
Title Soft theory: a pragmatic alternative to conduct quantitative
empirical studies

Authors Russo, Daniel;Stol, Klaas-Jan

Publication date 2019-05-27

Original Citation Russo, D. and Stol, K.-J. (2019) 'Soft theory: a pragmatic
alternative to conduct quantitative empirical studies', CESSER-
IP '19: Proceedings of the Joint 7th International Workshop on
Conducting Empirical Studies in Industry and 6th International
Workshop on Software Engineering Research and Industrial
Practice, Montreal, Quebec, Canada, 27 May, 3338714: IEEE Press,
pp. 30-33. doi: 10.1109/cesser-ip.2019.00013

Type of publication Conference item

Link to publisher's
version

https://dl.acm.org/citation.cfm?id=3338714 - 10.1109/cesser-
ip.2019.00013

Rights © 2019 IEEE. . Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Download date 2024-05-01 22:01:08

Item downloaded
from

https://hdl.handle.net/10468/8426

https://hdl.handle.net/10468/8426


Soft Theory: A Pragmatic Alternative to Conduct
Quantitative Empirical Studies

Daniel Russo and Klaas-Jan Stol
Lero—the Irish Software Research Centre

School of Computer Science and Information Technology
University College Cork

daniel.russo@lero.ie, klaas-jan.stol@lero.ie

Abstract—Practitioners and scholars often face new software
engineering phenomena which lack sufficient theoretical ground-
ing. When studying such nascent and emerging topics, it is
important to establish an initial and rudimentary understanding,
leaving a more precise understanding of underpinning mecha-
nisms till later. Controlled experiments, for example, might lead
to insights into the specific mechanisms underpinning a certain
practice, such as distributed development, pair programming,
and test-driven development. However, at an initial stage of
research, such highly controlled studies may not be feasible. In
other domains, it may not be clear what the key constructs are, so
that effective measurement cannot be done. Instead, researchers
might opt for pragmatic alternative research approaches that
do not require experimental control or active intervention in
a study’s setting. In this paper we advocate the use of soft
theory (based on soft modeling techniques) for quantitative
studies in software engineering research. We discuss the use
of soft theory and position it within an existing taxonomy of
quantitative data analysis techniques. Soft modeling and soft
theory affords us a pragmatic approach to developing inferential
and predictive research models, rather than aiming to develop
a causal understanding. Soft theory approaches are grounded in
robust quantitative data analysis techniques. We argue that these
techniques can be effectively used in industry settings which are
not amenable to highly controlled studies.

I. INTRODUCTION

Traditionally, the development and use of theory has not
been a primary activity within Software Engineering (SE)
research [1], [2]. The lack of a rigorous theory or conceptual
model is the default scenario in engineering disciplines, where
professional practice tends to advance before a theoretical
foundation is developed. An oft-cited reason is that SE is still
a young discipline whose roots can be traced back to the 1950s
and 1960s. As Margaret Hamilton explained in her ICSE 2018
keynote, marking the 50th anniversary of Software Engineering,
most knowledge and wisdom that we possess come from trial
and error experiences in practice [3]. Of course, this is not to
trivialize decades of research that the community has conducted,
some of which has had a significant impact on the field and
the community. For example, Conway’s Law [4] suggests that
software design is affected by an organization’s communication
structure; or Brooks’ Law [5] which has implications for project
management of software projects that are running late; or the
201 principles of programming by Davis [6]. A common theme
in these examples is that the sometimes anecdotal evidence

that is offered is generalized, without sufficient theoretical and
empirical justification.

An example of practice leading research is design patterns.
Many SE students are taught about design patterns as reusable
design solutions to recurring problems, and that they can draw
design ideas from catalogues of well-defined problem-solution
pairs. This concept was adopted by software professionals from
the civil architecture domain [7], not proposed by software
engineering researchers. Although the typical software engineer
may rely on some SE theory1 every day, such as design patterns,
theory is still frequently overlooked in software engineering
research. For example, a survey study of 103 articles reporting
experiments selected from of a total of 5,453 articles published
in major SE research venues, shows that only 24 used some
theoretical basis to inform the research [8].

While there have been some efforts within the SE domain to
establish a more clear focus on theory [2], the SE community
has not widely adopted a theory-oriented approach to research.
Especially in nascent areas of research, theory underpinning
phenomena and events is usually lacking. We may have a
conceptual idea of the key theoretical constructs, but it would
be too early to aim for development of a complete theory.

