
Title Finding optimal alternatives based on efficient comparative
preference inference

Authors Trabelsi, Walid

Publication date 2013

Original Citation Trabelsi, W. 2013. Finding optimal alternatives based on efficient
comparative preference inference. PhD Thesis, University College
Cork.

Type of publication Doctoral thesis

Rights © 2013. Walid Trabelsi - http://creativecommons.org/licenses/by-
nc-nd/3.0/

Download date 2024-04-19 01:48:30

Item downloaded
from

https://hdl.handle.net/10468/1113

https://hdl.handle.net/10468/1113

1

'

&

$

%

Finding Optimal Alternatives based on Efficient Comparative

Preference Inference

Walid Trabelsi

A thesis submitted to the National University of Ireland, Cork

in fulfilment of the requirements for the degree of

Doctor of Philosophy in the Faculty of Science

May 2013

Dr Nic Wilson Supervisor

Dr Derek Bridge Co-Supervisor

Prof Barry O’Sullivan Head of Department

Department of Computer Science,

National University of Ireland, Cork.

Contents

Contents

Abstract viii

Acknowledgements x

Dedication xi

Declaration xii

1 Introduction 1
1.1 Background . 1

1.1.1 Preference representation . 1

1.1.2 Recommender systems . 2

1.1.3 Conversational recommender systems 3

1.1.4 Constrained optimisation . 4

1.2 Problem Statement . 5

1.3 Research Goals and Objectives . 6

1.4 Contributions . 7

1.5 Publications . 9

1.6 Structure of the Thesis . 9

2 Literature Review and Related Work 11
2.1 Introduction . 11

2.2 Preferences: Description . 12

2.2.1 The concept . 12

2.2.2 Elicitation . 13

2.3 Decision Theory . 14

2.3.1 Rationale . 14

2.3.2 Need for preferences in decision making 14

2.3.3 DiUerent decision-making approaches 15

2.3.3.1 Normative decision-making 16

2.3.3.2 Descriptive decision-making 16

ii

Contents

2.4 Representing Preferences . 16

2.4.1 Multi-attribute preferences 17

2.4.2 Graphical models of preferences 17

2.5 Preference Representation in Decision-Making 18

2.5.1 Utility-based assessment . 19

2.5.2 Pairwise comparison-based assessment 20

2.6 Comparative Preference Languages 20

2.6.1 Lexicographic preference models 21

2.6.2 Preferences with other features held constant 23

2.6.3 CP-nets: overview . 23

2.6.4 Some extensions of CP-nets 26

2.7 Even More Expressive Languages . 26

2.8 Preferences-Based Systems . 28

2.8.1 Individual decision aiding . 28

2.8.2 Collective decision aiding . 29

2.8.3 Preferences-based database requests 30

2.9 Recommender Systems . 30

2.9.1 The task . 31

2.9.2 Human computer interaction 32

2.9.3 DiUerent techniques of recommendation 33

2.9.4 Case-based recommender systems 35

2.9.4.1 Single-shot recommender systems 36

2.9.4.2 Conversational recommender systems 36

2.10 Preference Handling Methods in Conversational Recommender Sys-

tems . 38

2.10.1 Critiquing . 38

2.10.2 Some approaches for conversational recommender systems . 39

2.10.2.1 FindMe . 39

2.10.2.2 More Like This & Partial More Like This 40

2.10.2.3 Information Recommendation 40

2.10.3 Some applications of conversational recommender systems . 41

2.10.3.1 Travel planning advisors 41

2.10.3.2 Restaurant advisors 44

2.10.3.3 Music advisor . 45

2.10.3.4 Other applications 45

2.11 Constraint Satisfaction Problem . 46

2.11.1 DeVnitions . 46

2.11.2 CSP solution methods . 48

2.12 Constrained Optimisation . 50

iii

Contents

2.12.1 Constrained optimisation problems: diUerent solution methods 51

2.12.1.1 Complete search . 51

2.12.1.1.1 Exact methods 51

2.12.1.1.2 Search heuristics 52

2.12.1.2 Incomplete search 52

2.12.2 Constrained optimisation: coupled and decoupled approaches 53

2.12.3 Branch and bound . 53

2.12.4 Preference-based complete search 54

2.12.5 Conditional preferences-based constrained optimisation . . . 55

2.12.5.1 CP-net-based constrained optimisation 55

2.12.5.2 Hard and optimality constraints-based constrained

optimisation . 57

2.12.5.3 Constrained CP-net-based constrained optimisation 57

2.12.5.4 Constrained FCP-net-based constrained optimisation 58

2.12.5.5 CP-net-based formulation for constrained optimi-

sation . 59

2.12.5.6 Polynomial constrained optimisation for partial acyclic

CP-net . 59

2.12.5.7 Comparative preference theories-based constrained

optimisation . 60

2.13 Conclusion . 60

3 Dominance for Comparative Preferences 62
3.1 Introduction . 62

3.2 Preference Relations . 62

3.2.1 Preference relations properties 63

3.2.2 Preference relations application 64

3.3 A Comparative Preference Language 65

3.3.1 Conditional preference theories-like statements 65

3.3.2 CP-nets-like statements . 66

3.3.3 TCP-nets-like statements . 66

3.4 Total Pre-orders-Based Dominance: Formal Semantics 66

3.4.1 Total pre-orders-based semantics 67

3.4.2 CP-tree-based semantics . 68

3.4.2.1 Description of a cp-tree 68

3.4.2.2 CP-tree: variable and value orderings 69

3.4.2.3 Comparing two outcomes 70

3.4.2.4 Generation of a compatible ordering of outcomes . 71

3.5 CP-Tree-Based Preference Computation 72

iv

Contents

3.6 Other Preferential Semantics . 76

3.7 Summary . 79

4 Preferences Deduction for Conversational Recommender Systems 80
4.1 Introduction . 80

4.2 The Case Study: Information Recommendation 82

4.2.1 The advisor . 83

4.2.2 The queries . 86

4.2.3 The dialogue . 86

4.2.4 The user . 89

4.3 A Framework for Preference Dominance 90

4.3.1 Ultimate goal: inference . 90

4.3.2 Logical settings . 91

4.3.3 Application . 93

4.4 Sum of weights-Model Approach . 94

4.4.1 Models . 94

4.4.2 Constraint language . 94

4.4.3 Dominance relation . 95

4.4.4 Dominance computation . 95

4.5 CP-tree Model Approach . 97

4.5.1 Models . 97

4.5.2 Constraint language . 99

4.5.3 Dominance relation . 100

4.5.4 Dominance computation . 100

4.6 Induction of Constraints on Preferences Within the Framework . . . 101

4.6.1 Inducing constraints in the sum of weights model 101

4.6.2 Inducing constraints in the cp-tree model 103

4.7 Experimentation and Comparative Study 105

4.7.1 Settings . 106

4.7.1.1 OYine experiments 106

4.7.1.2 Products . 106

4.7.1.3 The initial query . 107

4.7.1.4 User Modeling . 107

4.7.1.5 System runs . 109

4.7.1.6 The pruning . 109

4.7.2 Comparative study . 110

4.7.2.1 Representing true preferences in the sum of weights

model . 111

4.7.2.2 Representing true preferences in the cp-tree model 114

v

Contents

4.8 Generalization for Non-Boolean Features 115

4.9 Other Kinds of Models of Preferences 119

4.9.1 Larger sets of models . 119

4.9.2 Towards a stronger pruning 120

4.9.3 Lexicographic inference . 121

4.9.4 Application to group recommender systems 122

4.9.5 Application to other forms of conversations in recommender

systems . 124

4.10 Conclusions . 125

5 Constrained Optimisation for Comparative Preferences 126
5.1 Introduction . 126

5.2 Personalized Branch And Bound . 128

5.2.1 Model of the search tree . 128

5.2.2 Preference relation for optimisation 129

5.2.3 Preference-based branch and bound 129

5.3 Dominance Pruning Rules . 130

5.3.1 The root-dominates rule . 131

5.3.2 The deciding-node dominance rule 133

5.3.3 Projection-dominance condition 135

5.4 p(Γ): A suXcient Condition for Dominance based on Unsound Dom-

inance Relation . 136

5.5 Non-Dominance Pruning Rules . 137

5.6 Example: Computer ConVguration Problem 138

5.6.1 Computer conVguration problem 139

5.6.2 Example . 139

5.7 Implementation Issues . 142

5.7.1 The search tree . 144

5.7.2 Relevant undominated solutions 146

5.7.3 The Reduce procedure . 147

5.7.4 The dominanceTest procedure 148

5.7.5 The CPOptimizer procedure 148

5.8 Experimental Testing . 149

5.8.1 Experimental setup . 149

5.8.2 Discussion of results . 154

5.8.3 Synthesis of discussion . 158

5.9 Conclusion . 159

vi

Contents

6 Conclusion 160
6.1 Summary . 160

6.2 Future directions . 161

Glossary 165

vii

Contents

Abstract

C hoosing the right or the best option is often a demanding and challenging task

for the user (e.g., a customer in an online retailer) when there are many available

alternatives. In fact, the user rarely knows which oUering will provide the highest

value.

To reduce the complexity of the choice process, automated recommender systems gen-

erate personalized recommendations. These recommendations take into account the pref-

erences collected from the user in an explicit (e.g., letting users express their opinion about

items) or implicit (e.g., studying some behavioral features) way. Such systems are widespread;

research indicates that they increase the customers’ satisfaction and lead to higher sales.

Preference handling is one of the core issues in the design of every recommender system.

This kind of system often aims at guiding users in a personalized way to interesting or use-

ful options in a large space of possible options. Therefore, it is important for them to catch

and model the user’s preferences as accurately as possible.

In this thesis, we develop a comparative preference-based user model to represent the

user’s preferences in conversational recommender systems. This type of user model al-

lows the recommender system to capture several preference nuances from the user’s feed-

back. We show that, when applied to conversational recommender systems, the comparative

preference-based model is able to guide the user towards the best option while the system

is interacting with her. We empirically test and validate the suitability and the practical

computational aspects of the comparative preference-based user model and the related pref-

erence relations by comparing them to a sum of weights-based user model and the related

preference relations.

Product conVguration, scheduling a meeting and the construction of autonomous agents

are among several artiVcial intelligence tasks that involve a process of constrained optimisa-

tion, that is, optimisation of behavior or options subject to given constraints with regards to

a set of preferences. When solving a constrained optimisation problem, pruning techniques,

such as the branch and bound technique, point at directing the search towards the best as-

signments, thus allowing the bounding functions to prune more branches in the search tree.

Several constrained optimisation problems may exhibit dominance relations. These domi-

nance relations can be particularly useful in constrained optimisation problems as they can

instigate new ways (rules) of pruning non optimal solutions. Such pruning methods can

achieve dramatic reductions in the search space while looking for optimal solutions.

viii

Contents

A number of constrained optimisation problems can model the user’s preferences using

the comparative preferences. In this thesis, we develop a set of pruning rules used in the

branch and bound technique to eXciently solve this kind of optimisation problem. More

speciVcally, we show how to generate newly deVned pruning rules from a dominance algo-

rithm that refers to a set of comparative preferences. These rules include pruning approaches

(and combinations of them) which can drastically prune the search space. They mainly re-

duce the number of (expensive) pairwise comparisons performed during the search while

guiding constrained optimisation algorithms to Vnd optimal solutions. Our experimental re-

sults show that the pruning rules that we have developed and their diUerent combinations

have varying impact on the performance of the branch and bound technique.

ix

Contents

Acknowledgements

The time for carrying out this research has been hugely enjoyable, valuable and

inspiring since the outset. This research would have not been possible without

the tremendous amount of unconditional support that was received from various

sources. I would like to seize this opportunity to express my sincere gratitude and

would like to thank some of them in particular.

I would like to express my deep appreciation and gratitude to my supervisor Nic

Wilson for his intellectual guidance, constructive critiques and continuous encour-

agement which ensure the successful completion of this thesis. I am also extremely

grateful to my second supervisor Derek Bridge who contributed to my work with his

continuous collaboration and valuable suggestions. Their patience and kindness, as

well as their academic experience, have been invaluable to me.

My sincere thanks must also go to the exam committee: Professor Barry O’Sullivan,

as my internal examiner, and Professor Francesca Rossi, as my external examiner.

Their constructive criticism helped me develop a broader perspective to my thesis.

I would like to show my gratitude to the Science Foundation Ireland which made

this work possible by funding it under Grant No. 08/PI/I1912.

I greatly appreciate the company of all current and previous members of the

Cork Constraint Computation Centre (4C). Also, the laboratory administrative staU

(Eleanor O’Riordan, Catriona Walsh, Linda O’Sullivan and Olivia Frawley) and tech-

nical staU (Peter MacHale and Joe Scanlon) for their professional guidance through-

out the complex administrative procedures. They made the lab a friendly environ-

ment for working. Special regards go to Barry O’Sullivan whose attitude to people

and research has been inspiring for me. His advices and insight were invaluable to

me.

I owe my parents and friends a debt of gratitude for their permanent moral sup-

port and prayers. Undoubtedly this work would have not been completed without

their unconditional help.

I would like to express my appreciation to my brother Brahim Douar and my

nephew Ali Douar for their constant support in so many ways. Without question,

their moral support and availability were crucial at any stage of this research.

x

Contents

Dedication

To my parents, Abdelkader Trabelsi and Hadhria Ziadi, my mum Chadlia

Miladi, and my sisters, Yosra and Emna.

xi

Contents

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualiVcation of this or any other university or other in-

stitution of learning.

Signed:

Walid Trabelsi

xii

List of Tables

List of Tables

2.1 Laptop components. 25

2.2 CPT for TCP-net N. 27

2.3 Movie’s features. 28

3.1 Laptop components. 72

4.1 Two databases of hotels . 107

4.2 The pruning rates (true preferences represented in sum of weights

model) . 111

4.3 The average number of steps per dialogue (true preferences repre-

sented in weights vector model) . 112

4.4 The same Vnal query rate (true preferences represented in weights

vector model) . 112

4.5 The average shortfalls (true preferences represented in weights vec-

tor model) . 113

4.6 The computation time (true preferences represented in weights vec-

tor model) in millisecond (ms) . 113

4.7 The pruning rates (true preferences represented in cp-tree model) . . 114

4.8 The computation time (true preferences represented in cp-tree model)

in millisecond (ms) . 115

4.9 Recapitulative table of results (users as weights vectors) 118

4.10 Recapitulative table of results with lexicographic models (users as

weights vectors) . 119

4.11 The pruning rates (true preferences represented in cp-tree model) . . 122

4.12 The average normalized shortfalls (users as cp-trees) 123

4.13 The execution time (users as cp-trees) 123

5.1 Computer components. 140

xiii

List of Tables

5.2 Mean number of optimal solutions for each preference family, and

CPU time (ms), number of visited nodes and number of dominance

checks at end nodes for each preference family and each method. The

CSPs averaged around 500 solutions. 155

5.3 Mean number of optimal solutions for each preference family, and

running times (ms) for each family and each method. 155

5.4 CPU time (Time), mean number of optimal solutions (#sol), number

of visited nodes (#nd), ratio, standard deviation from the average time

(SDTime) and frac-sol for CP-nets family and each method. The

CSPs averaged around 500 solutions. 155

5.5 Mean number of optimal solutions for each preference family, and

CPU time (ms), the ratio (Time/#sol), the frac-sol (#sol/#sol for Basic)

and SDTime (standard deviation from the average time) for Rand-W
family and each method. The CSPs averaged around 500 solutions. . 156

5.6 Mean number of optimal solutions for each preference family, and

CPU time (ms), the ratio (Time/#sol), the frac-sol (#sol/#sol for Ba-

sic) and SDTime (standard deviation from the average time) for Lex
family and each method. The CSPs averaged around 500 solutions. . 156

5.7 Mean number of optimal solutions for each preference family, and

CPU time (ms), the ratio (Time/#sol), the frac-sol (#sol/#sol for Basic)

and SDTime (standard deviation from the average time) for CPn-to
family and each method. The CSPs averaged around 500 solutions. . 156

xiv

List of Figures

List of Figures

2.1 A CP-net for laptop conVguration. 25

2.2 The induced preference graph for laptop conVguration. 25

2.3 ClassiVcation of recommender systems. 33

2.4 Search tree example . 50

3.1 A cp-tree σ, along with its associated ordering<σ on outcomes, with

γ = 1 (i.e., with at most one variable associated with a node) 69

3.2 A cp-tree σ, along with its associated ordering <σ on laptop out-

comes, with γ = 1 (i.e., with a single variable associated with a node) 72

3.3 A cp-tree σ, along with its associated ordering <σ on laptop out-

comes, with γ = 2 (i.e., with at most two variables associated with a

node) . 73

4.1 A single-shot recommendation scenario 82

4.2 A conversational recommendation scenario 83

4.3 Interaction model of the user with the recommender. 90

4.4 A cp-tree σ with γ = 1, along with its associated ordering <σ on

conVgurations . 98

4.5 A cp-tree σ with γ = 2, along with its associated ordering <σ on

conVgurations . 99

4.6 A preference dominance framework 105

5.1 Search trees using basic approach . 143

5.2 Search trees using deciding-node-dominance rule 143

5.3 Example of a search tree . 146

5.4 Model of transferring the set of undominated solutions between nodes

in the search tree . 148

5.5 Running time(ms) for each family of preferences for n = 10, 15, . . . , 40

variables (having 3 values each). Each CSP has approximately 1000

solutions. 157

xv

1
Introduction

The goal of this dissertation is to develop a comparative preferences approach for

eliciting and reasoning with preferences in Recommender Systems (RSs) and con-

straint optimisation-based systems.

1.1 Background

1.1.1 Preference representation

Choosing the colour of a car or choosing among diUerent mortgage loans are ex-

amples in which preferences can direct humans from simple to very important de-

cisions. Preferences are a multi-disciplinary topic that has been extensively stud-

ied in economics, psychology, philosophy, logics and other human-centered disci-

plines. Nevertheless, it is a relatively new topic in ArtiVcial Intelligence (AI) (Kaci

2011, Domshlak et al. 2011) and has become of great interest for the development of

reasoning mechanisms in intelligent systems (Brafman & Domshlak 2009, Chen &

Pu 2004).

The preference relation, which is used to specify the preferred alternatives, is

often deVned over a very large set, so we cannot aUord to explicitly represent it, but

needs a compact implicit representation. Such approaches have been developed in

the AI literature. The above concern has fostered the study of compact preference

1

1.1. Background

representation languages (Benferhat et al. 2001, Brewka et al. 2003, Brewka, Benfer-

hat & Berre 2004, Boutilier et al. 2004a, Brewka, Niemelä & Syrjänen 2004, Kärger

et al. 2008). Generally speaking, these speciVcations deVne a preference model in a

compact way and a preference relation to rank the outcomes of the model.

The way in which preferences are encoded and the ranking is obtained mainly

depends on the speciVcations used. Preference representation languages can be cat-

egorized into:

• Approaches which extend classical logic such as Qualitative Choice Logic (QCL)

(Brewka, Benferhat & Berre 2004) and Possibilistic Logic (Benferhat et al. 2001);

• Approaches based on Conditional Preference Networks (CP-nets) (Boutilier

et al. 2004a) and CP-nets extensions such as TCP-nets (Brafman, Domshlak

& Shimony 2006), CP-theories (Wilson 2004b), Conditional Importance Net-

works (CI-nets) (Bouveret et al. 2009a), and comparative preference theories

(Wilson 2009b);

• Approaches based on logic programming such as logic programs with ordered

disjunction (LPOD) (Brewka 2002, Brewka, Niemelä & Syrjänen 2002), Answer

Set Optimisation (ASO) programs (Brewka et al. 2003), Logic Programs with

Ordered and Unordered Disjunction (DLPODs) (Kärger et al. 2008), CRProlog

with Ordered Disjunction (Balduccini & Mellarkod 2003), and Resourced An-

swer Set Programming (ASP) (Costantini & Formisano 2009).

1.1.2 Recommender systems

People increasingly face the diXcult task of having to select the best option from a

large set of multi-attribute alternatives. An online electronic catalog system might

provide access to large numbers of items, such as apartments to rent, notebook com-

puters to buy, or Vnancial products in which to invest. The user has to navigate

through the catalog to Vnd the most suitable one. RSs are tools that help people Vnd

their most desired items based on a model of their preferences.

Research and development of RSs has been an exciting and vibrant Veld for over

a decade, having produced proven methods for preference-aware computing. The

purpose of a RS is to help users identify interesting, personalized items or content

from a large search space. For example, recommenders have successfully helped

users Vnd books and media of interest from a massive inventory base, e.g., (Amazon
2012), and personalized movie suggestions, e.g., (netWix 2012, Movielens 2012). A RS

can be considered as an information agent that provides suggestions for items which

are likely to be of interest to the user (McGinty & Reilly 2011).

2

1.1. Background

These systems infer user preferences from data gathered either explicitly, e.g.,

in the form of product ratings, or implicitly by observing user behaviour. These

preferences help them make predictions for products not yet assessed (e.g., rated)

by the user. The prediction algorithms used within RSs include collaborative Vlter-

ing, content-based Vltering and case-based reasoning, and various hybrid approaches

that combine these (Adomavicius & Tuzhilin 2005, Anand & Mobasher 2005, Bridge

et al. 2006). However, these classical approaches have typically supported only a

simple “single-shot” form of human-computer interaction, where a user who has

previously supplied a set of ratings, identiVes herself to the system and is then given

a set of product recommendations.

1.1.3 Conversational recommender systems

Regardless the quality of RSs, they are unlikely to be suXciently prescient that their

Vrst set of recommendations always satisVes the user. Indeed, users are rarely sat-

isVed with the Vrst set of recommendations (Bridge et al. 2006); they usually want

to see more options and they exploit the initial recommendations to reVne their

preferences and articulate new requests. In fact, they are usually not very familiar

with the available products and their characteristics. Thus, their preferences are not

well established, but constructed while learning about the available products (Payne

et al. 1993).

Conversational RSs allow for this, and recognise that their users may be willing

and able to reveal more of their constraints and preferences, over a short dialogue,

thereby moving away from “single-shot” interaction. This is also an opportunity

for the RS to guide the user by asking questions, giving advice, displaying candidate

products, and giving explanations (Reilly et al. 2004, McSherry 2005, Bridge et al.

2006, Ricci et al. 2006, Schmitt 2002a, Thompson et al. 2004b, Pu et al. 2006).

Conversational RSs typically involve iteratively showing the user a small set of

options (e.g., products) for them to choose between. To select an appropriate set

to display at each stage, from a much larger collection of options, the recommender

needs information regarding which options are likely to be preferred to others by the

user, based on previous responses the user has given in the dialogue; if one assumes

that the user has some kind of preference relation over products, this amounts to

determining if certain products are dominated (less preferred than other products)

according to this preference relation.

Pruning less optimal items, with regards to the user preferences, is a key task

for RSs. This was conVrmed and validated by experiences from Velded applications

with conversational RS described by (Felfernig et al. 2006, Felfernig & Gula 2006)

based on user questionnaires after using systems. The results showed that interactive

3

1.1. Background

recommenders help users to better steer themselves when being confronted with

large sets of choices.

Furthermore, solutions are characterized by a set of attributes in classical deci-

sion theory (Keeney & RaiUa 1976). As utility theory provides a solid mathematical

foundation for recommendations (Keeney & RaiUa 1976), users might express their

preferences by the relative weights they give to attributes or combinations of at-

tributes. Such approaches are described for example in (Keeney 1992). An example

of its application in a decision aid system is the Personal Computer (PC) selection

tool of IBM described in (Schiex 1992), where users can adjust the weights of diUer-

ent criteria and interactively see how diUerent PC models rank according to these

weights.

However, there are many practical situations where the space of possible crite-

ria is so large that stating a numerical preference model for all of them would be

cognitively impossible (Faltings, Torrens & Pu 2004). In fact, such situations assume

the supply of a large amount of information from the user and it implies complex

preference models that cannot be obtained in e-commerce scenarios because people

are not willing to go through lengthy preference elicitation processes (Brafman &

Domshlak 2008). The user may wish to state simple comparisons. She may want to

make no explicit quantiVcation of preference or utility, leaving the preference purely

qualitative. This could be the case for example in a travel problem, where there is

a large number of possible attributes involving times, means of transportation, lo-

cations, that vary from one user to another. In such a case, the user may want to

say that she likes to travel to a country during the summer in that country whatever

the country is, all other attributes being equal. The user will then avoid having to

communicate an accurate numerical model. It has also been claimed that the qualita-

tive speciVcation of preferences (e.g., pairwise comparisons between tuples) is more

general than the quantitative one, as not all preference relations can be expressed by

scoring functions (Stefanidis et al. 2011).

1.1.4 Constrained optimisation

Several tasks, like conVguring products for an online shopper or scheduling meet-

ings for a busy executive oXcer, require balancing the user’s desires with hard con-

straints. Intelligent automated agents that perform such tasks are driven by several

established optimisation algorithms whose aim is to signiVcantly improve their abil-

ity to traverse through the constrained space. Constrained optimisation is searching

for optimal solutions, which are solutions that are feasible regarding hard constraints

and that best meet the user’s preferences. Computational approaches for solving

constrained optimisation problems consist of mainly two fundamental principles:

4

1.2. Problem Statement

exploring a large solution space toward a desired solution while trying to eliminate

sub-parts of the solution space which are guaranteed not to have a better solution

(Kadioglu 2012). This guarantees that constrained optimisation algorithms perform

some pruning that will aid the search for optimal solutions, without missing any

potentially optimal solution.

Branch and Bound (B & B) is a common technique for solving constrained opti-

mization problems (COPs) using backtracking search. The B & B technique consists

of splitting the original problem recursively into subproblems which become sooner

or later easy to solve. It allows one to reduce the feasible region to several parts

by exploiting properties of the problem (e.g., user’s preferences). One of the main

advantages of pruning away subspaces from the search space is the reduction of the

number of pairwise comparisons performed during the search. Optimality in sev-

eral constrained optimisation approaches can refer to a preference relation. Thus,

progress made on preference approaches may contribute in the development and

expansion of the constrained optimisation approaches.

1.2 Problem Statement

Preferences are a crucial notion guiding our choices and actions. Intelligent systems

require a concise and processable representation of preference information in order

to enable them to act autonomously and to intelligently support users. In several de-

cision making problems (e.g., in planning or in scheduling), there is a concern about

which alternative(s) to choose. Alternatives involve multiple attributes and so de-

Vned in terms of a number of variables. These alternatives can be represented by a

set of combinations that are depicted explicitly (e.g., as database of outcomes), or im-

plicitly (e.g., a mathematical programming model which describes a set of outcomes).

Choosing the best alternative(s) in such settings implies the need for a preference re-

lation that is used to compare two solutions based on preferences expressed over the

attributes of these solutions.

With regards to RSs, providing personalized recommendations to users requires

the modeling of their preferences and needs. Eliciting and representing users’ pref-

erences is a crucial task for such automated systems to successfully accomplish their

task. It is usually too complex to get a complete and accurate model of the users’

preferences, especially regarding the tradeoUs between diUerent attributes (Faltings,

Torrens & Pu 2004).

Conversational RSs belong to a category of RSs that provides challenges for more

elaborate formalisms that represent the user’s preferences while conversing with her.

Conversational RSs would be more reliable and eXcient if provided with adapted

and suitable preference formalisms in order to model and reason with the user’s

5

1.3. Research Goals and Objectives

preferences. Therefore, it would be interesting to look for supporting this process by

integrating recently developed preference formalisms, e.g., (Wilson 2004b, Wilson

2009b). These formalisms would enable conversational RSs to manage a variety of

types of user feedback without losing an eXcient pruning capability.

Besides, researchers are investigating clever and new mechanisms to be inte-

grated with constrained optimisation algorithms to eXciently produce optimal so-

lutions. A number of COPs use comparative preferences to express the user prefer-

ences. One way to Vnd solutions for these COPs is to extend the B & B technique

with the related preference relation. Then, we will be able to solve COPs in which

preferences are expressed as comparative preferences. The integration of new meth-

ods which are based on general preference formalisms and enriched with a compu-

tationally eXcient dominance operation can oUer Wexibility to the B & B technique

and expand the set of COPs that can be tackled by B & B.

1.3 Research Goals and Objectives

One goal of this thesis is to integrate pairwise comparisons-based preference mod-

els that represent the users’ preferences into a conversational RS. The preference

model would express the user’s preferences as accurately as possible and needs to

oUer key comparison operations (e.g., dominance) that give more eXciency and Wex-

ibility to the pruning engine of the RS. We need to eUectively evaluate the com-

parative preferences-based preference models and the dominance for comparative

preferences and its practical computational aspects. One way to do this is to ex-

perimentally compare them to another preference model supported by a dominance

operation which is based, for instance, on utility-based preferences (e.g., importance

weights).

A second goal of this thesis is to enrich the B & B technique by the integration of

new comparative preference-based pruning rules that can be used to ease the search

for optimal solutions for COPs where preferences are expressed as comparative pref-

erences. Thus, this will widen the range of problems the B & B technique can deal

with and solve.

Our objectives in this thesis can be summarised as follows:

• To integrate such a preference model in an existing conversational Recom-

mender System (RS).

• To accomplish relevant computations with the preference model in a practical

way.

6

1.4. Contributions

• To perform, within oYine experiments, an eUective evaluation of two pref-

erence dominance approaches: weights vector-based approach and compara-

tive preferences-based approach where the (simulated) user is modeled as a

weights vector (Balabanovic 1998, Shen 2007, Kim et al. 2011, Shen et al. 2005)

or as a cp-tree (Wilson 2009b). Experiments with diUerent user models al-

low for examining whether the matching or the mismatching of the way the

simulated users’ preferences are represented and the model of the users’ pref-

erences induced from the system can have an inWuence on the performance of

the pruning method.

• To deVne new pruning rules associated with the B & B technique for constraint

optimisation for comparative preferences.

• To perform an evaluation of the pruning methods with a number of binary

constraint satisfaction problem (CSP) instances by comparing their pruning

power and eXciency regarding other measures (e.g., time).

1.4 Contributions

The contributions being claimed by this dissertation are twofold:

• A novel use of a formalism for preference elicitation in conversational RSs.

This formalism is based on comparative preferences.

In fact, we consider a framework of preference dominance and its rationale.

This framework is illustrated through two instances. One fundamental step

in the process of recommending, which is preferences induction, is then pre-

sented in the two instances. We have developed the second instance that we

have implemented, experimentally tested and compared it with the Vrst in-

stance. We report the experimentations and a comparative study of the two

instances.

The Vrst instance is based on a simple quantitative preference formalism, in-

volving a weights vector-based user model, with an associated language of

linear inequalities. This is a very commonly used model for preference repre-

sentation, speciVcally, in multi-attribute utility theory (MAUT) (Figueira et al.

2005). The second instance of the framework is a qualitative preference for-

malism, where models adopt a kind of generalised lexicographic order (i.e.,

cp-trees), and constraints are expressed as comparative preference statements

in a language generalising CP-nets (Boutilier et al. 2004a).

To the best of our knowledge, this is the Vrst time that the type of comparative

preferences that we use in the second instance has been deployed with RSs.

7

1.4. Contributions

We show that comparative preference theories are able to give freedom and

Wexibility to the system to handle the user’s preferences by allowing the sys-

tem to capture preference nuances and various forms of preferences without

giving up the attractive computational properties of the preference dominance

relation.

We also prove that the comparative preferences-based dominance algorithm

that we select and use to compare outcomes works eXciently for a range of

comparative preference statements when checking dominance between two

outcomes α and β. We verify and validate the suitability and attractiveness of

the comparative preference theories-based approach for RSs through several

experiments that include repeated scenarios with simulated users represented

by models that are based on diUerent semantics (e.g., weights vector vs cp-

tree).

• New comparative preferences-based pruning rules that extend the B & B tech-

nique for comparative preferences.

We have developed a Vrst group of newly deVned suXcient conditions that

help the constrained optimisation algorithm locate the extra spurious data and

remove it from the solution space. During search, we use the previously found

solutions to bound the search space up to the point that either there is an

optimal solution that dominates the subspace or there is no such solution. One

of the main advantages of pruning away subspaces from the search space is

the reduction of the number of pairwise comparisons performed during the

search.

Another way of eliminating useless comparisons is to avoid involving any op-

timal solution that is unable to better any extension (complete assignment) in

a sub-space. In other words, an optimal solution α, which was already found,

might be unable to dominate any outcome that extends the partial assignment

obtained so far in the search tree. If we prove, through a pruning method,

that this is the case then we do not need to involve α in any dominance check

below the current node. Thus, we have also developed a second category of

pruning rules which temporarily disengage any subset of optimal solutions

below some node of the search tree from playing a role in the comparisons

performed in the sub-space newly created. This pruning rule checks whether

any optimal solution already found is unable to dominate any other possible

assignment in the considered sub-space below the current node. If the condi-

tion is checked to be true for one solution α, then α is no longer involved in

eventual comparisons below the current node in the search tree.

8

1.5. Publications

In order to assess the eXciency of the developed pruning rules in practice, we

performed experiments and discuss the results that we found.

1.5 Publications

The work presented in this thesis has been developed via a collaboration with Nic

Wilson, Derek Bridge and Francesco Ricci. Part of it has been published in the pro-

ceedings of international conferences, and a peer reviewed journal as we describe

below.

• Pruning Rules for Constrained Optimisation for Conditional Preferences, Nic

Wilson and Walid Trabelsi, in Proceedings of the 17th International Confer-

ence on Principles and Practice of Constraint Programming (CP-2011).

• Preference Dominance Reasoning for Conversational Recommender Systems:

a Comparison between a Comparative Preferences and a Sum of Weights Ap-

proach, Walid Trabelsi, Nic Wilson, Derek Bridge and Francesco Ricci, in the

International Journal of ArtiVcial Intelligence Tools (IJAIT) volume 20 number

4.

• Comparing Approaches to Preference Dominance for Conversational Recom-

menders, Walid Trabelsi, Nic Wilson, Derek Bridge and Francesco Ricci, in

Proceedings of the 22nd International Conference on Tools with ArtiVcial In-

telligence (ICTAI-2010).

• Preference Dominance Approaches for Conversational Recommender Systems,

Walid Trabelsi, Nic Wilson, Derek Bridge and Francesco Ricci, in Proceedings

of the 5th Multidisciplinary Workshop on Advances in Preference Handling

(MPREF-2010).

1.6 Structure of the Thesis

The thesis is organized as follows:

• Chapter 2:

Conversational RSs are found at the intersection of RSs research, dialogue sys-

tem and preference handling. In this chapter, we present the background ma-

terial and literature review related to conversational RSs and preference han-

dling, which are the two primary research domains of our thesis work.

9

1.6. Structure of the Thesis

• Chapter 3:

Dominance testing represents a key operation when looking for the most pre-

ferred set of alternatives among a set of possible alternatives with regards to

the user’s preferences. In this chapter, we present the preference language,

and the dominance semantics and computation we are using in this thesis. The

chapter also presents other dominance approaches that adopt diUerent seman-

tics of the dominance relation. In this chapter, we also detail the algorithms

and data structures that we use in the key operations in the dominance testing.

• Chapter 4:

In this chapter, we mainly deVne a novel use of a formalism for preference elic-

itation based on comparative preferences and integrate it into a conversational

RS. We carefully assess two approaches based on a sum of weights-based dom-

inance relation and comparative preference theories-based dominance relation

through several experiments. We conduct these experiments with simulated

users and performed a comparative study between these two approaches.

• Chapter 5:

In this chapter, we propose new methods for Vnding non-dominated solutions

of a CSP with respect to a set of comparative preferences. We derive these

pruning rules from a dominance algorithm that refers to a set of comparative

preferences theories, that represent the user’s desires, in an attempt to guide

constrained optimisation algorithm to Vnd optimal solutions. To make the

presentation concrete, we apply the new methods to random CSPs of diUerent

sizes.

10

2
Literature Review and Related Work

2.1 Introduction

Preferences handling in conversational RSs and constrained optimisation are two

among the main research streams that are studied in this dissertation. In this chap-

ter, we present the background knowledge and the literature review related to the

domains we are concerned with in this thesis.

The topic of preferences has recently attracted considerable attention in AI re-

search and plays an increasingly important role in several AI-related Velds. Several

AI applications, including expert systems, autonomous agents, decision support sys-

tems (DSSs), RSs, conVguration software, and constrained optimisation applications,

rely on the ability to make decisions regarding the user’s preferences (D’Ambrosio &

Birmingham 1995, Junker 2001, Chajewska et al. 2000, Mura & Shoham 1999, Nguyen

& Haddawy 1999). In Section 2.2 we present the concept of preferences. We will talk

about decision making in Section 2.3. Section 2.4 presents examples of formalisms

devoted to represent preference relations (Domshlak et al. 2011).

In Section 2.5, we present two categories of preference representation in decision-

making. A group of languages, which is used to express and reason with preferences

in these applications, is presented in Section 2.6. Section 2.7 recalls some expressive

preference languages. A large spectrum of AI applications need preferences to be

expressed and reasoned with to make decisions. These applications are presented

in Section 2.8. Section 2.9 is devoted to giving a description of a group of RSs. The

11

2.2. Preferences: Description

concept of CSP and the corresponding solution methods are presented in Section

2.11. Section 2.12 presents COPs and diUerent solution methods for these problems.

2.2 Preferences: Description

A crucial concept in modeling user preferences is that of preference relation. This

approach is related to the concept of similarity/dissimilarity between values/items

(Stahl 2002) and is extensively used in the RSs Veld (McSherry 2002, Stahl 2006). In

this section, we will talk about the concept of preference relations. We will also

present a key challenge in preference handling: preference elicitation.

2.2.1 The concept

Preferences are modeled to guide the choices made by a decision-making entity. In

AI, an artiVcial agent can be a decision-making entity. The agent generally acts

on behalf of another physical or moral entity, a user for instance. The degrees of

desirability, inherent to preferences, are represented, most commonly, quantitatively

by means of utility functions for instance, or qualitatively by means of pairwise

comparisons. Given a set of options, a rational agent chooses the one that maximizes

its expected usefulness, that is the one that most probably leads to the outcome it

prefers the most, according to the preferences of the user or organization it acts for.

Preferences over some set of possible options order them so that a more attractive

option precedes a less desirable one. Examples of sets of possible options could be

possible Wights, vacation packages or cameras.

Thus, the notion of preference aims at bringing a natural and eUective way of

coming to the most appropriate solutions among a large number of choices. In e-

commerce, the user preferences are used to evaluate the alternatives so that the most

preferred products are most likely to be selected by a customer (Stolze 2000). Mc-

Sherry and Aha suggested a model for a RSs where four types of preferences are

identiVed (McSherry & Aha 2007).

In their words, Assumed preferences illustrate the fact that consumer prefer-

ences for particular attributes can be assumed to be consistent among all decision

makers based on the characteristics of an attribute, also referred to as Less-is-Better
(McSherry 2003) or cost type attribute (Xu 2007). For example, preference for Price

attribute is typically to minimize the value of the price.

Explicit preferences are directly stated by a decision maker. Typically explicitly

stated preferences need to be taken into account since the consumer is not willing to

accept any compromise on the value. Then, any generated outcome has to comply

with all the preferences.

12

2.2. Preferences: Description

Implicit preferences are indirectly discovered from the available information about

the consumer. There are RSs which are based on example critiquing which is one

interaction model that allows users to build their preferences by examining or re-

viewing (we also call it critiquing) examples shown to her by the system (Burke

et al. 1996, Burke et al. 1997a). Each time the user reviews a product, the system

induces some preferences. This technique is explained in Section 2.10.1 of Chapter

2. For example, during a dialog in a critiquing-based system, when a user indicates

her critique (i.e., review) on the presented values, the attributes’ values she is not

critiquing can be assumed to be suitable. Thus, these values will be regarded as the

user’s implicit preferences.

Predicted preferences appear when a history of previous decisions, or preference

discovery dialogs are available, allowing some preferences may be predicted with

reasonable accuracy. For example, in progressive critiquing RSs (Bridge et al. 2005),

the preferred value of an attribute can be predicted as the nearest available value that

satisVes the recent critique on the value of an attribute in the presented item (Ricci,

Mirzadeh & Venturini 2002).

2.2.2 Elicitation

One key challenge in preference handling is usually the elicitation of the preference

information from users. Decision-makers have a limited capacity for information

processing (Bettman et al. 1998). Decision-makers tend to build their preferences

when they are prompted to express evaluative judgment or to make a decision (Payne

et al. 1992). When alternatives are described with a number of decision attributes,

decision makers typically do not have speciVc predeVned strategies of the selection

of attribute importance and tradeoUs they are ready to make (Häubl & Murray 2001).

Preference elicitation methods aim at easing the cognitive burden of ordering a

set of outcomes, or Vnding an optimal item. Preference elicitation considers ques-

tions such as how best to query the user about her preference model (e.g., utility val-

ues) and how much information is needed. These methods range from approaches

based on the utility function (Savage 1954, Fishburn 1967, C. 1968, Fishburn 1970,

Fishburn 1974, Fishburn 1999), which conveys the user’s preferences on a particular

option, to computer-aided elicitation approaches (e.g., critiquing, collaborative Vlter-

ing, etc). Work on the latter approaches indicates that the process of preference elic-

itation needs to be sophisticated as it involves, in addition to conventional assump-

tions about the user’s preferences, a number of relevant elements related to human-

computer interaction (Faltings, Pu, Torrens & Viappiani 2004, Pu & Faltings 2004).

13

2.3. Decision Theory

2.3 Decision Theory

2.3.1 Rationale

Decision making is a daily activity. We all make decisions constantly, from the sim-

plest “which shoes should I wear today?” or “should I take my umbrella?” (Poole

1992) to the more complex “how should we deal with the deforestation?” (P. Journee

& Vanderpooten 1998). These decisions are made at all levels such as organisa-

tional (“how do we schedule the crew shifts?” (A. Caprara & Fischetti 1998), inter-

organisational (“which trace (or route) for the highway?”) (Ostanello & Tsoukiàs

1993). Quite often, we cannot make decisions by ourselves. Indeed, during deci-

sion processes, we normally ask for help, advice or support from friends, experts or

consulting companies for instance.

Decision problems are often complex (Alexander 1977). They can involve large

volumes of information that have to be managed, by means of Vltering or mining for

instance, to come out with a critical decision that might have serious consequences.

Inappropriate decisions can have heavy consequences (e.g., air traXc and aerospace

accidents). The need for decision support is felt when decisions start to be more dif-

Vcult or critical. This was one of the main objectives the decision support techniques

were developed for.

In order to help the decision maker, DSSs need to embrace a reasoning model

that is similar to the way people would normally behave. This makes the proposed

actions natural as much as possible. In recent decades, there has been a growing

interest in “behavioural decision theory” (von Winterfeldt & Edwards 1996) which

has contributed to what rational decision-making requires (Tsoukiàs 2008).

The current scientiVc study of decision making originated from the form of oper-

ational research during the World War II era as a response to the need for optimal so-

lutions to complex military planning and decision making problems (Tsoukiàs 2008).

The practical application of decision theory aims at Vnding tools, methodologies

and software to help people make better decisions. Systematic and comprehensive

software tools developed in this way are called decision support systems (DSSs). The

representation of the decision maker’s preferences allows DSSs to operate eUectively

on her behalf. This preference representation is then a key element in the success of

such applications.

2.3.2 Need for preferences in decision making

Stefanidis et al. stated that preferences guide human decision making from early

childhood (e.g., “which ice cream Wavor do you prefer?”) up to complex professional

and organizational decisions (e.g., “which investment funds to choose?”) (Stefanidis

14

2.3. Decision Theory

et al. 2011). Furthermore, Visser et al. claimed that there are no intelligent DSSs

without knowing the preferences of the user (Visser et al. 2009). We can then infer

that the representation of preferences is a central topic in decision making.

Therefore, extensive research has been conducted to study the fundamental struc-

tures on which decision aiding models rely: the structure of preference relations

(Dushnik & Miller 1941, Luce 1956, Scott & Suppes. 1958a), which are described

in Section 3.2 in Chapter 3, and the functions that represent them (Fishburn 1970,

Koopman 1956). A survey of preference models was carried out in (Öztürk et al.

2004). This survey presented the representations that were conceived to express our

preferences for the purpose of automated decision making. The survey considered

a broad spectrum of representations ranging from qualitative to quantitative; and

simple to complex. Representations employed in existing decision making tools are

considered in addition to those describing preferences in a form suitable for manip-

ulation by an automated process.

Several preference representations, including ceteris paribus-based preference lan-

guages such as Conditional Preference Networks (CP-nets) and their extensions,

were described in (Boutilier et al. 2004a, Brafman & Domshlak 2002, Bouveret et al.

2009b). Other examples of preference representations are the “prototypical” pref-

erence logic presented in (Bienvenu et al. 2010), the temporal preference represen-

tation described in (Bienvenu et al. 2011), and prioritized goals, which have been

used by (Sardiña & Shapiro 2003) and (Benferhat et al. 1993) in decision making, and

preference formulae described by (Delgrande et al. 2007) as a logical combination of

queries.

2.3.3 DiUerent decision-making approaches

The way people can and do make decisions varies considerably. For decades, research

focused on the way the user makes decisions in practice and the way she should

theoretically behave when a decision situation is presented to her. Then, an array

of decision making models, depending on their methodological foundations, have

emerged.

Tsoukiàs presented and discussed diUerent decision aiding approaches that were

introduced during the last six decades of existence of the decision theory including

the normative and descriptive approaches (Tsoukiàs 2008). The author explained the

diUerences among these approaches by examining the origin of their speciVc “models

of rationality” (Savage 1954) which is a key concept in decision aiding.

The idea of rational choice is a central idea: people tend to compare the costs

and beneVts of certain actions, and choices will be made by decision makers as they

try to maximize their beneVts and minimize their costs. Tsoukiàs (Tsoukiàs 2008)

15

2.4. Representing Preferences

considered a rational model as a tool that enables the interpretation of informal in-

formation and its conversion to a formal representation which will be used as an

input in the decision making process. Thus, choices and preference information are

expressed in the rational model, and the system then comes up with a set of optimal

choices.

2.3.3.1 Normative decision-making

Normative methods are based on the belief that there is an ideal standard of rational-

ity that should guide our choices. They are called normative because they use norms.

A prominent approach within this class of decision making is the expected utility

theory (Neumann & Morgenstern 1944). According to this theory, the behaviour

of a rational decision maker adheres to a set of axioms that govern the nature of

its preferences (Savage 1954). A rational decision maker in this setting is one that

makes decisions which maximise its expected utility, that is, the sum of the utilities

of possible decision outcomes multiplied by the probability of their occurrence.

2.3.3.2 Descriptive decision-making

Enforcing a model of ideal rationality, which is a theory of how we should make de-

cisions, is often at odds with real human decision-making. A contrasting branch of

research is the study of descriptive decision-making (Bell et al. 1988). Descriptive ap-

proaches analyze human decision-making behaviour with the goal of understanding

or replicating it. Kahneman and Tversky described the Prospect theory as a model

of decision-making amongst risky alternatives, which are choices, the outcome of

which occurs with a given probability (Kahneman & Tversky 1979). Through exper-

iment, the two authors found that a real decision maker often violates the principles

of expected utility theory.

2.4 Representing Preferences

EUective representations for preferences play a key role in the success of many AI

applications (Boutilier et al. 2001). A targeted preference representation is one which

captures intuitive statements, that can be for instance easily evaluated by users, and

enables a compact representation of the description of the problem, without having

to enumerate a prohibitive number of alternatives. There are several formalisms

devoted to represent preference relations (Domshlak et al. 2011). In the remainder of

the section, we present examples such as utility-based formalisms (a function giving

scores to the alternatives) and ordinal preference-based formalisms (a binary relation

over the pairs of alternatives).

16

2.4. Representing Preferences

2.4.1 Multi-attribute preferences

Clearly, it is diXcult for humans to compare outcomes over multiple dimensions.

It is also complicated for machines to store and analyze preferences over a number

of outcomes that is exponential in the number of attributes. It is, therefore, impor-

tant for multi-attribute decision theory to study, through mathematical methods for

instance, the decomposition of utility (preference) functions into combinations of

subfunctions that correspond to diUerent attributes or sets of attributes.

Multi-attribute decision theory adopted some assumptions about the user’s pref-

erences structures (e.g., additive independence (Keeney & RaiUa 1976)). This theory

presented theorems that allow inferences about several forms of independence of

attributes from the subfunctions that make up an overall preference theorem (see,

for example, (Hansson 1989, von Stengel 1988, Wellman & Doyle 1992)). Structural

properties of preferences help automated systems reduce the burden of preference

elicitation (Engel 2008).

2.4.2 Graphical models of preferences

One key technique in achieving a considerable simpliVcation of the task of elicitation

is the use of graphical models that usually take advantage of the independence for

preference (utility) functions in a multi-attribute space (Bacchus & Grove 1995, Gon-

zales et al. 2008). They also speed up computing and reasoning (Lang 2010). Besides

and more generally, graphical languages are a powerful way of expressing prefer-

ences in combinatorial domains (Lang 2010).

For combinatorial domains, we need languages that allow a compact preference

representation. A signiVcant number of these languages have been studied in the

AI research community. They consist of a graphical component describing preferen-

tial dependencies between variables, together with a collection of local preferences

on single variables or small subsets of variables, compatible with the dependence

structure.

Part of the motivation (and also inspiration) for graphical modeling of multi-

attribute preferences is driven by the success of Bayesian Networks (BNs) (Pearl

1988) in achieving compact representation and graphical reasoning algorithms for

probabilities, based on conditional independence concepts (Pearl & Paz 1986, Pearl

1988). Therefore, researchers explored the conceptual similarities between probabil-

ity and preferences, and examined the opportunity to transfer ideas from one Veld to

another.

The extension of inWuence diagrams by (Howard & Matheson 2005) in order to

decompose value functions into sums and products of multiple value nodes was prob-

ably one of the Vrst tendencies to exploit separable preferences in a graphical model.

17

2.5. Preference Representation in Decision-Making

Bacchus and Grove (Bacchus & Grove 1995) had developed a graphical model

based on the conditional independence structure (Engel & Wellman 2008). They pro-

posed an undirected graph that captures conditional additive utility independencies.

The presented models are called generalized additive independence (GAI) models,

and they enable eXcient dominance testing, i.e., for determining whether a possible

outcome has higher utility than another (Engel & Wellman 2008). They introduced

GAI-networks, which are similar to the junction graphs in BNs. Dominance relations

and semantics for comparative preferences are described in Chapter 3.

(Boutilier et al. 2004a) initiated another stream of work by introducing CP-nets

that use a particularly simple graphical model which captures users’ qualitative con-

ditional preferences over objects. CP-nets are similar to BNs from a syntactical point

of view. But, they diUer with respect to their semantics. CP-nets received a consid-

erable amount of study in subsequent literature (Kristensen et al. 2005, Purrington

& Durfee 2007, Domshlak et al. 2006, Brafman & Dimopoulos 2004a), and various

graphical models of preferences were developed. Examples are TCP-nets (Brafman

& Domshlak 2002), FCP-nets (Gavanelli & Pini 2008a), CI-nets (Bouveret et al. 2009b)

and UCP-nets (Boutilier et al. 2001). Each graphical model of these tried to extend

the applicability of graphical models. For instance, UCP-nets (Boutilier et al. 2001)

found a way to take the advantages of both GAI-models and CP-nets by combining

qualitative and quantitative preferences.

2.5 Preference Representation in Decision-Making

Preferences aim at oUering the user the ability to express her relative or absolute sat-

isfaction when faced with a choice between diUerent options (Chevaleyre et al. 2006).

Preferences are modeled in such a way that it is possible to derive a Vnal recom-

mendation for the decision maker. In the vast landscape of literature on prefer-

ence handling, two distinguishing labels are used to classify representations; Del-

grande, Schaub and Tompits distinguished two forms of preference representation:

absolute (describing the desirability of a particular state-of-aUairs) and compara-

tive (describing the desirability of one state-of-aUairs relative to others) (Delgrande

et al. 2007). Similar distinctions were made throughout the literature on preference

- often referring to absolute representations as monadic and comparatives as dyadic

(Hansson 2001).

Similarly, according to (Tsoukiàs 2008), multiple criteria decision aiding methods

could be grouped in two categories, based on how the set of the potential alternatives

is explored:

• the establishment of a utility function synthesizing the diUerent criteria;

18

2.5. Preference Representation in Decision-Making

• the use of pairwise comparison procedures and majority principles for estab-

lishing a Vnal recommendation.

2.5.1 Utility-based assessment

The model of preference representation within economics and early decision theory

has been the (absolute) expected utility function (Neumann & Morgenstern 1944).

When applied to a choice, this function returns a numeric evaluation of its desirabil-

ity or interest. The choice is then given a score. A choice A is preferred over another

choice B if and only if its score is higher than the score of B. The maximisation of this

function determines which is the best choice according to the standard prescription

of rationality as recommended by (Savage 1954).

As traditional decision-theoretic approaches were growing, a variety of tech-

niques for the elicitation of utility functions from clients or users emerged (Keeney

& RaiUa 1976), (Saaty 1980), (Keeney 1982), (Farquhar 1984) and (Wakker & DeneUe

1996). Several authors (Farquhar 1984, Wakker & DeneUe 1996, Öztürk et al. 2004)

argued that a utility function can be used to obtain an intelligible preference rela-

tion that can be axiomatically justiVed. Tsoukias claimed that the construction of

a utility function is restrictive, since it needs a number of conditions to be fulVlled

(Tsoukiàs 2008). Domshlak et al. argued that a utility function requires a consid-

erable cognitive eUort on the part of the decision makers as they would need to

determine a value function for a large number of alternatives described by multiple

attributes (Domshlak et al. 2011). Thus, they are not often willing to express their

preferences directly in terms of a value function (Domshlak et al. 2011). To express

liking one option exactly twice as much as an alternative option for instance is not

that intuitive and natural (Visser et al. 2009).

(Brafman & Domshlak 2008) described the diXculties inherent in the elicitation

of a utility function and explained the burden of this process, as it requires the sup-

ply of a large amount of information from the user. These issues were discussed in

Chapter 6 of (Bouyssou et al. 2000) and Chapters 4, 5 and 6 of (Bouyssou et al. 2006).

These discussions concluded that the associated cognitive burden of ordering a set

of outcomes or Vnding the best outcome makes such approaches not entirely conve-

nient for supporting complex scenarios where the set of possible decisions tends to

be either too large to be described explicitly or the information is incomplete (Öztürk

et al. 2004).

19

2.6. Comparative Preference Languages

2.5.2 Pairwise comparison-based assessment

A decision maker may wish to state simple comparisons. She may want to make no

explicit quantiVcation of preference or utility, leaving the preference purely qualita-

tive. She may want to say, that other things being equal, she likes to stay in a hotel

with a swimming pool rather than in a hotel without a swimming pool. Wellman

and Doyle assert that humans place value on compact representations of informa-

tion “that directly entail the most important conclusions” (Wellman & Doyle 1994).

Superlatives (such as “fastest”, “cheapest”, and “largest”) and comparatives (such as

“faster”, “tastier”, and “happier”) are recognised as being common ways in which

humans describe their preferences (Domshlak 2008). They represent examples of

how human try to express their knowledge compactly. Comparisons of objects along

some dimension suppose a linear scale which is used to measure to which extent

humans exhibit their preferences. For instance, a superlative statement expressed

for one object allows it to hold maximal degree in the assumed scale (Wellman &

Doyle 1994).

To have the ability of expressing preferences and in response to the limitations of

utility functions and variants claimed in the previous section, a wide range of quali-

tative forms of preference expression have been developed. Methods for qualitative

decision-making are discussed in depth in (Roy 1991), (Vincke 1992) and (Roy 1996).

A category of these qualitative methods are based on the Ceteris Paribus princi-

ple (Wellman & Doyle 1991, Wellman & Doyle 1994, Boutilier et al. 2004a) which

is described in Section 2.6.2. Among these methods, we cite CP-nets (Boutilier

et al. 2004a) described in Section 2.6.3 and their various extensions such as TradeoU-

Conditional Preference Networks (TCP-nets) (Brafman & Domshlak 2002) which are

described in Section 2.6.4, FCP-nets (Gavanelli & Pini 2008a) and CI-nets (Bouveret

et al. 2009b).

