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Abstract
A major barrier for the development of new quantum technologies is fast and ro-

bust methods for preparing and manipulating complex quantum states. To date

preparation and manipulation of quantum systems has primarily been done using

adiabatic processes. These adiabatic processes while robust have significant disad-

vantages such as their requiring long process times, a further drawback is that the

system-environment interaction over these these long process times can lead to loss of

coherence of the state of the system. A new area of study to achieve the robustness

of adiabatic schemes but in time-scales much shorter is "Shortcuts to Adiabaticity"

(STA). These STA techniques provide new methods for the manipulation of quantum

systems that achieve high-fidelity state transfers in much shorter times. The aim of

this thesis is to use STA and related methods for many particle systems. A method for

manipulating a gas of fermions is developed using Pauli blocking and it’s robustness

in the presence of temperature and different particle number investigated. A novel

method for trapping and cooling particles using atom-diode and reflecting atomic mir-

ror is investigated, both the classical and quantum cases are simulated. A method

for transporting atoms and condensates across an optical lattice using invariant based

inverse engineering is developed. Finally we look at non-hermitian potentials and

design particular potentials that result in desirable asymmetries in the transmission

and reflection of incident particles.
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Chapter 1

Introduction

At small scales interesting phenomena occur that are indescribable by classical

physics. At this scale the theory of quantum mechanics replaces classical me-

chanics as a model of particle behaviour, and the quantum nature of objects

at this scale gives rise to new opportunities both scientific and technological.

In the past forty years there has been immense progress in the ability to iso-

late and probe quantum mechanics systems, advances range from manipulation

and trapping of neutral atoms in optical traps or lattices [1] to Nobel prizes in

physics to Eric A. Cornell, Wolfgang Ketterle and Carl E. Wieman [2] for achiev-

ing Bose-Einstein condensation in dilute gases, or to Sarge Haroche and David

Wineland [3] for ground breaking experimental methods for measuring and ma-

nipulating individual quantum systems. These experiments have enabled both

the study of fundamental physics such as that of Bose-Einstein condensates,

and the development of new techniques of state manipulation that could be

used to create new technologies.

Of particular interest for quantum technologies is the quantum computer and

quantum simulations [4]. First discussed by Feynmann [5] as a means of simu-

lating quantum systems, quantum computation has grown into a vibrant field.

However despite its rapid growth to date there remains many unsolved problems

with realising the potential of quantum computers. The advantage of building

such a quantum computer is that it will be able to solve certain problems much
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quicker than modern classical computers. A necessary requirement for building

a quantum computer is the ability to prepare and manipulate complex quantum

systems in a robust manner in a short time scale. To achieve the desired robust

state preparation and manipulation for quantum computing typically adiabatic

protocols have been used examples include manipulating the internal states of

an atom using STIRAP [6] or spatial states using SAP [7]. However while adi-

abatic techniques are stable and enable high fidelities they also take long times

to achieve and as such through system-environment interaction the quantum

system can decohere losing its quantum properties.

These problems motivate the development of Shortcuts to Adiabaticity (STA)

[8, 9]. STA are a number of methods and techniques to speed up preparation

and manipulation of quantum states while ensuring the manipulation remains

robust and with high fidelity. These STA techniques are advantageous over the

ubiquitous adiabatic techniques as they do not have the associated longer pro-

cess times. Due to the widespread use of adiabatic protocols across many areas

of physics, STA has a wide range of applicability.

In this thesis I will apply the Shortcuts to Adiabaticity and related control

techniques to achieve a variety of manipulations of many particle systems.

In chapter 2 I will discuss the background theory required for the remainder of

the thesis. I will review some common techniques of Shortcuts to Adiabatic-

ity before discussing some of the physics of identical particles and finally I will

review the relevant numerical techniques used to obtain the results in this thesis.

In chapter 3, I will develop a method for manipulating large populations of

identical fermions in a harmonic trap using the Pauli exclusion principle as a

sort of insulation for lower energy fermions in an ensemble. In particular we shall
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investigate settings where applying traditional STA methods is difficult such as

an anharmonic trapping potential. We study the stability of the scheme versus

particle number and temperature effects.

In chapter 4, I will move to considering an atom catcher device, based on ear-

lier research into an atom-diode we proposed a method for trapping and cooling

particles. The atom catcher device is a combination of a moving atom-diode

with a moving atomic mirror. Particles can enter the atom-diode and mirror

from one direction but once confined within it slow down through collisions with

the two reflecting walls. This scheme is simulated to demonstrate cooling.

In chapter 5, I look again at STA methods for many particle systems. In

particular a scheme for transporting a Bose-Eisntein condensate across an op-

tical lattice using an external harmonic trapping potential is developed. We

investigate different shortcut protocols for achieving transport from one lattice

site to the next. In one protocol we require both the trap frequency and trap

centre to be tuneable and in the other protocol we solely require control of the

trap center position.

In chapter 6, we look to develop devices that have asymettric transmission

and reflection coefficients. To achieve this we consider non-local non-Hermitian

Hamiltonians in one dimension. We derive possible scattering regimes and dis-

cuss a variety devices that could be made by designing different potentials for

these Hamiltonians.

Finally, in chapter 7, I will provide a summary of the thesis and an outlook

for extensions and future work.





5

Chapter 2

Review of Background Theory

For the control of many particle quantum systems we must first discuss the de-

tails of the physics. In this chapter we will review shortcuts to adiabaticity, the

underlying physics of many particle systems and the computational techniques

that are used in this thesis.

2.1 Shortcuts to Adiabaticity

Our task is the control of quantum systems and we will use the techniques of

shortcuts to adiabaticity (STA) to achieve this. Shortcuts to adiabaticity are a

collection of techniques to achieve the same fidelities as adiabatic methods but

in much shorter times.

Shortcuts to Adiabaticity were first applied to systems such as the manipu-

lation of harmonic traps of single atoms avoiding final excitation [8]; they have

has since been applied in many different contexts such as quantum computing

[10] and transport or expansion of condensates [11, 12]. First we will outline the

adiabatic theorem before discussing the Shortcuts to Adiabaticity technique of

inverse engineering via Lewis-Riesenfeld invariants. A more thorough and com-

plete review of Shortcuts to Adiabaticity techniques and applications can be

found in [8] and [9].
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2.1.1 Adiabatic Theorem

In this section we will discuss the adiabatic theorem of quantum mechanics.

Originally discovered by Born and Fock in [13] the theorem states a quantum

mechanical system will remain in the instantaneous eigenstate of the system

Hamiltonian provided the parameters of the Hamiltonian are varied over suf-

ficiently long timescales allowing the energy gap between close lying states to

remain large.

Here we will provide a sketch of the proof of the adiabatic theorem. A more

general discussion for Hamiltonians with degenerate spectra is given in [14]. We

assume that we have a Hamiltonian H(t) with a discrete and non-degenerate

spectrum. Then the eigenstates of the Hamiltonian at any time during the

evolution are given by the eigenvalue equation

H(t)|φn(t)〉 = En(t)|φn(t)〉. (2.1)

Throughout the variation of the system’s parameters the state evolves according

to the time-dependent Schrödinger equation

i~∂t|ψ(t)〉 = H(t)|ψ(t)〉. (2.2)

We can expand the time dependent wavefunction in terms of the of eigenstates

the time dependent Hamiltonian in the form |ψ(t)〉 =
∑∞

n=0 cn(t)|φn(t)〉eiθn(t)

with θn(t) = −1

~
∫ t

0
En(t′)dt′ and normalisation

∑
n |cn(t)|2 = 1. Plugging this

into Eq. (2.2) we obtain

i~
∞∑
n=0

[
ċn(t)|φn(t)〉+ cn(t)|φ̇n(t)〉+ icn(t)|φn(t)〉θ̇n(t)

]
eiθn

=
∞∑
n=0

H(t)cn(t)|φn(t)〉eiθn(t). (2.3)
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Combining θ̇n(t) = −En(t)

~
and Eq. (2.1), the θ̇n(t) term cancels with the right

hand side of Eq (2.3) and then we obtain

i~
∞∑
n=0

(ċn(t)|φn(t)〉+ cn(t)|φ̇n(t)〉)eiθn = 0. (2.4)

Now applying 〈φm(t)| to Eq. (2.4) and we obtain

∞∑
n=0

ċn(t) 〈φm(t)|φn(t)〉︸ ︷︷ ︸
δnm

eiθn = −
∞∑
n=0

cn(t)〈φm(t)|φ̇n(t)〉eiθn ,

⇒ ċm(t) = −
∞∑
n=0

cn(t)〈φm(t)|φ̇n(t)〉ei(θn−θm). (2.5)

We can calculate the 〈φm(t)|φ̇n(t)〉 term using Eq. (2.1) and obtain 〈φm|Ḣ(t)|φn(t)〉+

Em(t)〈φm|φ̇n(t)〉 = En〈φm(t)|φ̇n(t)〉 for m 6= n. Plugging this into Eq. (2.5) we

obtain

ċm(t) = −cm(t)〈φm(t)|φ̇m(t)〉+
∑
n6=m

cn
〈φm(t)|Ḣ(t)φn(t)〉

En − Em
ei(θn−θm). (2.6)

This result is exact. It can be shown that the second term on the right hand

side in Eq. (2.6) vanishes in the limit of t → ∞ i.e. if the parameters of the

Hamiltonian H(t) are varied infinitely slowly. The adiabatic approximation is

now that we can ignore this second term in Eq. (2.6) so that we are left with

ċm(t) ≈ −cm〈φm(t)|φ̇m(t)〉

⇒ cm(t) ≈ cm(0)eiγm(t), (2.7)

where γn(t) = i
∫ t

0
〈φm(t′)|φ̇m(t′)〉dt′ is the geometric phase. Now consider we

start in the ground state of H(0) and then we have the initial state |ψ(0)〉 =

|φ0(0)〉 where |φ0(0)〉 is the ground state of H(0). Then the solution of the time
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dependent Schrödinger equation Eq. (2.2) at time t is |ψ(t)〉 ≈ eiγ0(t)eiθ0(t)|φ0(t)〉;

we can see that we remain in the instantaneous ground state |φ0(t)〉 of the

Hamiltonian H(t) up to a geometric and dynamical phase.

Control techniques based on using the Adiabatic Approximation/Theorem

through slow changes of parameters are ubiquitous in quantum control pro-

cesses, one famous example of the utility of these adiabatic techniques is Stimu-

lated Raman Adiabatic Passage (STIRAP)[6]. However adiabatic methods have

some drawbacks, to satisfy the adiabatic approximation the Hamiltonian must

vary slowly; not only does this put constraints on how fast we can manipu-

late a system, it also has the added risk of losing the coherence of the system

through interactions with the surrounding environment over the course of the

long process times. In the following subsections we will discuss the strengths of

the Shortcuts to Adiabaticity method in contrast to adiabatic techniques.

2.1.2 Lewis-Riesenfeld Invariants

As a starting point for Shortcuts to Adiabaticity, let us look at Lewis-Riesenfeld

invariants. Consider a system evolving with Hermitian time-dependent Hamil-

tonian H(t), a Lewis-Riesenfeld invariant [15] is a Hermitian operator I(t) that

satisfies the following equation,

dI(t)

dt
= i~

∂I(t)

∂t
− [H(t), I(t)] = 0. (2.8)

We will show in the following that the eigenvalues of this operator I(t) are time

independent. Let

I(t)|ϕn(t)〉 = λn|ϕn(t)〉 (2.9)

with 〈ϕm|ϕn〉 = δm,n. Now differentiate Eq. (2.9) with respect to t

∂tI(t)|ϕn〉+ I∂t|ϕn〉 = ∂tλn|ϕn〉+ λn∂t|ϕn〉. (2.10)
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We now take the inner product of this expression with 〈ϕn|

〈ϕn|∂tI(t)ϕn〉+ λn〈ϕn|∂tϕn〉 = ∂tλn〈ϕn|ϕn〉+ λn〈ϕn|∂tϕn〉.

So we obtain the expression

∂tλn = 〈ϕn|∂tI(t)ϕn〉.

Now operating on Eq. (2.8) with |ϕn〉 from the right

i~∂tI(t)|ϕn〉 −H(t)I(t)|ϕn〉+ I(t)H(t)|ϕn〉 = 0.

Taking the inner product with 〈ϕn| from the left we obtain

〈ϕn|∂tI(t)ϕn〉 − 〈ϕn|H(t)I(t)|ϕn〉+ 〈ϕn|I(t)H(t)|ϕn〉 =

〈ϕn|∂tI(t)ϕn〉 − En〈ϕn|I(t)ϕn〉+ En〈ϕn|I(t)ϕn〉

〈ϕn|∂tI(t)ϕn〉 = ∂tλn = 0

It follows the above Eq. (2.8) that the eigenvalues of I(t) are time independent

and we can write

⇒ i~∂t(I(t)|ψ〉) = H(I(t)|ψ〉).

Further we can write arbitrary solutions of the time-dependent Schrödinger

equation Eq. (2.2) using orthonormal states of the invariant I(t)

|Ψ(t)〉 =
∞∑
n=0

cn|ψn(t)〉, |ψn(t)〉 = eiαn(t)|ϕn(t)〉

with

I(t) =
∞∑
n=0

|ϕn(t)〉λn〈ϕn(t)|.
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The cn are time independent amplitudes, λn are real valued and the αn(t) is

the Lewis-Riesenfeld phase given by

αn(t) =
1

~

∫ t

0

〈φn(t′)|i~∂t′ −H(t′)|φn(t′)〉dt′.

Lewis-Riesenfeld invariants were first used in a direct manner to solve the time

dependent Schrödinger equation. This approach is reversed in Shortcuts to Adi-

abaticity and instead we combine the Lewis-Riesenfeld invariants with inverse

engineering to achieve fast and robust manipulations of quantum systems.

2.1.3 Invariant based inverse engineering

Instead of the direct approach of using the Lewis-Riesenfeld invariants to solve

the time dependent Schrödinger equation here we do the process in reverse. To

underline the differences between this method and adiabatic control methods

consider the following two scenarios:

(a) Adiabatic evolution

• We vary some paramaters in a given Hamiltonian H(t) such that the

state at initial time follows the instantaneous eigenstates of H(t) until

some final time where the population is in the corresponding eigenstate

of final the Hamiltonian H(tf ).

(b) Inverse engineering

• We also vary some paramaters in a given Hamiltonian H(t). Here the key

difference is we don’t seek to follow the instantaneous eigenstates of H(t).

Instead we follow instantaneous eigenstates of I(t) and this allows for

transitions between eigenstates of the Hamiltonian H(t) during evolution

but with the condition that we arrive in the desired eigenstate of H(tf )

at final time.



2.1. Shortcuts to Adiabaticity 11

This method corresponds to engineering the time evolution operator to be

U =
∑
n

eiαn(t)|φn(t)〉〈φn(0)|. (2.11)

where the |φn〉 are eigenstates of the invariant I(t). From this expression we

can derive the Hamiltonian ∂tU = 1
i~H(t)U(t). By applying U † from the right

we obtain H(t) = i~U̇U †. We want to ensure we start and end in eigenstates

of H(t) so must ensure that the eigenstates of the invariant I(t) coincide with

those of the Hamiltonian H(t) at initial and final times i.e. they commute at

initial and final times.

[H(tf ), I(tf )] = [H(0), I(0)] = 0. (2.12)

Explicitly we consider a system with HamiltonianH(t) that we can tune through

some control functions (e.g. this could be the frequency of a harmonic trap or

centre of a trap). We start in some state of the Hamiltonian H(0) and want to

finish in a desired state of the Hamiltonian H(tf ), we derive the invariant I(t)

from Eq. (2.8) and finally we derive the boundary conditions on the control

functions of H(t) from the commutation relations in Eq.(2.12).

Lewis and Riesenfeld in their seminal paper [15] paid particular attention to

the time dependent harmonic oscillator. Later Lewis and Leach [16] along

with Dhara and Lawande [17] considered more general quadratic in momentum

invariants of the form

H =
p2

2m
+ V (q, t). (2.13)

They showed that if a potential V (q, t) has form

V (q, t) = −F (t)q +
1

2
mω(t)2q2 +

1

ρ(t)2
U

[
q − qc(t)
ρ(t)

]
(2.14)
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then the Hamiltonian admits an invariant of the form

I(t) =
1

2m
[ρ(p−mq̇c)−mρ̇(q−qc)]2 +

1

2
mω2

0

(
q − qc
ρ

)2

+U

(
q − qc
ρ

)
. (2.15)

The ω0 is a constant and qc, ω, F and ρ are arbitrary functions of time that

must satisfy the auxiliary equations

ρ̈+ ω2(t)ρ =
ω2

0

ρ3
, (2.16)

q̈ + ω2(t)qc =
F (t)

m
. (2.17)

Let us consider two simple examples in detail to demonstrate how this inverse-

engineering works.

2.1.4 Example: STA for the expansion of a harmonic trap

First consider a particle in the ground state of a harmonic trap, at initial time

t = 0 we have the particle trapped state with frequency ω0 and at final time

we want to expand the trap to frequency ωf . We want to transition from the

ground state of the trap with harmonic frequency ω0 to the ground state with

harmonic frequency ωf , this problem is considered in [18]. The Hamiltonian of

such a system is given by

H(t) =
p̂2

2m
+

1

2
mω(t)2x̂2. (2.18)

The Hamiltonian of this system is in the class of Hamiltonians with potentials

described by Eq. (2.14). The Hamiltonian in Eq. (2.18) has corresponding

invariant I(t) as in Eq. (2.15) given by

I(t) =
1

2m
(ρp̂−mρ̇x̂)2 +

1

2
mω2

0

(
x

ρ

)2

. (2.19)
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Looking at the Ermakov Eqns. (2.16)(2.17) we can set qc = F = 0 as there’s

no linear dependence on x̂ and we only need to consider

ρ̈+ ω2(t)ρ =
ω2

0

ρ3
. (2.20)

-10 -5 0 5 10
0.0
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0.4

0.6

0.8
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1.2

1.4

q0(t)/xc

|ψ
2

Figure 2.1: Expansion of a harmonic trap, initial and final
trap and wave function: The dashed lines represent the trapping
potential V (t), the dashed red line is the trap at t = 0 and the
green is at t = tf . The solid lines are the corresponding ground
states of the trap at initial and final times, the red is at time

t = 0 and the green at time t = tf .

A schematic of the initial and final trap and the relevant wave functions at

initial and final times is given in Fig. 2.1 in terms of the characteristic length

for a harmonic oscillator xc =
√

~/mω0. To achieve the desired state change

from ground state of the trap with frequency ω0 to ground state of the trap with

frequency ωf we must ensure that the invariant and Hamiltonian commute at

initial and final times, see Eq. (2.12). Let us derive the boundary conditions
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using Eqs. (2.18) and (2.19), first we will evaluate the commutator,

[H(t), I(t)] =

[
p̂2

2m
+

1

2
mω2x̂2,

1

2m
(ρp̂−mρ̇x̂)2 +

1

2
mω2

0

(
x

ρ

)2
]

=
1

2m

([
p̂2,

1

2m
(ρp̂−mρ̇x̂)2

]
+

[
p̂2,

1

2
mω2

0

(
x̂

ρ

)2
])

+

([
x̂2,

1

2m
(ρp̂−mρ̇x̂)2

]
+

[
x̂2,

1

2
mω2

0

(
x̂

ρ

)2
])

=
1

4

[
p̂2, x̂2

]{
mρ̇2 +

1

ρ2
ω2

0 − ω2ρ2

}
+
m

2
ρρ̇

{
1

m
([p̂2, x̂p̂]

+
[
p̂2, p̂x̂

]
) +mω2(

[
x̂2, x̂p̂

]
+
[
x̂2, p̂x̂

]
)

}
. (2.21)

We first calculate the different commutators

[
p̂2, x̂2

]
= −2i~(x̂p̂+ p̂x̂), (2.22)[

p̂2, x̂p̂
]

=
[
p̂2, p̂x̂

]
= −2i~p̂2, (2.23)[

x̂2, x̂p̂
]

=
[
x̂2, p̂x̂

]
= 2i~x̂. (2.24)

So plugging these results into Eq. (2.21) we get the expression

[H(t), I(t)] =
1

2
i~(x̂p̂+ p̂x̂)

{
ρ̇2 +

1

ρ2
ω2

0 − ω2ρ2

}
+2i~mρρ̇

{
p̂2

m
+mω2x̂2

}
. (2.25)

Now we impose the condition in Eq. (2.12) i.e. to achieve the desired expansion

from the ground state of H(0) to the ground state of H(tf ) from which the

following boundary conditions are derived

ρ(0) = 1, ρ(tf ) =

√
ω0

ωf
,

ρ̇(0) = 0, ρ̇(tf ) = 0.

From Eq. (2.20) we can set ω(0) = ω0, ω(tf ) = ωf and we have ρ̈(0) = 0 and
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ρ̈(tf ) = 0. Now we pick a ρ(t) that satisfies these boundary conditions, here we

choose a polynomial function

ρ(t) = 6(t/tf )
5

(√
ω0

ωf
− 1

)
−15(t/tf )

4

(√
ω0

ωf
− 1

)
+10(t/tf )

3

(√
ω0

ωf
− 1

)
+1.

(2.26)

We can solve for ω(t)

ω2(t) =
ω2

0

ρ4
− ρ̈

ρ
. (2.27)

Now by substituting the chosen ρ(t) from Eq. (2.26) into Eq. (2.27) we can find

ω(t). In principle the tf can be arbitrarily small, however there is experimental

considerations to take account of: for very short time scales the transient energy

excitation may be too large making the scheme impossible to implement (parti-

cle leaving the trap), further for short time scales we may get imaginary values

of ω which will make the harmonic trap a repeller which again may pose exper-

imental difficulties requiring very quick and precise control of trap frequency.

Plotted in Fig. 2.2 are the functions (ω(t/tf )/ω0)2 for tf = 1/ω0, 2/ω0, 5/ω0.

We see for tf = 1/ω0 and tf = 2ω0 that for a duration of time the harmonic

trap becomes a harmonic repeller.
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tf=2.0

tf=5.0
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ω0

Figure 2.2: Expansion of a harmonic trap, different control
functions ω(t) for different final tf values.
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Now to investigate how well the control protocol works we need to consider

the fidelity of the process, which we define as

F =

∣∣∣∣〈ψ(tf )|φideal〉
∣∣∣∣2. (2.28)

Here the |ψ(t)〉 is the wave function after expansion and the |φideal〉 is the target

ground state of the Hamiltonian H(tf ). In Fig. 2.3 the fidelity F versus the

final time tfω0 is plotted for both the adiabatic and shortcut protocols. For the

comparative adiabatic scheme we used the function

ω(t) = (ωf − ω0) sin

(
tπ

2tf

)2

+ ω0. (2.29)

As expected we see the shortcut scheme achieves perfect fidelities even for very

short final times tfω0. This is in contrast to the adiabatic scheme in Eq. (2.29))

which takes until ω0tf ≥ 12 before it achieves fidelities of F ≥ 0.95. Both

approaches work for transferring any eigenstate of the initial Hamiltonian H(0)

to the corresponding eigenstate of the final Hamiltonian H(tf ), however the

STA approach achieves the desired fidelities much faster.


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Figure 2.3: Expansion of a harmonic trap, fidelity F versus
final time tfω0: The red squares are the shortcut scheme given
by Eq. (2.27) and the green diamonds are the adiabatic scheme

given by Eq. (2.29).
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2.1.5 Example: Transport of a harmonic trap
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0.0

0.2

0.4

0.6

0.8

1.0
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1.4

q0(t)/xc

|ψ
2

Figure 2.4: Transport of a harmonic trap, initial and final
trap and wavefunction: The dashed lines represent the trapping
potential V (t), the dashed red line is the trap at t = 0 and the
green is at t = tf . The solid lines are the corresponding ground
states of the trap at initial and final times, the red is at time

t = 0 and the green at time t = tf wavefunction.