In this paper, we draw a distinction between “hard” and “soft”
theory. We characterize “hard” theories as those that have been
extensively studied, confirmed, and which have contributed
to a deep understanding of a given phenomenon. Studies
to confirm such “hard” theories typically adopt strategies
such as laboratory experiments which facilitate a high level
of control and precision of measurement. Conducting field
experiments in industry settings is inherently limited given
that such natural settings do not facilitate the level of control
that researchers would require to achieve a high level of
precision of measurement, as would be possible in laboratory
experiments [9]. By distinguishing hard theoretical from soft-
theoretical approaches, this work aims to bridge the gap
between researchers’ goals and practitioners’ possibilities.

In this paper we focus on quantitative research while we
acknowledge the important role of qualitative research in
nascent research areas. This focus allows us to elaborate and
position ‘soft theory’ vs. ‘hard theory.’ The remainder of this
paper is structured as follows. We discuss soft vs. hard theory

1We use the term ‘theory’ in the broadest sense.



in Sec. II. We adopt Leek’s taxonomy describing different
levels of data analysis in Sec. III to position soft and hard
theoretical approaches. We conclude with some suggestions
for future work in Sec. IV.

II. SOFT VS. HARD THEORY

In this paper we elaborate on the use of what we call soft
theory, as a pragmatic alternative for conducting quantitative
empirical studies in industry settings. Soft theory can be
differentiated from hard theory along several dimensions (see
Table I). Researchers who wish to confirm and extend already
established theories work in a hard theory setting, while if their
aim is to provide an initial, exploratory understanding of a
new subject matter, soft theory is more appropriate. Soft theory
approaches were initiated several decades ago in disciplines
such as Management supported by advances made in statistics
[10], where mathematical techniques for soft modeling are used
to provide efficient predictions based on research, constrained
by conditions of low information, nascent or emerging theory,
and limited observations of a phenomenon [11]. There are many
situations where a soft theory approach may be best suited for
both scholars and practitioners, since it offers a pragmatic trade-
off to those contexts where controlled experiments cannot be
easily conducted, and the results of a soft theory approach can
achieve “good enough” results that are useful to practitioners.

With a soft theory approach, the focus is not on questions
such as “which factors cause what effect,” while trying to
eliminate confounding factors that are very hard to rule out.
Instead, soft theory approaches focus on correlation (e.g., path
coefficients) and the proportion of the variance for a dependent
variable that can be explained by an independent variable (i.e.,
R2). In other words, these approaches highlight the level of
significance of the different research hypotheses and explain
how good a theoretical model is, compared to a zero-baseline
model (which does not use any independent variables to predict
the value of a dependent variable, so that it cannot say anything
about the different relations). As a consequence, if research
hypotheses are not firmly grounded in theory, the research
model will have low path coefficient and R2 coefficients,
suggesting that the research model is purely random. Control
over confounding factors is here purposely neglected for two
reasons. Firstly, doing so is a more economical choice, because
simpler research designs require less resources and effort
to implement. Secondly, if those confounding factors are a
constant within a specific industrial setting (and they cannot
be discarded), they would not change the resulting soft theory
anyway.

III. DATA ANALYSIS IN SE RESEARCH

We draw on Leek’s framework which categorizes different
types of data analysis for quantitative studies [15]. We discuss
the different types according to the level of research effort that
is usually required. A more intense research effort can lead
to more precisely defined theories, but this may not always
be possible. Besides the cost of doing research, hard theory
studies cannot be performed in a reliable way in some cases.

TABLE I
COMPARISON OF SOFT THEORY VS. HARD THEORY IN SE RESEARCH

Soft Theory Hard Theory

Context The research domain is
typically new or poorly
studied from a knowledge-
seeking perspective [9]

Well established research do-
main, where many insights
have been gathered by previ-
ous and long lasting research

Goal To provide introductory un-
derstanding of a software
engineering phenomenon

To confirm and extend es-
tablished software engineering
theories

Focus A preliminary understand-
ing of a phenomenon
which can not be explained
with established theories

An already well-identified
phenomenon; understanding
causality

Outcome Hypothesis, conceptual
models, and correlation-
based empirical evidence

Causation-based theoretical
models

Example The reasons episodic
volunteers contribute in
FLOSS communities is a
topic of emergent interest
to investigate alternative
workforce in software
development [12]

Software cost estimation the-
ory is a very established the-
ory. COCOMO was firstly pro-
posed by Boehm et al. [13]
in 1981 and still generates a
literature debate to improve
and extend the original model
(e.g. COCOMO II [14])

For example, if a phenomenon of interest is not well understood,
measurement instruments may be lacking, which means that
it is extremely challenging, if not impossible, to measure the
concepts in an accurate manner.