2.6 Comparative Preference Languages

Many decision problems are deVned over large multi-attribute domains. This raises

a key challenge in preference research which is to develop preference representa-

tion languages that support user-friendly elicitation techniques and have reasoning

capabilities. These capabilities are needed to cope with the exponential size of the

outcome space which often has a combinatorial structure. In fact, an appropriate

preference formalism would include a preference representation that captures state-

ments that are natural for users to assess, and a reasoning engine that supports

eUective inference. The selection of a language for representing preferences requires

one to look at a number of characteristics, among others: expressive power which

20

2.6. Comparative Preference Languages

should be high, relative compactness, complexity which should be low, elicitation-

friendliness, and cognitive appropriateness (Chevaleyre et al. 2008).

In order to make decisions, the decision maker may need to determine the pref-

erence relation: a ranking of all outcomes determined by her own preferences. A

simple and unsophisticated idea would consist in revealing explicitly the user’s pref-

erences: simply by stating the possible options tagged by their respective utilities (in

the case of cardinal preferences) or listing all diUerent pairwise preferences among

the possible options (in the case of ordinal preferences). This approach is too simplis-

tic and not realistic when the set of alternatives has a combinatorial structure which

would make the process potentially infeasible (Rossi et al. 2011). It can be problem-

atic for machines to store and analyze preferences over a number of outcomes that

is exponential in the number of attributes (Engel & Wellman 2010).

Because of this, the automated systems adopted some assumptions about the

user’s preference structures to optimize the process by having less complicated and

more manageable preferences elicitation methods. Such assumptions include condi-

tional preferential independence (Boutilier et al. 2004a). Several compact preference

languages emerged and were studied in the AI research community. We should note

that comprehending user preferences and Vnding the way to a suitable representa-

tion of them in order to perform meaningful inferences are real challenges (Stefanidis

et al. 2011). One way to express preferences is to consider preferences over some sub-

set of attributes, considering the rest of the attributes held Vxed. Such a statement

is also often referred to as a ceteris paribus preference statement (described in Sec-

tion 2.6.2). A second approach is to give an importance ranking to the attributes and

consider Vrst (or give priority to) the most important attributes when comparing

outcomes. This ranking adopts a so called Lexicographic model (described in Section

2.6.1).

Work on several real-world decision problems has taken advantage from the

progress made in preference representation (Vig et al. 2011, Brush et al. 2010, Kon-

stan & Riedl 2012, Chen & Pu 2010, Mahmood & Ricci 2009, Pu et al. 2008, Jan-

nach et al. 2011). One example is the recommenders who have successfully helped

users Vnd their targets (e.g., books (Amazon 2012), news (Hurley & Tewksbury 2012),

movies (netWix 2012), Movielens (Movielens 2012)). We will present RSs in more de-

tails in Section 2.9.

2.6.1 Lexicographic preference models

A well-known kind of preference model is the lexicographic preference ordering

(see e.g., (Fishburn 1974, Schiex et al. 1995, Brewka 2004b, Freuder et al. 2010)). The

21

2.6. Comparative Preference Languages

idea of a lexicographic ordering is often used in qualitative approaches for multi-

criteria decision making. Here, preferences over outcomes are based on a set of

relevant variables, which are ranked according to their importance. The importance

ranking of variables is deVned by a total order which disposes the set of variables

in importance levels. A local value ordering associated with variables in each node

depends on the values taken by the parents of that node.

The lexicographic preference ordering Vrst considers the highest importance

level. If some outcome has better value for the variable on that level than another,

then the Vrst is preferred over the second. If two outcomes have the same value

for the variable on this level, the next importance level is considered, and so on.

Two outcomes are equally preferred if and only if they have the same value for the

variable on every level.

The deVnition implies that if one item is preferred over another on the most

important variable on which they diUer, it is considered better overall, regardless of

its values for the remaining less important variables. For instance, if we have four

variables (or attributes) F1, F2, F3 and F4 ordered as Fi is more important than Fi+1

(i = {1, 2, 3}), and α has better value than β for F1, whereas β is has better value

than α for the remaining variables (i.e., F2, F3 and F4) then α is still considered better

than β. Two outcomes α and β are compared in linear time when preferences have

the form of lexicographic models.

For example, a student who wants to go by plane to Paris prefers a cheap Wight

to an expensive one; for equally priced Wights, the student will check whether the

Wight is direct or not as she prefers the direct one. The student’s preferences could

then be represented by a lexicographic preference model as the price will be the most

important criterion followed by the itinerary.

Lexicographic preference models are regarded as simple and reasonably intuitive

preference representations, and so lexicographic ordering can be well-understood by

humans that use it to make preference decisions (Yaman et al. 2011). The psychology

literature shows evidence that lexicographic preferences are often an accurate model

for human decisions (Gigerenzer & Goldstein 1996).

These models implement a stronger form of preference statements than ceteris

paribus statements. They demand stronger judgments. They represent a situation

where the value of variable X is much more important than the values of any less

important variable; we prefer any outcome that does better on variable X. This may

limit the usefulness of lexicographic models (Wallace & Wilson 2009). One disad-

vantage is that lexicographic orderings models are unable to handle tradeoUs as the

choice of values of a variable dominate the assignments to a set of other less impor-

tant variables. However, they have attractive computational properties: two alter-

natives can be eXciently compared which is not the case for some other preference

22

2.6. Comparative Preference Languages

models (e.g., CP-nets), and a single best solution can always be speciVed (Wallace &

Wilson 2009).

2.6.2 Preferences with other features held constant

One class of preference statements, called ceteris paribus statements, allows prefer-

ences that apply preferences over features’ values with keeping other features equal.

Such a preference might be “other things being equal, I prefer chocolate to straw-

berry ice cream”. These preferences capture the intuitive idea that other undis-

closed qualities might aUect the decision making process. If, for example, chocolate

ice cream turns out to be much more expensive than strawberry ice cream, and

hence everything else is not equal, then this preference no longer applies. In (Doyle

et al. 1991), the authors propose reasoning systems based on the ceteris paribus

preference semantics. Their system allows preferences such as: pet(cat) > pet(dog),

meaning other things being equal, I prefer to have a cat rather than a dog.

2.6.3 CP-nets: overview

The CP-nets model captures complex user preferences in a graphical representa-

tion. The latter exploits conditional preferential independence in order to struc-

ture the decision maker’s preferences, over a set of features V , under a ceteris

paribus assumption. They were introduced in (Boutilier et al. 1999) and extensively

studied in many subsequent papers, in particular (Boutilier et al. 2004a, Boutilier

et al. 2004b). CP-nets provide a compact and natural representation of ordinal pref-

erences in multi-attribute domains (Boutilier et al. 1999, Domshlak et al. 2001, Braf-

man & Domshlak 2002, Domshlak & Brafman 2002, Boutilier et al. 2004a, Goldsmith

et al. 2008, Brafman, Domshlak & Shimony 2006, Brafman & Domshlak 2008).

A CP-net N over V is an annotated directed graph G over {X1, ..., Xn}, in which

nodes are the problem variables. Each node Xk is annotated with a conditional pref-

erence table denoted by CPT(Xk), which associates a total order over the values

domain of X denoted by Xk with each instantiation u ∈ U (U is the set of possible

assignments to the set of variable U) of Xk’s parents (Boutilier et al. 2004a). Indeed,

given such a structural information, the agent explicitly speciVes her preferences

over the values of Xk for each assignment u ∈ U . This preference is assumed to

take the form of total order over Xk. An outcome o is a map that assigns a value

to each variable Xk ∈ V . For instance, let V = {X1, X2, X3}, all three variables

being binary, and assume that the preference of a given agent over all possible out-

comes can be deVned by a CP-net whose structural part is the directed acyclic graph

G = {(X1, X2), (X1, X3), (X2, X3)}; this means that the agent’s preferences over

23

2.6. Comparative Preference Languages

the values of X1 is unconditional and the preference over the values of X2 (respec-

tively X3) is fully determined given the values of X1 (respectively the values of X1

and X2). The preference statements contained in the conditional preference tables

are written with notation, such as, x1x
′
2 : x′3 > x3 which means that when X1 = x1

and X2 = x′2 then X3 = x′3 is preferred to X3 = x3. An improving Wip is the change

of the value of a single variable Xk within an outcome to directly compute a pre-

ferred (better) outcome based on CPT (Xk). In other words, an improving Wip is a

change in the value of a variable towards a more preferred value according to the

conditional preference table for that variable.

A CP-net N induces a preference ranking over the outcome space (Boutilier et al.

2004a): for any pair of outcomes o1 and o2, N entails o1 � o2 (denoted by N |=
o1 � o2) if and only if there exists a sequence of improving Wips from o2 to o1

respecting the conditional preference tables of N; otherwise, N 6|= o1 � o2. This

deVnition induces a pre-order over the outcomes, which is a partial order if the CP-

nets is acyclic (see below). Note that the preference relation induced from a CP-net

is generally not complete (Boutilier et al. 2004a): two outcomes o1 and o2 may also

be incomparable according to N (written as N |= o1 ./ o2). Therefore, a partial order

among the outcomes of a CP-net is obtained by means of the CPT associated to each

node in the graph. N |= o1 ./ o2 if and only if N 6|= o1 � o2 and N 6|= o2 � o1.

A CP-net is said to be acyclic if its directed graph is acyclic, and tree-structured if

its directed graph is a forest, that is, a disjoint union of trees (Domshlak & Brafman

2002). It should be noted that a tree-structured CP-net is an acyclic preference net-

work where arcs are directed from the root down to the leaves in such a way that

each node has at most one parent.

When the CP-net is traversed in a topological order of variables, we obtain an

induced preference graph of outcomes whose nodes determine the various possible

combinations and every edge in the graph represents an improving Wip. Although

the induced graph speciVes the worst and best preferences, respectively, it does not

necessarily show any ranking between several intermediate solutions (Boutilier et al.

2004a).

Comparing two outcomes is NP-hard for both cyclic and acyclic CP-net. Given

an acyclic CP-net, Vnding an optimal solution can be done in linear time. However,

for cyclic CP-nets, it becomes NP-hard (Goldsmith et al. 2008).

Example 1. Let us assume a student is looking for a suitable laptop conVguration. The
student will focus only on two components: The Operating System(OS) and The Mem-
ory(M) (unit=megabyte). The possible values of variables are deVned in Table 2.1. If
the memory is equal to 1024MB, UBUNTU is preferred over XP because UBUNTU can
be personalized and optimized in order to operate more conveniently even with a small

24

2.6. Comparative Preference Languages

amount of memory which is not the case for XP, which it needs at least 2048MB of mem-
ory. When the laptop has 2048MB of memory, the student prefers XP over UBUNTU. The
CP-net which illustrates the preferences of the student is depicted in Figure 2.1. The in-
duced preference graph is depicted in Figure 2.2. An arc in this graph directed from
outcome β to α indicates that a preference for α over β can be determined directly from
one of the CPTs in the CP-net. For example, the fact that the outcome {1024,UB} is
preferred to {1024,XP} (as indicated by the direct arc between them) is a direct con-
sequence of the semantics of the CPT drawn next to the OS node in Figure 2.1 which
says if the memory is equal to 1024MB, UBUNTU is preferred over XP. The top element
{1024,XP} in Figure 2.1 is the worst outcome while the bottom element {2048,XP} in
the Vgure is the best.

Table 2.1: Laptop components.

Variables Values
Operating System (OS) {XP, UBUNTU11.4 (UB)}

Memory (M) {1024, 2048}

Figure 2.1: A CP-net for laptop conVguration.

Figure 2.2: The induced preference graph for laptop conVguration.

25

2.7. Even More Expressive Languages

2.6.4 Some extensions of CP-nets

Although CP-nets are a representation language which is well-suited to expressing

preferential (in)dependencies, they do not allow, for instance, to express relative im-

portant statements between variables.

Therefore, various extensions of CP-nets were proposed for the purpose of being

more expressive without losing the advantages of CP-nets. For instance, TCP-nets

(Brafman & Domshlak 2002, Brafman, Domshlak & Shimony 2006) are CP-nets with

additional importance statements between variables. TCP-nets implement, addition-

ally to CP-nets, variable importance statements, as lexicographic orders do. They

generalize CP-nets by introducing the ability of expressing a relative importance

and conditional relative importance of object attributes. Thus, TCP-nets are a more

reVned tool for comparing objects than CP-nets.

Languages for cardinal preference representation in the style of CP-nets have

been deVned as well, for instance UCP-nets (Boutilier et al. 2001), which are based on

generalised additive independence (GAI). UCP-nets capture quantitative preferences

and relative importance information using utility functions. They combine the the-

ory of CP-nets and GAI-nets (generalized additive decomposable utility functions).

Other extensions of CP-nets were developed as well such as FCP-nets (Gavanelli &

Pini 2008a) which are described in Section 2.12.5.4.

2.7 Even More Expressive Languages

The user’s preferences often have diUerent forms of statements (e.g., comparisons

between arbitrary partial or complete assignments). The user’s preference state-

ments might be acyclic and the induced preference relation might be inconsistent.

These facts motivate the development of new preference languages that can handle

more general forms of preference inputs which, for instance, include cyclic prefer-

ence statements. The approach presented in (Wilson 2004b) introduces a new form of

preference statements named conditional preferences theories and denoted cp-theories.
It uses a logical framework for expressing conditional preference statements that

consists of a formalism along the same lines of CP-nets but with a richer language

allowing to express not only the usual CP-nets ceteris paribus statements but also

TCP-nets statements. Indeed, this approach allows for tradeoUs between somewhat

more expressive preferences.

The conditional preferences theories involve statements of the form u : x >

x′[W] which means that given value u for variable U , we prefer value x to x′ for

variable X , as long as variables outside of W are held equal. The values of W are

allowed to be arbitrarily diUerent. Sections 3.1 and 3.2 in (Wilson 2011) states that

26

2.7. Even More Expressive Languages

CP-nets and TCP-nets can be represented by the means of statements by having

W = ∅ , and 0 ≤ |W | ≤ 1 respectively.

Example 2. Let N be a TCP-net on a set of variables V = {V1, V2, V3, V4}. A condi-
tional preference table (CPT) is deVned in Table 2.2.

Table 2.2: CPT for TCP-net N.

x1 > x′1
x1 x2 > x′2 x′3 > x3

x′1 x′2 > x2 x3 > x′3
x3 x4 > x′4
x′3 x′4 > x4

Variable importance states X2 is more important than X4 (i.e., X2 −→ X4). One
conditional importance statement isX2 −→x1 X3 which says that given a tuple x1,X2

is more important than X3.
Let ΓN be a cp-theory that can represent preference information brought by N .

the CPT of N, described in Table 2.2, can be represented as follows: x1 > x′1[∅], x1 :

x1 > x′1[∅], x′3 > x3[∅] and x3 : x4 > x′4[∅]. The variable importance X2 −→ X4

can be represented by the statements x1 : x2 > x′2[X4] and x′1 : x′2 > x2[X4]. The
conditional importance statement X2 −→x1 X3 can be represented by the statement
x1 : x2 > x′2[X3].

Example 3. Let us consider a movie database scenario. In this example, the features of
a movie are represented by set of variables V . V ={Director (D), Genre (G), Scenario (S),
Principal Actor(A)}. Values of the features are presented in Table 2.3.

A cp-theory allows one to inform the preferences on the values of an attribute de-
pending on the values of some other attributes. Thus, in a movie database scenario, a
user can specify her preferences as follows:

d1 : g1 > g2[A] and d2 : g3 > g4[A] ;
The Vrst statement reveals the user prefers comedy to suspense for movies whose di-

rector is Woody Allen regardless of the name of the principal actor. The second statement
says she prefers action Vlms to dramas for movies whose director is Steven Spielberg re-
gardless of the name of the principal actor.

Furthermore, Wilson has deVned a novel preference language where preference

statements compare not only single values of variables but also tuples of values of

a set of variables (Wilson 2009b). A set of such preference statements is called a

comparative preferences theory and is described in Section 3.3 in Chapter 3.

27

2.8. Preferences-Based Systems

Table 2.3: Movie’s features.

Variables Values
Director (D) {Allen (d1), Spielberg (d2)}
Genre (G) {Comedy (g1), Suspense (g2), Action (g3), Drama (g4)}
Scenario (S) {Fiction (s1), Real Story (s2))}

Principal Actor(A) {Robin Williams (a1), Will Smith (a2), Morgan Freeman) (a3)}

2.8 Preferences-Based Systems

Many real-world problems require people to select the most preferred item, which is

called in some contexts the target solution, from a set of options, which might have

a combinatorial structure. For example, an electronic catalog system might provide

access to millions of products, and the user has to navigate through the catalog to

Vnd the most preferred one (e.g., (netWix 2012)).

The problem of building personalized preference-based information systems has

been investigated in various settings such as querying databases (Stefanidis et al.

2011), getting automated product recommendations, autonomous agents (Rossi et al.

2004), planning (Domshlak et al. 2001, Bienvenu et al. 2006) or receiving support

in group decision making (Rossi et al. 2004, Lang & Xia 2009, Xia et al. 2008, Xia

et al. 2007).

2.8.1 Individual decision aiding

As stated in several works (Doyle & Thomason 1999, Boutilier et al. 1999, Boutilier

et al. 2004a), preference applications were Vrst targeting the decision maker in order

to help her make the right choice from a relatively large number of alternatives.

In (Domshlak et al. 2001), the authors presented a framework for preference-based

conVguration of web page content. An optimal conVguration of web page content is

determined according to the preferences of the web author as well as to the current

interests of the viewer.

GP-CSP (Do & Kambhampati 2001) is a system that does planning by automati-

cally converting a Graphplan planning graph (Blum & Furst 1995) into a CSP encod-

ing which is solved by standard CSP solvers. In (Brafman & Chernyavsky 2005), the

authors showed how to extend GP-CSP in order to Vnd optimal plans for planning

problems with preferences expressed as TCP-nets (Brafman & Domshlak 2002, Braf-

man, Domshlak & Shimony 2006). In that paper, preferences among goal states are

speciVed using a TCP-net, and they look for a plan resulting in an optimal outcome,

that is, a state s1 such that no other reachable state betters s1. Another example is

28

2.8. Preferences-Based Systems

presented in (Giunchiglia & Maratea 2011); the authors investigated the relative per-

formance of preference-based planners, including qualitative preference-based plan-

ners, in terms of solving problems.

Another example using CP-nets for individual decision making was presented in

(Boubekeur et al. 2006), in which an information retrieval approach was detailed in

which CP-nets are used for expressing preferences over documents.

Several tasks in decision support require the selection of an optimal subset of

items. The work in (Binshtok et al. 2007) considered the problem of computing op-

timal subsets given a preference speciVcation based on the methodology presented

in (Brafman, Domshlak, Shimony & Silver 2006) which proposed a generic way to

specify preferences over sets of objects. Indeed, in (Brafman, Domshlak, Shimony &

Silver 2006) the set preferences were speciVed through set property values which are

based on TCP-nets. The preferences for each set are based on the attribute values of

individual elements in the set.

2.8.2 Collective decision aiding

Most RSs target single individuals. In recent years, however, systems which pro-

vide recommendations for groups have emerged, based on the idea that some types

of recommended items are at least as likely to be used by groups as by individuals,

for example vacations, movies, restaurants or cultural events like concerts or exhibi-

tions.

On the other hand, there are situations in which we cannot make decisions by

ourselves and we need to set trade-oUs and discuss our preferences with those of oth-

ers in order to collaborate properly. An example of this phenomenon is encountered

when voting in multiple referenda, where we have to decide on a set of propositions

to accept, or electing a committee, where we have to decide how to Vll each seat.

The work in (Rossi et al. 2004) built on top of CP-nets, which represented the

preferences of each agent, a formalism to model and handle the qualitative and condi-

tional preferences of multiple agents. Li et al. generated the set of all Pareto-optimal

outcomes from a collection of agents whose preferences were represented by CP-

nets (Li et al. 2010). CP-nets were used in voting theory to represent the voter’s

preferences in (Lang & Xia 2009, Xia et al. 2008, Xia et al. 2007). Xia et al. proposed a

general methodology for voting, as a group decision, that allowed the aggregation of

preferences when voters express CP-nets that can be cyclic (Xia et al. 2008). Lang et

al. proposed a new approach which elicits the voter’s preferences for each variable

at a time by aggregating the voter’s preferences locally (Lang & Xia 2009). Endriss

claimed that the most widely used compact preference representation language in

29

2.9. Recommender Systems

computational social choice are CP-nets (Endriss 2011). CP-nets were used to repre-

sent and analyze games (Bonzon et al. 2009). The work in (Apt et al. 2005) related

the two formalisms of strategic games and CP-nets and showed reasoning techniques

with CP-nets can be mutually used to reason with strategic games.

The authors in (Mukhtar et al. 2011) proposed an approach for dynamic user task

composition and assignment in which preferences are speciVed qualitatively for var-

ious components’ capabilities. Those preferences are modeled using CP-nets. Such

applications can be deployed in a pervasive work environment so that the user will

be able to use eXciently the hardware and software resources in the environment to

dynamically achieve her task for better ergonomics, entertainment, or special needs.

2.8.3 Preferences-based database requests

Comparative preferences have also been the subject of several research Velds includ-

ing databases in which they capture soft criteria for queries (Stefanidis et al. 2011).

Databases brought a novel perspective to the preference-based applications because

of the huge amount of information faced by users on a daily basis. Customizing

database queries via user preferences is a research topic that raised a lot of interest

in the database community in recent years. Such preferences were used for sorting

and selecting the best tuples, that is, records in the database, those which most fulVll

the user’s wishes (Chomicki 2002). (Endres & Kiessling 2006) examined the trans-

lation of TCP-nets into preference statements written in the preference framework

introduced in (Kießling 2002), an approach based on an algebraic formalism through

which a preference is obtained by composing simpler preferences, and whose pref-

erence models are based on strict partial orders. This work introduced a new prefer-

ence constructor to all the resulting algebra expressions to capture the ceteris paribus

semantics after the transformation of TCP-nets.

Another example of adaptation of CP-nets to the context of databases is presented

in (Mindolin & Chomicki 2007) which extends CP-nets to a structure called hierar-

chical CP-nets in which each edge of the network expresses both the conditional

dependence and the relative importance between diUerent attributes among which

parents are more important than all their descendants in the preference graph. An-

other work (Ciaccia 2007) dealt with a similar case where the user’s preferences are

not completely speciVed.

2.9 Recommender Systems

The amount of data accessible on the web expands rapidly and goes beyond limited

human cognitive capabilities. Moreover, in several purchase-intention scenarios the

30

2.9. Recommender Systems

customer is faced with a set of alternative items or services, but she is not ready

to make the right choice straightaway due, for instance, to a lack of appropriate

knowledge to take the decision.

The set of available alternatives is stored in large electronic product catalogs con-

taining organized information about products and their features. Most e-commerce

web sites, such as Amazon (Amazon 2012), Expedia (expedia 2012), or eBay (ebay
2012), use this kind of catalogue. Such large catalogs used by online retailers point

the increasing need for a decision agent that takes the customer’s needs and prefer-

ences as inputs and returns a set of recommended items.

With the growth of the Internet and the business to consumer e-Commerce, the

need for intelligent systems increases in electronic commerce Veld. These auto-

mated systems, called recommender systems (RSs), have the mission of delivering

personalized information services that match the user needs. RSs have become an

important stream of research in electronic commerce (Salton & McGill 1983, Jannach

et al. 2011).

Since the middle 1990s, several research streams emphasized RSs (Hammond

et al. 1994, Burke et al. 1996, Resnick & Varian 1997, Burke et al. 1997a, Sarwar et al.

2001, Schafer et al. 2001, Lorenzi & Ricci 2003, Burke 2004, Bridge et al. 2005, Ricci

& Nguyen 2005). They are now gaining widespread acceptance in the e-commerce

Veld.

2.9.1 The task

RSs combine ideas from a number of research domains including information re-

trieval (IR), user modeling, machine learning, and human computer interaction (HCI)

(Adomavicius & Tuzhilin 2005). They share the common goal of helping the user

carry out tasks, from discovering a product to constructing a plan by eliciting the

user preferences, inferring a preference model, and using the model to make a deci-

sion about when and how to act. These tasks are interrelated and they strive for a

main goal: make the user content and most importantly allow her to get (e.g., buy)

what she wants.

Thus, RSs will typically supply the user with a list of recommended items she

might like, or predict to which degree the user might prefer each item (e.g., predict

ratings of items by a given user). These systems help users decide on appropriate

items, and lessen the task of Vnding preferred items in the large collection of avail-

able products, services, and other opportunities.

They assist users by identifying interesting products and services that better Vt

their preferences in situations where the number and complexity of oUers sharply

exceeds the user’s capability to survey them and reach a decision.

31

2.9. Recommender Systems

A popular example is NetWix (netWix 2012), the DVD rental provider, which gives

personalized movie recommendations to each user, using past movie ratings of the

user and her circle of friends (e.g., it displays predicted ratings for every movie that is

shown to the user). The most successful online book retailer Amazon (Amazon 2012)

provides average user ratings for displayed books, and a list of other books that are

bought by users who buy a particular related book.

E-commerce web sites use RSs, wishing to increase their online retailers’ rev-

enues, and looking to the best and most eXcient way of guiding the user through

their collections and catalogues and encouraging her to buy their services or prod-

ucts.

While preferences and contextual conditions are speciVed, it is possible that the

user might be able to query the system for recommendations and might then get

constructive suggestions that she can act upon (Jannach et al. 2011). For instance, to

plan a travel RS the user would describe her preferences over features like day of the

trip, airline, itinerary. Then, the user might request suitable suggestions.

2.9.2 Human computer interaction

Typical RSs used to support only a simple type of human-computer interaction with

their users (Mahmood et al. 2009). Assuming the system assimilates the user model

which lodges all the user’s preferences, these RSs advise the user through a set of

recommendations selected with regards to the user model.

However, the user model will not often be shaped totally at the beginning of the

interaction (i.e., not all the user’s preferences can be elicited). Moreover, users are

rarely satisVed with the initial recommendations (Bridge et al. 2006). Therefore, it is

more convenient to employ a more natural approach, similarly to a human-human

interaction, where users can specify their preferences over an extended dialogue.

Conversational RSs (McGinty & Smyth 2006) support a more interactive and diverse

human-computer interaction in which the system supports many types of actions,

and interacts with the user in order to determine her preferred products in an itera-

tive, more engaging, and an eUective manner.

An example of interaction model starts with the user who needs information

(Moreno et al. 2011). Then, she formulates and sends her enquiry to a RS that she

uses to help her search in a collection of items. Afterwards, the user evaluates the

results sent from the system. The interaction ends, for instance, if the user is satisVed

or she does not want to resend another query to the system, or there are no more

queries to be sent.

32

2.9. Recommender Systems

2.9.3 DiUerent techniques of recommendation

Many information Vltering and recommendation methods have been developed in

the literature. The proliferation of these approaches has meant that there is no ac-

cepted clustering of approaches, nor accepted names for all the approaches. Re-

searchers usually use descriptive terms that characterize the approaches. In this

work, we adopt the vision of Burke in (Burke 2002) who claimed RS techniques can

be classiVed into four main categories based on the technique used to match users

proVles with recommended items characteristics: Collaborative Filtering, Content

Based Filtering, Knowledge Based systems and Hybrid systems. In Figure 2.3, we

tried to draw a clustering of RSs that we consider quite reasonable. We included

two criteria to create RSs clusters which are the interaction mode (“single-shot” or

conversational) and the conversation strategy which speciVes how the system ap-

proaches the user (navigation-by-proposing, navigation-by-asking, or navigation-

by-information recommendation (described in Section 2.10.2.3)).

Interaction

Matching

Navigation
strategy

Collaborative
filtering RS

Content-based
RS

Knowledge-based
RS

Single

Conversational

Navigation-by-
proposing

Navigation-by-
asking

Navigation-by-
information
recommendation

Figure 2.3: ClassiVcation of recommender systems.

Two of the best known strategies of RSs that were presented so far in the com-

munity of RSs are content-based Vltering and collaborative Vltering (Smyth 2007).

• Collaborative Vltering uses preferences of similar users in the same refer-

ence group as a basis for recommendation (Resnick et al. 1994, Shardanand

& Maes 1995, Hill et al. 1995). Collaborative Vltering-based RSs are based on

past ratings of users with similar preferences under the assumption that hu-

man preferences are correlated (Resnick et al. 1994). Based on these ratings,

the recommender tries to Vnd either users that are most similar to the active

user or items that are similar to the item for which the user’s rating is be-

ing predicted. The former approach is called user-based collaborative Vltering

(Resnick et al. 1994), whereas the latter is known as item-based collaborative

Vltering (Sarwar et al. 2001). For example, if two customers bought similar

Compact Disks (CD) and rated them similarly, the system would recommend to

33

2.9. Recommender Systems

one customer CDs that the other customer bought and rated positively. There-

fore this approach makes recommendation based on collective preferences of

the crowd.

In the context of preferences, this type of RS requires recommendation seekers to

express preferences by giving a degree of desirability (e.g., rating) to a set of items.

These systems focus on algorithms for matching people based on their preferences

and weighting the interests of people with similar preferences (e.g., tastes) to produce

a recommendation for the service/product seeker.

Collaborative Vltering can Vnd similarities among diUerent users but can Vnd it

diXcult to handle new items that do not have existing usage information.

• Content-based Vltering uses keywords or other product-related attributes to

make recommendations (Maes 1994, Lieberman 1997, Pazzani & Billsus 2007).

In fact, this kind of approach for RSs matches product attributes to user-proVles

under the assumption that each user operates independently. Its main purpose

is to reduce irrelevant content and provide users with more pertinent products

or services. This approach uses features of items the user liked in the past to

infer new recommendations (e.g., they attempt to recommend items that are

similar to items the user liked in the past). For instance, it selects and rec-

ommends products that are selected on the basis of purchasing information

available from the current user.

In the context of preferences, this type of RS uses only the preferences of the rec-

ommendation seeker. Their focus is on algorithms for learning user preferences and

Vltering a stream of new items for those that most closely match user preferences.

The content-based approach can classify products and services based on their

nature, but often have diXculties in identifying related interests of the same user

since it recommends items that are highly ranked regarding the user proVle. But it

is unlikely to recommend to the user items liked by similar users (e.g., people who

have the same purchase patterns) (Ge et al. 2010, Lops et al. 2011).

• Knowledge-based recommendation exploits deep domain knowledge in the

form of mappings between the user preferences and the required product char-

acteristics. Knowledge-based RSs have knowledge about how particular items

meet particular user needs, and employ this knowledge to recommend items

based on inferences about each user’s needs and preferences (Burke 2002,

Burke 2004, Burke 2007). In this RS, a suitable recommendation relies on prod-

uct descriptions and learns an individual preference model from characteristics

34

2.9. Recommender Systems

of the current preferred product (Felfernig & Gula 2006, Mandl, Felfernig, Tep-

pan & Schubert 2011) . However, the drawback of all knowledge-based systems

is the need for knowledge acquisition.

An example of Knowledge-based RS would be a digital camera retailer as it

needs the user to be aware of the camera features such as manufacturer, camera

type, sensor resolution, optical zoom level, output format and storage type and

size.

• Hybrid Systems combine several RSs techniques to overcome the limitations

of pure techniques (Burke 2002). Hybrid systems often provide better accu-

racy than pure techniques (Schclar et al. 2009). DiUerent eUorts for combining

collaborative and content-based methods into a hybrid RS can be classiVed as

(Adomavicius & Tuzhilin 2005):

– Combining predictions of separate implementations of collaborative and

content-based methods.

– Incorporating some content-based characteristics into collaborative ap-

proach.

– Incorporating come collaborative characteristics into content-based ap-

proach.

– Constructing a general uniVed model that incorporates both approaches.

2.9.4 Case-based recommender systems

The customers who purchase complex products such as Vnancial services, laptops, or

digital cameras need both information and intelligent interaction mechanisms that

support the selection of appropriate solutions. One particular class of knowledge-

based RSs is case-based recommenders (Smyth 2007, Bridge et al. 2005). This style

of recommenders is suitable to help customers identify complex products. Indeed,

for products like laptops, digital cameras, cars or houses, or even Vnancial services,

customers are not very keen on depending totally on other customers’ reviews to

be comfortable with a recommendation and make the decision to purchase products.

For products that are relatively expensive or professionally critical, people are willing

to put enough eUort for the purpose of reaching a choice which satisVes the user’s

needs as best as possible with a minimum of risk (e.g., without substantial Vnancial

loss). In fact, people can spend time in interacting with the system in case they want

it to recommend a suitable product which has a great value for them (e.g., a house).

Accordingly, such products are usually constrained by a set of features (for ex-

ample, the digital camera has features like price, optimal zoom, resolution, etc.) for

35

2.9. Recommender Systems

which customers are able to specify particular preferences (e.g., to specify values,

etc.) to Vlter out the available large data set.

Such organized information about products allow case-based recommenders to

adopt and provide required formalisms for intelligent interaction mechanisms that

support the selection of the most appropriate solutions within a sizeable set of pos-

sible items.

Instead of relying on the collective preferences that collaborative Vltering uses,

case-based recommendation suggests explicit sales dialogues that emulate the con-

versation between a customer and a sales assistant. These dialogues help to proac-

tively suggest products to a given customer by predicting her preferences on prod-

ucts.

2.9.4.1 Single-shot recommender systems

Case-based recommendation systems used to operate in a “single-shot” fashion. When

a “single-shot” RS receives a query from the user, it recommends a set of products to

the user only once. If the user is not satisVed, there is only one way to proceed in

order to readjust the “shot”: to amend the query and start again. In “single-shot” RSs,

the same results are often returned to the user despite being of no interest to the user

(Smyth 2007).

This recommendation model supposes the user knows what she is looking for to

a point that the system does not consider to have more than a single “exchange” with

the user. Figure 4.1 in Chapter 4 illustrates the single-shot recommendation scenario.

This would not be supported by the actual extreme diverse products that are available

in the web. In fact, the ability to reVne the search in large catalogs through multiple

interactions could be helpful for the users. Using multiple interactions, a user can

navigate a product space much more eUectively while taking the time to express her

preferences progressively.

2.9.4.2 Conversational recommender systems

Generally speaking people do not state their preferences up-front because initially

they only have a vague idea of the product they would like to have (Bridge et al.

2005). Usually, criteria about the product the customer would like to purchase are

speciVed during the dialog with the seller. This is still the case even for knowledgable

customers in the domains where expert users need to be assisted because available

products dynamically change. A distinctive example is the list of special oUers (e.g.,

Wight tickets) which change frequently.

In order to hold natural-like and interactive dialogue, conversational RSs (Bridge

et al. 2005) were proposed. These systems support a dialogue where, at each stage,

36

2.9. Recommender Systems

the system can select one from a set of available system actions, e.g., recommend

some products or ask the user for more information. The particular action selected

by the system is determined by its recommendation strategy.

The recommendation strategy usually characterizes conversational RSs since it

determines the action plan adopted by the recommender while interacting with the

user, in order to help her reach her ultimate goal: obtain the most suitable possible

oUer from the system (e.g., product, service or combination of both). The recommen-

dation strategy ultimately depends on the complexity of the user’s goal, as it should

accompany and guide the user while she is searching for her target. For instance,

in the prototype of the Austrian Tourism portal (Mahmood & Ricci 2007, Mahmood

et al. 2008), there are three possible targets for the user: 1) “Build a Travel Plan ”, 2)

“Window Shop ”, i.e., just browse through the products, and 3) “Book a Product ”,

i.e., search for a single product and add it to the travel plan.

In a conversational scenario, which is depicted in Figure 4.1 in Chapter 4, the

strategy is implemented by specifying the particular actions that the system executes

at each stage of a given interaction session. Indeed, at each interaction cycle, the

system can either request from the user a preference or propose a product to the

user. The user can either answer the question posed or criticize the system proposal.

As the recommendation strategy oUers various ways of interacting with the user,

conversational RSs are able to recommend a variety of products for diverse categories

of users.

Requirements acquisition is regarded as a key element in e-commerce. The prod-

uct search, which probably needs a Vlter-based retrieval, can take place in tandem

with preference elicitation. Bridge et al. (Bridge et al. 2005) described two ways

of requirements elicitation by which conversational recommenders can be identi-

Ved: the Vrst approach is called navigation-by-asking according to which the RS

sets a dialogue with the user during which the RS selects and asks questions to

the user, whether up-front (e.g., form-Vlling) or incrementally. The user’s prefer-

ences are elicited when the user answers the questions (Goker & Thompson 2000,

Doyle & Cunningham 2000, Shimazu 2001, Shimazu 2002, Schmitt 2002b, Thomp-

son et al. 2004a). The second approach is called navigation-by-proposing according

to which the RS may show the user intermediary products so that it gets a form

of feedback from the user’s critiques to the proposed products when invited to give

feedback about what was presented to her (Burke et al. 1996, Burke et al. 1997a,

Shimazu 2002, Faltings, Pu, Torrens & Viappiani 2004, McCarthy et al. 2004, Pu &

Faltings 2004, McCarthy, McGinty, Smyth & Reilly 2005, McCarthy, Reilly, McGinty

& Smyth 2005, Chen & Pu 2009).

Conversational RSs may implement only the asking/answering conversation mode

(Linden et al. 1997), only the proposing/ criticizing conversation mode (Burke 2002),

37

2.10. Preference Handling Methods in Conversational Recommender Systems

(Pu & Chen 2005), or both (Shimazu 2001). Switching between these two kinds of

navigation has also been addressed in (McGinty & Smyth 2003).

2.10 PreferenceHandlingMethods in Conversational

Recommender Systems

The acquisition of preferences is a central challenge in interactive systems like RSs

(Chen & Pu 2004). There are two major approaches in today’s RSs: utility functions

(Fishburn 1967, C. 1968, Fishburn 1970, Fishburn 1974, Fishburn 1999) and relational

preference structures (Kießling 2002, Öztürk et al. 2004). A utility function assigns a

numerical score to each data item. The score of an item depends only on the item’s

properties and represents its overall desirability. Relational preference structures

link pairs of items through the notions of “is preferred to” and “is equally preferable

as” thus leading to qualitative preference orderings.

Typically, the task of the recent online conversational recommenders is to elicit

the customer requirements, while interacting with her, in a personalized way. These

recommenders exchange information with the user and suggest products to get to

know her needs. Then, they provide additional help and guidance depending on the

user’s background, Vnd the most suitable alternatives, eventually provide explana-

tions for the recommendation and explain the diUerences and similarities between

products (Jannach et al. 2007). We intend to study preference handling with the

interaction mechanism that we consider comparable to the way Information Recom-

mendation (IR) interacts with the user (e.g., navigation-by-proposing or navigation-

by-asking).

2.10.1 Critiquing

Conversational RSs are used to help users navigate through product databases by

alternatively making suggestions and soliciting user feedback in order to guide sub-

sequent suggestions. There has been an interest in developing eUective interfaces

that support user interaction in domains of limited user expertise. Critiquing has

been proven to be a popular and successful user feedback mechanism in this regard

(McCarthy, Reilly, McGinty & Smyth 2005, McGinty & Reilly 2011). This approach

is one interaction model that allows users to build their preferences by examining

or reviewing examples shown to her by the system. McCarthy et al. (McCarthy,

Reilly, McGinty & Smyth 2005) state that critiquing was introduced as a form of feed-

back for recommender interfaces as part of the FindMe recommender systems (Burke

et al. 1996, Burke et al. 1997b). Example critiquing was observed in (Tou et al. 1982)

as a new interface paradigm for database access, especially for non-expert users to

38

2.10. Preference Handling Methods in Conversational Recommender Systems

specify queries. This approach alternates phases of intermediate product recommen-

dation and requirements/preferences reVnement by critiquing the presented alterna-

tives whose retrieval is based on similarity between items. It thus facilitates the

incremental construction of the user’s preferences. Moreover, it enables the user to

specify her requirements at an informal level, either directly via a graphical repre-

sentation of the requirements or indirectly by critiquing available products. Thus,

the system updates the user’s preferences during the critiquing process and reacts

promptly by providing her with immediate feedback about the consequences of her

critiquing wishes: the subsequent shown products are selected regarding the updated

user’s model of preferences.

Moreover, in (Reilly et al. 2005), the authors use the incremental critiquing as

they exploit both the critiquing history of users as well as their current critique in

a PC recommendation scenario. Furthermore, dynamic critiquing is utilised by the

authors in (Reilly et al. 2007). In fact, they apply two approaches to dynamically

generate critiques in a conversational RS for recommending laptop computers.

The user’s model can be implicit or explicitly shown to the user, via an interface

(Torrens et al. 2002), while the user is critiquing shown alternatives.

2.10.2 Some approaches for conversational recommender sys-

tems

DiUerent approaches and applications of RSs that are based on example critiquing

have emerged. We will present a number of these approaches and systems.

2.10.2.1 FindMe

One approach to using the implicit user’s model is called FindMe (Burke et al. 1996,

Burke et al. 1997a) where knowledge (or collected preferences) about the current

product selected by the user is used to rank and recommend a list of catalogue prod-

ucts from the case base. A FindMe system Vrst retrieves and displays the best match-

ing product from the database based on the user’s initial query. It then retrieves

other products based on the user’s critiques of the current best item. The interface

implementing the critiquing model is called tweaking, a technique that allows users

to express preferences with respect to a current example, such as “look for an apart-

ment similar to this, but with a better ambience.”. According to this concept, a user

navigates in the space of available products by tweaking the current best option to

Vnd her target choice. A number of systems adopt the FindMe approach (e,g., Entree

(Burke 2000), RentMe (Burke et al. 1997b)); they support a similar interaction Wow

with the users, that is the user initially provides some information about her desired

39

2.10. Preference Handling Methods in Conversational Recommender Systems

product, either by constraining and executing a product query, or by providing some

speciVcation about the desired product.

The FindMe approach has been successfully applied in the Entree system for rec-

ommending restaurants (Burke 2000), and the Wasabi tool for assisting the user in

browsing an online database (Burke 1999). The PTV system is another application of

FindMe approach which recommends TV programs (Smyth & Cotter 2000, Smyth &

Cotter 1999).

2.10.2.2 More Like This & Partial More Like This

The user feedback employed in conversational RSs was also studied in (McGinty &

Smyth 2002a, McGinty & Smyth 2002b) through a proposed comparison-based rec-

ommendation algorithm that works as follows: It recommends a set of k items that

are likely to satisfy the user’s needs. Then, the user is enabled to select the best

match, considered by the system as “positive feedback”. Next, the system will ana-

lyze the user feedback by evaluating the information about the diUerence between

the selected and the (k− 1) remaining items. This analysis determines the set of rec-

ommended items for the next iteration. The recommendation session terminates ei-

ther when the user is presented with a suitable item or when she gives up. More Like
This (MLT) and Partial More Like This (PMLT) are two approaches in this work whose

role is to induce preferences when the user reacts to the recommended items. They

both generate preference statements stating the preference of features that mark the

selected item over those that characterize the rejected items during an interaction

stage. While this work was applied to a conversational RS for PC, a similar approach

has been employed in (Smyth & McGinty 2003) for whisky recommendation.

2.10.2.3 Information Recommendation

Information Recommendation (IR) is a conversational approach on which we will

focus in this thesis and it will be presented in more detail in Section 4.2 in Chapter 4.

BrieWy, this approach aims at suggesting to the user how to reformulate her queries

to a product catalogue in order to Vnd the products that maximize her utility. In

(Bridge & Ricci 2007), the authors showed that, by observing the queries selected by

the user among those suggested, the system can make inferences on the true user

utility function and eliminate from the set of suggested queries those products with

an inferior utility (these queries are called dominated queries). The computation of

the dominated queries was based on solving several linear programming problems.

Blanco et al. proposed a new technique for the computation of the dominated

queries (Blanco et al. 2012a). In fact, while the work in (Bridge & Ricci 2007) as-

sumes that the user utility function is an arbitrary one (i.e., coming from an inVnite

40

2.10. Preference Handling Methods in Conversational Recommender Systems

set), Blanco et al. assume the user utility function is drawn from a Vnite set of user

proVles that are known by the system. This set represents the possible diUerent

users that the system considers that it may interact with. They show that under this

assumption the computation of the query suggestions is simpliVed and the num-

ber of query suggestions is strongly reduced regarding those shown by (Bridge &

Ricci 2007). Besides, the authors artiVcially assumed that the true user utility func-

tion is included among the Vnite set of user proVles contemplated by the system. In

(Blanco et al. 2012b), they treat this as a crude simpliVcation since a totally unknown

user approaching the system may have an arbitrary proVle and the system has no

knowledge about that. Then, they have removed that assumption and they have

also extended the type of query editing operations previously described in (Bridge &

Ricci 2007).

2.10.3 Some applications of conversational recommender sys-

tems

Recently, diUerent applications based on conversational recommenders have emerged.

Several real-life applications (e.g., travel planning, restaurants) took advantage of the

critiquing approach while combining several ideas to help the user navigate through

the product databases and obtain what she wants.

2.10.3.1 Travel planning advisors

Tourism is a primary application area for mobile applications and a large number of

services are now oUered to support the traveller before, during and after travel (Ricci

& Nguyen 2005). Several RSs have been applied to travel and tourism applications.

We present some of these applications.

Trip@dvice

Tripdvice is one instance of the proposed approach (Cavada et al. 2003, Venturini

& Ricci 2006) that supports the selection of travel-related products (e.g., a hotel or

a visit to a museum or a climbing school) and the building of a travel plan. The

Tripdvice approach has been successfully validated in an online evaluation with real

users (Zins, Bauernfeind, Missier, Mitsche, Ricci, Rumetshofer & Schaumlechner

2004, Zins, Bauernfeind, Missier & Rumetshofer 2004). This approach was em-

ployed within several travel-based conversational systems: Dietorecs (Mirzadeh &

Ricci 2007), NutKing (Mirzadeh & Ricci 2007, Mahmood & Ricci 2007), ITR (Ricci,

Arslan, Mirzadeh & Venturini 2002, Mirzadeh & Ricci 2007).

41

2.10. Preference Handling Methods in Conversational Recommender Systems

Tripdvice oUers two diUerent product search functions for the users, i.e., Query

Search and Seeking for Inspirations.

The “Query Search” function integrates Case-Based Reasoning (CBR) techniques

(Smyth 2007, Bridge et al. 2005) along with user query management functions, i.e.,

query tightening and relaxation suggestions, so that the advisor is able to retrieve

and recommend a manageable subset of interesting tourist products to the users.

During the interaction, the system performs system actions of a diUerent kind so as

to give the users the chance to update their queries, e.g., suggest some attribute for

tightening or relaxing, or oUer the user the opportunity to provide some travel char-

acteristics. The user can answer back in many ways, e.g., by accepting the sugges-

tions, reformulating her query autonomously, specifying the travel characteristics.

For example, the user asks the system for recommendations about a product type

(e.g., an activity). Then, the system reacts to this query either by recommending

some products, or, in case the query fails (the product does not exist in the database),

by suggesting some query reVnements. The user and the system keep on challenging

each other within the conversation until the user’s travel plan is complete.

Trip@dvice identiVes and recommends ranked tourist items. The basic idea is

to use a hybrid “cascade” recommendation methodology (Burke 2002) where Vrst a

conversational approach is used to select a set of options and then a collaborative
via content approach approach is used for ranking (Pazzani 1999). High scores are

assigned to products that are similar to a product chosen by a user with similar needs

and preferences (Mahmood 2009).

Being guided to the desired product through queries might not suit all users. Such

a user is oUered an alternative product-based search: “Seeking for Inspirations”, is

the second search function implemented by Trip@dvice. It allows users to seek for

products that stimulate their liking, i.e., products with which they would be happy.

The system shows suitable proposals to the user, regarding the user’s preferences

and using CBR techniques, and gives her the opportunity to select or request more

products. This continues until the user is happy with her Vndings, i.e., a travel plan.

INTRIGUE

Another example of a travel-based conversational recommender is INTRIGUE, which

is a prototype system that is capable of recommending interesting destinations and

itineraries in a restricted geographical area (Ardissono et al. 2003). The navigation-

by-asking strategy is applied in INTRIGUE.

42

2.10. Preference Handling Methods in Conversational Recommender Systems

SmartClient

The SmartClient system is one example using an explicit user’s model which is used

for travel planning (Pu & Faltings 2000, Torrens et al. 2002). The approach to elec-

tronic catalogs adopts interaction sequences that are supported through the use of

a CSP as a basic selection mechanism. In fact, user preferences are explicitly mod-

eled as a CSP. The user can discover her preferences through checking the available

choices. The user model is updated when the user gives critiques about the shown

choices. The update consists of posting or retracting constraints which results in a

conversation that leads the user to reVne her needs.

Other applications that work in a similar fashion are ATA (Linden et al. 1997) and

the incremental dynamic-critiquing systems (McCarthy, Reilly, McGinty & Smyth

2005). Letting the user have a look at and update the user model can help users

understand the system’s moves when they change from one interaction to the next

and thus will have conVdence in the system (McGinty & Reilly 2011, Tintarev &

MasthoU 2011, Pu et al. 2011). With an explicit user model, the system is unlikely to

recommend products that have already been disliked by the users.

Two action plans, among several others, that can be adopted by conversational

RSs are the following:

• to be querying the user about her preferences, and acquiring enough informa-

tion from her, in order to select a candidate set of products;

• to be proposing some candidates and acquiring user preferences as critiques,

so as to to personalize the future recommendations.

Several approaches combine the two strategies mentioned above in an attempt to

bring “the best of both worlds”.

VIBE

VIBE (http://www.warmbad.at) is a virtual advisor at an Austrian spa resort. It ac-

tively promotes the variety of diUerent tourism products that ranges from hotel ac-

commodation in four and Vve-star categories, a variety of recreational and sporting

facilities to health and beauty therapies. This advisor guides the user and engages

her in a preference elicitation dialogue through a personalized series of questions in

which the customer’s preferences are incrementally elicited. It is a successful appli-

cation within ADVISOR SUITE (Jannach et al. 2007): an approach which provides an

oU-the-shelf software framework for the rapid and cost-eXcient development of an

online pre-trip travel advisory service.

43

2.10. Preference Handling Methods in Conversational Recommender Systems

2.10.3.2 Restaurant advisors

Restaurants business have also adopted conversational approaches. We present two

examples of restaurant recommenders.

Entree

The Entree restaurant recommender (Burke 2000) makes its recommendations by

Vnding restaurants similar to restaurants the user knows and likes. The system al-

lows users to navigate by stating their preferences with respect to a given restaurant,

thereby reVning their search criteria in a number of iterations. During each cycle,

Entree presents users with a Vxed set of critiques to accompany a suggested restau-

rant case, allowing users to tweak or critique this case in a variety of directions; for

example, the user may request another restaurant that is cheaper or more formal, for

instance, by critiquing its price and style features.

The Adaptive Place Advisor

Adaptive Place Advisor (APA) is a human dialogue-based conversational RS, used

for restaurant recommendation (Thompson et al. 2004a). The approach to acquiring

user models is to infer user preferences unobtrusively, by examining normal online

behavior (Rafter et al. 2000). It supports an interactive conversation by querying the

user or making recommendations, in response to a diverse set of user requests. For

instance, the system might recommend products or allow the user to constrain some

product attribute in her query, for example, to tighten her query, or oUer her to re-

move one of the attributes in case no products are retrieved (i.e., relax her query).

The user is then free to either accept or reject these oUers. The APA exploits the

user’s feedback to narrow down the list of subsequent alternatives and hence helps

the user select her desired restaurant. It personalizes and guides the interaction by

updating and exploiting a model of the users’ preferences throughout the conversa-

tion. This activity is the source of the APA’s adaptive behavior. The authors have

successfully validated APA in an experimental evaluation with real users, where the

goal is to recommend preferred restaurants in the San Francisco Bay Area. The most

important distinction of APA is that the interaction takes the form of a sequence of

questions (which mimic natural language) that are designed to eliminate some items

from consideration; the goal is to remove alternatives rather than to give a ranking

of the items.

The system keeps interacting with the user without proposing Vnal products

until at most a few choices remain. This aims at avoiding showing an unmanageable

number of products to the user. The system alternates between asking the user to

44

2.10. Preference Handling Methods in Conversational Recommender Systems

revise the query and showing items. There are three situations where the user model

is updated:

First, the authors presume that when a user accepts an item, she is indicating: (1)

a preference for the item itself, (2) preferences for the attributes she constrained to

Vnd this item, and (3) preferences for the values she provided for those attributes.

Thus, when a user accepts an item presented by the system, the probabilities and

weights relative to the appropriate item, attributes, and values are updated.

Second, when a user rejects an item presented by the system, it was only assumed

that she has a dislike for the particular item. Therefore, for rejected items the system

simply adds one to the presentation count, that counts how many times the item was

presented to the user.

The third situation in which the system updates the user model is when, after

the query has become over-constrained, it presents an attribute for relaxation and

the user accepts that relaxation. In this situation, it was assumed that, if there was

a matching item, the user would have been satisVed with it, since the character-

istics speciVed in the conversation so far were satisfactory. Therefore, before the

relaxation occurs, the system increases the attribute preferences for the constrained

attributes and increases the value preferences for user-speciVed values.

Thus, both acquisition and utilization occur not only when items are presented

to and chosen by the user, but also during the search for those items. Finally, the sys-

tem’s representation of models goes beyond item preferences to include preferences

about both item characteristics and particular values of those characteristics.

2.10.3.3 Music advisor

In (Warnestal 2007), the author presented a behavior-based dialogue model called

BCORN. BCORN utilizes a user preference modeling framework that supports and

utilizes natural language dialogue, and allows for descriptive, comparative, and su-

perlative preference statements, in various situations. BCORN was successfully ap-

plied to then evaluated with a music conversational recommender called CoreSong. It

was shown that BCORN is able to generate coherent, Wexible, and eUective dialogue

during its dialogues with the users.

2.10.3.4 Other applications

In the following, we cite some others applications of conversational RSs. In (Burke

et al. 1997b), the authors present diUerent systems that are based on the FindMe

approach: The Car Navigator system (Burke et al. 1996) recommends cars models.

Videos are recommended in the Video Navigator and PickAFlick systems. The Ken-
wood system recommends audio-related products (e.g., home theater systems), and

45

2.11. Constraint Satisfaction Problem

the RentMe (Burke et al. 1996) system recommends rental accommodation.

Another example of conversational RSs is described by Bridge through a proto-

type for conversational RSs that deals with accommodations for rent (Bridge 2002).

It presented a framework within which users’ preferences were elicited from the

user who is allowed to constrain her query in order to manage the number of suit-

able products and recommend a reasonable number of items in each iteration of the

dialogue.

The conversational approach has also been applied within ExpertClerk (Shimazu

2001, Shimazu 2002), which was designed and developed to imitate the conversa-

tion techniques of human sales clerks. In order to elicit the shoppers’ preferences

during the dialogue, the assistant typically alternates between asking questions and

proposing suggestions to the customer until the customer is satisVed or all possibil-

ities have been presented. ExpertClerk inherits the navigation-by-asking idea from

ExpertGuide and solves the scalability problem of ExpertGuide (Shimazu et al. 2001),

which is using only techniques of navigation-by-asking. In navigation-by-asking,

the advisor’s goal is to choose a sequence of questions that most eUectively homes in

on desirable products. Questions are often selected based on the user’s queries and

the product distribution. Information gain is usually used to select questions that

partition the product space eUectively.

2.11 Constraint Satisfaction Problem

Many problems ranging from resource allocation to fault diagnosis and design, in-

volve constraint satisfaction as a key and natural component.

2.11.1 DeVnitions

A constraint satisfaction problem (CSP) involves the assignment of values to vari-

ables that have a set of constraints which disallow individual or combinations of

values. A large variety of problems in AI can be modeled as CSPs. Examples include

problems in machine vision (Montanari 1974, Mackworth 1977), belief maintenance

(Dechter & Dechter 1988), scheduling (Sycara et al. 1991), and natural language pro-

cessing (Menzel 1998).

The formal study of CSPs was initiated by (Montanari 1974) who used constraint

networks to describe combinatorial problems arising in image processing. A great

deal of research in constraint satisfaction has focused on algorithms which, given a

constraint network as input, automatically Vnd a solution. This is useful in applica-

tions where, once the problem has been formulated as a constraint network, no user

interaction is required. CSPs can be hard to solve, and all known solution methods

46

2.11. Constraint Satisfaction Problem

have worst-case exponential time performance.

