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Mass transport for Pollard waves

Mateusz Kluczek! and Raphael Stuhlmeier?

1School of Mathematical Sciences, University College Cork, Cork, Ireland
2Centre for Mathematical Sciences, University of Plymouth, Plymouth, UK

Abstract

We provide an in-depth exploration of the mass-transport properties of Pollard’s exact
solution for a zonally-propagating surface water-wave in infinite depth. Without resorting to
approximations we discuss the Eulerian mass transport of this fully nonlinear, Lagrangian
solution. We show that it has many commonalities with the linear, Eulerian wave-theory,
and also find Pollard-like solutions in the first and second order Lagrangian theory.

1 Introduction

In 1970 Pollard [I7] introduced a modification of the famous Gerstner wave [5] which provided
an exact solution for the Euler equations with Coriolis forces. This was the first of many — and
in recent years increasingly complex — exact solutions for geophysical waves (see [0 O] [I0] and
references therein). Pollard’s zonally propagating wave has since been studied by a number of
authors — its stability was investigated by Ionescu-Kruse [8], who also considered the restriction
to the equatorial f-plane [7], and it was recently extended to internal waves by Kluczek [13], [12].
A thoroughgoing investigation of Pollard’s solution, including the effects of an underlying current,
was performed by Constantin & Monismith [3]. Rodriguez-Sanjurjo [I8] showed rigorously that
a Pollard-like solution is globally dynamically possible. While the solution is rotational and thus
the associated flow cannot be generated by conservative forces, some observations indicate that
such waves cannot be ruled out in wave tank experiments [I4] 22]. Further discussion of the
oceanographic relevance of these solutions may be found in Boyd [I].

Pollard’s seminal work explored the mass transport of surface waves with rotation, for the
exact Lagrangian solution, as well as for Stokes’ solution. The present paper employs new tech-
niques and numerical tools to shed further light on the matter, treating a number of issues exactly
for the first time. While the Lagrangian mass transport for Pollard’s wave is immediate, we are
also able to compute the Eulerian mass transport exactly using the Lambert W-function [21].
Furthermore, in light of the surprising commonalities that have been found between trochoidal,
exact solutions and linear theory (e.g. [19] [I1]), we explore the linearized problem with rotation
in both Eulerian and Lagrangian coordinates.

In what follows, we first present the governing equations in Lagrangian and Eulerian coor-
dinates in Section [2 We introduce Pollard’s solution, and discuss the Eulerian and Lagrangian
mean velocities associated with it in Section [3} In Section [d] we compare Pollard’s solution with
the solution to the linearized problem in Eulerian coordinates, calculating the associated Eule-
rian and Lagrangian mean velocities. In Section [5| we look at the corresponding theory for the
linearized problem in Lagrangian coordinates. Finally, we present some concluding remarks in
Section



2 Governing equations

The governing equations for water waves in the presence of Coriolis forces may be found in most
textbooks on geophysical fluid dynamics, e.g. Pedlosky [I5]. The local reference frame with
origin at the Earth’s surface, and rotating together with the Earth is presented in Cartesian
coordinates. Therefore, the (z,y, z) coordinates represent the direction of the latitude, longitude
and local vertical, respectively (sometimes called zonal, meridional, and vertical). The respective
components of the velocity field are u = (u, v, w), and the governing equations take the form

. 1
Ut + Uy + VUy + WU, + fw — fo=——F,,
p

1
Ve + vy + voy +wu, + fu= —;Py, (1)

A 1
Wy + uWy + vwy +ww, — fu= —;PZ — g,

where the Coriolis parameters are given by

f =2Qsin ¢, f=2Qcos ¢. (2)
Here € is the constant rotational speed of the Earth, Q = 7.29 x 10~°rad-s~! around the polar
axis towards the east. An assumption of constant density yields the incompressibility condition

Uy + vy +w, = 0. (3)
Finally, we must impose conditions on the sea-surface, given by z = n(x,y,t) :

P=P,, on the free surface z = n(z,y,t), )
w =, +un, +vn, on the free surface z = n(z, y, 1),
where Py, denotes the constant atmospheric pressure. For the purpose of describing waves in
the open ocean, the deep-water assumption of vanishing velocities with depth supplements the
above.
In the Lagrangian description, the same equations take the form