Here again consider a particle in a harmonic trap, a schematic of the system is

seen in Fig. 2.4 using the length unit xc =
√
~/mω. The goal now is to move

the harmonic trap from some initial point q0(0) at time t = 0 to q0(tf ) at final

time t = tf while remaining in the ground state of the trap. This system is

considered in more detail in [19]. The Hamiltonian of this system is

H(t) =
p̂2

2m
+

1

2
mω2(x− q0(t))2, (2.30)

which is again a special case of the Hamiltonian in Eq. (2.13) with F (t)/m =

ω2q0. Looking at the auxiliary Eqns. (2.16) and (2.17) we can set ρ(t) = 1 so

we only have to consider one of the equations

q̈c(t) + ω(qc(t)− q0(t)) = 0. (2.31)
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The derivation of the boundary conditions on the auxiliary function qc(t) and

its derivatives are determined in a similar manner to the boundary conditions

derivation in section 2.1.4 i.e. imposing [I(0), H(0)] = [I(tf ), H(tf )] = 0. This

gives us the conditions qc(0) = q0(0), qc(tf ) = q0(tf ) along with q̇c(0) = q̈c(0) =

q̇c(tf ) = q̈c(tf ) = 0. We now pick a qc(t) such that it fits these boundary

conditions, here we will choose a polynomial of minimal degree

qc(t) = q0(0)− 6(t/tf )
5(q0(0)− q0(tf )) + 15(t/tf )

4(q0(0)− q0(tf ))

−10(t/tf )
3(q0(0)− q0(tf )). (2.32)

We now rewrite the above Eq. (2.31) to get an explicit expression for q0(t)

q0(t) =
q̈c(t)

ω
+ qc(t). (2.33)

In Fig. 2.5 we have plotted the different q0(t) functions for different values of

tf . We see for shorter values of tf the trap has to move outside of the interval

[q0(0), q0(tf )] which may not be desirable. However these will still obtain perfect

fidelities.

tf =1.0

tf =2.0

tf =5.0
0.0 0.2 0.4 0.6 0.8 1.0

- 5
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15
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q 0
(t
)/
x c

ω

ω

ω

Figure 2.5: Transport of a harmonic trap, different q0(t)
schemes for different final tf values.
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Here we have used a simple trigonometric function for the adiabatic protocol.

We vary the position by

q0(t) = (q0(tf)− q0(0)) sin

(
tπ

2tf

)2

+ q0(0). (2.34)

We define the fidelity F the same as in the previous section. In Fig 2.6 we have

plotted the fidelity F versus final time tfω. Again we see that for arbitrarily

short times the shortcut scheme achieves perfect fidelity. This is in contrast to

the adiabatic scheme which takes until about ωt ≥ 12 to achieve a fidelity of

F ≥ 0.95 for all longer tf . We are able to achieve better fidelities with STA

than the adiabatic case for short time scales.
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Figure 2.6: Transport of a harmonic trap, fidelity F v tf : The
red squares are the shortcut scheme given by Eq. (2.33) and the
green diamonds are the adiabatic scheme given by Eq. (2.34).

2.2 Many Particle Physics

In this section we will now discuss the physics of many particle systems. We

will discuss identical particles, Bosons and Fermions along with their statistics.
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2.2.1 Identical Particles

Here we will follow the discussion in [20]. It is useful to first consider the dif-

ferences between identical particles in classical and quantum mechanics

(a) Classical identical particles

In classical physics two identical particles can be distinguished by their past

trajectories. That is to say for example, if you have two identical classical

objects then they have well defined trajectories. Through tracking these trajec-

tories we can distinguish between two identical classical objects.

(b) Quantum identical particles

However in quantum mechanics we do not have this same ability to tell which

identical particle is which, because particles in quantum mechanics do not have

a well defined "trajectory" that we can track to distinguish particles from one

another.

Now consider two indistinguishable particles, we perform some experiment where

we measure the positions of the particles in some state specified by quantum

numbers n1 and the other particle in state n2. Due to the fact that the two

particles are indistinguishable we can not say that particle 1 is in state n1 and

particle 2 in state n2 or vice versa. Instead we have the constraint that

|ψ(n1, n2)〉 = α|ψ(n2, n1)〉 (2.35)

where α is any complex number. We obtain this constraint from the fact that

the two states must be physically equivalent, and this is only possible if they

differ by a global phase as when being measured |ψ(n1, n2)|2 = |ψ(n2, n1)|2.
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As such imposing the condition in Eq. (2.35) we see that if we take the vector

|ψ(n1, n2)〉 = γ|n1n2〉+ λ|n2n1〉

where the ket |ninj〉 represents particle 1 in state i and particle 2 in state j,

then from Eq. (2.35) we obtain

γ|n1n2〉+ λ|n2n1〉 = α (γ|n2n1〉+ λ|n1n2〉) . (2.36)

Now if we equate the coefficients of |n1n2〉 and |n2n1〉 we get the relations

γ = αλ , λ = αγ

α = ±1, (2.37)

λ =
1√
2
. (2.38)

From this result we can see that there exists two different possible states

|ψ(n1n2)〉 =
1√
2

(|n1n2〉+ |n2n1〉) (Symmetric) (2.39)

and

|ψ(n1n2)〉 =
1√
2

(|n1n2〉 − |n2n1〉). (Anti-symmetric) (2.40)

We call the state in Eq. (2.39) the symmetric states and the state in Eq. (??)

the anti-symmetric states because under exchange of the quantum numbers n1

and n2 the symmetric state stays the same but the anti-symmetric state is

changed by a factor of −1. We make the following assertion: A given particle

species must be either symmetric or anti-symmetric. Consider if this

statement was not true. Then the Hilbert space would have linear combinations

of symmetric and anti-symmetric states which are then neither symmetric or
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anti-symmetric. The particles with symmetric states are referred to as Bosons

and the ones with anti-symmetric states are called Fermions.

Properties

• Particles with integer spin are bosons.

• Particles with half integer spin are fermions [21].

From Eq.(2.40) we can derive a fundamental property of fermions. We have

some state specified by quantum numbers n1 and n2

|ΨF 〉 =
1√
2

(|n1n2〉 − |n2n1〉)

where for example n could refer to energy level in a given system, if we set

n1 = n2 then we obtain

|ΨF 〉 =
1

2
(|n1n1〉 − |n1n1〉) = 0.

The above results it the Pauli exclusion principle, it tells us that two fermions

cannot occupy the exact same quantum state. This result will be used to speed

up manipulations of many particle fermion systems in Chapter 3. The same is

not true of Bosons, for Bosons the above scenario of identical particles becomes

|ΨB〉 =
1

2
(|n1n1〉+ |n1n1〉) = |n1n1〉.

At low temperatures these differences become particularly prominent, the fermionic

particles don’t share identical states and the Bosons condense into a single state.

Next we will discuss the differences in statistics of these two particle types.
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Particle-Statistics

Consider an ideal gas of non interacting fermionic or bosonic particles specified

by occupation numbers N1, N2, . . . , Ni, . . . of single particle states with corre-

sponding energies ε1 ≤ ε2 ≤ . . .. The number of particles N is given by
∑

iNi

and the gas has energy E =
∑

iNiεi. The grand partition function of the system

is given by

Z =
∑
Ni

eβ(µN−E) =

{∑
N1

eβ(µ−ε1)N1

}
︸ ︷︷ ︸

Z1

{∑
N2

eβ(µ−ε2)N2

}
︸ ︷︷ ︸

Z2

. . .

=
∞∏
i=1

Zi (2.41)

For bosons we have no restriction on how many particles can occupy a given

state and so each occupation number Ni is summed from 0 to ∞, the same is

not true of fermions. As discussed earlier fermions obey the Pauli exclusion

principle and as such the occupation number Ni must be either 0 or 1. The

Gibbs distribution gives the probability of finding N1 particles in the single

particle state 1, N2 particles in state 2, etc,

pN = p(N1, N2, . . .) =

exp{β
(
µ(
∑

iNi)−
∑

iNiεi

)
}

Z
=

∏∞
i=1 e

β(µ−εi)Ni∏∞
i=1 Zi

.

p(N1, N2, . . .) =
∞∏
i=1

pi(Ni) (2.42)

where the pi(Ni) are given by

pi(Ni) =
eβ(µ−εi)Ni

Zi
. (2.43)
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Here we can see the differences between fermions and bosons. Consider a single

particle state, for Fermi-Dirac statistics (Ni = 0, 1) we have

Zi = 1 + eβ(µ−εi). (2.44)

For Bose-Einstein statistics the partition function in Eq. (2.41) is a geometric

series that converges for µ < εi and this inequality must hold for all energy

states. Provided this condition is satisfied the Zi converges to

Zi =
1

1− eβ(µ−εi)
. (2.45)

The differences between these two particles and their statistics is most notice-

able at low temperatures. Bosons tend to all condense into a single ground

state at very low temperatures; this is called Bose-Einstein condensation. This

characteristic is not found in systems of fermions where at low temperatures

fermions tend to occupy all the lower energy states up to the fermi-level.

From Eqs. (2.41) and (2.42) we can calculate the mean occupation number of

the ith single particle state

N̄i =
∑
Ni

Nipi(Ni) =
1

β

(
∂lnZi
∂µ

)
T,V

=
1

eβ(εi−µ) ± 1
, (2.46)

where the plus is for the Fermi-Dirac distribution and the minus for the Bose-

Einstein distribution. Summing over all these states we obtain the total mean

number of particles in the system

N =
∞∑
i=1

N̄i =
∞∑
i=1

1

eβ(εi−µ) ± 1
. (2.47)
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2.2.2 Bose-Einstein Condensation

In this subsection we will discuss Bose-Einstein condensation and derive the

conditions required for Bose-Einstein condensation, for more detail see [22].

Consider a gas of massive spinless Bosons in a box of volume V , the total

number of particles is given by Eq. (2.47)

N =
∑
i

1

eβ(εi−µ) − 1
. (2.48)

For Bose gasses where the lowest lying energy level corresponds to ε = 0 we

have the dispersion relation E = p2/2m where p = ~k. The chemical potential

µ must be negative µ < 0 as otherwise the energy level E = 0 would have to be

infinite or negative occupation. When approximating the sum in Eq. (2.48) by

an integral we must take care to include the first ε = 0 term. If we do not the

ε = 0 state will have no weighting (i.e. f(0) = 0 in Eq. 2.50) in the integral.

N =
1

e−βµ − 1︸ ︷︷ ︸
N0

+

∫ ∞
0

f(ε)dε

eβ(ε−µ) − 1︸ ︷︷ ︸
Nε>0

, (2.49)

whereN0 is the population of the ground ε0 = 0 state, andNε>0 is the population

of all the remaining states with ε > 0. The f(ε)dε here is the energy density of

states and is given by

f(ε)dε =
V (2m)3/2

(2π)2~3

√
εdε. (2.50)

We can plug this into the Nε>0 term and calculating the integral we obtain

Nε>0 =
V

2π2

(
m

2β~2π

)3/2

Li3/2(eβµ), (2.51)

Nε>0

V

(
2β~2π

m

)3/2

= Li3/2(eβµ), (2.52)

where Lia(b) is the polylogarithmic function. Now consider holding the particle

densityN/V constant. Then as T is lowered |µ|must increase (µ < 0), otherwise
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for low values of T the ground state N0 would not be heavily occupied. This

equation then defines a minimum temperature for which µ→ 0

Tc =
2π~2

mkB

(
N

ζ(3/2)V

)2/3

. (2.53)

Below temperature Tc the number of particles in the ε > 0 states is given by

Nε>0 =
V 2~2πζ(3/2)

kbTm
(2.54)

and the total particle number is given by

N =
V 2~2πζ(3/2)

kbTcm
. (2.55)

So we can write the fraction of the particles in the ground state as

N0

N
=
N −N0

N
= 1−

(
T

Tc

)3/2

. (2.56)

We see in Eq. (2.56) that as the temperature T continues to be cooled further

and further below Tc that the population of of the ground state grows. This

occupation of the ground state is called Bose-Einstein condensation, this

effect comes purely from the symmetry properties of Bosons discussed in section

2.2.1. Bose-Einstein condensation was first predicted in 1925 by Albert Einstein

building upon the work of Satyendra Nath Bose. The first condensation of

bosons was achieved seventy years later in 1995 at the University of Colorado

Boulder by Eric Cornell and Carl Wieman new cooling techniques developed

such as laser and evaporative cooling, early experiments achieved condensation

of dilute gases of rubidium, lithium and sodium [23, 24, 25] and culminated

in Nobel prizes for E. Cornell, C. Wieman and W. Ketterle [2]. Bose-Einstein

condensates have been loaded onto optical lattices generated by two detuned

counter-propagating lasers, allowing the simulation and study of many body
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systems with applications in condensed matter physics. Typically the gases

used to make a Bose-Einstein condensate are dilute and they have to be cooled

to exceptionally low temperatures to observe the quantum effects this is, in

contrast to denser systems such as solids and liquids. Of particular interest is

how to achieve cooling to such low temperatures, which we will discuss now.

Evaporative cooling

Here we will mostly follow the discussion in [26]. The idea behind evaporative

cooling is simple, a trapped gas has its trap depth decreased allowing the higher

energy particles to escape the rest of the sample is then allowed to thermalise

reducing the temperature of the gas. These higher energy particles carry away

a significant amount of kinetic energy from the sample leaving the remaining

trapped sample cooled. This is not dissimilar to cooling a liquid by blowing

on it. First developed for use producing condensates it allows for otherwise

unachievable low temperatures to be reached [27]. This is typically achieved

by reducing the depth of the trapping potential, higher energy particles are

then capable of escaping the trapping potential while lower energy ones remain

trapped. Following an example in [26] consider a trapped atomic gas with

average total atomic energy given by ε. We take the average energy of any

given evaporated particle to be (1+β)ε and then the change this induces in the

average energy of the gas may be obtained from the conservation of the total

energy of all the particles. Then the change in energy from some number of

evaporated particles is given by

(1 + β)εdN, (2.57)

where dN < 0 is the change in number of particles in the gas. Through the

energy conservation the total energy of the gas remaining in the trap is E +

(1 + β)εdN where the number of particles remaining in the trap is N + dN (for
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evaporation dN is negative). The average energy of the gas in the trap after

evaporation is given by

ε+ dε =
E + (1 + β)εdN

N + dN
. (2.58)

If β is independent ofN then we can solve this differential equation with solution

ε

ε(0)
=

(
N

N(0)

)β
, (2.59)

where ε(0) and N(0) are the initial average energy and particle number in

the trapped gas. This is a simple model that doesn’t discuss the relationship

between the average energy of the sample and its temperature.

Gross-Piteavskii Equation

In this thesis we will be discussing Bose-Einstein condensates that can be mod-

elled by the Gross-Piteavskii equation (GP-Eqn) [28, 29]. The GP-Eqn describes

the condensed part of a bosonic gas close to zero temperature which has a scat-

tering length a is less than the average spacing between particles in the gas. It is

derived assuming that all the interactions between particles in the condensate

can be modelled by an average interaction term with interaction strength g.

The GP-Eqn requires that interactions between the particles in the gas are ei-

ther rare, as in dilute condensates or alternatively that the interaction strength

between particles in the gas itself is weak. This equation is valid for many ex-

periments where particle density at the centre of the gas is about 1013 − 1015

cm−3, much less dense than air at room temperature on earth [26]. To derive it

we assume that the many particle wave function Ψ can be written as a product

of single particle wave functions φ, that is

Ψ(x1, . . . ,xn) =
N∏
i=1

φ(xi) (2.60)
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where the single particle wave functions are normalised in the regular way∫
dx|φ(x)|2 = 1. This Ψ(x1, . . . ,xN) does not account for any interaction

in the system, and these interaction terms will be taken care of by an effective

interaction term gδ(x− x′). The Hamiltonian of such a system is given by

H =
N∑
i=1

( pi

2m
+ V (xi)

)
+ g

∑
i<j

δ(xi − xj). (2.61)

The corresponding energy expectation value of the above Hamiltonian is

E = N

∫
dx
(

~2

2m
|∇φ(x)|2 + V (x)|φ(x)|2 +

N − 1

2
g|φ(x)|4

)
(2.62)

and assuming that N is sufficiently large we can approximate this last term

simply as 1
2
Ng
∫
dx|φ(x)|4, now for simplicity in notation let us introduce a

wave function ψ(x) of the condensate defined as

ψ(x) =
√
Nφ(x), (2.63)

then we can rewrite the equation Eq. (2.62) as

E =

∫
dx
(

~2

2m
|∇ψ(x)|2 + V (x)|ψ(x)|2 +

1

2
g|ψ(x)|4

)
. (2.64)

Now using standard methods from the calculus of variations [30] we minimise

the functional E in Eq. (2.64) with respect to ψ(x) and its conjugate ψ?(x)

preserving the particle number

N =

∫
dx|ψ(x)|2. (2.65)

After variation we obtain the time-independent Gross Piteavskii equation

(
p̂2

2m
+ V (x) + g|ψ(x)|2

)
ψ(x) = µψ(x) (2.66)
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We can immediately see that Eq. (2.66)has the form of the Schrödinger equa-

tion, except with non-linear term g|ψ(x)|2 that accounts of the inter-particle

interaction within the gas of bosons. Another difference from the Schrödinger

equation is that here the eigenvalue is the chemical potential as opposed to the

energy in the usual Schrödinger equation. When considering dynamical prob-

lems we use the corresponding time dependent Gross-Piteavksii equation given

by,

i~∂tψ(x, t) =

(
p̂2

2m
+ V (x, t) + g|ψ(x, t)|2

)
ψ(x, t). (2.67)

Eq. (2.67) can be derived by a similar process using the calculus of variations,

and it is used to study the dynamics of condensates.

2.3 Computational Methods

To achieve accurate simulations of many particle quantum systems we needed a

variety of different computational methods. This collection of numerical tech-

niques allows for the simulation of such systems. In this section the different

techniques used in this thesis to obtain the numerical results will be discussed.

2.3.1 Split Operator method

We consider the time-dependent Schrödinger equation,

i~∂t|ψ(t)〉 = H(t)|ψ(t)〉 = (T + V (t)) |ψ(t)〉, (2.68)

where T = p2

2m
= − ~2

2m
∇2 in the position basis. If we first consider the time-

independent case where V (t) = V then we can formally write the solution to

Eq. (2.68) with

|ψ(t)〉 = exp

{
−iHt

~

}
|ψ(0)〉. (2.69)
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If we take some small time interval denoted by ∆t and expand the exponential

term we obtain

exp

{
−iH∆t

~

}
= 1− i∆t(T + V )

~
− ∆t2(T + V )2

2~2
+O(∆t3)

= 1 + 2

(
i∆t

2~
V − ∆t2

4~2
V 2

)
−
(
i∆t

~
T − ∆t2

2~2
T 2

)
−∆t2

2~2
(V T + TV ) +O(∆t3)

= exp

{
−iV∆t

2~

}
exp

{
−iT∆t

~

}
exp

{
−iV∆t

2~

}
+O(∆t3). (2.70)

This splitting in Eq. (2.70) has an error of order ∆t3 and for sufficiently small

time steps any terms of order higher than ∆t2 are negligible. It is also interesting

to note this splitting is advantageous over a more "naive"

exp

{
−iH∆t

~

}
= exp{iT∆t/~} exp{iV∆t/~}+O(∆t2). (2.71)

We can immediately see why this splitting in Eq. (2.70) is useful for numerical

calculations. The operators T and V have simple representations (they just act

as multiplications) in the momentum and position bases respectively. Using

fast fourier transforms (FFT) we can take advantage of the simplicity of the T

and V operators in their respective bases.

We would like to extend this approach to the case of time-dependent Hamilto-

nians so that we can simulate a much larger class of systems. Inspired by the

time independent case we approximate the time evolution operator in a similar

manner. Over a time interval ∆t we approximate the time evolution operator
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by

T exp

{
− i

~

∫ t0+∆t

t0

H(s)ds

}
≈

exp

{
−iVl∆t

2~

}
exp

{
−iT∆t

~

}
exp

{
−iVl∆t

2~

}
+O(∆t3) (2.72)

where

Vl =
V (t0 + ∆t) + V (t0)

2
(2.73)

is an average value across the time interval ∆t of the potential. The actual time

evolution operator is given by the Dyson series

T exp

{
− i
~

∫ t+∆t

t0

(T + V (t)) ds

}
= 1− i

~

∫ t0+∆t

t0

(T + V (t1)) dt1

− 1

~2

∫ t0+∆t

t0

∫ t1

t0

(T + V (t1)) (T + V (t2)) dt2dt1

+O(∆t3). (2.74)

Provided the chosen ∆t is small enough we can approximate these integrals

using the trapezoidal rule (i.e.
∫ b
a
f(x)dx = 1

2
f(a) + f(b)(b − a)). Apply the

trapezoidal rule to the integrals in Eq. (2.74)

∫ t0+∆t

t0

V (t1)dt1 = Vl∆t+O(∆t3) (2.75)

and

∫ t0+∆t

t0

∫ t1

t0

TV (t2)dt2dt1 =

1

2

∫ t0+∆t

t0

T{V (t1) + V (t0)}(t1 − t0)dt1 +O(∆t3)

=
∆t2

2
TVl +O(∆t3) (2.76)

and ∫ t0+∆t

t0

∫ t1

t0

V (t1)Tdt2dt1 ≈
∆t2

2
V (∆t+ t0)T +O(δt3) (2.77)
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and

∫ t0+∆t

t0

∫ t1

t0

V (t1)V (t2)dt2dt1 ≈
∫ t0+∆t

t0

V (t1)

{
V (t1) + V (t0)

2

}
(t1 − t0)dt1

+O(∆t3)

=
∆t2

4

{
V (t0 + ∆t)2 + V (t0 + ∆t)V (t0)

}
+O(∆t3).

(2.78)

Putting all these integrals together we can rewrite the Dyson series in Eq. (2.74)

as

T exp

{
− i
~

∫ t+∆t

t0

H(s)ds

}
≈ 1− i∆t

~
(T + Vl)−

∆t2

2

(
T 2 +

1

2
V (t0 + ∆t)2

+V (t0 + ∆t)T + TVl +
1

2
V (t0 + ∆t)V (t0)

)
+O(∆t)3,

= 1− i∆t
~

(T + Vl)−
∆t2

2~2

(
T 2 + V 2

l + TVl + VlT
)

+O(∆t3),

(2.79)

Now we can compare this expression with the one in Eq. (2.74) expanding the

exponential terms,

exp

{
−iVl∆t

2~

}
exp

{
−iT∆t

~

}
exp

{
−iVl∆t

2~

}
≈ 1− i∆t(T + Vl)

~
− ∆t2(T + Vl)

2

2~2
+O(∆t3)

= 1− i∆t
~

(T + Vl)−
∆t2

2~2

(
T 2 + V 2

l + TVl + VlT
)

+ O(∆t3). (2.80)

Through comparison of Eqs. (2.79) and (2.80) we can see that the error between

them is of order ∆t3. Provided we have a small enough ∆t this should be

negligible as the terms proportional to ∆t3 can be neglected. As discussed earlier

the particular strength of this method lies in the fact that in momentum and

position space the T and V operators respectively are simple multiplications.
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2.3.2 Quantum Trajectories

In this section we will discuss a method for numerically solving master equations

called the Quantum Trajectories approach which will be used in Chapter 4.