Constraints are requirements that impose limitations on the possible scenarios,

regarding the resolution of a problem, and they have to be met (Dechter 2003, Rossi

et al. 2006, Rossi 2005). Constraints can arise for a variety of reasons. For example,

when choosing a laptop, we may be interested only in those that have an Intel pro-

cessor and Nvidia graphics card. If an e-commerce web site does not have laptops in

his catalogue with wanted features we would leave it for another web site.

Each variable involved in a CSP has a domain which represents all possible and

allowed values to be associated to the variable. The constraints restrict the assign-

ment of the values to a variable, or a combination of variables. Altogether, variables,

domains, and constraints form a constraint network which is also called an instance

of CSP.

DeVnition 1. A constraint network is a triple R = (X,D,C) where

• X = {x1, ..., xn} is a Vnite set of n variables.

• D is a function that maps each variable xi in X (i = {1, ..., |X|}) to a Vnite set
of values, written D(xi), which it is allowed to take. The set D(xi), called the
domain of xi, is also denoted Dxi.

• A constraint is a requirement that determines a set of possible combinations of
values of the variables the constraint deals with. The arity denotes the number of
variables the constraint is dealing with. Accordingly, constraints can be classiVed
in three types. The Vrst type is the unary constraint, which restricts the values of a
single variable. Every unary constraint can be eliminated by simply preprocessing
the domain of the corresponding variable to remove any value that violates the
constraint. A binary constraint just relates two variables. When all constraints in
a network are binary, the network is called a binary constraint network. A non-
binary constraint includes three or more variables. A constraint can be deVned
explicitly as a set of permitted combinations of values. Conversely, a constraint
can be deVned implicity. Examples of implicit deVnitions can be a mathematical
expression (e.g., x1 < x2), or a speciVc semantic (e.g., the all-diUerent constraint
which is equivalent to saying that variables the constraint involves must be taking
diUerent values), etc. Set of variables S is the scope of the constraint which means
that the constraint involves every variable in S, and |S| denotes the arity of the
constraint. A tuple on scope S is an assignment of a value to each variable in S.
A constraint c with scope S represents a relation on variables in S, and thus c
corresponds with a set of assignments to S.

• C is a Vnite set of constraints. Let S ⊆ X .

47

2.11. Constraint Satisfaction Problem

DeVnition 2. Let R = (X,D,C) be a constraint network. An instantiation of a set of
variables S ⊆ X is a simultaneous assignment of values to the variables S. We denote
the instantiation brieWy as bS . Let CS be a constraint whose scope is S. bS satisVes a
constraint CS if bS ∈ CS which means that the combination of values bS satisVes (is
allowed by) CS . An instantiation bT , where T ⊆ X , is consistent with regards to R if
and only if bT satisVes all constraints CS ∈ C such that S ⊆ T .

DeVnition 3. A solution α of the constraint networkR = (X,D,C) is an instantiation
of all variables in X which is consistent relatively to R. The set of all solutions to a
constraint network R is denoted Sol(R).

A network R is called satisVable if Sol(R) 6= ∅ and unsatisVable if Sol(R) = ∅.
Two networks deVned on the same set of variables are considered equivalent if they

have the same set of solutions. For a constraint network R = (X,D,C), any subset

of variables I ⊆ X induces a subnetwork of R which has variables I , domains D

and the set of constraints is a subset of C : CS such that CS ∈ C, S ∩ I 6= ∅.
Given a constraint network R, we can consider the following tasks:

• Determine whether the network R is satisVable.

• Find a solution to the network R, with no preference as to which one.

• Find the set of all solutions Sol(R).

• Find an optimal solution to the network R, where optimality is deVned by a

function on the variables in R.

2.11.2 CSP solution methods

Solving a CSP means assigning a value to each variable such that all constraints

are satisVed. That is, a CSP solution is an assignment of values to variables which

satisVes every constraint. A CSP can be solved using the generate-and-test method

(also know as “the British Museum Algorithm” according to (Hoare 1989)), where

each time a possible instantiation of all the variables is generated, it is tested against

all the constraints to gauge the feasibility of the assignment newly created.

A more ingenious way of solving a CSP is backtracking search (Bitner & Reingold

1975), which is the principal complete mechanism for solving a CSP. The term back-

tracking search is used for a depth Vrst search that chooses values for one variable

at a time and backtracks when a variable has no legal values left to assign. The term

backtracking search implements a search tree which is composed of nodes, edges

(arcs) and an ordering � on the outgoing arcs of each node (Bessière et al. 2004).

When searching for (feasible) solutions, variables are instantiated in a chosen or-

der. By default, the procedure SelectUnassignedVariable, mentioned in Algorithm 1,

48

2.11. Constraint Satisfaction Problem

simply selects the next unassigned variable in the order given by the list of variables

X . Similarly, the procedure SelectUnassignedValue, mentioned in Algorithm 1, selects

the next unassigned value. The functions SelectUnassignedVariable and SelectUnas-
signedValue can involve variable and value selection heuristics (Brélaz 1979, Haralick

& Elliott 1980, Pirlot 1996, Boschetti et al. 2009).

The constraint is checked every time one of the variables, involved in this con-

straint, is instantiated with an untried value. A violation of a constraint provokes the

search to step back to the most recently instantiated variable that will be assigned

a value among the values in the domain which are not yet instantiated. This back-

tracking takes place by eliminating a subspace from the Cartesian product of the

variable domains.

A simple backtracking algorithm (Russell et al. 1996), which is also called chrono-

logical backtracking, is presented in the following algorithm (see Algorithm 1).

Algorithm 1 BACKTRACK(X, D, C, b)
Input : Set of variables X

Set of constraints C
Set of variables values D
Partial assignment b

Output: Set of assignments
1 if X = ∅ then
2 return b;

3 else
4 x← SelectUnassignedVariable(X);

foreach value v ∈ SelectUnassignedValue(Dx) do
5 if v is consistent with assignment b then
6 b← b ∪ (x,v);

X← X \ x
r← BACKTRACK(X, D, C, b);

7 if r 6= NULL then
8 return r;

9 else
10 b← b \ (x,v);

11 return NULL;

Given a network R = (X,D,C) the call BACKTRACK(X,D,C, b) returns

a solution if the network is satisVable, otherwise NULL is returned. b represents

a partial assignment. The BACKTRACK procedure is initially called with b that

is equal to the null assignment to the empty set of variables. Figure 2.4 shows the

49

2.12. Constrained Optimisation

search tree when BACKTRACK is applied to an unsatisVable problem. The left

subtree (a) illustrates the search space where all possible nodes were visited as no

constraints were applied unless the algorithm reaches a leaf node. The right subtree

(b) is an example of a search tree where there is constraint propagation. It shows the

search space where one subtree is eliminated because the Vrst variable was assigned

a value that cannot be involved in a consistent assignment.

Figure 2.4: Search tree example

Modern CSP solvers tend to integrate forward-checking strategies that enable

them to avoid portions of the search space when constraints take eUect (Vion 2006).

There is a massive literature on search techniques. For example, Miguel and Shen

(Miguel & Shen 2001b, Miguel & Shen 2001a) gave a survey on many of the known

search strategies. Kondrak and van Beek (Kondrak & van Beek 1997) also presented

a theoretical evaluation of several backtracking algorithms.

2.12 Constrained Optimisation

While decision problems require a boolean answer, optimisation problems require

the best solution(s), or reasonably good solutions. Computational approaches for

solving COPs consist of mainly two fundamental principles: exploring a vast solution

space toward a desired solution while trying to eliminate sub-parts of the solution

space which are guaranteed not to have a better solution (Kadioglu 2012).

Thus, there is a need for mechanisms that determine how to compare one solu-

tion to another to diUerentiate between possible solutions and so Vnd the optimal

ones. Preference handling has active research lines in optimisation (Rossi et al. 2008)

since the latter may rely on preferences that express cost or objective fulVllment and

favour the search for optimal solutions.

50

2.12. Constrained Optimisation

2.12.1 Constrained optimisation problems: diUerent solution

methods

A large number of real-world problems involve combinatorial optimisation problems.

Combinatorial optimisation problems are usually easy to state and involve Vnding

the best solution(s) among a very large number of feasible solutions might be diXcult

(Neumaier 2004). Most of these problems have no known polynomial methods to

solve them. Examples are production planning, crew scheduling, and vehicle routing;

these problems are NP-hard (Perron & Trick 2008).

Many other real-life applications beneVt from constrained optimisation. In com-

puter animation, for example, many activities and tasks, such as seeking bound-

aries and interpolations, utilise optimisation under constraints. Traveling support

is a massively used web-based service (e.g., booking a Wight or a hotel). Known

e-commerce web sites devoted to tourism, such as TISCover (www.tiscover.com),

Priceline (www.priceline.com) and Expedia (www.expedia.com), support the tourist

with constrained optimisation-based personalized products.

Therefore, constraint optimisation can beneVt to several Velds which arouse the

curiosity of researchers during the past half century (Agarwal & Sharir 1998). Then,

research has focused on ways of solving COPs.

Having a set of possible combinations represented either explicitly (e.g., as a set

of outcomes) or implicitly (e.g., as a CSP which describes a set of outcomes), the goal

of solving an optimisation problem is to Vnd some or all assignments of values to the

variables that are not dominated (i.e., preferred) by other outcomes.

The existing search methods can be classiVed into two main classes: complete

and incomplete search methods. Complete search algorithms are guaranteed to Vnd

the optimal solution and to prove its optimality. If optimal solutions cannot be com-

puted eXciently in practice, one alternative is the incomplete methods which trade

optimality for eXciency. That is, the guarantee of Vnding optimal solutions can be

sacriVced for the sake of getting very good solutions quickly for instance.

2.12.1.1 Complete search

These methods go through all possible solutions while storing the current best ones

that they Vnd.

2.12.1.1.1 Exact methods Branch and Bound (B & B), Branch and Cut, Brute-

force search are considered among the most well-known exact methods (Kadioglu

2012). The Vrst two methods are well described by (Chinneck 2007). The Vrst method

51

2.12. Constrained Optimisation

is discussed in Section 2.12.3. The third method is a very simple but also a very in-

eXcient method where all possible solutions are enumerated and checked for satis-

faction of the problem objectives. Using exact methods has a conVrmed advantage:

any found optimal solution is global. The disadvantage of such methods is their time

ineXciency.

2.12.1.1.2 Search heuristics The enumeration method suUers from the plague

of dimensionality (Kadioglu 2012). One argument is that complete search is essen-

tial with examples but is often intractable in practice. Thus, ways around such

a problem are to look for complete search techniques that can shrink a number

of possible but non-dominated combinations at the same time. Search heuristics

(Edelkamp & Schródl 2012, Boschetti et al. 2009) are one example of such tech-

niques that might predict the non-optimality of some paths in the search tree with-

out necessarily visiting all nodes of the search tree. They guide the search to-

wards areas of the search space that are likely to contain optimal solutions. To

determine optimality, it has to be proven that there is no better solution and ev-

ery possibility allowed by the constraints has to be explored. In this case, (vari-

able and value) ordering heuristics are recommended (Meisels et al. 1997, Haral-

ick & Elliott 1980, Dechter & Pearl 1987, Topaloglu & Ozkarahan 2004). Indeed,

when solving an optimisation problem, these ordering heuristics aim at guiding the

search towards the best assignments, thus allowing the bounding functions to prune

more branches. More information about these heuristics can be found in (Rossi

et al. 2006, Barták 2012, Kadioglu 2012).

2.12.1.2 Incomplete search

Unlike exact methods, a number of heuristics and metaheuristics (Voss et al. 1999,

Polya 1971, Glover 1986, Glover & Laguna 1997) do not provide feasible solutions

which are proved to be optimal in a global sense. They, instead, can provide pretty

good solutions in shorter time. Examples of the most common methods that are used

to solve combinatorial optimisation problems are: Ant colony optimisation (Dorigo

& Caro 1999, Dorigo et al. 1999, Dorigo et al. 1996), Bees algorithm (Pham et al. 2006),

Local search and Generalized local search (Hoos & Stützle 2004, Pirlot 1996), Nearest

neighbor heuristic (Carey & Schneider 1995), Clarke and Wright savings heuristic

(Clarke & Wright 1964) and Tabu search (Glover & Laguna 1997).

52

2.12. Constrained Optimisation

2.12.2 Constrained optimisation: coupled and decoupled ap-

proaches

Preferences and constraints can be represented either by unique structures or sep-

arated in diUerent structures. Thus, the COPs can be broadly divided into two cat-

egories (Boerkoel et al. 2010): 1) The Vrst is denoted by coupled approaches and

includes problems where a preference and a constraint are represented by means

of the same kind of information (e.g, soft constraint). 2)The second is denoted by

decoupled approaches and includes problems where preferences and constraints are

represented by two separate kinds of information.

Sometimes speciVc requirements (constraints) may be even contradictory which

complicates selection of any solution. After relaxing some constraints in the over-

constrained problem, the latter can be transformed into an optimisation problem

where the goal or the target may express understanding of the “best” possible solu-

tion. Soft constraints can represent quantitative preferences in coupled approaches

which have included approaches such as Max-CSP (Serna et al. 2005), weighted

CSP (Bistarelli et al. 1999), fuzzy CSP (Schiex 1992) and temporal CSP (Peintner

et al. 2005).

There are examples which involve a large number of soft constraints to express

preferences over a relatively small number of variables (Boerkoel et al. 2010). Be-

sides, typically the preference degree of an assignment to some subset of variables is

not conditioned on assignments to other subsets of variables. Thus, on the one hand

authors in (Boerkoel et al. 2010) argued coupled approaches to constrained optimi-

sation are not very suitable for problems with strongly conditional preferences (e.g.,

CP-nets). On the other hand, the same authors claimed that decoupling constraints

and preferences have the advantage of allowing the user to focus only on expressing

her preferences. Thus, it saves the user the burden of expressing what is possible

(i.e., hard or feasibility constraints). Product conVguration might be an example of

this and where the knowledge that is required for solving a problem might come

from diUerent places or people: a vendor knows what products can be built (e.g.,

which product components can be put together), while the vendee knows what she

wants to buy.

In this dissertation, we deal with decoupled approaches that combine a CSP and

compact comparative preferences to obtain a COP.

2.12.3 Branch and bound

Branch and bound (B & B) is a common technique for solving COPs using back-

tracking search. The basic concept for almost all complete global optimisation algo-

rithms is the branching principle. This technique consists of splitting (branching) the

53

2.12. Constrained Optimisation

original problem recursively into subproblems which become sooner or later easy to

solve. In pure branching methods, the more likely branches are split more frequently,

while in B & B methods one computes for each subproblem bounds with respect to

the preference relation in the hope of being able to eliminate many subproblems at

an early stage. Indeed, a global upper bound is maintained (in case we are minimiz-

ing the cost) which represents the cost of the best known solution to the problem. At

each node of the search tree, B & B selects an unassigned variable X , whose current

domain is D(X), and branches on each unpruned value in D(X) (i.e., each of these

assignments generates a new branch in the search tree). Branching on the individual

values of a variable is called value branching. After assigning a value to X , a lower

bound on the cost of any complete assignment extending the current assignment,

is calculated. If the bound is greater than the global upper bound (in case we are

minimizing the cost), B & B backtracks, since no optimal solutions can be found in

the subtree below the current assignment (the bound closes the branch that cannot

improve the current best solution). Thus, B & B continues its search until either a

bound is violated or the domain of every variable has been reduced to a single value.

In the second case where every variable domain is reduced to a single value, the

combination of these values constructs a basis for a new best solution.

This is a very useful technique since it allows one to reduce the feasible region in

many cases by exploiting properties of the problem (e.g., user’s preferences). B & B

algorithms provide suitable methods for solving many global optimisation problems

(Parker & Rardin 1988).

When hard constraints are included, the search space can be traversed by any

of the search methods reported in the literature (Brélaz 1979, Lecoutre 2009). The

CSP paradigm yields several techniques, such as constraint network decomposition

(Sprecher 2002) and constraint propagation (Dongen & Lecoutre 2010), which can be

harnessed to facilitate a B & B search for optimal solutions.

A thorough discussion of B & B in discrete optimisation, with many algorith-

mic choices that are of potential interest in general global optimisation, is given in

(Parker & Rardin 1988). Search trees are generated by a backtracking algorithm for

generating solutions of a CSP.

2.12.4 Preference-based complete search

The standard backtracking algorithm used to solve a CSP, described in Section 2.11.2,

can be adjusted to solve a COP. The above standard backtracking search algorithm

stops as soon as it Vnds a feasible solution. Instead of stopping, the algorithm could

continue to search for more solutions, always comparing any newly found solution

with other solutions that were already generated. Thus, non-dominated solution(s)

54

2.12. Constrained Optimisation

cannot be identiVed until all feasible assignments (with regards to the CSP) are enu-

merated then compared to each other. When the algorithm has exhausted the search

space, it guarantees all optimal solutions are generated.

The ultimate goal of a COP-solving backtracking algorithm is to enumerate non-

dominated (i.e., optimal) solutions. A B & B approach checks whether a solution

that is already found is preferred over (i.e., dominates) any outcome that extends the

partial assignment associated to some node N of the search tree. If it is the case

then the algorithm backtracks since the subtree rooted at node N cannot contain a

non-dominated solution. Thus, B & B improves the search eXciency by avoiding

searching in parts of the search space where all possible assignments are dominated.

Comparison between assignments is based on a preference relation and performed

using the dominance testing operation (Boutilier et al. 2004b). The semantics behind

this kind of dominance relation is described in Section 3.4 in Chapter 3.

DeVnition 4. Let Ω be a set of outcomes and � be a pre-order preference relation. We
say that outcome α is optimal in Ω if there exists no outcome β such that β � α. If Ω

is represented as the set of solutions of a CSP then we refer to such tasks as constrained
optimisation.

Therefore, given a dominance relation D based on user preferences, an appro-

priate search tree can be used to enumerate the set Ω of D-undominated solutions:

when a new solution α is met, it is checked whether it is dominated by any of the

D-undominated solutions already found. If it is not the case then α is added to

Ω; α cannot be D-dominated by any solution found later as the variable and value

instantiation ordering is compatible with preferences. Two approaches using diUer-

ent dominance relations are presented in (Boutilier et al. 2004b) and (Wilson 2006,

Wilson 2011). These dominance relations are described in more details in Chapter 3.

2.12.5 Conditional preferences-based constrained optimisation

Several works have explored the use of conditional preferences (e.g., CP-nets, cp-

theories) in order to select optimal solutions for a problem whose requirements are

expressed as hard constraints and optimality is described though conditional prefer-

ences, e.g., (Prestwich et al. 2005, Gavanelli & Pini 2008b, Purrington & Durfee 2008)

for CP-nets, and (Castell et al. 1996, Rosa et al. 2010, Jin & Somenzi 2005, Jin et al.

2005, McMillan 1992) for SAT.

2.12.5.1 CP-net-based constrained optimisation

COPs combine the ordering induced by the preferences with the constraints rep-

resentation (Boutilier et al. 2004b). Thus, the Vrst optimal (regarding a CP-net N)

55

2.12. Constrained Optimisation

assignment in a CSP search tree can be found by the CSP search algorithm that in-

stantiate variables in an ordering compatible with the variable and value ordering

induced by N. To Vnd more non-dominated solutions, we basically need to perform

comparisons between assignments, see e.g., (Boutilier et al. 2004b, Wilson 2004a,

Wilson 2006, Wilson 2011).

One ground breaking work in CP-net-based COPs was achieved by Boutilier et

al. (Boutilier et al. 2004b) by specifying a particular algorithm for solving the COPs

and proving its correctness. The authors also demonstrated that, in some sense,

Vnding one optimal solution is no harder than solving the corresponding CSP. The

work showed that non-dominated solutions can be enumerated exhaustively using

a CSP search that adopts a variable instantiation order that is compatible (topo-

logically) with the CP-net structure, instead of using standard heuristics (Meisels

et al. 1997, Haralick & Elliott 1980, Dechter & Pearl 1987, Sadeh & Fox 2003, Topaloglu

& Ozkarahan 2004).

In (Boutilier et al. 2004b), COPs are solved by generating assignments in non-

increasing order of preference, regarding variable and value instantiation, that is, an

order consistent with the partial order over induced outcomes, until the Vrst feasible

outcome is found. Hence, the latter is a non-dominated solution. More precisely,

during the search process, once constraint propagation took place at some node of

the search tree and an assignment had to be made, the algorithm selects one variable

and assigns to it the most preferred value among those that remain in the variable’s

domain. The variable and value selection is performed with respect to the CP-net’s

structure as variables are instantiated and values are assigned to the variables in a

top-down manner according to a topological ordering of the CP-net. The values for

a variable X to be instantiated are considered according to the preferential ordering

induced by the assignment to the parents of X (with regards to CP-net N). The algo-

rithm, called Search-CP starts with an empty set of solutions. At each stage, every

assignment newly created is considered as a new candidate and it is tested against

all the solutions generated up to that point.

Every time the optimality of an assignment needs to be checked, Search-CP per-

form a number of dominance tests that is equal to the number of optimal outcomes

already computed at most. The new assignment is added to the set of optimal so-

lutions if there is no existing solution that dominates it. The Search-CP algorithm

outputs a set of non-dominated (feasible) solutions.

One particular property of the approach of (Boutilier et al. 2004b) is that the

set of solutions never shrinks as outcomes are considered in a preferentially non-

increasing order.

56

2.12. Constrained Optimisation

2.12.5.2 Hard and optimality constraints-based constrained optimisation

The algorithms that are reasoning with CP-nets beneVt from the eXcient test of

optimality of CP-nets and try to avoid the complexity of the dominance test which

is in P-SPACE (Goldsmith et al. 2008). The work in (Prestwich et al. 2005) is one

example where one of the contributions is a technique that avoids dominance testing

in some cases, with regards to the approach introduced in (Boutilier et al. 2004b).

The idea presented in (Prestwich et al. 2005) is to encode the CP-net statements of

a given CP-net N into a set of hard constraints which allows for Vnding the optimal

outcomes through solving a CSP including these hard constraints (called optimality
constraints). The solutions of the obtained CSP are also the optimal solutions of the

CP-net N. The authors identiVed two sets of constraints: hard constraints that are

related to the CSP, and the optimality constraints that are related to the CP-net. A

solution that satisVes the Vrst set of constraints is called feasible and the solution

which satisVes the second set of constraints is called Pareto optimal. The proposed

algorithm is called Hard-Pareto. It aims at Vnding the feasible Pareto optimal out-

comes. Hard-Pareto Vnds all feasible Pareto optimals by Vnding the outcomes which

are both feasible and optimal in the CP-net. If there are optimals for the CP-net

(regarding the optimality constraints) and they are all feasible (regarding the hard

constraints), then there are no other feasible Pareto optimals and thus the algorithm

may stop. Otherwise, Hard-Pareto must perform dominance testing over the feasible

outcomes.

Hard-Pareto oUers computational advantages over Search-CP. Unlike the latter,

Hard-Pareto avoids dominance tests when there are no feasible solutions and when

the set of optimal solutions coincides with the solutions of a CSP built by adding op-

timality constraints to the set of hard constraints. Unlike the approach presented in

(Boutilier et al. 2004b) (i.e., Search-CP), the proposed algorithm also works even with

cyclic CP-nets. In addition, the algorithm is not tied to CP-nets, but can work with

any preference formalism which produces a pre-order over the outcomes (Prestwich

et al. 2005).

2.12.5.3 Constrained CP-net-based constrained optimisation

There are situations where both Search-CP and Hard-Pareto can be computationally

too expensive. For instance, there are RSs which require prompt feedback and so

fast algorithms (Jannach et al. 2011). In (Prestwich et al. 2005), authors propose a

method to Vnd approximately optimal outcomes. They dealt with CP-nets-based

constrained optimisation by giving a diUerent semantics for a constrained CP-net

(Prestwich et al. 2004).

57

2.12. Constrained Optimisation

DeVnition 5. A constrained CP-net is a CP-net plus some constraints on subsets of its
variables (additional constraints on assignments). A constrained CP-net is then denoted
by a pair (N, C) where N is a set of conditional preference statements deVning a CP-net
and C is a set of constraints.

DeVnition 6. Given a constrained CP-net (N, C), outcome α is better than outcome β
if and only if there is a chain of Wips from α to β, where each Wip is worsening for N
and each outcome in the chain satisVes C .

A worsening Wip is deVned very similarly to how it is deVned in a regular (un-

constrained) CP-net in Section 2.6.3 of this chapter. Given a constrained CP-net (N,

C), where N is a CP-net and C is a set of hard constraints, an outcome is said to be

approximately optimal if and only if no other outcome is approximately better. The

method outputs a set of feasible outcomes that are undominated by one-Wip-away

outcomes.

The construction of the optimality constraints for constrained CP-nets can be

adapted to work with soft constraints. Soft constraints (Rossi et al. 2006) extend the

classical constraint formalism to model preferences in a quantitative way, by express-

ing several degrees of satisfaction (that can be either totally or partially ordered). Let

C be a set of constraints and Copt a set of optimality constraints. To Vnd an optimal

outcome, we need to Vnd the optimal solutions for C that are also feasible for Copt.

They also propose a technique which returns the best outcomes w.r.t. both con-

straints and preferences even if there are no feasible Pareto optimals. The technique

is based on a reformulation of the problem of Vnding optimal outcomes of a (cyclic)

constrained CP-net as a Weighted Constraint Satisfaction Problem (WCSP). A WCSP

is a set of variables plus a set of constraints where each constraint has a weight rep-

resenting the cost of violating it. An optimal solution of a WCSP is an assignment

of values to all the variables which minimizes the sum of the costs of the violated

constraints. The WCSP corresponding to a constrained CP-net is constructed in such

a way that more desirable outcomes have lower weight, and a WCSP solver can be

used to Vnd the most desirable outcomes.

2.12.5.4 Constrained FCP-net-based constrained optimisation

(Gavanelli & Pini 2008b) introduces a new formalism, called constrained FCP-net.
Such a formalism extends the classical constrained CP-net formalism, by consider-

ing, besides hard constraints and the qualitative aspect of the CP-net, a quantitative

aspect as well, given by an objective function, that may relate some of the variables

of the CP-net. The quantitative aspect is used to break ties in case the CP-net, which

can be cyclic or acyclic, is unable, alone, to select one (or more) preferred outcomes.

58

2.12. Constrained Optimisation

2.12.5.5 CP-net-based formulation for constrained optimisation

Authors in (Boerkoel et al. 2010) describe and assess empirically a parameterized for-

mulation for decoupled constrained optimisation problems that subsumes the state of

art algorithm of Boutilier et al. in (Boutilier et al. 2004b), representing a wider fam-

ily of alternative algorithms. They deVne three approaches including two distinct

parametrisations that result in two algorithmic variations and a hybrid approach

interleaving the two Vrst approaches.

• The Vrst is to solve the underlying CSP and enumerate all feasible assignments.

They apply ordering queries to compare those assignments in order to Vnd a

non-dominated assignment. In fact, they use the CP-net ordering query: if α is

orderable over β, then β cannot be strictly preferred to α; thus, they conclude

α is not dominated by β.

• The second is to generate assignments in descending order of preference until

the Vrst feasible assignment is found. The assignments are generated in an

order that is consistent with the partial order induced from the CP-net. Thus,

the Vrst feasible assignment should be non-dominated.

• They also hybridize the two approaches by interleaving constraint propagation

and preferential reasoning. Thus, once constraint propagation takes place and

an assignment needs to be made, the interleaved approach selects the most

preferred assignment with regards to the CP-net (in a way similar to variable

and value selection in (Boutilier et al. 2004b)). This approach is similar to the

constrained optimisation approach in (Boutilier et al. 2004b) except the fact

that the interleaved approach terminates after Vnding the Vrst non-dominated

solution.

They empirically demonstrated that the Vrst and second approaches within their

parametrisation are dominated by the interleaved approach similar to the approach

(Boutilier et al. 2004b).

2.12.5.6 Polynomial constrained optimisation for partial acyclic CP-net

In (Purrington & Durfee 2008), the authors present a polynomial-time backward

sweep algorithm that Vnds optimal outcomes for a specialized class of partial acyclic

CP-net structures. This work bears some resemblance to the problem of CP-nets-

based constrained optimisation addressed in (Boutilier et al. 2004b) in the sense that

external evidence, that they use in their work, can be viewed as a hard constraint

placed on the preferential optimisation problem. However, the constraints consid-

ered in that work are richer than simply Vxing the values of some variables, and the

59

2.13. Conclusion

resulting optimisation problem becomes quite diUerent. With the addition of richer

constraints, the problem naturally takes on the character (and complexity) of tradi-

tional constraint processing, and solution techniques involve some variety of pruned

backtracking search.

2.12.5.7 Comparative preference theories-based constrained optimisation

Wilson studied the task of Vnding optimal outcomes for COPs when preferences

are expressed using conditional preference theories (Wilson 2004a, Wilson 2011),

denoted by cp-theories. He suggested three ways of gathering optimal solutions by

merging the CSP with cp-theories.

One way is to consider the preference statements as constraints and then join

them to the set of constraints to form a CSP that can be solved by a CSP solver. A

number of optimal solutions can be obtained. We should notice that for this method,

a feasible solution is also an optimal one since preferences were regarded as con-

straints that were satisVed. The resulting CSP might be infeasible.

A second alternative is to enumerate all optimal solutions by using, similarly to

(Boutilier et al. 2004b), a search tree which is chosen to be compatible with the set of

preferences. Methods for Vnding such search trees have been developed in Section

4 of (Wilson 2011). As we mentioned above in this section, comparing solutions is a

very hard problem (Goldsmith et al. 2005) which makes this alternative not always

feasible particularly for large problems.

A third option oUered by Wilson (Wilson 2009a) is to keep the same optimisation

scheme of the second alternative but adopt a polynomial dominance testing (Wilson

2009a) instead of an exact method with expensive dominance testing (Goldsmith

et al. 2005). This alternative yields some, but not usually all, optimal solutions.

2.13 Conclusion

Conversational RSs take place in the intersection of RSs research, dialogue system

and preference handling. In this chapter, we have presented the background material

and literature review related to conversational RSs and preference handling, which

are the two primary research domains of our thesis work. Thus, we presented the

relevance of preferences in decision theory and their handling in DSSs, then we sur-

veyed most of the preferences-based systems. These personalized preference-based

systems provide challenges for more elaborate comparative preference languages

that we overview by presenting them and describing their mechanisms of represen-

tation and reasoning.

60

2.13. Conclusion

Conversational RSs can be considered as RSs that employ speciVc dialogue strate-

gies and preference elicitation methods adapted to a human-like conversations. We

reviewed most of the existing conversational approaches and discussed their dia-

logue strategies. Preference approaches also contributed to the development and ex-

pansion of constrained optimisation approaches. We gave a review of the main con-

strained optimisation strategies that are based on qualitative preference approaches.

61

3
Dominance for Comparative

Preferences

3.1 Introduction

Many AI applications such as planning and scheduling call for techniques for repre-

senting and reasoning about qualitative preferences over a set of alternatives (Oster

et al. 2011, Santhanam et al. 2011). In such settings, there is often a need to choose

alternatives that are most preferred among the set of alternatives with respect to a

set of user preferences. In order to identify this set, there is a need for a procedure

which determines that one alternative A1 is preferred over another alternative A2

or vice versa (or neither) with respect to the user’s preferences. In Section 3.2 we

present the concept of the preference relations and their properties. In Section 3.3,

we present the comparative preference theories introduced in (Wilson 2009b). The

semantics behind the dominance relation are presented in Section 3.4. The main

procedures behind the dominance procedure are described in Section 3.5.

3.2 Preference Relations

Preference relations (Dushnik & Miller 1941, Luce 1956, Scott & Suppes 1958b) are

among the fundamental structures on which decision aiding models rely. They are

used to Vlter out the dominated outcomes (a dominated outcome is any option for

62

3.2. Preference Relations

which there is at least one other outcome in the results that is preferable with regards

to the relation).

3.2.1 Preference relations properties

A preference relation is a binary relation between possible outcomes.

DeVnition 7. Given an outcome space Ω and two diUerent outcomes o and o′, we say
that o < o′ if and only if o is preferred (or indiUerent) over o′. We say o ∼ o′ if and only
if the decision maker is indiUerent between the two outcomes. We call the Vrst relation
a preference relation and we call the second relation an indiUerence relation.

When ordering, we consider a set of objects (in our case, outcomes) ordered

through diUerent ordering types. Below, we review a few concepts to provide the

appropriate background in understanding the various preference orderings that are

representable. Next, we list some standard properties of binary relations that are

useful in classifying preference relations (Woronowicz & Zalewska 2004, Roubens

1989, Hansson & Grüne-YanoU 2011, Joseph et al. 2007). A binary relation R over a

set Ω is called:

• reWexive, if, ∀a ∈ Ω, (aRa),

• irreWexive, if, ∀a ∈ Ω, ¬(aRa),

• symmetric, if, ∀a, b ∈ Ω, (aRb) =⇒ (bRa),

• asymmetric, if, ∀a, b ∈ Ω, (aRb) =⇒ ¬(bRa),

• antisymmetric, if, ∀a, b ∈ Ω, (aRb) ∧ (bRa) =⇒ (a = b),

• transitive, if, ∀a, b, c ∈ Ω, (aRb) ∧ (bRc) =⇒ (aRc),

• complete, if, ∀a, b ∈ Ω, (aRb) ∨ (bRa),

The above properties are not independent. For instance, asymmetry implies irreWex-

ivity, while irreWexivity and transitivity imply asymmetry.

Via the composition of such properties, the relation R induces diUerent ordering

classes. We give the deVnition for some useful kinds of ordering here.

Based on its properties, a preference relation R is characterized as follows:

• A binary relation is a pre-order or quasi order, if it is reWexive and transitive. If

in addition, it is antisymmetric then it is a partial order.

• A binary relation is a strict partial order (or irreWexive partial order), if it is

irreWexive, asymmetric and transitive.

63

3.2. Preference Relations

• A binary relation is a total order, if it is a partial order and it is also complete.

If a preference relation R is a total order, any two outcomes are mutually com-

parable under R.

• A binary relation is a weak order, if it is a complete pre-order.

Given a pre-order �, we can deVne the induced strict order � as follows: o � o′

if and only if o � o′, but o′ 6� o. We deVne relation ∼ by o ∼ o′ if and only if o � o′,

and o′ � o, that is, o and o′ are equally preferred. Then, � is a strict partial order

and ∼ is an equivalence relation, i.e., a reWexive, symmetric and transitive relation.

3.2.2 Preference relations application

Many real-life problems call for identifying the best possible set of solutions. In order

to solve such problems, techniques for both quantitative and qualitative preference

representation and reasoning over a set of attributes have been extensively studied in

the literature, e.g., (Benferhat et al. 2001, Brewka 2002, Brewka, Niemelä & Syrjänen

2002, Brewka et al. 2003, Balduccini & Mellarkod 2003, Boutilier et al. 2004a, Boutilier

et al. 2004b, Brewka, Benferhat & Berre 2004, Wilson 2004b, Brafman, Domshlak &

Shimony 2006, Kärger et al. 2008, Costantini & Formisano 2009, Bouveret et al. 2009a,

Wilson 2011).

The preference relation is used to compare two solutions in terms of preferences

over attributes of those solutions. The preference relation is also used by algorithms

that identify the set of most preferred solutions. A solution is said to be optimal

if and only if there is no other solution in the set of feasible solutions that strictly

dominates it, i.e., a solution α strictly dominates β if and only if α dominates β and

β does not dominate α. The set of solutions which are non-dominant to each other

is called the non-dominated set.

Research has been performed on multi-attribute decision theory; a consider-

able part of this research has focused on reasoning with quantitative preferences

(Fishburn 1967, Fishburn 1970, Keeney & RaiUa 1993, Fishburn 1999). However, in

many applications it is more natural for users to express preferences in qualitative

terms (Doyle & Thomason 1999, Doyle & McGeachie 2003, Dubois et al. 2002, San-

thanam et al. 2011). We will be talking about dominance relations for qualitative

preferences. Preference reasoning engines deVne their dominance testing strate-

gies based on particular semantics. For instance, these semantics may give an in-

dication about how relatively weak or strong the dominance might be as we dis-

cuss in Section 4.9 in Chapter 4. These strategies are well studied in the AI lit-

erature (Boutilier et al. 2004a, Wilson 2004b, Wilson 2006, Brafman, Domshlak &

Shimony 2006, Santhanam et al. 2008, Wilson 2009b, Santhanam et al. 2010b, San-

thanam et al. 2010a). Dominance properties (e.g., weak and strong dominance)

64

3.3. A Comparative Preference Language

along with a number of optimality notions in the context of CP-nets were studied

in (Brafman & Dimopoulos 2004b).

The preference relation is relevant in many applications where we need to know

whether a solution is (among) the best, in particular when there is a large number of

outcomes that might be feasible within a problem (Boutilier et al. 1997, Boutilier et al.

2004a, Brafman, Domshlak & Shimony 2006). Modifying the dominance relation

helps the number of optimal solutions be controlled in the sense that the size of the

optimal set can shrink or expand. In fact, to stimulate the dominance relation to

be more or less strict makes it hard or easy to Vnd non-dominated solutions. Thus,

dominance relation tuning allows to have better control of the set of solutions.

3.3 A Comparative Preference Language

Wilson presented comparative preference theories which involve preference state-

ments of the form p > q||T where p is an assignment to a set of variables P , q is an

assignment to set of variables Q, and T is a set of variables (Wilson 2009b). Such a

statement expresses a preference for an assignment p over another assignment q with

variables T held constant. In other words this statement expresses the preference of

any complete assignment α which extends p over another complete assignment β

which extends q, when α agrees with β on variables T .

Formally, the semantics of this statement is also given by the relation Γ∗ which is

deVned to be the set of pairs (α, β) of outcomes such that α extends p, and β extends

q, and α and β agree on T : α(T) = β(T). Given that p and q do agree on common

variables in T , Wilson (Wilson 2009b) assumed that P ∩ T = ∅ and Q ∩ T = ∅.
We are especially interested in the statements where P = Q. The statement can

then be written as us > us′||T where U , S and T are disjoint sets of variables, and

u ∈ U , and s and s′ are assignments to S which diUer on each variable: s(Z) 6= s′(Z)

for all Z ∈ S.

3.3.1 Conditional preference theories-like statements

A logical and qualitative framework for preference elicitation was introduced in

(Wilson 2004b). It is also presented in Section 2.7 in Chapter 2. It consists of condi-

tional preference rules that are able to represent the user’s preferences.

A set of these rules, which is denoted by the term cp-theory, have the form u : x >

x′[W], for each rule, (W ⊆ (V \ (U ∪ X))) which means that given an assignment

u for a set of variables U , we prefer value x to value x′ for variable X , as long as

variables outside of W are held equal.

In comparative preference theories, a cp-theory statement u : x > x′[W] is

65

3.4. Total Pre-orders-Based Dominance: Formal Semantics

equivalent to statement us > us′||T when we set S = {X}, x = s, x′ = s′ and

T = V \ (U ∪X ∪W).

3.3.2 CP-nets-like statements

A CP-net, which is described in Section 2.6.3 in Chapter 2, consists of a directed

graph in which nodes represent variables (over a given domain) and edges express

preference links between them. Let τ be a CP-net over variables V. Each variable

X ∈ V is represented by a node in CP-net τ , the node is associated with a condi-

tional preference table that maps all possible assignments of X to the parents of X

(denoted by Pa(X)) to a total order over X . Pa(X) are instantiated before X in

CP-net and have a direct edge to the node that contains X . Let µ be the conditional

preference table corresponding to τ . CP-nets can be expressed in terms of compara-

tive preference theories. In particular, us > us′||T is regarded as a CP-net statement

when we set S = {X}, x = s, x′ = s′ and T = V \ (U ∪X). Notice that CP-nets can

also be expressed as conditional preference theories, using statements u : x > x′[W]

with W = ∅. This was explained and shown with more details in Section 3.1 in

(Wilson 2011).

3.3.3 TCP-nets-like statements

TCP-nets (Brafman & Domshlak 2002, Brafman et al. 2003, Brafman, Domshlak &

Shimony 2006) are CP-nets with additional importance statements between vari-

ables. TCP-nets preference statements can be expressed in terms of comparative

preference theories. For TCP-nets, the preference statement us > us′||T is regarded

as a TCP-net statement when we set S = {X1, X2}, and T = V \ (U ∪ {X1, X2}).

In general, ceteris paribus preferences are represented by comparative preference

statements us > us′||T with T = V \ (U ∪ S). Notice that TCP-nets can also be

expressed as conditional preference theories. This was explained and shown in detail

in Section 3.2 in (Wilson 2011).

3.4 Total Pre-orders-Based Dominance: Formal Se-

mantics

Let M be a set of models and L be a preference language. Let |= be a relation

between M and L. A model M ∈ M can represent an ordering associated with

a user. For a model M ∈ M and Γ ∈ L, we interpret M |= Γ (or M satisVes Γ)

to mean that Γ holds for the preferences of M . A model M satisVes Γ if it satisVes

every element of Γ.

66

3.4. Total Pre-orders-Based Dominance: Formal Semantics

Let us consider the orderings on outcomes which hold for every model M sat-

isfying statements in Γ. Formally, we can deVne the relation <Γ on outcomes as

follows: α <Γ β if and only if α <M β for all M satisfying (every member of) Γ.

One meaning of α <Γ β is that every user (represented by a model M ∈ M)

who agrees with Γ considers that outcome α is at least as desirable as outcome β

(assuming this particular model of users (i.e., M)). It is possible that we also have

β <Γ α, in which case every user considers that α and β are equally desirable. We

deVne the relation �Γ to be the strict part of <, so that α �Γ β if and only if α <Γ β

and β 6<Γ α. Relation �Γ is irreWexive and transitive. We say that given Γ, α strictly
dominates β, if α �Γ β, that is, if all users (represented by models M inM) agreeing

with Γ regard α as at least as preferable as β (i.e., α <M β), and at least one such

user regards α as strictly preferable to β (i.e., β 6<M α).

Dominance computation is one of the most fundamental queries in preference

representation formalisms. Besides, dominance testing is computationally intensive

in general. Thus, diUerent preference formalisms brought several algorithms which

deVne speciVc dominance relations and adapted ways to compute these relations. In

this section, we talk about the semantics used by formalisms like CP-nets in order to

compute the dominance relation.

Given a language L whose statements express the user’s preferences and a set of

modelsM, it is possible to deVne diUerent semantics that deal with the concept of

dominance.

3.4.1 Total pre-orders-based semantics

Dominance semantics between two diUerent outcomes α and β can be based on total

pre-orders, e.g., (Boutilier et al. 2004a, Santhanam et al. 2010a).

DeVnition 8. Let < be a total pre-order and ϕ be a comparative preference statement
written as p > q||T where p is an assignment to a set of variables P , q is an assignment
to set of variables Q, and T is a set of variables. < satisVes ϕ if and only if α < β for
all alternatives α and β ∈ V such that: (i) α extends p; (ii) β extends q; (iii) α and β
agree on variables T (i.e., α(T) = β(T).) We then say that ϕ directly implies α < β.
For a set of comparative preferences statements Γ ∈ L, we say < satisVes Γ if and only
if < satisVes every element of Γ. < is also said to be a model of Γ.

DeVnition 9. For Γ ∈ L, ϕ ∈ L and < is a total pre-order, we deVne the semantic
entailment relation by Γ |= ϕ if and only if<|= ϕ for all< such that<|= Γ. Let α and
β be two diUerent outcomes ∈ V . For α and β, we also say that Γ |= (α, β) if α < β

holds for all models < of Γ.

An example of a total pre-order-based dominance is brought by authors in (Brafman

& Dimopoulos 2004a) where preferences are expressed as a CP-net. The authors state

67

3.4. Total Pre-orders-Based Dominance: Formal Semantics

that conVrming that an outcome α dominates another outcome requires to prove that

all total pre-orders that satisfy the set of preference statements (i.e., a CP-net) order

α before β. Boutilier et al. also prove that a sequence of improving Wips from β to α,

which are presented in Section 2.6.3 in Chapter 2, yielded a proof that α is preferred

over β in all total pre-orders satisfying the set of preferences (Boutilier et al. 2004a).

3.4.2 CP-tree-based semantics

In this section, we will present the concept of a cp-tree, which was introduced in

(Wilson 2009b), its structure and its characteristics. Then, we will present dominance

semantics and computation based on cp-trees. The deVnitions stated in this section

are reproduced from (Wilson 2009b).

3.4.2.1 Description of a cp-tree

A cp-tree is a directed rooted tree, where edges are directed away from a root node so

that all nodes apart from the root node have a unique parent node. Associated with

each node N in the tree is a set of variables YN . The maximum number of variables

in YN is equal to γ.

YN is instantiated with a diUerent assignment in each of the node’s children. The

node has also an associated weak order �N of the values of YN . This weak order

depends on the values taken by the parents of that node, that is YN ′ where N ′ is the

parent of N .

Thus, cp-trees represent a tree that links nodes, represented each by a structure

called “cp-node”. This tree represents a form of lexicographic order where the impor-

tance ordering on cp-nodes, or variables in cp-nodes, can depend on more important

cp-nodes and their assigned values, that is values in YN ′ , as can the value orderings

in YN .

DeVnition 10. We deVne a cp-nodeN (usually abbreviated to just “node”) to be a tuple
〈 AN , aN , YN , �N 〉, where AN ⊆ V is a set of variables, aN ∈ AN is an assignment to
those variables, YN ⊆ {V − AN} is a non-empty set of variables; �N is a weak order
on the set YN of values of YN which is not equal to the trivial full relation on Y ; so
there exists some y, y′ ∈ Y with y 6�N y′.

DeVnition 11. We deVne a cp-tree σ to be a directed tree that links cp-nodes to each
other through edges that are directed away from a root node. Every cp-node has a
unique parent, except the root, which is the Vrst instantiated node and the ancestor of
all cp-nodes.

It is assumed that the weak orders �N associated with each node of the cp-tree σ do
not allow �N -equivalence between values in YN in order to ensure that the associated

68

3.4. Total Pre-orders-Based Dominance: Formal Semantics

ordering on outcomes is transitive. To do so, the weak order �N in every node of σ
needs to obey the following condition: if there exists a child of node N associated with
instantiation YN = y, then y is not �N -equivalent to any other value of Y so that y
�N y’ �N y only if y′ = y.

DeVnition 12. We deVne a pre-ordered search tree δ to be a cp-tree with γ = 1. δ is
abbreviated to a pos-tree.

Example 4. Let V = {X, Y, Z} be a set of variables whose values domains are X =

{x1, x2}, Y = {y1, y2} and Z = {z1, z2} respectively. Figure 3.1 represents an exam-
ple of a cp-tree with γ = 1. Each node in the cp-tree depicted in Figure 3.1 is labeled
with a number of variables that varies from 1 to γ. The root is labeled by the most
important variable, X in this example. Each node is also associated with a preference
ordering of the values of the variable which is discussed in Section 3.4.2.2. We can see
the total pre-order of the outcomes below the cp-tree in 3.1. This ordering is generated
as stated in Section 3.4.2.4.

X

Y Z

21 xx

12 yy

Y Z Z

2y

12 zz

12 zz

21 zz

1y

21 yy

122112222212211111121221 zyxzyxzyxzyxzyxzyxzyxzyx

1z

1x 2x

Figure 3.1: A cp-tree σ, along with its associated ordering <σ on outcomes, with
γ = 1 (i.e., with at most one variable associated with a node)

3.4.2.2 CP-tree: variable and value orderings

Let N1 be the root node of a cp-tree σ, and YN1 be a set of variables associated

to N1. Node N1 has 〈AN1, aN1, YN1,�N1〉 where AN1 = ∅, aN1 = > and �N1

weakly orders the values in YN1. YN1 is instantiated with a value y11 ∈ YN1 which is

associated to the edge that links the current node to the second node N2. The set of

variables YN2, associated with N2, is determined with regards to y11. Another edge,

linkingN1 to another child node, is eventually created being associated with another

value y12 ∈ YN1. Node N2 has 〈AN2, aN2, YN2,�N2〉 where AN2 = AN1 ∪ YN1, aN2

69

3.4. Total Pre-orders-Based Dominance: Formal Semantics

is aN1 extended with assignment YN1 = y11. If Nk is a leaf node in the cp-tree then

ANk is the union of sets of variables associated with all ancestors in the path from

the root node to Nk. aNk consists of the combination of all assignments made on

the path from the root to Nk.

For instance, in Figure 3.1 of Example 4, we can see that the root node (i.e., �N1)

orders the values in X = {x1, x2} as x1 is preferred over x2. Then, after having

been instantiated with x1, X was instantiated with x2 which was associated to the

edge that links the most important variable (i.e., X) to the second most important

variable given X = x2, which is Z . Given Z = z1, the third most important variable’s

values ordering states y1 is preferred over y2.

3.4.2.3 Comparing two outcomes

Given a cp-tree σ, the comparison of any two outcomes α and β is based on a par-

ticular type of node in σ: the decisive node (Wilson 2006, Wilson 2011).

DeVnition 13. Let σ be a cp-tree. A node N is deVned to be decisive for outcomes β
and α if it is the deepest node (i.e., furthest from the root) which is both on the path to
α and on the path to β, from the root node. For outcome α, deVne the path to α to be
the path from the root which includes all nodes N such that α extends aN .

For all variables Y already instantiated in σ before reaching decisive node N , we
have α(Y) = β(Y). The variable YN associated with node N is not assigned the same
value in outcomes α and β (that is, α(YN) 6= β(YN)). We also say that node N decides
α and β. Node N decides which of the outcomes is preferred over the other regarding σ
by comparing the two outcomes’ values for the root node’s associated variable YN (i.e.,
α(YN) and β(YN)) with respect to the ordering associated with node N . For instance, if
α(YN) <r β(YN) then α is preferred over β.

As every cp-tree σ implements a kind of generalized lexicographic order, any

two outcomes α and β are compared as follows: α and β are Vrst compared on the

value they have for the set of variables associated with the Vrst most important node

N1, using the relation �N1, if one of them has better value then we conclude that

outcome is preferred over the other one regarding σ; node N is said to be decisive.
If not then the two outcomes are compared based on the next most important node

whose importance is determined regarding the value both outcomes have for the set

of variables associated with the previous node. This comparison continues through

the following nodes in a lexicographic fashion until a decisive node is found; other-

wise α and β are said to be equivalent.

DeVnition 14. Let σ be a cp-tree. The associated relation �σ on outcomes is deVned
as follows: For outcomes α and β ∈ V outcomes, we deVne α �σ β to hold if and only
if α(YN) �N β(YN), where N is the node which decides α and β.

70

3.4. Total Pre-orders-Based Dominance: Formal Semantics

In Example 4, outcome {x1y2z1} is preferred over outcome {x1y1z1}. The sec-

ond node on the left to which variable Y is associated with value y2 is preferred over

value y1.

3.4.2.4 Generation of a compatible ordering of outcomes

The cp-tree ordering is generated by instantiating sets of variables YN associated to

nodes in an order that depends on the variables and values of the ancestor nodes.

To generate this, for each node N , starting from the root, we choose the child

associated with the most preferred and uninstantiated value of the root YN . Given

that value, we instantiate the next node with the most preferred and uninstantiated

value. We keep instantiating sets of variables regarding the variable and value im-

portance ordering till there is no more child node to instantiate in the path from the

root to a leaf node; we then obtain an outcome α. α is at least as good as the next

outcome to be instantiated by backtracking to the current node and instantiating the

associated set of variables to the next most preferred uninstantiated value. We con-

tinue instantiating the outcomes in an ordering that is compatible with the variable

and value ordering implemented by the cp-tree.

According to DeVnition 14 in Section 3.4.2.3, �σ is similar to a lexicographic

ordering in that two outcomes are compared on the Vrst set of variables (associated

with a node) on which they diUer. The deVnition implies immediately that �σ is

complete; it is easily shown to be transitive, and is hence a weak order. Examples of

ordering are shown in Figures 3.1, 3.2 and 3.3.

Given a comparative preference statement ϕ written as p > q||T , ϕ* is a set

which represents all pairs of outcomes (α, β) such that: (i) α extends p; (ii) β extends

q; (iii) α and β agree on variable T (i.e., α(T) = β(T).)

Given a set of comparative preference statements denoted by Γ, Γ* =
⋃
ϕ∈Γ ϕ*.

We say that cp-tree σ satisVes ϕ (respectively, Γ) if and only if �σ satisVes ϕ (re-

spectively, Γ) i.e., �σ extends ϕ* (respectively, Γ*), that is, (α, β) ∈ ϕ* ⇒ α �σ β
(respectively, (α, β) ∈ Γ*⇒ α �σ β).

Example 5. Let us assume a student is looking for a suitable laptop. The student will
express her preferences over four laptop components which are represented by the follow-
ing variables: Operating System(OS), Memory(M) (unit=megabyte), Central Processing
Unit(CPU), Monitor(Mon) (unit=inch) and Graphics Card(GC). The values of these vari-
ables are shown in Table 3.1.

Regarding memory (M) which is the most important variable for the student, 2048MB
is preferred over 1024MB. If the memory is equal to 2048MB, the student prefers GC =

NV over GC = AT. In the case when GC = NV, the student prefers Mon = 19 over Mon
= 17. If the memory is equal to 1024MB, she prefers OS = UB over OS = XP. When the

71

3.5. CP-Tree-Based Preference Computation

Table 3.1: Laptop components.

Variables Values
Operating System (OS) {XP, UBUNTU11.4 (UB)}

Memory (M) {1024, 2048}
Monitor (Mon) {17, 19}

Graphics Card (GC) {ATI_Radeon_HD5000(AT), Nvidia_GeForce_MX440(NV)}

operating system is Vxed to be UBUNTU11.4 (i.e., OS = UB), she prefers GC = NV over
GC = AT. In case the operating system isXP (i.e., OS = XP), she prefers GC = AT over
GC = NV. Two possible ways of representing the student’s preferences are represented
by two cp-trees depicted in Figure 3.2 which represents a cp-tree (with γ = 1) and Figure
3.3 which represents another cp-tree (with γ = 2).

The diUerence between the second one (depicted in Figure 3.3) and the Vrst one (de-
picted in Figure 3.2) is that when the memory is equal to 2048MB, the student shall
express her preferences over the combinations of values of two variables (i.e., GC and
Mon) (in Figure 3.3) instead of expressing preferences over one variable (i.e., GC) and
then expressing over the second variable (i.e., Mon) with regards to the value of the Vrst
variable (e.g., GC = NV). The total pre-orders generated by the cp-trees in Figure 3.2 and
Figure 3.3 are the same.

Figure 3.2: A cp-tree σ, along with its associated ordering <σ on laptop outcomes,
with γ = 1 (i.e., with a single variable associated with a node)

3.5 CP-Tree-Based Preference Computation

Let Γ be a set of comparative preference statements. Let�Γ be the associated prefer-

ence relation of Γ on outcomes, Y be a set of subsets of variables Y (Y ∈ Y). Let ψ,

72

3.5. CP-Tree-Based Preference Computation

Figure 3.3: A cp-tree σ, along with its associated ordering <σ on laptop outcomes,
with γ = 2 (i.e., with at most two variables associated with a node)

of the form α � β||∅, be a comparative preference statement saying α is preferred

over β. thus, ψ* is represented by the pair of outcomes (α, β). The deVnitions are

reproduced from (Wilson 2009b).

DeVnition 15. Let α and β be two outcomes. α dominates β if and only if all possible
cp-trees (every cp-tree represents a total pre-order) that satisfy Γ, prefer α over β. In
other words, α �Γ β holds if every cp-tree σ that extends all preferences in Γ has α
come before β.

DeVnition 16. Let Y be a set of non-empty subsets of V such that if Y ∈ Y and non-
empty Y ′ is a subset of Y then Y ′ ∈ Y . A Y-cp-tree is deVned to be a cp-tree σ such
that for any node N of σ, we have YN ∈ Y .

DeVnition 17. Γ entails ψ if and only if Γ* |= ψ*.

DeVnition 18. α �Γ β if and only Γ entails ψ.