(@ — fyr + Fz)zg + (e + fo)yq + (20 — f2e)2q + Py/p + 924 = 0, (5)
(@t — fyr + f20)xr + (e + fo)ye + (200 — fe)z + Pr/p+ g2 = 0, (6)
(@t — fye + f20)ms + (Yo + f0)ys + (200 — f21)2s + Ps/p+ 925 = 0, (7)
with the incompressibility condition that the Jacobi determinant be time-independent, i.e.
sl »

for particle labels ¢, r, and s and positions x(q,r, s,t), y(q,7,s,t) and z(q,r, s, t), respectively.

3 Pollard’s exact solution

In terms of the Lagrangian labels ¢, r, and s, Pollard [I7] gave an explicit solution in the following

form:
x=q—be™sinb,

y=r—de™ cosb, (9)

z=s+ae™’cosb.
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Figure 1: Closed particle paths of Pollard’s wave. Here k = 0.0628m ™!, ¢ = 60° and ¢ = 2 m.

where 6 = k(q — ct), and
(q,r,8) € R x (—=rg,70) X (—00,80(7)). (10)

Here the Lagrangian labelling variable r € (—rg, ro) since we resolve the solution around a fixed
latitude ¢, so that f and f are constant. The parameter so(r) represents the free surface.
Using the governing equations, we find the following relations between the parameters occur-

ring in @[):

ck?
m= - (11)
b= ? (12)
d= —% (13)

with v = y/c2k? — f2. The pressure is then given explicitly by

1
P= p§€2m8a262k2 (1 + i) — pgs + Pum- (14)
The dispersion relation is given by

2 (62k2 — f2) = (g — fc>2. (15)

For vanishing rotation €2 = 0, Pollard’s solution @ reduces to the famous Gerstner wave, with
the addition of a parameter a. Otherwise it is a rotationally modified, zonally propagating wave
with trochoidal free surface (see Figure , whose particle trajectories are closed circles inclined
at an angle to the local vertical (see Figure [I). The inclination of the particle paths increases
with distance from the equator (see Figure
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Figure 2: The profile of the wave with the parameters k = 6.28 x 1072 m™1, ¢ = 12.4934989
ms~!, @ = 8 m propagating at ¢ = 60°.
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Figure 3: The tilt of particle orbits at latitudes 0°, 30°, 45° and 60° South. The tilt of particles
increases as we move away from the equator towards the poles. The parameter of the amplitude
is fixed to the local vertical, therefore the vertical cross section of the wave does not change with
increasing latitude.



-
S o o o o
- ® & K& ©

T T T T

I I I I

Mean Eulerian velocity [m/s]
5 .
©
T
L

0.14 b
0.16 - b
0.18 b
-0.2 4
_022 Il Il Il Il Il Il Il Il
0 2 4 6 8 10 12 14 16 18
Depth [m]

Figure 4: The mean Eulerian velocity depicted for different depths. The mean velocity is eval-
uated at latitude ¢ = 60°. The respective parameters of the wave are k = 6.28 x 1072 m™1,

c=125ms™!, a = 2 m with period T' = 8 s.

3.1 Eulerian mean velocities

Calculation of Eulerian mean velocities requires fixing a point (zo, Yo, 20) in the fluid domain,
and integrating the (Eulerian) velocity field w(zg, yo, 20,t) over one wave period. For Pollard’s
exact solution, this means inverting @, so that u(q,r,s,t) = i(q,r,s,t) (for fixed labels g, r, s
and varying positions x,y, z) can be recast as u(z,y, z,t) (for fixed z,y,z and varying labels
q,7,8). Such a procedure cannot be carried out analytically — however we shall see that the
Eulerian mean velocity depends only on depth zg, and will compute it numerically.

