a number of times
equal or higher than that. We call p the delaying probability, r the maximum
number of delays and q the erasing probability. Consequently, the probability
that a string will be considered lost by a receiver is (q + pr), consisting of the
erasing probability plus the probability for the string to be delayed r times.

Definition 3. A Delaying-Erasing Channel (DEC) with delaying probability p,
erasing probability q and maximum number of delays per single input r accepts
as input a sequence T = 〈t1, t2, . . .〉 of sets of strings ti ∈ ({0, 1}n)

∗
, called input

times, and outputs a sequence U = 〈u1, u2, . . .〉 of sets of strings ui ∈ ({0, 1}n)
∗

called output times. Each string X admitted into the channel at input time ti ∈ T
is output at most once by the channel, with probability of being output at time
uj ∈ U

Pr [X ∈ uj |X ∈ ti] =

(1− q) · pj−i · (1− p)

with 0 ≤ j − i < r,

0 otherwise.

(5)

In practice, the channel works as follows. An input string X that enters the
channel at time ti is due to be output by the channel at time ui with probability
(1− p− q). The channel has probability q of erasing the string (we call this event
impromptu loss), in which case the string is not output by the channel. If an
impromptu loss does not occur, the string has a probability p of being delayed
until the next output time. The delay event can happen multiple times: once a
string is delayed, it can be delayed again. Therefore, the string has probability
pd of being delayed d times and being output at ui+d, as long as d < r. Finally,
the string is not output by the channel if it is delayed r times or more, which
happens with probability pr.

3.1 OT Protocol

Our oblivious transfer protocol follows the general scheme proposed by Crépeau
and Kilian in [4], which has been at the base of every following OT construc-
tion. The idea behind the scheme is to generate, through a specific transmission
strategy, a simple erasure channel over the available noisy channel (in our case
the DEC), and then use it a number of times in order to realize OT and achieve
security by privacy amplification. The protocol we propose is also similar to the
one proposed in [12] for the Binary Discrete-time Delaying Channel, in the sense
that it uses a precomputation phase during which two sets of packets are cre-
ated. Contrary to the case of the BDDC, our protocol streams the two sets of
packets by interleaving them: we send the first packet of the first set at t1, then
the second packet of the first set and the first of the second set at t2 and so on.
This allows us to exploit the uncertainty caused by the lost and delayed packets.

The protocol works as follows. First the sender, Sam, precomputes a sequence
of packets. For simplicity, we can assume that the packets only contain their
sequence number i. Then, he starts sending the packets over the DEC to the
receiver, Rachel. Each packet is sent twice: the first packet at times t1 and t2,
the second one at t2 and t3 and so on. Each of the two times the same packet
is sent, Sam also attaches to it a unique identifier (ei for the first transmission
and e′i for the second one), so that he will be able to tell them apart. However,
he will not reveal to Rachel which identifier is used for which transmission of
the packet. Rachel keeps track of the packets lost on the way and of the arrival
times of those she receives. However, the channel does not give her any feedback
on the delays that occur during transmission. Therefore, in the case of a packet
received for the first time later than the expected time ui, she is not able to
tell which of the two copies of the packet was sent with the first transmission,
and which with the second. The same is true in case only one copy arrives and
it is received after the expected time ui, or in case both copies are lost. At the
same time, Sam does not know the arrival time and order of the packets. We use
this uncertainty to build oblivious transfer. Rachel assigns to her selection bit s
the packets for which she knows with certainty the identifier e, and to the other
bit (1− s) the other packets. Then, she sends her two selections of packets to
Sam. Sam encodes the secret bits b0 and b1 using the identifiers e attached to

the packets during the first transmission, according to the selection operated by
Rachel. Using the same identifiers, Rachel is able to decode bs, but not b1−s.