First we can write the master equation describing the time evolution of an open

quantum system as
∂

∂t
ρ(t) = L(ρ(t)) (2.81)

where L here is a linear super operator that maps operators to operators. Now

we split L into a time dependent J (t) part and a time independent part L0

∂

∂t
ρ(t) = (L0 + λJ (t))ρ(t). (2.82)

We assume that ρ(t) is of the form

ρ(t) = eL0tρ̃(t), (2.83)

and plugging this into Eq. (2.82) we obtain

∂

∂t
ρ(t) = L0ρ(t) + eL0t

∂

∂t
ρ̃(t) = (L0 + λJ (t))ρ(t). (2.84)

Looking at the time dependent part of the equation we can see

∂

∂t
ρ(t) = λe−L0tJ eL0tρ(t). (2.85)

From here the process is very similar to deriving Dyson series in quantum me-

chanics, we integrate Eq. (2.85) and multiply by eL0t to obtain

ρ(t) = eL0tρ(0) + λ

∫ t

0

eL(t−t1)J (t1)ρ(t1)dt1. (2.86)
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We now repeat the same steps iteratively for ρ(ti) i = 1 . . .∞

ρ(t) =
∞∑
i=0

λi
∫ t

0

dti . . .

∫ ti−1

0

dt1

{
eL0(t−ti)J (ti)e

L0(ti−ti−1) . . . (2.87)

J (t1)eL0t1

}
ρ(0).

Letting

ρT (t1, . . . , ti) =
{
eL0(t−ti)J (ti)e

L0(ti−ti−1) . . .J (t1)eL0t1
}
ρ(0). (2.88)

We can write Eq. (2.88) in a simpler looking form

ρ(t) =
∞∑
i=0

λi
∫ t

0

dt1 . . .

∫ ti−1

0

dtiρT (t). (2.89)

The ρT (t) are like the trajectories of the system and the J (ti) are like "jumps"

occurring at times ti, these for example could be spontaneous emission. Let’s

now turn our attention to the system in Chapter 5, which is described by the

master equation

∂

∂t
ρ(t) = − i

~

[
Ĥ3L(t), ρ(t)

]
− γ

2
{ρ(t)|3〉〈3|+ |3〉〈3|ρ(t)}

+ γ|2〉〈3|ρ(t)|3〉〈2|. (2.90)

Using the method developed above we can set λ = 1 and so

L0ρ(t) = − i
~

[H3L, ρ(t)]− γ

2
{ρ(t)|3〉〈3|+ |3〉〈3|ρ(t)} , (2.91)

J ρ(t) = γ|2〉〈3|ρ(t)|3〉〈2|. (2.92)

We can see now why the J is referred to as a jump as it describes a jump from

state |3〉 to |2〉. For the system in Chapter 5 we assume that we start in some

pure state ρ(0) = |ψ(0)〉〈ψ(0)| and before the first jump it stays in some pure
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state then we can write

∂

∂t
ρ(t) = L0ρ(t) = − i

~
[H3L, ρ(t)]− γ

2
(ρ(t)|3〉〈3|+ |3〉〈3|ρ(t))

=

(
− i

~
H3L −

γ

2
|3〉〈3|

)
ρ(t) + ρ(t)

(
i

~
H3L −

γ

2
|3〉〈3|

)
(2.93)

∂

∂t
(|ψ(t)〉〈ψ(t)|) =

(
− i
~
H3L −

γ

2
|3〉〈3|

)
|ψ(t)〉〈ψ(t)|

+|ψ(t)〉〈ψ(t)|
(
i

~
H3L −

γ

2
|3〉〈3|

)
(2.94)

Since the state of the system remains pure then we can equivalently solve the

corresponding Schrödinger-like equation

i~
∂

∂t
|ψ(t)〉 = (H3L −

iγ~
2
|3〉〈3|)︸ ︷︷ ︸

H̃

|ψ(t)〉, (2.95)

with solution

|ψ(t)〉 = e−itH̃/~|ψ(0)〉. (2.96)

it is important to note here that H̃ is non-hermitian and so the time-evolution

is non unitary and the norm is not preserved. Rather, it decays. Now lets turn

our attention to the "jump" in the equation.

J ρ(t) = γ|2〉〈3|ρ(t)|3〉〈2| = γ|2〉〈3|ψ(t)〉〈ψ(t)|3〉〈2| = J3→2|ψ〉〈ψ|J †3→2 (2.97)

We can see from above that the "jump" operator keeps ρ in a pure state. Here

J3→2 is given by

J3→2 =
√
γ|2〉〈3|
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We can now write the ρ(t) operator as follows

ρ(t) =
∞∑
i=0

λi
∫ t

0
dti . . .

∫ ti−1

0
dt1

{
e−iH̃(t−ti)/~J1/2e

−iH̃(ti−ti−1)/~ . . .J1/2e
−iH̃t1/~|ψ(0)〉

}
{
〈ψ(0)|e−iH̃t1/~J †1/2e−iH̃(t2−t3)/~ . . .J †1/2e−iH̃(t−ti)/~

}
. (2.98)

We now have to average about all the trajectories of the system using the

following algorithm discussed in [31]

Quantum Trajectories Algorithm

1. Firstly initialise some state at t = 0, |ψ(0)〉 normalised appropriately

||ψ(0)〉||2 = 1.

2. A random number is then chosen from the interval r ∈ [0, 1].

3. |ψ(t)〉 is time evolved according to the Schrödinger-like equation

i~
∂

∂t
|ψ(t)〉 = (H3L −

iγ~
2
|3〉〈3|)︸ ︷︷ ︸

H̃

|ψ(t)〉, (2.99)

until time t1 which is given by

1− ||ψ(t1)||2 =

∫ t1

0

〈ψ(s)|J†3→2J3→2ψ(s)〉ds = r (2.100)

where the
∫ t1
t0
〈ψ(s)|J†1/2J1/2ψ(s)〉ds is the probability of a jump occurring

during the time interval t = t0 to t1.

4. The system after the jump is in state |2〉 and the wave function is renor-

malised and the time evolution then continues with the new post jump

Hamiltonian.

5. We then repeat the same process starting from step 2 of picking a new

random number r except this time we replace t0 with t1
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6. After sufficiently many iterations we will reach t = tf and we then renor-

malise the state a final time.

7. Finally we sum over a large N of the final states, as an approximate

solution to Eq. (2.98)

ρ(t) ≈ 1

N

N∑
i=1

|ψi(tf )〉〈ψi(tf )|. (2.101)

2.3.3 Imaginary Time Evolution

Here we turn our attention towards a numerical technique for finding the ground

states of an arbitrary stationary Hamiltonian H. This is particularly useful for

dealing many particle interacting systems. Explicitly we assume we have some

Hamiltonian H and we introduce some trial wave function that we will write as

|ψtrial(0)〉 =
∞∑
n=0

cn|φn〉 (2.102)

where the |φn〉 are the unknown energy eigenstates of H with unknown ordered

energy levels E0 < E1 < . . . . Evolving these in time gives

|ψtrial(t)〉 = e−iHt/~|ψtrial(0)〉 (2.103)

=
∞∑
n=0

cne
−iEnt/~|φn〉. (2.104)

Now consider the variable transformation τ = it, τ ∈ R, switching the time to

imaginary so we can write

|ψtrial(τ)〉 =
∞∑
n=0

cne
−Enτ/~|φn〉. (2.105)

Immediately we can see from Eq. (2.105) that during time propagation all the

bound states of the Hamiltonian H decay at a rate proportional to their energy.
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To see this more clearly we can re-write Eq. (2.105) as Eq. (2.106)

|ψtrial(t)〉 = c0e
−E0τ

(
|φ0〉+

∞∑
n=1

cn
c0

e−τ(En−E0)|φn〉
)
. (2.106)

This process of course doesn’t preserve the norm of the wavefunction and so

to ensure that we obtain the ground state |φ0〉 after enough iterations we must

ensure that we renormalise the wavefunction after each time step. This method

ensures that we obtain the ground state of the Hamiltonian H so long as we

started with a trial wavefunction that had some overlap with the ground state.
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Chapter 3

Fast and robust quantum control

based on Pauli blocking

3.1 Abstract

Coherent quantum control over many-particle quantum systems requires high fi-

delity dynamics. One way of achieving this is to use adiabatic schemes where the

system follows an instantaneous eigenstate of the Hamiltonian over timescales

that do not allow transitions to other states. This, however, makes control dy-

namics very slow. Here we introduce another concept that takes advantage of

preventing unwanted transitions in fermionic systems by using Pauli blocking:

excitations from a protected ground state to higher-lying states are avoided by

adding a layer of buffer fermions, such that the protected fermions cannot make

a transition to higher lying excited states because these are already occupied.

This allows to speed-up adiabatic evolutions of the system. We do a thorough

investigation of the technique, and demonstrate its power by applying it to high

fidelity transport, trap expansion and splitting in ultracold atoms systems in

anharmonic traps. Close analysis of these processes also leads to insights into

the structure of the orthogonality catastrophe phenomenon.
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This chapter is based on the following publication:

Tom Dowdall, Albert Benseny, Thomas Busch and Andreas Ruschhaupt,

Fast and robust quantum control based on Pauli blocking,

Phys. Rev. A 96, 043601 (2017)

I derived the expressions for fidelity of the process along with performing the

calculations of the fidelities for the different manipulations considered. Albert

Benseny and Thomas Busch contributed in the discussion, in particular of the

orthogonality catastrophe. Albert Benseny produced the initial program for

simulating the system dynamics, these were then altered and re-written by

both myself and Andreas Ruschhaupt. All authors contributed to the writing

of the manuscript.

3.2 Introduction

Preparation of and coherent control over many-particle quantum states requires

quantum engineering techniques that lead to high fidelities. Adiabatic processes,

where the system follows an eigenstate of the time-dependent Hamiltonian, are

known to allow for this; however they require that the Hamiltonian is varied

sufficiently slowly in order to avoid transitions to other eigenstates [32]. This

leads to long process times and leaves the system vulnerable to decoherence,

reducing also the possible repetition rates of the process.

How quickly or slowly an eigenstate can be followed depends roughly on the

distance to the next closest-lying eigenstate [32]. Therefore, one strategy for

expediting adiabatic processes is to adjust the instantaneous speed of the process

with respect to the size of the instantaneous level gap such that the transition

probability to unwanted eigenstates remains small during the whole process [33,

34, 35]. This, however, requires the knowledge of the energy eigenspectrum

during the whole process.
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In recent years, a number of techniques to speed up adiabatic processes have

been developed under the name “shortcuts to adiabaticity” [8, 36]. One exam-

ple of these techniques relies on the implementation of an additional counter-

diabatic Hamiltonian, which is designed to compensate for any excitations that

appear during the finite time evolution process, such that the system does not

leave the eigenstates of the original Hamiltonian [37, 38, 39]. However, this ad-

ditional Hamiltonian can be very complicated and thus be demanding to imple-

ment experimentally. Other shortcut techniques are based on Lewis–Riesenfeld

invariant inverse engineering [18], which allow for a fast transfer of all initial

eigenstates simultaneously to all final eigenstates (up to a phase).

Generalizing these techniques to many particle systems is not a straightfor-

ward task, as the number of degrees of freedom increases exponentially with

larger particle numbers. The effects of this are well known and can be seen

immediately when considering one of the most simple systems possible, namely

an ideal, spin-polarized, one-dimensional Fermi gas at low temperatures: even

in the presence of almost perfect single-particle process fidelities, the overlap

between two many-particle wavefunctions scales with N−α, where α depends on

the specific nature of the change between the initial and final Hamiltonian [40].

This is the so-called orthogonality catastrophe (OC) [41, 42], which has recently

been examined for systems of ultracold fermions [43, 44]

Here, however, we show that this behavior does not necessarily limit the

engineering of many-particle states, as the OC does not affect all states inside

a Fermi sea in the same way. In fact, one can always find a kernel of particles

that is essentially unperturbed, and whose size scales with the overall number

of particles. This is due to the fact that transitions inside the Fermi sea are for-

bidden by the Pauli exclusion principle and lead to the so-called Pauli blocking,

which has recently been examined to engineer cold atomic systems [45, 46, 47,

48, 49].

In this work we will consider a system of trapped, ultracold, spin-polarized
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Figure 3.1: (a) Schematic of the key idea: In order for the
particles in the protected zone to remain in the lower energy
eigenstates during a time-dependent change of the external con-
trol parameters, a buffer zone is added. The Pauli principle
then prevents the protected atoms from accessing any level in
the buffer zone and to access an unoccupied level above the
Fermi edge requires a large amount of energy. (b) Fermi gap
∆E = EN+1−EN versus total particle number N for the anhar-
monic trap V (x) = mω2

i (x
2 + λx4)/2 for different anharmonici-
ties λ.
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fermionic atoms, and explore the idea of using Pauli blocking for speeding up

adiabatic evolutions. In addition to the ground state layer of particles that

should be protected from making transitions we are also adding a buffer layer

of particles, see Fig. 3.1(a). The basic idea now is that only the fermions close

to the Fermi edge can make transitions, whereas all atoms inside the Fermi sea

need significantly more energy to get excited. Since we are only interested in the

protected particles, this will allow to carry out adiabatic processes much faster,

as long as the energies introduced by the dynamics do not allow for particles

in the protected layer to make transitions. Once the evolution is finished, the

buffer fermions can be discarded by, for example, lowering the trap walls [50],

weakening and squeezing the trap [51, 52] or inducing spin-flips as in similar

techniques for the evaporative cooling of bosons [53].

As this technique can most easily protect ground states, it is particularly well

suited to prepare initial states in potentials where direct ground-state cooling

is either challenging or done at a different stage than the processing. Ultracold,

spin-polarised fermi gases, which are to first order non-interacting, are usu-

ally cooled to temperatures below the Fermi temperature through sympathetic

cooling with a second atomic component (either bosonic or fermionic) [54]. The

second component is then removed and the experiment on the degenerate gas

is carried out. Since no further sympathetic cooling is possible once the second

component is removed, buffer fermions would allow to protect the ground state.

The idea we present relies on the specific form of the energy spectrum around

the Fermi edge. If the Fermi edge is close to the continuum states in a finite

height potential, it is not guaranteed that the process we investigate will work.

However, if the spectrum becomes increasingly sparse beyond the Fermi edge

(for example in anharmonic trapping potentials, see Fig. 3.1(b)), significant

speedups can be obtained. In fact, in this limit the idea of Hilbert space en-

gineering through quantum statistics is largely independent of the potential

shape, i.e. the exact form of the Hamiltonian.
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Since the technique we discuss below will protect the lower motional energy

states, and since the protection is done by the presence of a Fermi sea, it requires

fermionic samples that are deep within the quantum degenerate regime. For

neutral atoms these can be produced routinely in laboratories worldwide these

days [55, 56, 57] and since the removal of the higher energy particles from a trap

can also be done using standard techniques, we will concentrate in this paper

on the control process itself.

In the following we will first introduce the system we investigate and define

and discuss the process fidelity as our figure of merit. We will then apply the

method in detail to three specific control tasks in Sec. 3.4, and conclude in

Sec. 3.5.

3.3 System and fidelity

We consider a gas of spin-polarized fermions that formally consists of Np par-

ticles whose state we want to protect and Nb particles that form a buffer layer

(see Fig. 3.1(a)), so that the overall number of particles is N = Np +Nb. Since

at ultracold temperatures the dominant scattering interaction is of symmetric

s-wave form, such gases can be efficiently described as non-interacting and they

therefore form a perfect Fermi sea at zero temperature [58]. This also means

that the time evolution of the many-particle wave function, |Ψ(t)〉, can be ob-

tained by solving the single-particle Schrödinger equations for each state within

the Fermi sea

i~
∂

∂t
|ψi(t)〉 =

[
− ~2

2m

∂2

∂x2
+ V (x, t)

]
|ψi(t)〉, (3.1)

where the shape and time-dependence of the potential, V (x, t), depends on the

particular task that is to be implemented. The many particle wavefunction then
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follows from calculating the Slater determinant as

|Ψ(t)〉 =
1√
N

∑
σ∈Π[N ]

sgn(σ)
N∏
i=1

|ψσ(i)(t)〉i, (3.2)

where Π[N ] consists of all the permutations of the set {1, . . . , N}.

3.3.1 Process fidelity

In the following we will consider processes where the Np lowest eigenstates of an

initial Hamiltonian are occupied by Np relevant particles and we aim at having

this subset of the Fermi sea to be undisturbed during the evolution towards the

final Hamiltonian. In order to quantify how well the process works we calculate

the overlap between the evolved state at the final time T , |Ψ〉 ≡ |Ψ(T )〉, and

the lowest lying eigenstates |φi〉(i = 1, . . . , Np) of the Hamiltonian at the end

of the process. In detail, we define the fidelity of the process as

F = 〈Ψ|M̂ Ψ〉, (3.3)

where |Ψ〉 is an element of the fermionic subspace HN
F of the N -particle Hilbert

space HN and the measurement operator M̂ is defined as

M̂ =
1

Nb!

∑
τ∈Π[N ]

M̂ (τ(1)) ⊗ . . . ⊗ M̂ (τ(N)), (3.4)

M̂ (i) =


|φi〉〈φi| if i = 1, . . . , Np,

1 if i = Np + 1, . . . , N.

(3.5)

The operator M̂ (i) checks the occupation probability of the i-th eigenstate of

the Hamiltonian, provided that i ≤ Np, and, as we are not interested in the

population of levels above Np, M̂ (i) acts as the identity for i > Np.

Let P̂F be the projector on the fermionic subspace HN
F . For |Ψ〉 ∈ HN

F , we

have F = 〈Ψ|M̂ Ψ〉 = 〈Ψ|M̂FΨ〉 where M̂F := P̂FM̂ P̂F . One can show by
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using the fermionic number basis states |Φ~n〉 that

M̂F =
∑
~n

|Φ~n〉〈Φ~n|, (3.6)

where the sum is over all vectors ~n fulfilling nj = 1 for j = 1, . . . , Np and∑∞
j=Np+1 nj = Nb. From its structure it is clear that the operator M̂F is a

projector. This proves that always 0 ≤ F ≤ 1 as it should be for a meaningful

fidelity definition.

The fidelity (3.3) can then be rewritten as (see Appendix for details)

F =
∑
U

∣∣∣∣ ∑
σ∈Π[Np]

sgn(σ)

Np∏
i=1

〈ψU(σ(i))(T )|φi〉
∣∣∣∣2, (3.7)

where the first sum U is over all mappings U : {1, . . . , Np} → {1, . . . , N} with

U(i) < U(i+ 1) for i = 1, . . . , Np− 1 (which can be also viewed as all subsets of

cardinality Np of the set {1, . . . , N}). As mentioned above, the states |ψj(T )〉

can be obtained from the single-particle Schrödinger equation (3.1).

From Eq. (3.7), it also follows that F (Nb+1) ≥ F (Nb), i.e. that F increases

monotonically with the number of buffer particles Nb. This can be seen because

∆F = F (Nb+1) −F (Nb) (3.8)

=
∑
U\Ũ

∣∣∣∣ ∑
σ∈Π[Np]

sgn(σ)

Np∏
i=1

〈ψU(σ(i))(T )|φi〉
∣∣∣∣2 ≥ 0

where U are all a subset of cardinality Np of the set {1, . . . , N+1} and Ũ are all

a subset of cardinality Np of the set {1, . . . , N}. Note that from this property

and the fact that F is bounded by 1, we know that the limit limNb→∞F (Nb)

must exist, but it is not necessarily 1.



3.3. System and fidelity 49

3.3.2 Adiabaticity and shortcuts

Let us first look at schemes which work perfectly in the adiabatic limit, i.e., for

T →∞. In this limit one gets |ψj(T )〉+eiζj(t)|φj(T )〉 where the ζj are phases. It

immediately follows from Eq. (3.7) that F = 1. To be more general, if T is large

but finite, we get that |ψi(T )〉 = eiζi(t)|φi(T )〉 + 1
T
|χ(1)
i (T )〉 + 1

T 2 |χ(2)
i (T )〉 + . . .

where the phase of |φi(t)〉 can be chosen in such a way that 〈φi(T )|χ(1)
i (T )〉 =

0. Based on this, we can make a series expansion of the fidelity in the small

parameter 1/T as

F ' 1 +
1

T 2

[
α(0) +

Np∑
µ=1

Nb∑
λ=1

∣∣∣〈χ(1)
Np+λ(T )|φµ(T )〉

∣∣∣2] , (3.9)

where α(0) is an expression independent of Nb. However, it can be seen that all

terms which depend on Nb are always positive and therefore improve the fidelity.

This coincides with the general monotonicity of the fidelity in Nb shown above.

Another special case are settings where shortcuts to adiabaticity techniques

can be applied exactly, like for example the expansion of a harmonic trap [18] or

the transport in a harmonic trap [19]. One can see from the above equation that

one would obtain F = 1 exactly for arbitrary numbers of particles on arbitrary

timescales. In the following, we will therefore concentrate on settings where

a shortcut to adiabaticity cannot be found easily, in particular anharmonic

settings.

3.3.3 Temperature effects

To extend this approach to the case of a finite temperature τ , the initial state

is of canonical form and the probability for a specific occupation m at initial

time is given by

pm =
1

Z
exp

[
− 1

kBτ

N∑
j=1

(Em(j) − Ej)

]
. (3.10)
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Here Z =
∑

m exp
[
−
∑N

j=1(Em(j) − Ej)/kBτ
]
is the partition function and kB

is the Boltzmann constant. The sum is over all functions m : {1, ...N} → N

with m(i) < m(i + 1), i.e. (m(1), . . . ,m(N)) are the numbers of the energy

eigenstates occupied by the N fermions and the Ej are the ordered eigenenergies

of the Hamiltonian at the initial time. The finite-temperature fidelity will then

be the average over the fidelities of the different possible permutations of the

particles

F =
∑
m

pmFm, (3.11)

where Fm is the fidelity defined similar to the one above with just the states in

(m(1), . . . ,m(N)) initially occupied instead of (1, . . . , N):

Fm =
∑
U

∣∣∣∣ ∑
σ∈Π[Np]

sgn(σ)

Np∏
i=1

〈ψm(U(σ(i)))(T )|φi〉
∣∣∣∣2. (3.12)

Note that while this sum is in principle infinite, we will truncate it for its

numerical evaluation at a maximal energy level chosen such that the result is

practically independent from the exact level of truncation.

3.4 Control tasks

In this section we focus on particles trapped in potentials with significant an-

harmonicities, such that these cannot be treated as perturbations, and discuss

three manipulation examples: expansion, transport, and splitting of the trap.

For small (or zero) trap anharmonicity shortcuts for expansion and transport

have been derived [8, 19, 59, 60, 61] and shortcuts related to the splitting can

be found, for example, in [62, 63].

This broad variety of tasks will show that, in contrast to other shortcut-

to-adiabaticity protocols, the idea presented here is insensitive to the details of

how the trap parameters are varied in time and does not require any specific

time-dependence parameter functions which might be very complex and hard to
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implement experimentally. The only parameter is the number of buffer particles,

Nb, and we will show below how the fidelity depends on the size of the buffer

for each of the three processes.

3.4.1 Trap expansion

We first consider the expansion of the trapping potential, which we choose to

be of the form

V (x, t) =
m

2
ω(t)2

(
x2 + λx4

)
, (3.13)

and in which the anharmonicity is quantified by the parameter λ. We set

λ = mωi/~ such that the anharmonicity is significant and far from being just a

small perturbation. For the control task the trapping frequency ω(t) is changed

from ωi at t = 0 to ωf at t = T and we consider two different forms of the

time-dependence, linear and sinusoidal, respectively given by

ωlin(t) = ωi + (ωf − ωi)
t

T
, (3.14)

ωsin(t) = ωi + (ωf − ωi) sin2

(
πt

2T

)
. (3.15)

The resulting fidelities F for both schemes are shown in Fig. 3.2(a) for Np = 2.