Fixing a depth zo = s+ ae™* cos(f) beneath the wave trough, it is clear that we can express
implicitly s = S(zo,0). In fact, S = zg — W (am cos(#)e™*°) /m, for W the Lambert W-function.
Thus, noting that u is independent of vy,

T L
c+ (u) g (20) = l/0 [c + u(z — ct, 29)]dt = %/0 [c 4+ u(z — ct, z0)]dz

T
1 [f 0x(q, S)
— Z/ [c + u(q — ct, Zo)]ia dq
0 q (16)
L 2,.,2,.2ms
1 —a*m-e

== kebe™S cos ) —— - 10

/0 (c+ kebe™ cos )1+maemscos9 e

2,2

L
m-a“c omS
=c— e dg.
L /0 !

Therefore, the mean Eulerian velocity in the longitudinal direction is

22 L
<u>E (ZO) _ _m a C/ e2mS(20,9)dq. (]_7)
L 0
which depends only on z( since S is periodic in § = g—ct. This exact expression may be compared
with the leading order approximation given in eq. (25) of Pollard [I7].
The Eulerian mean velocity is negative, and largest at the equator, where ¢ = 0, and falls off
towards the poles. This may be seen in Figure [5| where has been evaluated numerically for
different values of ¢. It is readily verified that
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Figure 5: The mean Eulerian velocity for a fixed point at the depth z = —18 m. The plot

presents the mean velocity evaluated with respect to increasing latitude. The wavenumber is
k= 6.28 x 1072 m~!, the wave speed is ¢ = 12.5 ms~!, and the amplitude of the wave at the
surface is @ = 2 m with period T' = 8 s.

0 m2a?c [ 9
—(u)p(z0) = — SN dg > 0 18
8z0< )5(%0) 17 /o 20 q>0, (18)
so that (u)p decreases with increasing depth. Numerical evaluation of shows this decrease
in mean Eulerian velocity, as depicted in Figure |4l There are no Eulerian mean velocities in the
vertical or meridional direction, as (v)g and (w)g lead to an integral akin to , albeit with
an odd, L-periodic integrand.

3.2 Lagrangian mean velocities

The Lagrangian mean velocities may be calculated from @ by taking the integral averaged over
a wave period. For the longitudinal Lagrangian mean velocity

T
(u)g, = T/ z(q,r, s,t) dt, (19)

with analogous expressions for the meridional and vertical mean velocities. Differentiating @D
w.r.t. t and inserting into we see that all Lagrangian mean velocities vanish, reflecting the
fact that the particle trajectories are closed (see Figure|l) and there is no net wave transport.

4 Linear Eulerian theory for geophysical surface waves

The Eulerian equations 1) may be linearised by assuming small steepness of the surface
waves. The linear equations for waves travelling in the zonal direction, analogous to Pollard’s
waves, were given by Constantin & Monismith [3]



u+ fw— fo =P, (20)
ve+ fu=—Py, (21)
wy — fu=—P. —g, (22)
Uy + vy +w, =0, (23)
w=mn; on z =0, (24)
us + fw — fo+gn, =0on z =0, (25)
with solution
1 = ag cos(h), (26)
u = meage™* cos(0), (27)
v = %emz sin(0), (28)
w = kcage™ sin(0), (29)
where 6 = k(xz — ct), and m and ¢ are given in and , respectively.
4.1 Eulerian mean velocities
The Eulerian mass transport is defined as the average
1 (T
(uyg = T/o udt, (30)

which is readily seen to vanish below the trough line for all components of the velocity field
(27)—(29). By Taylor expansion about the free surface level (see [4], p. 285ff]), the zonal Eulerian
mean velocity at the surface (u(z, z,7)) g = adm?c/2, while the meridional and vertical Eulerian
mean velocities vanish. This second order effect arising from the linear theory was not considered
in Pollard.

4.2 Lagrangian mean velocities

To elucidate the Lagrangian mean velocities (u);, we must consider the particle trajectories.
These satisfy the system of coupled, nonlinear ODEs

T=u,y=uv,z=uw, (31)

for u, v, w given above. By suitable rotation of the coordinates, akin to that adopted for edge
waves [20], it can be shown that the Lagrangian particle paths in this linear, Eulerian theory are
non-closed, with a forward drift over the wave period, corresponding to a positive Lagrangian
mean velocity in the direction of wave propagation.