Protocol 1. The parties have a clear channel and a p-q-r-DEC with 0 < (p+ q) <
1
2 , r > 1 available for communication. Sam selects two disjoint sets E and E′,
each composed of n distinct binary strings of length l: e1, . . . , en ∈ E and
e′1, . . . , e

′
n ∈ E′. From E and E′ Sam builds the sets C = {c1, . . . , cn} and

C ′ = {c′1, . . . , c′n}, according to the following rules: ci := ei‖i and c′i := e′i‖i.
Then the parties communicate as follows:

1. Sam sends the set C to Rachel over the DEC, one string at each input time,
starting at t1. At t2 he starts sending C ′ as well. This way, at each ti, ci and
c′i−1 are sent.

2. Rachel receives over the DEC the strings in {C ∪ C ′} that have not been
erased, in the order produced by the channel.

3. Rachel selects the set Is, where s ∈ {0, 1} is her selection bit, such that
|Is| = n

2 and so that i ∈ Is only if she is able to distinguish ci ∈ C from
c′i ∈ C ′. This happens in two cases: ci has been received at ui; or ci, c

′
i have

not been erased and c′i has been received at ui+r. If less than n
2 strings can be

placed in Is, Rachel instructs Sam to abort the communication. Otherwise
she selects I1−s = {1, . . . , n} \ Is and sends I0 and I1 to Sam over the clear
channel. 3

4. Sam receives the sets I0 and I1. Then, he chooses two universal hash func-
tions f0, f1, whose output is 1-bit long for any input. Let Ej ⊂ E be the
set containing every ei ∈ E corresponding to an i ∈ Ij , such that

ei ∈ Ej ⇔ i ∈ Ij . (6)

For each set Ij , Sam computes the string gj by concatenating each ejk ∈ Ej ,
ordering them for increasing binary value, so that

gj =
(
ej1 ‖ . . . ‖ e

j
n
2

)
with ej1, . . . , e

j
n
2
∈ Ej . (7)

Sam computes h0 = f0 (g0), h1 = f1 (g1) and sends to Rachel over the clear
channel the functions f0, f1 and the two values

k0 = (h0 ⊕ b0) , k1 = (h1 ⊕ b1) . (8)

5. Rachel computes her guess for bs

bs = fs (gs)⊕ ks . (9)

3 In order to improve the efficiency of the protocol in a real setting, the receiver can
send just one of these two sets, for example always I0, as the sender can easily
reconstruct the other.

3.2 Security: Honest-but-curious Adversaries

In the semi-honest setting, the players follow the protocol, but try to use any
information available to them in order to guess the other player’s secret. We
prove the security of our construction by proving each of the three conditions of
the security definition of oblivious transfer (Definition 2).

Correctness The first condition of Definition 2 states that, if both players behave
in an honest way, the secret bit must be correctly received and decoded by the
receiver party. In practice, the protocol succeeds when Rachel is able to identify
with certainty at least n

2 strings from C among all the strings she receives. As
stated in step 3 of the protocol, a string ci is known by Rachel to be ∈ C
with certainty either when it is received at ui; or when ci is not erased and
the corresponding string c′i ∈ C ′ is received at ui+r. Therefore, the probability
that a string ci will not be identifiable as being part of C is upper-bounded by
the probability (p+ q) that ci is erased, or delayed at least once. Let us denote
by X the random variable counting the number of strings not affected by the
noise (that is, erased or delayed) out of the n total strings in C. We have that
Pr
[
X ≤ n

2

]
, the probability that not enough strings in C are received correctly

and on time for the protocol to succeed, follows the cumulative distribution
function of the binomial distribution. For Hoeffding’s inequality we have that

Pr
[
X ≤ n

2

]
≤ exp

(
−2n

(
p+ q − 1

2

)2
)

. (10)

Therefore, the correctness condition is satisfied with overwhelming probability
in n as soon as p+ q < 1

2 , as per the protocol definition.

Security for Sam A curious Rachel is interested in learning b1−s. She has two
ways of obtaining the value: either by decoding k1−s on the correct g1−s, or by
trying to guess it on a (partially) incorrect g1−s. In the latter case, the probability
of a correct guess is upper-bounded by 1

2 , for the properties of a universal hash
function. In the following we evaluate the probability of the former.