One can clearly see that adding just a small number of buffer particles leads to

significantly larger F , even at total times for which the fidelity without buffer

particles was very low. We also see that this is independent of the control

scheme, underlining the fact that our method does not depend on the precise

time-dependence of the control parameters. Nonetheless, it can be seen that

the sinusoidal scheme generally results in larger F than the linear scheme for

fixed T and Nb. Since both schemes yield roughly similar results we will in the

following focus on the sinusoidal scheme only.

The dependence of the fidelity on the number of buffer particles for different

numbers of protected particles Np is shown in Fig. 3.2(b) for a fixed process
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Figure 3.2: Trap expansion with ωf/ωi = 0.01 at a tempera-
ture τ = 0. (a) F versus T ωi for Np = 2; lines indicate the sinu-
soidal scheme and the markers indicate the linear scheme. Nb = 0
(red solid line/circles), Nb = 6 (green dashed line/triangles),
Nb = 12 (blue dotted line/squares). The horizontal black dot-
ted line in (a) and (b) indicates F = 0.95. (b) F versus Nb

for T = 25/ωi with the sinusoidal scheme for different Np. (c)
Minimal number of buffer particles required to achieve F ≥ 0.95

versus T ωi for different Np.
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time of T = 25/ωi. The fidelity increases monotonically with increasing Nb

(for fixed Np), agreeing with the general property of the fidelity derived in

Sec. 3.3. In addition, it is interesting to note that adding an even number of

particles is more effective than adding an odd number. This can be understood

by first considering the extreme case of Np = 1 (red line in Fig. 3.2(b)), where

it can be seen that, if one add a single buffer particle to an even number of

buffer particles, the process fidelity does not change. The reason for this is

that expansion is a symmetric operation with respect to the center of the trap,

i.e. the Hamiltonian commutes with the parity operator. Therefore states of

different parity do not couple and for Np = 1 the subspace of buffer particles in

odd eigenstates completely decouples from the subspace of the single, protected

particle (as the ground state is even) and also from the buffer particles in even

eigenstates. The fidelity then depends only on the even subspace and adding

an additional odd buffer particle has no effect. For larger Np, both subspaces

are involved in the fidelity, making the situation more complex and the effect

less prominent.

Fig. 3.2(b) also illustrates the effect of the OC, as one can see that fidelities

decrease dramatically with larger system sizes (larger Np). However, it is also

worth pointing out that in our situation this is slightly surprising, as due to the

trap anharmonicity, the Fermi gap is bigger for larger Np, see Fig. 3.1(b), and

one could therefore expect the OC to be suppressed for larger systems at fixed

T . Nevertheless, Fig. 3.2(b) clearly shows that adding more particles to the

system increases the fidelity of the relevant, lower lying many-body state, and

therefore allows to beat the OC. In all cases a fidelities F ≥ 0.95 can be achieved

by adding a large enough number of buffer particles and Fig. 3.2(c) shows the

relation between the process time T and the minimal number of buffer particles

Nb,min needed for achieving F ≥ 0.95 for all process times larger than T . It can

clearly be seen that smaller T must be combined with a larger number of buffer

particles, Nb, to result in the desired threshold fidelity.
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Figure 3.3: Trap expansion with a sinusoidal scheme for dif-
ferent number of buffer particles Nb. (a) Fidelity F versus an-
harmonicity λ at temperature τ = 0; the vertical line indicates
λ = mωi/~, to allow easy comparison to Fig. 3.2. (b) Fidelity F
versus temperature τ , λ = mωi/~. In both figures: ωf/ωi = 0.01,
Np = 2 with T = 25/ωi; the horizontal line indicates a fidelity
of F = 0.95; in (b) the dots on the horizontal axis indicate when

the corresponding line crosses this threshold fidelity.

Next, we study the effects of the potential shape and the temperature on our

scheme and start by considering the dependence on F for different (relevant,

non-perturbative) anharmonicities λ. The results shown in Fig. 3.3(a) confirm

that this method does not require a detailed knowledge of the trapping potential,

as for Nb ≥ 8 the fidelity stays always above the threshold fidelity of 0.95 for

the whole range of λ values shown. In fact, we note that the fidelity increases
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with λ as our scheme takes advantage of the increased energy gap at the Fermi

energy for larger λ (see again Fig. 3.1(b)).

Finite temperature results are shown in Fig. 3.3(b) for different numbers

of buffer particles Nb (with fixed T = 25/ωi, Np = 2, λ = mωi/~). and it

can be seen that the scheme is quite stable under temperature perturbations.

Increasing temperatures can be compensated by increasing the number of buffer

particles to achieve the same target fidelity: Nb should be increased by one to

compensate for an increase in temperature of the order of ~ωi/kB (see the dots

in Fig. 3.3(b)). This is also what one would expect heuristically as the “width”

of the edge in the Fermi–Dirac distribution is of the order of kBτ and the energy

gap is of the order ~ωi. As one might expect, the increase of the fidelity is again

monotonic with increasing Nb with finite temperature for the shown parameter

range.

3.4.2 Transport

The second dynamical scheme we examine is the spatial translation of the trap-

ping potential described by

V (x, t) =
1

2
mω2

(
(x− x0(t))2 + λ(x− x0(t))4

)
, (3.16)

and we choose the movement of the trap center x0(t) between xi = x0(0) and

xf = x0(T ) to be of the form

x0(t) = xi + (xf − xi) sin2

(
πt

2T

)
. (3.17)

Let d =
√
~/mω, and we set λ = 1/d2. The resulting fidelities F are shown in

Fig. 3.4(a) for Np = 2 and one can see that, similarly to the expansion scheme,

fidelities of F ≥ 0.95 can be achieved by increasing the number of buffer particles

Nb instead of increasing the total time T . In this case, however, the fidelities
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Figure 3.4: Trap transport with the sinusoidal scheme from
x0i = 0 to x0f = 90d at temperature τ = 0. (a) Fidelity F versus
process time T for different Nb with Np = 2. (b) Fidelity versus
Nb for different Np, T = 11.5/ω. (c) Minimal buffer particles
Nb,min versus process time T for different Np. The horizontal
black dotted lines in (a) and (b) indicate a fidelity of F = 0.95.
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exhibit oscillations for shorter T , giving high fidelities for some specific final

times. This is directly related to the single particle behavior where magic times

exist, for which the transport of the wavepacket becomes optimal [64, 65].

In Fig. 3.4(b) we examine how the fidelity depends on the number of buffer

particles for different numbers of protected particles Np (for a fixed process

time T = 11.5/ω). As expected, adding buffer particles Nb always increases

the fidelity (see again also Sec. 3.3). However, it is worth pointing out certain

differences compared to the expansion scheme (see Fig. 3.2(a)). First, adding

a single buffer particle always has a significant effect and second, the fidelity

is now not monotonic in Np (for fixed Nb and T , compare to Fig. 3.2(b)): all

fidelity lines for the different Np cross the threshold line of F = 0.95 given

enough Nb.

Figure 3.4(c) shows the relation between the process time T and the minimal

number of buffer particles Nb,min required to reach F ≥ 0.95 for all process times

larger than or equal to T . Similar to the expansion scheme, Nb,min goes to 0 for

large enough T and the required buffer is increasing for shorter process times T .

In addition, Nb,min does not have a strong dependence on Np in the transport

case.

The relation between F and temperature τ , for different values of Nb (with

fixed T = 11.5/ω, Np = 2), is shown in Fig. 3.5(a). One can see that the

scheme is again stable against temperature perturbation, however, for increasing

temperature the number of buffer particles Nb has to be increased to still achieve

a fidelity F ≥ 0.95. Again, from the dots on the horizontal axis it can be seen

that Nb has to be increased by one if the temperature increases by an order

of ~ωi/kB. Again, we note that for the temperatures shown there is still the

monotonic increase of the fidelity with increasing Nb.

It is also interesting to note that the fidelity in general does not always de-

crease monotonically with increasing temperature. This can be seen in Fig. 3.5(b),

where a linear transport scheme is considered (with fixed T = 23/ω, Np = 2).
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Figure 3.5: Trap transport from x0i = 0 to x0f = 90d, fidelity
F versus temperature τ for different Nb, Np = 2:(a) Sinusoidal
scheme; Tω = 11.5 (b) Linear scheme x0(t) = x0f t/T ; Tω =
23; the horizontal line indicates F = 0.95, and the dots on the
horizontal axis indicate when the corresponding line crosses this

threshold fidelity.

The fidelity increases for finite temperatures in some cases, but decreases again

for higher temperatures. The reason for this is a complex interplay between

the energy spectrum of the system and the softening of the Fermi edge at finite

temperatures.

3.4.3 Splitting

In our final example we will discuss the process where raising a Gaussian barrier

at the center of a harmonic trap leads to a splitting of the atomic cloud. For
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Figure 3.6: Splitting of a trap from height hi = 0 to hf = 20~ω,
sinusoidal scheme, temperature τ = 0. (a) Fidelity F versus
process time T for different Nb, Np = 2. (b) Fidelity F versus

Nb for different Np, T = 2/ω.

this we choose

V (x, t) =
1

2
mω2x2 + h(t)e−x

2/d2

, (3.18)

where again d =
√
~/mω. The time dependence of the barrier height chosen as

h(t) = hi + (hf − hi) sin2

(
πt

2T

)
, (3.19)

where hi is the initial height of the barrier at x = 0 before the splitting and
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Figure 3.7: Splitting of a trap from height hi = 0 to hf =
20~ω, sinusoidal scheme, temperature τ = 0: Fidelity F versus
temperature τ for different Nb, T = 2/ω, Np = 2. In all figures,
the horizontal black dotted line indicates a fidelity of F = 0.95.

hf after the process. Similarly to the case of expansion, splitting is a symmetric

operation , i.e. the Hamiltonian is commuting with the parity operator. As such

it is expected that even numbers of additional particles are more effective than

are odd numbers. Splitting is also quite distinct from the other manipulations

in that it affects higher energy states in the trap less, whereas transport or

expansion affect the whole spectrum of states in the trap. In the following, we

set hi = 0 and hf = 20~ω, which lead to a final separation in two wells for

approximately the 18 lowest energy eigenstates.

In Fig. 3.6(a) one can see that, as expected, increasing Nb gives higher

fidelities F on shorter timescales and F increases monotonically with T . In

fact, the process is very robust and already for Nb = 3 a fidelity of F ≥ 0.95

can be achieved for almost instant timescales. The dependence of the fidelity on

Nb is shown for different Np in Fig. 3.6(b). For odd numbers of particle Np one

can see an effect similar to the one observed in the expansion process, where an

even number of buffer particles Nb is needed to see an increase in fidelity. This

can again be understood by considering the symmetric nature of the splitting

dynamics. However, while one would naively expect the same for states with
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even numbers of particles Np, it is absent in this case. The reason for this

can be found in the specific structure of the eigenspectrum of the split trap,

where for our parameters successive even and odd eigenstates are effectively

energetically degenerate. An even number of particles in the system therefore

has two particles with energies close to the Fermi edge and adding any number

of buffer particles will lead to an increase in fidelity as one possible transition

is blocked.

Finally, from Fig. 3.7(c), one can see that the splitting is slightly more

sensitive to temperature than the previous two operations. The dots on the

horizontal axis show heuristically that an additional buffer particle is required

for every increase in temperature of about 0.25kB/~ω, while in the previous two

schemes this was about kB/~ω.

3.5 Conclusion

In this work we have explored the idea of using Pauli blocking for speeding

up adiabatic evolution by using an additional layer of buffer particles to pro-

tect the lowest-energy fermions when the system parameters are dynamically

changed. We have presented a thorough investigation, both analytical and nu-

merical, showing that the presence of this additional layer allows the speed-up of

adiabatic manipulations without exciting unwanted transitions. By discussing

three different examples, we have demonstrated that this method is robust and

applicable to a wide range of scenarios.

The proposed technique is particularly well suited to protect ground states

during changes of the external potential, resulting in a speed-up of ground

state preparation in potentials for which these states cannot easily be prepared

directly with high fidelity. The method does not require precise knowledge of the

shape of the trap or the energy spectrum of the system. It is also insensitive

to the details of how the trap parameters are varied in time and no specific
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time-dependence of the parameter functions is necessary, which might be very

complex and hard to implement experimentally. All this makes it a very robust

and readily applicable technique.

In this work we have discussed an ideal fermion system without interactions.

In fact, this is a good approximation for spin polarized, ultracold Fermi gases

where the short-range s-wave interaction between two atoms has to be absent

due to the Pauli exclusion principle, and where higher order scattering terms

are known to be small. Our work is therefore directly applicable to current

experimental settings. Nevertheless, as the Pauli principle is general, the main

idea of our work also applies to fermionic gases in the presence of interactions.

However, the initial and the final states of the many-particle system are no

longer just anti-symmetrized product-states, see Eq. (3.2), and consequently

the fidelity expression given in Eq. (3.3) would need to be adapted. In addi-

tion, the numerical simulations of the time-evolution would become significantly

more demanding, as the full many-body problem needs to be solved. Of course,

for stronger attractive interactions, the relevant Hamiltonian describes pairing

of fermions into Cooper pairs and BCS superfluidity, whereas for positive in-

teractions the BEC limit is realized where the fermions form composite bosons.

The ground state is then a Bose–Einstein condensate of atom pairs. Our idea

is not applicable to either of these limits.

Finally, we would like to stress again that our study gives a deep insight

into the phenomenon of the orthogonality catastrophe. We have shown that

the fidelity of a subsystem can be much larger than the one of the full many-

body system and in particular, that the particles close to the Fermi edge play a

much stronger role in the effect of the many-body state becoming orthogonal.
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3.6 Appendix for chapter 3

We calculate the fidelity of the final state, F = 〈Ψ|M̂ Ψ〉, with the measurement

operator defined by Eq. (3.4), where |Ψ〉 is the state of our N -fermion wave

function after some unitary time evolution. We want to calculate F as a function

of the single-particle states |ψi〉, cf. Eq. (3.2). Expanding the definitions of M̂

and |Ψ〉, we get

F =
1

N !Nb!

∑
σ

∑
p,q

sgn(p) sgn(q)

Np∏
i=1

〈ψp(i)|φσ(i)〉〈φσ(i)|ψq(i)〉
N∏

j=Np+1

〈ψp(j)|ψq(j)〉

=
1

N !Nb!

∑
σ

∑
p,q

sgn(p) sgn(q)

Np∏
i=1

〈ψp(σ−1(i))|φi〉〈φi|ψq(σ−1(i))〉

N∏
j=Np+1

〈ψp(σ−1(j))|ψq(σ−1(j))〉.

Since the |ψi〉 are orthogonal before manipulation (as eigenstates of the Hamil-

tonian), they remain orthogonal after the unitary evolution. Let us also define

P = p ◦ σ−1 and Q = q ◦ σ−1, so that

F =
1

Nb!

∑
P,Q

sgn(P ) sgn(Q)

Np∏
i=1

〈ψP (i)|φi〉〈φi|ψQ(i)〉
N∏

j=Np+1

δP (j)Q(j).

We see that only the permutations that fulfill P (j) = Q(j) for j = Np +

1, . . . , N contribute to the sum. This allows us to rewrite the contributing

permutations as P = µ ◦ πP and Q = µ ◦ πQ. µ should be a permutation µ :

{1, . . . , N} → {1, . . . , N} with µ(i) = P (i) = Q(i) for i > Np and µ(i) < µ(i+1)

for i = 1, . . . , Np − 1. πP = µ−1 ◦ P and πQ = µ−1 ◦ Q are then permutations

on {1, . . . , N} such that they permute {1, . . . , Np} but act as the identity on

{Np + 1, . . . , N}. Note that there is a one-to-one correspondence between P
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and the pair µ, πP . Then we get

F =
1

Nb!

∑
µ

∑
πP ,πQ

sgn(πP ) sgn(πQ)

Np∏
i=1

〈ψµ(πP (i))|φi〉〈φi|ψµ(πQ(i))〉.

This fidelity is independent of µ(Np + 1), ...µ(N). Therefore, for each µ we can

define a mapping U : {1, . . . , Np} → {1, . . . , N} by U(i) = µ(i) for i = 1..Np

such that U(i) < U(i + 1) for i = 1..Np − 1. Note that each U can also be

viewed as a subsets of cardinality Np of the set {1, . . . , N}. As Nb! different µ

result in the same U , this allows us to write the fidelity as

F =
∑
U

∑
πP

∑
πQ

sgn(πP ) sgn(πQ)

Np∏
i=1

〈ψU(πP (i))|φi〉〈φi|ψU(πQ(i))〉

=
∑
U

∣∣∣∣∣∑
πP

sgn(πP )

Np∏
i=1

〈ψU(πP (i))|φi〉

∣∣∣∣∣
2

,

which corresponds to Eq. (3.7).
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Chapter 4

Trapping and cooling particles

using a moving atom diode and an

atomic mirror

4.1 Abstract

We propose a theoretical scheme for atomic cooling, i.e. the compression of

both velocity and position distribution of particles in motion. This is achieved

by collisions of the particles with a combination of a moving atomic mirror and

a moving atom diode. An atom diode is a unidirectional barrier, i.e. an optical

device through which an atom can pass in one direction only. We show that

the efficiency of the scheme depends on the trajectory of the diode and the mir-

ror. We examine both the classical and quantum mechanical descriptions of the

scheme, along with the numerical simulations to show the efficiency in each case.

This chapter is based on the following publication:

T. Dowdall and A. Ruschhaupt,

Trapping and cooling particles using a moving atom diode and an atomic mir-

ror,

Phys. Rev. A 97, 013412 (2018)
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4.2 Introduction

One standard cooling technique for neutral atoms is using magneto-optical traps

[66]. Evaporative cooling of bosons is used for achieving condensates [53] and

ultracold, spin-polarised Fermi gases are usually cooled to temperatures below

the Fermi temperature through sympathetic cooling [54].

Recently another method has been introduced, called single photon cooling

[67, 68, 69], which allows one to cool atoms and molecules which cannot be

handled in a standard way. The method is based on an atom diode or one-

way barrier [70, 71]. An atom diode is a device which allows the atom to pass

through it only in one direction whereas the atom is reflected if coming from the

opposite direction. Such a device has been studied theoretically [68, 72, 73, 74,

75] and also experimentally implemented as a realisation of a Maxwell demon

[76, 77].

A way of changing or reducing the velocity of particles (which does not nec-

essarily correspond to cooling) is letting particles collide with a moving mirror.

An early example is the production of an ultracold beam of neutrons colliding

with a moving Ni-surface [78]. Atomic mirrors can be built using reflection by

an evanescent light field [79, 80]. Moving such an mirrors for cold atom waves

has been also implemented with a time-modulated, blue-detuned evanescent

light wave propagating along the surface of a glass prism [81, 82, 83]. More

recently, the diffraction of a Bose-Einstein condensate on a vibrating mirror

potential created by a blue-detuned evanescent light field was studied [84] and

the reflection of an atomic cloud from an optical barrier of a blue-detuned beam

was used to study first-order and second-order catastrophes in the cloud density

[85]. Even Rb atoms which fall on a magnetic mirror have been examined [86]

and Rb atoms have even been stopped using a moving magnetic mirror [87].

Furthermore solid atomic mirrors have been used for focusing neutral atomic

and molecular beams [88, 89, 90]. Si-crystals on a spinning rotor have been
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used as a solid atomic mirrors to slow down beams of Helium atoms [91, 92].

A stream of particles can be slowed by collision with a moving mirror trav-

elling in the same direction as the particles. One limitation of standard settings

at present is that for a fixed mirror velocity only pulses of particles with a spe-

cific and well defined initial velocity are stopped. In [93], it was shown that by

designing a particular trajectory for the mirror it is even possible to stop a pulse

in which the initial velocities are broadly distributed or possibly unknown. But

slowing an ensemble of atoms solely with one mirror of course does not result

in phase-space compression. In order to achieve this, we introduce a required

irreversible step.

In this work we develop a scheme to cool (i.e compress in phase space) a

travelling cloud of particles. This is done by combining the idea of a moving

mirror with an irreversible atom diode also in motion.

In the next section, we present and investigate our cooling method, first

in an idealised classical setting, i.e. assuming a point-particle with classical

motion. In Section 4.4, we discuss a quantum-mechanical implementation of

our cooling scheme. The paper ends with a conclusion.

4.3 Cooling classical particles with diode and mir-

ror

First we shall investigate a classical scheme for achieving our goals before mov-

ing on to a full quantum treatment of the problem. We assume classical point

particles and restrict the scenario to a one-dimension motion. The setting con-

sists of two main objects: a moving atomic mirror potential and an atom diode.

The particles move freely between the collisions with these two objects. Let us

start by reviewing properties of a single moving atomic mirror potential.
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4.3.1 Elastic collision stopping a single particle with mov-

ing mirror

Figure 4.1: (a) and (b) Diode-mirror setting: A particle ap-
proaches the moving diode-mirror system; it can enter one way
through the diode in (a) but in (b) from the other direction the
diode behaves as another mirror travelling at a different velocity.

A collision between a number bodies is called elastic if there is no loss of me-

chanical energy during the collision. With this in mind consider the collision of

a particle (moving with velocity v0) with a moving mirror (with velocity vm).

The velocity of the particle after the elastic collision is given by

vf = 2vm − v0. (4.1)

It is immediately apparent that if we let vm = v0

2
the particle is stopped instantly

by the collision. We can see that in particular, if a particle has trajectory

x(t) = v0t, the trajectory of the mirror is xm(t) and the collision occurs at time

tc then we have

dxm
dt

∣∣∣∣
tc

=
v0

2
=
xm(tc)

2tc
. (4.2)

We require that the same mirror trajectory should stop all particles independent

of their velocity v0 > 0, i.e. the previous equation should be fulfilled for all

tc > 0. This ordinary differential equation (with tc replaced by t) has then a

solution xm(t) = α
√
t with α > 0. This trap trajectory has been explored in
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[93], where it stops particles of arbitrary velocity. Unfortunately, these particles

can be completely delocalised in space and thus no real cooling (i.e. phase space

compression) is achieved with just a single atomic mirror.
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Figure 4.2: (a) and (b) Motion of the atom diode and the
mirror with trajectories (a) ∼

√
t and (b) ∼ t.
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4.3.2 Cooling with atom diode and atomic mirror

In this paper we propose a slightly different approach. Instead of attempting

to stop the particles we demonstrate a method for cooling them.

A schematic of our setting is seen in Fig. 4.1 (a) and (b): it consists of an

atom diode (d) shown here on the left and a mirror potential (m) on the right,

moving with velocities vd and vm. Let us consider a single particle incident

on the diode from one direction (here from the left to the right) which passes

through (Fig. 4.1) (a). The particle is then reflected by the mirror as a result

its absolute velocity is reduced. However in the next collision the particle is

reflected by the diode which now acts as an atomic mirror (Fig. 4.1) (b).

In Fig. 4.2 (c) and (d) this idea demonstrated again; the particle incident

from the below can pass through the barrier but this particle, when it is then

travelling downwards, is reflected by the diode. This traps the particle in be-

tween the two objects. According to Eq. (4.1) every time the particle collides

with the mirror it experiences a reduction in velocity and every time the particle

is reflected by the diode, its velocity is increased. Since the mirrors is travelling

at a faster velocity than the diode, there is an overall reduction in velocity after

two collisions. The absolute velocities the particle continue to slow down until

the particle is not travelling fast enough to collide with the mirror. Because

the setting confines the particle and the collisions between the particle and the

moving diode/mirror slow down the particle, through continued collisions inside

the diode-mirror trap a cooling can be achieved.

This idea was first proposed in [94] where both diode and mirror travel with

the same velocity ∼ 1/
√
t but they are displaced by a constant distance. With

these trajectories a slight compression in velocity has been achieved.