In (Wilson 2009b), the author shows that the Y-cp-trees that satisfy Γ and also

satisfy ψ* (i.e., (α, β)) map to particular sequences of sets in Y , which are called

decisive sequences. In fact, showing that Γ does not entail α � β requires to show

there is a Y-cp-tree satisfying Γ but not ψ*. A Y-cp-tree that satisVes Γ but not ψ*

corresponds to a chain of subsets Y . More precisely, it maps to a decisive sequence

of pickable subsets Y ⊂ Y ending with a decisive subset Y . A pickable subset Y

corresponds to a node in the Y-cp-tree that satisVes Γ as well as ψ. A decisive subset

Y corresponds to a node in the Y-cp-tree that satisVes Γ but not ψ.

Thus, theY-entailment of ψ by Γ can be determined by checking for the existence

of a decisive sequence. A dominance testing algorithm was presented in (Wilson

2009b) and reported in Section 3.5 (see Algorithm 2).

73

3.5. CP-Tree-Based Preference Computation

The entailment algorithm

Let V be a set of n variables. Let U , S and T be disjoint subsets of variables included

in V . Let u ∈ U , s ∈ S and s′ ∈ S. Let α and β be two outcomes which agree with

u on U (i.e., α(X) = β(X) = u(X) ∀ X ∈ U) and diUer on S (α(X) = s(X) 6= β(X)

= s′(X) ∀X ∈ S). ψ, written as α � β||∅ in the previous paragraph, can be written

as us � us′||∅.
Let Y be a subset of variables (Y ⊂ V). Let Y be the set of possible values of the

subset of variables Y . Let y, yi and yj be values of Y in Y . Let a be an assignment to

set of variables A ⊂ (V \Y). RelationAYa on Y is deVned to be the transitive closure

of the set of pairs (yi, yj) of values of Y over all preference statements p ≥ q ||T in

Γ such that a is compatible with p and q, and yi(Y ∩ T) = yj(Y ∩ T) with yi being

compatible with p and yj being compatible with q. (yi, yj) means yi is preferred over

yj . A value y is AYa -equivalent to another value y′ if y AYa y
′ and y′ AYa y.

DeVnition 19. Given two outcomes us and us′ and Y ⊆ U , If there is no value y ∈ Y
which isAYa -equivalent to us(Y) then Y is said to be pickable; otherwise Y is considered
as not pickable.

DeVnition 20. Given two outcomes us and us′ and Y ∩ U = ∅, If there is at least
one pair (y, y′) such that y 6AYa y′ with y |= us and y′ |= us′ then Y is said to be
pickable and decisive (Y is called decisive for us and us′); otherwise Y is considered as
not pickable.

As shown in the previously, α <Γ β involves reasoning with cp-trees and the

total pre-orders they generate. Algorithm 2 was presented in Section 5 of (Wilson

2009b). It is an entailment algorithm which checks whether or not α �Γ β by ver-

ifying that all weak orders generated by all cp-trees σ that satisfy Γ, agree with α

being ordered before β as well (i.e., α �σ β). The correctness of Algorithm 2 was

stated in Theorem 1 in Section 5 in (Wilson 2009b). This algorithm looks for decisive

sequence when checking if Γ implies α <Γ β. The monotonicity property presented

in Proposition 5 in (Wilson 2009b) allows Wilson’s entailment algorithm to check the

decisive sequence in polynomial time.

Given the outcomes us and us′ and the set of input preferences Γ, the Entailment

algorithm will determine whether Γ entails ψ (i.e., us � us′||∅). In other words, the

algorithm checks whether us dominates us′ or not.

In order to check if one outcome us dominates another outcome us′ with respect

to Γ, the algorithm iterates through subsets of variables in Y and checks if there

does not exist a witness for the dominance not to hold (see DeVnition 15). First, it

generates the set of all possible singleton subsets of variables in Y . Then it navigates

through those subsets to Vnd out if there is some decisive subset of variables Y .

74

3.5. CP-Tree-Based Preference Computation

Algorithm 2 Does Γ entail ψ
input : Set of variables Y1, . . . , Yn

A family Y of subsets of variables V which includes all singletons
A Vrst outcome us
A second outcome us′

input : Set of variables Y1, . . . , Yn
output: true if us dominates us′; false otherwise

12 for j ← 1 to n do
13 Let aj be u restricted to Y1 ∪ . . . , Yj−1 (in particular, a1 = >);

if there exists a set in Y which is pickable and decisive given aj then
14 return false;

15 if there exists a set Y which is pickable given aj then
16 let Yj be any such set;

17 else
18 return true;

19 return true;

There is no particular order of subsets Y to be checked that is imposed by Wilson’s

algorithm. In fact, the monotonicity property, expressed by Proposition 5 in (Wilson

2009b), states, roughly speaking, that a set Y which is pickable remains pickable

whatever the order according to which subsets Y are selected. This means that the

search for a decisive sequence can be performed in a backtrack-free manner as we

never need to undo the selection of a subset Y (already selected and checked).

The algorithm looks for a decisive sequence of subsets Y (Y ⊂ Y). In (Wilson

2009b), the author deVnes a decisive sequence as a sequence of subsets Y that are

pickable, this sequence ends by a decisive subset Y . Once found, the decisive se-

quence is considered as the proof that us does not dominate us′. In fact, Wilson

shows in Proposition 4 of (Wilson 2009b) that a Y-cp-tree σ1 that satisVes Γ but

does not agree with outcome us being preferred over outcome us′ (i.e., us <σ1 us)

corresponds to a decisive sequence. Then, if the algorithm Vnds a decisive subset

Y , it declares that us does not dominate us′. Otherwise, us dominates us′ as the

algorithm is looking for a witness for non entailment but there was no proof for the

existence of the Y-cp-tree that does satisfy the set of preference statements Γ but

does not agree with us being ordered before us′.

While iterating through the subsets Y ⊂ Y , there are three possible cases:

• Y is pickable (and not decisive) so the algorithm extends assignment a with

tuple us(Y) (i.e., a(Y) = us(Y)) and eliminates Y from Y .

75

3.6. Other Preferential Semantics

• Y is not pickable so the algorithm eliminates it from Y with saving a copy of it

in order to deal with afterwards, as soon as the assignment a is updated.

• Y is decisive so the algorithm concludes that us does not dominate us′.

Let us describe the entailment algorithm as a sequence of actions:

i) The algorithm generates Y and initializes the assignment a = >.

ii) The algorithm navigates through all subsets Y of Y . If Y is decisive then the

algorithm stops and returns False (which says that us does not dominate us′).

If Y is pickable then the algorithm updates assignment a, by extending it with

assignment u(Y). Then, the algorithm removes Y from Y and considers the

very Vrst subset that was considered as not pickable if there is any. In fact,

this kind of subset is stored in a temporary memory zone that we call tempY
(e.g., a list). It looks through all variables in tempY then it retrieves subsets

from Y if there are any remaining subsets that were never checked (to be pick-

able or not). Every time assignment a is updated (i.e., extended with us(Y)),

the algorithm Vrst checks subsets Y in tempY . If Y is pickable then the algo-

rithm updates assignment a and removes it from tempY . Otherwise (i.e., Y is

not pickable), the next subset Y in tempY is checked. When assignment a is

updated, subsets Y , that were previously stored in tempY as they were found

not pickable in a previous iteration, are considered again (before the ones in Y
that are not yet checked).

iii) The algorithm stops in two cases: 1) if it Vnds a decisive Y ; 2) or if there is no

pickable Y neither in tempY nor in Y . Indeed, the algorithm always updates

tempY with not pickable subsets Y when assignment a is updated (in case there

is a subset Y which was found pickable). We can say that the algorithm returns

True (which says that us dominates us′) when assignment a is not updated

anymore and all the remaining subsets Y were veriVed as not pickable.

3.6 Other Preferential Semantics

The problem of preference representation has been tackled in the literature with

quite a diUerent number of approaches. Given the incompleteness of available knowl-

edge, we may need to use preferences and optimisation criteria to select the best

candidate solutions according to both qualitative and quantitative measures.

Possibilistic logic is one formalism that may be used for encoding user prefer-

ences, since possibility measures can actually be viewed as rankings (on worlds or

also objects) along an ordinal scale (Straccia 2008). One preliminary investigation of

76

3.6. Other Preferential Semantics

the potentials of possibilistic logic in the representation and combination of prefer-

ences in decision analysis can be found in (Benferhat et al. 2001) which proposes a

qualitative preference framework that allows the relative importance of preferences

to be speciVed. When modeling preferences in possibilistic logic, the necessity mea-

sure κ associated with a classical formula ν in (ν, κ) is understood as the priority of

ν rather than its certainty level (Benferhat et al. 2001). Possibilistic logic has been

implemented in many ways, e.g., the POSLOG system (Dubois et al. 1990). The possi-

bility measure was introduced by Zadeh (Zadeh 1999) and was greatly developed by

Dubois, Prade and others (Dubois & Prade 1990). It deals well with default reasoning

and counterfactual reasoning (Parsons 2006).

Ordered disjunctions are a recent, promising development in reasoning about

preferences with logic programming which is subject of work by (Schaub & Wang

2001, Brewka 2002, Brewka, Niemelä & Syrjänen 2004, Brewka, Benferhat & Berre

2004), and others. Answer Set Programming (ASP) is a form of logic programming

based on the answer set semantics (Gelfond & Lifschitz 1988a, Gelfond 2007), where

solutions to a given problem are represented in terms of selected models (answer

sets) of the corresponding logic program (Marek & Truszczynski 1998). Logic pro-

gramming with ordered disjunction has been invented by Brewka (Brewka, Niemelä

& Syrjänen 2004) as an extension of answer set programming to represent prior-

ity among literals and rules in an ASP program. Various forms of preferences have

also been introduced in ASP (see (Delgrande et al. 2004)). Most of the proposed

approaches are based on establishing priorities/preferences among rules.

In (Brewka 2002), the author introduces logic programs with ordered disjunction

(denoted by LPOD) to represent preferences. It combines Qualitative Choice Logic

(QCL) (Brewka, Benferhat & Berre 2002, Brewka, Benferhat & Berre 2004) and ASP.

QCL is a propositional logic for representing alternative, ranked options for the solu-

tions of the problem. QCL semantics is based on a preference relation among models.

This preference framework is designed to represent preferences over alternatives and

induces a complete pre-order over models. The semantics of LPOD is based on the

notion of preferred answer sets.

In later papers (Brewka, Niemelä & Syrjänen 2002, Brewka, Niemelä & Syrjänen

2004), the authors present eXcient techniques to enforce priorities and ordering re-

lations among solutions of an ASP program. They introduce the notion of Pareto-

preference and show that this criterion gives more intuitive results that the other

criteria introduced in (Brewka 2002). The basic idea is to augment the syntax by

some designated operator to form ordered disjunctions. Programs of this form (called

logic programs with ordered disjunctions, or LPODs) can be evaluated in a standard

way (presented in (Brewka 2002)) or with respect to diUerent preferential seman-

tics which take the occurrences of this new operator into account. A system called

77

3.6. Other Preferential Semantics

Psmodels presented in (Brewka, Niemelä & Syrjänen 2004) serves as a computational

engine for these semantics. In other related work (Brewka 2004a), Brewka proposes a

language for answer set optimisation called PLD. The basic elements of PLD are rules

which code context-dependent preferences over answer sets. More complex prefer-

ence formulae are formed using diUerent aggregation operators: sum, (ranked) set

inclusion, (ranked) cardinality, Pareto, and lexicographic order.

A problem to be solved is represented as a LPOD and answer sets of the program

are ranked, according to the degrees of satisfaction of ordered disjunctive rules. In

this way a global ranking of answer sets is obtained. The following criteria have

been proposed in (Brewka, Niemelä & Syrjänen 2002) to build this ranking: cardinal-

ity optimal criterion- maximizing a number of rules satisVed to the lowest degree,

inclusion optimal criterion, based on set inclusion of the rules satisVed to the certain

degree and Pareto optimal criterion favoring the answer set satisfying all ordered

disjunctive rules not worse, than any other answer set does, and one rule strictly

better.

Unfortunately, ordered disjunction appears to have problems with certain types

of dynamic preferences, as well as to sometimes produce unintuitive results when

there are conWicts among preferences in the program (Balduccini 2005).

In (Costantini & Formisano 2010), authors introduced Resourced ASP (denoted

by RASP) so as to support declarative reasoning on consumption and production

of resources. They have introduced the possibility of deVning and using resources

in ASP. In RASP, one can deVne resources with their amounts, where available re-

sources can be used for producing other resources and the remaining amount, if any,

can be used in a diUerent way. In (Costantini & Formisano 2009), authors introduced

P-RASP (RASP with Preferences) where it is possible to express preferences about

which resources should be either consumed or produced. LPOD formalisms can be

adapted to be able to solve RASP). Adaptation involves complex tasks. Along this

line, instead of trying to adapt LPOD for application in RASP, authors in (Costantini

& Formisano 2009) have chosen to provide an “autonomous” semantics which bet-

ter reWects, in their opinion, the intuitive meaning that a programmer assigns to

resources and quantities. They designed an approach to preferences speciVcally in-

tended for the RASP context.

A preference criterion to compare answer sets is required in order to impose a

preference order on the answer sets of an ASP program. Such a criterion should im-

pose an order on the collection of answer sets by reWecting the preference degrees.

Any criterion has to take into account that each rule determines a (partial) prefer-

ence ordering on answer sets. In a sense, the criterion should aggregate/combine all

local partial orders to obtain a global one. Fundamental techniques for combining

preferences (seen as generic binary relations) can be found for instance in (Andréka

78

3.7. Summary

et al. 2002). Regarding the combination of preferences in logic programming, criteria

are also given, for instance, in (Balduccini & Mellarkod 2003, Brewka 2004a, Brewka,

Niemelä & Syrjänen 2004, Son & Pontelli 2006). Preference orderings in P-RASP are

based on a subset of criteria among alternative possible choices.

A direct comparison between the preferential semantics of the languages de-

scribed above and several others (e.g., (Kärger et al. 2008, Bouveret et al. 2009a)), and

the semantics detailed in Section 3.4 can be a subject of future work.

3.7 Summary

Dominance testing represents a key operation when looking for the most preferred

set of alternatives among a set of possible alternatives with regards to the user’s pref-

erences. DiUerent formalisms have brought diUerent preferences languages which

show increasing expressiveness capabilities. DiUerent dominance semantics and

ways of computing dominance were explored in the literature, e.g., (Benferhat et al.

2001, Brewka, Niemelä & Syrjänen 2002, Brewka et al. 2003, Boutilier et al. 2004a,

Boutilier et al. 2004b, Brewka, Benferhat & Berre 2004, Kärger et al. 2008, Costantini

& Formisano 2009, Bouveret et al. 2009a, Wilson 2011). These semantics oUer vari-

ous ways of considering the dominance relation as we may need to tighten or extend

the set of models that we consider in order to conVrm dominance between two out-

comes. DiUerent ways of dominance computation were presented in the literature

in an attempt to reduce the computational complexity of the dominance testing as it

is a computationally hard problem in general with the standard CP-nets semantics

(Goldsmith et al. 2005, Goldsmith et al. 2008). We presented the preference language

and the dominance semantics and computation we are using in this thesis. We also

presented other dominance approaches that adopt diUerent semantics of the domi-

nance relation. We described in detail the dominance testing algorithm that we have

used in this dissertation.

79

4
Preferences Deduction for

Conversational Recommender Systems

4.1 Introduction

In an era of overwhelming choices, recommender systems (RSs) are a new source of

assistance, helping their users decide which goods, services or information to pur-

chase or consume (Adomavicius & Tuzhilin 2005, Anand & Mobasher 2005, Bridge

et al. 2006, Ricci et al. 2011a). RSs try to induce information about user preferences

from data gathered either explicitly, for instance, in the form of product ratings, or

implicitly by observing users’ behaviour. They have been successfully used to rec-

ommend travel services, books, CD, Vnancial services, insurance plans and news

(Adomavicius & Tuzhilin 2005, Anand & Mobasher 2005, Bridge et al. 2006).

RSs aim at recommending the most suitable items to the user (Ricci et al. 2011a).

However, it may happen that the recommended items proposed by the system do

not match the users’ needs as RSs might miss the users’ preferences. Several cases

of poor quality recommendations were described in (Zaslow 2002); the article also

reported how aUected users desperately tried to react and to change the deal and

communicate their actual needs to the system but in vain. Examples of issues that

might be raised are whether the system does understand why the user wants rec-

ommendations and whether recommenders have their own “personalities” to which

users need to interact with, were discussed in (Zaslow 2002).

80

4.1. Introduction

“Single-shot” RSs, which recommend a set of products to the user only once (i.e.,

in one shot), are one category of RSs that may experience some inappropriate rec-

ommendations since they are unlikely to guarantee that their Vrst set of recommen-

dations always satisVes the user. Figure 4.1 illustrates a single-shot recommendation

scenario. Once the user’s preferences collected (or elicited), the preference manager

induces the preference model which is represented by ratings, features values, etc.

Given a user inquiry (i.e., request) and the user’s preferences, the request manager

selects a set of recommendations (undominated options), retrieves the corresponding

products from the database and presents them to the user. If one of the presented

items suits the user, she selects and buys it. Otherwise, the user quits. Indeed, users

are rarely satisVed with the Vrst set of recommendations; they usually want to see

more options and they exploit the initial recommendations to reVne their prefer-

ences and articulate new requests (Bridge et al. 2006). Therefore, one approach to

ensure that the system realizes what users need would be to generate a conversa-

tion between users and RSs as illustrated in Figure 4.2. This will be favorable for

building or reinforcing the bridge between the two partners (i.e., the user and the

RS). Figure 4.2 illustrates a conversational recommendation scenario. The diUerence

with the single-shot recommendation scenario is that in the case where the user is

not satisVed she can revise her request. Then, the preference manager captures the

revision of the user request to update the elicited user’s preference and so the user

model. Therefore, given the updated user model plus the revised request, the request

manager selects again a set of recommendations and retrieves their corresponding

products from the database. If the user is satisVed with one of the items presented

to her she selects and buys it. Otherwise, the user can revise her query and send it

again to the system.

Starting initially with a set of products and initial preference information about

the user, conversational RSs allow for such a conversation, and recognise that their

users may be willing and able to provide more information on their constraints and

preferences, over a short dialogue, thereby moving away from “single-shot” inter-

action. This is also an opportunity for the RSs to guide the user by asking ques-

tions, giving advice, displaying candidate products, and giving explanations (Reilly

et al. 2004, McSherry 2005, Bridge et al. 2006, Ricci et al. 2006, Schmitt 2002a, Thomp-

son et al. 2004a, Pu et al. 2006).

In Section 4.2 we describe in detail a kind of recommender system that inspired

a major part of the work presented in this chapter. Then, we present the framework

of preference dominance and its rationale in Section 4.3. This framework is illus-

trated through two instances that are described later in Section 4.4 and Section 4.5.

81

4.2. The Case Study: Information Recommendation

Figure 4.1: A single-shot recommendation scenario

One fundamental step in the process of recommending, which is preferences induc-

tion, is then presented in the two instances. The two instances were implemented

and experimentally tested; experimentations and a comparative study are given in

Section 4.7. Before concluding, we discuss in Section 4.9 possible extensions of the

approaches that were used in this dissertation.

4.2 The Case Study: Information Recommendation

In order to use in practice the approaches that we proposed, we chose to integrate

such approaches in one form of conversational RSs. This section gives a description

82

4.2. The Case Study: Information Recommendation

Figure 4.2: A conversational recommendation scenario

of the system that serves as a use case.

4.2.1 The advisor

Bridge and Ricci (Bridge & Ricci 2007) introduced a new kind of conversational

recommendation called Information Recommendation (IR). IR helps a user identify

a suitable product, whose features are represented by Boolean variables, to purchase

or consume. IR may be regarded as an instance of a kind of system in which the

user repeatedly edits and resubmits a query, that she chooses from a set of po-

tential queries suggested by the system, until she Vnds a product that she wants

(Ricci et al. 2006, McSherry 2005). The potential queries are selected with regards

83

4.2. The Case Study: Information Recommendation

to the user’s preferences that are collected from the user when she edits and sub-

mits queries. These potential queries are meant to best match the user’s preferences

which are induced from the user’s selected query each time she has to select a query

among those suggested by the system. The possible queries that the system may

suggest to the user can be too large to be eXciently checked by the user. The user

might select a query that results in a combination of features which is not included

in any product in the database as not all queries are satisVable. Then, the system

will show only the satisVable queries to ensure the user deals with available features

combinations only. In fact, a query is said to be satisVable if and only if there exists a

product in the database which has all the boolean features in the query; otherwise, it

is unsatisVable. The user is not assumed to know the satisVable queries beforehand.

The advice given to the user in each step of the dialogue can remain large enough

to confuse the user and make the selection task more diXcult. The RSs should reduce

the number of queries shown to the user without losing the focus on the relevance

the advice should have regarding the user’s preferences. Then, these preferences

have to be collected by the advisor during the interaction with the user. The system

then infers preference relations from the user’s previous contribution to the dialogue,

such as her earlier queries. The system might, for instance, infer that the combina-

tion of features in the chosen query is more preferred than all the combinations of

features that represent the non chosen queries. Having these preferences stored in

a kind of user model, constructed dynamically and progressively updated as the di-

alogue continues, the system starts to be able to determine whether certain queries

dominate others, to rank the next possible queries, and to suggest to the user those

that are compatible with her preferences and compatible with the available products.

Let us suppose a user wants to book a hotel for a one-week holiday. She may

want to be supported by an automated advisor. A “single-shot” RS will propose a

set of products to the user once and for all. The system would have obtained the

user’s preferences either by capturing her feedback or looking for users’ proVles that

are considered similar to the user’s proVle. The user’s preferences can for instance

be obtained by a computationally intense oYine phase that induces the user’s pref-

erences based on their opinions on items (Levandoski et al. 2012). Accordingly, the

system looks for suitable items in the database and proposes to the user a set of rec-

ommendations. If the user is not satisVed then she can quit or send another request

to the system. The system’s response to the second request will be treated by the

system independently from the system’s answer to Vrst request (see Figure 4.1).

However, this is not always the case as the user may not be willing or able to

reveal all her preferences about products as she may not be very familiar with the

available products (i.e., hotels) and their characteristics (e.g., piece of equipment in

the hotel room). Her preferences would then be constructed while interacting with

84

4.2. The Case Study: Information Recommendation

the system.

A conversational RS engages the user in a dialogue during which the user is

allowed to elaborate her requirements about the hotel she would like. A dialogue

may be extended over several steps. During each step, the user supplies feedback

on the items recommended by the system. This feedback will guide the selection

of the set of items the system proposes in the next step. The dialogue comes to its

end when the user is satisVed or terminates voluntarily the dialogue or there are no

suitable items to be recommended. As a conversational RS, the advisor presented in

(Bridge & Ricci 2007) suggests items, which are queries in this case (see Section 4.2.2

and 4.2.3) that help the user to eXciently search for products, which are hotels in the

actual system. During each step of the dialogue when the user selects one query pro-

posed by the advisor, the system will observe the chosen query and infer constraints

about the user’s model of preferences. Then constraints between two combinations

of features will be added to a dynamic user model that the system constructs pro-

gressively. These constraints help the advisor deduce preference relations between

queries and enable it to construct a ranking of these queries, rather than products.

Then, the advisor delivers only optimal queries, regarding the user’s preferences, to

the user in the next step of the dialogue.

The advisor in IR gives freedom and Wexibility to the user regarding the queries

the user can perform at each step of the dialogue. This will steer the user smoothly

towards the target.

After looking at the database, the advisor will propose queries that deal only

with combinations of features available (i.e., included in at least one product in the

database). The system will propose queries that lead to combinations of features that

are included in at least one product in the database. This will dissuade the user from

trying to request a combination of features in vain. Thus, the user will realize that

she can satisfy a desire for other features. Consequently, the user may not give up

and requests a hotel with features B and C (declared available by the system). Next,

having seen the available queries, the user may want to replace one feature C by two

other features D and E. The system observes the user’s selection, learns and proposes

more queries to encourage the user to target the most convenient hotel regarding her

preferences, a part of which was learnt during the interaction.

We suggest for IR a reasoning framework where a set of models of the user is

assumed, each with an associated preference ordering, along with a satisfaction re-

lation between models and statements of constraints on preferences expressed in an

appropriate language. Within this framework, given a set of constraints, the system

infers that one product is preferred to another if this preference holds for all models

satisfying the constraints. As the dialogue proceeds, the user’s new actions reveal

more constraints on her preference ordering. This can narrow the set of models of

85

4.2. The Case Study: Information Recommendation

the user. We describe this framework in more detail in Section 4.3. Two instances of

this framework were developed and presented in Section 4.4 and Section 4.5.

4.2.2 The queries

In this chapter, we assume that the products are modeled with a collection of Boolean-

valued features V = {F1, . . . , Fn}. The features are intended to relate to a set of

products that the user is interested in choosing between; for example, in choosing a

hotel room, one feature might be the availability of a swimming pool in the hotel.

Let us deVne a conVguration α to be a mapping from {1, . . . , n} to {1, 0}. A

conVguration α can also be thought of as a selection of features: all features Fi such

that α(i) = 1. For convenience, we will write a conVguration such as (1, 0, 1) =(
α(1), α(2), α(3)

)
as f1f̄2f3.

ConVgurations can be thought of as queries over the set of features. If a user

issues a query q and if fi ∈ q, this means that the user is interested in products that

have the ith feature. A subset of the conVgurations correspond to products that are

available to the user. In accordance with most Web-based product search systems,

fi 6∈ q means only that the user has not (yet) declared any interest in feature Fi; it

does not mean that the user wants products that lack the ith feature. Therefore, for

example, if q is f1f̄2f3, the user wants a product that has features f1 and f3 and is

yet to say anything about f2.

4.2.3 The dialogue

In the kind of system presented in (Bridge & Ricci 2007), the user submits an initial

query, typically one that is quite under-speciVed: ‘to test the water’. In our experi-

ments (Section 4.7) we use an empty initial query. Let this query be denoted as the

current query, q.

The RS does not know the user’s preferences and does not ask about them. It may

only infer them from the sequence of queries that the user submits. As the dialogue

proceeds, the RS will infer constraints on the user’s preferences and express them

as statements in a language L. We will denote the current set of statements by Φ.

Initially Φ may contain a set of ‘background’ assumptions. In particular, we will

want to express the idea that including a feature in a query is at least as good as not

including it. Statements will be added to Φ as the dialogue proceeds. For example, if

the user’s query requests a certain feature, we may plausibly infer that this feature

is more important than those not included in the query.

The interaction between the user and the RS proceeds as follows:

86

4.2. The Case Study: Information Recommendation

• The RS analyzes the current query q, with particular regard to diUerences be-

tween q and the queries the user might have submitted. The system induces

some additional constraints on the user’s preferences and adds corresponding

statements to Φ.

• The RS generates a set of candidate next possible queries and prunes this set

to those that are satisVable and undominated (see below). It advises the user

to conVne her next query to this set.

• The user chooses and submits her next query. This becomes the new current

query q. In the experiments reported in Section 4.7, we arrange that the user

always chooses one of the queries that the system advises (although this might

not be the case in practice).

The sequence of the three steps is repeated until the user is satisVed with q or

the set of undominated, satisVable candidates is empty, in which case as far as the

RS is concerned q cannot be bettered. At this point, the user can request to see the

products that satisfy q.

The goal of the RS is to give the advice that has the greatest value. We consider

this to be that which minimises the total quantity of advice given and the dialogue

length, while guiding the user to the best product.

During the second step, the RS computes the following three sets of queries:

• Candidates: Candidate queries are ones which are close, in a particular sense,

to the current query. Each is a low-cost edit to the current query. For example,

if fi 6∈ q, the set of candidates will include the query that results from adding

just feature fi to q.

• SatisVables: The RS should never include unsatisVable queries in its advice:

they make interaction length longer without leading the user to the best prod-

uct. Hence, the system eliminates from Candidates those queries which are

unsatisVable; the remaining queries are called the SatisVables.

• Undominated: The system could advise the user to conVne her query to Sat-
isVables. However, this set can be large. Hence, the system eliminates from

SatisVables each query which is dominated by (i.e., worse than) some other

member of SatisVables; the remaining set of queries is called Undominated.

The dominance relation is based on what is induced in the Vrst step above.

The rationale is to exclude from the system’s advice queries that, on the basis

of what the system has induced about the user’s preferences, it thinks the user

would regard as inferior.

87

4.2. The Case Study: Information Recommendation

In eUect, the system’s advice to the user is to conVne her next query to a set which

the system knows are satisVable and believes the user is likely to try next (since,

according to what the system has inferred about the user’s preferences, they are

ones that are not dominated by other satisVable queries).

We will now explain how to obtain the three sets of queries.

Generating the candidates

Real user behaviour in query editing tends to proceed with modiVcations of limited

‘reach’. Hence, following (Bridge & Ricci 2007), we deVne Candidates as the set of

queries which we obtain by applying three editing operations, Add, Switch and Trade,
to the current query. These operations are deVned as follows. Given current query

q and Fi 6∈ q, operation Add(q, Fi) adds just feature Fi to q, giving the new query

q ∪ {Fi}, which we sometimes write as qi. Switch(q, Fi, Fj) where Fi ∈ q, Fj 6∈
q, i 6= j discards Fi in favour of Fj , giving the new query (q \ {Fi}) ∪ {Fj}. Finally,

Trade(q, Fi, Fj, Fk) where Fi ∈ q, Fj 6∈ q, Fk 6∈ q, i 6= j, i 6= k, j 6= k discards

feature Fi and introduces features Fj and Fk.

There are, of course, other edits that could be in this set of candidates, such

as trading two features in q for three others not yet in q. It is possible that such

an edit would turn out to be satisVable and not dominated by any other edit. It is

helpful, however, in a practical system to conVne the recommender’s advice to a

set of readily understandable edits, particularly ones that the user herself is likely

to contemplate. Other edits, such as deletion of a feature from q, are excluded be-

cause they would produce a new query which, although satisVable if q is satisV-

able, would be dominated by q itself. Finally, it should be noticed that, although

Trade(q, Fi, Fj, Fk) = Add(Switch(q, Fi, Fj), Fk), the Trade operation is not re-

dundant in IR. There are scenarios in which the recommender could advise the user

to try the Trade operator (if it results in a satisVable query that is not dominated by

any other edits to q) but could not advise the user to try the Switch operator in the

Vrst place, as a precursor and then performing an Add ; the latter advice would not

be suitable in scenarios where the Switch results in a query that, while satisVable, is

dominated by one of the other edits.

Checking satisVability

As deVned earlier, a query is satisVable if and only if there exists a product which has

all the features present in the query. If products are stored explicitly in a database,

satisVability of a candidate query can be checked by a scan of the database. For

conVgurable products, where the set of products is represented as the set of solutions

to a CSP, satisVability of a candidate query can be checked by determining if the

88

4.2. The Case Study: Information Recommendation

CSP has solutions containing all the features in the query (which can be veriVed by

checking satisVability of an augmented CSP).

Checking for dominance

The Vnal pruning of the satisVable candidate queries is performed using one of the

two instances of the framework for dominance of preferences that will be explained

in Sections 4.3, 4.4 and 4.5. In either case, q ∈ Satisfiables is pruned if it is strictly

dominated, i.e., dominated according to relation �Φ, by q′ ∈ Satisfiables .

4.2.4 The user

The advisor described in (Bridge & Ricci 2007) is evaluated through modeling inter-

actions between the system and simulated users. The user is supposed to have her

own true preferences that the advisor does not know. Those true preferences are

represented by vectors of weights. The weights are related to product features; in

our experiments they are randomly selected real numbers in the interval [0,1]. The

system knows only about the constraints on the user’s preferences that it infers each

time the user sends a request. The system makes sure the user always chooses one

of the queries that the system recommends even though this might not be the case

in practice.

Three diUerent types of simulated users were used in the experiments described

in (Bridge & Ricci 2007): optimizing, prioritizing and random. In this dissertation,

we are using only optimizing users: within a dialogue, they do not try queries that

were already tried earlier in the dialogue; they are aware of their own preferences

and never opt for the next query that would be inferior to the current one; and they

take heed of all advice given, i.e., if the RS tells them to conVne their next query to a

certain set, then they do so; indeed they choose the best possible query from this set.

Figure 4.3 gives a model of the dialogue described above. In Figure 4.3, the system

initially proposes a set of queries to the user who chooses one of them; the chosen

query is called the current query. If the user is satisVed with the current query, the

system retrieves a product that contains all features in the current query and shows

it to the user so that she can select and buy it. In case the user is not satisVed with

the current query, the user faces two decisions: to quit voluntarily (as she does not

want to continue anymore) or to ask for more queries provided the system has more

queries to be oUered (otherwise the dialogue will end necessarily).

89

4.3. A Framework for Preference Dominance

Figure 4.3: Interaction model of the user with the recommender.

4.3 A Framework for Preference Dominance

One major purpose of IR is to reduce irrelevant content and provide users with more

pertinent information or product, in an attempt to oUset information overload. One

key operation is dominance : comparison between pairs of available options to Vnd

out which options are dominated and consequently eliminated by the system. An

option q is said to be dominated if there exist at least another option q′ that is pre-

ferred over q for all the orderings that satisfy the set of preferences that are collected

from the user during the dialogue with the system.

RSs can be subtle and delicate to understand and control (Massa & Bhattacharjee

2004). Users often see RSs as a black box and are not aware of their working model

(Denker et al. 2003). In fact, with current RSs it is tricky for the user to control the

recommendation process so that if the RS starts to give poor quality recommenda-

tions, usually the user just stops using it (Zaslow 2002).

This section presents a framework for preference reasoning within RSs. This can

be considered as a modest step towards bringing a kind of a comprehensive picture

of the preference dominance engine which represents the core of item selection in

RSs. Figure 4.6 summarizes the framework. All the details are analytically discussed

through this section and also the following sections. The case study in this work

(a particular kind of conversational RS described in section 4.2), implements this

framework.

4.3.1 Ultimate goal: inference

Given a set Ω of possible conVgurations (as deVned in Section 4.2.2), the system

needs to know which conVgurations would be closer to what the user really wants.

Allowing the user to focus only on recommended queries requires the system to

90

4.3. A Framework for Preference Dominance

prune non optimal (i.e., undominated) queries that can distract the user and probably

cause the user’s web experience to be longer and thus unattractive (Konstan & Riedl

2012). This can deter the user from using the system again in the future.

Therefore, eliminating uninteresting or less desired (i.e., dominated) queries, with

regards to the user preferences, within a large set of queries seems to be a vi-

tal process for RSs to succeed. This was conVrmed and validated by experiences

from Velded applications with conversational RSs described by (Felfernig et al. 2006,

Felfernig & Gula 2006). The results, which were based on user questionnaires af-

ter using systems, showed that interactive recommenders help users to better steer

themselves when being confronted with large sets of choices. In fact, in conver-

sational RSs without pruning, the user is faced with a large number of subsequent

queries. Eliminating “weak” items was adopted by early RSs and particularly con-

versational RSs. Conversational RSs oUer the user mechanisms (e.g., checkbox or

labels) to narrow down the large set of possible items to a smaller set of items that

abide by speciVc conditions. These conditions involve several criteria inherent to the

structure of products and which comply with the user’s preferences.

One way to prune uninteresting queries is a pairwise comparison done by the

system between the available queries. The advisor should propose only undominated

queries. An undominated query is the one that is not dominated by any other query

with respect to the user’s preferences. Thus, we need to obtain a relation that points

out the undominated conVgurations in Ω regarding information previously collected

about the user’s preferences.

The framework develops a preference dominance engine that will select the un-

dominated options by the means of a dominance operator: a key test that will be

potentially performed for a large number of options. Therefore, this test needs to be

as eXcient as possible. This framework also aims at constructing a sound theoretical

basis for preference dominance engines.

4.3.2 Logical settings

The general idea is to provide a framework that allows other preference methods to

be integrated easily. It also allows computations and comparison with other meth-

ods. One problem is that quite often the decision maker states preference state-

ments in an informal language (e.g., natural language) which do not necessarily have

a straightforward representation. It is therefore necessary to use appropriate lan-

guages for preference representation, taking into account the speciVc context where

the constructed model is going to be used.

In general, inference denotes the process of assuming that certain statements

about the world are true and deriving what follows for the truth of other statements.

91

4.3. A Framework for Preference Dominance

Thus, in order to make non-trivial inferences regarding the actual user’s preferences

over conVgurations, this framework requires assumptions about the model of a user’s

preferences and how this model is said to be compatible with a set of preferences

expressed in a given language.

The advisor associates a set of models for the user. For instance, a model can be

a vector of weights or a cp-tree. An ordering is associated to each model. The user’s

preferences elicited from the user while interacting with the system are expressed

as a set of constraints on preferences expressed in an appropriate language (e.g.,

CP-nets).

The system claims a query q dominates another query q′ with respect to the

user’s preferences if and only if all the user models that are compatible (or satisfy)

the users’ preferences also prefer q over q′. A satisfaction relation associates a set

of preferences statements with each model . A framework for preference dominance

takes as input a set of available options and a set of preferences collected from the

user during the dialogue, and delivers a set of undominated options (see Figure 4.6

in Section 4.6.2).

Example Let V = {F1, F2, F3 be the set of features and let the user be represented

as a vector of weights w = (w1, w2, w3). The weights w1, w2 and w3 correspond to

F1, F2 and F3 respectively. Let Φ be the set of user preference statements: f1f̄2f3 ≥
f̄1f2f3, and f1f2f̄3 ≥ f̄1f2f3. Let α be the conVguration f1f̄2f̄3, and let β be the

conVguration f̄1f2f̄3. α dominates β if and only if all weights vectors w that satisfy

the user’s preferences also agree that the weight of α is greater or equal than the

weight of β. We say that weights vector w satisVes the constraint f1f̄2f3 ≥ f̄1f2f3 if

and only if w(f1f̄2f3) ≥ w(f̄1f2f3), i.e., w1 +w3 ≥ w2 +w3, which holds if and only

if w1 ≥ w2. By similar reasoning, w satisVes Φ if and only if w1 ≥ w2 and w1 ≥ w3.

Also, w satisVes α ≥ β if and only if w1 ≥ w2.

We can see that any weights vector w which satisVes the Vrst preference state-

ments (i.e., w1 ≥ w2) and the second one (i.e., w1 ≥ w3) will necessarily comply with

α ≥ β (i.e., w1 ≥ w2). The system will then conVrm that α dominates β (i.e., α ≥ β).

The framework assumes :

• A set of modelsM, each of which is intended to represent a possible user (or

way the user could be). Associated with each M ∈M is a total pre-order <M
on conVgurations, i.e., a reWexive, transitive and complete relation (so for all

conVgurations α and β, we have either α <M β or β <M α or both).

• A formal language L whose statements express constraints on the user’s pref-

erences.

92

4.3. A Framework for Preference Dominance

• A relation |= betweenM and L. For M ∈M and ϕ ∈ L, we interpret M |= ϕ

to mean that ϕ holds for the preferences of M .

Given the assumptions above, the framework gives necessary and suXcient con-

ditions for a relation to be strictly dominance-compatible. Given a particular set

Φ ⊆ L of statements, we consider the orderings on conVgurations which hold for

every model satisfying statements Φ. Formally, we can deVne the relation <Φ on

conVgurations as follows: α <Φ β if and only if α <M β for all M satisfying (every

member of) Φ. It follows that <Φ is a pre-order (a reWexive and transitive relation)

on conVgurations.

Now, α <Φ β means that every user who agrees with Φ considers that conVgu-

ration α is at least as desirable as conVguration β (assuming this particular model of

users). It is possible that we also have β <Φ α, in which case every user considers

that α and β are equally desirable. We deVne the relation �Φ to be the strict part of

<, so that α �Φ β if and only if α <Φ β and β 6<Φ α. Relation �Φ is irreWexive and

transitive. We say that Given Φ, α strictly dominates β, if α �Φ β, that is, if all users

(represented by models M inM) agreeing with Φ regard α as at least as preferable

as β (i.e., α <M β), and at least one such user regards α as strictly preferable to β

(i.e., β 6<M α).

4.3.3 Application

We present experimental evidence that veriVes the ability of this framework to pro-

vide an eXcient preference dominance engine that supplies optimal conVgurations

to the conversational RSs. Indeed, two instances of the framework were developed

in Sections 4.4 and 4.5. This shows the feasibility and usability of the framework in

practice.

Consequently, we believe that this approach empowers the decision-maker with a

generic framework, allowing to personalize and accommodate the dominance engine

to the requirements of diUerent users and applications. Thus, this framework lays

the ground work for further general functionality for reasoning with preferences.

This formalism allows comparison and analysis of diUerent preferences approaches,

which leads to a better understanding and convenient assessment of theoretical ap-

proaches for conversational RSs.

Ideally, a user can easily parameterize this framework, e.g., by choosing the pref-

erence language or more speciVcally the form of input preference statements. Al-

though the rationale of the framework is simple and intuitive, the framework is

still interesting and useful for the development of pragmatic preference reasoning

formalisms that are completely generic and essentially independent of the concrete

application at hand.

93

4.4. Sum of weights-Model Approach

Therefore, this framework will pave the way for the integration of more prefer-

ence reasoning engines and allow the user to parameterize the conversational RSs by

specifying how the user model is represented (e.g., weights vector, cp-tree), which

can also adapt automatically to the user and problem in context.

Two instances of this framework are developed and are presented in this chap-

ter. The Vrst, described in Section 4.4, is based on a simple quantitative preferences

formalism, involving a sum of weights (one for each feature of the recommended

products), with an associated language of linear inequalities. This is a very com-

monly used model for preference representation, speciVcally, in MAUT (Dyer 2005)

described in Section 2.5.1 of Chapter 2. The second instance of the framework (Sec-

tion 4.5) is a qualitative preference formalism, where models adopt a kind of gener-

alised lexicographic order, and constraints are expressed as comparative preference

statements in a language generalising CP-nets (Boutilier et al. 2004a).

4.4 Sum of weights-Model Approach

Additive models allow compact representation of a utility function where the degree

of desirability of the user is expressed separately for each attribute by a real value

(Balabanovic 1998, Shen 2007, Kim et al. 2011, Shen et al. 2005). For the reasons

described in (Keeney & RaiUa 1993, Stewart 1996, Tsoukiàs 2008, Caballero et al.

2010), the additive model is usually used in many real decision-making problems.

4.4.1 Models

The set of models contains all vectors of weights w = (w1, . . . , wn), where wi is a

non-negative real number. wi is the weight assigned to feature Fi. Given a weights

vector w, the overall value w(α) of a conVguration α is the sum of weights of the fea-

tures included in α, i.e., w(α) =
∑

i:α(i)=1

wi, which also can be written as
∑
i

wiα(i).

This is used to deVne the ordering on conVgurations. We deVne the preference re-

lation <w for model w by α <w β if and only if w(α) ≥ w(β), i.e., if and only if∑
i

wi
(
α(i)− β(i)

)
≥ 0. Thus <w is a total pre-order on conVgurations.

4.4.2 Constraint language

Constraints on the user’s preferences are expressed as inequalities between sums of

weights. The weights summed are related to the features included in the conVgura-

tions that are shown to the user. For instance, when the user selects a conVguration

α from a set of three conVgurations proposed by the system (i.e., α, β, γ), the system

94

4.4. Sum of weights-Model Approach

infers that the sum of weights of features in α (denoted by w(α)) is greater or equal

than the two sums of weights w(β) and w(γ).
The set of constraints will, at a later stage, determine whether a conVguration

α dominates another conVguration β. In fact, during dominance computation the

advisor is interested in all models that are compatible with these inequalities.

4.4.3 Dominance relation

Given a set of constraints on preferences (or preference statements) Φ, and two con-

Vgurations α and β, we say α <Φ β if and only if α <w β for all weight vectors w

that comply with all preference statements in Φ.

Example. Let V = {F1, F2, F3 be the set of features and let the user be repre-

sented as a vector of weights w = (w1, w2, w3). The weights w1, w2 and w3 cor-

respond to F1, F2 and F3 respectively. Let Φ be the set of preference statements:

f1f̄2f̄3 ≥ f̄1f̄2f3, and f1f̄2f3 ≥ f1f2f̄3. Let α be the conVguration f1f̄2f̄3, and let β be

the conVguration f̄1f2f̄3. α dominates β if and only if all weights vectors w that sat-

isfy the user’s preferences also agree that the weight of α is greater than the weight

of β. Weights vector w complies with the preference statement f1f̄2f̄3 ≥ f̄1f̄2f3 if

and only if w(f1f̄2f̄3) ≥ w(f̄1f̄2f3), i.e., w1 ≥ w3. w complies with the preference

statement f1f̄2f3 ≥ f1f2f̄3 if and only if w(f1f̄2f3) ≥ w(f1f2f̄3), i.e., w3 ≥ w2.

Therefore, w satisVes Φ if and only if w1 ≥ w3 and w3 ≥ w2. On the other hand,

w satisVes α <w β if and only if w1 ≥ w2. the statement w1 ≥ w2 can be easily

induced from w1 ≥ w3 and w3 ≥ w2. Therefore, any weight vector w that satisVes Φ

necessarily satisVes α <w β. The system will then conclude that α dominates β (i.e.,

α <Φ β).

4.4.4 Dominance computation

One assumption is that including a feature is always at least as good as not including

that feature. This assumption is translated in this instance by the set of constraints

wi ≥ 0, for i = 1, . . . , n, which says that all feature weights are non negative. Thus,

these statements are included in Φ as constraints on preferences at the beginning

of the dialogue. While we go forward in the dialogue, additional constraints on

preferences are induced and added to Φ. Given two conVgurations α and β, to show

α <Φ β, the advisor needs to check whether Φ entails α ≥ β with real-valued

variables wi. Φ entails α ≥ β is equivalent to saying that all weights vectors that

agree or satisfy all constraints in Φ, also agree with α being preferred over β, i.e.,∑
i

(
α(i) − β(i)

)
wi ≥ 0. The lack of expressiveness of this quantitative approach is

well known in utility theory (Chomicki 2002).

95

4.4. Sum of weights-Model Approach

A standard form of linear programming can answer the question above. This is

immediate since each constraint in Φ is represented as a linear inequality between

linear combinations of weights (e.g., w1 + w2 ≥ w1 + w3). For instance, we can

have the two following linear inequalities: c1 : w1 + w3 ≥ w2 + w3 and c2 : w1 ≥
w2 + w3. These inequalities might be induced when the user makes her choices

among the queries that were suggested by the system. α ≥ β is equivalent to the

following inequality: g : w1 ≥ w2 if α has only feature F1 (i.e., f1f̄2f̄3) and β has

only feature F2 (i.e., f̄1f2f̄3). A linear programming solver, which uses the Simplex

algorithm (Brearley et al. 1975), can then check whether Φ entails
∑(

α(i)−β(i)
)
wi.

Technically, the solver checks whether or not c1 and c2 imply w1 ≥ w2. In other

words, the solver can check whether all weights vectors w whose values comply

with c1 and c2 also comply with w1 ≥ w2. An implementation of this using a linear

programming solver is to express it as a linear optimisation problem. DeVne gmin to

be the minimum value of
∑

i

(
α(i) − β(i)

)
wi ≥ 0 subject to constraints Φ. It can

be shown that α <Φ β if and only Φ entails
∑

i

(
α(i) − β(i)

)
wi ≥ 0 if and only if

gmin ≥ 0.

Example 1. Let Φ be the pair of statements: f1f̄2f3 ≥ f̄1f2f3, and f1f2f̄3 ≥ f̄1f2f3.

Let α be the conVguration f1f̄2f̄3, and let β be the conVguration f̄1f2f3. Weights vec-

tor w satisVes the constraint f1f̄2f3 ≥ f̄1f2f3 if and only if w(f1f̄2f3) ≥ w(f̄1f2f3),

i.e., w1 +w3 ≥ w2 +w3, which holds if and only if w1 ≥ w2. By similar reasoning, w

satisVes Φ if and only if w1 ≥ w2 and w1 ≥ w3. Also, w satisVes α ≥ β if and only if

w1 ≥ w2 + w3. Thus Φ does not entail α ≥ β, so we do not have α <swΦ β, since, for

example, weights vector w with w1 = 4, w2 = 2 and w3 = 3 satisVes Φ but does not

satisfy α ≥ β. 2

Example 2. Suppose now that there are four features, and let Ψ be the pair of state-

ments f1f̄2f3f4 ≥ f̄1f2f3f4 and f1f2f̄3f̄4 ≥ f1f̄2f3f̄4. With the sum of weights se-

mantics this implies f1f2f̄3f4 ≥ f̄1f2f3f4, since the Vrst statement implies w1 ≥ w2,

and the second statement implies w2 ≥ w3, which implies w1 ≥ w3. Thus, we con-

clude that the third statement is satisVed. We therefore have f1f2f̄3f4 <Φ f̄1f2f3f4.

In fact, we have strict dominance: f1f2f̄3f4 �Φ f̄1f2f3f4 since we do not have

f̄1f2f3f4 <Φ f1f2f̄3f4. 2

96

4.5. CP-tree Model Approach

4.5 CP-tree Model Approach

There are preferences that cannot be expressed through the sum of weights-based

approach. One example is conditional preferences statements on the values of vari-

ables. These conditional preference dependence relationships are natural in many

situations. Example 1 mentioned in Section 2.6.3 of Chapter 2 exhibits conditional

preferences. Indeed, if the memory is equal to 1024MB, UBUNTU is preferred over

XP. In case the memory is equal to 2048MB, XP is preferred over UBUNTU.

Comparative preference languages enable the framework to handle conditional

preferences by expressing constraints on preferences. To our knowledge, this has

not been used in IR or any other RSs before.

4.5.1 Models

In this approach, the user preferences are assumed to be modelled by a cp-tree pre-

sented in Section 3.4.2.1 of Chapter 3, through which she decides which of the given

conVgurations is better. The cp-tree, one example of which is depicted in Figure 4.4,

allows the user to have a total pre-order over a set of possible conVgurations. Unlike

a weights vector-based user model, a user who is represented by a cp-tree explicitly

and naturally handles conditional preferences. This is highlighted in the deVnition of

cp-tree. A cp-tree applied to the context of this framework has the following shape

and properties. Every node is associated with γ variables at most. A local value

ordering associated with variables in each node depends on the values taken by the

parents of that node. The assumption that having a feature is at least as good as

not having that feature is also implemented in every cp-tree that we consider in this

chapter.

As every cp-tree implements a kind of generalized lexicographic order, any two

conVgurations α and β are compared as follows: α and β are Vrst compared on the

value they have for the set of variables associated with the most important node.

If one of them has better value than the other then we conclude that the former

conVguration is deVnitely preferred over the other one regarding the user’s model

of preferences; the node is said to be decisive. If not then the two conVgurations are

compared based on the next most important node which is determined regarding the

value both conVgurations have for the set of variables associated with the previous

node. This comparison continues through the following nodes in a lexicographic

order until a decisive node is found; otherwise α and β are said to be equivalent.

Let M(γ) be the set of cp-trees with γ being the maximum number of variables

associated with a node. Figure 4.4 represents an example of a cp-tree with γ =

1. Each node in the cp-tree depicted in Figure 4.4 is labeled with a variable (or

feature). The root is labeled by the most important variable, F2 in this example.

97

4.5. CP-tree Model Approach

Each node is also associated with a preference ordering of the values of the variable.

This local ordering in the case of the nodes in the example is fi ≥ f̄i, where fi
means Fi is included and f̄i means that Fi is not included. This ordering captures

the requirement that including a feature is never worse than not including it.

Two conVgurations α and β are Vrst compared based on this most important

variable. If they do not agree on this variable then the comparison is settled: in

the example, if α contains feature F2 and β does not, then α is better than β. This

happens, for example, if α is f1f2f3 and β is f1f2f3. Otherwise, α and β agree on

the most important variable. The user may then have a next most important variable

(labeling a child node); this can depend on the value assigned to the most important

variable (signiVed by the value on the edge from parent to child). For this reason,

this model allows conditional preferences. If there is no such next important variable,

then α and β are considered equally preferable according to this cp-tree. Thus the

cp-tree σ generates a total pre-order <σ on outcomes.

Note that each node in the cp-tree in Figure 4.4 is associated with a single vari-

able. In fact, we can allow a more general representation, where at most γ variables

are associated with a node, along with a total pre-order over the assignments to that

set of at most γ variables. Figure 4.5.1 shows an example of a cp-tree with γ = 2.

In Figure 4.5.1, for instance, the root node is associated with the pair of variables

Y = {F2, F3} and the local ordering is then over assignments to Y , and is as follows,

f2f3 ≥ f2f̄3 ≥ f̄2f3 ≥ f̄2f̄3. The local ordering associated with a node associated

with feature Fi, must then be fi ≥ f̄i, since including a feature is always at least as

good as not including it. CP-trees are described in more detail in Section 3.4.2.1 of

Chapter 3.

F2

F1 F3 11 ff

321 fff 321 fff321 fff 321 fff≥ ≥ ≥ 321 fff ≥ 321 fff≥ 321 fff ≡

22 ff

2f 2f

33 ff

F1 11 ff F3 33 ff F3 33 ff

321 fff ≡

1f 1f 3f

Figure 4.4: A cp-tree σ with γ = 1, along with its associated ordering <σ on conVg-
urations

98

4.5. CP-tree Model Approach

F2F3

F1 F1

32ff≥ 32ff ≥ ≥ 32ff 32ff

11 ff

32ff

11 ff

32ff

321 fff 321 fff321 fff 321 fff≥ ≥ ≥ 321 fff ≥ 321 fff≥ 321 fff ≡ ≡ 321 fff

Figure 4.5: A cp-tree σ with γ = 2, along with its associated ordering <σ on conVg-
urations

4.5.2 Constraint language

Comparative preference theories, which are presented in Section 3.3 in Chapter 3, are

used in this instance to enable the advisor to handle conditional preferences while

inducing constraints on user’s preferences. We are speciVcally using comparative

preference theories which allow the system to handle preferences statements ϕ that

have the form p ≥ q ‖ T , where P ,Q and T are subsets of the set of features V , and p

is an assignment to P = Q (i.e., a function from P to {0, 1}), and q is an assignment

to Q.

The statement ϕ expresses the preference of a partial conVguration p over an-

other partial conVguration q with variables in T held constant. This statement also

says that a model < satisVes p ≥ q ‖ T if and only if α < β for all conVgurations α

and β such that α extends p and β extends q with α(X) = β(X) for all X ∈ T .

As the constraint language in Section 4.4.2 does, this language allows to express

α ≥ β (i.e., conVguration α is preferred over conVguration β). This is possible when

P = Q = V and T = ∅.

Example Suppose that there are four binary features in V = {F1, F2, F3, F4}. and

when the user selects a conVguration α = f1f̄2f3f4 among a set of three conVgu-

rations proposed by the system (i.e., α = f1f̄2f3f4, β = f̄1f2f3f4, γ = f1f2f̄3f̄4),

the system infers the set Ψ of preference statements Ψ = {f1f̄2f3f4 ≥ f̄1f2f3f4,

f1f̄2f3f4 ≥ f1f2f̄3f̄4}. The two preference statements (or constraints) in Ψ say the

99

4.5. CP-tree Model Approach

combinations of features in α is better than both combinations of features in β and

γ.

4.5.3 Dominance relation

Let α and β be two conVgurations. α dominates β (i.e., α <Φ β) if and only if all

possible users that agree with the set of constraints in Φ, prefer α over β. A possible

user in this instance is represented by one cp-tree σ among the setM(γ) of cp-trees

for γ = 1, 2, or 3. Therefore, α <Φ β holds if and only if every cp-tree σ inM(γ)

that satisVes all constraints in Φ orders α before β (α <σ β). In other words, α <Φ β

holds if every cp-tree σ inM(γ) that extends all constraints in Φ has α come before

β or α and β are equivalent through σ (a cp-tree generates a total pre-order).

4.5.4 Dominance computation

The assumption stating that including a feature is always at least as good as not

including it requires to include, in the set Φ, the statement fi ≥ fi ‖ V \ {Fi} for

each feature Fi, for i = 1, . . . , n. This assumption is captured by the local ordering

in the case of the nodes in a cp-tree that represent a user model.