There is a rich variety in empirical research methods, each
with specific strengths and weaknesses [9]. In this paper, we
focus exclusively on quantitative research and data analysis.
Leek proposed a classification of data analysis approaches,
which comprises six categories representing an increasing level
of research effort: Descriptive, Exploratory, Inferential and
Predictive, Causal, and Mechanistic [15]. The flowchart in
Fig. 1 explains the level of depth of each category. In Table II
we compare such types with examples. We discuss each type
of data analysis below.

Descriptive analysis simply summarizes a data set without
any interpretation. This is a typical initial step in most statistical
analyses that can be used, for example, to assess distributional
assumptions to decide whether one should use parametric or
non-parametric approaches. This kind of analysis is useful
to gain initial insights in big data sets, such as census data,
without drawing any statistical conclusions.

Exploratory analysis looks for trends, outliers, correlations,
and relationships of data derived from the descriptive analysis.
Usually visualization approaches are used in this case. To
continue the example of census data introduced above, specific
patterns can be analyzed, such as: “for which reasons do we
see a decrease of the birth rate with an increase of GDP/per
capita?”

An inferential analysis quantifies whether a pattern holds
beyond the data set, making no statements on individual
situations. For example, a student might be interested to forecast



the average salary of a college graduate in five years time, at
the point of graduation. To that end, data of college alumni
may be used for the analysis, assuming that the new graduate
will receive similar remuneration to that of current graduates.
Thus, inference is an appropriate approach to look for average
effects.

A predictive analysis focus on individual conditions. Using
the example of before, to predict the individual 5-years salary
of a college graduate a data analysis will use a range of
factors about an individual, such as grades, family background,
previous experiences, and so on. The results of this approach are
not suitable for all graduates, but best suited for the analyzed
individual. The difference between inferential and predictive
analysis is whether or not the aim is to infer to a general
population, or to predict an outcome for a particular individual.

Causal analysis typically requires randomized controlled
experiments to test what happens on average to the dependent
variable, after the treatment of the independent variable, in order
to identify both direction and magnitude of the relationship.
Directed acyclic graphs (DAG) are more often used to visualize
causal, confounding, and bias of analyzed phenomena [16].

Finally, a mechanistic analysis seeks very precise, determinis-
tic behaviors on such relationships. Taking the medical domain
as a typical example: a very precise, mechanistic analysis can
help to determine the exact amount of medication to prescribe
to patients with a specific health issue. To establish this level
of precision, studies have to be modeled by a deterministic
set of equations that consider a range of relevant variables
such as age, gender, and variables related to health conditions
(e.g. blood pressure). The deterministic set of equations, then,
model the ranges of values for these variables. A mechanistic
analysis provides more information than a “binary” outcome
indicating whether or not a specific drug works, as one would
find in a typical A/B test setting.

According to Fig. 1, descriptive analysis is not considered
a theory-generating approach, because it does not draw any
statistical conclusions (cf. [2]). On the other hand, with different
degrees of research accuracy, exploratory, inferential, and
predictive analysis can be fruitfully used to support soft theory
models, clearly stating the limitations inherent to the selected
method.

Fig. 1 provides an overview of the approaches with increasing
research effort. As mentioned in the introduction, in many cases
a soft theory approach may be suitable for industry research
contexts, especially if they focus on inference and prediction.
We must acknowledge that the difference between inferential
and predictive approaches, according to Leek’s framework is
very blurred in software engineering. Software engineering
research rarely focuses on individual results but usually seeks
generalizability. However, this distinction leads to a reflection
on conclusive claims that we are used to make related to the
data we use. If we are looking at one specific organization, and
are conducting solution-seeking research [9] that leads to new
tools or models which are best tailored to that organization,
it makes very little sense to claim for average effects. Such
results may still be useful because that particular solution is