In this work, we show that the efficiency depends strongly on the trajec-

tories of diode and mirror. By considering different trajectories, we show that

significant phase space compression can be achieved. Motivated by the Section
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4.3.1, we first consider a square-root scheme where the trajectories of diode (d)

and mirror (m) are

xd(t) = αd
√
t, xm(t) = αm

√
t, (4.3)

with αm > αd, see also Fig. 4.2 (c).

Alternatively, we consider a linear scheme where the trajectories of diode

(d) and mirror (m) are

xd(t) = vdt, xm(t) = vmt, (4.4)

with vm > vd, see also Fig. 4.2 (d). As it will turn out later that the linear

scheme is more advantageous than the square root scheme, we derive some

general formulas and properties for the linear scheme first.

4.3.3 Properties of the linear scheme

In the linear case, there is an explicit formula for the velocity of the classical

particle after the nth collisions, namely

vn =

 n(vd − vm) + v0 n even

(n− 1)(vm − vd) + 2vm − v0 n odd
(4.5)

where even n corresponds to the velocity after a diode collision and odd n

corresponds to the velocity after a mirror collision. We can also write down an

expression for the corresponding time tn for which the nth collision happens

tn =
xi

vm − v0

(
n−1∏

k≥2 even

vk − vd
vk − vm

)(
n−1∏
l odd

vl − vm
vl − vd

)
. (4.6)

We can use Eq. (4.5) to calculate the maximum number of collisions (if there

is no further time restriction): After the last collision (n = nmax), we have
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vd ≤ vnmax ≤ vm. From this, it follows:

vd ≤ v0 − nmax∆vmd ≤ vm,

v0 − vm
∆vmd

≤ nmax ≤ v0 − vd
∆vmd

,

r − 1 ≤ nmax ≤ r (4.7)

where ∆vmd = vm−vd > 0 and r =
v0 − vd
∆vmd

. For an even n, with 1 < n ≤ nmax,

it follows therefore that n ≤ r and therefore

v0 − n∆vmd ≥ (n− 2)∆vmd + 2vm − v0,

vn ≥ vn−1. (4.8)

From Eq. (4.5), it also follows immediately that

vn − vn−2 =

 −2∆vmd < 0 n even

2∆vmd > 0 n odd
. (4.9)

We want to recall that vn is an algebraic value here, not the absolute value of

the velocity. In the case of n odd (after a collision with the mirror), vn and

vn−2 are almost always negative, therefore from the statement vn − vn−2 > 0 it

follows that almost always |vn| < |vn−2|.

4.3.4 Comparison of the square-root and linear schemes

for a single particle

Let vm = d/T where d is the final position of the mirror and T is the total time,

vm is also the velocity of the mirror in the linear scheme. For comparison, we

chose αd/m = vd/m
√
T in the square-root scheme in such a way that the initial

and final position of diode and mirror is the same in both schemes.

In Fig. 4.3, the velocity of the particle vn after a collision is shown versus
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Figure 4.3: Classical setting: graph of the velocity of the par-
ticle as a function of time, each symbol indicates the velocity of
the particle after a collision; parameters for linear scheme (green
dots): vm = d/T , vd = 0.9vm; parameters for square root scheme

(red triangles): αm = vm
√
T , αd = vd

√
T .

time, for the square-root scheme as well as for the linear scheme. We see the

velocity of the particle in the trap tends towards vd ≤ vp(t) ≤ vm for larger

t; furthermore the particle is localised xd(t) ≤ xp(t) ≤ xm(t). We see this

behaviour in the linear case and in the case of the square root; however we do

not see the same level of velocity reduction in Fig. 4.3 in the square-root case

as in the linear case: the reducing of the velocity occurs in the linear trap on a

much shorter timescale than that of the square root trap (it takes much longer

to achieve the same reduction in velocity for the square-root trap).

If we consider again the linear case in Fig. 4.3, then we will also see all

the general properties of Eq. (4.9): the upper branch (corresponds to n even,

i.e. velocities after diode collisions) is decreasing with increasing time (which

correspond to increasing number of collisions), the lower branch (corresponds

to n odd, i.e. velocities after mirror collisions) is increasing with increasing time

(which correspond to increasing number of collisions) and the upper branch is

always above the lower branch.
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(a)

(b)

Figure 4.4: Classical setting: plot of |vf |v0
versus initial particle

velocity v0 and initial particle position x0: (a) velocity vf after
the last collision with the mirror, (b) velocity vf after the last
collision with the diode. Linear scheme (green, lower planes)
and square root scheme (red, higher planes), other parameters

are the same as in Fig. 4.3.

The ratio between final particle velocity after the last mirror resp. diode

collision and the initial particle velocity is shown in Fig. 4.4. We see from

|vf |/v0 < 1 that we have achieved a reduction in velocity. We can compare this

relative performance of the square root and linear schemes. We see the linear

scheme is much more successful for reducing final velocity ( |vf |
v0

displayed) than

the square root scheme. The surfaces begin to approach each other when the

particle that is travelling slowly and starts close to the diode-mirror system.

This is because a slow travelling particle is less likely to collide with the the

diode-mirror system and so is less likely to have achieved any velocity reduction.

From Fig. 4.4 we expect that by sending in a particle or an ensemble with a
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probability distribution of velocity and position, we achieve the cooling desired,

this is examined in the following.

4.3.5 Compression in classical phase space

We now discuss the more general case where we have a cloud of non-interacting

particles characterised by some probability density ρ(t, x, v). In particular we

look at a Gaussian initial distribution given by

ρ(0, x, v) =
1

2π∆v∆x
e
−
[
(x−x0

2∆x )
2
+( v−v02∆v )

2
]
. (4.10)

We calculate the final probability distribution at time t = T , ρ(T, x, v) for

the linear and square root schemes and compare the ability in each case to

cool the cloud. In Fig. 4.5 this comparison between the initial and final velocity

distributions (ρ(t, v) =
∫
dxρ(t, x, v) for t = 0, T ) is shown and we see that both

schemes achieve a reduction in velocity. The linear scheme however achieves a

greater reduction in velocity than the square root one similar to the single

particle case shown in Fig. 4.3 and Fig. 4.4. It is interesting that the final

velocity distribution is independent of the initial average velocity v0 for the

linear scheme. The dots in Fig. 4.5 correspond to the final velocities after the

mirror collision resp. diode collision which are achieved if we consider a single

particle in the diode-mirror system with v0 and x0 being the average velocity

and position of the ensemble.

We find that the positions of the peaks correspond approximately to these

velocities. To underline the compression in phase space, the initial and final

distribution ρ(0, x, v) resp. ρ(T, x, v) is shown in Fig. 4.6 for the linear scheme.

For clarification, both distributions are shown scaled such that their maximum

is one and the initial distribution is also shifted. It can be clearly seen that the

cooling resp. compression in phase space is achieved.
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Figure 4.5: Classical setting: comparison between velocity
distribution using the linear and square root schemes: initial
velocity distribution for both schemes (shifted, black, lowest
broad distribution), final velocity distribution: for the square-
root scheme: v0 = 10vm (red, thick, solid line), v0 = 15vm (red,
thick, dashed line); for the linear scheme: v0 = 10vm (green,
thin, solid line), v0 = 15vm (green, thin, dashed line). The
dots above the plots correspond to a single particle simulation
with initial velocity v0 and initial position x0; other parameters:
x0 = −0.8d,∆x = 0.1d,∆v = 5vm; other parameters are the

same as in Fig. 4.3.

We have shown that the efficiency depends strongly on the trajectories of

atom diode and atomic mirror. It turns out that the linear scheme is much

more efficient that the square-root scheme in the classical setting. Therefore,

we will consider now solely the linear scheme in a quantum setting.

4.4 Quantum Catcher

Inspired by the preliminary and promising classical results, we would like to

consider if such a similar cooling is possible using a quantum mechanical treat-

ment. We again consider a single quantum particle moving in one dimension.

We want the quantum diode-mirror system to operate similarly to the classical
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(a)

(b)

Figure 4.6: Classical setting: (a) shifted initial distribution
ρ(0, x, v) and (b) final distribution ρ(T, x, v). Both distributions
are scaled such that their maximum is one. Linear scheme, v0 =

10vm, other parameters as in Fig. 4.5.

case; we expect however differences as there will be quantum effects and the

dependence on mass in the Schrödinger equation.

4.4.1 Implementing a quantum atom diode and mirror

While the reflection mirror can be realised for example in experiments by an

optical potential, the implementation of an atom diode is less straightforward.
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Figure 4.7: Quantum atom diode and atomic mirror scheme.

A theoretical proposal for such a diode is found for example in [75] and a similar

one (see Fig. 4.7) we use throughout the remaining paper.

We assume a three-level atom where the three levels are represented by |1〉,

|2〉 and |3〉, see Fig. 4.7; the states |1〉 and |2〉 are (meta-)stable and there is

spontaneous emission from state |3〉 to state |2〉. We start with the mirror po-

tential Vm(x) which acts on the atom independent of whether it’s in state |1〉 or

|2〉. For implementation of the atom diode, we assume a coupling between levels

|1〉 and |3〉 with a Rabi frequency Ωp(x). State |3〉 decays quickly with decay

constant γ to the stable state |2〉. Finally there is a state selective potential

Vd(x) (placed on the left hand side of Ωp(x) and Vm(x)) which effects the atom

only if it is in state |2〉. Assume the particle is now incident from the left in

state |1〉 it is then pumped to state |3〉 where it decays to state |2〉 in such a

way that it is then located and therefore trapped between the the two potentials

Vd(x) and Vm(x).
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The master equation for the three level diode-mirror system described above

(neglecting recoil) is

∂

∂t
ρ(t) = − i

~

[
Ĥ3L, ρ(t)

]
−
− γ

2
{ρ(t)|3〉〈3|+ |3〉〈3|ρ(t)}

+γ|2〉〈3|ρ(t)|3〉〈2|. (4.11)

The Hamiltonian is

Ĥ3L = − ~2

2m

∂2

∂x2
(4.12)

+


Vm(x, t) 0 ~Ωp(x, t)/2

0 Vd(x, t) + Vm(x, t) 0

~Ωp(x, t)/2 0 0

 .

The situation is quite different from the classical case because here the proba-

bility density depends on the mass m of the particle chosen.

At initial time t = 0, we start in a pure state and the initial wavefunction

of the particle is a Gaussian (not necessarily a minimum-uncertainty product

one)

ψ0(x) = A× (4.13)

exp

{
− 1

1 + ic

(
m2∆v2

~2
(x− x0)2 + i

mv0

~
(x− x0)

)}

where c =
√

∆x2m2∆v2

~2 − 1
4
and A is a normalisation constant. Note that c ≥ 0

due to the Heisenberg uncertainty relation.

We use the quantum jump/trajectory approach [95, 96, 97, 98] to solve the

above 1D master equation (4.11) numerically. In the quantum-jump approach,

the master equation (4.11) is solved by averaging over “trajectories” with time

intervals in which the wave function evolves with the conditional Hamiltonian

interrupted by random jumps (decay events). In the dynamics before the first
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spontaneous photon emission, we assume that the quenching laser Ωp and the

decay can be approximated by an effective complex potential −iVc(x−xc(t)) =

−i~Ωp(x−xc(t))2

2γ
. To be more explicit, before the jump we model our effective

Hamiltonian by

ĤA = − ~2

2m

∂2

∂x2
+ Vm(x− xm(t))− iVc(x− xc(t)) (4.14)

and after the jump we model our Hamiltonian by

ĤB = − ~2

2m

∂2

∂x2
+ Vm(x− xm(t)) + Vd(x− xd(t)) (4.15)

where

Vd/m(x) = V0,d/me
−x2

2σd/m , Vc(x) = V0,ce
−x2

σc . (4.16)

This means that atomic mirror and the reflecting potential of the atom diode

are both implemented with Gaussian potentials Vd/m(x). To avoid having the

diode, mirror and imaginary potential all starting in the same point, we assume

that all potentials are at rest until a given time trest and only then begin moving

linearly, i.e. their trajectory is

xd/m/c =

 vd/m/ctrest 0 ≥ t ≥ trest

vd/m/ct t > trest

. (4.17)

At final time the velocity-probability distribution is given by ρ(T, v) =

〈v|ρ(T )|v〉, and the position-probability distribution is given by ρ(T, x) = 〈x|ρ(T )|x〉.

4.4.2 Results

In the following, we choose the parameters shown in the caption of Fig. 4.8.

The classical results are independent of the particle mass (as only free motion
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Figure 4.8: Probability distributions: initial distribution
(shifted, black, solid lines), final distributions for the classical
setting (red, thick line), quantum setting with v0 = 10vm (green,
thin line) and quantum setting with v0 = 8vm (blue, dashed
line); (a) velocity space, (b) velocity space zoomed in (c) po-
sition space. Common parameters: vd = 0.9vm, ∆v = 5vm,
x0 = −0.8d, ∆x = 0.1d. Additional parameters in the quantum
setting: V0,d/m = 5 × 106~/T , V0,c = 4 × 104~/T , vc = 0.98vm,

σc = 0.0006d, σd = σm = 0.0001d, m = 1000T~/d2.
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and ideal, elastic collisions with ideal walls are considered). The quantum-

mechanical result depends on the mass. First, we set m = 1000T~/d2 and later

we will examine different mass values.

In Fig. 4.8 the initial and final velocity distribution are shown and there is

a good qualitative correlation between the classical and quantum distributions.

In Fig. 4.8 (a) we see that in both the quantum and classical distributions

are much compressed compared to the original very broad distribution. As

expected the particles are confined between the two walls of the catcher (see

Fig. 4.8 (c)). Therefore the position distribution is much narrower than the

initial distribution, together with the compression in velocity distribution gives

us the cooling we desired. The quantum scheme even retains another interesting

property of the classical system; we see in Fig. 4.8 (b) that, similar to the

classical version, the velocity at final time T is almost independent of the initial

velocity.

In Fig. 4.8 (a) and (b) a difference between the two cases can be seen, the

quantum distribution is significantly broader than the classical; further they are

less smooth. This appears to be partly because of the quenching of the wave

function when it has to transition from being in state |1〉 to state |2〉.

An interesting effect to note however is that the quantum system performs

better than the classical. This effect appears to be due to the broadness of our

potentials Vd/m; in the classical simulation we treat these walls as infinitely high

while in the quantum case they have the form of Eq. (4.16).

Heuristically this cooling scheme works through repeated collisions with the

mirror/diode and so the effect of the broad potential increases cooling as the

particle is reflected far from the centre of the potential. Therefore, in Fig. 4.9,

we examine the effect of reducing σd/m. We see that for smaller σd/m we get

closer agreement between quantum and classical schemes. This is because for

smaller values of σd/m our quantum potentials behave more and more like the

infinite potential barriers in the classical case. As there are so many collisions
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Figure 4.9: Final quantum velocity distribution with decreas-
ing σd/m: σd/m = 0.0008d (blue, thick, solid line), σd/m =
0.0004d (black, dashed line), σd/m = 0.0001d (green, thin,
solid line) and classical distribution (red, dotted line). Vd/m =

5× 105~/T , other parameters are the same as in Fig. 4.8.

that take place in the diode-mirror system it is quite sensitive to tuning of the

parameter σd/m, with broader potentials enabling better cooling in the trap.

To underline further the generality of this cooling method, we now consider

different mass values in Fig. 4.10. We see that for all mass values examined,

we get a similar compression of the velocity distribution. In all these cases,

the position distribution is also located at the end between diode and mirror

potential (similar to the case shown in Fig. 4.8(c)). Therefore, for all mass values

examined, we get a similar compression of the velocity and position distribution,

i.e. cooling of the quantum particle.

All the results are presented using dimensionless variables to underline the

broad applicability of the cooling method. Therefore, the results can corre-

spond to several, different physical settings. For example, the dimensionless

parameters in Fig. 4.10 (red, dotted line) would in the case of the light alkali

7Li and when we assume a 1/e2 beam waist of 1µm, we get σd/m = 0.5µm and

d = 500µm then correspond to T ≈ 13.8ms and v0 ≈ 0.36ms−1.
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Figure 4.10: Final quantum velocity distribution with different
masses: m = 500T~/d2 (green, thin, solid line), m = 1000T~/d2

(black, dashed line), m = 1500T~/d2 (blue, thick, solid line)
and m = 2000T~/d2 (red, dotted line). Vd/m = 5 × 105~/T ,
σd/m/c = 0.001d, other parameters are the same as in Fig. 4.8.

4.5 Conclusion

In this paper we have presented a method for trapping and cooling particles

using an atom diode-mirror system. We investigated different trajectories for

the diode and the mirror. In particular we found a strong dependence of the

efficiency on the trajectory: through classical numerical simulations of linear

and square root trajectories we deduced the advantages of the linear scheme

for cooling. We propose a way to implement the atom diode and mirror system

quantum mechanically; we then applied it to the trapping and cooling of a

quantum particle. Through further numerical simulations we demonstrated that

we can achieve cooling also in this quantum setting. Especially, we examined

several parameter setting to underline the the broad applicability of this cooling

method.
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Chapter 5

Fast and robust moving of atoms

through an optical lattice

Abstract

Precise control of quantum particles is required for many interesting or novel

experiments. Here we consider the task of moving atoms from one well of an

optical lattice to another without motional excitations. To achieve this we apply

techniques from Shorctuts to Adiabaticity (STA) enabling fast and robust state

manipulation. The process is split up into three independent building blocks;

first the atoms must be loaded into an additional external harmonic trap; this

trap is then moved from one lattice site to another and finally is it unloaded

back onto the lattice by decreasing the frequency of the external harmonic trap.

5.1 Introduction

Robust high fidelity control of quantum systems is essential for all quantum

technologies. Of particular interest is the movement of particles without energy

excitations. Optical tweezers have become a common approach to enable pre-

cise control of single atom experiments and in recent years have been used to

atom-by-atom assemble arrays in two and three dimensions [99, 100]. A major
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application of these optical tweezers has been as a means of transporting par-

ticles [101] and trying to achieve robust and lossless transport on shorter than

adiabatic timescales [102].

Other applications of optical tweezers are used to assemble defect-free one-

dimensional arrays of cold neutral atoms [103], motivated by a number of ap-

plications such as many qubit experiments or studying many-body physics in

the Hubbard model such as antiferromagnetic spin chains in an optical lattice

[104] or entangling neutral atoms using local spin exchange [105].

The ability to manipulate arrays of atoms on a lattice immediately has

applications of realizing Maxwell’s demon in a three-dimensional lattice [106].

Here the sorting of a lattice, such that every site is filled, leads to a lower

entropy state. This has potential as a first step towards neutral atom quantum

computers. There are also potential applications in the manipulation of Bose-

Einstein condensates for mixing different species [107] for experiments in many

body quantum physics such as Bose polarons created through impurities in

condensates [108] . Both the transport and loading of atoms are important

goals in all these experiments and applications.

The preparation and manipulation of many-particle systems e.g. Bose-

Einstein condensates, requires fast and robust quantum engineering protocols.

A typical approach to manipulate these quantum systems is through the use of

an adiabatic Hamiltonian; however this Hamiltonian must be varied sufficiently

slowly to avoid excitations [32]. Adiabatic processes have long process times

and are vulnerable to decoherence, this makes them unsuitable for processes

that need to be both fast and robust.

One set of techniques to achieve a more robust manipulation is Shortcuts to

Adiabaticity [8]. This collection of techniques allows for high fidelity preparation

and manipulation of quantum systems on short time-scales. Previous works

have demonstrated the effectiveness of Shortcuts to Adiabatacity for transport

of particles and have extended this treatment to Bose Einstein condensates [11]
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and also to fast trap variations with condensates [12]. In this chapter we seek

to transport atoms across an optical lattice using techniques from Shortcuts

to Adiabaticity, suggesting a new approach to the transport of atoms across

optical lattices. We examine a number of different strategies for achieving fast

and robust transport of atoms or Bose-Einstein condensates over a lattice using

invariant engineering based on the methods of STA.

5.2 Model and STA

We consider a potential consisting of harmonic trap and an optical lattice in

one dimension, the potential V (x, t) of such a system is given by,

V (x, t) =
1

2
mω(t)2(x̂− q0(t))2 + U0 sin2

(
x̂

σ

)
. (5.1)

Where the trap frequency ω(t) and the trap centre position q0(t) are time depen-

dent. We now examine two different systems, first let us start by considering a

single quantum particle governed by the one dimensional Schrödinger equation,

i~
∂

∂t
|ψ(t)〉 =

[
p2

2m
+ V (x, t)

]
|ψ(t)〉. (5.2)

Further we also discuss a Bose-Einstein condensate governed by the Gross-

Pitaevskii equation (G-P Eq.),

i~
∂

∂t
|ψ(t)〉 =

[
p2

2m
+ V (x, t) + g(t)|ψ(x, t)|2

]
|ψ(t)〉. (5.3)

The g(t) here models the atom-atom interaction in the condensate.

Our goal is to move a particle or Bose-Einstein condensate from one lattice

site to another using an external trap. To achieve this we split the moving

process into a number of building blocks as follows:
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• Loading particles initially on a lattice into a harmonic trap,

• Transport of particles confined in a harmonic trap across an optical lattice,

• Opening the harmonic trap and unloading the particles back onto the

lattice.

A schematic of these three building blocks is seen in Fig. 5.1; in (a) there is

a schematic of loading the particles or condensate into the external trapping

potential, (b) shows the transport of the trap across a lattice site and (c) shows

the unloading of the particle or condensate back onto the lattice. Through the

concatenation of these steps we can move particles across many different lattice

sites. We will apply STA techniques to perform each of these building blocks

to achieve fast and robust movement across the lattice.

5.2.1 Single Particle System

We first make a harmonic approximation of the potential in Eq. (5.1) obtaining

V (x, t) =
1

2
mω̃(t)2(x̂− xmin(t))2 + V (xmin), (5.4)

where we have the frequency of the virtual harmonic trap ω̃(t) and trap centre

position for the virtual trap xmin(t) related to the real trap frequency ω(t) and

real trap centre position q0(t) by

ω(t)2 = ω̃(t)2 − Ω2 cos (2xmin(t)/σ) , (5.5)

q0(t) = xmin(t) +
Ω2

ω2
sin

(
xmin(t)

σ

)
cos

(
xmin(t)

σ

)
. (5.6)

We have defined the frequency Ω =

√
2
U0

σ2m
; this Ω corresponds to the fre-

quency of the harmonic approximation of the well of the lattice. We will also

use a time unit T defined by T = 1/Ω. While Eq. (5.6) can not be solved
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(a)

(b)

(c)

Figure 5.1: Schematic of different control tasks: (a) Loading
sample into an external harmonic trap (b) Transporting sample

across a lattice (c) Unloading sample back onto lattice.

analytically we can solve it numerically to find xmin for a given q0.

Now that we have this system written in the form of a harmonic trap we can
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apply the analysis developed in [8] to develop shortcut schemes for it. We want

to start in an eigenstate of the Hamiltonian H(0) and finish in an eigenstate

of the the final Hamiltonian H(tf ), either shifted over a lattice site or with

the harmonic trap turned on or off. To do this we use the method of inverse

engineering using the Lewis-Reisenfeld invariant [15]. A Harmonic potential of

the form in Eq. (5.4) has a dynamical invariant (see Chapter 2)

I(t) =
1

2m
[ρ(p̂−mqc)−mρ̇(x̂− qc)]2︸ ︷︷ ︸

=Â2

+
1

2
mω̃(0)2

(
x̂− qc
ρ

)2

︸ ︷︷ ︸
=B̂2

. (5.7)

The ρ(t) and qc functions are auxiliary functions that obey auxiliary equations

ρ3(ρ̈+ ρω̃2)− ω̃2
0 = 0, (5.8)

q̈c + ω2(qc − xmin) = 0. (5.9)

The Eqs. (5.8) and (5.9) relate the auxiliary functions ρ(t) and qc to the virtual

harmonic trap parameters xmin(t) and ω̃(t).