A dominance testing algorithm is presented in (Wilson 2009b). As shown in

the previous section and described in Section 3.4.2 of Chapter 3, α <Φ β involves

reasoning with cp-trees and the total pre-orders they generate. In Theorem 1 of

(Wilson 2009b), the dominance algorithm can check, in polynomial time, whether

α <Φ β by verifying that all weak orders that satisfy Φ, agree with α ≥ β as well.

Example 1 continued. With the cp-tree semantics, when γ = 1, the pair of state-

ments Φ (f1f̄2f3 ≥ f̄1f2f3, and f1f2f̄3 ≥ f̄1f2f3) implies the preference statement

f1f̄2f̄3 ≥ f̄1f2f3, so we have f1f̄2f̄3 <
cp1
Φ f̄1f2f3 (and indeed we have f1f̄2f̄3 strictly

dominates f̄1f2f3, i.e., f1f̄2f̄3 �Φ f̄1f2f3). The reason is that, for any 1-cp-tree σ sat-

isfying f1f̄2f3 ≥ f̄1f2f3, the most important feature must be either F1 or F3. (If F2

were the most important feature, then we would not have f1f̄2f3 <σ f̄1f2f3, because

the local ordering is f2 ≥ f̄2, since the presence of a feature is never worse than its

absence.) Similarly, if 1-cp-tree σ satisVes f1f2f̄3 ≥ f̄1f2f3, then the most important

feature must be either F1 or F2. Hence for any 1-cp-tree σ satisfying Φ, F1 is the

most important feature. The root node then determines the preference ordering of

the pair of conVgurations f1f̄2f̄3 and f̄1f2f3: since the local ordering of this node

must be f1 ≥ f̄1, we have f1f̄2f̄3 �σ f̄1f2f3. Hence we have f1f̄2f̄3 <Φ f̄1f2f3. The

qualitative and lexicographic nature of the cp-tree semantics ensures this inference,

in contrast with the numerical the sum of weights-based approach, which did not. 2

100

4.6. Induction of Constraints on Preferences Within the Framework

Example 2 continued. Recall that Ψ is the pair of statements f1f̄2f3f4 ≥ f̄1f2f3f4

and f1f2f̄3f̄4 ≥ f1f̄2f3f̄4. In contrast with the sum of weights semantics, Ψ does not

imply f1f2f̄3f4 <Φ f̄1f2f3f4 with the cp-tree semantics. To show this we can con-

struct a 1-cp-tree σ with F4 as the most important (root node) variable, and where,

given f4, F3 is more important than F1 which is more important than F2, and given

f̄4, F2 is more important than F3 which is more important than F1. σ then satisVes

Ψ, but not f1f2f̄3f4 ≥ f̄1f2f3f4.

A key issue here is that cp-trees can represent conditional preferences: the pref-

erences can be diUerent given f4 from those given f̄4. In contrast, the sum of weights

semantics assumes preferential independence, so preferences are not conditional at

all, which is why the inference holds for the sum of weights semantics. 2

The pair of examples show that the two preference dominance techniques are

incomparable: <Φ with the cp-tree semantics can sometimes include preferences

not included in <Φ with sum of weights semantics, and vice versa.

4.6 Induction of Constraints on Preferences Within

the Framework

Having explained the two instances of the framework for dominance of preference,

it remains to return to IR to explain what the system induces in the Vrst step above

denoted in Section 4.2.3, when it observes the user’s queries. We explain this below

for each of the two preference models.

4.6.1 Inducing constraints in the sum of weights model

Add(q, Fi)

If the user has added feature Fi to query q, new query qi is created which

represents the current query q with the feature Fi added, then statements qi ≥
qj are induced for all Fj 6∈ q, i 6= j unless Add(q, Fj) = qj is unsatisVable.

This assumes that the new query is preferred to other satisVable queries that

could have been generated by adding other features. This implies that the

weight vector satisVes the linear inequality wi ≥ wj . However, we do not

infer qi ≥ qj in all cases. In particular, we do not infer it if Add(q, Fj) is

unsatisVable. Users may have (incomplete) knowledge of which queries are

unsatisVable: if she knows a query is unsatisVable, then she will not submit it.

We ‘play it safe’: when qj is unsatisVable, in case the user knows this, we do

not assume that the query that she does submit has higher weight than this

101

4.6. Induction of Constraints on Preferences Within the Framework

unsatisVable query.

Switch(q, Fi, Fj)

If the user switches Fi for Fj , then we infer that wi ≤ wj ; and for all fk 6∈ q we

can infer wj ≥ wk unless Switch(q, Fi, Fk) is unsatisVable. Indeed, switching

Fi for Fj gives rise to a new query qj−i which represents the new query ob-

tained when the user switches a feature Fi for another feature Fj , then state-

ments qj−i ≥ qk−i are induced for all fk 6∈ q, k 6= i unless Switch(q, Fi, Fk)

is unsatisVable. This assumes that the new query is preferred to other satisV-

able queries that could have been generated by switching Fi for other features

such as Fk. This implies that the weights vector satisVes the linear inequality

wj ≥ wk. However, we do not infer qj−i ≥ qk−i if Switch(q, Fk, Fj) is unsatisV-

able (because of the same reason given in the previous paragraph).

Trade(q, Fi, Fj, Fk)

Trade(q, Fi, Fj, Fk) allows the user to switch the feature Fi for two other

features Fj and Fk If the user trades Fi for Fj and Fk, then we infer that

wi ≤ wj + wk; and for all j′, k′ 6∈ q such that {j, k} 6= {j′, k′} and j′ 6= k′, we

infer wj + wk ≥ wj′ + wk′ unless Trade(q, Fi, Fj′ , Fk′) is unsatisVable.

In fact, trading Fi for Fj and Fk gives rise to a new query qjk−i which represents

the new query obtained when the user switches a feature Fi for two other

features Fj and Fk, then statements qjk−i ≥ qj
′k′

−i are induced for all F ′j , F
′
k 6∈ q,

k 6= i unless Trade(q, Fi, Fj′ , Fk′) is unsatisVable. This assumes that the new

query is preferred to other satisVable queries that could have been generated

by switching Fi for other pairs of features (i.e., F ′j , F
′
k). This implies that the

weights vector satisVes the linear inequality wj + wk ≥ wj′ + wk′ . However,

we do not infer qjk−i ≥ qj
′k′

−i if Trade(q, Fi, Fj′ , Fk′) is unsatisVable (because of

the same reason given above).

Note that we have been quite conservative in what has been inferred. In the event

of observing Trade(q, Fi, Fj, Fk) for example, we might also have inferred that the

selected Trade is better than all other satisVable Trade operations, Trade(q, Fi′ , Fj′ , Fk′)

for {i, j, k} 6= {i′, j′, k′} instead of just other ways of trading fi. Using the same rea-

soning, we might have inferred that a Trade is better than all satisVable Add and

Switch operations; and that a Switch is better than all satisVable Add operations.

We might make these inferences if we attribute ever greater rationality to the

user. This chapter will not attribute these higher levels of rationality to the user, and

hence we will infer only what we stated earlier. An important observation is that it is

not a problem to our proposed methods if we assume that users are less rational than

102

4.6. Induction of Constraints on Preferences Within the Framework

they really are. The reason this does not pose a problem to our proposed methods is

that assuming users are less rational than they really are, will result only in us mak-

ing fewer deductions when observing their queries; it will not result in us drawing

incorrect inferences. In fact, it is more adventurous to assume a fully rational user,

who can really take the best query, since this will cause us to draw inferences that

may be incorrect.

4.6.2 Inducing constraints in the cp-tree model

Add(q, Fi)

Again consider the situation where the user has chosen to add feature Fi rather

than feature Fj (which is another feature diUerent from Fi not present in q).

For this model, there are alternative statements one might induce from this

decision by the user. We consider two, each being a kind of counterpart for

the constraint wi ≥ wj induced for the sum of weights-based approach. It is

an advantage of the cp-tree model that it can express nuances that the sum of

weights-based approach cannot.

• Basic: Let us consider q as the current query, let qi be the current query

q with the feature Fi added, and let qj be q with the feature fj added. A

basic, somewhat conservative, approach is to just model the preference

of feature Fi over feature Fj by the preference statement: qi ≥ qj||∅, i.e.,

qi ≥ qj , which just expresses a preference for qi over qj .

• Importance: Alternatively, and less conservatively, we can induce fi ≥
fi||V \ {Fi, Fj} which means the presence of feature Fi (i.e., fi) is pre-

ferred over the absence of feature Fi (i.e., fi) whatever the case for feature

Fj (i.e., feature Fj is absent or present in the query) all else being equal,

which says that the eventual presence of the feature fi is more impor-

tant than the choice of Fj . Thus, regardless the state of the feature Fj
in the query, the user will prefer Fi to be present in the query so that (if

possible) this feature is included in the most suitable product.

Note too that in either case we ensure that the RSs ‘plays it safe’ when induc-

ing preference statements, in the same way that we explained for the case of

the sum of weights-based approach, by not inducing preferences over unsat-

isVable queries. The second preference form (i.e., Importance) will very likely

allow stronger inference (through a stronger dominance relation) than the Vrst

preference form (i.e., Basic) as the set of models (i.e., cp-trees) that comply with

the induced preference statements in Importance form tends to be smaller (i.e.,

more restricted). This idea will be developed more in Section 4.9.1.

103

4.6. Induction of Constraints on Preferences Within the Framework

Switch(q, Fi, Fj)

If the user switches Fi for Fj then we can induce statements stating the supe-

riority of the feature Fj over the feature Fi, and also over the features Fk that

were not chosen instead of Fj .

• Basic: Let q be the current query, let qj−i be the current query q with

the feature Fj added and the feature fi removed, i.e., Switch(q, Fi, Fj).

We model the preference of feature Fj over feature Fi by the preference

statement qj−i ≥ q||∅, i.e., qj−i ≥ q. Similarly, we model the preference

of feature Fj over feature Fk for any k such that qk−i is satisVable by

qj−i ≥ qk−i.

• Importance: Here we induce the preference statements fj ≥ fj||V \
{Fi, Fj}, and fj ≥ fj||V \ {Fk, Fj} for any k such that qk−i is satisVable.

Trade(q, Fi, Fj, Fk)

If the user trades Fi for Fj and Fk then we can induce statements that assert

the superiority of the combination of features Fj and Fk over the feature Fi,

and also over the combinations of features Fm and Fn that were not chosen.

• Basic: Let qjk−i be the current query q with the features Fj and Fk added

and the feature Fi removed, i.e., Trade(q, Fi, Fj, Fk), and let qmn−i be q with

the features Fm and Fn added and the feature Fi removed. We model the

preference of the combination of features Fj and Fk over the feature Fi
by the preference statement qjk−i ≥ q||∅, i.e., qjk−i ≥ q. We model the

preference of the combination of features Fj and Fk over the combina-

tion of features Fm and Fn, with qmn−i being satisVable, by the preference

statement qjk−i ≥ qmn−i .

• Importance: We induce the preference statement fjfk ≥ fjfk||V \
{Fi, Fj, Fk}, which says that the presence or not of the combination of

features Fj and Fk is more important than the choice of Fi. We also in-

duce the statement fjfk ≥ fjfk||V \ {Fj, Fk, Fm, Fn}, for any m,n 6∈ q
that verify the conditions {j, k} 6= {m,n} and m 6= n.

Figure 4.6 illustrates the framework for preference dominance instantiated with

two diUerent user models. When the user model is represented by weights vectors,

preferences are collected as inequalities between sums of weights. For dominance

computation between two conVgurations α and β, this instance needs to prove that

α <w β for all weights vectors w that comply with all these inequalities. When

the user model is represented by cp-trees, preferences are collected as preferences

104

4.7. Experimentation and Comparative Study

between partial assignments, as described in Section 4.5.2. For dominance computa-

tion between two conVgurations α and β, this instance needs to prove that α <σ β

for all cp-trees σ that comply with all the collected preferences.

Preference Dominance
Framework

weights vector
model

cp-tree
model

other possible
instances

User model

Collected

preferences

Dominance

computation

Figure 4.6: A preference dominance framework

4.7 Experimentation and Comparative Study

To compare the two instances described above, we need a methodology for the com-

parison to be as fair as possible. It would be useful to know more about the relation

between dominance relation in the comparative preferences-based dominance and

the utility-based dominance. For instance, we cannot conVrm that the dominance in

the Vrst formalism implies the dominance in the formalism or vice versa. In such

situations, it could be helpful to experimentally compare the two preference for-

malisms.

It is important that the preference dominance framework presented in Section 4.3

is implemented and tested. This section describes experiments to validate the two

preference dominance approaches: the sum of weights-based approach described in

Section 4.4 and the cp-tree model-based approach described in 4.5. By these exper-

iments we aim at showing the feasibility and the applicability of the framework in

105

4.7. Experimentation and Comparative Study

general and particularly the eXciency and suitability of the comparative preferences-

based approach since this is the Vrst time it is applied in the context of RS.

These experiments illustrate how a RS can exploit the expressiveness of compar-

ative preferences and their relatively fast preference dominance engine.

In the remainder of this section, we provide detailed results of our experiments

and comparative study. Section 4.7.1 gives diUerent choices and settings adopted

during the experiments. Section 4.7.2 covers the results of experiments and the com-

parative study of the simulated deployment of the two approaches presented in Sec-

tion 4.4 and Section 4.5.

4.7.1 Settings

4.7.1.1 OYine experiments

We report experiments with simulated users. We validate the two instances of the

preference dominance framework presented in Section 4.3 through simulations of

user-system interactions. The ultimate evaluation and validation of the preference

dominance approaches for conversational RSs should be performed online. However,

experiments with real users cannot be used to extensively test alternative newly-

deployed interaction control algorithms.

Indeed, some researchers pointed out the limitations of oYine experiments and

their evaluation mechanisms, whereas others argued that oYine experiments are

attractive because they allow comparing a wide range of approaches at an aUordable

cost (Shani & Gunawardana 2011). Besides, the quality of RSs cannot be directly

measured because there are too many diUerent objective functions as well (Jannach

et al. 2011).

4.7.1.2 Products

We use two separate product databases that were retrieved from the Web, each de-

scribing hotels by their amenities expressed as Boolean features such as airport shut-
tle, pets permitted, restaurant on-site. Some details of the product databases are given

in Table 4.1. Many hotels oUer the same amenities, which explains the diUerence

between the number of (physical) hotels and, from an amenities point of view, the

number of (distinct) products. The Marriott-NY database records 9 features about 81

hotels; many oUer the same amenities, and so there are 36 distinct products in the

database. The Trentino-10 database records 10 features for 4056 hotels, of which 133

are distinct.

106

4.7. Experimentation and Comparative Study

Table 4.1: Two databases of hotels

Name Features Hotels Products
Marriott-NY 9 81 36
Trentino-10 10 4056 133

4.7.1.3 The initial query

In general, IR-based systems do not have to worry about the cold start problem (Good

et al. 1999, Maltz & Ehrlich 1995, Park et al. 2006, Schein et al. 2002) as no user input

is required to bootstrap the system. In (Bridge & Ricci 2007), the initial query in each

dialogue was non-empty but small, and was randomly generated in a way that was

compatible with the user’s true preferences. In the dialogues that will be used in

our experiments here, the initial query in each dialogue is empty. While this is less

realistic, since real users usually make a few selections in Web search forms before

Vrst submitting, we found this to be the best way of ensuring that our comparisons

of the two preference models are fairly performed.

4.7.1.4 User Modeling

Providing personalized recommendations to users requires modeling of their prefer-

ences, and needs. This information is referred to in the literature as the user model

(Kobsa 2001, Fischer 2001). In order to evaluate algorithms oYine, it is necessary to

simulate the online process where the system makes recommendations to the user.

This simulates the knowledge of how a user will make a selection and which rec-

ommendation a user will act upon. There are a number of ways of simulating users

(Jannach et al. 2011).

User modeling is a cross-disciplinary research Veld that attempts to construct

models of human behaviour within a speciVc computer environment which requires

interaction with the system (Fischer 2001, Berkovsky et al. 2008). Some approaches

of modeling user preferences have already been applied to RSs (Jannach et al. 2011).

They mainly adopt techniques and methodologies from AI, Knowledge Engineer-

ing, or Data Mining, like ontological user proVling (Middleton et al. 2004), or from

Statistics (Zukerman & Albrecht 2001). New ideas and approaches of User modeling

(UM) appear throughout the literature and reveal that UM emerges as a signiVcant

functional means to enhance the performance of RSs (Berkovsky et al. 2009). Using

advanced user models, we can execute simulations of users’ interactions with the

system, thus reducing the need for expensive user case studies and online testing

(Ricci et al. 2011a).

107

4.7. Experimentation and Comparative Study

We make assumptions concerning the behaviour of users, which could be re-

garded as a user model for a speciVc application. The simulated users in our exper-

iments behave as described in Section 4.2.4. For a simulated user to make choices

about which among the queries in the recommender’s advice is the best one for it

to submit next, the simulated user must be assigned a set of true preferences. In the

frameworks described in Section 4.3, the user’s true preferences can be modeled as a

weights vector or a cp-tree.

The user’s true preferences are represented either in the weights vector model by

randomly generating weights vectors over product features or in the cp-tree model

by randomly generating cp-trees over product features. The weights are related to

product features; they are randomly selected real numbers in the interval [0,1]. The

cp-trees representing the user’s true preferences have the same structure and aspects

as the cp-tree described in Section 3.4.2.1 in Chapter 3.

Every node N is associated a tuple <AN , aN , YN , �N>, where AN ⊆ V is a set

of variables, aN ∈ AN is an assignment to those variables, YN ⊆ {V − AN} is a

non-empty set of variables whose maximum number is equal to γ; �N is a weak

order on the set YN of values of YN which is not equal to the trivial full relation

on Y ; so there exists some y, y′ ∈ Y with y 6�N y′. A root node N1 is created

Vrst. Node N1 is associated a subset of variables YN1 ⊆ V . AN1 = ∅. �N1 is

generated randomly in such way that there exists some y, y′ ∈ YN1 with y 6�N1 y
′.

YN1 is instantiated with a diUerent assignment in each of the node’s children if the

likeliness of the instantiation of that assignment (or value) is greater or equal to some

threshold (e.g., threshold = 0.6). Once instantiated to some value y ∈ YN1, this value

is associated to some edge that links the current node (i.e., N1) to a next node N2

with a tuple <AN2, aN2, YN2, �N2>, where AN2 = AN1 ∪ YN1 is a set of variables,

aN2 = y is an assignment to those variables, YN2 ⊆ {V − AN2} is a non-empty set

of variables that is chosen randomly among {V − AN2}. The instantiation of YN2 is

generated randomly (in a similar way the previous node was instantiated). �N2 is

also generated in the same way the local value ordering (i.e., �N1) is generated. All

remaining nodes in the cp-tree are created in a similar fashion. A leaf node is reached

when all variables in V are instantiated or when a no value was instantiated for a

subset of variables associated with a node (e.g., the likeliness of all values associated

with a node was below a speciVed threshold). Therefore, we obtain a cp-tree that

represents a (simulated) user’s true preferences.

Settings in the experiments arrange that the user’s true preferences are known to

the simulated user and used by that user for query selection, but they are not known

to the RS which knows only about the constraints on the user’s preferences that it

infers each time the user sends a request.

The RS knows only what it induces about user preferences and adds to Φ when

108

4.7. Experimentation and Comparative Study

observing user query behaviour. Those preferences are elicited under the assumption

that the user’s behaviour follows a kind of model: a weights vector over product

features or a cp-tree whose nodes represent product features or subsets of product

features.

If the true preferences are represented in the weights vector model, then rec-

ommenders that induce constraints on preferences in the sum of weights-based ap-

proach may have an advantage over recommenders that are using the cp-tree model,

and vice versa. We talk about this aspect later in the analysis of results obtained

from experiments in which we pair both ways of representing true preferences with

recommenders that use both ways of representing induced preferences.

While we discuss relatively simple user models (for instance a vector of weights

or a cp-tree), it is possible to suggest more complicated models for user behaviour

(Mahmood & Ricci 2007). However the other side of the coin is that when the user

model is inaccurate and too diXcult to verify (e.g., when it is too complicated), we

may optimize a system whose performance in simulation would not have a strong

correlation with its performance in practice (Shani & Gunawardana 2011).

4.7.1.5 System runs

In the experiments, one RS uses the sum of weights model and so adopts the sum of

weights-based approach (denoted by Sum of Weights in the tables showing the results

of the experiments); six others use the cp-tree model and so adopt the comparative

preferences-based approach, diUering on which of the two alternative forms of pref-

erence statements they infer (Basic or Importance (denoted by Comp. Prefs. Basic
and Comp. Prefs. Importance in the tables showing the results of the experiments)),

and on their value for γ (1, 2 or 3). For each pairing of a user with a RS, we ran 500

simulated dialogues. In total then, we are reporting results for 2 databases × 2 ways

of representing true preferences× 7 recommenders× 500 dialogues, which is 14,000

runs of the system. Each scenario has to be repeated several times in order to draw

accurate and reliable conclusions. The Experiments design aim at inducing accurate

and reliable conclusions.

4.7.1.6 The pruning

The use case considered in this dissertation, IR, is a conversational RS with the par-

ticularity that it does not prune products but queries, which lead to products in the

database if satisVable. The system will keep only those which are not dominated,

by any other next possible query, regarding the user’s preferences collected so far

during the dialogue between the user and the system.

Hence, in the experiments we compare the pruning rates achieved by using the

109

4.7. Experimentation and Comparative Study

sum of weights model with those achieved by the six RSs that use the cp-tree model.

The pruning rate is deVned as follows:

pruning rate =
|Satisfiables \ Undominated |

|Satisfiables|
× 100 (4.1)

Equation 4.1 shows the extent to which an approach eliminates what it takes to

be inferior satisVable candidate queries from its advice. In general, the shorter the

advice the better, as this reduces the set of options available to the user.

4.7.2 Comparative study

In order to perform an eUective evaluation of the two preference dominance ap-

proaches within oYine experiments, we select a group of evaluation criteria to as-

sess the advisor. We identiVed inWuential success factors leading to user satisfaction

behind the two approaches. The selected features, on which the approaches are com-

pared, are meant to be appropriate for making choices between algorithms. We focus

on some particular aspects and discuss them in the context of evaluating conversa-

tional RSs.

This section focuses on comparative studies, where two approaches are compared

using several evaluation metrics. We review two types of experiments regarding the

way the user’s true preferences are represented, starting with the Vrst set of experi-

ments, where the user’s true preferences are represented as a vector of weights, then

the second set of experiments, where the user’s true preferences are represented as

a cp-tree. To analyze the particularities of each approach on the one hand, and the

similarities and diUerences between the two approaches on the other hand, we com-

puted the average over each set of runs, that is for each recommender and database

run for a number of dialogues.

One feature brought by the Vrst set of experiments is the ability to assess the

behaviour of the two approaches when the user is depicted by a simple and com-

monly used user model, that is a weights vector. For instance, this eventually allows

a fair comparison to be made between these two approaches and other preference

dominance approaches for conversational RSs in the literature. The second set of

experiments is gathering almost the same measures as the Vrst set of experiments,

with the user’s true preferences modeled as a cp-tree (described in Section 3.4.2.1

of Chapter 3). These experiments gain their relevance from the fact that this is the

Vrst time user models are represented by cp-trees. They also give a Wavour of the

behaviour of users having such preferences structure.

These two groups of experiments give an additional proof of the robustness of

experimental results and consequently reliable conclusions that can be drawn from

110

4.7. Experimentation and Comparative Study

the analysis of these results.

4.7.2.1 Representing true preferences in the sum of weights model

In our Vrst set of experiments, we set the user’s true preferences by randomly gener-

ating weight vectors over product features. The pruning rates in this case are shown

in Table 4.2. The table shows that, in most settings, the comparative preferences-

based approach (i.e., Basic or Importance) is pruning non-optimal queries very slightly

more than the sum of weights-based approach (the exceptions being Basic with γ = 2

or 3 when the pruning is very much less). For example, the cp-tree model using Ba-
sic preference statements and with γ = 1 eliminates 87.5% of satisVable candidates

in dialogues about the Marriott-NY database, whereas the sum of weights-based ap-

proach prunes 87.38%. The table also shows that, overall, with the comparative pref-

erence model, the amount of pruning increases as the preference statements induced

become less conservative (from Basic to Importance). For example, in the Trentino-10
part of Table 4.2, with γ = 2, pruning goes from 16.51% Basic to 87.57% Importance.

(The very slight exception to this for the Trentino-10 γ = 1 case is probably due to

random variation in the tie breaking.)

Table 4.2: The pruning rates (true preferences represented in sum of weights model)

γ =1 γ =2 γ =3
Marriott-NY

Comp. Prefs. Basic 87.50 14.48 12.65
Comp. Prefs. Importance 87.50 87.49 87.42
Sum of Weights 87.38

Trentino-10
Comp. Prefs. Basic 87.49 16.51 13.98
Comp. Prefs. Importance 87.42 87.57 86.72
Sum of Weights 85.72

Furthermore, we can see that the parameter γ (the maximum number of variables

that are associated with a node in a cp-tree) aUects the degree of pruning. SpeciV-

cally, as γ increases, the number of queries pruned tends to decrease. For example,

in the Marriott-NY part of Table 4.2, with preference statements Importance, pruning

goes from 87.50% (γ = 1) to 87.49% (γ = 2) to 87.42% (γ = 3). This is a reWec-

tion of the monotonicity with respect to γ observed above. (However, pruning deals

with strict dominance, which is not necessarily monotonic with respect to γ, but will

be very often, because of the monotonicity of dominance). The eUect is especially

marked in the Basic model where the pruning rate falls from nearly 90% to around

111

4.7. Experimentation and Comparative Study

Table 4.3: The average number of steps per dialogue (true preferences represented in
weights vector model)

γ =1 γ =2 γ =3
Marriott-NY

Comp. Prefs. Basic 6.004 5.998 6.000
Comp. Prefs. Importance 6.008 6.006 5.998
Sum of Weights 6.001

Trentino-10
Comp. Prefs. Basic 6.726 6.784 6.798
Comp. Prefs. Importance 6.748 6.756 6.790
Sum of Weights 6.790

Table 4.4: The same Vnal query rate (true preferences represented in weights vector
model)

γ =1 γ =2 γ =3
Marriott-NY

Comp. Prefs. Basic 98.00 98.80 99.40
Comp. Prefs. Importance 99.00 98.80 99.60

Trentino-10
Comp. Prefs. Basic 92.60 96.20 98.40
Comp. Prefs. Importance 92.00 93.00 97.40

16.5% or less. When γ is increased from 1 to 2, many queries of the Trade form be-

come undominated in the Basic model, because of the more expressive preference

relations which can be represented by cp-trees with γ = 2 (allowing more than one

feature to be assigned at a node). With the stronger Importance preference form,

these Trade queries are still dominated.

What is also of concern from a practical point of view is the average number of

queries that the system gives, for example, the number of options available to the

user; this is inversely related to the pruning rate. Except in the cases where pruning

is very low (Basic with γ = 2 or 3), advice from the sum of weights-based recom-

menders are slightly longer than it is in the case of the comparative preferences-

based recommenders, being around 10 for both datasets.

Table 4.3 shows that dialogue lengths are very similar in the case of all rec-

ommenders: around 6 steps on average for Marriott-NY, and around 6.8 steps for

Trentino-10.

It is not enough to know that one approach prunes more than another, or gives

shorter advice, or gives rise to shorter dialogues. If it were doing so at the expense

of other factors, in particular the ability of the user to reach the best product, then

112

4.7. Experimentation and Comparative Study

Table 4.5: The average shortfalls (true preferences represented in weights vector
model)

γ =1 γ =2 γ =3
Marriott-NY

Comp. Prefs. Basic 0.0005 0.0000 0.0000
Comp. Prefs. Importance 0.0003 0.0001 0.0002
Sum of Weights 0.0000

Trentino-10
Comp. Prefs. Basic 0.0070 0.0010 0.0005
Comp. Prefs. Importance 0.0070 0.0050 0.0020
Sum of Weights 0.0005

Table 4.6: The computation time (true preferences represented in weights vector
model) in millisecond (ms)

γ =1 γ =2 γ =3
Marriott-NY

Comp. Prefs. Basic 46.10 1529.11 2937.20
Comp. Prefs. Importance 44.92 205.61 2466.01
Sum of Weights 59.73

Trentino-10
Comp. Prefs. Basic 195.70 6978.69 7493.94
Comp. Prefs. Importance 129.56 726.56 11053.50
Sum of Weights 289.53

the extra pruning would be less valuable. We have measured the extent to which

the Vnal queries that the user reaches in a dialogue (and hence the Vnal product that

she might choose) agree across the diUerent recommenders. We Vnd (see Table 4.4)

that the comparative preferences-based approaches (i.e., Basic and Importance) agree

with the sum of weights-based approach between 92 and 99% of the time, and the

more an approach prunes, the less this agreement is. For example, for Trentino-10,

Basic γ = 1 agrees with sum of weights-based approach 92.6% of the time; this rises

to 96.2% for γ = 2; and it falls to 92% for Importance γ = 1.

When true preferences are represented in the weights vector model, we can also

measure the amount by which the utility of the product that the user ultimately

chooses falls short of the utility of the best product that she could have reached,

normalized by the diUerence between the products of highest and lowest utility: see

Table 4.5. Unsurprisingly, these follow a similar pattern to the percentage agree-

ments reported in the previous paragraph. The values are very close to zero, ranging

from 0 to 0.007.

113

4.7. Experimentation and Comparative Study

Table 4.7: The pruning rates (true preferences represented in cp-tree model)

γ =1 γ =2 γ =3
Marriott-NY

Comp. Prefs. Basic 85.77 14.28 14.28
Comp. Prefs. Importance 85.78 85.77 85.75
Sum of Weights 85.73

Trentino-10
Comp. Prefs. Basic 86.81 15.03 14.94
Comp. Prefs. Importance 86.81 86.79 85.93
Sum of Weights 85.15

Table 4.6 shows the computation time taken by the diUerent pruning implemen-

tations. When γ = 1, the time taken by the diUerent pruning implementations

is roughly similar—for example, around 0.2 seconds for a dialogue with the basic

comparative preferences pruning for the Trentino dataset—with the sum of weights

linear programming algorithm taking a little longer than the two others. We can see

the computation time increasing very strongly with γ, from γ = 1 to γ = 2. For ex-

ample, for the Basic-Trentino the time increases by more than 30 times from 195ms

(γ = 1) to 6,978ms (γ = 2). This is partly due to the fact that the complexity of the

dominance algorithm is exponential in γ.

Overall, for this experimental setup it seems that it is better to use the more re-

strictive set of models corresponding to γ = 1, at least for the Basic form, because it

then generates much greater pruning (than the models with γ = 2 or 3), leading to

manageable sets of options for the user, and is computationally cheaper. However,

there may be situations (e.g., other datasets) where the more cautious reasoning cor-

responding to γ = 2 or 3 might pay oU in terms of the Vnal quality of solutions.

4.7.2.2 Representing true preferences in the cp-tree model

In our second set of experiments, the user’s true preferences are set by randomly

generating cp-trees over product features; more precisely, we use 1-cp-trees, i.e.,

with γ = 1. The pruning rate results in this case are shown in Table 4.7.

The results in Table 4.7 pattern in a very similar way to the ones illustrated in

Table 4.2. For example, again, in most settings, the comparative preferences-based

approach (i.e., Basic and Importance) is pruning non-optimal queries very slightly

more than the sum of weights-based approach; also, with the comparative prefer-

ence model, the amount of pruning increases as the preference statements induced

become less conservative (from Basic to Importance); and, as γ increases, the number

of queries pruned tends to decrease.

114

4.8. Generalization for Non-Boolean Features

Table 4.8: The computation time (true preferences represented in cp-tree model) in
millisecond (ms)

γ =1 γ =2 γ =3
Marriott-NY

Comp. Prefs. Basic 29.67 276.20 1076.61
Comp. Prefs. Importance 28.63 134.77 1776.30
Sum of Weights 39.35

Trentino-10
Comp. Prefs. Basic 38.52 1578.89 1780.70
Comp. Prefs. Importance 37.37 184.20 3086.39
Sum of Weights 55.72

With users’ true preferences represented as cp-trees, the pruning rate (Table 4.7)

is roughly the same as when they are represented by weight vectors (Table 4.2), a lit-

tle less for the γ = 1 case. The consequences of this for these experiments is slightly

longer advice (around 13 queries on average for both datasets and in all settings ex-

cept Basic with γ = 2 or 3, where pruning is very low) and shorter dialogues (around

3.7 steps for Marriott-NY and around 3.9 steps for Trentino-10). Table 4.8 shows that

computation time in these settings shows a similar pattern as when the users’ true

preferences are represented by vectors of weights. Furthermore, in every dialogue,

the product that the user ultimately chose was the optimal product for her true pref-

erences (whereas we saw very small shortfalls in utility in the experiment described

in the previous section). The dialogue involves features being added incrementally

to the empty initial query—with the most important (according to the true cp-tree)

Vrst—until the optimal product is reached.

We were interested to see whether mis-matches between the ways in which true

preferences and induced preferences are represented would have any eUect. One

might expect if induced preferences are represented in the same model as the true

preferences, then they can capture more accurately the true preferences, resulting in

greater pruning. But we are not seeing this in our experiments. We are seeing that,

for most settings, irrespective of the way in which true preferences are represented,

using the comparative preferences-based approach for induced preferences results in

very slightly greater pruning.

4.8 Generalization for Non-Boolean Features

In Section 4.5.2, we present the constraint language that the system uses in the cp-

tree model-based approach to induce preferences when it observes the user’s queries.

One preference form provided by this language, which is called Importance, allows

115

4.8. Generalization for Non-Boolean Features

the system to infer the user preferences as comparative preferences that involve only

binary features. In fact, when the user model is represented by cp-trees, preferences

in Importance form are collected as preferences between partial assignments that rep-

resent combinations of binary feature values. These preference statements involve

at most two feature values. We want to deVne similar preference statements which

can involve more than two values for each feature. Hence, this kind of preference

statements would be applicable for domains that deal with multi-valued features.

In this section, we assume that the products are modeled with a collection of n
non-Boolean-valued features V = {F1, . . . , Fn}. These features are intended to re-

late to a set of products that the user is interested in choosing between. For example,

if the product is a hotel, one feature might be the size of a swimming pool in the

hotel (e.g., the swimming pool can be small, medium or large).

There are several approaches that the system can implement to induce the user

preferences from the user’s action or selection. A number of these approaches were

presented in Section 2.10 in Chapter 2. In the present section we are interested in two

among these approaches: More Like This (MLT) and Partial More Like This (PMLT).

Example Let V = {F1, F2, F3} be the set of features having the following do-

mains. F1 = {f11, f12, f13, f14}, F2 = {f21, f22, f23} and F3 = {f31, f32, f33}. Sup-

pose we have 5 products to be presented to the user who has to choose only one

product, denoted by c, among these products. Then, the system induces some user

preferences with regards to the user’s selection. The set of products to be shown

are as follows: p1 = f12f21f33; p2 = f11f21f33; p3 = f13f22f33; p4 = f14f23f32 and

p5 = f14f22f31.

The MLT approach states that any feature value fij that is contained in the chosen

product c is preferred over any other feature value fik (k 6= j) of the feature i. For

instance, if the user is shown the 5 products mentioned above and she chooses the

product p3 then the system will induce the following preference statements:

• f13 ≥ f12||V \ {F1};

• f13 ≥ f11||V \ {F1};

• f13 ≥ f14||V \ {F1};

• f22 ≥ f21||V \ {F2};

• f22 ≥ f23||V \ {F2};

• f33 ≥ f32||V \ {F3};

• f33 ≥ f31||V \ {F3}.

116

4.8. Generalization for Non-Boolean Features

The PMLT approach says that any feature value fij that is contained in the chosen

product c is preferred over any other value fik (k 6= j) of the feature i provided the

value fik is not contained in any rejected product. In this example, in case where

the user chooses the product p3 the system would induce the following preference

statements:

• f13 ≥ f12||V \ {F1};

• f13 ≥ f11||V \ {F1};

• f13 ≥ f14||V \ {F1};

The set of preference statements induced with this approach is smaller than the

one induced with the MLT approach as only the value f13 (assigned to the feature 1

in the chosen product) does not appear in any rejected product. But, it is the case for

the values f22 and f33 (assigned to features 2 and 3 in the chosen product) since f22

appears in product p5 and f33 appears in product p1 and p2.

In this section, we adopt similar approaches with comparative preference state-

ments. We have derived three forms of preference statements the system that can

induce when the user makes her selection. These preference forms are inspired from

the the two approaches MLT and PMLT.

Let V = {F1, F2, F3} be a set of variables that represent features, p be a product,

which is also denoted as {fp1, fp2, fp3} if it has the values fp1, fp2 and fp3 for variables

F1, F2 and F3 respectively. Similarly a product c is also denoted as a combination

of feature values {fc1, . . . , fcn} if it has the values {fc1, . . . , fcn} for variables in

{F1, . . . , Fn} respectively.

When the user chooses a product c = {fc1, . . . , fcn} and rejects another product

d = {fd1, . . . , fdn} among a set of k non-dominated products that are shown to

her, the system induces preference statements whose form depends on the following

methods.

• Basic: We model the preference of the combination of feature values in-

cluded in the chosen product c over the combination of feature values in-

cluded in any rejected product d by the preference statement {fc1, . . . , fcn} ≥
{fd1, . . . , fdn}||∅.

• Importance1: We induce the preference statements fci ≥ fdi||V \ {Fi}, for

any value fdi assigned to feature Fi in a rejected product d.

This states the superiority of every feature value taken by the chosen product

c (i.e., fci) over any other value (of the same feature) that appears at least in

one rejected product d (i.e., fdi).

117

4.8. Generalization for Non-Boolean Features

Table 4.9: Recapitulative table of results (users as weights vectors)

Prun Time NbStep Fall
Basic 2.60 0.0293 5.25 9.23
Importance1 52.67 0.329 4.28 9.91
Importance2 0.018 0.035 5.33 9.18

• Importance2: Here we induce the preference statements fci ≥ x||V \{Fi} for

all values x of feature Fi that appear at least in one rejected product, for every

value fci assigned to feature Fi in the chosen product c which is not present in

any rejected product.

This states the superiority of every feature value fci taken by the chosen prod-

uct c, and which does not appear in any rejected product, over any other pos-

sible value x of the same feature that appears at least in one rejected product.

The diUerence with Importance1 form is that the preferred feature value needs

to be present in the chosen product only.

We have generated random products with n variables having three values each.

Having simulated the users’ true preferences as vector of weights, we want the sys-

tem to recommend suitable products to the user with regards to her preferences that

are induced during a simulated user-system dialogue. Indeed, given a global set Ω

of products, the system computes k non-dominated products and shows them to the

user in addition to the product that the user selected in the previous step of the dia-

logue. When the user selects one product, the system induces preferences according

to one of the above methods (i.e., Basic, Importance1 and Importance2). If the user is

not satisVed and there are still products in the global set of products then the system

computes the next k non-dominated products and does the same as in the previous

step. This dialogue continues until the user is satisVed (by either choosing the same

product a number of times (e.g., 3 times) or she gets the product with the maximum

possible utility with regards to her true preferences). The dialogue also ends when

all products in Ω have been retrieved by the system.

We performed experiments with 1000 simulated users whose true preferences

are represented by weights vectors. In Tables 4.9 and 4.10, we report averages (over

1000) of the following measures: the pruning rate (Prun), the running time (Time),
the number of steps in a dialogue (NbStep) and the shortfalls (Fall). In Table 4.10,

we inferred lexicographic models, which are described in Section 4.9.3, related to the

methods above.

Table 4.9 shows Importance1 (52.67) is pruning much more than Importance2

118

4.9. Other Kinds of Models of Preferences

Table 4.10: Recapitulative table of results with lexicographic models (users as weights
vectors)

Prun Time NbStep Fall
Basic 18.07 0.1533 4.96 9.43
Importance1 52.67 0.3327 4.28 9.91
Importance2 0.018 0.0343 5.33 9.18

(0.018) whose pruning is even weaker than Basic (2.60). Table 4.9 shows that Im-
portance2 does not prune that much compared to Importance2 (0.018 vs 52.67). Be-

sides, Basic is pruning very little compared to Importance1 (2.60 vs 52.67) in less time

(0.02ms vs 0.33ms). Basic communicates with the user within longer dialogues (5.25

vs 4.28) but with a bit larger shortfalls (9.23 vs 9.91) regarding Importance2.

Table 4.10 shows that only Basic with lexicographic models has signiVcantly im-

proved its pruning rate (18.07 vs 2.60). This is justiVed by the fact that the lexico-

graphic version of Basic produces much stronger preference statements than those

produced by Basic without applying lexicographic models. We can see, in Table 4.10,

that the lexicographic inference does not aUect the measures (e.g., pruning rate) for

Importance1 and Importance2 as the preference statements adopted by these methods

are very similar to the lexicographic model.

4.9 Other Kinds of Models of Preferences

This chapter focuses on two kinds of models of user preferences, one based on a

weighted sum, the other based on comparative preferences. Depending on what the

recommender is dealing with as products and the context of use of the system, other

types of user models can be used in an attempt to tune some features of the set of

user models then have kind of control on the capacity of pruning of the RSs. This

section brieWy discusses some other possible sets of models.

4.9.1 Larger sets of models

One way to get a large set of models, that represents possible ways the user can

be is just to assume that the user’s preferences are a total pre-order over possible

conVgurations. This pattern of user models is adopted in the case of CP-nets for the

standard inference for CP-nets described in Section 2.6.3 of Chapter 2. Then, the

dominance relation in terms of the framework described in Section 4.3 is deVned as

follows: Let α and β be two conVgurations. α dominates β (i.e., α <Φ β) if and

only if all “possible” users that agree with the set of constraints in Φ, prefer α over

119

4.9. Other Kinds of Models of Preferences

β. A possible user in this instance is represented by a total pre-order. Therefore,

α <Φ β holds if and only if every total pre-order that satisVes all constraints in Φ

orders α before β. In other words, α <Φ β holds if every total pre-order that extends

all constraints in Φ has α coming before β. When the number of models (i.e., total

pre-orders) get larger, the dominance is more likely to be harder as there is a need for

more models to comply with Φ and order α before β. Therefore, inference is more

likely to be weaker.

Another way of modifying the size of the set of models in the approach presented

in Section 4.5 is to tune the parameter γ in M(γ); when γ increases, M(γ) gets

larger and so inference becomes weaker.

Multi-attribute decision theory (Keeney & RaiUa 1976) takes utility function rep-

resentations of the preferences of a decision-maker and studies mathematical meth-

ods for decomposing these functions into weighted combinations of subfunctions

corresponding to diUerent attributes or sets of attributes (see for example (von Stengel

1988, Hansson 1989, Wellman & Doyle 1992)).

One instance is Generalised Additive Independence (GAI) (Fishburn 1967, Bac-

chus & Grove 1995): a compact model that represents utility as a sum of factors. Each

factor can be a component weight function that depends on at most γ attributes. The

user model in the sum of weights-based approach in this chapter corresponds to the

case where γ = 1. For γ = 2, the set of models is larger and much more expressive.

It will then lead to a substantially more conservative (weaker) dominance relation.

The size of the set of models has in general a direct impact on the strength of

the pruning of a dominance relation: when the set of models gets much larger the

pruning capacity tends to get smaller (i.e., weaker inference). This is because more

models have to agree on both set of constraint Φ and α < β (α and β are two items

or conVgurations) at the same time which is more diXcult to be true when the set of

models gets larger. On the other hand, if the set of models gets much smaller then the

pruning capacity does not necessarily get stronger because of eventual equivalences

between items. These equivalences come from relatively frequent valid dominance

relations between items. Due to the small size of models, it is more likely to Vnd

dominance between two items.

The size of the set of models has to be adjusted to be able to Vt to the context of

use of the dominance relation (e.g., type of application and device).

4.9.2 Towards a stronger pruning

Scenarios where we need a relatively small number of undominated solutions are

not rare. A small number of options helps the decision-maker focus on what she

probably needs the most. It is then interesting to look for ways to prune as many

120

4.9. Other Kinds of Models of Preferences

dominated solutions as required by the context of use of the system in general. There

are contexts of use which need the number of outcomes to be small (e.g., mobile

devices, busy screens).

One simple idea is the combination of the two dominance approaches which can

lead to more pruning. Items that are found to be undominated by one approach but

dominated by the other approach can be eliminated.

We can consider lexicographic models that are included in the intersection of

the two sets of models generated respectively by the Vrst and second approaches

described in Sections 4.4 and 4.5. The obtained set of models will be smaller than

both initial sets of models which can increase the pruning rate as the inference tends

to be stronger (i.e., more queries are dominated and so eliminated).

Lexicographic models can be adopted by cp-trees that implement the same fea-

ture ordering in all branches, and by weights vectors that select weights to imple-

ment the same lexicographic model (i.e., same most important features) as the one

implemented by cp-trees: to assign large values for the most important features and

very small values of the less important features.

For instance, given a problem with a Vve feature-domain and in γ = 1, one

possible way to implement such lexicographic models is to consider F1 as more than

important than F4 which is more important than the other features. This feature

ordering should be implemented in all branches of cp-trees inM(1). In the second

approach, we can assign 6 and 5 as values to the weights of F1 and F4 respectively

then giving value 1 to the weights of the remaining features. Thus, any outcome

α having feature F1 dominates any other outcome β that does not have feature F1

regarding the Vrst approach and the second approach. For the Vrst approach, all

cp-trees in M(1) order α before β since they consider F1 as the most important

feature and the node which has F1 is a decisive node that validates α is preferred to

β regarding the current cp-tree.

4.9.3 Lexicographic inference

Let us consider preference statements of the form p ≥ q ‖ T , where P , Q and T are

subsets of the set of features V , p is an assignment to P (i.e., a function from P to

{0, 1}), q is an assignment to Q, and P = Q. Informally, the statement p ≥ q ‖ T
represents the following: p is preferred to q if T is held constant.

One way to implement lexicographic models is that, when the user chooses one

conVguration α instead of another conVguration β, the system would want to extract

two tuples tα and tβ respectively from α and β such that ∀X ∈ V for which α(X) 6=
β(X), tα(X) = α(X) and tβ(X) = β(X). Then, the system gathers all variables

X ∈ V for which α(X) = β(X) and adds them to the set T (i.e., T = {X ∈

121

4.9. Other Kinds of Models of Preferences

Table 4.11: The pruning rates (true preferences represented in cp-tree model)

γ = 1 γ = 2 γ = 3
Marriott-NY

Comp. Prefs. Basic 86.17 12.397 12.397
Comp. Prefs. Lex 87.603 87.603 87.603
Comp. Prefs. Importance 87.603 87.603 87.603
Sum of Weights 87.438

V, α(X) = β(X)}). Therefore, the system induces preference statement tα ≥ tβ ‖ T .

We performed experiments in which we adopt the same setting as stated in Sec-

tion 4.7.1 with the Marriott-NY database described in Section 4.7.1.2. The number of

simulated users whose true preferences are represented by cp-trees is 500. In addi-

tion to this preference model (denoted by Comp. Prefs. Lex), we use the two forms of

preference statements presented in Section 4.6 (i.e., Basic and Importance) as well as

the sum of weights-based inference.

Table 4.11 shows the lexicographic model does not appear to be aUected when γ

increases while Basic and Importance do. Furthermore, with lexicographic inference,

the product that the user ultimately chose was the optimal product for her true pref-

erences (see Table 4.12). It was the case for the other forms of inference except Basic
with γ = 1. Table 4.13 shows the computation time taken by the diUerent pruning

implementations. When γ = 1, the time taken for the lexicographic inference is a

bit larger than than Basic (i.e., 37ms against 36ms) and also Importance (i.e., 37ms

against 35ms). Lexicographic inference is still faster than the sum of weights-based

inference (i.e., 37ms against 53ms). With γ = 2 and γ = 3, the time taken for the

lexicographic inference looks close to the time achieved by Importance with a bit of

delay. Lexicographic inference is faster than Importance inference with γ = 2 (i.e.,

194ms against 1601ms) while Importance infers in a faster fashion than the former

method with γ = 3 (i.e., 2407ms against 2444ms). Lexicographic inference is faster

than the sum of weights only with γ = 1. The monotonicity eUect of the pruning

with regards to γ is not observed with these lexicographic models: as γ increases,

the number of queries pruned is still the same.

4.9.4 Application to group recommender systems

A group recommender system is a recommender system aimed at generating a set

of recommendations that have a common social welfare goal: to satisfy a group of

users (instead of a single user), with potentially competing interests. The associ-

ated challenges include considering how to elicit and combine the preferences of

122

4.9. Other Kinds of Models of Preferences

Table 4.12: The average normalized shortfalls (users as cp-trees)

γ = 1 γ = 2 γ = 3
Marriott-NY

Comp. Prefs. Basic 0.004 0.0 0.0
Comp. Prefs. Lex 0.0 0.0 0.0
Comp. Prefs. Importance 0.0 0.0 0.0
Sum of Weights 0.0

Table 4.13: The execution time (users as cp-trees)

γ = 1 γ = 2 γ = 3
Marriott-NY

Comp. Prefs. Basic 36.54 1601.73 1682.25
Comp. Prefs. Lex 37.84 194.0 2444.4
Comp. Prefs. Importance 35.13 190.73 2407.19
Sum of Weights 53.187

diUerent users as they engage in simultaneous recommendation dialogs. Various

group recommenders were introduced in the literature (for Vtness centres, cities,

televisions, vacation planning): PolyLens (O’Connor et al. 2001, MovieLens 2013),

MusicFX (McCarthy & Anagnost 1998), Intrigue (Ardissono et al. 2003), TV program

recommender (Yu et al. 2006), Travel Decision Forum (Jameson et al. 2004), Pocket

Restaurant Finder (McCarthy 2002).

Voting is one of the most common used ways for users to manifest their prefer-

ences and negotiation is presented as the best method for management and resource

sharing in a multi-agent environment (Popescu & Pu 2011). Ratings can come after

users’ interaction with the system or by interpreting her preferences. Once votes are

submitted the recommender system should come up with a solution corresponding

to the highest scored items. In more general perspective, a compatibility score is

computed for each candidate and then a group compatibility score is computed. The

option with the highest overall quality score is selected as a new recommendation.

Regarding social choice, investigations have been made regarding several objec-

tives including: high expressive power, relative succinctness, low complexity, elicita-

tion friendliness and cognitive appropriateness (Chevaleyre et al. 2008). The compar-

ative preferences theories formalism is then one of the most appropriate preference

formalisms in such context as it was shown that it can achieve all the objectives with

a single user RS. Individual recommendations are generated using the user models,

which are based on the user interaction with the system. However, in practice it is

123

4.9. Other Kinds of Models of Preferences

not straightforward to model groups simply by modeling the aggregation of individ-

ual models. This raises the need for voting mechanisms from social choice theories

to solve the comparative preferences theories aggregation problem.

One alternative is to gather the sets of comparatives preferences of the users and

reason with them to arrive at an agreement about an overall solution. We might also

need more sophisticated algorithms which would increase the satisfaction function

for the entire group while managing the eventual inconsistencies that arise among

the sets of preferences of the diUerent users. In summary, there is a need for a the-

oretical framework on voting in group recommender systems that enable reasoning

with comparative preferences theories.

4.9.5 Application to other forms of conversations in recom-

mender systems

The comparative preferences-based formalisms developed for RSs can also be part

of other intelligent query selection strategies to drive the elicitation process in the

RSs. Critiquing is an interaction model that allows users to build their preferences

by examining or reviewing examples shown to her by the system. The preference

induction methods developed in this thesis can capture several preference nuances

from the user’s feedback for diUerent forms of interaction. It can, for example, handle

preferences the user would have between a pair of items that she might be asked to

compare by the system.

These methods can generate preference statements stating the preference of any

feature or combination of features that marks the selected item(s) over any other

feature or combination of features that characterizes the rejected item(s) during an

interaction stage or even a sequence of interaction stages. It would also be possible

to redeVne these rules for more expressive comparative preference languages so that

a larger scope of problems with more kinds of input can be tackled using the pruning

rules; the comparative preference language described in Section 3.3 in Chapter 3 is

an example.

Example 6. Let V = {F1, F2, F3} be a set of features whose domains are as follows.
F1 = {f 1

1 , f
2
1 , f

3
1}, F2 = {f 1

2 , f
2
2}, F3 = {f 1

3 , f
2
3 , f

3
3 , f

4
3}. Let us assume that the

user is initially shown the two following products: f 1
1 f

1
2 f

2
3 and f 2

1 f
1
2 f

3
3 . Then, the user

chooses f 2
1 f

1
2 f

3
3 . The system can induce preferences in several formats. For example, the

system can induce the following preference statement: f 2
1 f

1
2 f

3
3 ≥ f 1

1 f
1
2 f

2
3 ||∅. This is to

express the preference of the features values combination included in the chosen product
over the combination of values included in the rejected product.

124

4.10. Conclusions

4.10 Conclusions

Although there has been a lot of eUort in theoretical work produced on comparative

preference formalisms in recent years, including award winning papers (Boutilier

et al. 2004a, Koriche & Zanuttini 2009), development towards applications has lagged

behind. On the other hand, RSs are gaining momentum in the e-commerce applica-

tions market to face the “information overload” problem. This progressively reveals

an increasing need to enable those RSs with suitable preference dominance engines

that are capable of eXcient preference handling that support users in expressing

their preferences with a minimum of burden during an automated process that in-

cludes user-system interaction.

In this chapter, we deVne a formalism for preference elicitation based on compar-

ative preferences and integrate it into a conversational RS. To our knowledge, this

type of comparative preference is deployed for the Vrst time with RSs. We conduct

diUerent experiments and perform a comparative study between a Vrst approach

based on a sum of weights-based dominance relation and a second approach based

on comparative preference theories dominance relation. Comparative preference

theories were able to give freedom and Wexibility to the system to handle the user’s

preferences by allowing the system to capture preference nuances and various forms

of preferences without giving up the attractive computational properties of the pref-

erence dominance. The dominance algorithm described in Section 3.5 in Chapter 3

is proven to work eXciently for a range of comparative preference statements when

checking dominance between two outcomes α and β.

The suitability and attractiveness of the comparative preference theories-based

approach for RSs were veriVed and validated through several experiments that in-

clude repeated scenarios with simulated users represented by models that are based

on diUerent semantics (e.g., weights vector vs cp-tree).

125

5
Constrained Optimisation for

Comparative Preferences

5.1 Introduction

Constrained optimisation looks for (feasible) solutions, regarding the constraints,

that best meet the user’s preferences. One goal is to assist users with cognitive tasks

like conVguring products for an online shopper, or scheduling a meeting for a busy

executive. In such situations, the automated agent needs to balance the user’s desires

with hard and externally imposed constraints.

On the one hand, in daily life, people’s expectations from decision support sys-

tems (DSSs) are getting higher and higher; they hope for more personalized and fo-

cused query handling. On the other hand, the preference representation approaches

and preference reasoning engines are progressing towards more intuitiveness and

compactness. Therefore, the integration of newly developed preference languages

and reasoning approaches in DSSs paves the way for eUective and intuitive infor-

mation streams required by users. It will build the bridge between users and today’s

systems.

A decoupled approach that combines CSPs and conditional preference theories,

for which a preference reasoning engine was developed, seems to be worth studying

particularly when the user’s preferences over an assignment to some subset of vari-

ables of the problem is usually conditioned on the assignments to other subsets of

126

5.1. Introduction

variables. Then, we intend to develop decoupled COP approaches, using conditional

preference theories (i.e., cp-theories), and taking a similar approach to (Boutilier

et al. 2004b), in the sense that they are able to: 1) Vnd the Vrst non-dominated so-

lution fast as the Vrst solution met in the preference-based search tree is considered

optimal and 2) Vnd optimal solutions in anytime-working mode algorithm as the

algorithm can stop at any point and returns the set of optimal solutions found so

far. The solution set generated at that point will be a subset of the set of all optimal

solutions.