For each pair of strings (ci ∈ C, c′i ∈ C ′), Rachel receives two or less strings,
in the order produced by the channel. She is interested in determining ci, in
order to learn ei. We analyze in the following her ability of doing so, based
on the different events that can happen after the transmission of the strings
through the delaying-erasing channel. We suppose that, in case only one string
is received, Rachel assumes to have received ci.

4 For each (ci, c
′
i) we can have

that:

– ci is neither erased nor delayed. Independently of what happens to c′i, Rachel
learns ei. This happens with probability (1− p− q).

4 This is always the best strategy, since a wrong assumption does not lower her proba-
bility of learning ei: we assume that guessing ei with no information has a negligible
probability of succeeding.

– ci is erased. Independently of what happens to c′i, Rachel is not able to
recover the identifier ei. This happens with probability q.

– ci is delayed. This happens with probability p. In this case, Rachel’s proba-
bility to learn ei depends on c′i. We can have that:
• c′i is erased. Following the strategy of using the identifier she possesses,

Rachel succeeds in guessing the right identifier. This happens with prob-
ability p · q.

• c′i is not erased. This happens with probability p(1−q). If c′i is delayed r−
1 times, Rachel learns the right identifier. This happens with probability
pr (1− q). Otherwise, Rachel guesses the right identifier with probability
1
2 . In fact, the probability for the strings to arrive in the same order in
which they are sent is equal to the probability for them to arrive in the

reverse order (p2

1+p). Therefore she does not have any strategy better
than tossing a coin in both cases, as well as when the strings arrive at
the same time.

Therefore, for each pair of strings (ci, c
′
i), Rachel does not learn ei with proba-

bility

Pr [¬ei] = q +
p (1− q)− pr (1− q)

2
, (11)

which is > 0 as soon as 0 < (p+ q) < 1
2 and r > 1 as per the protocol defini-

tion. Therefore, Rachel’s probability of building the correct g1−s by learning the
correct ei for every i ∈ I1−s is

Pr [g1−s] = (1− Pr [¬ei])n , (12)

which is negligible in n.

Security for Rachel Since the delaying-erasing channel does not give any feedback
to the sender on the state of transmitted strings, Sam ignores whether a string
has been correctly received or not, and if it has been delayed during transmission.
Therefore, from the point of view of a curious sender the distribution of (I0, I1)
is independent of s.

3.3 Security: Malicious Adversaries

We observe that the semi-honest assumption of our construction is only required
for the sender, but not for the receiver. This is also the case for the oblivious
transfer protocol proposed for the BDDC [12]. In fact, a malicious Rachel can
either send to Sam a malformed set I1−s, where she puts only indices of strings
not affected by the noise (for instance, by sending less i’s than required or by
including i’s already in Is), or swap strings affected by the noise with non-affected
ones between the sets Is and I1−s. If Rachel chooses the former strategy, Sam
can detect her malicious behavior by implementing a simple additional check on
I1−s, and abort the protocol in case the behavior of the receiver deviates from
the protocol. The latter strategy, instead, increases Rachel’s probability to learn

the other bit b1−s, by moving delayed or erased strings from I1−s to Is, but only
at the cost of lowering her probability to learn the selected bit bs. In fact, the
number of strings that have been delayed or erased by the channel, which is also
the number of guesses that Rachel needs to make, remains the same. Therefore
the probability for Rachel to decode both bs and b1−s is the same whether she
acts honestly or in a malicious way.

As already noted in [10], we can use an oblivious transfer protocol secure
against a malicious receiver and a semi-honest sender to obtain a protocol secure
against a semi-honest receiver and a malicious sender. This is possible thanks to
the symmetry property of oblivious transfer, proved for the first time in [20]. A
black-box combiner for this reversal operation has been proposed in [8], where a
compiler that combines the two protocols into one that is secure against generic
malicious adversaries, originally designed for the case of OT based on trapdoor
functions, is also presented.

4 From Noisy Channel to Real Network Behavior

The aim of this section is to show that the DEC realistically models actual
network behavior. In order to do so, we simulate the OT protocol over a wireless
point-to-point connection between two hosts, and we study the amount of errors
that occur during the transmission and the predictability of such errors. We
show the flexibility of our construction by implementing our OT protocol over a
standard Internet protocol, the Real-time Transport Protocol.