Q1

Descriptive

Exploratory

Inferential Predictive

Causal

Mechanistic

Q2

Q3

Q6

Q4Q5

Q2: Summaries are 
reported and 
interpreted

Q3: Quantification 
whether discoveries 
hold in a new sample

Q4: Tests whether 
changing the average 
of one measurement 
affects another

Q6: Testing for 
average or 
deterministic effects

Q5: Prediction of measurements 
for individual cases

Q1: Data are 
summarized

In
cr

ea
si

ng
 re

se
ar

ch
 e

ff
or

t r
eq

ui
re

d

So
ft

 T
he

or
y

H
ar

d 
Th

eo
ry

No

No

No

No

Average

Deterministic

Yes

Yes

Yes

Yes

YesNo

Not a data 
analysis

Fig. 1. Hierarchical Data Analysis Flowchart for Software Engineering research
(adapted from Leek [15])

likely to lead to improvements for that specific case, rather
than a generic average-based one.

We acknowledge the increasing attention to Bayesian Data
Analysis in SE research [17]. In this context, we see BDA as
a valuable approach for hard theory cases, since conditional
probability is gathered by previous studies and consolidated
experiences, and this conflicts with our premise that in nascent
areas such prior data and studies are lacking.

IV. CONCLUSION

Researchers in other fields such as Management have adopted
data analysis approaches, which we have labeled “soft theory”
approaches, to overcome the typical constraints of in-vitro
settings that only laboratory settings can offer. In other words,
it provides a snapshot of a phenomenon, without the possibility
to manipulate variables, when it is not possible to test for
causation through randomized controlled experiments. Hence,
industry constructs for which we lack a thorough understanding
can be tested and validated using soft modeling approaches.

This paper proposes the use of soft theory as a pragmatic
alternative for conducting industry studies in the software
engineering domain. We position soft modeling techniques,
such as Partial Least Squares Structural Equation Modeling
(PLS-SEM), in Leek’s framework (see Fig. 1), and contrast
it with what we have term hard theory (see Table I). Leek’s
framework positions a range of data analysis techniques (see
Table II), most of which are suitable for SE research. Soft theory
is a convenient initial approach to work towards hard theory,
especially in early stages of research on new and emerging
phenomena, where the inferential and predictive potentials of
statistical methods can provide statistically rigorous outcomes.



TABLE II
DESCRIPTION OF DATA ANALYSIS TYPES IN SOFTWARE ENGINEERING BASED ON LEEK’S TAXONOMY [15]

Data Analysis Aim Typical methods Common mistakes Example Effort

Descriptive Description of a data set.
Useful to have a first un-
derstanding of the phe-
nomenon

Univariate analysis (e.g.
histograms, pie charts,
etc.)

Drawing conclusions be-
yond the data set descrip-
tion

Industry report on adoption of Agile
practices by VersionOne [18]

Very low

Exploratory Find previously unknown
relationships. Useful to
generate research hypothe-
ses

Correlation analysis Data “fishing”: looking for
patterns and other informa-
tion in a data set that it
does not actually contain

The analysis of a data set on
object-oriented metrics suggest that
they are significantly correlated
with software management indica-
tors [19]

Low

Inferential Test hypotheses about
a general phenomenon.
Computations are based
on generic datasets (e.g.,
software repositories)

Regression models,
path modeling (e.g.,
PLS-SEM)

Claiming for causation On average, post-release defects
decreases with code review cover-
age, participation, and expertise of
developers [20]

Medium

Predictive Test hypotheses about an
individual phenomenon.
Computations are based
on individual historical
data (e.g., time series)

Regression models,
path modeling (e.g.,
PLS-SEM)

Used for generalization
purposes

Framing of defect prediction mod-
els using metrics for one organi-
zation (NASA), extracted from the
NASA datasets [21]

Medium

Causal Finding causal relations be-
tween different phenomena

Randomized Controlled
Experiment (RCE), con-
firmatory research (e.g.
CB-SEM), Bayesian Data
Analysis (BDA)

Make deterministic claims
on causal relations

Tool supports lead to significant
improvements of quality metrics but
does not affect the number of bugs
found by developers [22]

High

Mechanistic Determine exact changes
on independent variable to
cause an exact reaction on
the dependent one

RCEs modeled by a deter-
ministic set of equations,
BDA

Not applicable, because
mechanistic analysis is the
most fine-grained type of
analysis available.