In B&B, the bounding rule typically requires, at each node of the search tree, a

test that checks some necessary conditions for the newly created branch to achieve

an optimality level not worse than the so far best obtained level. In this chapter, in

order to bound the horizon of the search space, we deVne pruning rules that check

conditions, at each node of the search tree, to see whether the newly created sub-

problem no longer contributes to the solution of the global optimisation problem and

hence can be discarded. In other words, the conditions check whether the partial as-

signment constructed so far at the current node cannot be extended to an optimal

(i.e., non-dominated) solution. Optimality is referring to a (partially ordered) pref-

erence relation represented by a cp-theory described in Section 3.3.1 in Chapter 3.

We are thus extending B&B for cp-theories. In Sections 5.3 and 5.4 we develop a

Vrst group of suXcient conditions that help the constrained optimisation algorithm

prune the search space. Such pruning will certainly aid the search for optimal solu-

tions, without jeopardizing any potentially meritorious solutions. One of the main

advantages of pruning away subspaces from the search space is the reduction of the

number of pairwise comparisons performed during the search.

Another way of avoiding uninteresting comparisons is to avoid involving any

optimal solution that is unable to better (i.e., dominate) any extension (complete

assignment) in a sub-space. In other words, an optimal solution α, which was already

found, might be unable to dominate any outcome that extends the partial assignment

obtained so far in the search. If we prove that this is the case then we do not need to

involve α in any dominance check below the current node. This can be performed by

our second category of pruning rules presented in Section 5.5 and which temporarily

disengage any subset of optimal solutions below some node of the search tree from

playing a role in the comparisons performed in the sub-space newly created. This

pruning rule checks whether any optimal solution already found is unable to better

any other possible assignment in the sub-space. If the condition is conVrmed for a

solution α, then α is no longer involved in eventual comparisons below the current

node in the search tree.

Section 5.6 discusses an example of computer conVguration which illustrates as-

pects of the cp-theories-based constrained optimisation. Issues encountered during

127

5.2. Personalized Branch And Bound

the implementation of the pruning rules are discussed in Section 5.7. In order to

assess the eXciency of the developed pruning rules in practice, experiments were

performed and results are discussed in Section 5.8.

5.2 Personalized Branch And Bound

In B & B, in order to personalize the bounding rule used to check the optimality of

the search space below some node in the search tree, we deVne speciVc pruning rules

that are based on some kind of preference relation. B&B can be personalized by the

means of conditions to be tested at each node of the search tree. We describe the

model of the search tree in Section 5.2.1 and present, in Section 5.2.2, the preference

relation we are considering in the preference-based B&B presented in Section 5.2.3.

5.2.1 Model of the search tree

Let V be the set of variables associated with the problem. Variables are instanti-

ated in a particular order in the search tree used to gather optimal solutions of a

CSP, which is described in Section 2.11 of Chapter 2, augmented by a set of user

preferences.

Similarly to a CSP search tree, described in Section 2.11.2 of Chapter 3, each node

of the search tree is associated with a variable X ∈ V . At any node of a depth-Vrst

search algorithm, we have an associated partial assignment b to the variables B ⊆ V

that have already been instantiated, and we have the current domain D(X) of each

variable X . We formalise this notion of a collection of domains as follows:

DeVnition 21. A collection of domains is a function D on V such that D(X) ⊆ X

(X is the initial domain of X), so that D(X) is a set of possible values of X . For an
outcome β, we say that β is of D if β(X) ∈ D(X) for all X ∈ V .

When a variable Y ∈ V \B is instantiated to some value y, a new nodeN , consid-

ered as a child of the previously created node that is associated with the previously-

instantiated variable’s value, is created, the partial assignment b is extended with

Y = y and D(Y) is Vxed to {y} (i.e., D(Y) = {y}). Domains D(X), for X ∈ V \B,

are then determined by constraint propagation (Bessière 2006) as elements of X that

are inconsistent with b regarding the constraints in the CSP are eliminated (see Def-

inition 2 in Section 2.11 of Chapter 2). In our experiments, we use arc consistency to

prune away inconsistent values from D(X). Backtracking takes place when a com-

plete assignment is created or there is no point in going deeper in the search tree,

because there exists X such that D(X) = ∅, or there is a proof that there will not be

an optimal solution that can extend the current partial assignment. Thus, the process

128

5.2. Personalized Branch And Bound

backtracks to the parent node to assign an untried value of the variable associated

with the parent node.

Let Ω be the set of optimal solutions found so far when the search reaches some

node N . Let Ω′ be the subset of Ω that will be the only solutions involved in any

computation or comparison below the current node. Other solutions β ∈ Ω \ Ω′ are

irrelevant for the comparisons that will be performed below node N . The state of

the search at some node of the search tree is characterized by (b, B, D, Ω, Ω′).

5.2.2 Preference relation for optimisation

In order to select optimal solutions, we need to use a preference relation D between

outcomes. In this chapter, we use the dominance relation described in Section 3.4.2

of Chapter 3. Thus, an outcome α dominates another outcome β (α D β) if and only

if all the cp-trees with γ = 1 that satisfy the set of user preferences Γ order α before

β (a cp-tree with γ = 1 corresponds to the pos-tree introduced in (Wilson 2006)

and mentioned in DeVnition 12 Section 3.4.2.1 of Chapter 3). Γ is a set of preference

statements expressed as a conditional preference theory (see Section 3.3.1 of Chapter

3). Let V be a set of variables and U and W be two subsets of V . Each preference

statement is denoted by ϕ as follows: u : x > x′[W], (W ⊆ (V \ (U ∪X))) meaning

that given an assignment u for a set of variables U , we prefer value x to value x′ for

variable X , as long as variables outside of W are held equal.

5.2.3 Preference-based branch and bound

In the search tree, when branching, bounding requires checking whether a partial

assignment b can be extended to an undominated (i.e., optimal) solution. In order

to aid the search for optimal solutions, we are looking for new preference-based

methods that Vnd the way to discover dominated paths (regarding preferences) in

the search tree, and so allow for pruning uninteresting sub-spaces from the search

tree.

At some node N of the search tree, an optimal solution α might be able to domi-

nate every β of D. Thus, we say that α dominates D. The other side of dominance is

that α might not be able to dominate any β of D. We then say that α non-dominates

D.

DeVnition 22. Let α be an outcome and D be a collection of domains. We deVne:

• α dominates D if α D β for all β of D.

• α non-dominates D if for all β of D, α 4 β.

The deVnition suggested two ways of improving the optimisation process:

129

5.3. Dominance Pruning Rules

• In the case where D is proven to be dominated, there will be no point to ex-

ploring nodes in the search tree below the current node. We do not need to

look for solutions which are dominated. In Section 5.3, we deVne suXcient

conditions for α dominating D that can be eXciently checked. We call them

Dominance Pruning Rules. For pruning even more sub-spaces in the search tree,

we also use a stronger but unsound dominance relation (described in Section

5.4).

• In the case where α does not dominate any β of D, bringing α into com-

putations below the current node will only slow the search and increase the

computational burden. Thus, we do not need to carry optimal solutions that

are proven to be unable to dominate any possible solution that will be created

in the not yet visited sub-space below node N . In Section 5.5, we deVne suX-

cient conditions for α non-dominating D that can be eXciently checked. We

call them Non-Dominance Pruning Rules.

5.3 Dominance Pruning Rules

These pruning rules aim at checking suXcient conditions that might conVrm, when

satisVed, that one sub-space (i.e., all possible assignments that can be created in

the sub-space) below a current node N is dominated by an optimal solution already

found. Then, a backtrack is required. To deVne such conditions, we need to recall the

notion of dominance between two outcomes. One way to look for such conditions

is to consider pos-trees which correspond to cp-trees with γ = 1 (see DeVnition 12

Section 3.4.2.1 of Chapter 3). cp-trees are described in Section 3.4.2 of Chapter 3 and

used in the deVnition of dominance in Section 3.5 of the same chapter. In fact, for α

to dominate β we need to check that all pos-trees that satisfy Γ also order α before

β. This can be ensured by checking that there is no pos-tree that satisVes Γ and

strictly prefers β over α. Thus, the non existence of a pos-tree that witnesses a strict

preference relation of one outcome β over another outcome α is suXcient to prove

that α dominates β (that is, α D β).

Let σ be a pos-tree (a cp-tree with γ = 1). A node r is deVned to be decisive
for outcomes β and α if it is the deepest node (i.e., furthest from the root) which is

both on the path to α and on the path to β (see Section 3.4.2.3 of Chapter 3). For all

variables Y already instantiated in σ before reaching node r, we have α(Y) = β(Y).

We also say that node r decides α and β. Node r decides which of the outcomes is

preferred over the other regarding σ by comparing the two outcomes’ values for the

root node’s associated variable Yr (i.e., α(Yr) and β(Yr)) with respect to the ordering

associated with node r. For instance, if α(Yr) <r β(Yr) then α is preferred over β.

130

5.3. Dominance Pruning Rules

Let yi and yj be two values from Y . Relation AYa on Y is deVned to be the

transitive closure of the set of pairs (yi, yj) over all preference statements ϕ written

as uϕ : xϕ > x′ϕ[Wϕ] in Γ such that uϕ is compatible with a, xϕ = yi and x′ϕ =

yj (see Example 7). (yi, yj) means yi is preferred over yj . Notice that for a = >,

all preference statements Φ where Xϕ = Y are concerned and AY> is the transitive

closure of all pairs (xϕ, x
′
ϕ). This is because a = > is compatible with any uϕ.

Proposition 1. (Wilson 2006) Recall that each preference statement ϕ ∈ Γ has the
following form: uϕ : xϕ > x′ϕ[Wϕ], (Wϕ ⊆ (V \ (Uϕ ∪Xϕ))). Then, the following pair
of conditions are necessary and suXcient for a pos-tree σ to satisfy a cp-theory Γ.

(1) For any ϕ ∈ Γ and outcome α extending uϕ: on the path to α, Xϕ appears before
Wϕ;

(2) For all nodes r in σ, >r ⊇ AYrar

5.3.1 The root-dominates rule

Let D be a collection of domains and β be any outcome of D. To prove that α

dominates D (that is, α D β for all β of D), it is suXcient to present evidence that

there is no pos-tree that attests β strictly dominates α, for all β of D. If it is the case,

then we have α <σ β for all σ satisfying Γ, which can be expressed as α D β, for all

β of D.

We look for this evidence in the root node of the pos-tree. In fact, when the root

node in a pos-tree σ that satisVes Γ decides α dominates β then we can conclude that

σ prefers α over β. If there are no pos-trees that satisfy Γ and also strictly prefer β

over α, for any β of D, then we can say that all pos-trees that satisfy Γ prefer α over

β, for all β of D. Then, we need to deVne suXcient conditions that guarantee the

root node of every pos-tree that satisVes Γ decides α dominates β, for all β of D.

There are two cases where the root node r reveals that β is not strictly preferred

over α, for all β of D:

(i) If α and β have the same value for the variable associated with the root node

(i.e., Yr), then r should have no children associated with the assignment Yr =

α(Yr). This is guaranteed by having α(Yr) and y are AY>-equivalent for some

y ∈ Yr − {α(Y)} (see Section 3.4.2.1 of Chapter 3);

(ii) if α(Yr) 6= β(Yr), then α(Yr) should be better than the possible values that β

can have for Yr (i.e., α(Yr) <r y, for all y ∈ D(Yr)− {α(Y)}).

Therefore, we say that α root-dominates a collection of domains D if: for all

Y /∈
⋃
ϕ∈Γ Wϕ,

131

5.3. Dominance Pruning Rules

(i) α(Y) AY> y for all y ∈ D(Y)− {α(Y)};

(ii) if α(Y) ∈ D(Y) then α(Y) and y areAY>-equivalent for some y ∈ Y −{α(Y)}.

The following result states the soundness of the root-dominates rule.

Proposition 2. If α root-dominates D then α dominates D, i.e., α D β for all β of D.

Proof: Let σ be any pos-tree satisfying Γ and let β be any element of D. Let r be

the root node of σ. Let us look into σ and focus more particularly on the root node r

that decides α and β. Node r has an associated variable Yr. Yr cannot belong to Wϕ

of any preference statement ϕ satisfying Γ and written as uϕ : xϕ > x′ϕ [Wϕ]. This is

because there will be at least one variable (Xϕ) that should appear before variables

in Wϕ in σ (Proposition 1(2) in Section 5.3). There are two possibilities:

• α(Yr) 6= β(Yr): Then r decides α and β. Condition (i) implies α(Y) AY> β(Y).

This implies α(Yr) and β(Yr). Thus, α and β diUer on the root node r with α

having better value on Yr. Then, we can conclude α <σ β.

• α(Yr) = β(Yr): This implies α(Yr) ∈ D(Yr) (since β(Yr) ∈ D(Yr) as β is

of D), and so condition (ii) implies that α(Y) is >-equivalent to some other

element of Y . A root node with such equivalence cannot have children in σ

(by DeVnition of a cp-tree - see DeVnition 11 in Section 3.4.2.1). Therefore, β is

not strictly preferred over α by σ. Thus, since node r decides α and β so again

α(Yr) <r β(Yr).

Then, we have shown that α D β for all pos-trees σ that satisfy Γ. Thus, we can

conclude that α dominates D as β was an arbitrary element of D.

�

Example 7. Let V be the set of variables {X, Y, Z} with (initial) domains deVned as
follows: X = {x1, x2, x3, x4}, Y = {y1, y2} and Z = {z1, z2}. Let cp-theory Γ consist
of the Vve statements > : x1 > x3, > : x2 > x3, and > : x2 > x4 [{Z}] x1 : y1 > y2,
and x2 : y2 > y1.

Suppose a CSP search tree is created and used to Vnd optimal solutions (with respect
to Γ). Suppose the variables are instantiated in the following order: X , Y then Z .
This instantiation order is compatible with the user preferences, as should be the values’
instantiation order. Let us assume that at some node of this search tree, we have a
previously found optimal assignment α = x2 y2 z2 and the variables’ domains are as
follows. Let D(X) = {x3}, D(Y) = {y2} and D(Z) = {z1} with a partial assignment
represented by a tuple b = x3 y2 z1. We want to check whether α dominates the collection
of domains D characterized by D(X), D(Y) and D(Z). If α root-dominates D then

132

5.3. Dominance Pruning Rules

we can avoid expanding the search tree and backtrack. We Vrst look for all variables
not in

⋃
ϕ∈ΓWϕ. We can see that

⋃
ϕ∈ΓWϕ = {Z}. Now, we need to Vnd out whether

the suXcient conditions for α to root-dominate D are veriVed. For variable X , the
preference statements in Γ show AX>= {(x1, x3), (x2, x3), (x2, x4)} as only the three
Vrst statements concern the preference over the values of X , AY>= {(y1, y2), (y2, y1)}
as only the fourth and Vfth statements concern the preference over the values of Y .
Thus, we can see that α(X) = x2 AX> x3. For variable Y , α(Y) = y2 ∈ D(Y), and
y2 AY> y1 AY> y2, so α(Y) and y1 are AY>-equivalent. Hence, α root-dominates D.

Then, we backtrack and the collection of domains will be as follows. D(X) = {x3},
D(Y) = {y2} and D(Z) = {z1, z2} with b = x3 y2. We can notice that only D(Z)

changes but Z 6∈
⋃
ϕ∈ΓWϕ. So, α still root-dominates D.

The search backtracks again so that we have D(X) = {x3}, D(Y) = {y1, y2} and
D(Z) = {z1, z2} with b = x3. OnlyD(Y) changes. The fourth and Vfth statements in Γ

show α(Y) = y2 AY> y1 AY> y2, which leads to conVrm that α(Y) = y2 (y2 ∈ D(Y)) is
AY>-equivalent with another value y1 ∈ Y −{α(Y)}. Thus, α root-dominatesD again.

�

5.3.2 The deciding-node dominance rule

Let α be an outcome and let D be a collection of domains. We can prove that there

is no pos-tree that gives evidence of any β of D strictly dominating α by deVning

conditions that are suXcient to prove there is no node that decides α and β in any

pos-tree σ that satisVes the cp-theory Γ (see DeVnition 13 in Chapter 3). DeVne S to

be {X ∈ V : D(X) 63 α(X)}. These are the variables that α and β diUer on for all

β of D. DeVne Ψ to be the set of all ϕ ∈ Γ such that Xϕ ∈ S and uϕ is compatible

with α(V − S). (uϕ is compatible with α(V − S) if and only if for all X ∈ Uϕ − S,

α(X) = uϕ(X).) Let α∗ = α(V − S). We will use the relation AYα∗ equal to the

transitive closure of all pairs (xϕ, x
′
ϕ) such that ϕ ∈ Γ, Xϕ = Y and uϕ is compatible

with α∗.

DeVnition 23. We say that α deciding-node-dominates D if α(Y) AYα∗ y for all Y /∈⋃
ϕ∈ΨWϕ and for all y ∈ D(Y)− {α(Y)}.

The following proposition states the soundness of the deciding-node-dominates

rule.

Proposition 3. If α deciding-node-dominates D then α dominates D.

Proof: Let σ be any pos-tree satisfying Γ and β any element of D. Let us consider

σ and focus more speciVcally on the node r that decides α and β. Node r has an

133

5.3. Dominance Pruning Rules

associated variable Yr and a tuple a ∈ A. Since r decides α and β, for all variables

X ∈ A instantiated in σ before instantiating Yr, α(X) = β(X). This impliesA∩S =

∅ and hence A ⊆ V − S
Let us show that Y /∈

⋃
ϕ∈ΨWϕ. If ϕ ∈ Ψ then Xϕ ∈ S, and so Xϕ /∈ A. Thus,

in σ, node r is met before any other node which is associated a variable Z ∈ Wϕ

(Proposition 1(1) in Section 5.3). This shows Y /∈
⋃
ϕ∈ΨWϕ.

Now, let us show α(Yr) AYra β(Yr). Since α deciding-node dominates D, we

have α(Yr) AYrα∗ β(Yr). We have A ⊆ V − S and α extends a and so α∗ extends

a. This implies AYra contains AYrα∗ . This also means that α(Yr) AYrα∗ β(Yr) implies

α(Yr) AYra β(Yr). Proposition 1(2) in Section 5.3 implies α(Yr) >r β(Yr) since

α(Yr) AYra β(Yr). We then conclude α <σ β, and hence α D β, as required. Since β

was an arbitrary outcome of D, we have α dominates D.

�

Example 8. Consider again Example 7. Then S = {X}, α∗ equals the partial as-
signment y2 z2, and

⋃
ϕ∈ΨWϕ = {Z}. We have α(X) = x2 AXα∗ x3 showing that α

deciding-node-dominates D, and hence, by Proposition 3 in Section 5.3, α dominates D.
If we now remove statement x1 : y1 > y2 from Γ we still have α deciding-node-

dominates D but we no longer have α root-dominates D. This is because we do not
have anymore α(Y) = y2 AY> y1 AY> y2, and so α(Y) and y1 are not anymore AY>-
equivalent. Thus, this does not satisfy the condition (ii) of root-dominates in Section
5.3.1.

Example 9. Let V be the set of variables {X, Y, Z} with (initial) domains deVned as
follows:

Let X = {x1, x2, x3}, let Y = {y1, y2}, and let Z = {z1, z2, z3}. Let Γ consist of:
z1 : x1 > x2, z1 : x1 > x3, z2 : x2 > x1, x1 : y1 > y2, x2 : y2 > y1, x1 : z1 > z2,
x2 : z2 > z1 and x1y2 : z1 > z3. Let α = x1 y1 z1. Let D(X) = {x2, x3}, let D(Y) =

Y = {y1, y2}, and let D(Z) = Z = {z1, z2, z3}. Let us check if α does deciding-node-
dominate D. α = x1 y1 z1 and so S = {X} as D(X) 63 α(X) = x1. Thus, α∗ =
α({Y, Z}) =y1z1. Ψ = {z1 : x1 > x2, z1 : x1 > x3}. We can see

⋃
ϕ∈ΨWϕ = ∅. For

variable X , α(X) = x1 AXα∗ x2 and α(X) = x1 AXα∗ x3. For variable Y , α(Y) =

y1 AYα∗ y2. For variable Z , α(Z) = z1 6AZα∗ z3. Therefore, we can conclude α does not
deciding-node-dominate D.

Let us check if α does root-dominate D. As
⋃
ϕ∈ΓWϕ = ∅, we check the two con-

ditions in Section 5.3.1 for all variables in V . For variable X , α(X) = x1 AX> x2

and α(X) = x1 AX> x3. For variable Y , α(Y) = y1 AY> y2 AY> α(Y). Then,
α(Y) = y1 and y2 are AY>-equivalent. For variable Z , α(Z) = z1 AZ> z2 AZ> α(Z) and
α(Z) = z1 AZ> z3. Then, α(Z) and z2 are AZ>-equivalent and α(Z) is preferred over

134

5.3. Dominance Pruning Rules

z3. Therefore, we can conclude α does root-dominates D.
In the above example, α does not deciding-node-dominate D but α root-dominates

D, and so α dominatesD. Therefore, root-dominance and deciding-node-dominance are
incomparable, and both are strictly stronger than dominance. �

5.3.3 Projection-dominance condition

Let V be the set of all variables and t and t′ be two tuples that can be partial or

complete assignments. The dominance algorithm described in Section 3.5 of Chapter

3 is used to check whether or not t dominates t′. One example of use is introduced

in Section 4.5 in Chapter 4 where complete tuples (e.g., queries) are compared using

this dominance procedure. But, the procedure is deVned to be able to compare partial

tuples as well. Then, we can determine whether a tuple t dominates another tuple

t′ by simply using the dominance procedure. It aims at verifying whether every

outcome that extends t dominates every outcome that extends t′.

Let b be an assignment to set of variables B ⊂ V , and let D be a collection of

domains such that D(X) = {b(X)} for X ∈ B. Let α be an optimal outcome that

was already found. Let α(B) be the projection of α onB, which means α restricted to

B. The test presented above in this section can be useful at some node of the search

tree (when looking for optimal outcomes) as we can check whether α(B) dominates

b, which means that we can check whether every assignment that extends α(B)

dominates every assignment that extends b. If the dominance procedure checks and

conVrms that α(B) dominates b, then all outcomes that extend b are dominated (by

all outcomes that extend α(B)). It follows that the condition (∗) below is a suXcient

condition for: α dominates D.

(∗) δ D β for all outcomes δ ∈ V agreeing with α on B (i.e., δ(B) = α(B)), and

all β ∈ V extending b (i.e., β(B) = b).

Thus, the condition is suXcient to have every outcome, whose projection to B

is α(B), dominates every outcome whose projection to B is b. Condition (∗) can

be determined directly using the polynomial algorithm presented in Section 3.5 of

Chapter 3 by checking if Γ |=Y ψ where Y is the set of singleton subsets of V , and ψ

is the preference statement written as α(B) > b ‖ ∅.

135

5.4. p(Γ): A suXcient Condition for Dominance based on Unsound Dominance Relation

5.4 p(Γ): A suXcient Condition for Dominance based

on Unsound Dominance Relation

In order to prune the search tree, we can use an unsound dominance relation de-

scribed in Section 2.2.3 in (Wilson 2011). It is stronger than the dominance rela-

tion from which we derive the suXcient conditions in Section 5.3. We will be able

to prune more and we will obtain relatively less optimal solutions in a noticeably

shorter time. This can be convenient for applications in which few (or not neces-

sarily a large number of) optimal solutions are needed in a quick response time. For

instance, in the case of a conVgurator used by a salesperson in a business-to-business

(B2B) manufacturer which sells complex products (Vnancial services, etc.), the num-

ber of available products can be large (Veron et al. 1999, Lilien & Grewal 2012). The

salesperson wants to give the customer a quick look at a sample of optimal products

which meet the customer’s preferences. Thus, the salesperson collects the user’s

preferences and generates some optimal products as samples to be considered by the

client. Besides, mobile systems are providing personalized and focused recommen-

dation to mobile users and so the number of optimal solutions needs to be relatively

small to adapt to the physical constraints of the mobile devices (Ricci 2011).

Computation of this dominance relation is easier than the computation of the

previous dominance relation (we use to derive the suXcient conditions in Section

5.3). In order to achieve pruning in the search tree, we will derive a suXcient

condition for dominance based on such an unsound dominance relation. We will

then obtain relatively less optimal solutions in relatively shorter time than the sound

pruning rules described in Section 5.3.

Let α and β be two outcomes and letD be a collection of domains. DeVne ∆(α, β)

to be {X ∈ V : α(X) 6= β(X)}. ∆(α, β) represents all the variables X ∈ V that α

and β diUer on. In Section 6.3 of (Wilson 2011), the author presented a polynomial

preference relation that is denoted by�Γ and based on a dependency graph between

variables in V regarding the set of user preferences (i.e., a graph whose nodes are

variables).

Let Γ be a cp-theory representing the user preferences of the form uϕ : xϕ >

x′ϕ[Wϕ], and α ∈ V be an assignment to a set of variables V . For P,Q ⊆ V ,

deVne P → Q to be the set of edges {(X, Y) : X ∈ P, Y ∈ Q}. In Section 2.2.3

and DeVnition 15 of (Wilson 2011), the author presented a relation denoted by G(Γ)

which contains sets of edges Uϕ → Xϕ and Xϕ → Wϕ for all ϕ ∈ Γ. Γ is said

to be fully acyclic if G(Γ) is acyclic. The author also introduced a directed graph

Gα(Γ) (abbreviated to Gα) on V to consist of the set Uϕ → {Xϕ} ∪Wϕ of edges for

all ϕ ∈ Γ, also the set Xϕ → Wϕ of edges for all ϕ ∈ Γ such that α extends uϕ.

The author also deVned an orderBα(Γ) on V (abbreviated toBα) to be the transitive

136

5.5. Non-Dominance Pruning Rules

closure of Gα(Γ).

Therefore, in order to compare two outcomes α and β, the author considers the

set of variables X ∈ ∆(α, β) which are not dominated by any other variable with

respect to Ba. The author states that Y ∈ ∆(α, β) is Ba-undominated if Y has no

parent in ∆(α, β) with respect to the order Ba, i.e., there does not exist Z ∈ ∆(α, β)

with Z Ba Y. This set of Ba-undominated variables is called Θ(α, β). We can write

DeVnition 12 in Section 5.2 of (Wilson 2011) in short as follows:

DeVnition 24. α�Γ β holds if and only if α(X) AXα β(X) for all X ∈ Θ(α, β).

Let ∆(α,D) be the set of variables X ∈ V such that D(X) 63 α(X). Let Θ(α,D)

be the set of variables X ∈ ∆(α,D) that are Ba-undominated.

We say that α p(Γ)-dominates collection of domains D if: for all X ∈ Θ(α,D),

we have α(X) AXα x′, for all x′ ∈ D(X)− {α(X)}.
Wilson stated in Proposition 23 in (Wilson 2011) that�Γ is a strict partial order

containing D and so is an upper approximation for the preference relation D. Then,

we can see that the set of optimal solutions generated using the relation �Γ is a

subset of the optimal solutions generated using the relation D.

Example 10. Consider again Example 7 in Section 5.3.1. In the example, α = x2 y2 z2.
Gα includes (X, Y) since Γ contains x2 : y2 > y1 (α extends x2). Gα also includes
(X,Z) since Γ contains > : x2 > x4 [{Z}]. Then Bα= {(X, Y), (X,Z)}. In this ex-
ample, X is the only variable which is not Bα-dominated by any other variable (i.e., Y
or Z). We have α(X) = x2 and D(X) = {x3}. The preference statement : > : x2 > x3

ensures α(X) = x2 is better than the remaining value in the current domain of X (i.e.,
x3) (regarding AXα). Then we can say α p(Γ)-dominates collection of domains D.

5.5 Non-Dominance Pruning Rules

Let D be a collection of domains. Suppose, in the depth-Vrst search, we already

found an optimal outcome α and b is the current partial assignment (associated with

a particular node of the search tree) and thatD is the collection of domains of the set

of variables not yet instantiated and compatible with b. If we can show that α will

not dominate any of the outcomes that extend b then we do not need to involve α

any further in any dominance check in descendants of the current node. Therefore,

we can think about suXcient conditions that ensure an outcome α is not able to

dominate any assignment that extends b. Then, we can save dominance checks that

involve α below the current node in the search tree.

DeVnition 25. α root non-dominates D if there exists Y /∈
⋃
ϕ∈Γ Wϕ such that

D(Y) 63 α(Y) and, for all y ∈ D(Y), α(Y) 6AY> y.

137

5.6. Example: Computer ConVguration Problem

Proof: Let β any element of D. We will construct a pos-tree σ (see DeVnition 12

Section 3.4.2.1 of Chapter 3) satisfying Γ and such that α 6<σ β. Suppose there exists

Y /∈
⋃
ϕ∈ΓWϕ such that D(Y) 63 α(Y) and α(Y) 6AY> β(Y). We can deVne a pos-

tree σ with just a root node r with associated variable Y and local ordering > with

α(Y) 6> β(Y) and extending AY>. Then, α(Y) 6> β(Y) for root node r implies σ

does not order α before β (α 6<σ β). Y /∈
⋃
ϕ∈ΓWϕ ensures the condition (1) in

Proposition 1 in Section 5.3 is valid. As Y /∈
⋃
ϕ∈ΓWϕ and the local ordering of

node r which extends AY> we can say that σ satisVes Γ according to Proposition 1 in

Section 5.3.

Then, we have a pos-tree σ which satisVes Γ but does not order α before β (α 6<σ
β). This shows that α 6D β. Thus, we can conclude that α root non-dominates D as

β was an arbitrary element of D.

Proposition 4. If α root non-dominates D then α non-dominates D, i.e., for all β of
D, we have α 6D β.

Example 11. Let Γ be as in Example 7 in Section 5.3.1, let γ be the outcome x1 y2 z2,
and we deVne D′ by D′(X) = {x4}, D′(Y) = Y and D′(Z) = Z . Then γ root
non-dominates D′, because X /∈

⋃
ϕ∈ΓWϕ = {Z}, and D′(X) 63 γ(X) = x1, and

γ(X) 6AX> x4. �

Our experiments show that the application of this rule while searching optimal

outcomes can sometimes save a lot of time. It does, however, make the implemen-

tation a little more complicated: instead of a single set of undominated solutions

(which could be treated as a global variable), the set of undominated solutions that

we are currently interested in depends on the node in the search tree.

5.6 Example: Computer ConVguration Problem

It has been shown that supporting users of product conVguration systems with

recommendations can lead to a higher satisfaction with the conVguration process

(Mandl, Felfernig & Tiihonen 2011).

A product can be a complex combination of components and relations. Looking

for preferred products is a challenging task. Today, conVguration problems solv-

ing has enormous potential of applications such as in the computer industry (e.g.,

PC conVguration), telecommunication industry (e.g., conVguration of switching sys-

tems) (Mandl, Felfernig & Tiihonen 2011), or automotive industry (e.g., car sales

conVguration) (McDermott 1982, Searls & Norton. 1990, Axling & Haridi. 1994, Mit-

tal & Falkenhainer 1996, Barker et al. 1989). The use of the conVguration tools is

138

5.6. Example: Computer ConVguration Problem

increasingly being challenged by the growing need to Vnd the way to communicate

and involve the user’s preferences in the search process of optimal products. Sev-

eral conVgurators have been recognized as suitable tools to help customers conVgure

complex products according to their requirements (Fleischanderl et al. 1998, Sabin &

Weigel 1998, Stumptner 1997).

The conditional preference theories that we use in this chapter might be used

in real world domains (e.g., conVguration and recommendation of Vnancial services,

etc.) (Felfernig & Burke 2008, Felfernig, Friedrich, Jannach & Zanker 2007, Felfernig,

Isak, Szabo & Zachar 2007) with preserving quite attractive computational proper-

ties.

Constraints and preferences-based conVguration technologies can rely on the

pruning rules described in Section 5.3 and 5.5, in order to get rid of non-optimal

options. This will oUer expressiveness and computational capabilities to these tech-

nologies.

5.6.1 Computer conVguration problem

Let us suppose we have a conVgurator which manages the part of the sales system

that enables customers to choose diUerent components and options when making a

purchase of a computer. When customers request a computer with certain speciVca-

tions the conVgurator will return optimal instances. Instances here are combinations

of computer components that are manufactured and make up the Vnal conVguration.

The conVguration problem can be considered as an instance of a CSP where the Vnal

solution is a list of instances (or variables instantiations) from the domain of products

that do not violate constraints.

The CSP can be augmented by a set of preferences in order to get only the most

preferred instances. In order to deVne the best conVguration we deVne an order

over the conVguration space. It is assumed that every decision maker (i.e., customer)

has her own order. In fact we will generate (implicitly) a preference order (from

user inputs) to form a partial order that holds for the user’s preferences order over

the conVguration space. A conVguration c ∈ C is said to be optimal if there does

not exist another conVguration c′ ∈ C such that c′ dominates c w.r.t the generated

preference relation.

5.6.2 Example

The conVguration problem is deVned using a CSP where we deVne the model with a

set of variables V and constraints over the variables. Let V be a subset of components

for the computer: Operating System(OS), Memory(M) (unit=megabyte), Central Pro-
cessing Unit(CPU), Monitor(Mon) (unit=inch) and Graphics Card(GC). V={OS, M, CPU,

139

5.6. Example: Computer ConVguration Problem

Table 5.1: Computer components.

Variables Values
Operating System (OS) {XP, UBUNTU11.4 (UB)}

Memory (M) {512, 1024, 2048}
Central Processing Unit (CPU) {Pentium(P), AMD_Athlon(A)}

Monitor (Mon) {17, 19}
Graphics Card (GC) {ATI_Radeon_HD5000(AT), Nvidia_GeForce_MX440(NV)}

Mon, GC}.

The problem is subject to the following constraints:

If OS = XP then M ≥ 1024 (since XP requires a fair deal of memory to work

conveniently).

If GC = AT then M ≥ 1024 (it is a requirement of the constructor of the graphics

card).

If GC = NV then Mon ≤ 17 (the NV card cannot support some resolutions of a

large screen).

If GC = AT then OS 6= UB (the driver of the AT card is not available for UB).

The user has preferences, which are expressed over partial or complete combina-

tions of computer components, are presented below.

2048 ≥ 1024 [∅]
1024 ≥ 512 [∅]
AT ≥ NV [∅]
M=1024 : XP ≥ UB [{Mon,GC}]
M=2048 : XP ≥ UB [{Mon,GC}]
M=512 : UB ≥ XP [∅]
P ≥ A [∅]
GC=AT:19 ≥ 17 [∅]
Her preferences are justiVed as follows:

• For memory (M), the greater the memory the better.

• For the graphics card, ATI_Radeon_HD5000 is preferred over Nvidia_GeForce_MX440
as it is faster in a wide range of games using the latest drivers.

• Given the memory is equal to 512MB, UBUNTU (UB) is preferred over XP
because UBUNTU (UB) can be personalized and optimized in order to oper-

ate quite conveniently even with small memory which is not the case for XP
which needs at least 1024MB of memory. Otherwise, XP is more preferred

140

5.6. Example: Computer ConVguration Problem

than UBUNTU (UB) whatever the values of the monitor (Mon) and the pro-

cessor (graphics card (GC)) everything else being equal. This is because the

user does not want to go for UBUNTU (UB) just because of the graphics card

or the monitor values are better or worse since she is not doing sophisticated

computations or graphics.

• In matters of processors the user prefers Pentium (P) over AMD_Athlon (A),
everything else being equal, because of its solid public image built over years.

• A bigger screen (i.e., 19 inches) is better than a small screen (ie., 17 inches) if

the graphics card is as powerful as ATI_Radeon (AT). This is not the case when

the graphics card is Nvidia_GeForce_MX440 (NV) as it will be quite diXcult for

this type of card to support a particular kind of resolution when the screen is

19 inches.

We want to Vnd the optimal solutions for this problem. We Vrst applied only

the basic constraint optimisation approach described in 2.12.4 of Chapter 2, and we

obtain the search tree in Figure 5.1 which shows 19 solutions (i.e., conVgurations).

Then, we applied the deciding-node-dominance pruning rule and we obtained the

search tree in Figure 5.2 which shows one optimal solution α = {M = 2048, OS =

XP,GC = AT,Mon = 19, CPU = P}. α deciding-node-dominates the remaining

(possible) conVgurations.

Let us consider β = {M = 2048, OS = XP,GC = AT,Mon = 19, CPU = A}
(regarded as a non-optimal conVguration according to the deciding-node-dominance

rule). After assigning the value P to the variable CPU in order to obtain α, the

search backtracks to look for another optimal conVguration. At that point of the

search tree, the collection of domains D is as follows: D(M) = {2048}, D(OS) =

{XP}, D(GC) = {NV }, D(Mon) = {19} and D(CPU) = {A}.
As S = {X ∈ V : D(X) 63 α(X)}, S will then contain only the variable CPU

(i.e., S = {CPU}).
Then, the set of preferences of concern is Ψ = {P ≥ A[∅]}.
Besides, we have

⋃
ϕ∈ΨWϕ = ∅ and α(CPU) = P ACPUα∗ A.

According to DeVnition 23 in Section 5.3.2, α deciding-node-dominates D as

α(Y) AYα∗ y for all Y /∈
⋃
ϕ∈ΨWϕ and for all y ∈ D(Y) − {α(Y)}. Then, β is

shown to be dominated by α (i.e., β is a non-optimal conVguration).

α is also proven to deciding-node-dominate subtrees of the search tree. One ex-

ample is the following subtree. In the part of the search tree where the variable M is

assigned the value 2048 and the variable OS is assigned the value UB, the collection

of domains D is as follows: D(M) = {2048}, D(OS) = {UB}, D(GC) = {NV },
D(Mon) = {17} and D(CPU) = {P,A}. As S = {X ∈ V : D(X) 63 α(X)}, S

141

5.7. Implementation Issues

contains three variables which are OS, GC and Mon (i.e., S = {OS,GC,Mon}),
α∗ is equal to {M = 2048, CPU = P} and the set of preferences we deal with is

Ψ = {M = 2048 : XP ≥ UB [{Mon,GC}]; AT ≥ NV [∅];GC = AT : 19 ≥ 17 [∅]}
(according to DeVnition 23 in Section 5.3.2).

Then,
⋃
ϕ∈ΨWϕ = {Mon,GC}.

Besides, we have α(CPU) = P ACPUα∗ A and α(OS) = XP AOSα∗ UB.

Notice that α(M) = D(M) = {2048} and so D(M) 3 α(M).

According to the same deVnition, α deciding-node-dominates D as α(Y) AYα∗ y

for all Y /∈
⋃
ϕ∈ΨWϕ and for all y ∈ D(Y)− {α(Y)}.

The search will backtrack till the root node where the collection of domains D is

as follows: D(M) = M − {2048}, D(OS) = OS, D(GC) = GC , D(Mon) = Mon

and D(CPU) = CPU .

As S = {X ∈ V : D(X) 63 α(X)}, S will then contain only the variable M (i.e.,

S = {M}) as α(M) = 2048 and D(M) = M − {2048}. Then, the set of preferences

of concern is Ψ = {2048 ≥ 1024 [∅]; 1024 ≥ 512 [∅]}, and so
⋃
ϕ∈ΨWϕ = ∅. α∗ is

equal to the following assignment {OS = XP,GC = AT,Mon = 19, CPU = A}
According to DeVnition 23 in Section 5.3.2, α deciding-node-dominates D if

α(Y) AYα∗ y for all Y /∈
⋃
ϕ∈ΨWϕ and for all y ∈ D(Y)− {α(Y)}.

Let us look at all variables and check whether the above condition is true. We

have α(CPU) = P ACPUα∗ A as P ≥ A [∅]. α(Mon) = 19 AMon
α∗ 17 as GC=AT:19 ≥

17 [∅]. α(GC) = AT AGCα∗ NV as AT ≥ NV [∅]. α(OS) = XP AOSα∗ UB as M =

2048 : XP ≥ UB [{Mon,GC}]. α(M) = 2048 AMα∗ 1024 and α(M) = 2048 AMα∗ 512

as 2048 ≥ 1024 [∅] and 1024 ≥ 512 [∅].
Hence, we can see that α(Y) AYα∗ y for all Y /∈

⋃
ϕ∈ΨWϕ and for all y ∈ D(Y)−

{α(Y)}. Then, we conclude that α deciding-node-dominatesD and we can prune the

subtrees whose root nodes correspond to a partial assignment equal to {M = 1024}
and {M = 512} respectively. The search tree, after pruning, is shown in Figure 5.2.

When we compare the number of visited nodes in the two search trees in Figure

5.1 and 5.2, we can see the deciding-node-dominance rule was able to prune signiV-

cantly the search tree (i.e., 5 nodes vs 42 nodes).

5.7 Implementation Issues

During the implementation of the approaches described above, we had to deal with

a number of issues, which are discussed in the following paragraphs.

In the basic constraint optimisation approach described in 2.12.4, the optimal so-

lutions found during search are usually stored in a global set Ω. This set of solutions,

whose size keeps increasing monotonically, is used to check whether a newly found

142

5.7. Implementation Issues

Figure 5.1: Search trees using basic approach

Figure 5.2: Search trees using deciding-node-dominance rule

solution β or a subtree not yet explored is dominated by at least one solution that

belongs to Ω. This kind of dominance was described in Section 5.3 and 5.4. We notice

that, at some node N in the search tree, there will probably be a number of solutions

that will not be useful with regards to dominance below node N since they cannot

dominate any of the solutions that will be found below N. Ignoring those irrelevant

solutions at a given level of the search tree can therefore save a signiVcant number

of dominance checks and can consequently save time which will be shown and veri-

Ved in the experiments. These solutions can be eliminated by using the pruning rule

143

5.7. Implementation Issues

described in Section 5.5. The remaining solutions are considered as relevant opti-

mal solutions associated with node N. One challenge is to Vnd out how to update

and bring into play the associated set of relevant optimal solutions for each node

in the search tree. In Section 5.7.1, we describe the structure and characteristics of

the search tree used to Vnd undominated solutions. The way undominated solutions

are transferred between nodes in the search tree is described in Section 5.7.2. In

Section 5.7.3, we will describe the procedure used to remove irrelevant solutions. In

Section 5.7.4, we will sketch the procedure for testing dominance when navigating

the search tree. Then, we will outline the procedure that scans the search tree for

optimal solutions in Section 5.7.5.

5.7.1 The search tree

The backtracking search tree generated by a CSP solver can be depicted as a directed

rooted tree with the root at the top and leaves at the bottom. To remove infeasible

paths, we enforce arc consistency (Sabin & Freuder 1994). This will remove incon-

sistent values from domains D(X) for uninstantiated variables X. When searching

for solutions, the search branches on unassigned variables and instantiates their un-

pruned values. The search backtracks when it reaches a dead end (a path in the

search tree that cannot be extended to any optimal solution) or all variables were

instantiated. Children nodes are created in between from the top down to the bot-

tom linked through directed edges so that every node has a unique parent (except

the root). When all variables are instantiated, the resulting (complete) assignment

is associated with a node that we call an end node. Thus, a leaf node at the bottom

of the search tree can be a node associated with a partial assignment or an end node
which is associated with a complete assignment.

Solutions (i.e., complete assignments) are created when all variables are instan-

tiated. Variables and values are instantiated in an order compatible with the user’s

preferences (see Proposition 1 in Section 5.3). This will prevent any newly found

solution β to be bettered by any other solution found later during the search. In fact,

the algorithm proceeds by assigning values to the variables in a top-down manner

according to the variable ordering shown in the user’s preferences (see Proposition

1(1) in Section 5.3).

The values for a variable X are considered according to the preferential ordering

induced by the assignment made to the variables that are instantiated before X in

the search tree and whose values determine the ordering of the values of X. Let V

be a set of variables and Γ be the set of user preferences. Let Uϕ and Wϕ be two

subsets of V . If there is a preference statement ϕ ∈ Γ which has the following form:

144

5.7. Implementation Issues

uϕ : xϕ > x′ϕ[Wϕ], (Wϕ ⊆ (V \ (Uϕ ∪ Xϕ))), then variables in Uϕ are instantiated

in the search tree before Xϕ which is instantiated before variables in Wϕ. According

to ϕ, if the assignment already made in the search tree is compatible with uϕ, then

xϕ should be instantiated before x′ϕ (xϕ and x′ϕ are assumed to be consistent with

regards to the CSP).

This ordering is not necessarily as eXcient as the commonly-used variable or-

dering heuristics from the perspective of solving a CSP; it is indeed eUectively ran-

dom regarding the CSP solving. Further, it is well known that imposing an ordering

on the splitting heuristic, used for searching solutions, may lead to a signiVcant

degradation in the performances of the solver used for Vnding solutions (Järvisalo

et al. 2005, Järvisalo & Junttila 2009). Although this is not the case for several appli-

cations, see, e.g., (Giunchiglia et al. 1998, Maratea et al. 2010) in the context of satis-

Vability planning (Kautz & Selman 1992) and Answer Set Programming (Gelfond &

Lifschitz 1988b, Gelfond & Lifschitz 1991).

However, such an ordering gives the algorithm the anytime property. In fact,

this ordering ensures that a solution that is already found (previously generated) is

guaranteed to be optimal: it will not be dominated by a solution that will be found

later during the search. Thus, the algorithm can stop anytime, being sure the set of

solutions obtained so far (till the moment it stops) is a subset of the set of all optimal

solutions (obtained if the algorithm terminates the execution normally). Without this

property, we would have to maintain a potentially large set of candidate solutions.

Section 4 of (Boerkoel et al. 2010) discussed ways of realising the performance bene-

Vts of a heuristic variable ordering while preserving the early termination properties

of the CP-net-based ordering.

In the search tree, each node N is associated with a variable V(N) and has its cur-

rent domain D(V (N)) (which we abbreviate to D(N)) Vlled with consistent values

regarding constraint propagation and as presented in DeVnition 2 in Section 2.11 of

Chapter 2. Every time the associated variable is instantiated with a value v ∈ D(N),

a new branch in the search tree is generated at the top of which node M is created. N
will then become the parent of M. A partial assignment A(M) (i.e., Av in the CPOp-

timizer procedure) is created at node M. It corresponds to the assignments made

on the path from the root to node M. The search process tries to extend this par-

tial assignment incrementally by instantiating the uninstantiated variables. N will

have a number of children equal to the number of values in D(N) after instantiating

variable V(N). Every child node (e.g., node M) will become the root of a subtree STv
which is created below N if at least one of its values is consistent regarding constraint

propagation (e.g., the instantiation of one value satisVes all constraints). There will

be search for solutions in STv. Each time all variables are instantiated (at each end
node), a new solution is recorded. After exploring each subtree of N we backtrack

145

5.7. Implementation Issues

to N and we assign the next unassigned value (if any) to V(N). Then, we add the set

of solutions that were found after creating node N to the set of solutions that were

found before creating node N.

Example 12. Let V be the set of variables {X1, X2, X3} with (initial) domains deVned
as follows: X1 = {x11, x12},X2 = {x21, x22} andX3 = {x31, x32}. The set of variables
have their domains constrained as the following pairs of values are not allowed in a
solution: (x21, x32), (x12, x31). The user’s preferences are represented by a cp-theory Γ

which consists of the Vve statements: > : x22 > x21[∅], x22 : x12 > x11[∅], x21 : x11 >

x12[∅], x11 : x32 > x31[∅], x12 : x31 > x32[∅].
The corresponding search tree with a variable instantiation ordering compatible

with the user’s preferences (i.e., Γ) is depicted in Figure 5.7.1.

Figure 5.3: Example of a search tree

5.7.2 Relevant undominated solutions

Let N be a node in the search tree with an associated variable V (N) whose domain

contains two values v1 and v2 which are consistent with regards to constraint prop-

agation. When the two values v1 and v2 are instantiated in the search tree, two

subtrees STv1 and STv2 are created. The root nodes of these subtrees are the two

child nodes ofN whose names are C1 and C2 respectively. Let node P be the parent

of node N in the search tree.

DeVne S(N) to be the set of solutions found so far at some node N of the search

tree. If we prove, under some conditions, that some solution α ∈ S(N) cannot

146

5.7. Implementation Issues

dominate any of the solutions that will eventually be generated when exploring a

subtree (e.g., STv1) below N , then it is better not to involve α in the dominance

checks that will be performed in that subtree. Solution α is then said to be inef-
fective. This can save a signiVcant number of dominance checks. In order to im-

plement the idea above, we need to eliminate the irrelevant (or ineUective) solu-

tions at each point of the search tree. Therefore, node N will have an appropriate

set of solutions which excludes ineUective ones. We call this set of solutions the

Relevant Undominated Solutions (RUS) (see Figure 5.4).

When created, node N receives the set of inherited undominated solutions (de-

noted by IRUSp) from its parent node P . IRUSp may include solutions that are

ineUective below node N . That is why we need to Vlter out the ineUective solu-

tions from IRUSp in order to transfer them to the child nodes of node N . This is

performed by the Reduce procedure described in Section 5.7.3. Thus, Node N ob-

tains RUSN that is sent to its child node C1. Once the subtree STv1 is explored, the

search backtracks to node N in order to instantiate the next consistent value (i.e.,

v2). The set of undominated solutions that were found when exploring STv1 is de-

noted by NewC1 and is transferred to node N . NewC1 might contain undominated

solutions that are ineUective in the next subtree created when instantiating v2 (i.e.,

STv2). Therefore, node N adds NewC1 to IRUSp in one set of solutions from which

it extracts the relevant undominated solutions using the Reduce procedure. RUSN is

updated and sent to the second child node C2 which does the same as C1 and sends

the newly found solutions denoted by NewC2 to node N . Once all uninstantiated

and consistent values (i.e., v1 and v2) are instantiated, node N gathers all undom-

inated solutions newly found (i.e., NewC1 and NewC2) in the set NewN and sends

NewN to its parent node P . Thus, between any parent node P and child node N

there is an exchange of two sets of undominated solutions: IRUSp is sent by node

P to N and NewN is sent by N to P . Figure 5.4 illustrates the dialogue described

above between nodes in the search tree during which there is a transfer of undomi-

nated solutions. The elimination of ineUective solutions is carried out by the Reduce
procedure called in the CPOptimizer algorithm.

5.7.3 The Reduce procedure

Given a set of solutions and a collection of domainsD, this procedure eliminates any

solution that is proven to be ineUective. A solution α is said to be ineUective if and

only if α non-dominates D as described in DeVnition 22 in Section 5.2.1. To prove

that a solution is ineUective, the Reduce procedure applies the non-dominance rule

147

5.7. Implementation Issues

described in Section 5.5. Then it returns all remaining solutions that were deemed

not to be ineUective (i.e., RUS). Once the ineUective solutions are eliminated, the

dominance test can be performed in order to check whether D is dominated.

Parent Node P

Node N

 RUSN ← Reduce(IRUSP)

 NewN ← NewN U NewC1

 RUSN ← Reduce(IRUSP U NewN)

 NewN ← NewN U NewC2

Child Node C1 Child Node C2

1

2

5

6

9

10

3

4

7

8

NewN

IRUSP

RUSN
NewC1 RUSN

NewC2

Figure 5.4: Model of transferring the set of undominated solutions between nodes in
the search tree

Figure 5.4 shows how a given node N in the search tree transfers and exchanges

undominated solutions with its parent node P and its children nodes (i.e., C1 and

C2).

5.7.4 The dominanceTest procedure

Given a partial assignment b, the collection of current domains D and a set of rel-

evant undominated solutions RUS, this procedure will attempt to prove that there

exists a solution α ∈ RUS that dominates all outcomes that extend b according to

DeVnition 22 given in Section 5.2.1. This can be achieved by applying one or a com-

bination of the pruning rules described in Section 5.3, 5.4 and 5.5 for each solution α

∈ RUS until it Vnds dominance or all solutions in RUS have been tried. It will return

true if it is proven that there is at least one solution α which dominates D.

5.7.5 The CPOptimizer procedure

The navigation in the search tree is ensured by the CPOptimizer procedure. At node

N, when we obtain the solutions newly generated (i.e., New(N)), from earlier values

148

5.8. Experimental Testing

assigned to variable V(N), and the set of undominated solutions already gathered

(RUS) we call the Reduce procedure. Then, the Reduce procedure takes the union

of the two sets (i.e., New ∪ RUS) and returns the current relevant undominated

solutions. Once we obtain the set of Relevant Undominated Solutions (RUS), we ap-

ply one or a combination of the dominance pruning rules through the procedure

dominanceTest. It returns true when there is at least one solution β already found

which dominates the subtree not yet explored below the node M. M is the child node

of the current node after assigning the value v. It if returns false then we continue

exploring the subtree below M. Then, CPOptimizer communicates RUS(N) to the next

child node of N that will be created by assigning the next unpruned value (if any) to

variable V(N).

At any node N of the search tree we call CPOptimizer with the following param-

eters: X , A, IRUS and D(X). There is a loop over the values v in the current

domain D(x). Each time the variable X is assigned one value v ∈ D(x) which

extends A(N) to be Av. The Reduce procedure applies the non-dominance rule

so that we obtain the set of relevant solutions gathered so far (i.e., RUS). Proce-

dure dominanceTest checks whether there exists at least one relevant undominated

solution which dominates all extensions of A(N) (i.e., Av). If there is no domi-

nance (i.e., isDominated=false) then a CPOptimizer procedure is called for a child

node. This procedure will have as parameters the next variable according to the

variable ordering (i.e., Next(X)), the current partial assignment (i.e., Av), RUS(N)
and D(Next(X)). It will return all solutions found in subtree STv to the calling

environment: CPOptimizer called for node N.

The calling environment then collects all solutions that were found in subtree

STv and adds them to the set of newly discovered solutions of node N (i.e., New(N)).

In the case where there is no dominance and N is an end node (checked by isEndNode)
we only add the new solution to New(N). CPOptimizer procedure called with node

N will return the undominated solutions recently found below N (i.e., New(N)) to the

parent node of N.

5.8 Experimental Testing

5.8.1 Experimental setup

We performed experiments with four families of cp-theories and several sets of bi-

nary CSP instances. The CSPs were generated using Christian Bessiere’s random uni-

form CSP generator (www.lirmm.fr/~bessiere/generator.html). Experiments

149

5.8. Experimental Testing

Algorithm 3 CPOptimizer
Input : Variable X

Partial assignment A
Set of inherited relevant solutions IRUS
D(X)

Output: Set of newly found undominated solutions New

20 New← ∅;

21 foreach value v ∈D(X) do
22 Av ← A ∪ {X = v};

RUS← Reduce(IRUS ∪New);
isDominated← dominanceTest(Av , RUS);
if isDominated=false then

23 if isEndNode=true then
24 return Av ;

25 else
26 childNew← CPOptimizer(Next(X), Av, RUS);

New← New ∪ childNew;

were run as a single thread on Dual Quad Core Xeon CPU, running Linux 2.6.25 x64,

with overall 11.76 GB of RAM, and processor speed 2.66 GHz. Solving a CSP involves

searching through possible variable assignments, and pruning assignments that vio-

late constraints, to Vnd one or more assignments satisfying all constraints. In these

experiments, we enforce arc consistency (Bessière 2006) to generate the collection of

domains D at each node of the search tree. During the search, backtracking occurs

when the domain of any variable becomes empty, since there cannot then be any

solution extending the partial assignment b at the current node in the search tree.

The conditional preferences impose restrictions on the variable orderings that

can be used in the search tree (related to the condition (1) of Proposition 1 in Section

5.3), which much reduces the potential beneVt of a dynamic variable ordering. It

gains the “anytime” property in return.

For P,Q , deVne P → Q to be the set of edges {(X, Y) : X ∈ P, Y ∈ Q}. Let

Γ be the cp-theory. Every preference statement ϕ has the form uϕ : xϕ > x′ϕ[Wϕ]

which means that given an assignment uϕ for a set of variables Uϕ, we prefer value

xϕ to x′ϕ for variableXϕ, as long as variables outside ofWϕ are held equal. In Section

2.2.3 and DeVnition 15 of (Wilson 2011), the author presented a relation denoted by

G(Γ) which contains sets of edges Uϕ → Xϕ and Xϕ → Wϕ for all ϕ ∈ Γ.

For the sake of simplicity, we used a Vxed variable ordering (which is possible

since in the experiments we used only fully acyclic cp-theories (Wilson 2011), in-

cluding acyclic CP-nets).