To derive the appropriate boundary conditions on ρ(t) and qc(t) for high

fidelity state transition, we demand that the HamiltonianH(t) and the invariant

I(t) commute at initial and final times i.e. [I(0), H(0)] = [I(tf ), H(tf )] =

0. From the resulting expressions, we derive the boundary conditions on the

auxiliary functions ρ(t) and qc(t). Therefore we first calculate the commutator

[I(t), H(t)],

[I(t), H(t)] =
1

4

(
1/m2

[
Â2, p̂2

]
+ ω̃2

[
Â2, (x̂− xmin)2

]
+ ω̃2

0

[
B̂2, p̂2

]
+m2ω̃2

0ω̃
2
[
B̂2, (x̂− xmin)2

]
︸ ︷︷ ︸

=0

)

=
~
2i

{
ρ̇

1

m

(
Âp̂+ p̂Â

)
+ ω̃2ρ

(
Â(x̂− xmin) + (x̂− xmin)Â

)
− ω̃

2
0

ρ

(
B̂p̂+ p̂B̂

)}
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=
i~
2

[
(x̂p̂+ p̂x̂)

{
ρ̇2 +

ω̃2
0

ρ2
− ω̃2ρ2

}
+ p̂2

{
−2

ρρ̇

m

}
+ x̂2

{
2mω̃2ρ̇ρ

}
+ p̂

{
2ρ2ω̃2xmin − 2ρ̇(qcρ̇− q̇c)− 2qc

ω̃0

ρ2

}
+ x̂

{
2mω̃2ρ(q̇cρ− ρ̇qc − ρ̇xmin)

}
+
{

2mω̃2ρxmin(ρ̇qc − q̇cρ)
} ]

.

Now we require everything in the curly brackets to be zero at times t = 0 and

t = tf and from this we derive the following boundary conditions on ρ(t) and

qc(t)

ρ(0) = 1; qc(0) = xmin(0)

ρ(tf ) =

√
ω̃(0)

ω̃(tf )
; qc(tf ) = xmin(tf )

ρ̇(0) = 0; q̇c(0) = 0

ρ̇(tf ) = 0; q̇c(tf ) = 0.

We further set boundary conditions on the second derivatives, looking again at

Eqn. (5.8) for initial and final times

ω̃2(0) = −ρ̈(0) + ω̃(0)2

ω̃2(tf ) = −ρ̈(tf ) + ω̃(tf )
2. (5.10)

From Eqn. (5.9) for initial and final times

xmin(0) = xmin(0) +
q̈c(t)

ω̃(t)2

xmin(tf ) = xmin(tf ) +
q̈c(tf )

ω̃(tf )2
. (5.11)

From Eqs. (5.10) and (5.11) we set the boundary conditions ρ̈(0) = ρ̈(tf ) = 0

and q̈c(0) = q̈c(tf ) = 0.
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5.2.2 Bose-Einstein System

In the previous subsection we developed a shortcut framework for moving a

single particle across a lattice site. In the following we will describe how STA

techniques can be applied to a Bose-Einstein condensate; this is based on com-

bining the results of previous work transporting a condensate [11] and varying

the trap parameters for a condensate [12]. The initial ground state and final

state can be found by solving the relevant time-independent Gross-Pitaevskii

equation

µψ0(x) =

[
− ~2

2m
∂2
x +

1

2
mω(t)2(x− x0(t))2 + U0 sin2

(
x̂

σ

)
+g(t)|ψ0(x)|2

]
ψ0(x). (5.12)

We make the same harmonic approximation as in Eq. (5.4) so that the wave-

function evolves according to

i~∂tψ(x, t) =

(
− ~2

2m
∂2
x +

1

2
mω(t)2(x− x0(t))2 + g(t)|ψ(x, t)|2

)
ψ(x, t).

(5.13)

We wish to be able to extend the shortcut framework developed for the linear

case. To do this we make the wavefunction ansatz for Eq. (5.13)

ψ(x, t) = e−iα2(t)x2+iα1(t)x−β(t)−iµτ(t)φ

(
x− qc(t)
ρ(t)

)
= ef(x,t)φ(x̃) (5.14)

with variable transformation x̃ =
x− qc(t)
ρ(t)

. Here φ(x̃) is a solution of the

stationary equation

µφ(x̃) = − ~2

2m
∂2
x̃φ(x̃) +

mω2
0

2
x̃2φ(x̃) + g0 |φ(x̃)|2 φ(x̃). (5.15)
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We now calculate the derivatives of this ansatz Eq. (5.14)

i~∂tψ(x, t) = i~ef(x,t)

[
(∂tf(x, t))φ(x̃) + ∂tφ(x̃)︸ ︷︷ ︸

(∂tx̃)∂x̃φ(x̃)

]

and

− ~2

2m
∂2
xψ(x, t) = − ~2

2m
ef(x,t)[{(∂xf(x, t))2 + (∂2

xf(x, t))}φ(x̃)

+ 2(∂xf(x, t))(∂xx̃(x, t))(∂x̃φ(x̃)) + (∂xx̃(x, t))2(∂2
x̃φ(x̃))

with

∂xx̃(x, t) =
1

ρ(t)
, ∂tx̃(x, t) = − 1

ρ(t)
(x̃ρ̇(t)− q̇c(t)),

∂xf(x, t) = i(α1(t)− 2xα2(t)), ∂2
xf(x, t) = −2iα2(t),

∂tf(x, t) = i(xα̇1(t)− x2α̇2(t) + iβ̇(t)− µτ̇(t)).

We can now insert this into the G-P Eq. (5.15) to get:

1

2m
φ(x̃)

[
g

g0

∣∣∣∣ef(x,t)

∣∣∣∣2m(mω2
0x̃

2 − 2µ)−m2ω2(x− x0)2

+~{2im(∂tf(x, t))~((∂xf(x, t))2 + (∂2
xf(x, t)))}

]
+

~
m
∂x̃φ(x̃)

[
im(∂tx̃) + ~(∂xf(x, t))(∂xx̃)

]
+

~2

2m
(∂2
x̃φ(x̃))

[
(∂xx̃)2 − g

g0

∣∣∣∣ef(x,t)

∣∣∣∣2
]

= 0. (5.16)

We next set the coefficients of φ(x̃), ∂x̃φ(x̃) and ∂2
x̃φ(x̃) to 0. Let us first look

at the coefficient of ∂2
x̃φ(x̃); this coefficient is zero if g(t) = e2βg0

ρ(t)2 . Now looking

at the coefficient of ∂x̃φ we obtain the following two equations

x̃ρ̇− q̇x −
~
m

(α1 − 2(x̃ρ+ qc)α2) = 0,
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and

x̃ (mρ̇+ 2ρα2~)︸ ︷︷ ︸
A

− ~(α1 − 2qcα2)−m(̇q)c︸ ︷︷ ︸
B

= 0.

Solving A = 0 and B = 0 for α1 and α2 gives

α2 = −mρ̇
2ρ~

, (5.17)

α1 =
m

~ρ
(q̇cρ− qcρ̇). (5.18)

Finally let us look at the φ(x̃) term; here we have the same auxiliary equations

as in Eqs. (5.8) and (5.9)

1

2ρ2
C +

m

2ρ2
x̃2 {ρ3(ρ̈+ ρω2)− ω2

0}︸ ︷︷ ︸
D

+mρx̃ {q̈c + ω2(qc − x0)}︸ ︷︷ ︸
E

= 0. (5.19)

We set D = 0 and E = 0; these are the same as the auxiliary equations for the

single particle case Eqs. (5.23) and (5.24). The C in Eq. (5.19) is given by

C =

[
2µ +mq2

c ρ̇
2 − ρ{ρ̇(i~ +mqcq̇c) +mq2

c ρ̈}

+ρ2{2i~(β̇ + iµτ̇) +m(ω2(qc − x0)2 + q̇2
c + 2qcq̈c)}

]
(5.20)

We see that in Eq. (5.19) we have the same auxiliary equations as in the

single particle case allowing us to use the same solutions as in the simpler linear

case. Finally we need to set Im{C} = Re{C} = 0. Im{C} = 0 results in

β(t) = 1
2
ln(ρ(t)), and with Re{C} = 0, we solve for τ(t)

τ =
1

2~µ

∫ t

0

1

ρ2(t̃)

(
2µ+mq2

c (t̃)ρ̇
2(t̃)− 2mρ(t̃)qc(t̃)ρ̇(t̃)q̇c(t̃) +mρ2(t̃)q̇2

c (t̃)

−mρ(t̃)q2
c (t̃)ρ̈(t̃) +mρ2(t̃)qc(t̃)q̈c(t̃) +mρ2(t̃)x0(t̃)q̈c(t̃)

)
dt̃.
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5.2.3 Invariant-based Inverse Engineering

We have control functions for the trap position q0(t) and trap frequency ω(t)

related to the virtual position xmin(t) and virtual frequency ω̃(t) by

q0(t) = xmin(t) +
Ω2

ω(t)2
sin

(
xmin(t)

σ

)
cos

(
xmin(t)

σ

)
(5.21)

ω̃(t)2 = ω(t)2 + Ω2 cos

(
2xmin(t)

σ

)
. (5.22)

The virtual position and virtual frequency are then related to the auxiliary

functions ρ(t) and qc(t) through the auxiliary equations

ρ3(ρ̈+ ρω̃2)− ω̃2
0 = 0, (5.23)

q̈c + ω̃2(qc − xmin) = 0, (5.24)

g(t) =
g0

ρ(t)
. (5.25)

Feschbach resonance can be used to tune the atom-atom interaction according

to Eq. (5.25). We now inverse engineer the Eqs. (5.23) and (5.24) to obtain

ω̃(t)2 = − ρ̈(t)

ρ(t)
+
ω̃(0)2

ρ3
(5.26)

xmin(t) = qc(t) +
q̈c

ω̃(t)2
(5.27)

Next we proceed to discuss the different building blocks using the developed

shortcuts framework. The different control tasks correspond to changing the

boundary conditions on the control and auxiliary functions.
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5.3 Building Blocks

5.3.1 Loading particles into harmonic trap

The goal here is to load the particle or condensate from a lattice into an external

harmonic trap successfully. We start with the external harmonic trap having a

frequency of ω(0) = 0 at initial time t = 0 and ω(tf ) = ωf at final time tf . The

position of the trap remains unchanged in a well of the lattice q0(t) = 0. Now

considering Eqs. (5.23) and (5.24) we see the auxiliary function qc(t) can be set

qc(t) = q0(0) = 0. This leaves us with Eq. (5.23); and so ρ(t) must satisfy the

following boundary conditions,

ρ(0) = 1; (5.28)

ρ(tf ) =

√
ω̃(0)

ω̃(tf )
; (5.29)

ρ̇(0) = ρ̇(tf ) = 0; (5.30)

ρ̈(0) = ρ̈(tf ) = 0. (5.31)

We choose a polynomial of minimal degree that satisfies the above boundary

conditions for ρ(t). We can then substitute this ρ(t) to find the virtual frequency

ω̃(t) as a function of time according to,

ω̃(t)2 = − ρ̈(t)

ρ(t)
+
ω̃(0)2

ρ3
. (5.32)

This approach corresponds to having to tune the external trap frequency ac-

cording to

ω(t)2 = ω̃(t)2 + Ω2, (5.33)

We call this approach the shortcut solution. Note that if the harmonic approxi-

mation is exact, then the corresponding shortcut scheme will achieve a fidelity of
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Figure 5.2: Loading particles into trap: (a) ω/Ω versus t/tf ,
ω0 = 1.219Ω and ωf = 18.257Ω; (b) g/(~Ωσ) versus t/tf , g0 =
0.213(~Ωσ) and gf = 0.913(~Ωσ). Final time: tf = 0.55T (red
solid line), tf = 1.10T (green dashed line) tf = 2.19T (blue

dotted line).
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F = 1 in arbitrarily short timescales. For the case of the Gross-Pitaevskii equa-

tion we must also tune the atom-atom interaction according to Eq. (5.25). We

now simulate the full Schrödinger and Gross-Piteavskii equations using exact

initial states obtained by numerically solving the relevant stationary equations.

We set the parameters as follows; the lattice height U0/(~Ω) = 547.7, the final

frequency of the external harmonic trap is chosen as ωf = 18.257Ω. In Fig

5.2 we plot the control functions ω(t) and in the case of STA g(t) for different

values of tf and we see that the ω(t) function changes for different values of tf

but the g(t) function remains the same; this is because the auxiliary function

ρ(t) is a polynomial of t/tf . In Fig. 5.3 we plot the fidelity F as a function of

final time tf , in (a) for g = 0.0 and in (b) for gf = 0.913(~Ωσ). For comparison

we also consider two alternate schemes, first varying the trap frequency ω(t)

adiabatically according to

ω(t) = (ω(tf )− ω(0)) sin

(
tπ

2tf

)2

+ ω(0).

and second varying the ω(t) as in the shortcut protocol but with constant atom-

atom interaction g(t) = gf = 0.91~Ωσ. We see in Fig. 5.3 that in both scenarios,

the shortcut scheme performs very well for both values of g, achieving fidelities

of F ≥ 0.99 for all times. This is to be expected as the harmonic approximation

in this case is very good and so the shortcut solution is very close to an exact

solution of the problem. The adiabatic scheme however performs poorly in

comparison; in the g = 0 case it fails to achieve high fidelities having F < 0.83

for all time-scales shown. In Fig. 5.3 (b) we see that the third scheme of varying

the ω(t) according to the shortcut protocol but leaving the g fixed doesn’t

achieve the same high fidelities as the full shortcut protocol but performs better

than the adiabatic case. In the case of g = g0 = 0.91(~Ωσ), we see that both the

adiabatic and the fixed g approach are not oscillatory. When considering the

atom-atom interaction we see that the adiabatic scheme performs more poorly
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Figure 5.3: Loading particles into trap: Fidelity F versus final
time tf ; (a) g(t) = 0; (b) gf = 0.91 ~Ωσ. The shortcut solution
(red solid line), the adiabatic solution (blue dotted line), the

constant g solution (green dashed line).

than in the g = 0 case; the shortcut scheme however still achieves the high

fidelities on all time-scales.
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5.3.2 Transport across Lattice Site

In this subsection we want to transport the condensate from one lattice site to

its nearest neighbour. This could of course be concatenated to achieve transport

of the condensate over a number of lattice sites. The external harmonic trap

will thus start at q0(0) = 0 and at final time will be at q0(tf ) = πσ. In addition

the frequency of the external harmonic trap should be the same at initial and

final time ω0 = ω(tf ) = ω(0). We will first discuss a shortcut scheme we call the

variable frequency solution, that exactly solves the Eqs. (5.23) and (5.24). The

key idea here is to alter the harmonic trap frequency ω(t) in such a way that

the virtual trap frequency stays constant i.e. ω̃(t) = ω̃(0) = ω(0)2 + Ω2. This

allows us to solve Eq. (5.23) by setting ρ = 1. In the case of a condensate, this

has the added benefit that there is no need to tune the atom-atom interaction

in time, as g(t) = g(0)/ρ(t) = g. The boundary conditions on the auxiliary

function qc(t) are

qc(0) = 0, qc(tf ) = πσ

q̇c(0) = 0, q̇c(tf ) = 0

q̈c(0) = 0, q̈c(tf ) = 0

We choose a polynomial solution of minimal degree to fulfil these boundary

conditions and so we can calculate the position virtual trap centre as

xmin(t) = qc(t) +
1

ω̃2
q̈c(t)

and the control function for the actual trap centre is given by

q0(t) = xmin(t)

+
Ω2

ω(t)2
sin

(
xmin(t)

σ

)
cos

(
xmin(t)

σ

)
. (5.34)
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Figure 5.4: Transporting particles across a lattice site: (a)
ω/Ω versus t/tf ; (b) q0/σ versus t/tf . Final time: tf =
0.55T (red solid line), tf = 1.10T (green dashed line) tf = 2.19T

(blue dotted line).

In addition, for this approach we vary the trap frequency according to

ω(t)2 = ω̃2 + Ω2 cos

(
2xmin(t)

σ

)
= ω2

0 + Ω2

[
1 + cos

(
2xm(t)

σ

)]
(5.35)
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Fidelities based on full Schrödinger/G-P equation

We now simulate the full Schrödinger and Gross-Pitaevskii equations with an

exact initial and final state using these schemes i.e. we assume first that the

previous loading of the particles into the trap had fidelity one.

Both the trap centre position q0(t) and trap frequency ω(t) control functions

are shown in Fig. 5.4 with the frequency ω(t) shown in (a) and the trap centre

position q0(t) shown in (b). The fidelities for different final times tf are shown

in Fig. 5.5 as the red solid line for g = 0 in figure (a), for g = 9.13 ~Ωσ in

(b) and for g = 91.3 ~Ωσ in (c). This variable frequency solution approach

performs very well achieving high fidelities even on very short time-scales. This

solution performs the best for both values of g shown. This result however is

not surprising as it is the only exact solution to the auxiliary Eqs. (5.23) and

(5.24). For a more indepth, look we examine the threshold time t0.99 which is

defined as the time for which the fidelity F ≥ 0.99 for all times t ≥ t0.99. We

plot this quantity t0.99 for different frequencies ω0 in Fig. 5.7. We see that the

threshold time t0.99 decreases as initial trapping frequency ω0 is increased for

all values of g.

Approximated transport schemes

We now consider two approximated transport schemes assuming ω0 � Ω; in

particular we look at these because these two schemes do not require the tuning

of the external harmonic frequency ω(t) during the transport.

The first approximated scheme is achieved by neglecting the Ω2 term in Eq.

(5.35) as ω0 � Ω leading to ω(t) = ω(0). This means that we are implementing

the same q0,A1(t) = q0(t) function as the variable frequency scheme (seen in Fig.

5.4 (b)), but still keeping the frequency ω(t) = ω(0) constant during transport.

This we label "first constant frequency approximation".

The second approximation is similar, we also fix ω(t) = ω(0) but here we also
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Figure 5.5: Transporting particles across a lattice site: Fidelity
F versus final time tf , (a) g = 0; (b) g = 0.91~Ωσ; (c) g =
9.1~Ωσ. The shortcut solution (red solid line), the adiabatic
solution (blue dotted line), the constant g solution (green dashed

line).

neglect any terms proportional to Ω2/ω2
0 in Eq. (5.34), giving us the following
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Figure 5.6: Transporting particles across a lattice site: Dif-
ference between variable frequency solution and "second con-
stant frequency approximation": ∆q0/σ versus t/tf . Final time:
tf = 0.55T (red solid line), tf = 1.10T (green dashed line)

tf = 2.19T (blue dotted line).

trap centre function

q0,A2(t) = xmin(t) = qc(t) +
1

ω2
0

q̈c,0(t). (5.36)

We call this the "second constant frequency approximation". More details on

how this is obtained are available in the Appendix 5.5.1.

The particular strength of the above two approximations is that there is no

longer any need to control the trap frequency ω or the atom-atom interaction

g(t) during the transport. Instead the only varying function is the trap centre

position q0(t). Both schemes will result in different trap trajectories, the "first

constant frequency approximation" will have the same trap trajectory q0,A1(t) as

the variable frequency solution derived earlier and shown in Fig. 5.4(b). How-

ever the "second constant frequency approximation" is different. The difference

between the two trajectories q0,A1 and q0,A2 is seen in Fig. 5.4 for different final

times tf . We see that with increasing final time tf , the differences between the

two schemes decrease.
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Similarly to the previous section, we now solve the exact Schrödinger and Gross-

Pitaevskii equations numerically, with exact initial states. We have plotted the

fidelities in Fig. 5.5 for both approximations together with the variable fre-

quency scheme. Both approximation schemes result in high fidelities for g ≥ 0

but perform significantly worse than the variable frequency solution described

earlier. They both achieve fidelities of F ≥ 0.99 later than the variable fre-

quency solution.

We again examine the threshold time t0.99 in Fig. 5.7. We see that while

the variable frequency solution performs the best, the two approximate solu-

tions still give a threshold time t0.99 slightly larger than the variable frequency

solution and do not require control of trap frequency ω(t). This may prove

useful in situations where the frequency of the trapping potential is difficult

to tune. It appears in Fig. 5.7 (a) and (b) that the "first constant frequency

approximation" performs at least as well as the "second constant frequency ap-

proximation" and in some circumstances such as lower g and higher ω, it per-

forms better. We see a different behaviour in 5.7 (c) where the "first constant

frequency approximation" performs worse than the "second constant frequency

approximation" in the case of low ω0, but as well as it otherwise. In Fig 5.8

we again examine the threshold time t0.99, this time against the atom-atom in-

teraction strength g. As with all the previous examples, the variable frequency

solution performs best for all values of g. We do however see that there is a

range of values for g where the "second constant frequency approximation" is

preferable to the "first constant frequency approximation". In a region of val-

ues around 0.1 > g~Ωσ > 0.6 we see that the second approximation performs

much better than the first approximation and performs similarly to the variable

frequency solution.
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Figure 5.7: Transporting particles across a lattice site: Thresh-
old time t0.99 versus ω0 (a) g = 0; (b) g = 0.91~Ωσ; (c) g =
9.1~Ωσ. Exact scheme (red boxes connected with a solid line),
first "simplified approximation" (green diamonds connected by
a dashed line) second "simplified approximation" (blue triangles

connected by a dotted line).
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Figure 5.8: Transporting particles across a lattice site: Thresh-
old time t0.99 versus g/(~Ωσ) for ω0 = 18.257Ω. Variable fre-
quency scheme (red boxes connected with a solid line), first "sim-
plified approximation (green diamonds connected by a dashed
line) second "simplified approximation" (blue triangles con-

nected by a dotted line).

Robustness

In this subsection we examine the robustness of the exact scheme for trans-

porting the trap. We will consider an error in the position q0 and later in the

frequency ω during the transport. First let us consider an error in the trap

position q0 of the form

q0(t) = q0,exact(t) + dε, 0 < t < tf (5.37)

where ε is a small perturbation parameter and d = σπ is the distance between

the two lattice sites. The perturbation only acts during the transportation,

at boundary times q0(0) = q0,exact(0) and q0(tf ) = q0,exact(tf ). The frequency

of the external harmonic trap is chosen as ω0 = 18.257Ω and the final time

is tf = 1.10T . We have plotted the fidelity F versus the perturbation ε in

Fig. 5.9(a). We see that the the region close to ε = 0 retains high fidelities as
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expected showing this variable frequency protocol is stable against this pertur-

bation. We also see that the fidelity F is asymmetric, for ε > 0 F is larger than

those for ε < 0. We see that for the case of g = 0 that the transport is more

stable against this perturbation.

As a second form of perturbation let us consider an error in the trap frequency

ω of the form

ω(t) = ωexact(t)(1 + ε) 0 < t < tf . (5.38)

Here ε is a small perturbation parameter that changes the frequency of the trap.

Again the system is perturbed only during the transport. We have plotted the

fidelity F versus the perturbation ε in Fig. 5.9 (b). Similar to the case above of

perturbation in the trap trajectory q0, we see an asymmetry in the fidelity, in

both the case of g = 0 and g = 0.91 ~Ωσ a perturbation of ε < 0 is preferable

and retains higher fidelities than a perturbation of ε > 0. The g = 0.91 ~Ωσ

scheme performs better than the g = 0.0 for perturbations ε < 0, but for

perturbations ε > 0 the g = 0.0 scheme achieves higher fidelities.

5.3.3 Unloading onto lattice

In this section we now attempt to open the external harmonic trap to unload the

particles back onto the lattice after transport. We start with the frequency of

the harmonic trap ω(0) = ω0 > 0 at initial time t = 0 and finish with ω(tf ) = 0

at final time tf . The position of the external trap stays constant in the well of

a lattice such that q0(t) = nπσ for all t ≥ 0.