We switch to the rotated coordinates

x’ 1 0 0 T
¥y =10 cosa sina Yy (32)
2 0 —sina cosa z
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Figure 6: Example particle paths, obtained by numerical integration of the linear particle trajec-
tory ODEs over one period. Here k = 0.0628m™!, ¢ = 60° and a = 2 m. The initial position is
chosen as (g, Yo, 20) = (0,0,0). The drift over one period is 1.1 m in the direction of propagation.

and let tana = d/a = —f /7, see . In this rotated frame, the particle trajectory ODEs have
the form

’
CZI; _ mcaoem(y’ sin a+2’ cos @) COS(G),
dy’
o
dz' m(y’ sina+2' cosa) _:
g = Meaoe Y sin(6).

Thus the particle motion is two-dimensional, confined to planes inclined at an angle « to the
vertical (see [3]), and using the results of [2] the particle paths are found to be non-closed, as is
easily seen using numerical integration (see Figure |§[) Prior work, including Pollard’s [I7, Eq.
(24)] built on integrating the particle trajectory ODEs for a small displacement about the
initial position (z, yo, 20) only (see, e.g. [, Sec. 4.2.2]), thereby circumventing the Lagrangian
mass transport contained in the first-order theory.

While a fully rigorous, quantitative theory is out of reach, by numerical integration it may
be established easily that the first-order drift obtained by integrating is of roughly the same
magnitude as the Stokes’ drift.

5 Linear Lagrangian theory for geophysical surface waves
Following Pierson [16], one can obtain a solution to the linearized form of the Lagrangian gov-

erning equations 7. Linearizing about the hydrostatic solution (z = ¢,y = r, z = s)
yields

Itt*fytJertJqu/PJFng:Oa (33)
Yyt + fre + Pr/p+ gz, =0, (34)
2tt—f$t+Ps/P+gzs:0; (35)



and the linear incompressibility condition

Tat + Yrt + 25t = 0. (36)

It is remarkable that a Pollard-like wave also solves f. Making an ansatz of the form @
leads to a set of algebraic equations, and the relations
am —amf

o, 7
:k<fc_g)7 _ , d= , (37)
f2 — c2k? k ck?
cf. 7. Subsequently the dispersion relation is recovered, and it can be seen that the
particle paths are circular, owing to a? 4+ d? = b2. The vertical decay scale, controlled by m, for
the linear solution is distinct from the full, nonlinear solution, and the pressure is hydrostatic
P = P, — pgs. The exact pressure of Pollard’s exact solution is subsequently recovered as
a second order correction.

m

6 Discussion

Exact, trochoidal solutions have much in common with the periodic wave trains found in linear
Eulerian theory. In both cases we find a fluid velocity field exhibiting exponential decay with
depth together with sinusoidal motion in the direction of propagation. Despite the fact that
linear theory posits small wave slope, while the exact theory is valid up to the theoretical steepest
(cusped) wave, we find the same dispersion relation in both cases. These commonalities have
been discussed elsewhere for Gerstner waves and trochoidal edge waves, and we find them again
for Pollard’s rotationally modified trochoidal wave.

The exact, trochoidal theory relies on tracking particle labels, and is based on the Lagrangian
form of the governing equations. This gives rise to the two major discrepancies between linear
FEulerian waves and the trochoidal theory: vorticity and mass transport. We have undertaken a
study of the mass transport of Pollard’s solution, deriving in an expression for the Eulerian
mean velocity in terms of the Lambert W-function. This depends only on depth and latitude,
and can easily be evaluated numerically. The Lagrangian mean velocities of Pollard’s solution
are zero due to the closed particle paths.

The mass transport for the linear, Fulerian solution was also investigated, where Coriolis
forces have the effect of slightly modifying the classical, sinusoidal wave. Nevertheless, we high-
light the impact of recent results showing that the particle trajectories are not closed even for
linear theory, and demonstrate the impact of this on the Lagrangian mass transport for linear,
Eulerian waves in a rotating frame. By a suitable rotation of the coordinate frame, we see
that the motion in these waves is strictly 2D, and particles undergo a drift in the direction of
wave propagation. This first order—drift is comparable in magnitude to the second—order Stokes’
drift. We also demonstrate that the Pollard wave solves the linearized Lagrangian equations with
hydrostatic pressure, and also satisfies the second-order Lagrangian equations.
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