150

5.8. Experimental Testing

RandomGeneration of Preferences: We consider four families of cp-theories,

CP-nets (CPnet), a form of lexicographic preferences (Lex), a family with varying W

component (Rand-W) as preference statements have the form the form u : x > x′[W],

and CP-nets with local total orderings (CPn-to). These are generated as follows. We

order the variables V as X1, . . . , Xn. For each variable Xi we randomly choose

the parents set Ui to be a subset of cardinality 0, 1 or 2 of {X1, . . . , Xi−1}. For

the CP-net and CPn-to families, we set Wi = ∅. For the Lex family we set Wi =

{Xi+1, . . . , Xn}. For random-W (Rand-W) problems we deVne Wi to be a random

subset of {Xi+1, . . . , Xn}. Then, for each assignment u toUi, we randomly choose an

ordering x1, . . . , xm of the domain of Xi (so we will usually have diUerent orderings

for various u). We randomly choose a number of pairs (xj, xk) with j < k, except for

the CPn-to family when we include all pairs (xj, xj+1), for j = 1, . . . , |Xi| − 1. For

each of these pairs we include the corresponding statement u : xj > xk [Wi] in the

cp-theory Γ. Algorithm 4 shows how preferences are generated through a sequence

of steps.

Algorithm 4 PreferenceGenerator
input : Variables X1, . . . , Xn

output: A set of preferences Γ

27 Γ← ∅ for i← 1 to n do
28 Choose a set Ui of variables, where Ui is a subset of {X1, . . . , Xi−1} and Ui has

cardinality 0, 1, or 2
29 switch Preference format do
30 case CP-nets or CPn-to
31 Wi←∅
32 case Rand-W
33 Wi ← random subset of {Xi+1, . . . , Xn}
34 case Lex
35 Wi← {Xi+1, . . . , Xn}

36 for assignment u to Ui do
37 Randomly choose a permutation x1, x2, . . . , xk of the domain of Xi if CPn-to

then
38 for j ← 1 to k − 1 do
39 Γ←Γ ∪ {u : xl > xl+1[Wi]}
40 else
41 Choose some random integer r between 1 and 0.5 * k2 for l← 1 to r do
42 Choose two random numbers between 1 and k, Let h be the smaller

of the two and let j be the bigger if h 6= j then
43 Γ←Γ ∪ {u : xh > xj[Wi]}

We consider 12 versions of the algorithm. They diUer according to whether they

151

5.8. Experimental Testing

use root-dominance (labelled r in the tables) which is presented in Section 5.3.1,

deciding node-dominance (d) which is introduced in Section 5.3.2, the projection-

dominance condition (p) presented in Section 5.3.3, p(Γ) dominance (presented in

Section 5.4), or the root non-dominance condition (n) (presented in Section 5.5).

These are compared against the Basic algorithm (Section 5.2) which uses none of

these additional pruning methods. We also consider some combinations of the meth-

ods.

We report the following measures: running time (Time), number of visited nodes

(#nd), number of dominance checks at end nodes (chk). These measures give an ac-

curate idea about the eUect the diUerent pruning rules and their combinations have

on avoiding uninteresting subspaces in the search tree. We performed three groups

of experiments.

In this experiential setup, we used Algorithm 5 to generate a number of CSP

instances whose number of solutions, denoted by NumberSolutions, is around a target

number (targetSolutions) (e.g., 500, 1000, 10,000). Algorithm 5 generates a number k

of CSPs whose eUective number of solutions (denoted by NumberSolutions in the

algorithm) diUers from targetSolutions by at most p%. p is the maximum percentage

of targetSolutions that the diUerence between NumberSolutions and targetSolutions is

allowed to be equal to. In our experiments we set p equal to 10. To ensure a CSP

instance has a number of solutions that is around targetSolutions, we need to generate

a CSP instance with an expected number of solutions that is around targetSolutions
(i.e., they diUer by p% at most). The expected number of solutions (expectedSolutions)
for a random CSP can be computed using the number of variables (n), the domain size

of variables (m), the number of constraints (c), and the number of incompatible value

pairs in each constraint (i) by the following formula: expectedSolutions = mn ∗ (1 −
i/m2)c (Smith 2001). For instance, if a CSP has the following parameters n=10, m=4,

c=24 and i=4, then expectedSolutions ≈ 1052. The number of constraints (c) and the

number of incompatible value pairs in each constraint i are determined in order to

have expectedSolutions around targetSolutions. Two procedures are used in Algorithm

5: CSPCreate and CSPSolve. The procedure CSPCreate creates a random CSP instance

based on the parameters n,m, c and i using Christian Bessiere’s random uniform CSP

generator (www.lirmm.fr/~bessiere/generator.html). The procedure CSPSolve
solves and returns the number of solutions of the CSP instance given as input.

Once expectedSolutions is computed, Algorithm 5 creates CSP instances, solves

them and keeps only those whose number of solutions diUers from targetSolutions
(i.e., 1000) by p% at most. Algorithm 5 outputs k (e.g., 50) CSP instances that are

stored in CSPInstances. This set of CSPs is used in the experiments.

The Vrst group of experiments involves CSPs based on ten four-valued variables

(see Table 5.2). Table 5.2 shows comparisons between all the methods for CSPs with

152

5.8. Experimental Testing

Algorithm 5 CSPGenerator
Input : Number of variables n

Domain size of variables m
Number of constraints c
Number of incompatible value pairs in each constraint i
Target number of solutions targetSolutions
Percentage of allowed gap between targetSolutions and eUective number of

solutions p
Number of instances required k

Output: CSPInstances

44 CSPInstances← ∅
45 for j ← 1 to k do
46 repeat
47 CSPInstance← CSPCreate(n, m, i)
48 NumberSolutions← CSPSolve(CSPInstance)
49 until |NumberSolutions - targetSolutions| ≤ (p / 100) * targetSolutions;

50 CSPInstances← CSPInstances ∪ {CSPInstance}

around 500 solutions. This group is intended to evaluate ten versions of the al-

gorithm. Evaluating the pruning rules and their combinations involves comparing

each rule to the basic approach and to other rules. This will help assess the added

value of each of these rules with regards to the basic approach in particular and the

other rules as well.

Table 5.2 shows, for each preference family and method, the number of optimal

solutions (#sol), the Central Processing Unit (CPU) running time (Time), the number

of visited nodes (#nd) and the number of dominance checks at end nodes (#chk).

Table 5.2 gives the results of experiments with 50 CSP instances whose average

number of solutions is around 500. The measures shown are averaged over 50 CSP

instances.

The same experiments’ results are shown in separate tables for each preference

family: CPnet (see Table 5.4), Rand-W (see Table 5.5), Lex (see Table 5.6) and CPn-to
(see Table 5.7). We just focus on a fewer number of methods mentioned in Table 5.2

in addition to p(Γ) (presented in Section 5.4) and p(Γ)+n, which is a combination

between p(Γ) and root non-dominance (n). In fact, the number of optimal solutions

found by p(Γ) and p(Γ)+n is not necessarily the same as the number of optimal

solutions found by the other sound methods (e.g., Basic, r, d, n) and the diUerent

combinations of these methods. In these tables, we mention the number of optimal

solutions, denoted by #sol, for each method and preference family, as well as other

additional measures: ratio, SDTime and frac-sol. ratio denotes the average time (in

ms) per solution found. The smaller this value is the better. The standard deviation

from the average CPU time (SDTime) gives an idea of how much the time achieved

153

5.8. Experimental Testing

by a method for one CSP instance diUers from the mean time achieved over 50 in-

stances. frac-sol denotes the fraction of optimal solutions found by a method with

regards to the number of optimal solutions found by the Basic method. It informs

the reader about the proportion of solutions found by a method and so the propor-

tion of solutions that a method missed (e.g., p(Γ) missed 62% of the total number of

solutions found by Basic method). These measures give the opportunity to analyse

and compare the most relevant sound methods (i.e., Basic, r, d, n) and their combi-

nations (i.e., r+d, r+d+n) with the unsound method (i.e., p(Γ)) and its combination

with the root non-dominance (i.e., p(Γ)+n).

The second group of experiments involves 50 CSP instances with ten four-valued

variables (see Table 5.3). Table 5.3 concerns two groups of CSPs, where, we show

results for two of the best combinations: (1) root-dominance (r) combined with de-

ciding node-dominance (d), this combination of methods is denoted by r+d; and

(2) root-dominance (r) combined with deciding node-dominance (d) and root non-

dominance (n), this combination of methods is denoted by r+d+n.

These two families of CSPs diUer on the number of feasible solutions: 1)the Vrst

subset has an average number of solutions around 2000. The second subset has an

average number of 10000 solutions. Only running time is reported for this group

of experiments. The computation time is revealed to be clearly dependant on the

number of solutions of the CSP.

One of the goals of these experiments is to check that the improvement made by

the two best combinations of pruning methods regarding the basic method still has

the same amplitude with large number of solutions.

The third group of experiments aims at assessing the performance of the Basic
method and the two combinations of methods r+d and r+d+n by computing the run-

ning time when the number of variables varies within a range. In these experiments,

we have 50 CSP instances with n three-valued variables. When n varies from 10

to 40 in steps of 5, the average number of solutions of the randomly generated CSP

instances was approximately 1000. We generated performance curves that show the

average running time as a function of n (the number of variables). Results are shown

in Figure 5.5.

The second and third set of experiments both focus on two of the most promising

combinations, r+d and r+d+n.

All Vgures in the tables and graphs are the mean over 50 random instances.

5.8.2 Discussion of results

The experimental results conVrmed that no optimal solutions were lost by the ad-

ditional pruning methods (as implied theoretically by Proposition 2 in Section 5.3.1,

154

5.8. Experimental Testing

Table 5.2: Mean number of optimal solutions for each preference family, and CPU
time (ms), number of visited nodes and number of dominance checks at end nodes for
each preference family and each method. The CSPs averaged around 500 solutions.

CP-nets Rand-W Lex CPn-to
opt: 87.74 35.74 25.18 13.56

Methods Time #nd chk Time #nd chk Time #nd chk Time #nd chk
Basic 7826 1173 22430 1941 1173 7247 1199 1173 5260 2169 1173 2248

r 9672 1172 22421 2532 881 7001 1408 740 4749 2394 1148 2227

d 3576 536 7956 536 192 1465 196 95 625 176 148 148

r+d 3582 536 7956 534 191 1465 196 95 625 173 148 148

p 34037 1173 89680 3391 35 1230 658 95 2855 10871 1173 12745

n 775 1173 979 802 1173 2155 508 1173 1568 853 1173 560

r+n 836 1172 978 967 881 2012 591 740 1375 897 1148 545

d+n 244 536 288 219 192 501 97 95 244 44 148 13

r+d+n 243 536 288 220 191 500 95 97 244 42 148 13

p+n 4929 1173 6136 1636 288 4331 318 95 960 4944 1173 4170

Table 5.3: Mean number of optimal solutions for each preference family, and running
times (ms) for each family and each method.

CPnet Rand-W Lex CPn-to
10 vars, 4 values, Mean 1993 solutions

opt 221.2 73.0 39.5 16.4
Basic 62608 14711 6496 13728
r+d 31998 3204 673 651

r+d+n 2164 1557 509 445

10 vars, 4 values, Mean 9910 solutions
opt 364.8 204.5 133.8 6.5
Basic 564733 183710 110303 29285
r+d 278583 28666 8482 358

r+d+n 18623 14595 5307 352

Table 5.4: CPU time (Time), mean number of optimal solutions (#sol), number of
visited nodes (#nd), ratio, standard deviation from the average time (SDTime) and
frac-sol for CP-nets family and each method. The CSPs averaged around 500 solu-
tions.

Methods Time #sol #nd ratio SDTime frac-sol
Basic 7826 87.74 1173.62 89.19 6600 1
r+d 3582 87.74 536.78 40.82 2623 1
p(Γ) 369 35.5 143.74 10.38 498.5 0.38
r+d+n 243 87.74 536.78 2.77 244.6 1
p(Γ)+n 32 35.5 143.74 0.90 35.9 0.38

155

5.8. Experimental Testing

Table 5.5: Mean number of optimal solutions for each preference family, and CPU
time (ms), the ratio (Time/#sol), the frac-sol (#sol/#sol for Basic) and SDTime (stan-
dard deviation from the average time) for Rand-W family and each method. The
CSPs averaged around 500 solutions.

Methods Time #sol #nd ratio SDTime frac-sol
Basic 1941 35.74 1173.62 54.31 2371.4 1
r+d 534 35.74 191.28 14.94 662.1 1
p(Γ) 129 20.5 83.98 94.9 198.5 0.60
r+d+n 220 25.18 191.28 6.17 303.5 1
p(Γ)+n 63 20.5 84.34 3.06 94.7 0.60

Table 5.6: Mean number of optimal solutions for each preference family, and CPU
time (ms), the ratio (Time/#sol), the frac-sol (#sol/#sol for Basic) and SDTime (stan-
dard deviation from the average time) for Lex family and each method. The CSPs
averaged around 500 solutions.

Methods Time #sol #nd ratio SDTime frac-sol
Basic 1199 25.18 1173.62 47.64 1445.2 1
r+d 196 25.18 95.12 7.78 317.6 1
p(Γ) 180 25.18 95.12 6.35 299.8 1
r+d+n 97 25.18 95.12 6.17 148.7 1
p(Γ)+n 95 25.18 95.12 3.78 145.1 1

Table 5.7: Mean number of optimal solutions for each preference family, and CPU
time (ms), the ratio (Time/#sol), the frac-sol (#sol/#sol for Basic) and SDTime (stan-
dard deviation from the average time) for CPn-to family and each method. The
CSPs averaged around 500 solutions.

Methods Time #sol #nd ratio SDTime frac-sol
Basic 2169 13.56 1173.62 160 1427.4 1
r+d 173 13.56 148.14 12.78 139.1 1
p(Γ) 11 3.5 34.46 3.35 19.4 0.28
r+d+n 42 13.56 148.14 3.14 45.4 1
p(Γ)+n 5 3.5 34.46 1.59 9.4 0.28

Proposition 3 in Section 5.3.2 and Proposition 4 in Section 5.5). For each preference

family, the number of optimal solutions is the same for all methods, except p(Γ), as

these methods are complete.

Analyzing the results in Table 5.2, Table 5.3, Table 5.4, Table 5.5, Table 5.6, Table

5.7 and Figure 5.5 leads to the following general conclusions about the comparisons

between the diUerent versions of the algorithm.

156

5.8. Experimental Testing

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

10 15 20 25 30 35 40

CP-nets

base r+d r+d+n

0

5000

10000

15000

20000

25000

10 15 20 25 30 35 40

Rand-W

base r+d r+d+n

0

5000

10000

15000

20000

25000

30000

35000

10 15 20 25 30 35 40

Lex

base r+d r+d+n

0

5000

10000

15000

20000

25000

30000

35000

10 15 20 25 30 35 40

CPn-to

base r+d r+d+n

Figure 5.5: Running time(ms) for each family of preferences for n = 10, 15, . . . , 40
variables (having 3 values each). Each CSP has approximately 1000 solutions.

The deciding-node-dominates rule (d) appears to be much the most eUective

pruning method among the dominance pruning rules (i.e., r, d, p and p(Γ)). With this

rule the number of visited nodes, and the number of dominance checks, is reduced

signiVcantly with regards to the basic algorithm. It also cuts down the number of

relatively expensive dominance checks performed at end nodes. It can make an order

of magnitude improvement over the Basic approach. For instance, Table 5.2 shows

method d run for 176 ms to enumerate optimal solutions found by Basic approach

in 2169 ms for CPn-to preference family.

The root-dominates rule (r) is not that eXcient in pruning nodes. We can notice

in Table 5.2 that for Rand-W preference family, for instance, the average running time

achieved by method r is equal to 2532 ms while the Basic approach spends 1941 ms

in average to Vnd the same set of optimal solutions. Method r is slow as it prunes

only 292 (i.e., 1173-881) nodes in the search tree comparing to d which prunes 981

(i.e., 1173-192) nodes to gather all optimal solutions in 536 ms for Rand-W family

for which d performed 1465 dominance checks against 7001 done by r. In fact, the

application of r dominance condition tests at all nodes was detrimental as these tests

did not signiVcantly reduce the size of the search tree.

Root-dominates (r) can be slightly useful when used in conjunction with the

deciding-node-dominates rule (d) to set the combination (r+d). Indeed, it can some-

times be eUective when the deciding-node-dominates rule (d) is unable to prune

more irrelevant solutions. In Table 5.2, we can see a very slight improvement of the

running time achieved by (r+d) against (d) for CPn-to: 173 ms r+d against 176 by d.

157

5.8. Experimental Testing

The projection-dominates rule (p) was not eUective. With p, there was no prun-

ing for CPnet and CPn-to while it prunes signiVcantly the search tree for Rand-W (35

vs 1173 for Basic approach) and Lex (95 vs 1173 for Basic approach). The pruning

capability did not speed up p because of the costliness of the p dominance condition

test that was applied at all nodes and not only end nodes (see Table 5.2).

The root non-dominance condition can improve the performance of the algo-

rithm considerably, especially for the CPnet and CPn-to families, since it can sub-

stantially reduce the number of dominance tests. For instance, for the CPnet family,

n can make an order of magnitude improvement over the Basic approach (775ms vs

7826ms). This rule is capable of bringing down the running time achieved by most

of the versions of the algorithm.

For the CPnet family, the p(Γ) pruning rule Vnds only 38% of the total number

of solutions obtained by the Basic approach (see Table 5.4) while p(Γ) Vnds all the

optimal solutions for Lex family (see Table 5.6). For Lex family, p(Γ) Vnds a solution

every period of time that lasts less than 4 milliseconds. We can see that r+d+n is

able to Vnd solutions faster than the other methods except (p(Γ)+n) for all preference

families. Tables 5.4, 5.5, 5.6 and 5.7 also show that the r+d+n method is the fastest to

Vnd optimal solutions among the complete methods.

In Figure 5.5, the results show that the computation time does not increase very

strongly with the number of variables. (By the way, it turns out that for each prefer-

ence family, the mean number of optimal solutions does not vary markedly with n,

being centred on around 160, 90, 60 and 9 for the CP-net, Rand-W, Lex and CPn-to

families, respectively.) For the Rand-W family, the new algorithms do not perform

much (if at all) better than the basic algorithm. For the Lex family, the two new

algorithms are often twice as fast as the basic one. For the CPnet family, the r+d
combination is only slightly better than the basic algorithm, but performs excellently

on the CPn-to family with mostly an order of magnitude improvement, as does the

r+d+n algorithm, which also shows more than an order of magnitude strong speed

up for the CP-nets family.

5.8.3 Synthesis of discussion

The experimental results have shown the relevance of the developed pruning rules

for constrained optimisation for comparative preferences. Repeated tests proved

these methods were able to improve the performance of the basic algorithm by an

order of magnitude improvement for, at least, the two CP-nets families.

158

5.9. Conclusion

5.9 Conclusion

In this chapter, we proposed new methods for Vnding non-dominated feasible so-

lutions with respect to a set of comparative preferences. These pruning rules were

derived from the user preferences in an attempt to guide constrained optimisation

algorithms to Vnd optimal solutions for COPs where preferences can be expressed

as a set of comparative preferences. To make the presentation concrete, we applied

the new methods to random CSPs with diUerent sizes. The resulting pruning tech-

niques have shown appreciable initial promise for solving constrained optimisation

for comparative preferences.

One of the main research questions that was set forth in this chapter was to

investigate mechanisms to integrate cp-theories to optimisation algorithms, which

produce more eXcient algorithms than the state-of-the-art.

This work also aims at supporting decoupled COP approaches that blend reason-

ing about preferences with reasoning about feasibility. This is done by providing and

testing in practice a new COP approach that brings conditional preference theories

to support preference representation and reasoning while relying on CSP solving

methods to look for feasible paths in the search tree.

159

6
Conclusion

In this chapter we discuss what has been achieved in this thesis and we describe a

number of possible directions we would like to pursue in the future.

6.1 Summary

The need for eUective technologies to help web users locate items (information or

products) is increasing as the amount of information on the web is growing. User

preferences play an important role in both preference-based recommender systems

(RSs) and constraint optimisation-based systems. In this thesis, we have made con-

tributions in both directions.

We considered preference elicitation in conversational RSs for which pruning

non-optimal options is one of the main tasks. This type of RSs provides challenges

for more elaborate formalisms that handle the user preferences while conversing

with her. This thesis presents the motivation and the description of a comparative

preferences-based approach for conversational RSs. These RSs infer user preferences

from the user actions (e.g., to choose or reject an option). Then, they use a compar-

ative preferences-based reasoning engine to select the optimal options to be shown

to the user, amongst which the user chooses the option that Vts her needs the best.

We show that comparative preference theories oUers the system the capability of

capturing and dealing with multiple preference nuances and diverse forms of pref-

erences without sacriVcing the attractive computational properties of the preference

160

6.2. Future directions

dominance.

The applicability of the comparative preferences-based approach for RSs were es-

tablished via several experiments that we have performed. These same experiments

have shown that the comparative preferences-based dominance algorithm is proven

to work eXciently for a range of comparative preference statements when checking

dominance between two outcomes α and β.

We also considered constraint optimisation problems (COPs) where optimality is

checked with regards to a set of comparative preferences. In order to be easily appli-

cable to COPs for which preferences are expressed as comparative preferences, the

B & B technique was extended for comparative preferences. In fact, we developed

pruning rules and appended them to the B & B technique. This helps the corre-

sponding constrained optimisation algorithm identify and avoid paths that lead to

non-optimal solutions. These rules are based on and derived from the user prefer-

ences expressed as comparative preference statements. They aim at reducing the

number of pairwise comparisons performed during the search while guiding con-

strained optimisation algorithms to Vnd optimal solutions. When applied with a set

of random binary CSPs and a set of comparative preferences, these rules showed a

promising pruning capability when solving COPs for comparative preferences. Our

experimental results have given evidence that the use of these pruning rules can

make a major diUerence to the eXciency of constrained optimisation for particular

comparative preference families including CP-nets.

6.2 Future directions

There are several future directions which will be worth investigating. The results of

this thesis provide a motivation to continue exploring searching for formalisms that

can handle and reason with preferences in RSs and other applications that involve

COPs.

More formalisms for preference elicitation in conversational RSs: From the

AI perspective, preference elicitation presents a bottleneck for designing automated

decision aids ranging from critical Vnancial, medical, and logistics domains to RSs or

automated software conVguration (Braziunas 2006). Therefore, designing eUective

preference elicitation techniques is an important problem facing AI. As a contin-

uation of the work done in this thesis, we intend to look for more elaborate and

intuitive preference elicitation formalisms that we can prove to be eXcient in prac-

tice with conversational RSs. These formalisms will adapt with the diUerent dialogue

strategies the conversational RSs go through.

In this dissertation, we have studied comparative preference representations that

161

6.2. Future directions

involve multi-valued features where the user model is represented by a vector of

weights. We need to go further beyond the preference forms we have already tested

to look for more suitable ways of expressing the user’s preferences over multi-valued

features in a RS context.

Tuning the size of the set of user models: In general, the goal of RSs is to show

to the user a set of alternatives that lead her to the best possible alternatives. To do

this, RSs usually tend to adjust, as much as needed, the set of alternatives to those

that are not dominated by any other alternative and whose number is adapted to

the context of use of the system, based on the user’s preferences (e.g., comparisons

between pairs of alternatives). For instance, if the reduced alternative set is too big

for the decision maker to make a choice or the device is too small to conveniently

display this set of alternatives, then the system should Vnd a way to adapt (e.g.,

reduce) the set of non-dominated alternatives, and continue the process as long as

is necessary for optimal alternative selection. In case the system opts for narrowing

the size of the set of alternatives to be shown, the pruning needs to be stronger. In a

diUerent case, the reduced alternative set might be too small and the user would need

too many iterations in a conversational RS to get what she wants. Then, allowing

more options to be shown is more convenient and so the pruning needs to be weaker.

In the context of RSs, we are planning to deeply study the size of the set of user

models that is used in the dominance veriVcation. In fact, the size of the set of user

models aUects the dominance relation in the sense that the pruning capability can

be somewhat controlled (e.g., stronger or weaker) when tuning the size of the set of

user models. We also plan to investigate more applications of RSs and study how

the dominance relation adapts with regards to the circumstances of use of RSs. We

are going to implement diUerent ways of controlling the dominance relation. The

combination of the two dominance approaches described in Chapter 4 would be one

approach to start with.

Real-world applications of the comparative preferences-based pruning rules:
There is also room for future research in the area of COPs whose preferences are

expressed as comparative preferences. The pruning rules deVned in this thesis were

tested with only randomly generated problems. We can look for applications of

the pruning rules we have deVned in this thesis. This will be one way to validate

the claimed advantage of a number of these pruning rules in practice with real-

world constrained optimisation problems, e.g., design engineering (D’Ambrosio &

Birmingham 1995).

Experimentations performed in Chapter 5 have shown that the non-dominance

rule can drastically reduce the number of ineUective dominance checks below a node

162

6.2. Future directions

in the search tree, and so the running time. This pruning rule is likely to have

the same (positive) eUect when applied to similar problems where assignments are

ordered through a partial preference relation. Thus, we can broaden the set of real-

world applications that can beneVt from this pruning rule.

Dynamic variable orderings in the search tree: The search trees we use in

Chapter 5 are generated by instantiating variables in an order that is compatible

with the conditional preferences. First, static variable orderings can be considered

as a limitation of the proposed pruning methods. To amend this limitation, we could

develop an approach that uses dynamic variable orderings, making use of the con-

sistency conditions from Section 6 of (Wilson 2011). Secondly, when the set of pref-

erences is inconsistent (i.e., the induced order is not acyclic), there would not be a

compatible search tree. In this case, there is no guarantee that a solution α that was

already found in the search tree, and included in the current set of solutions K , will

not be dominated by another solution β that was found later. Hence, we need to

check also if β dominates α, as well as if α dominates β. This implies that an out-

come α ∈ K can be dominated by a newly found solution β and so be eliminated

from K . Thus, K is not monotonically increasing as it can lose elements as well as

gain them.

Application of the pruning rules in RSs: Suitable comparative preferences-

based techniques were developed for RSs and COPs. Some techniques can be adapted

and used in both contexts: RSs and COPs. For instance, the pruning rules developed

for COPs can also be applied for RSs. In this dissertation we considered the case

where the set Ω of outcomes is expressed as the solutions of a CSP. In the context of

RSs, the set of outcomes can represent a set of available products, for example, and

might be listed explicitly. The new constrained optimisation algorithms developed

in this dissertation apply here as well. Thus, we can deVne dynamic variable and

value orderings that determine a search tree compatible with a set of the compara-

tive preferences; this search tree can be used to explore Ω (which is then implicitly

being expressed as a decision tree), and Vnd the optimal ones, using, as in Chapter

5, the dominance and non-dominance pruning rules to prune the search tree and

reduce the dominance checks. The Vnal result would be the set of optimal products

selected with regards to the user preferences.

In conclusion, comparative preferences theories appear to be a promising con-

cept that can be integrated not only in RSs but also in real-world applications that

aim at Vnding the optimal alternative with regards to the user’s preferences (e.g., in

conVguration or in planning problems). We are looking forward to new ideas about

163

6.2. Future directions

how to exploit the polynomial dominance related to the comparative preferences,

with real-world problems, in order to speed up the selection process without giving

up on the intuitive and easy to elicit aspects of this type of preference statement.

164

Acronyms

Acronyms

AI ArtiVcial Intelligence.

APA Adaptive Place Advisor.

B & B Branch and Bound.

BNs Bayesian Networks.

CBR Case-Based Reasoning.

CD Compact Disks.

COPs constrained optimization problems.

CP-nets Conditional Preference Networks.

CPT conditional preference table.

CPU Central Processing Unit.

CSP constraint satisfaction problem.

CSP constraint satisfaction problem.

DSSs decision support systems.

GAI generalized additive independence.

IR Information Recommendation.

MAUT multi-attribute utility theory.

PC Personal Computer.

QCL Qualitative Choice Logic.

165

Acronyms

RS Recommender System.

RSs Recommender Systems.

TCP-nets TradeoU-Conditional Preference Networks.

UM User modeling.

166

References

References

A. Caprara, P. Toth, D. V. & Fischetti, M. (1998), ‘Modeling and solving the crew rostering

problem’, Operations Research 46, 820–830.

Adomavicius, G. & Tuzhilin, A. (2005), ‘Toward the next generation of recommender sys-

tems: A survey of the state-of-the-art and possible extensions’, IEEE Transactions
on Knowledge and Data Engineering 17(6), 734–749.

Agarwal, P. K. & Sharir, M. (1998), ‘EXcient algorithms for geometric optimization’, ACM
Computing Surveys 30(4), 412–458.

Alexander, S. H. (1977), The New Science of Management Decision, Prentice Hall PTR, Up-

per Saddle River, NJ, USA.

Amazon (2012), http://www.amazon.com (last accessed 3rd May, 2013).

Anand, S. S. & Mobasher, B. (2005), Intelligent techniques for web personalization, in
S. Anand & B. Mobasher, eds, ‘Intelligent Techniques for Web Personalization,

IJCAI 2003 Workshop, ITWP 2003, Acapulco, Mexico, August 11, 2003, Revised

Selected Papers’, Springer, pp. 1–36.

Andréka, H., Ryan, M. & Schobbens, P.-Y. (2002), ‘Operators and laws for combining pref-

erence relations’, Journal of Logic and Computation 12(1), 13–53.

Apt, K. R., Rossi, F. & Venable, K. B. (2005), ‘CP-nets and nash equilibria’, CoRR .

Ardissono, L., Goy, A., Petrone, G., Segnan, M. & Torasso, P. (2003), ‘Intrigue: Personal-

ized recommendation of tourist attractions for desktop and hand held devices’,

Applied ArtiVcial Intelligence 17(8-9), 687–714.

Axling, T. & Haridi., S. (1994), ‘A tool for developing interactive conVguration applica-

tions’, Journal of Logic Programming 19, 658–679.

167

http://www.amazon.com

References

Bacchus, F. & Grove, A. J. (1995), Graphical models for preference and utility, in P. Besnard

& S. Hanks, eds, ‘Proceedings of the Eleventh Annual Conference on Uncer-

tainty in ArtiVcial Intelligence (UAI-95), Montreal, Quebec, Canada, August 18-

20, 1995’, Morgan Kaufmann, pp. 3–10.

Balabanovic, M. (1998), ‘Exploring versus exploiting when learning user models for text

recommendation’, User Modeling and User-Adapted Interaction 8, 71–102.

Balduccini, M. (2005), Answer set based deesign of highly autonomous, rational agents,

PhD thesis, Texas Tech University.

Balduccini, M. & Mellarkod, V. S. (2003), Cr-prolog with ordered disjunction, in M. D.

Vos & A. Provetti, eds, ‘Answer Set Programming’, Vol. 78 of CEUR Workshop
Proceedings, CEUR-WS.org.

Barker, V. E., O’Connor, D. E., Bachant, J. & Soloway, E. (1989), ‘Expert systems for con-

Vguration at digital: Xcon and beyond’, Communication ACM 32(3), 298–318.

Barták, R. (2012), ‘Constraint online guide’, http://ktiml.mff.cuni.cz/~bartak/

constraints/ (last accessed 3rd May, 2013).

Bell, D. E., RaiUa, H. & Tversky, A. (1988), Decision making: Descriptive, normative and
prescriptive interactions, Cambridge University Press.

Benferhat, S., Cayrol, C., Dubois, D., Lang, J. & Prade, H. (1993), Inconsistency manage-

ment and prioritized syntax-based entailment, in R. Bajcsy, ed., ‘IJCAI’, Morgan

Kaufmann, pp. 640–647.

Benferhat, S., Dubois, D. & Prade, H. (2001), ‘Towards a possibilistic logic handling of

preferences’, Applied Intelligence 14(3), 303–317.

Berkovsky, S., KuWik, T. & Ricci, F. (2008), ‘Mediation of user models for enhanced person-

alization in recommender systems’, User Modeling and User-Adapted Interaction
18(3), 245–286.

Berkovsky, S., KuWik, T. & Ricci, F. (2009), ‘Cross-representation mediation of user mod-

els’, User Modeling and User-Adapted Interaction 19(1-2), 35–63.

Bessière, C. (2006), Constraint propagation, in F. Rossi, P. van Beek & T.Walsh, eds, ‘Hand-

book of Constraint Programming’, Elsevier.

Bessière, C., Zanuttini, B. & Fernandez, C. (2004), Measuring search trees, in ‘Pro-

ceedings of Proceedings of the sixteenth Eureopean Conference on ArtiVcial

Intelligence(ECAI-04) Workshop on Modelling and Solving Problems with Con-

straints’, IOS Press, pp. 31–40.

168

http://ktiml.mff.cuni.cz/~bartak/constraints/
http://ktiml.mff.cuni.cz/~bartak/constraints/

References

Bettman, J., Luce, M. & Payne, J. (1998), ‘Constructive consumer choice processes’, Journal
of Consumer Research 25, 187–217.

Bienvenu, M., Fritz, C. & McIlraith, S. A. (2006), Planning with qualitative temporal pref-

erences, in ‘Proceedings of the International Conference on Principles of Knowl-

edge Representation and Reasoning (KR-06)’, Lake District, UK, pp. 134–144.

Bienvenu, M., Fritz, C. & McIlraith, S. A. (2011), ‘Specifying and computing preferred

plans’, ArtiVcial Intelligence 175(7-8), 1308–1345.

Bienvenu, M., Lang, J. & Wilson, N. (2010), From preference logics to preference lan-

guages, and back, in Lin et al. (2010).

Binshtok, M., Brafman, R. I., Shimony, S. E., Mani, A. & Boutilier, C. (2007), Computing

optimal subsets, in AAAI (Proceedings of the Twenty-Second AAAI Conference
on ArtiVcial Intelligence, July 22-26, 2007, Vancouver, British Columbia, Canada
2007), pp. 1231–1236.

Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G. & Fargier, H. (1999),

‘Semiring-based csps and valued csps: Frameworks, properties, and compari-

son’, Constraints 4(3), 199–240.

Bitner, J. R. & Reingold, E. M. (1975), ‘Backtrack programming techniques’, Communica-
tions ACM 18(11), 651–656.

Biundo, S., Myers, K. L. & Rajan, K., eds (2005), Proceedings of the Fifteenth International
Conference on Automated Planning and Scheduling (ICAPS 2005), June 5-10 2005,
Monterey, California, USA, AAAI.

Blanco, H., Ricci, F. & Bridge, D. (2012a), Conversational query revision with a Vnite user

proVles model, in G. Amati, C. Carpineto & G. Semeraro, eds, ‘Procs. of the

Third Italian Information Retrieval Workshop (IIR)’, Vol. 835 of CEUR Workshop
Proceedings, pp. 77–88.

Blanco, H., Ricci, F. & Bridge, D. (2012b), Recommending personalized query revisions,

in M. de Gemmis et al., ed., ‘Procs. of Decisions@RecSys: The Workshop on

Human Decision Making in Recommender Systems (Workshop Programme of

the Sixth ACM Conference on Recommender Systems)’.

Blum, A. L. & Furst, M. L. (1995), ‘Fast planning through planning graph analysis’, ArtiV-
cial Intelligence 90(1), 1636–1642.

Boerkoel, J. C., Durfee, E. H. & Purrington, K. (2010), Generalized solution techniques for

preference-based constrained optimization with (cp)-nets, in W. van der Hoek,

169

References

G. A. Kaminka, Y. Lespérance, M. Luck & S. Sen, eds, ‘AAMAS’, IFAAMAS,

pp. 291–298.

Bonzon, E., Lagasquie-Schiex, M.-C., Lang, J. & Zanuttini, B. (2009), ‘Compact prefer-

ence representation and boolean games’, Autonomous Agents and Multi-Agent
Systems 18(1), 1–35.

Boschetti, M. A., Maniezzo, V., RoXlli, M. & Röhler, A. B. (2009), Matheuristics: Optimiza-

tion, simulation and control, in ‘Proceedings of the 6th International Work-

shop on Hybrid Metaheuristics’, HM ’09, Springer-Verlag, Berlin, Heidelberg,

pp. 171–177.

Boubekeur, F., Boughanem, M. & Tamine-Lechani, L. (2006), Towards Wexible information

retrieval based on cp-nets, in ‘FQAS’, pp. 222–231.

Boutilier, C., Bacchus, F. & Brafman, R. I. (2001), UCP-networks: A directed graphical

representation of conditional utilities, in J. S. Breese & D. Koller, eds, ‘UAI’,

Morgan Kaufmann, pp. 56–64.

Boutilier, C., Brafman, R. I., Domshlak, C., Hoos, H. H. & Poole, D. (2004a), ‘CP-nets: A

tool for representing and reasoning with conditional ceteris paribus preference

statements’, Journal of ArtiVcial Intelligence Research 21, 135–191.

Boutilier, C., Brafman, R. I., Domshlak, C., Hoos, H. H. & Poole, D. (2004b),

‘Preference-based constrained optimization with CP-nets’, Computational Intel-
ligence 20(2), 137–157.

Boutilier, C., Brafman, R. I., Geib, C. W. & Poole, D. (1997), A constraint-based approach

to preference elicitation and decision making, in ‘AAAI Spring Symposium on

Qualitative Decision Theory’, Stanford.

Boutilier, C., Brafman, R. I., Hoos, H. H. & Poole, D. (1999), Reasoning with conditional

ceteris paribus preference statements, in K. B. Laskey & H. Prade, eds, ‘UAI’,

Morgan Kaufmann, pp. 71–80.

Boutilier, C., ed. (2009), IJCAI 2009, Proceedings of the 21st International Joint Conference
on ArtiVcial Intelligence, Pasadena, California, USA, July 11-17, 2009.

Bouveret, S., Endriss, U. & Lang, J. (2009a), Conditional importance networks: A graphical

language for representing ordinal, monotonic preferences over sets of goods, in
Boutilier (2009), pp. 67–72.

Bouveret, S., Endriss, U. & Lang, J. (2009b), Conditional importance networks: A graphical

language for representing ordinal, monotonic preferences over sets of goods, in
Boutilier (2009), pp. 67–72.

170

References

Bouyssou, D., Marchant, T., Pirlot, M., Perny, P., Tsoukiàs, A. & Vincke, P. (2000), Evalua-
tion and decision models: a critical perspective, Kluwer Academic, Dordrecht.

Bouyssou, D., Marchant, T., Pirlot, M., Tsoukis̀, A. & Vincke, P. (2006), Evaluation and de-
cision models with multiple criteria: Stepping stones for the analyst, International

Series in Operations Research and Management Science, Volume 86, 1st edn,

Springer, Boston.

Brafman, R. I. & Chernyavsky, Y. (2005), Planning with goal preferences and constraints,

in Biundo et al. (2005), pp. 182–191.

Brafman, R. I. & Dimopoulos, Y. (2004a), ‘Extended semantics and optimization algorithms

for CP-networks’, Computational Intelligence 20(2), 218–245.

Brafman, R. I. & Dimopoulos, Y. (2004b), ‘Extended semantics and optimization algorithms

for CP-networks’, Computational Intelligence 20, 2004.

Brafman, R. I. & Domshlak, C. (2002), Introducing variable importance tradeoUs into CP-

nets, in A. Darwiche & N. Friedman, eds, ‘UAI’, Morgan Kaufmann, pp. 69–76.

Brafman, R. I. & Domshlak, C. (2008), ‘Graphically structured value-function compilation’,

ArtiVcial Intelligence 172(2-3), 325–349.

Brafman, R. I. & Domshlak, C. (2009), ‘Preference handling - an introductory tutorial’, AI
Magazine 30(1), 58–86.

Brafman, R. I., Domshlak, C. & Shimony, S. E. (2003), ‘TCP-nets - introducing variable

importance tradeoUs into CP-nets’.

Brafman, R. I., Domshlak, C. & Shimony, S. E. (2006), ‘On graphical modeling of preference

and importance’, Journal of ArtiVcial Intelligence Research 25, 389–424.

Brafman, R. I., Domshlak, C., Shimony, S. E. & Silver, Y. (2006), Preferences over sets, in
‘AAAI’, AAAI Press, pp. 1101–1106.

Braziunas, D. (2006), Computational approaches to preference elicitation, Technical re-

port, Department of Computer Science,University of Toronto.

Brearley, A. L., Mitra, G. & Williams, H. P. (1975), ‘Analysis of mathematical programming

problems prior to applying the simplex algorithm’, Mathematical Programming
8, 54–83.

Brélaz, D. (1979), ‘New methods to color the vertices of a graph’, Communication ACM
22(4), 251–256.

171

References

Brewka, G. (2002), Logic programming with ordered disjunction, in R. Dechter & R. S.

Sutton, eds, ‘AAAI/IAAI’, AAAI Press / The MIT Press, pp. 100–105.

Brewka, G. (2004a), Complex preferences for answer set optimization, in D. Dubois, C. A.

Welty & M.-A. Williams, eds, ‘KR’, AAAI Press, pp. 213–223.

Brewka, G. (2004b), A rank based description language for qualitative preferences, in
de Mántaras & Saitta (2004), pp. 303–307.

Brewka, G., Benferhat, S. & Berre, D. L. (2002), Qualitative choice logic, in Fensel et al.

(2002), pp. 158–169.

Brewka, G., Benferhat, S. & Berre, D. L. (2004), ‘Qualitative choice logic’, ArtiVcial Intelli-
gence 157(1-2), 203–237.

Brewka, G., Coradeschi, S., Perini, A. & Traverso, P., eds (2006), ECAI 2006, 17th Euro-
pean Conference on ArtiVcial Intelligence, August 29 - September 1, 2006, Riva del
Garda, Italy, Including Prestigious Applications of Intelligent Systems (PAIS 2006),
Proceedings, Vol. 141 of Frontiers in ArtiVcial Intelligence and Applications, IOS

Press.

Brewka, G., Niemelä, I. & Syrjänen, T. (2002), Implementing ordered disjunction using an-

swer set solvers for normal programs, in S. Flesca, S. Greco, N. Leone & G. Ianni,

eds, ‘JELIA’, Vol. 2424 of Lecture Notes in Computer Science, Springer, pp. 444–

455.

Brewka, G., Niemelä, I. & Syrjänen, T. (2004), ‘Logic programs with ordered disjunction’,

Computational Intelligence 20(2), 335–357.

Brewka, G., Niemelä, I. & Truszczynski, M. (2003), Answer set optimization, in Gottlob &

Walsh (2003), pp. 867–872.

Bridge, D. G. (2002), Towards conversational recommender systems: A dialogue grammar

approach, in Craw & Preece (2002), pp. 9–22.

Bridge, D. G., Göker, M. H., McGinty, L. & Smyth, B. (2005), ‘Case-based recommender

systems’, The Knowledge Engineering Review 20(3), 315–320.

Bridge, D. G. & Ricci, F. (2007), Supporting product selection with query editing recom-

mendations, in J. A. Konstan, J. Riedl & B. Smyth, eds, ‘RecSys’, ACM, pp. 65–72.

Bridge, D., Göker, M., McGinty, L. & Smyth, B. (2006), ‘Case-based recommender systems’,

The Knowledge Engineering review 20(3), 315–320.

172

References

Brush, A. B., Krumm, J. & Scott, J. (2010), Exploring end user preferences for location

obfuscation, location-based services, and the value of location, in ‘Proceedings

of the 12th ACM international conference on Ubiquitous computing’, Ubicomp

10, ACM, New York, NY, USA, pp. 95–104.

Brusilovsky, P., Kobsa, A. & Nejdl, W., eds (2007), The Adaptive Web, Methods and Strate-
gies of Web Personalization, Vol. 4321 of Lecture Notes in Computer Science,
Springer.

Burke, R. (2000), Knowledge-based recommender systems, in ‘Encyclopedia of Library

and Information Systems’, Vol. 69.

Burke, R. D. (1999), The wasabi personal shopper: A case-based recommender system, in
Hendler & Subramanian (1999), pp. 844–849.

Burke, R. D. (2002), ‘Hybrid recommender systems: Survey and experiments’, User Mod-
eling and User-Adapted Interaction 12(4), 331–370.

Burke, R. D. (2004), Hybrid recommender systems with case-based components, in Funk

& González-Calero (2004), pp. 91–105.

Burke, R. D. (2007), Hybrid web recommender systems, in Brusilovsky et al. (2007),

pp. 377–408.

Burke, R. D., Hammond, K. J. & Young, B. C. (1996), Knowledge-based navigation of com-

plex information spaces, in W. J. Clancey & D. S. Weld, eds, ‘AAAI/IAAI, Vol. 1’,

AAAI Press / The MIT Press, pp. 462–468.

Burke, R. D., Hammond, K. J. & Young, B. C. (1997a), ‘The Vndme approach to assisted

browsing’, IEEE Expert 12(4), 32–40.

Burke, R. D., Hammond, K. J. & Young, B. C. (1997b), ‘The Vndme approach to assisted

browsing’, IEEE Expert 12(4), 32–40.

C., F. P. (1968), ‘Utility theory’, Management Science 14(5), 335–378.

Caballero, A. M., Martín, A. J., Garcia, E. A. A. & Díaz, A. M. (2010), Ranking alternatives

on the basis of a dominance intensity measure, in ‘Proceedings of the 15th IFIP

Working Group 8.3 International Conference, DSS 2010.’, IOS Press, Amsterdam,

Paises Bajos.

Carey, M. J. & Schneider, D. A., eds (1995), Proceedings of the 1995 ACM SIGMOD Interna-
tional Conference on Management of Data, San Jose, California, May 22-25, 1995,

ACM Press.

173

References

Castell, T., Cayrol, C., Cayrol, M. & Berre, D. L. (1996), Using the davis and putnam proce-

dure for an eXcient computation of preferred models, in ‘In ECAI’96’, pp. 350–

354.

Cavada, D., Ricci, F. & Venturini, A. (2003), Interactive trip planning with trip@dvise, in
M. Rauterberg, M. Menozzi & J. Wesson, eds, ‘INTERACT’, IOS Press.

Chajewska, U., Koller, D. & Parr, R. (2000), Making rational decisions using adaptive utility

elicitation, in ‘Proceedings of the National Conference on ArtiVcial Intelligence

(AAAI-00)’, pp. 363–369.

Chen, L. & Pu, P. (2004), Survey of preference elicitation methods, in ‘Technical Report

IC/200467’.

Chen, L. & Pu, P. (2009), ‘Interaction design guidelines on critiquing-based recommender

systems’, User Modeling and User-Adapted Interaction 19(3), 167–206.

Chen, L. & Pu, P. (2010), ‘Experiments on the preference-based organization interface

in recommender systems’, ACM Transactions on Computer-Human Interaction
17(1).

Chevaleyre, Y., Dunne, P. E., Endriss, U., Lang, J., Lemaître, M., Maudet, N., Padget, J. A.,

Phelps, S., Rodríguez-Aguilar, J. A. & Sousa, P. (2006), ‘Issues in multiagent re-

source allocation’, Informatica (Slovenia) 30(1), 3–31.

Chevaleyre, Y., Endriss, U., Lang, J. & Maudet, N. (2008), ‘Preference handling in combi-

natorial domains: From ai to social choice’, AI Magazine 29(4), 37–46.

Chinneck, J. W. (2007), Feasibility and Infeasibility in Optimization: Algorithms and Com-
putational Methods, 1st edn, Springer Publishing Company, Incorporated.

Chomicki, J. (2002), Querying with intrinsic preferences, in C. S. Jensen, K. G. JeUery,

J. Pokorný, S. Saltenis, E. Bertino, K. Böhm & M. Jarke, eds, ‘EDBT’, Vol. 2287 of

Lecture Notes in Computer Science, Springer, pp. 34–51.

Ciaccia, P. (2007), Querying databases with incomplete cp-nets, in ‘Multidisciplinary

Workshop on Advances in Preference Handling (MPref-06)’.

Clarke, G. & Wright, J. (1964), ‘Scheduling of vehicles from a central depot to a number

of delivery points’, Operations Research 12, 568–581.

Costantini, S. & Formisano, A. (2009), ‘Modeling preferences and conditional preferences

on resource consumption and production in asp’, Journal of Algorithms 64(1), 3–

15.

174

References

Costantini, S. & Formisano, A. (2010), ‘Answer set programming with resources’, Journal
of Logic and Computation 20(2), 533–571.

Craw, S. & Preece, A. D., eds (2002), Advances in Case-Based Reasoning, 6th European
Conference, ECCBR 2002 Aberdeen, Scotland, UK, September 4-7, 2002, Proceedings,
Vol. 2416 of Lecture Notes in Computer Science, Springer.

D’Ambrosio, J. G. & Birmingham, W. P. (1995), ‘Preference-directed design’, Journal for
ArtiVcial Intelligence in Engineering Design 9, 219–230.

de Mántaras, R. L. & Saitta, L., eds (2004), Proceedings of the 16th Eureopean Conference on
ArtiVcial Intelligence, ECAI’2004, including Prestigious Applicants of Intelligent
Systems, PAIS 2004, Valencia, Spain, August 22-27, 2004, IOS Press.

Dechter, R. (2003), Constraint processing, Elsevier Morgan Kaufmann, chapter constraint

Optimization, pp. 395–396.

Dechter, R. & Dechter, A. (1988), Belief maintenance in dynamic constraint networks, in
H. E. Shrobe, T. M. Mitchell & R. G. Smith, eds, ‘AAAI’, AAAI Press / The MIT

Press, pp. 37–42.

Dechter, R. & Pearl, J. (1987), ‘Network-based heuristics for constraint-satisfaction prob-

lems’, ArtiVcial Intelligence 34(1), 1–38.

Delgrande, J. P., Schaub, T. & Tompits, H. (2007), ‘A general framework for expressing

preferences in causal reasoning and planning’, Journal of Logic and Computation
17(5), 871–907.

Delgrande, J. P., Schaub, T., Tompits, H. & Wang, K. (2004), ‘A classiVcation and survey

of preference handling approaches in nonmonotonic reasoning’, Computational
Intelligence 20(2), 308–334.

Denker, G., Kagal, L., Finin, T. W., Paolucci, M. & Sycara, K. P. (2003), Security for daml

web services: Annotation and matchmaking, in D. Fensel, K. P. Sycara & J. My-

lopoulos, eds, ‘International Semantic Web Conference’, Vol. 2870 of Lecture
Notes in Computer Science, Springer, pp. 335–350.

Do, M. B. & Kambhampati, S. (2001), ‘Planning as constraint satisfaction: Solving the

planning graph by compiling it into CSP’, ArtiVcial Intelligence 132(2), 151–182.

Domshlak, C. (2008), Proceedings of Preferences and Similarities, 1 edn, Springer Publish-

ing Company, Incorporated, chapter A snapshot on reasoning with qualitative

preference statements in AI, pp. 265–282.

175

References

Domshlak, C. & Brafman, R. I. (2002), CP-nets: Reasoning and consistency testing, in
Fensel et al. (2002), pp. 121–132.

Domshlak, C., Brafman, R. I. & Shimony, S. E. (2001), Preference-based conVguration of

web page content, in Nebel (2001), pp. 1451–1456.

Domshlak, C., Hüllermeier, E., Kaci, S. & Prade, H. (2011), ‘Preferences in ai: An overview’,

ArtiVcial Intelligence 175(7-8), 1037–1052.

Domshlak, C., Prestwich, S. D., Rossi, F., Venable, K. B. & Walsh, T. (2006), ‘Hard and soft

constraints for reasoning about qualitative conditional preferences’, Journal of
Heuristics 12(4-5), 263–285.

Dongen, M. V. & Lecoutre, C. (2010), Constraint Propagation and Implementation, ISTE,

pp. 83–104.

Dorigo, M. & Caro, G. D. (1999), in D. Corne, M. Dorigo, F. Glover, D. Dasgupta,

P. Moscato, R. Poli & K. V. Price, eds, ‘New ideas in optimization’, McGraw-

Hill Ltd., UK, Maidenhead, UK, England, chapter The ant colony optimization

meta-heuristic, pp. 11–32.

Dorigo, M., Caro, G. D. & Gambardella, L. M. (1999), ‘Ant algorithms for discrete opti-

mization’, ArtiVcial Life 5(2), 137–172.

Dorigo, M., Maniezzo, V. & Colorni, A. (1996), ‘The Ant System: Optimization by a colony

of cooperating agents’, IEEE Transactions on Systems, Man, and Cybernetics Part
B: Cybernetics 26(1), 29–41.

Doyle, J. & McGeachie, M. (2003), Exercising qualitative control in autonomous adaptive

survivable systems, in ‘Proceedings of the 2nd international conference on Self-

adaptive software: applications’, IWSAS’01, Springer-Verlag, Berlin, Heidelberg,

pp. 158–170.

Doyle, J., Shoham, Y. & Wellman, M. P. (1991), A logic of relative desire (preliminary

report), in Z. Ras, ed., ‘Proceedings of the International Symposium on Method-

ologies for Intelligent Systems’, Springer-Verlag.

Doyle, J. & Thomason, R. (1999), ‘Background to qualitative decision theory’, AI Magazine
20, 55–68.

Doyle, M. & Cunningham, P. (2000), A dynamic approach to reducing dialog in on-line

decision guides, in ‘Proceedings of the European Workshop on Case-Based Rea-

soning (EWCBR-00)’, Springer, pp. 49–60.

176

References

Dubois, D., Fargier, H., Prade, H. & Perny, P. (2002), ‘Qualitative decision theory: from

savage’s axioms to nonmonotonic reasoning’, Journal of the ACM 49(4), 455–

495.

Dubois, D., Lang, J. & Prade, H. (1990), POSLOG, an inference system based on possibilis-

tic logic, in ‘Proceedings of the North American Fuzzy Information Processing

Society Conference (NAFIPS’90), Toronto, Canada, 06/06/90-08/06/90’.

Dubois, D. & Prade, H. (1990), in G. Shafer & J. Pearl, eds, ‘Readings in uncertain rea-

soning’, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, chapter An

introduction to possibilistic and fuzzy logics, pp. 742–761.

Dushnik, B. & Miller, E. (1941), ‘Partially ordered sets’, American Journal of Mathematics
63, 600–610.

Dyer, J. S. (2005), Maut - multiattribute utility theory, in J. Figueira, S. Greco & M. Ehrgott,

eds, ‘Multiple Criteria Decision Analysis - State of the Art Surveys’, Springer

International Series in Operations Research and Management Science Volume

76.

ebay (2012), http://www.ebay.com (last accessed 3rd May, 2013).

Edelkamp, S. & Schródl, S. (2012), Heuristic search. Theory and applications., Amsterdam:

Elsevier/Morgan Kaufmann.

Endres, M. & Kiessling, W. (2006), Transformation of TCP-Net queries into preference

database queries, in ‘2nd Multidisciplinary Workshop on Advances in Prefer-

ence Handling (MPref-06)’.

Endriss, U. (2011), Logic and social choice theory, Technical report, Institute for Logic

Language and Computation University of Amsterdam.

Engel, Y. (2008), Structured Preference Representation and Multiattribute Auctions, PhD

thesis, University of Michigan.

Engel, Y. & Wellman, M. P. (2008), ‘CUI networks: A graphical representation for condi-

tional utility independence’, Journal of ArtiVcial Intelligence Research 31, 83–112.

Engel, Y. & Wellman, M. P. (2010), ‘Multiattribute auctions based on generalized additive

independence’, Journal ArtiVcial Intelligence Research 37, 479–525.

expedia (2012), http://www.expedia.com (last accessed 3rd May, 2013).

Faltings, B., Pu, P., Torrens, M. & Viappiani, P. (2004), Designing example-critiquing in-

teraction, in J. Vanderdonckt, N. J. Nunes & C. Rich, eds, ‘IUI’, ACM, pp. 22–29.

177

http://www.ebay.com
http://www.expedia.com

References

Faltings, B., Torrens, M. & Pu, P. (2004), ‘Solution generation with qualitative models of

preferences’, Computational Intelligence 20(2), 246–263.

Farquhar, P. (1984), ‘Utility assessment methods’, Management Science 30(11), 1283–1300.

Felfernig, A. & Burke, R. D. (2008), Constraint-based recommender systems: technologies

and research issues, in D. Fensel & H. Werthner, eds, ‘ICEC’, Vol. 342 of ACM
International Conference Proceeding Series, ACM, pp. 1–10.

Felfernig, A., Friedrich, G., Jannach, D. & Zanker, M. (2007), ‘An integrated environment

for the development of knowledge-based recommender applications’, Interna-
tional Journal of Electronic Commerce 11, 11–34.