4.1 Real-time Transport Protocol (RTP)

The Real-time Transport Protocol (RTP) [7,15] is an application layer protocol
designed for the delivery of real-time information. Its typical use is the delivery
of real-time audio and video, as in the case of multimedia streaming or telecon-
ferencing. It is often used in conjunction with the Real Time Streaming Protocol
(RTSP) [16], that provides a framework for controlling the data flow. RTP typ-
ically runs on top of the User Datagram Protocol (UDP). Both protocols are
particularly suited to be used in our construction: they do not guarantee reliable
transmission or quality-of-service and they do not support error correction and
lost packet resending. The protocol specification for RTP expressly states that it
“does not guarantee delivery or prevent out-of-order delivery, nor does it assume
that the underlying network is reliable and delivers packets in sequence” [15].

4.2 OT over RTP

Taking advantage of the fact that RTP does not prevent packet loss or reo-
redering, we can use it as the base for our oblivious transfer construction. In
particular, the parties use RTP at step 1 of the protocol, while communicat-
ing over a wireless (or wired) link, that acts as the noisy channel. The sender
sends two distinct RTP streams composed of the same number of packets. The

content of each packet can be arbitrarily selected by the sender, as long as it is
unique with respect to both streams, since it is to be used as the packet identi-
fier. Some of the fields of a standard RTP packet header (see RFC 3550 [15] for
reference) require special care in our application. The Sequence Number value
will be used, with the same meaning, also in the OT protocol. Packets sharing
the same position in the two streams will be forged by the sender in order to
have identical headers. In particular, this has to be enforced for the Timestamp

field. Similarly, the identifier of the synchronization source (that is, the sender)
has to be replicated in both streams. The Payload Type field, which indicates
the encoded format of the data sent with RTP, can be chosen arbitrarily. The
underlying protocols (UDP or IP) do not add information that could make the
streams distinguishable, so no specific intervention is needed at levels lower than
the application layer, other than selecting the desired time-to-live at the IP level.

The contemporary transmission of multiple RTP streams from the same
source does not reveal the specific use we make of the protocol. In fact, it is
a common occurrence: for instance, in the transmission of multimedia content,
audio and video streams usually have separate RTP sessions, enabling a receiver
to deselect a particular stream.

The following steps of the protocol remain unchanged, as they are performed
over a clear channel.

4.3 Experiment

The aim of this experiment is double: to show that the DEC realistically models
the noise introduced during network communication, and to analyze the unpre-
dictability, and therefore the suitability for secure computation of that noise. We
conduct the experiment as follows.

The party acting as sender is simulated by a wireless router running the open
source and Linux-based custom firmware OpenWRT. This particular configura-
tion let us use the RTP/RTSP streaming server Live 555 directly on the device.
The receiver party, a notebook computer, connects to the router before starting
the OT protocol using the IEEE 802.11n-2009 wireless transmission method [9],
and receives an IP address through a DHCP request. This way, the receiver and
sender parties are directly connected by a wireless link.

The notebook computer simulating the receiver party is placed at about 12
meters of distance from the router. No physical obstacles block the line of sight
between the two devices. Both parties are not engaged in any network commu-
nication other than the RTP streaming. The streaming session, initiated by the
sender, runs for 158.28 seconds, with a total of 5629 packets sent. The packets
reaching the receiver party are collected in the order they are received using the
open source sniffing tool WireShark. 5 Steps 3 to 5 of the protocol (encoding
and decoding of the secret bits and communication over a clear channel) are not
simulated during the experiment.

5 The sample data transmitted, and the dump of the packets received is available at
the URL: http://www.uclouvain.be/crypto/ot-wireless-tests.tar.gz.

http://www.uclouvain.be/crypto/ot-wireless-tests.tar.gz

The results of the experiment are shown in Table 1, and appear to be consis-
tent with relevant literature (see, for instance, [14]). The number of lost packets
(erasures) and sequence errors (delays) has been obtained using the RTP Stream
Analysis tool provided with WireShark. In the following we analyze the results
from the security point of view.