The aim of COCOMO is to com-
pute the software development ef-
fort as function of program size and
a set of cost drivers [14]

Very
high

Future work will focus on relatively unknown inferential-
predictive approaches in software engineering, in particular
PLS-SEM, providing clear methodological guidelines for
software engineering researchers.

ACKNOWLEDGMENTS

This work was supported with the financial support of
the Science Foundation Ireland grant 15/SIRG/3293 and
13/RC/2094 to Lero—the Irish Software Research Centre.

REFERENCES

[1] P. Johnson, M. Ekstedt, and I. Jacobson, “Where’s the theory for software
engineering?” IEEE Software, vol. 29, no. 5, pp. 96–96, 2012.

[2] K.-J. Stol and B. Fitzgerald, “Theory-oriented software engineering,”
Science of Computer Programming, vol. 101, 2015.

[3] M. Hamilton, “Keynote at 50th International Conference on Software
Engineering,” https://www.youtube.com/watch?v=ZbVOF0Uk5lU, May
2018.

[4] M. Conway, “How do committees invent,” Datamation, vol. 14, no. 4,
pp. 28–31, 1968.

[5] F. P. Brooks, The mythical man-month. Essays on software engineering.
Addison-Wesley, 1982.

[6] A. Davis, 201 Principles of software development. McGraw-Hill, 1995.
[7] C. Alexander, A pattern language: towns, buildings, construction. Oxford

University Press, 1977.
[8] J. Hannay, D. Sjoberg, and T. Dyba, “A systematic review of theory use

in software engineering experiments,” IEEE Transactions on Software
Engineering, vol. 33, no. 2, pp. 87–107, 2007.

[9] K.-J. Stol and B. Fitzgerald, “The ABC of software engineering research,”
ACM Trans Softw Eng Methodol, vol. 27, no. 3, 2018.

[10] H. Wold, “Systems analysis by partial least squares,” in Measuring the
unmeasurable, P. Nijkamp, H. Leitner, and N. Wrigley, Eds. Dordrecht,
1985, pp. 221–252.

[11] J. Sosik, S. Kahai, and M. Piovoso, “Silver bullet or voodoo statistics?
a primer for using the partial least squares data analytic technique in
group and organization research,” Group & Organization Management,
vol. 34, no. 1, pp. 5–36, 2009.

[12] A. Barcomb, K.-J. Stol, D. Riehle, and B. Fitzgerald, “Why do episodic
volunteers stay in floss communities?” in Proceedings of the 41th
International Conference on Software Engineering. ACM/IEEE, 2019.

[13] B. W. Boehm et al., Software engineering economics. Prentice Hall,
1981.

[14] ——, Software cost estimation with Cocomo II with Cdrom. Prentice
Hall, 2000.

[15] J. Leek and R. Peng, “What is the question?” Science, vol. 347, no.
6228, pp. 1314–1315, 2015.

[16] T. Williams et al., “Directed acyclic graphs: a tool for causal studies in
paediatrics,” Pediatric Research, vol. 84, no. 4, pp. 487–493, 2018.

[17] C. Furia, R. Feldt, and R. Torkar, “Bayesian data analysis in empirical
software engineering research,” arXiv preprint arXiv:1811.05422, 2018.

[18] VersionOne, “13rd annual state of agile survey,” 2018. [Online].
Available: http://stateofagile.versionone.com/.

[19] S. Chidamber, . Darcy, and C. Kemerer, “Managerial use of metrics for
object-oriented software: An exploratory analysis,” IEEE Transactions
on Software Engineering, vol. 24, no. 8, pp. 629–639, 1998.

[20] S. McIntosh, Y. Kamei, B. Adams, and A. Hassan, “An empirical study
of the impact of modern code review practices on software quality,”
Empirical Software Engineering, vol. 21, no. 5, pp. 2146–2189, 2016.

[21] Y. Jiang, B. Cukic, and T. Menzies, “Fault prediction using early lifecycle
data,” in Proceedings of the 18th IEEE International Symposium on
Software Reliability. IEEE, 2007, pp. 237–246.

[22] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg, “Does
automated unit test generation really help software testers? A controlled
empirical study,” ACM Trans Softw Eng Methodol, vol. 24, no. 4, 2015.