Felfernig, A. & Gula, B. (2006), An empirical study on consumer behavior in the inter-

action with knowledge-based recommender applications, in ‘CEC/EEE’, IEEE

Computer Society, p. 37.

Felfernig, A., Isak, K. & Russ, C. (2006), Knowledge-based recommendation: Technologies

and experiences from projects, in Brewka et al. (2006), pp. 632–636.

Felfernig, A., Isak, K., Szabo, K. & Zachar, P. (2007), The vita Vnancial services sales

support environment, in AAAI (Proceedings of the Twenty-Second AAAI Con-
ference on ArtiVcial Intelligence, July 22-26, 2007, Vancouver, British Columbia,
Canada 2007), pp. 1692–1699.

Fensel, D., Giunchiglia, F., McGuinness, D. L. & Williams, M.-A., eds (2002), Proceedings
of the Eights International Conference on Principles and Knowledge Representation
and Reasoning (KR-02), Toulouse, France, April 22-25, 2002, Morgan Kaufmann.

Figueira, J., Greco, S. & Ehrgott, M. (2005), Multiple Criteria Decision Analysis - State of the
Art Surveys, Springer International Series in Operations Research and Manage-

ment Science Volume 76.

Fischer, G. (2001), ‘User modeling in human-computer interaction’, User Modeling and
User-Adapted Interaction 11(1-2), 65–86.

Fishburn, P. C. (1967), ‘Interdependence and additivity in multivariate, unidimensional

expected utility theory’, International Economic Review 8(3).

Fishburn, P. C. (1970), Utility Theory For Decision Making, Wiley.

Fishburn, P. C. (1974), ‘Lexicographic orders, utilities, and decision rules: A survey’, Man-
agement Science 20(11), 1442–1471.

178

References

Fishburn, P. C. (1999), ‘Preference structures and their numerical representations’, Theo-
retical Computer Science 217(2), 359–383.

Fleischanderl, G., Friedrich, G. E., Haselböck, A., Schreiner, H. & Stumptner, M. (1998),

‘ConVguring large systems using generative constraint satisfaction’, IEEE Intel-
ligent Systems 13(4), 59–68.

Fox, D. & Gomes, C. P., eds (2008), Proceedings of the Twenty-Third AAAI Conference on
ArtiVcial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008, AAAI

Press.

Freuder, E. C., HeUernan, R., Wallace, R. J. & Wilson, N. (2010), ‘Lexicographically-ordered

constraint satisfaction problems’, Constraints 15(1), 1–28.

Funk, P. & González-Calero, P. A., eds (2004), Advances in Case-Based Reasoning, 7th Eu-
ropean Conference, ECCBR 2004, Madrid, Spain, August 30 - September 2, 2004,
Proceedings, Vol. 3155 of Lecture Notes in Computer Science, Springer.

Gavanelli, M. & Pini, M. S. (2008a), Fcp-nets: extending constrained cp-nets with objective

functions, in ‘Constraint Solving and Constraint Logic Programming (ERCIM)’.

Gavanelli, M. & Pini, M. S. (2008b), FCP-Nets: extending constrained CP-Nets with objec-

tive functions, in A. Oddi, A. Cesta, F. Fages, N. Policella & F. Rossi, eds, ‘Annual

ERCIM Workshop on Constraint Solving and Constraint Logic Programming’,

ERCIM, ISTC-CNR, Institute for Cognitive Science and Technology, Rome, Italy.

Ge, M., Delgado-Battenfeld, C. & Jannach, D. (2010), Beyond accuracy: evaluating rec-

ommender systems by coverage and serendipity, in X. Amatriain, M. Torrens,

P. Resnick & M. Zanker, eds, ‘RecSys’, ACM, pp. 257–260.

Gelfond, M. (2007), Answer sets, in ‘Handbook of Knowledge Representation’, number 7,

Elsevier Science, pp. 73–105.

Gelfond, M. & Lifschitz, V. (1988a), The stable model semantics for logic programming,

in R. Kowalski & K. Bowen, eds, ‘Proceedings of the 5th Intl. Conference and

Symposium on Logic Programming’, MIT Press, pp. 1070–1080.

Gelfond, M. & Lifschitz, V. (1988b), The stable model semantics for logic programming, in
‘ICLP/SLP’, MIT Press, pp. 1070–1080.

Gelfond, M. & Lifschitz, V. (1991), ‘Classical negation in logic programs and disjunctive

databases’, New Generation Computing 9, 365–385.

Gigerenzer, G. & Goldstein, D. G. (1996), ‘Reasoning the fast and frugal way: Models of

bounded rationality’, Psychological Review 103, 650–669.

179

References

Giunchiglia, E. & Maratea, M. (2011), ‘Introducing preferences in planning as satisVabil-

ity’, Journal of Logic and Computation 21(2), 205–229.

Giunchiglia, E., Massarotto, A. & Sebastiani, R. (1998), Act, and the rest will follow: Ex-

ploiting determinism in planning as satisVability, in J. Mostow & C. Rich, eds,

‘AAAI/IAAI’, AAAI Press / The MIT Press, pp. 948–953.

Glover, F. (1986), ‘Future paths for integer programming and links to artiVcial intelli-

gence’, Computers and Operations Research 13(5), 533–549.

Glover, F. & Laguna, M. (1997), Tabu Search, Kluwer Academic Publishers, Norwell, MA,

USA.

Goker, M. H. & Thompson, C. A. (2000), ‘Personalized conversational case-based recom-

mendation’.

Goldsmith, J., Lang, J., Truszczynski, M. & Wilson, N. (2005), The computational complex-

ity of dominance and consistency in CP-nets, in L. P. Kaelbling & A. SaXotti,

eds, ‘IJCAI’, Professional Book Center, pp. 144–149.

Goldsmith, J., Lang, J., Truszczyński, M. & Wilson, N. (2008), ‘The computational com-

plexity of dominance and consistency in CP-nets’, Journal of ArtiVcial Intelli-
gence Research 33, 403–432.

Gonzales, C., Perny, P. & Queiroz, S. (2008), Preference aggregation with graphical utility

models, in ‘Proceedings of the National Conference on ArtiVcial Intelligence

(AAAI-08)’, pp. 1037–1042.

Good, N., Schafer, J. B., Konstan, J. A., Borchers, A., Sarwar, B. M., Herlocker, J. L. &

Riedl, J. (1999), Combining collaborative Vltering with personal agents for better

recommendations, in Hendler & Subramanian (1999), pp. 439–446.

Gottlob, G. & Walsh, T., eds (2003), IJCAI-03, Proceedings of the Eighteenth International
Joint Conference on ArtiVcial Intelligence, Acapulco, Mexico, August 9-15, 2003,

Morgan Kaufmann.

Hammond, K. J., Burke, R. D. & Schmitt, K. (1994), A case-based approach to knowledge

navigation, in ‘KDD Workshop’, pp. 383–394.

Hansson, S. O. (1989), ‘A new semantical approach to the logic of preference’, Humanities
Social Sciences and Law 31(1), 1–42.

Hansson, S. O. (2001), ‘Preference logic’, Handbook of Philosophical Logic 8.

180

References

Hansson, S. O. & Grüne-YanoU, T. (2011), Preferences, in E. N. Zalta, ed., ‘The Stanford

Encyclopedia of Philosophy’, fall 2011 edn.

Haralick, R. M. & Elliott, G. L. (1980), ‘Increasing tree search eXciency for constraint

satisfaction problems’, ArtiVcial Intelligence 14, 263–313.

Häubl, G. & Murray, K. B. (2001), Recommending or persuading? the impact of a shopping

agent’s algorithm on user behavior, in ‘ACM Conference on Electronic Com-

merce’, ACM, pp. 163–170.

Hendler, J. & Subramanian, D., eds (1999), Proceedings of the Sixteenth National Conference
on ArtiVcial Intelligence and Eleventh Conference on Innovative Applications of
ArtiVcial Intelligence, July 18-22, 1999, Orlando, Florida, USA, AAAI Press / The

MIT Press.

Hill, W. C., Stead, L., Rosenstein, M. & Furnas, G. W. (1995), Recommending and evaluat-

ing choices in a virtual community of use, in Katz et al. (1995), pp. 194–201.

Hoare, C. A. R. (1989), Essays in Computing Science, Prentice-Hall.

Hoos, H. H. & Stützle, T. (2004), Stochastic Local Search: Foundations & Applications, Else-

vier / Morgan Kaufmann.

Howard, R. A. & Matheson, J. E. (2005), ‘InWuence diagram retrospective’, Decision Analy-
sis 2(3), 144–147.

Hurley, R. J. & Tewksbury, D. (2012), ‘News aggregation and content diUerences in online

cancer news’, Journal of Broadcasting & Electronic Media 56(1), 132–149.

Jameson, A., Baldes, S. & Kleinbauer, T. (2004), Two methods for enhancing mutual aware-

ness in a group recommender system, in M. F. Costabile, ed., ‘AVI’, ACM Press,

pp. 447–449.

Jannach, D., Zanker, M., Felfernig, A. & Friedrich, G. (2011), Recommender Systems: An
Introduction, 1 edn, Cambridge University Press.

Jannach, D., Zanker, M., Jessenitschnig, M. & Seidler, O. (2007), Developing a conversa-

tional travel advisor with advisor suite, in M. Sigala, L. Mich & J. Murphy, eds,

‘ENTER’, Springer, pp. 43–52.

Järvisalo, M. & Junttila, T. A. (2009), ‘Limitations of restricted branching in clause learn-

ing’, Constraints 14(3), 325–356.

Järvisalo, M., Junttila, T. A. & Niemelä, I. (2005), ‘Unrestricted vs restricted cut in a tableau

method for boolean circuits’, Annals of Mathematics and ArtiVcial Intelligence
44(4), 373–399.

181

References

Jin, H., Han, H. & Somenzi, F. (2005), EXcient conWict analysis for Vnding all satisfying

assignments of a boolean circuit, in N. Halbwachs & L. D. Zuck, eds, ‘TACAS’,

Vol. 3440 of Lecture Notes in Computer Science, Springer, pp. 287–300.

Jin, H. & Somenzi, F. (2005), Prime clauses for fast enumeration of satisfying assignments

to boolean circuits, in W. H. J. Jr., G. Martin & A. B. Kahng, eds, ‘DAC’, ACM,

pp. 750–753.

Joseph, R.-R., Chan, P., Hiroux, M. & Weil, G. (2007), ‘Decision-support with preference

constraints’, European Journal of Operational Research 177(3), 1469–1494.

Junker, U. (2001), Preference programming for conVguration, in ‘Proceedings of Work-

shop on ConVguration (IJCAI-01)’, Seattle, pp. 50–56.

Kaci, S. (2011), Working with Preferences: Less Is More, Cognitive Technologies, Springer.

Kadioglu, S. (2012), EXcient Search Procedures for Solving Combinatorial Problems, PhD

thesis, Brown University.

Kahneman, D. & Tversky, A. (1979), ‘Prospect theory: An analysis of decision under risk’,

Econometrica 47, 263–291.

Kärger, P., Lopes, N., Olmedilla, D. & Polleres, A. (2008), Towards logic programs with

ordered and unordered disjunction, in ‘Workshop on Answer Set Programming

and Other Computing Paradigms (ASPOCP 2008), 24th International Confer-

ence on Logic Programming (ICLP 2008)’, Udine, Italy.

Katz, I. R., Mack, R. L., Marks, L., Rosson, M. B. & Nielsen, J., eds (1995), Human Factors in
Computing Systems, CHI ’95 Conference Proceedings, Denver, Colorado, USA, May
7-11, 1995, ACM/Addison-Wesley.

Kautz, H. & Selman, B. (1992), Planning as satisVability, in ‘IN ECAI-92’, Wiley, pp. 359–

363.

Keeney, R. (1982), ‘Decision analysis: An overview’, Operations Research 30(5), 803–838.

Keeney, R. L. (1992), Value-Focused Thinking: A Path to Creative Decision making, Harvard

University Press.

Keeney, R. L. & RaiUa, H. (1976), Decisions with Multiple Objectives: Preferences and Value
Trade-OUs, Cambridge University Press.

Keeney, R. L. & RaiUa, H. (1993), Decisions with Multiple Objectives: Preferences and Value
Trade-OUs, Cambridge.

182

References

Kießling, W. (2002), Foundations of preferences in database systems, in ‘VLDB’, Morgan

Kaufmann, pp. 311–322.

Kim, H.-N., Alkhaldi, A., Saddik, A. E. & Jo, G.-S. (2011), ‘Collaborative user modeling

with user-generated tags for social recommender systems’, Expert Systems with
Applications 38(7), 8488 – 8496.

Kobsa, A. (2001), ‘Generic user modeling systems’, User Modeling and User-Adapted Inter-
action 11(1-2), 49–63.

Kondrak, G. & van Beek, P. (1997), ‘A theoretical evaluation of selected backtracking

algorithms’, ArtiVcial Intelligence 89(1-2), 365–387.

Konstan, J. A. & Riedl, J. (2012), ‘Recommender systems: from algorithms to user experi-

ence’, User Modeling and User-Adapted Interaction 22(1-2), 101–123.

Koopman, B. (1956), ‘Fallacies in operations research’, Operations Research 3, 422–426.

Koriche, F. & Zanuttini, B. (2009), Learning conditional preference networks with queries,

in Boutilier (2009), pp. 1930–1935.

Kristensen, L. M., Westergaard, M. & Nørgaard, P. C. (2005), Model-based prototyping of

an interoperability protocol for mobile ad-hoc networks, in J. Romijn, G. Smith

& J. van de Pol, eds, ‘IFM’, Vol. 3771 of Lecture Notes in Computer Science,
Springer, pp. 266–286.

Lang, J. (2010), Graphical representation of ordinal preferences: Languages and applica-

tions, in M. Croitoru, S. Ferré & D. Lukose, eds, ‘ICCS’, Vol. 6208 of Lecture Notes
in Computer Science, Springer, pp. 3–9.

Lang, J. & Xia, L. (2009), ‘Sequential composition of voting rules in multi-issue domains’,

Mathematical Social Sciences 57(3), 304–324.

Lecoutre, C. (2009), Constraint Networks: Techniques and Algorithms, Wiley-IEEE Press.

Levandoski, J. J., Sarwat, M., Mokbel, M. F. & Ekstrand, M. D. (2012), Recstore: an extensi-

ble and adaptive framework for online recommender queries inside the database

engine, in E. A. Rundensteiner, V. Markl, I. Manolescu, S. Amer-Yahia, F. Nau-

mann & I. Ari, eds, ‘EDBT’, ACM, pp. 86–96.

Li, M., Vo, Q. B. & Kowalczyk, R. (2010), An eXcient approach for ordering outcomes and

making social choices with CP-nets, in J. Li, ed., ‘Australasian Conference on

ArtiVcial Intelligence’, Vol. 6464 of Lecture Notes in Computer Science, Springer,

pp. 375–384.

183

References

Lieberman, H. (1997), Autonomous interface agents, in S. Pemberton, ed., ‘CHI’,

ACM/Addison-Wesley, pp. 67–74.

Lilien, G. L. & Grewal, R. (2012), Handbook of Business to Business Marketing, Edward Elgar

Publishing.

Lin, F., Sattler, U. & Truszczynski, M., eds (2010), Principles of Knowledge Representa-
tion and Reasoning: Proceedings of the Twelfth International Conference, KR 2010,
Toronto, Ontario, Canada, May 9-13, 2010, AAAI Press.

Linden, G., Hanks, S. & Lesh, N. (1997), Interactive assessment of user preference models:

The automated travel assistant, in ‘In Proceedings of the International Confer-

ence on User Modeling’, Springer, pp. 67–78.

Lops, P., de Gemmis, M. & Semeraro, G. (2011), Content-based recommender systems:

State of the art and trends, in Ricci et al. (2011b), pp. 73–105.

Lorenzi, F. & Ricci, F. (2003), Case-based recommender systems: A unifying view, in
B. Mobasher & S. S. Anand, eds, ‘ITWP’, Vol. 3169 of Lecture Notes in Computer
Science, Springer, pp. 89–113.

Luce, R. (1956), ‘Semiorders and a theory of utility discrimination’, Econometrica 24, 178–

191.

Mackworth, A. K. (1977), On reading sketch maps, in R. Reddy, ed., ‘IJCAI’, William Kauf-

mann, pp. 598–606.

Maes, P. (1994), ‘Agents that reduce work and information overload’, Communication ACM
37(7), 30–40.

Mahmood, T. (2009), Learning Adapted Interaction Strategies in Conversational Recom-

mender Systems, PhD thesis, DIT - University of Trento.

Mahmood, T. & Ricci, F. (2007), Learning and adaptivity in interactive recommender sys-

tems, in M. L. Gini, R. J. KauUman, D. Sarppo, C. Dellarocas & F. Dignum, eds,

‘ICEC’, Vol. 258 of ACM International Conference Proceeding Series, ACM, pp. 75–

84.

Mahmood, T. & Ricci, F. (2009), Improving recommender systems with adaptive conver-

sational strategies, in ‘Hypertext’, ACM, pp. 73–82.

Mahmood, T., Ricci, F. & Venturini, A. (2009), Learning adaptive recommendation strate-

gies for online travel planning, in W. Höpken, U. Gretzel & R. Law, eds, ‘ENTER’,

Springer, pp. 149–160.

184

References

Mahmood, T., Ricci, F., Venturini, A. & Höpken, W. (2008), Adaptive recommender sys-

tems for travel planning, in P. O’Connor, W. Höpken & U. Gretzel, eds, ‘ENTER’,

Springer, pp. 1–11.

Maltz, D. & Ehrlich, K. (1995), Pointing the way: Active collaborative Vltering, in Katz

et al. (1995), pp. 202–209.

Mandl, M., Felfernig, A., Teppan, E. & Schubert, M. (2011), ‘Consumer decision making

in knowledge-based recommendation’, Journal of Intelligent Information Systems
37(1), 1–22.

Mandl, M., Felfernig, A. & Tiihonen, J. (2011), Evaluating design alternatives for feature

recommendations in conVguration systems, in B. Hofreiter, E. Dubois, K.-J. Lin,

T. Setzer, C. Godart, E. Proper & L. BodenstaU, eds, ‘CEC’, IEEE, pp. 34–41.

Maratea, M., Ricca, F. & Veltri, P. (2010), Dlvmc: Enhanced model checking in dlv, in
T. Janhunen & I. Niemelä, eds, ‘JELIA’, Vol. 6341 of Lecture Notes in Computer
Science, Springer, pp. 365–368.

Marek, V. W. & Truszczynski, M. (1998), ‘Stable models and an alternative logic program-

ming paradigm’, CoRR cs.LO/9809032.

Massa, P. & Bhattacharjee, B. (2004), Using trust in recommender systems: An experimen-

tal analysis, in C. D. Jensen, S. Poslad & T. Dimitrakos, eds, ‘iTrust’, Vol. 2995 of

Lecture Notes in Computer Science, Springer, pp. 221–235.

McCarthy, J. F. (2002), Pocket restaurant Vnder: A situated recommender systems for

groups, in ‘Proceeding of Workshop on Mobile Ad-Hoc Communication at the

2002 ACM Conference on Human Factors in Computer Systems’.

McCarthy, J. F. & Anagnost, T. D. (1998), Musicfx: An arbiter of group preferences for

computer aupported collaborative workouts, in S. E. Poltrock & J. Grudin, eds,

‘CSCW’, ACM, pp. 363–372.

McCarthy, K., McGinty, L., Smyth, B. & Reilly, J. (2005), A live-user evaluation of incre-

mental dynamic critiquing, in H. Muñoz-Avila & F. Ricci, eds, ‘ICCBR’, Vol. 3620

of Lecture Notes in Computer Science, Springer, pp. 339–352.

McCarthy, K., Reilly, J., McGinty, L. & Smyth, B. (2004), On the dynamic generation of

compound critiques in conversational recommender systems, in P. D. Bra &

W. Nejdl, eds, ‘AH’, Vol. 3137 of Lecture Notes in Computer Science, Springer,

pp. 176–184.

185

References

McCarthy, K., Reilly, J., McGinty, L. & Smyth, B. (2005), Experiments in dynamic cri-

tiquing, in R. S. Amant, J. Riedl & A. Jameson, eds, ‘IUI’, ACM, pp. 175–182.

McDermott, J. (1982), ‘R1: a rule-based conVgurer of computer systems’, ArtiVcial Intelli-
gence 19, 39–88.

McGinty, L. & Reilly, J. (2011), On the evolution of critiquing recommenders, in Ricci et al.

(2011b), pp. 419–453.

McGinty, L. & Smyth, B. (2002a), Comparison-based recommendation, in Craw & Preece

(2002), pp. 575–589.

McGinty, L. & Smyth, B. (2002b), Evaluating preference-based feedback in recommender

systems, in ‘AICS’, pp. 209–214.

McGinty, L. & Smyth, B. (2003), Tweaking critiquing, in ‘Proceedings of the Workshop on

Personalization and Web Techniques, Workshop Program at the International

Joint Conference on ArtiVcial Intelligence’, pp. 20–27.

McGinty, L. & Smyth, B. (2006), ‘Adaptive selection: An analysis of critiquing and

preference-based feedback in conversational recommender systems’, Interna-
tional Journal of Electronic Commerce 11(2), 35–57.

McGuinness, D. L. & Ferguson, G., eds (2004), Proceedings of the Nineteenth National Con-
ference on ArtiVcial Intelligence, Sixteenth Conference on Innovative Applications
of ArtiVcial Intelligence, July 25-29, 2004, San Jose, California, USA, AAAI Press /

The MIT Press.

McMillan, K. L. (1992), Symbolic model checking: an approach to the state explosion

problem, PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA. UMI

Order No. GAX92-24209.

McSherry, D. (2002), ‘A generalised approach to similarity-based retrieval in recom-

mender systems’, ArtiVcial Intelligence Review 18(3-4), 309–341.

McSherry, D. (2003), Similarity and compromise, in K. D. Ashley & D. G. Bridge, eds,

‘ICCBR’, Vol. 2689 of Lecture Notes in Computer Science, Springer, pp. 291–305.

McSherry, D. (2005), ‘Retrieval failure and recovery in recommender systems’, ArtiVcial
Intelligence Review 24(3-4), 319–338.

McSherry, D. & Aha, D. W. (2007), Mixed-initiative relaxation of constraints in critiquing

dialogues, in R. Weber & M. M. Richter, eds, ‘ICCBR’, Vol. 4626 of Lecture Notes
in Computer Science, Springer, pp. 107–121.

186

References

Meisels, A., Shimony, S. E. & Solotorevsky, G. (1997), Bayes networks for estimating the

number of solutions to a CSP, in B. Kuipers & B. L. Webber, eds, ‘AAAI/IAAI’,

AAAI Press / The MIT Press, pp. 179–184.

Menzel, W. (1998), ‘Constraint satisfaction for robust parsing of spoken language’, Journal
of Experimental and Theoretical ArtiVcial Intelligence 10(1), 77–89.

Middleton, S. E., Shadbolt, N. R. & De Roure, D. C. (2004), ‘Ontological user proVling in

recommender systems’, ACM Transactions on Information Systems 22(1), 54–88.

Miguel, I. & Shen, Q. (2001a), ‘Solution techniques for constraint satisfaction problems:

Advanced approaches’, ArtiVcial Intelligence Review 15(4), 269–293.

Miguel, I. & Shen, Q. (2001b), ‘Solution techniques for constraint satisfaction problems:

Foundations’, ArtiVcial Intelligence Review 15(4), 243–267.

Mindolin, D. & Chomicki, J. (2007), Hierarchical CP-networks, in ‘3rd Multidisciplinary

Workshop on Advances in Preference Handling (MPref-06)’.

Mirzadeh, N. & Ricci, F. (2007), ‘Cooperative query rewriting for decision making support

and recommender systems’, Applied ArtiVcial Intelligence 21(10), 895–932.

Mittal, S. & Falkenhainer, B. (1996), A logic-based description of conVguration: the con-

structive problem solving approach, in ‘In AAAI Fall Symposium’, pp. 11–118.

Montanari, U. (1974), Optimization methods in image processing, in ‘IFIP Congress’,

pp. 727–732.

Moreno, M. N., Segrera, S., López, V. F., noz, M. D. M. & Ángel Luis Sánchez (2011), Min-

ing semantic data for solving Vrst-rater and cold-start problems in recommender

systems, in ‘Proceedings of the 15th Symposium on International Database En-

gineering & Applications’, IDEAS ’11, ACM, New York, NY, USA, pp. 256–

257.

Movielens (2012), http:/www.movielens.org/ (last accessed 3rd May, 2013).

MovieLens (2013), http://movielens.umn.edu/main (last accessed 3rd May, 2013).

Mukhtar, H., Belaïd, D. & Bernard, G. (2011), ‘Dynamic user task composition based on

user preferences’, TAAS 6(1), 4.

Mura, P. L. & Shoham, Y. (1999), Expected utility networks, in ‘UAI’, pp. 366–373.

Nebel, B., ed. (2001), Proceedings of the Seventeenth International Joint Conference on ArtiV-
cial Intelligence, IJCAI 2001, Seattle, Washington, USA, August 4-10, 2001, Morgan

Kaufmann.

187

http:/www.movielens.org/
http://movielens.umn.edu/main

References

netWix (2012), http://www.netflix.com/ (last accessed 3rd May, 2013).

Neumaier, A. (2004), Complete search in continuous global optimization and constraint

satisfaction, in A. I. ed, ed., ‘Acta Numerica 2004’, Cambridge University Press.

Neumann, J. V. & Morgenstern, O. (1944), Theory of Games and Economic Behavior, Prince-

ton University Press, Princeton.

Nguyen, H. & Haddawy, P. (1999), The decision-theoretic interactive video advisor, in
‘UAI’, pp. 494–501.

O’Connor, M., Cosley, D., Konstan, J. A. & Riedl, J. (2001), Polylens: a recommender sys-

tem for groups of users, in ‘Proceedings of the seventh conference on European

Conference on Computer Supported Cooperative Work’, ECSCW’01, Kluwer

Academic Publishers, Norwell, MA, USA, pp. 199–218.

Ostanello, A. & Tsoukiàs, A. (1993), ‘An explicative model of public interorganizational

interactions’, European Journal of Operational Research 70, 67–82.

Oster, Z. J., Santhanam, G. R. & Basu, S. (2011), Automating analysis of qualitative prefer-

ences in goal-oriented requirements engineering, in P. Alexander, C. S. Pasare-

anu & J. G. Hosking, eds, ‘ASE’, IEEE, pp. 448–451.

Öztürk, M., Tsoukiàs, A. & Vincke, P. (2004), Preference modelling, in G. Bosi, R. I. Braf-

man, J. Chomicki & W. Kießling, eds, ‘Preferences’, Vol. 04271 of Dagstuhl Sem-
inar Proceedings, IBFI, Schloss Dagstuhl, Germany.

P. Journee, P. P. & Vanderpooten, D. (1998), ‘A multicriteria methodology for the veri-

Vcation of arms control agreements in europe’, Foundations of Computing and
Decision Sciences 23, 64–85.

Park, S.-T., Pennock, D., Madani, O., Good, N. & DeCoste, D. (2006), Naïve Vlterbots for

robust cold-start recommendations, in T. Eliassi-Rad, L. H. Ungar, M. Craven &

D. Gunopulos, eds, ‘KDD’, ACM, pp. 699–705.

Parker, R. & Rardin, R. (1988), Discrete Optimization, Acad. Press.

Parsons, S. (2006), ‘Reasoning about uncertainty by joseph halpern, mit press’, Knowledge
Engineering Review 21(3), 290–291.

Payne, J., Bettman, J. & Johnson, J. (1992), ‘Behavioral decision research: a constructive

processing perspective’, Annual Review of Psychology 43, 87–131.

Payne, J. W., Bettman, J. R. & Johnson, E. J. (1993), The adaptive decision maker., Cambridge

University Press, New York, NY.

188

http://www.netflix.com/

References

Pazzani, M. J. (1999), ‘A framework for collaborative, content-based and demographic

Vltering’, ArtiVcial Intelligence Review 13(5-6), 393–408.

Pazzani, M. J. & Billsus, D. (2007), Content-based recommendation systems, in Brusilovsky

et al. (2007), pp. 325–341.

Pearl, J. (1988), ‘Embracing causality in default reasoning’, ArtiVcial Intelligence
35(2), 259–271.

Pearl, J. & Paz, A. (1986), Graphoids: Graph-based logic for reasoning about relevance

relations or when would x tell you more about y if you already know z?, in
‘ECAI’, pp. 357–363.

Peintner, B., MoXtt, M. D. & Pollack, M. E. (2005), Solving over-constrained disjunctive

temporal problems with preferences, in Biundo et al. (2005), pp. 202–211.

Perron, L. & Trick, M. A., eds (2008), Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, 5th International Con-
ference, CPAIOR 2008, Paris, France, May 20-23, 2008, Proceedings, Vol. 5015 of

Lecture Notes in Computer Science, Springer.

Pham, D. T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S. & Zaidi, M. (2006), The bees

algorithm, a novel tool for complex optimisation problems, in ‘Proceedings of

the 2nd International Virtual Conference on Intelligent Production Machines

and Systems (IPROMS 2006)’, IPROMS 2006, pp. 454–459.

Pirlot, M. (1996), ‘General local search methods’, European Journal of Operational Research
92(3), 493–511.

Polya, G. (1971), How to Solve It: A New Aspect of Mathematical Method, 2nd edn, Princeton

University Press.

Poole, D. (1992), Decision-theoretic defaults, in ‘In Proceedings of the Ninth Biennial

Conference of the Canadian Society for Computational Studies of Intelligence’,

Morgan Kaufmann, San Francisco, pp. 190–197.

Popescu, G. & Pu, P. (2011), Group recommender systems as a voting problem, in ‘EPFL

HCI Technical report, Feburary 2011’.

Prestwich, S. D., Rossi, F., Venable, K. B. & Walsh, T. (2005), Constraint-based preferential

optimization, in M. M. Veloso & S. Kambhampati, eds, ‘AAAI’, AAAI Press / The

MIT Press, pp. 461–466.

Prestwich, S., Rossi, F., Venable, K. B. & Walsh, T. (2004), Constrained CP-nets, in ‘Pro-

ceedings of CSCLP’04’.

189

References

Proceedings of the Twenty-Second AAAI Conference on ArtiVcial Intelligence, July 22-26,
2007, Vancouver, British Columbia, Canada (2007), AAAI Press.

Pu, P. & Chen, L. (2005), Integrating tradeoU support in product search tools for e-

commerce sites, in J. Riedl, M. J. Kearns & M. K. Reiter, eds, ‘ACM Conference

on Electronic Commerce’, ACM, pp. 269–278.

Pu, P., Chen, L. & Kumar, P. (2008), ‘Evaluating product search and recommender systems

for e-commerce environments’, Electronic Commerce Research 8(1-2), 1–27.

Pu, P. & Faltings, B. (2000), Enriching buyerséxperiences: the smartclient approach, in
T. Turner & G. Szwillus, eds, ‘CHI’, ACM, pp. 289–296.

Pu, P. & Faltings, B. (2004), ‘Decision tradeoU using example-critiquing and constraint

programming’, Constraints 9(4), 289–310.

Pu, P., Faltings, B., Chen, L., Zhang, J. & Viappiani, P. (2011), Usability guidelines for prod-

uct recommenders based on example critiquing research, in Ricci et al. (2011b),

pp. 511–545.

Pu, P., Viappiani, P. & Faltings, B. (2006), Increasing user decision accuracy using sugges-

tions, in R. E. Grinter, T. Rodden, P. M. Aoki, E. Cutrell, R. JeUries & G. M. Olson,

eds, ‘CHI’, ACM, pp. 121–130.

Purrington, K. & Durfee, E. H. (2007), Making social choices from individuals’ CP-nets, in
E. H. Durfee, M. Yokoo, M. N. Huhns & O. Shehory, eds, ‘AAMAS’, IFAAMAS,

p. 179.

Purrington, K. & Durfee, E. H. (2008), NP-completeness of outcome optimization for par-

tial CP-nets, in Fox & Gomes (2008), pp. 1826–1827.

Rafter, R., Bradley, K. & Smyth, B. (2000), Automated collaborative Vltering applications

for online recruitment services, in P. Brusilovsky, O. Stock & C. Strapparava,

eds, ‘AH’, Vol. 1892 of Lecture Notes in Computer Science, Springer, pp. 363–368.

Reilly, J., McCarthy, K., McGinty, L. & Smyth, B. (2004), Dynamic critiquing, in Funk &

González-Calero (2004), pp. 763–777.

Reilly, J., McCarthy, K., McGinty, L. & Smyth, B. (2005), ‘Incremental critiquing’, Knowl-
edge Based Systems 18(4-5), 143–151.

Reilly, J., Zhang, J., McGinty, L., Pu, P. & Smyth, B. (2007), A comparison of two compound

critiquing systems, in D. N. Chin, M. X. Zhou, T. A. Lau & A. R. Puerta, eds, ‘IUI’,

ACM, pp. 317–320.

190

References

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P. & Riedl, J. (1994), Grouplens: An open

architecture for collaborative Vltering of netnews, in ‘CSCW’, pp. 175–186.

Resnick, P. & Varian, H. R. (1997), ‘Recommender systems - introduction to the special

section’, Communication ACM 40(3), 56–58.

Ricci, F. (2011), ‘Mobile recommender systems’, International Journal of Information Tech-
nology and Tourism 12(3).

Ricci, F., Arslan, B., Mirzadeh, N. & Venturini, A. (2002), Itr: A case-based travel advisory

system, in Craw & Preece (2002), pp. 613–627.

Ricci, F., Cavada, D., Mirzadeh, N. & Venturini, A. (2006), Case-based travel recommen-

dations, in D. R. Fesenmaier et al., eds, ‘Destination Recommendation Systems:

Behavioural Foundations and Applications’, CABI, pp. 67–93.

Ricci, F., Mirzadeh, N. & Venturini, A. (2002), Intelligent query management in a mediator

architecture, in ‘1st International IEEE Symposium on Intelligent Systems’.

Ricci, F. & Nguyen, Q. N. (2005), ‘Critique-based mobile recommender systems’, ÖGAI
Journal 24(4).

Ricci, F., Rokach, L., Shapira, B. & Kantor, P. B., eds (2011a), Recommender Systems Hand-
book, Springer.

Ricci, F., Rokach, L., Shapira, B. & Kantor, P. B., eds (2011b), Recommender Systems Hand-
book, Springer.

Rosa, E. D., Giunchiglia, E. & Maratea, M. (2010), ‘Solving satisVability problems with

preferences’, Constraints 15(4), 485–515.

Rossi, F. (2005), Preference reasoning, in P. van Beek, ed., ‘CP’, Vol. 3709 of Lecture Notes
in Computer Science, Springer, pp. 9–12.

Rossi, F., van Beek, P. & Walsh, T. (2006), Handbook of Constraint Programming (Founda-
tions of ArtiVcial Intelligence), Elsevier Science Inc., New York, NY, USA.

Rossi, F., Venable, K. B. & Walsh, T. (2004), mCP-nets: Representing and reasoning with

preferences of multiple agents, in McGuinness & Ferguson (2004), pp. 729–734.

Rossi, F., Venable, K. B. & Walsh, T. (2008), ‘Preferences in constraint satisfaction and

optimization’, AI Magazine 29(4), 58–68.

Rossi, F., Venable, K. B. & Walsh, T. (2011), A Short Introduction to Preferences: Between Ar-
tiVcial Intelligence and Social Choice, Synthesis Lectures on ArtiVcial Intelligence

and Machine Learning, Morgan & Claypool Publishers.

191

References

Roubens, M. (1989), ‘Some properties of choice functions based on valued binary rela-

tions’, European Journal of Operational Research 40(3), 309 – 321.

Roy, B. (1991), ‘The outranking approach and the foundations of electre methods’, Theory
and Decision 31, 49–73.

Roy, B. (1996), Multicriteria Methodology for Decision Aiding, Kluwer Academic, Dor-

drecht.

Russell, S. J., Norvig, P., Candy, J. F., Malik, J. M. & Edwards, D. D. (1996), ArtiVcial intelli-
gence: a modern approach, Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Saaty, T. L. (1980), The Analytic Hierarchy Process: Planning, Priority Setting,Resource Allo-
cation, McGraw-Hill, New York.

Sabin, D. & Freuder, E. C. (1994), Contradicting conventional wisdom in constraint satis-

faction, in ‘Proceedings of the International Workshop on Principles and Prac-

tice of Constraint Programming’, PPCP ’94, Springer-Verlag, London, UK, UK,

pp. 10–20.

Sabin, D. & Weigel, R. (1998), ‘Product conVguration frameworks-a survey’, IEEE Intelli-
gent Systems 13, 42–49.

Sadeh, N. M. & Fox, M. S. (2003), ‘Hybrid solving for CSP’, ALP newsletter 6.

Salton, G. & McGill, M. (1983), Introduction to Modern Information Retrieval, McGraw-Hill

Book Company.

Santhanam, G. R., Basu, S. & Honavar, V. (2008), TCP-Compose* - a TCP-Net based algo-

rithm for eXcient composition of web services using qualitative preferences, in
A. Bouguettaya, I. Krüger & T. Margaria, eds, ‘ICSOC’, Vol. 5364 of Lecture Notes
in Computer Science, pp. 453–467.

Santhanam, G. R., Basu, S. & Honavar, V. (2010a), Dominance testing via model checking,

in M. Fox & D. Poole, eds, ‘AAAI’, AAAI Press.

Santhanam, G. R., Basu, S. & Honavar, V. (2010b), EXcient dominance testing for uncon-

ditional preferences, in Lin et al. (2010).

Santhanam, G. R., Basu, S. & Honavar, V. (2011), ‘Representing and reasoning with qual-

itative preferences for compositional systems’, Journal of ArtiVcial Intelligence
Research 42, 211–274.

Sardiña, S. & Shapiro, S. (2003), Rational action in agent programs with prioritized goals,

in ‘AAMAS’, ACM, pp. 417–424.

192

References

Sarwar, B., Karypis, G., Konstan, J. & Reidl, J. (2001), Item-based collaborative Vltering

recommendation algorithms, in ‘Proceedings of the international conference on

World Wide Web’, WWW 01, ACM, New York, NY, USA, pp. 285–295.

Savage, L. J. (1954), Foundations of Statistics, New York Wiley.

Schafer, J. B., Konstan, J. A. & Riedl, J. (2001), ‘E-commerce recommendation applications’,

Data Mining and Knowledge Discovery 5(1/2), 115–153.

Schaub, T. & Wang, K. (2001), A comparative study of logic programs with preference, in
Nebel (2001), pp. 597–602.

Schclar, A., Tsikinovsky, A., Rokach, L., Meisels, A. & Antwarg, L. (2009), Ensemble

methods for improving the performance of neighborhood-based collaborative

Vltering, in L. D. Bergman, A. Tuzhilin, R. D. Burke, A. Felfernig & L. Schmidt-

Thieme, eds, ‘RecSys’, ACM, pp. 261–264.

Schein, A. I., Popescul, A., Ungar, L. H. & Pennock, D. M. (2002), Methods and metrics for

cold-start recommendations, in ‘SIGIR’, ACM, pp. 253–260.

Schiex, T. (1992), Possibilistic constraint satisfaction problems or "how to handle soft con-

straints?", in D. Dubois & M. P. Wellman, eds, ‘UAI’, Morgan Kaufmann, pp. 268–

275.

Schiex, T., Fargier, H. & Verfaillie, G. (1995), Valued constraint satisfaction problems:

Hard and easy problems, in ‘Proceedings of the International Joint Conference

on ArtiVcial Intelligence 1995 (IJCAI-95)’, pp. 631–639.

Schmitt, S. (2002a), ‘simVar: A similarity-inWuenced question selection criterion for e-

sales dialogs’, ArtiVcial Intelligence Review 18, 195–221.

Schmitt, S. (2002b), ‘simvar: A similarity-inWuenced question selection criterion for e-

sales dialogs’, ArtiVcial Intelligence Review 18(3-4), 195–221.

Scott, D. & Suppes., P. (1958a), ‘Foundational aspects of theories of measurement’, Journal
of Symbolic Logic pp. 113–128.

Scott, D. & Suppes, P. (1958b), ‘Foundational aspects of theories of measurement’, Journal
of Symbolic Logic 23, 113–128.

Searls, D. & Norton., L. (1990), ‘Logic-based conVguration with a semantic network’, Jour-
nal of Logic Programming 19, 53–73.

Serna, M., Trevisan, L. & Xhafa, F. (2005), ‘The approximability of non-boolean satisVabil-

ity problems and restricted integer programming’, Theoretical Computer Science
332(1-3), 123–139.

193

References

Shani, G. & Gunawardana, A. (2011), Evaluating recommendation systems, in ‘Recom-

mender Systems Handbook’, pp. 257–297.

Shardanand, U. & Maes, P. (1995), Social information Vltering: Algorithms for automating

"word of mouth", in Katz et al. (1995), pp. 210–217.

Shen, X. (2007), User-centered adaptive information retrieval, PhD thesis, Champaign, IL,

USA.

Shen, X., Tan, B. & Zhai, C. (2005), Implicit user modeling for personalized search, in
O. Herzog, H.-J. Schek, N. Fuhr, A. Chowdhury & W. Teiken, eds, ‘CIKM’, ACM,

pp. 824–831.

Shimazu, H. (2001), Expertclerk: Navigating shoppers buying process with the combina-

tion of asking and proposing, in Nebel (2001), pp. 1443–1450.

Shimazu, H. (2002), ‘Expertclerk: A conversational case-based reasoning tool for devel-

oping salesclerk agents in e-commerce webshops’, ArtiVcial Intelligence Review
18(3-4), 223–244.

Shimazu, H., Shibata, A. & Nihei, K. (2001), ‘Expertguide: A conversational case-based

reasoning tool for developing mentors in knowledge spaces’, Applied Intelligence
14(1), 33–48.

Smith, B. M. (2001), ‘Constructing an asymptotic phase transition in random binary con-

straint satisfaction problems’, Theoretical Computer Science 265(1-2), 265–283.

Smyth, B. (2007), The Adaptive Web, Vol. 4321, Springer, chapter Case-Based Recommen-

dation, pp. 342–376.

Smyth, B. & Cotter, P. (1999), SurVng the digital wave, in K.-D. AlthoU, R. Bergmann

& K. Branting, eds, ‘ICCBR’, Vol. 1650 of Lecture Notes in Computer Science,
Springer, pp. 561–571.

Smyth, B. & Cotter, P. (2000), ‘Enabling technologies: a personalized television listings

service’, Communication ACM 43(8), 107–111.

Smyth, B. & McGinty, L. (2003), The power of suggestion, in Gottlob & Walsh (2003),

pp. 127–132.

Son, T. C. & Pontelli, E. (2006), ‘Planning with preferences using logic programming’,

TPLP 6(5), 559–607.

Sprecher, A. (2002), ‘Network decomposition techniques for resource-constrained project

scheduling’, The Journal of the Operational Research Society 53(4).

194

References

Stahl, A. (2002), DeVning similarity measures: Top-down vs. bottom-up, in Craw & Preece

(2002), pp. 406–420.

Stahl, A. (2006), Combining case-based and similarity-based product recommendation, in
T. Roth-Berghofer, M. H. Göker & H. A. Güvenir, eds, ‘ECCBR’, Vol. 4106 of

Lecture Notes in Computer Science, Springer, pp. 355–369.

Stefanidis, K., Koutrika, G. & Pitoura, E. (2011), ‘A survey on representation, composi-

tion and application of preferences in database systems’, ACM Transactions on
Database Systems 36(3), 19.

Stewart, T. J. (1996), ‘Robustness of Additive Value Function Methods in MCDM’, Journal
of Multi-Criteria Decision Analysis 5(4), 301–309.

Stolze, M. (2000), ‘Soft navigation in electronic product catalogs’, International Journal on
Digital Libraries 3(1), 60–66.

Straccia, U. (2008), Reasoning web, Springer-Verlag, Berlin, Heidelberg, chapter Managing

Uncertainty and Vagueness in Description Logics, Logic Programs and Descrip-

tion Logic Programs, pp. 54–103.

Stumptner, M. (1997), ‘An overview of knowledge-based conVguration’, AI Communica-
tions pp. 111–125.

Sycara, K. P., Roth, S. P., Sadeh, N. M. & Fox, M. S. (1991), ‘Resource allocation in dis-

tributed factory scheduling’, IEEE Expert 6(1), 29–40.

Thompson, C. A., Göker, M. H. & Langley, P. (2004a), ‘A personalized system for conver-

sational recommendations’, Journal ArtiVcial Intelligence Research 21, 393–428.

Thompson, C. A., Göker, M. & Langley, P. (2004b), ‘A personalized system for conversa-

tional recommendations’, Journal of ArtiVcial Intelligence Research 21, 393–428.

Tintarev, N. & MasthoU, J. (2011), Designing and evaluating explanations for recom-

mender systems, in ‘Recommender Systems Handbook’, pp. 479–510.

Topaloglu, S. & Ozkarahan, I. (2004), Comparison of diUerent variable and value order

strategies for the optimum solution of a single machine scheduling problem

with sequence-dependent setups., in C. Aykanat, T. Dayar & I. Korpeoglu, eds,

‘ISCIS’, Vol. 3280 of Lecture Notes in Computer Science, Springer, pp. 996–1005.

Torrens, M., Faltings, B. & Pu, P. (2002), ‘Smartclients: Constraint satisfaction as a

paradigm for scaleable intelligent information systems’, Constraints 7(1), 49–69.

195

References

Tou, F. N., Williams, M. D., Fikes, R., Jr., D. A. H. & Malone, T. W. (1982), Rabbit: An

intelligent database assistant, in D. L. Waltz, ed., ‘AAAI’, AAAI Press, pp. 314–

318.

Tsoukiàs, A. (2008), ‘From decision theory to decision aiding methodology’, European
Journal of Operational Research 187(1), 138–161.

Venturini, A. & Ricci, F. (2006), Aplying trip@dvice recommendation technology to

www.visiteurope.com, in Brewka et al. (2006), pp. 607–611.

Veron, M., Fargier, H. & Aldanondo, M. (1999), From CSP to conVguration problems.,

in ‘Proceedings of the AAAI’99 Worshop on ConVguration , Orlando (Floride),

18/07/99’, AAAI Press, pp. 101–106.

Vig, J., Sen, S. & Riedl, J. (2011), Navigating the tag genome, in P. Pu, M. J. Pazzani,

E. André & D. Riecken, eds, ‘IUI’, ACM, pp. 93–102.

Vincke, P. (1992), Multicriteria Decision-Aid, J. Wiley, New York.

Vion, J. (2006), Csp4j: a black-box csp solving api for java, in ‘Proceeding of the 2nd

International CSP Solver Competition’, pp. 75–88.

Visser, W., Hindriks, K. V. & Jonker, C. M. (2009), Argumentation-based preference mod-

elling with incomplete information, in ‘CLIMA’, pp. 141–157.

von Stengel, B. (1988), ‘Decomposition of multiattribute expected-utility functions’, An-
nals of Operations Research 16, 161–183.

von Winterfeldt, D. & Edwards, W. (1996), Decision Analysis and Behavioural Research,

Cambridge University Press.

Voss, S., H.Osman, I. & Roucairol, C., eds (1999), Meta-Heuristics: Advances and Trends in
Local Search Paradigms for Optimization, Kluwer Academic Publishers, Norwell,

MA, USA.

Wakker, P. & DeneUe, D. (1996), ‘Eliciting von neumann-morgenstern utilities when prob-

abilities are distorted or unknown’, Management Science 42(8), 1131–1150.

Wallace, R. J. & Wilson, N. (2009), ‘Conditional lexicographic orders in constraint satis-

faction problems’, Annals OR 171(1), 3–25.

Warnestal, P. (2007), Dialogue behavior management in conversational recommender sys-

tems, PhD thesis, Linkopings universitet.

Wellman, M. P. & Doyle, J. (1991), Preferential semantics for goals, in T. L. Dean & K. McK-

eown, eds, ‘AAAI’, AAAI Press / The MIT Press, pp. 698–703.

196

References

Wellman, M. P. & Doyle, J. (1992), Modular utility representation for decision-theoretic

planning, in ‘Proceedings of the Vrst international conference on ArtiVcial in-

telligence planning systems’, Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, pp. 236–242.

Wellman, M. P. & Doyle, J. (1994), Representing preferences as ceteris paribus compara-

tives, in ‘AAAI Spring Symposium on Decision Theoretic Planning’, pp. 69–75.

Wilson, N. (2004a), Consistency and constrained optimisation for conditional preferences,

in de Mántaras & Saitta (2004), pp. 888–894.

Wilson, N. (2004b), Extending CP-nets with stronger conditional preference statements,

in McGuinness & Ferguson (2004), pp. 735–741.

Wilson, N. (2006), An eXcient upper approximation for conditional preference, in Brewka

et al. (2006), pp. 472–476.

Wilson, N. (2009a), An eXcient deduction mechanism for expressive comparative prefer-

ence languages, in Boutilier (2009), pp. 961–966.

Wilson, N. (2009b), EXcient inference for expressive comparative preference languages,

in Boutilier (2009), pp. 961–966.

Wilson, N. (2011), ‘Computational techniques for a simple theory of conditional prefer-

ences’, ArtiVcial Intelligence 175(7-8), 1053–1091.

Woronowicz, E. & Zalewska, A. (2004), ‘Properties of binary relations’, Journal of Formal-
ized Mathmatics 1.

Xia, L., Conitzer, V. & Lang, J. (2008), Voting on multiattribute domains with cyclic pref-

erential dependencies, in Fox & Gomes (2008), pp. 202–207.

Xia, L., Lang, J. & Ying, M. (2007), Strongly decomposable voting rules on multiattribute

domains, in AAAI (Proceedings of the Twenty-Second AAAI Conference on Arti-
Vcial Intelligence, July 22-26, 2007, Vancouver, British Columbia, Canada 2007),

pp. 776–781.

Xu, Z. (2007), ‘Multiple-attribute group decision making with diUerent formats of prefer-

ence information on attributes’, IEEE Transactions on Systems, Man, and Cyber-
netics, Part B 37(6), 1500–1511.

Yaman, F., Walsh, T. J., Littman, M. L. & desJardins, M. (2011), ‘Democratic approximation

of lexicographic preference models’, ArtiVcial Intelligence 175(7-8), 1290–1307.

197

References

Yu, Z., Zhou, X., Hao, Y. & Gu, J. (2006), ‘Tv program recommendation for multiple view-

ers based on user proVle merging’, User Model. User-Adapt. Interact. 16(1), 63–82.

Zadeh, L. A. (1999), ‘Fuzzy sets as a basis for a theory of possibility’, Fuzzy Sets and Systems
100(supp.), 9–34.

Zaslow, J. (2002), ‘If tivo thinks you are gay, here’s how to set it straight’, The Wall Street
Journal .

Zins, A. H., Bauernfeind, U., Missier, F. D., Mitsche, N., Ricci, F., Rumetshofer, H. &

Schaumlechner, E. (2004), Prototype testing for a destination recommender sys-

tem: steps, procedures and implications, in ‘Proceedings of the International

Conference on Information and Communication Technologies in Travel and

Tourism ENTER-04’.

Zins, A. H., Bauernfeind, U., Missier, F. D. & Rumetshofer, H. (2004), An experimental

usability test for diUerent destination recommender systems, in ‘Proceedings of

the International Conference on Information and Communication Technologies

in Travel and Tourism ENTER-04’.

Zukerman, I. & Albrecht, D. W. (2001), ‘Predictive statistical models for user modeling.’,

User Modeling and User-Adapted Interaction 11(1-2), 5–18.

198

	Abstract
	Acknowledgements
	Dedication
	Declaration
	Introduction
	Background
	Preference representation
	Recommender systems
	Conversational recommender systems
	Constrained optimisation

	Problem Statement
	Research Goals and Objectives
	Contributions
	Publications
	Structure of the Thesis

	Literature Review and Related Work
	Introduction
	Preferences: Description
	The concept
	Elicitation

	Decision Theory
	Rationale
	Need for preferences in decision making
	Different decision-making approaches
	Normative decision-making
	Descriptive decision-making

	Representing Preferences
	Multi-attribute preferences
	Graphical models of preferences

	Preference Representation in Decision-Making
	Utility-based assessment
	Pairwise comparison-based assessment

	Comparative Preference Languages
	Lexicographic preference models
	Preferences with other features held constant
	CP-nets: overview
	Some extensions of CP-nets

	Even More Expressive Languages
	Preferences-Based Systems
	Individual decision aiding
	Collective decision aiding
	Preferences-based database requests

	Recommender Systems
	The task
	Human computer interaction
	Different techniques of recommendation
	Case-based recommender systems
	Single-shot recommender systems
	Conversational recommender systems

	Preference Handling Methods in Conversational Recommender Systems
	Critiquing
	Some approaches for conversational recommender systems
	FindMe
	More Like This & Partial More Like This
	Information Recommendation

	Some applications of conversational recommender systems
	Travel planning advisors
	Restaurant advisors
	Music advisor
	Other applications

	Constraint Satisfaction Problem
	Definitions
	CSP solution methods

	Constrained Optimisation
	Constrained optimisation problems: different solution methods
	Complete search
	Exact methods
	Search heuristics

	Incomplete search

	Constrained optimisation: coupled and decoupled approaches
	Branch and bound
	Preference-based complete search
	Conditional preferences-based constrained optimisation
	CP-net-based constrained optimisation
	Hard and optimality constraints-based constrained optimisation
	Constrained CP-net-based constrained optimisation
	Constrained FCP-net-based constrained optimisation
	CP-net-based formulation for constrained optimisation
	Polynomial constrained optimisation for partial acyclic CP-net
	Comparative preference theories-based constrained optimisation

	Conclusion

	Dominance for Comparative Preferences
	Introduction
	Preference Relations
	Preference relations properties
	Preference relations application

	A Comparative Preference Language
	Conditional preference theories-like statements
	CP-nets-like statements
	TCP-nets-like statements

	Total Pre-orders-Based Dominance: Formal Semantics
	Total pre-orders-based semantics
	CP-tree-based semantics
	Description of a cp-tree
	CP-tree: variable and value orderings
	Comparing two outcomes
	Generation of a compatible ordering of outcomes

	CP-Tree-Based Preference Computation
	Other Preferential Semantics
	Summary

	Preferences Deduction for Conversational Recommender Systems
	Introduction
	The Case Study: Information Recommendation
	The advisor
	The queries
	The dialogue
	The user

	A Framework for Preference Dominance
	Ultimate goal: inference
	Logical settings
	Application

	Sum of weights-Model Approach
	Models
	Constraint language
	Dominance relation
	Dominance computation

	CP-tree Model Approach
	Models
	Constraint language
	Dominance relation
	Dominance computation

	Induction of Constraints on Preferences Within the Framework
	Inducing constraints in the sum of weights model
	Inducing constraints in the cp-tree model

	Experimentation and Comparative Study
	Settings
	Offline experiments
	Products
	The initial query
	User Modeling
	System runs
	The pruning

	Comparative study
	Representing true preferences in the sum of weights model
	Representing true preferences in the cp-tree model

	Generalization for Non-Boolean Features
	Other Kinds of Models of Preferences
	Larger sets of models
	Towards a stronger pruning
	Lexicographic inference
	Application to group recommender systems
	Application to other forms of conversations in recommender systems

	Conclusions

	Constrained Optimisation for Comparative Preferences
	Introduction
	Personalized Branch And Bound
	Model of the search tree
	Preference relation for optimisation
	Preference-based branch and bound

	Dominance Pruning Rules
	The root-dominates rule
	The deciding-node dominance rule
	Projection-dominance condition

	p(): A sufficient Condition for Dominance based on Unsound Dominance Relation
	Non-Dominance Pruning Rules
	Example: Computer Configuration Problem
	Computer configuration problem
	Example

	Implementation Issues
	The search tree
	Relevant undominated solutions
	The Reduce procedure
	The dominanceTest procedure
	The CPOptimizer procedure

	Experimental Testing
	Experimental setup
	Discussion of results
	Synthesis of discussion

	Conclusion

	Conclusion
	Summary
	Future directions

	Glossary