There is no change in position of the trap so the auxiliary function qc(t) can be

chosen to be constant qc(t) = q0(0). We can then pick the auxiliary function
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Figure 5.9: Transporting particles across a lattice site: Fidelity
F versus perturbation ε (a) error in q0(t) (b) error in ω(t). g = 0

(red solid line), g = 0.91 ~Ωσ (green dashed line).

ρ(t) to satisfy the following boundary conditions

ρ(0) = 1;

ρ(tf ) =

√
ω̃(0)

ω̃(tf )
;

ρ̇(0) = ρ̇(tf ) = 0;

ρ̈(0) = ρ̈(tf ) = 0.
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Again we choose a polynomial ρ(t) of minimal degree to fulfil these boundary

conditions. This approach corresponds to tuning the external harmonic trap

frequency as follows

ω(t) = ω̃(t) + Ω2.

In the case of the atom-atom interaction, we tune g(t) according to g(t) =

g0/ρ(t) following from earlier results. The unloading is a direct reverse of the

previous loading and in the sense that each of the auxiliary functions ω(t)

and g(t) is the time reversed function from that section. The time dependent

functions ω(t) are shown in Fig. 5.10; these are the time-reversed functions

from the earlier loading section. Again if the harmonic approximation is exact

the fidelity of the scheme would be F = 1 independent of final time tf . We

now, as in previous sections, simulate the full dynamics of the system using

the Schrödinger and Gross-Piteavskii equations with an exact initial state. The

initial frequency of the harmonic trap is chosen to be ωi = 18.257Ω. We have

plotted the fidelity F versus final time t in Fig. 5.11 (a) and (b). Fig. 5.11 (a) is

the same graph as in the loading section and is presented here for convenience.

Similarly to the earlier case of loading particles into the trap, the shortcut

scheme achieves a stable fidelity of F ≥ 0.99 for all times shown. However in

the case of unloading particles back onto the lattice, the adiabatic scheme is

more stable. In the earlier figure Fig. 5.3(b) we saw that for g > 0, the fidelity

as a function of time varies more and does not display the almost monotonic

behaviour seen in Fig. 5.11(b). However, in both the loading and unloading,

the adiabatic protocol doesn’t perform well when compared with the shortcut

protocol or the constant g protocol.

5.4 Conclusion

We have proposed a method utilizing STA for the fast and robust movement

of atoms or a Bose-Einstein condensate across a time dependent optical lattice
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Figure 5.10: Unloading particles back onto lattice: Con-
trol functions for unloading particle out of external trap:

(a)ω/Omega versus t/tf ; (b) g/(~Ωσ) versus t/tf .

by using an external trapping potential. To do this we have broken the moving

process into three independent building blocks: First loading a particle from a

lattice site into an external trapping potential, then transporting the particle

across the lattice and finally unloading the particle from the external trapping

potential back on to a lattice site. We then applied methods from STA to

each of these building blocks to derive control schemes for the external trap.

Concatenating all three of the different building blocks we can move particles
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Figure 5.11: Unloading particles back onto lattice: Fidelity
F versus final time tf , (a) g(t) = 0; (b) g0 = 0.91(~Ωσ). The
shortcut solution (red solid line), the adiabatic solution (blue

dotted line), the constant g solution (green dashed line).

from one lattice site, trap them and then transport them to another and finally

unload them into the target lattice site. Alternative schemes to achieve similar

fidelities but requiring less control were also considered. The sensitivity of

the protocols with respect to trap centre control and trapping frequency were

investigated and the protocols were shown to be robust against these errors.



5.5. Appendices for chapter 5 113

5.5 Appendices for chapter 5

5.5.1 Perturbation approach/Series expansion

The auxiliary equations are

ρ3ρ̈+ ω̃(t)2ρ4 − ω̃(0) = 0 (5.39)

q̈c(t) + ω̃(t)2(qc(t)− xm(t)) = 0 (5.40)

The auxiliary functions can be expanded as

ρ(t) = Σ∞i=0ε
iρi(t) ≈ ρ0(t) + ερ1(t)

qc(t) = Σ∞i=0ε
iqc,i(t) ≈ qc,0(t) + εqc,1(t)

xm(t) = Σ∞i=0ε
ixm,i(t) ≈ xm,0(t) + εxm,1(t).

The ε is a small parameter given by ε = U0/σ
2m, here we only solve up to first

order. Substituting these equations into 5.40 we obtain

ε

{
3ρ2

0ρ1ρ̈0 + ρ2
0ρ̈1 + 4ρ3

0ρ1ω
2
0 + 2ρ4

0 cos

(
2xm,0(t)

σ

)
− 2 cos

(
2xm,0(0)

σ

)}
+

{
ρ3

0ρ̈0 + ω2
0ρ

4
0 − ω2

0

}
= 0, (5.41)

and

ε

{
q̈c,1 + 2 cos

(
2xm,0(t)

σ

)
[qc,0(t)− xm,0(t)]

+ ω2
0(qc,1(t)− xm,1(t)

}
+

{
q̈c,0(t) + ω2

0(qc,0(t)− xm,0(t))

}
= 0. (5.42)

Looking first at order ε0 gives

ρ3
0ρ̈0 + ω2

0ρ
4
0 − ω2

0 = 0
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q̈c,0(t) + ω2
0(qc,0(t)− xm,0(t)) = 0,

we can solve the first equation with ρ0 = 1 allowing us to solve for xm,0(t) by

xm,0(t) = qc,0(t) +
1

ω2
0

q̈c,0(t).

Now looking at order ε1 we get

ρ̈1(t) + 4ρ1(t)ω2
0 + 2(cos

(
2xm,0(t)

σ

)
− cos

(
2xm,0(0)

σ

)
= 0

q̈c,1(t) + 2 cos

(
2xm,0(t)

σ

)
(qc,0(t)− xm,0(t)) + ω2

0(qc,1(t)− xm,1(t)) = 0.

We can thus solve for xm,1(t)

xm,1(t) =
1

ω2
0

{
q̈c,1(t)− 2

ω2
0

q̈c,0 cos

(
2(qc,0(t) + 1

w2
p
q̈c,0(t)

σ

)
+ qc,1(t)ω2

0

}
.

We can then write xm(t) as

xm(t) = qc +
1

ω2
0

q̈c(t)−
2ε

ω4
0

q̈c,0 cos

(
2(qc,0(t) + 1

w2
p
q̈c,0(t))

σ

)
.

In principle we can choose a qc as long as it satisfies the relevant boundary

conditions. We can therefore solve for ρ1(t) as follows

ρ1(t) =
(cos(2ω0t) + sin(2ω0t))

ω0

∫ t

0

(
cos

(
2xm,0(k)

σ

)
− cos

(
2xm,0(0)

σ

))
sin(2ω0k)dk.

Initially both 0th and 1st order perturbation solutions were considered, however

it was found that the 1st order perturbation solutions were performing poorly,

likely as a result of difficulties minimising Eq. (5.5.1) and were abandoned.
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5.5.2 Unsuccessful approaches

Originally in this project we attempted many different unsuccessful approaches

before we found and settled on the methods discussed in the chapter. The two

auxiliary equations that are used are

ρ3(ρ̈+ ρω2(t))− ω2
0 = 0, (5.43)

q̈c + ω2(t)(qc − xmin) = 0. (5.44)

They are coupled through the ω(t) term present in both of them and it is this

which greatly complicates solving them. The first approach was to make some

polynomial ansatz for qc

qc =
n∑
i=0

ait
i

where the order of qc was greater than the number of boundary conditions on

it. From the boundary conditions on qc we could fix the coefficients a0, . . . , a5

in terms of a6, a7 and a8. We then put additional conditions on qc(t) taking

certain values for different values of t,

qc

(
tf
4

)
= b1

qc

(
tf
2

)
= b2

qc

(
3tf
4

)
= b3

We proceeded to solve the first auxiliary equation in Eq. (5.44) for ω(t) and

inserted it into the qc equation. This gave us an expression for ρ(t) and ρ′′(t) in

terms of the three free parameters b1, b2 and b3. We attempted to solve this ex-

pression for ρ(t) numerically using boundary conditions derived earlier for ρ(t)
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and it’s derivatives for different values of bi. We next defined an error function

to represent how well ρ(t) fitted the boundary conditions derived and attempted

to minimise this error by varying over the free parameters bi. Different param-

eter sets were found that minimised the error in ρ(t) but unfortunately none of

them enabled high fidelity transport when the full solution was examined.

After this first attempt, another similar approach was made except that in

this case we truncated the process. Instead of trying to transport the particle

from q0(0) = 0 to q0(tf ) = πσ, the process was broken up into a four even

segments; otherwise the approach was the same. This produced some new ρ(t)

functions but unfortunately these again were unable to satisfy the boundary

conditions well enough to enable sufficiently high fidelity transport.

This process was tried with both the case of the harmonic approximation be-

ing an accurate picture of the potential and also with some higher order terms

included in the expansion.
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Chapter 6

Asymmetric scattering by

non-hermitian potentials

6.1 Abstract

The scattering of quantum particles by non-hermitian (generally nonlocal) po-

tentials in one dimension may result in asymmetric transmission and/or reflec-

tion from left and right incidence. After extending the concept of symmetry

for nonhermitian potentials, eight generalized symmetries based on the discrete

Klein’s four-group (formed by parity, time reversal, their product, and unity)

are found. Together with generalized unitarity relations they determine selec-

tion rules for the possible and/or forbidden scattering asymmetries. Six basic

device types are identified when the scattering coefficients (squared moduli of

scattering amplitudes) adopt zero/one values, and transmission and/or reflec-

tion are asymmetric. They can pictorically be described as a one-way mirror,

a one-way barrier (a Maxwell pressure demon), one-way (transmission or re-

flection) filters, a mirror with unidirectional transmission, and a transparent,

one-way reflector. We design potentials for these devices and also demonstrate

that the behavior of the scattering coefficients can be extended to a broad range

of incident momenta.
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This chapter is based on the following publication:

A. Ruschhaupt, T. Dowdall, M. A. Simón and J. G. Muga

Asymmetric scattering by non-Hermitian potentials,

EPL 120 20001 (2017)

I performed calculations for the explicit forms of the potentials and produced a

number of plots for the paper. I performed a lot of calculations for the explicit

forms of the different potentials to achieve different reflection and transmis-

sion asymmetries. Further I produced many of the plots in the paper and it’s

Appendix. All authors contributed in writing the paper.

6.2 Introduction

The current interest to develop new quantum technologies is boosting applied

and fundamental research on quantum phenomena and on systems with poten-

tial applications in logic circuits, metrology, communications or sensors. Robust

basic devices performing elementary operations are needed to perform complex

tasks when combined in a circuit.

In this paper we investigate the properties of potentials with asymmetric

transmission or reflection for a quantum, spinless particle of mass m satisfy-

ing a one-dimensional (1D) Schrödinger equation. If we restrict the analysis to

transmission and reflection coefficients (squared moduli of the scattering com-

plex amplitudes) being either zero or one, a useful simplification for quantum

logic operations, there are six types of asymmetric devices, see fig. 6.1. These

devices cannot be constructed with Hermitian potentials. In fact for all device

types with transmission asymmetries, which are four of the six possible devices,

the potentials have to be also nonlocal. Therefore, nonlocal potentials play a

major role in this paper. They appear naturally when applying partitioning

techniques under similar conditions to the ones leading to non-hermitian poten-

tials, namely, as effective interactions for a subsystem or component of the full
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wave-function, even if the interactions for the large system are hermitian and

local [109].

Symmetries can be used, analogously to their standard application in atomic

physics to determine selection rules for allowed/forbidden transitions, to predict

whether a certain potential may or may not lead to asymmetric scattering. The

concept of symmetry, however, must be generalized when dealing with non-

hermitian potentials.

The theory in this paper is worked out for particles and the Schrödinger

equation but it is clearly of relevance for optical devices due to the much ex-

ploited analogies and connections between Maxwell’s equations and the Schrödinger

equation, which were used, e.g., to propose the realization of PT-symmetric po-

tentials in optics [110].
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Figure 6.1: Devices with asymmetric scattering (limited to
scattering coefficients being 0 or 1). The dashed and continu-
ous lines represent respectively zero or one for the moduli of the
scattering amplitudes; the bended lines are for reflection ampli-
tudes, and the straight lines for transmission: (a) One-way mir-
ror (T R/A); (b) One-way barrier (T /R); (c) One-Way T-filter
(T /A); (d) Mirror & 1-way transmitter (T R/R); (e) One-way
R-filter (R/A); (f) Transparent, one-way reflector (T R/T ). The
letter codes summarize the effect of left and right incidence, sep-
arated by a slash “/”. T or R on one side of the slash indicate a
unit transmission or reflection coefficient for incidence from that
side, whereas the absence of one or the other letter corresponds
to zero coefficients. An A denotes “full absorption”, i.e., both
moduli of reflection and transmission amplitudes are zero for in-
cidence from one side. For example, T R/A means unit modulus
transmission and reflection from the left and total absorption

from the right.
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Table 6.1: Symmetries of the potential classified in terms of the commutativity or pseudo-hermiticity of H with the
elements of Klein’s 4-group {1,Π, θ,Πθ} (second column). The first column sets a simplifying roman-number code for each
symmetry. The relations among potential matrix elements are given in coordinate and momentum representations in the
third and fourth columns. The fifth column gives the relations they imply in the matrix elements of S and/or Ŝ matrices (S
is for scattering by H and Ŝ for scattering by H†). From them the next four columns set the relations implied on scattering
amplitudes. Together with generalized unitarity relations (6.3) they also imply relations for the moduli (tenth column), and
phases (not shown). The last two columns indicate the possibility to achieve perfect asymmetric transmission or reflection:
“P" means possible (but not necessary), “No” means impossible. In some cases “P" is accompanied by a condition that must

be satisfied.

Code Symmetry 〈x|V |y〉 = 〈p|V |p′〉 = 〈p|S|p′〉 = T l= T r= Rl= Rr= from eq. (6.3) |T l|=1 |Rl|=1
|T r|=0 |Rr|=0

I 1H = H1 〈x|V |y〉 〈p|V |p′〉 〈p|S|p′〉 T l T r Rl Rr P P

II 1H = H†1 〈y|V |x〉∗ 〈p′|V |p〉∗ 〈p|Ŝ|p′〉 T̂ l T̂ r R̂l R̂r |T l|= |T r|, |Rl|= |Rr| No No
III ΠH = HΠ 〈−x|V | − y〉 〈−p|V | − p′〉 〈−p|S| − p′〉 T r T l Rr Rl |T l|= |T r|,|Rl|= |Rr| No No
IV ΠH = H†Π 〈−y|V | − x〉∗ 〈−p′|V | − p〉∗ 〈−p|Ŝ| − p′〉 T̂ r T̂ l R̂r R̂l P , RrRl∗ = 1 P , T rT l∗ = 1

V ΘH = HΘ 〈x|V |y〉∗ 〈−p|V | − p′〉∗ 〈−p′|Ŝ| − p〉 T̂ r T̂ l R̂l R̂r |Rl| = |Rr| P , |Rr,l| = 1 No
VI ΘH = H†Θ 〈y|V |x〉 〈−p′|V | − p〉 〈−p′|S| − p〉 T r T l Rl Rr |T l| = |T r| No P

VII ΘΠH = HΘΠ 〈−x|V | − y〉∗ 〈p|V |p′〉∗ 〈p′|Ŝ|p〉 T̂ l T̂ r R̂r R̂l |T l| = |T r| No P , |T r,l| = 1
VIII ΘΠH = H†ΘΠ 〈−y|V | − x〉 〈p′|V |p〉 〈p′|S|p〉 T l T r Rr Rl |Rl| = |Rr| P No
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6.3 Generalized symmetries

The detailed technical and formal background for the following can be found in

a previous review on 1D scattering by complex potentials [109], a companion to

this article for those readers willing to reproduce the calculations in detail. The

Appendix (Sec. I) provides also a minimal kit of scattering theory formulae that

may be read first to set basic concepts and notation. The notation is essentially

as in [109], but it proves convenient to use for the potential matrix (or kernel

function) in coordinate representation two different forms, namely 〈x|V |y〉 =

V (x, y). “Local” potentials are those for which V (x, y) = V (x)δ(x− y).

For hermitian Hamiltonians, symmetries are represented by the commu-

tation of a symmetry operator with the Hamiltonian. In scattering theory,

symmetry plays an important role as it implies relations among the S-matrix

elements beyond those implied by its unitarity, see e.g. [111] and, for scattering

in one dimension, Sec. 2.6 in [109].

Symmetries are also useful for non-hermitian Hamiltonians, but the math-

ematical and conceptual framework must be generalized. We consider that a

unitary or antiunitary operator A represents a symmetry of H if it satisfies at

least one of these relations,

AH = HA, (6.1)

AH = H†A. (6.2)

For a right eigenstate of H, |ψ〉, with eigenvalue E, eq. (6.1) implies that A|ψ〉

is also a right eigenstate of H, with the same eigenvalue if A is unitary, and

with the complex conjugate eigenvalue E∗ if A is antiunitary. Equation (6.2)

implies that A|ψ〉 is a right eigenstate of H† with eigenvalue E for A unitary

or E∗ for A antiunitary, or a left eigenstate of H with eigenvalue E∗ for A

unitary, or E for A antiunitary. For real-energy scattering eigenfunctions in the
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Table 6.2: Equivalences among symmetries for the potential
elements. Given the symmetry of the upper row, the table pro-
vides the equivalent symmetries. For example, if II is satisfied,
then III=IV holds. In words, if the potential is hermitian, parity
symmetry amounts to parity pseudohermiticity. In terms of the
matrix elements of the potential, if 〈x|V |y〉 = 〈y|V |x〉∗ and also
〈x|V |y〉 = 〈−x|V | − y〉, ∀(x, y), then 〈x|V |y〉 = 〈−y|V | − x〉∗
holds as well. One may proceed similarly for all other relations.
The commutation with the identity (I) is excluded as this sym-

metry is satisfied by all potentials.

II III IV V VI VII VIII
III=IV II=IV II=III II=VI II=V II=VIII II=VII
V=VI V=VII V=VIII III=VII III=VIII III=V III=VI

VII=VIII VI=VIII VI=VII IV=VIII IV=VII IV=VI IV=V

continuum, the ones we are interested in here, E∗ = E. When eq. (6.2) holds

we say that H is A-pseudohermitian [112]. Parity-pseudohermiticity has played

an important role as being equivalent to space-time reflection (PT) symmetry

for local potentials [112, 113]. A large set of these equivalences will be discussed

below. A relation of the form (6.2) has been also used with differential operators

to get real spectra beyond PT-symmetry for local potentials [114, 115].

Here we consider A to be a member of the Klein 4-group K4 = {1,Π,Θ,ΠΘ}

formed by unity, the parity operator Π, the antiunitary time-reversal operator

Θ, and their product ΠΘ. This is a discrete, abelian group. We also assume that

the Hamiltonian is of the formH = H0+V , withH0, the kinetic energy operator

of the particle, being hermitian and satisfying [H0, A] = 0 for all members of

the group, whereas the potential V may be non-local in position representation.

The motivation to use Klein’s group is that the eight relations implied by eqs.

(6.1) and (6.2) generate all possible symmetries of a non-local potential due

to the identity, complex conjugation, transposition, and sign inversion, both in

coordinate or momentum representation, see table 6.1, where each symmetry

has been labeled by a roman number. Interesting enough, in this classification

hermiticity (symmetry II in table 6.1) may be regarded as 1-pseudohermiticity.

Examples on how to find the relations in the fifth column of table 6.1 of S−

and Ŝ-matrix elements (for scattering byH andH† respectively) are provided in
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ref. [109], where the symmetry types III, VI, and VII where worked out. Similar

manipulations, making use of the action of unitary or antiunitary operators of

Klein’s group on Möller operators, help to complete the table.

From the fifth column in table 1, equivalences among the amplitudes for

left and right incidence for scattering by H, (T l,r, Rl,r) or H† (T̂ l,r, R̂l,r), are

deduced, see the Appendix and the four columns for T l,r, and Rl,r in table 6.1.

Together with the generalized unitarity relations Ŝ†S = SŜ† = 1, which in

terms of amplitudes take the form [109]

T̂ lT l∗ + R̂lRl∗ = 1,

T̂ rT r∗ + R̂rRr∗ = 1,

T̂ l∗Rr + T rR̂l∗ = 0,

T lR̂r∗ + T̂ r∗Rl = 0, (6.3)

these equivalences between the amplitudes imply further consequences on the

amplitudes’ moduli (tenth column of table 6.1) and phases (not shown). The

final two columns use the previous results to determine if perfect asymmetry

is possible for transmission or reflection. This makes evident that hermiticity

(II) and parity (III) preclude, independently, any asymmetry in the scatter-

ing coefficients; PT-symmetry (VII) or Θ-pseudohermiticity (VI) forbid trans-

mission asymmetry (all local potentials satisfy automatically symmetry VI),

whereas time-reversal symmetry (i.e., a real potential in coordinate space) (V)

or PT-pseudohermiticity (VIII) forbid reflection asymmetry. A caveat is that

asymmetric effects forbidden by a certain symmetry in the linear (Schrödinger)

regime considered in this paper might not be forbidden in a non-linear regime

[116], which goes beyond our present scope.

The occurrence of one particular symmetry in the potential (conventionally

“first symmetry”) does not exclude a second symmetry to be satisfied as well.

When a double symmetry holds, excluding the identity, the “first” symmetry
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implies the equivalence of the second symmetry with a third symmetry. We

have already mentioned that Π-pseudohermiticity (IV) is equivalent to PT -

symmetry (VII) for local potentials. Being local is just one particular way to

satisfy symmetry VI, namely Θ-pseudohermiticity. The reader may verify with

the aid of the third column for 〈x|V |y〉 in table 6.1, that indeed, if symmetry VI

is satisfied (first symmetry), symmetry IV has the same effect as symmetry VII.

They become equivalent. Other well known example is that for a local potential

(symmetry VI is satisfied), a real potential in coordinate space is necessarily

hermitian, so symmetries V and II become equivalent. These examples are just

particular cases of the full set of equivalences given in table 6.2.



126
C
hapter

6.
A
sym

m
etric

scattering
by

non-herm
itian

potentials

Table 6.3: Device types for transmission and/or reflection asymmetry, restricted to 1 or 0 moduli for the scattering
amplitudes. The fifth column indicates the symmetries in table 6.1 that forbid the device. Figures S1, S2, S3, S4, and S5

can be found in the Appendix to this chapter.

Device type Left incidence Right incidence Code Forbidden by Example
One-way mirror transmits and reflects absorbs T R/A II, III, IV, V, VI, VII, VIII fig. S1
One-way barrier transmits reflects T /R II, III, IV, V, VI, VII, VIII fig. S2
One-way T-filter transmits absorbs T /A II, III, IV, V, VI, VII fig. 6.2, S3

Mirror&1-way transmitter transmits and reflects reflects T R/R II, III, VI, VII fig. S4
One-way R-filter reflects absorbs R/A II, III, IV, V, VII, VIII [117]

Transparent 1-way reflector transmits and reflects transmits T R/T

Table 6.4: Device types allowed for a given symmetry.

Symmetry Allowed devices
I All types
II None
III None
IV T R/R, T R/T
V T R/R
VI R/A, T R/T
VII T R/T
VIII T /A, T R/R
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Combining the information of the last two-columns in table 6.1 with the

additional condition that all scattering coefficients be 0 or 1 we elaborate table

6.3, which provides the symmetries that do not allow the implementation of the

devices in fig. 6.1. The complementary table 6.4 gives instead the symmetries

that allow, but do not necessarily imply, a given device type. The device denom-

inations in fig. 6.1 or table 6.3 are intended as short and meaningful, and do not

necessarily coincide with some extended terminology, in part because the range

of possibilities is broader here than those customarily considered, and because

we use a 1 or 0 condition for the moduli. For example, a device with reflection

asymmetry and with T r = T l = 1 would in our case be a particular “transparent,

one-way reflector”, as full transmission occurs from both sides. This effect has

however become popularized as “unidirectional invisibility” [118, 119]. A debate

on terminology is not our main concern here, and the use of a code system as

the one proposed will be instrumental in avoiding misunderstandings.