Total RTP packets: 5629

Erasures: 65 1.15%
Delays: 109 1.94%

Total errors: 174 3.09%

Table 1. Average lost (erased) and displaced (delayed) packets during video streaming
using the RTP protocol over a wireless link.

4.4 Analysis

The amount of noise that we observed during the experiment indicates that both
lost packets and sequence errors are relatively common occurrences, as shown in
Table 1.

The security of our construction, however, also depends on the (im)possibility,
for an attacker, of being able to predict errors. In other words, we want the
distribution of the displaced and lost packets into the sequence to be as uniform
as possible. In order to evaluate how much this assumption reflects the reality
of wireless communication, we convert the sequence of packets generated during
the experiment into a binary string, using the following strategy: the packets
affected by the noise are represented by a bit of value 1, those not affected by
a bit of value 0. Then, we estimate the entropy of the generated binary string
using a set of standard test suites, in particular: ent [17], Maurer’s test including
Coron’s modification [11,3,2] and the Context-Tree Weighting (CTW) method
[19,18]. The main idea behind these tools for entropy estimation is to compare
the length of an input sequence with its output after compression. Since the
probability of errors (and therefore of 1’s) is lower than 0.5, we compare it to
the Shannon entropy normalized to the actual probability, calculated using the
standard definition

Hb (p) = −p log2 p− (1− p) log2(1− p) (13)

and the amount of noise observed during our experiment. Since we fix the prob-
ability p to the observed value, Hb (p) is the maximum possible entropy, and
not an upper-bound. This does not affect the reliability of the results, since our
goal is to detect the presence of any pattern in the error distribution that might
lead to predictability, and not to evaluate the error probability itself. In the case
of packet delays, we have p = 0.0194, and therefore Hb (p) = 0.1392. Entropy

estimations calculated by the three tests mentioned above are shown in Table
2: the closer to the maximum entropy Hb (p) the estimated values are, the less
likely we are to find any pattern in the sequence.

Max. normalized entropy Hb (p): 0.1392

Ent 0.1392
Maurer* 0.0994
CTW 0.1144

Table 2. Entropy estimation for one bit, given p = 0.0196, as observed during the
experiment.

While in the case of the ent test the entropy estimation is virtually identical
to the maximum value, the context-tree weighting method is able to compress
to a higher ratio. In fact, the CTW algorithm produces an output whose size is
82% of the one that would be obtained compressing an input where errors are
uniformly distributed. The Maurer-Coron test is the most effective, reaching a
compression ratio of 71%. However, this is partly due to a requirement in the
algorithm that imposes a minimum input length higher than the size of our test
string. Therefore, during the test execution, about 800 bits of the input string
are read twice, since the test loops the input in case of an insufficient amount
of data to elaborate. Overall, these results confirm that, even in a setting where
a low amount of noise can be expected, errors are both enough frequent and
randomly distributed to allow for a significant security margin to be achieved.

5 Conclusion

In this paper we propose a noisy channel model that reflects, for the first time,
the behavior of real networks. We present experimental evidence collected during
an experiment over wireless communication supporting this claim, and we show
the flexibility of the model by running the experiment using a commonly used
Internet streaming protocol, the Real-time Transport Protocol.

Analysis of the noise introduced by the wireless medium during the experi-
ment supports the assumptions that the channel makes in terms of unpredictabil-
ity of that noise. In fact, using standard entropy estimation tools, we estimate the
normalized entropy to be between 71% and 100% of the theoretical maximum,
depending on the test, even for a relatively clean channel where the amount of
noise observed is, on average, 3.09%. This allows us to construct, for the first
time, an oblivious transfer protocol secure against computationally unbounded
adversaries over a real network. We believe that the flexibility of our model and
construction will help open the way to widespread implementation of secure
multi-party computation.

6 Acknowledgments

This research work was supported by the SCOOP Action de Recherche Con-
certées. Olivier Pereira is a Research Associate of the F.R.S.-FNRS.