6.4 Designing potentials for asymmetric devices

We will show how to design non-local potentials leading to the asymmetric de-

vices. For simplicity we look for non-local potentials V (x, y) with local support

that vanish for |x| > d and |y| > d.

Inverse scattering proceeds similarly to [120], by imposing an ansatz for the

wavefunctions and the potential in the stationary Schrödinger equation

~2k2

2m
ψ(x) = − ~2

2m

d2

dx2
ψ(x) +

∫ d

−d
dyV (x, y)ψ(y). (6.4)

The free parameters are fixed making use of the boundary conditions. The form

of the wavefunction incident from the left is ψl(x) = eikx + Rle−ikx for x < −d

and ψl(x) = T leikx for x > d, where k = p/~. The wavefunction incident from

the right is instead ψr(x) = e−ikxT r for x < −d and ψr(x) = e−ikx + Rreikx for
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Figure 6.2: One-way T-filter (T /A,
∣∣T l∣∣ = 1, T r = Rl = Rr =

0) with potential V (x, y) = |V (x, y)|eiφ(x,y) set for k0 = 1/d. (a)
Absolute value |V (x, y)|; (b) Argument φ(x, y); (c) Transmission
and reflection coefficients:

∣∣Rl∣∣2 (black, solid line),
∣∣T l∣∣2 (green,

solid line), |Rr|2 (blue, tick, dashed line), |T r|2 (red, dotted line).
V0 = ~2/(2md3).
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Figure 6.3: Transparent 1-way reflector with a local PT po-
tential: (a) Approximation of the potential (6.8), real part (green
solid line), imaginary part (blue dashed line). (b,c) Transmission
and reflection coefficients versus momentum kd; left incidence:∣∣Rl∣∣2 (black, solid line),

∣∣T l∣∣2 (green, solid line); right incidence:
|Rr|2 (blue, tick, dashed line), |T r|2 (red, dotted line, coincides
with green, solid line). ε/d = 10−4. (b) α = 1.0~2/(4πm) (c)
α = 1.225~2/(4πm) (the black, solid line coincides here mostly

with the red, dotted and green, solid lines).
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x > d.

Our strategy is to assume polynomial forms for the two wavefunctions in

the interval |x| < d, ψl(x) =
∑5

j=0 cl,jx
j and ψr(x) =

∑5
j=0 cr,jx

j, and also a

polynomial ansatz of finite degree for the potential V (x, y) =
∑

i

∑
j vijx

iyj.

Inserting these ansatzes in eq. (6.4) and from the conditions that ψl,r and

their derivatives must be continuous, all coefficients cl,j , cr,j and vij can be

determined. Symmetry properties of the potential can also be imposed via

additional conditions on the potential coefficients vij. For example we may use

this method to obtain a one-way T-filter (T /A) device (third device in table

6.3) with a nonlocal PT-pseudohermitian potential (symmetry VIII of table

6.1) for a chosen wavevector k = k0. The absolute value and argument of the

resulting potential V (x, y) are shown in figs. 6.2(a) and 6.2(b) together with

its scattering coefficients as function of the incident wave vector, fig. 6.2(c).

As can be seen in fig. 6.2(c) the imposed scattering coefficients are fulfilled

exactly for the chosen wavevector. They are also satisfied approximately in a

neighborhood of k0. In the Appendix, Sec. II, we give further details about the

construction of this potential and we work out other asymmetric devices of fig.

6.1.

6.5 Extending the scattering asymmetry to a broad

incident-momentum domain

The inversion technique just described may be generalized to extend the range of

incident momenta for which the potential works by imposing additional condi-

tions and increasing correspondingly the number of parameters in the wavefunc-

tion ansatz, for example we may impose that the derivatives of the amplitudes,

in one or more orders, vanish at k0, or 0/1 values for the coefficients not only

at k0 but at a series of grid points k1, k2, ... kN , as in [121, 122, 120, 109].
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Here we put forward instead a method that provides a very broad working-

window domain. While we make formally use of the Born approximation, the

exact numerical computations demonstrate the robustness and accuracy of the

approach to achieve that objective by making use of an adjustable parameter

in the potential. The very special role of the Born approximation in inverse

problems has been discussed and demonstrated in [123, 124, 125]. Specifically

we study a transparent one-way reflector T R/T . Our aim is now to find a local

PT-symmetric potential such that asymmetric reflection results, T l = T r =

1, Rr = 0, |Rl| = 1 for a broad range of incident momenta. A similar goal

was pursued in [126] making use of a supersymmetric transformation, without

imposing |Rl| = 1.

In the Born approximation and for a local potential V (x), the reflection

amplitudes take the simple form

Rl = −2πim

p
〈−p|V |p〉, Rr = −2πim

p
〈p|V | − p〉. (6.5)

Defining the Fourier transform

Ṽ (k) =
1√
2π

∫ ∞
−∞

dx V (x)e−ikx (6.6)

we get for k = p/~ > 0:

Rl = −
√

2πim

k~2
Ṽ (−2k), Rr = −

√
2πim

k~2
Ṽ (2k). (6.7)

Assuming that the potential is local and PT-symmetrical, we calculate the

transition coefficient from them using generalized unitarity as |T |2 = 1−Rr∗Rl.



132 Chapter 6. Asymmetric scattering by non-hermitian potentials

To build a T R/T device we demand: Ṽ (k) =
√

2παk (k < 0) and Ṽ (k) = 0

(k ≥ 0). By inverse Fourier transformation, this implies

V (x) = −α ∂

∂x
lim
ε→0

1

x− iε
= α lim

ε→0

1

(x− iε)2

= α lim
ε→0

[
x2 − ε2

(x2 + ε2)2
+ i

2xε

(x2 + ε2)2

]
, (6.8)

which is indeed a local, PT -symmetric potential for α real. α is directly related

to the reflection coefficient, within the Born approximation, Rl = 4πimα/~2.

As the Born approximation may differ from exact results we shall keep α as an

adjustable parameter in the following.

In a possible physical implementation, the potential in eq. (6.8) will be

approximated by keeping a small finite ε > 0, see fig. 6.3(a). Then, its Fourier

transform is Ṽ (k) =
√

2παkeεk (k < 0) and Ṽ (k) = 0 (k ≥ 0). In figs. 6.3(b)

and (c), the resulting coefficients for ε/d = 10−4 and two different values of

α are shown. These figures have been calculated by numerically solving the

Schrödinger equation exactly. Remarkably, the Born approximation contains

all the information required to build the required potential shape up to a global

factor. Such a prominent role of the Born approximation in inverse problems

has been noted in different applications [123, 124, 125]. For a range of α, the

potential gives |Rr| ≈ 0, a nearly constant |Rl|2, and |T r| = |T l| ≈ 1 in a broad

k-domain, see fig. 6.3(b). Adjusting the value of α, fig. 6.3(c), sets |Rl| ≈ 1 as

desired.

6.6 Discussion

Scattering asymmetries are necessary to develop technologically relevant de-

vices such as one-way mirrors, filters and barriers, invisibility cloaks, diodes, or

Maxwell demons. So far much effort has been devoted to build and apply local

PT-symmetric potentials but the possible scattering asymmetries with them
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are quite limited. We find that six device types with asymmetric scattering

are possible when imposing 0 or 1 scattering coefficients. PT-symmetry can

only realize one of them, but this symmetry is just one among eight possible

symmetries of complex non-local potentials. The eight symmetries arise from

the discovery that Klein’s four-group {1,Π,Θ,ΘΠ}, combined with two possi-

ble relations among the Hamiltonian, its adjoint, and the symmetry operators

of the group, eqs. (1) and (2), produce all possible equalities among potential

matrix elements after complex conjugation, coordinate inversion, the identity,

and transposition. In other words, to have all possible such equalities, the

conventional definition of a symmetry A in terms of its commutation with the

Hamiltonian H is not enough, and A-pseudohermiticity must be considered as

well on the same footing. Extending the concept of what a ÒsymmetryÓ is for

complex, non-local potentials is a fundamental, far-reaching step of this work.

This group theoretical analysis and classification is not only esthetically pleas-

ing, but also of practical importance, as it reveals the underlying structure and

span of the possibilities available in principle to manipulate the asymmetrical

response of a potential for a structureless particle.

We provide potentials for the different asymmetric devices including an ex-

ample that works in a broad domain of incident momenta. Although the present

theory is for the scattering of quantum particles, the analogies between quan-

tum physics and optics suggest to extend the concepts and results for optical

asymmetric devices.

Interesting questions left for future work are the inclusion of other mecha-

nisms for transmission and reflection asymmetries (for example nonlinearities

[116, 127], and time dependent potentials [128, 129]), or a full discussion of the

phases of the scattering amplitudes in addition to the moduli emphasized here.

In this paper the properties of the scattering amplitudes have been worked out

assuming that the operator A in the symmetry relations in eqs. (6.1) and (6.2)

is a unitary/antiunitary operator in Klein’s group. We may generalize the study
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to include more general operators, possibly including differential operators, as

was done in [130] for phase transitions of optical potentials, or the operator that

swaps internal states or waveguides [131, 132].

We shall also examine in a complementary paper the physical realization

of complex nonlocal effective potentials. In a quantum optics scenario, simple

examples were provided in [133] based on applying the partitioning technique

[134, 135] to the scattering of a particle with internal structure. The experi-

mental realization of all new symmetries and devices may be challenging, e.g.

to engineer the nonlocality in optics, but there is much to gain. We may expect

progress similar to the successful evolution from theory to actual devices in the

sequence from the first mathematical models of PT-symmetric potentials [136],

to the proposal of an optical realization [110], and to the actual experiments

[137], even if considerable time lapses were needed between the three steps.

6.7 Appendix for chapter 6

6.7.1 I. Scattering amplitudes

We provide a lightning review of scattering amplitudes in 1D. For a more com-

plete account, see [109]. (Citations and table numbers correspond to the main

text. Equation and figure numbers in the Appendix material are indicated as

S1, S2, etc..) We assume p > 0. The amplitudes for scattering by H = H0 +V ,

may be calculated by

Rl = −2πim

p
〈−p|Top(+)|p〉, (6.9)

T l = 1− 2πim

p
〈p|Top(+)|p〉, (6.10)

Rr = −2πim

p
〈p|Top(+)| − p〉, (6.11)

T r = 1− 2πim

p
〈−p|Top(+)| − p〉, (6.12)
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where the l/r superscript indicates left or right incidence, and

Top(+)| ± p〉 =

[
V + V

1

Ep + i0−H
V

]
| ± p〉, (6.13)

where Ep = p2/(2m). To find Born-approximation expressions of the scattering

coefficients (square moduli of the amplitudes), we take Top ≈ V in the expres-

sions of Rl, and Rr. For T l and T r we also include the second order in V , which

contributes to the square in second order due to the 1 in eqs. (6.10) and (6.12).
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Figure 6.4: One-way mirror (T R/A, Rl = −1, Rr = 0) with
potential V (x, y) = |V (x, y)|eiφ(x,y) set for k0 = 1/d. (a) Abso-
lute value |V (x, y)|; (b) Argument φ(x, y); (c) Transmission and
reflection coefficients:

∣∣Rl∣∣2 (black, solid line),
∣∣T l∣∣2 (green, solid

line), |Rr|2 (blue, tick, dashed line), |T r|2 (red, dotted line).
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Figure 6.5: One-way barrier (T /R, Rl = 0, Rr = −1) with
potential V (x, y) = |V (x, y)|eiφ(x,y) set for k0 = 1/d. (a) Abso-
lute value |V (x, y)|; (b) Argument φ(x, y); (c) Transmission and
reflection coefficients:

∣∣Rl∣∣2 (black, solid line),
∣∣T l∣∣2 (green, solid

line), |Rr|2 (blue, tick, dashed line), |T r|2 (red, dotted line).

The on-shell S matrix, see [109], is formed as

S =

 〈p|S|p〉 〈p|S| − p〉

〈−p|S|p〉 〈−p|S| − p〉

 =

 T l Rr

Rl T r

 . (6.14)
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This on-shell matrix relates to the standard S-matrix elements in momentum

representation,

〈p|S|p′〉 = δ(p− p′)− 2iπδ(Ep − E ′p)〈p|Top(+)|p′〉, (6.15)

by factoring out a delta function,

〈p|S|p′〉 =
|p|
m
δ(Ep − E ′p)〈p|S|p′〉.

All the above formulae may be reproduced when the particle is scattered instead

by H† = H0 +V †, giving scattering amplitudes with a hat, T̂ r, T̂ l, R̂r, R̂l, and Ŝ.

Hatted and unhatted amplitudes are not independent, they are linked by the

generalized unitary relation Ŝ†S = SŜ† = 1, whose on-shell matrix elements

lead to the four relations in Eq. (6.3) of the main text. They can be rearranged

to express the transmission amplitudes of H† in terms of those of H,

T̂ l∗ =
T r

T lT r −RlRr
, R̂l∗ = − Rr

T lT r −RlRr
,

T̂ r∗ =
T l

T lT r −RlRr
, R̂r∗ = − Rl

T lT r −RlRr
. (6.16)

6.7.2 II. Examples of potentials for devices with asymmetric-

scattering coefficients

IIa. Nonlocal potentials for devices with transmission asymmetry

To construct asymmetric-transmission devices (|T l| = 1, |T r| = 0, |Rr,l| =

0, 1) we fix the phases of the transmission amplitudes as T l = 1, T r = 0,

and the reflection amplitudes will be specified in each case. We assume the

form V (x, y) =
∑5

i=0

∑1
j=0 vijx

iyj for the potential, plug this ansatz in the

Schrödinger equation (4), and equate equal powers of x. Moreover we demand

that V (−d, y) = 0 = V (d, y) for all y such that the total potential (including
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the vanishing potential for x, y < −d and x, y > d) is continuous.

We consider first an ideal one-way mirror (T R/A) with amplitudes Rl =

−1, Rr = 0. Waves sent from the left are fully reflected, but there is also

perfect transmission, whereas waves sent from the right are absorbed. The

potential that achieves this for k = k0 = 1/d is shown in figs. 6.4(a),(b) where

V0 = ~2/(2md3). Similarly, the potential of a one-way barrier (T /R) is shown

in figs. 6.5 (a),(b) with Rl = 0, Rr = −1. Note that the potential matrices or

potential kernel functions V (x, y) do not have units of energy but units of a force.

In agreement with table 3, these potentials do not satisfy any of the nontrivial

symmetries II, III, ...,VIII. The transmission and reflection coefficients around

k0 are also depicted in figs. 6.4 (c) and 6.5 (c), which show that the desired

values are achieved exactly at k0 but also approximately in some neighborhood

of k0. This holds true for all potentials in this Appendix.

IIb. Nonlocal potentials fulfilling symmetry VIII for devices with

transmission asymmetry

One-way T-filters (T /A) and the mirror&1-way transmitters (T R/R) can be

also constructed using the method described in the previous subsection. Nev-

ertheless, unlike the two devices in the previous subsection, these devices can

fulfill symmetry VIII. We assume now the form V (x, y) =
∑5

i=0

∑5
j=0 vijx

iyj

with vij = (−1)i+jvji. To simplify the potential, we also demand v4,4 = v4,5 =

v5,4 = v5,5 = 0. Moreover we demand that V (−d, y) = 0 = V (d, y) for all y

such that the total potential (including the vanishing potential for x, y < −d

and x, y > d) is continuous. It is also required that Rl = Rr = R, consistent

with table 1.

In fig. 6.2, the potential for the one-way T-filter (T /A), with R = 0, T l = 1,

is shown, and the potential for the mirror&1-way transmitter (T R/R), calcu-

lated for R = −1, T l = 1, is shown in fig. 6.6 where we have chosen k0 = 1/d.

The transmission and reflection coefficients around k0 are also depicted.
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For the first three devices (T R/A, T /R and T /A), it follows from the gener-

alized unitarity relations that one or more of the transmission and reflection am-

plitudes of the corresponding adjoint Hamiltonian will diverge at k = k0 = 1/d

(if the numerator on the right-hand side of these relations stays finite while the

corresponding denominator T lT r −RlRr = −RlRr → 0). In the mirror&1-way

transmitter, it follows from (6.16) that T̂ l = 0, R̂l = −1, T̂ r = −1, R̂r = −1, and

therefore the adjoint Hamiltonian provides a mirror&1-way transmitter device

with l↔ r.
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Figure 6.6: Mirror&1-way transmitter (T R/R, Rl = −1, Rr =
−1) for potential V (x, y) = |V (x, y)|eiφ(x,y) set for k0 = 1/d. (a)
Absolute value |V (x, y)|; (b) Argument φ(x, y); (c) Transmission
and reflection coefficients:

∣∣Rl∣∣2 (black, solid line),
∣∣T l∣∣2 (green,

solid line), |Rr|2 (blue, tick, dashed line), |T r|2 (red, dotted line).
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Figure 6.7: Transparent, one-way reflector T R/T with non-
local PT-symmetric potential V (x, y) = |V (x, y)|eiΦ set for
k0d = 1 so that T l = 1, Rl = −1, T r = −1, Rr = 0. (a) Abso-
lute value |V (x, y)|; (b) Argument φ; (c) Real and (d) Imaginary
part of the transmission and reflection amplitudes: Rl (black,
solid line), T l (green, solid line), Rr (blue, tick, dashed line), T r

(red, dotted line).
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IIc. Devices with asymmetric reflection

In the previous subsections we have already considered two device types with

asymmetric reflection coefficients, namely, the one-way mirror (T R/A), and

the one way-barrier (T /R). These are the only two device types which are

simultaneously asymmetrical for transmission and reflection. Two more types

are possible which have only reflection asymmetry, namely, the one-way R-filter

(R/A), and the transparent one-way reflector (T R/T ). Both are compatible

with symmetry type VI, in particular with local potentials.

A one-way R-filter R/A acts as a perfect absorber from one side and as a

perfect reflector from the other side. It may thus be constructed by adding an

infinite barrier with its edge touching the end of known-perfect absorbers for

one-sided incidence [121, 122, 120, 109]. Local, perfect absorbers can be worked

out for one or more incident momenta, or for a momentum window. According

to table 3, a R/A device cannot have PT-symmetry. Indeed experimental

realizations in optics imply local non-PT-symmetric potentials [118].

The remaining device is a one-way reflector (T R/T ). Specifically, if we set

T l = 1, Rl = 1, T r = −1, Rr = 0, i.e. T l 6= T r but
∣∣T l∣∣2 = |T r|2 = 1, it can be

achieved with a PT-symmetric potential, but it must be non-local, see table 1.

(If we set T l = T r = 1, local forms of the potential are also possible, as demon-

strated in the main text.) For a nonlocal PT-symmetric potential, V (x, y) =

V (−x,−y)∗ for all x, y. We assume the form V (x, y) =
∑5

i=0

∑1
j=0 vijx

iyj with

vij = (−1)i+jv∗ij, in other words, vij must be real for i + j even and purely

imaginary for i + j odd. We also require that V (−d, y) = V (d, y) = 0 for all

y and follow the same procedure described in previous subsections. The non-

local PT-potential found can be seen in fig. 6.7 (a),(b) for k = k0 = 1/d. The

transmission and reflection coefficients around k0 are depicted in fig. 6.7 (c),(d).
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Chapter 7

Conclusion and Outlook

In this thesis have I focused on using Shortcuts to Adiabaticity along with

related techniques and applying them to many particle systems. In this chapter

I will discuss the conclusions from the previous chapters and suggest an outlook

for possible future work.

Fast and Robust control using Pauli blocking

In chapter 3, we considered a novel method to speed up the adiabatic evolution

of a gas of fermions. This method is complementary existing STA methods,

however new techniques were required to deal with the anharmonicity of the

trapping potential as STA methods do not exist for strong anharmonicity. We

used Pauli blocking to induce a large energy gap between fermions in the low

energy states and available unoccupied higher energy states. This was done by

introducing a layer of buffer fermions on top of the low energy subsystem we

were trying to protect.

This method could be used to prepare low energy fermions for different experi-

mental tasks. In this chapter we discussed a number of different manipulations

of the fermion gas, we used this method to transport the subsystem, to open

or close the trap and further to split the gas into a double well. This method

can be applied to a wide range of preparation tasks to provide fast and stable
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evolution to the desired state. Temperature effects on the system were investi-

gated and were found to be avoidable by adding increased numbers of fermions

to the buffer layer.

As an extension to this paper we could consider further control tasks for prepar-

ing many fermion states or combinations of the discussed manipulations, such

as splitting a fermion gas during transport. We could also extend the results to

two and three dimensional gases which are more computationally complex.

Trapping and cooling with atomic mirror-diode

In chapter 4 we presented a method for trapping and cooling particles using

an atom-diode and mirror system. Two different trajectories were studied for

the classical case and a strong dependence of the cooling on the trajectory was

established. Square root and linear trap trajectories were investigated and the

superiority of the linear scheme was deduced. This analysis was then extended

to the trapping and cooling of a quantum particle and cooling was again achieved

in the quantum case. Several different parameter settings were examined and

their effects on the final position and momentum probability distributions were

discussed.

As outlook on this it would worth investigating if it were possible to optimise

the trajectory of the atom-diode system to produce a desired final distribu-

tion. Both atom-diode trajectory and the parameters of the system could be

investigated and varied to produce a final distribution for both position and

momentum.

Additionally as further outlook this method could be extended to trying to
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cool an ensemble of quantum particles. This extension could prove to be par-

ticularly useful as a new method for many particle quantum state preparation.

Transport of atoms through an optical lattice

In chapter 5 we presented used the method of invariant-based inverse engineer-

ing to transport atoms and Bose-Einstein condensates across an optical lattice

by using an external trapping potential. We achieved this by considering three

different building blocks, first loading particles into the external harmonic trap,

second transporting them across a lattice site and third unloading them back

onto the lattice. Different methods were proposed depending on the particular

degree of control of trap frequency and and position available. The sensitivity

of the protocols with respect to trap centre control and trapping frequency were

investigated and the protocols shown to be robust against errors.

A outlook this work could be extended to a more general case for Bose-Einstein

condensates across many lattice sites. Fast and robust transport of Bose-

Einstein condensates has application in condensate mixing experiments [107].

This might require extended methods to those discussed in chapter 5, as the

combination of lattice and external trapping potential is very different across

large numbers of lattice sites. Successful mixing would also require an extension

of the current analysis.

Further outlook could generalise these methods for two and three dimensional

lattices allowing for more general applicability, this should not be particularly

difficult to do although would be substantially more time consuming to simulate.



148 Chapter 7. Conclusion and Outlook

Asymmetric scattering with non-Hermitian poten-

tials

In chapter 6, we investigated devices that produce asymmetries in transmission

and reflection coefficients, to achieve this asymmetry we designed a number

non Hermitian potentials to achieve reflection-transmission asymmetries. These

scattering asymmetries have applications in mirrors, filters, invisibility devices,

diodes and Maxwell demon devices.

The discussion is developed for quantum particles but could be extended to

the design of asymmetrical optical devices. Another avenue for continuing this

work one could consider different ways of producing the desired asymmetries in

transmission and reflection, through introducing time dependence into poten-

tials or considering non-linear systems.

As further outlook one could consider ways to physically implement the the

non local effective potentials discussed. While physical realization of these po-

tentials would be difficult, the technological prospects are extraordinary.
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