References

1. Cheong, K.Y., Miyaji, A.: Unconditionally secure oblivious transfer based on chan-
nel delays. In: Qing, S., Susilo, W., Wang, G., Liu, D. (eds.) ICICS. Lecture Notes
in Computer Science, vol. 7043, pp. 112–120. Springer (2011)

2. Coron, J.S.: On the security of random sources. In: Imai, H., Zheng, Y. (eds.)
Public Key Cryptography. Lecture Notes in Computer Science, vol. 1560, pp. 29–
42. Springer (1999)

3. Coron, J.S., Naccache, D.: An accurate evaluation of maurer’s universal test. In:
Tavares, S.E., Meijer, H. (eds.) Selected Areas in Cryptography. Lecture Notes in
Computer Science, vol. 1556, pp. 57–71. Springer (1998)

4. Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened security as-
sumptions (extended abstract). In: FOCS. pp. 42–52. IEEE (1988)

5. Damg̊ard, I., Fehr, S., Morozov, K., Salvail, L.: Unfair noisy channels and oblivious
transfer. In: Naor, M. (ed.) TCC. Lecture Notes in Computer Science, vol. 2951,
pp. 355–373. Springer (2004)

6. Damg̊ard, I., Kilian, J., Salvail, L.: On the (im)possibility of basing oblivious trans-
fer and bit commitment on weakened security assumptions. In: EUROCRYPT. pp.
56–73 (1999)

7. Group, A.V.T.W., Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.: RTP:
A Transport Protocol for Real-Time Applications. RFC 1889 (Proposed Standard)
(Jan 1996), http://www.ietf.org/rfc/rfc1889.txt, obsoleted by RFC 3550

8. Haitner, I.: Semi-honest to malicious oblivious transfer - the black-box way. In:
Canetti, R. (ed.) TCC. Lecture Notes in Computer Science, vol. 4948, pp. 412–
426. Springer (2008)

9. IEEE-SA: Ieee 802.11n-2009 amendment 5: Enhancements for higher throughput.
(October 2009)

10. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for
secure computation. In: Kleinberg, J.M. (ed.) STOC. pp. 99–108. ACM (2006)

11. Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptog-
raphy. CRC Press, Inc., Boca Raton, FL, USA, 1st edn. (1996)

12. Palmieri, P., Pereira, O.: Building oblivious transfer on channel delays. In: Lai, X.,
Yung, M., Lin, D. (eds.) Inscrypt. Lecture Notes in Computer Science, vol. 6584,
pp. 125–138. Springer (2010)

13. Palmieri, P., Pereira, O.: Implementing information-theoretically secure oblivious
transfer from packet reordering. In: Kim, H. (ed.) ICISC. Lecture Notes in Com-
puter Science, vol. 7259, pp. 332–345. Springer (2011)

14. Salyers, D., Striegel, A., Poellabauer, C.: Wireless reliability: Rethinking 802.11
packet loss. In: WOWMOM. pp. 1–4. IEEE (2008)

15. Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.: RTP: A Transport Protocol
for Real-Time Applications. RFC 3550 (Standard) (Jul 2003), http://www.ietf.
org/rfc/rfc3550.txt

16. Schulzrinne, H., Rao, A., Lanphier, R.: Real Time Streaming Protocol (RTSP).
RFC 2326 (Proposed Standard) (Apr 1998), http://www.ietf.org/rfc/rfc2326.
txt

http://www.ietf.org/rfc/rfc1889.txt
http://www.ietf.org/rfc/rfc3550.txt
http://www.ietf.org/rfc/rfc3550.txt
http://www.ietf.org/rfc/rfc2326.txt
http://www.ietf.org/rfc/rfc2326.txt

17. Walker, J.: Ent: A pseudorandom number sequence test program., http://www.
fourmilab.ch/random/

18. Willems, F.M.J.: The context-tree weighting method : Extensions. IEEE Transac-
tions on Information Theory 44(2), 792–798 (1998)

19. Willems, F.M.J., Shtarkov, Y.M., Tjalkens, T.J.: The context-tree weighting
method: basic properties. IEEE Transactions on Information Theory 41(3), 653–
664 (1995)

20. Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay, S.
(ed.) EUROCRYPT. Lecture Notes in Computer Science, vol. 4004, pp. 222–232.
Springer (2006)

21. Wullschleger, J.: Oblivious-transfer amplification. In: Naor, M. (ed.) EURO-
CRYPT. Lecture Notes in Computer Science, vol. 4515, pp. 555–572. Springer
(2007)

22. Wullschleger, J.: Oblivious transfer from weak noisy channels. In: Reingold, O.
(ed.) TCC. Lecture Notes in Computer Science, vol. 5444, pp. 332–349. Springer
(2009)

A Equipment and Configuration

The wireless router used for the purpose of the experiment is a Netgear N600
(WNDR3800). It is a dual band (2.4 or 5.0 GHz), 802.11a/b/g/n capable device.
It is powered by an Atheros AR7161 rev. 2 680 MHz CPU, and has 128MiB of
RAM and 16MiB of flash memory. 6

The OpenWRT version installed on the router is 10.03.1, the latest at the
time of writing. The open source LIVE555

TM

Media Server (updated to version
2012.05.17) was installed, and used for streaming packets with the RTP/RTSP
protocol.

The USB Wireless LAN adapter used during the experiment is a Linksys
AE2500 (branded Cisco). This adapter is capable of working according to the
latest WIEEE 802.11n standard (but can also work in 802.11b or 802.11g com-
patible modes). It supports dual band communication (2.4 GHz or 5 GHz).7

On the client side, the stream was displayed using the open source media
player VLC (version 2.0.2 “Twoflower”), and packets were dumped using the
WireShark open source sniffing tool.

The wireless configuration used for the router/access point (AP) during the
experiment is shown in table 3.

B RTP Packet Header

The header of an RTP packet is shown in Figure 1, as described in [15]. The first
field specifies the protocol revision used (the current version is 2). The padding

6 Full specifications are available at the manufacturer’s website: http://www.netgear.
com/home/products/wirelessrouters/high-performance/WNDR3700.aspx.

7 Full specifications are available at the manufacturer’s website: http://home.cisco.
com/en-eu/products/adapters/AE2500.

http://www.fourmilab.ch/random/
http://www.fourmilab.ch/random/
http://www.netgear.com/home/products/wirelessrouters/high-performance/WNDR3700.aspx
http://www.netgear.com/home/products/wirelessrouters/high-performance/WNDR3700.aspx
http://home.cisco.com/en-eu/products/adapters/AE2500
http://home.cisco.com/en-eu/products/adapters/AE2500

W-LAN: IEEE 802.11n
(2.4 GHz band)

AP Channel: 6 (2437 MHz)
AP Security: WPA-CCMP(AES)

Pre-Shared Key (PSK)
Active STA’s: 1

Table 3. Configuration of the Wireless router-AP for the experiment.

B
i
t

o
f
f
s
e
t

0 1 2 3 4 5 6 7

0 Ver. P X CSRC Count

8 M Payload Type

16
Sequence Number

24

32
Timestamp

.
.
.

64
SSRC Identifier

.
.
.

96
CSRC Identifiers (0-15)

.
.
.

Fig. 1. RTP Packet Header.

(P) field indicates if there are extra padding bytes at the end of the packet.
X, extension, indicates the presence of application or profile specific headers
between the standard header and the payload data. Extensions of the proto-
col can also use the marker (M) field, to indicate that the current packet has
some special relevance for the application. The Real-time Transport Protocol
allows the transmitted information to be generated by multiple sources. In this
case, the packet flow will be synchronized by a unique synchronization source
(SSRC), while any additional source will act as contributing source (CSRC).
Both SSRC and CSRC’s have unique identifiers, whose value is contained in
the SSRC Identifier and CSRC Identifiers fields respectively. The maximum
number of CSRC’s is 16, and the actual number for a specific stream is defined
in the CSRC Count field. For the purpose of our oblivious transfer protocol, only
the synchronization source is used. The RTP header also contains information
about the format used for the payload data (Payload Type) and specifies for
each packet a Sequence Number and a Timestamp.

	Unconditionally Secure Oblivious Transferfrom Real Network Behavior

