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Abstract 

 

The study of third generation gaseous biofuels has been steadily increasing with innovation 

and research for high biomass yielding feedstock preferably that do not compete with food 

production or land usage. Government policies have also been instrumental in scoping for 

new feedstock that cannot be categorised as conventional biomass such as first and second-

generation biofuels. Sugar or starch based crops, oil crops form first generation feedstock that 

can also be used as food or feed thus competing for land and food thus causing an increase in 

food prices. Ligno-cellulosic biomass that are hard to ferment and need pre-treatment for ease 

of process operation are considered as second-generation feedstock. Advanced biofuels that 

have high productivity such as micro and macro algae or certain plant based waste biomass 

are considered as third generation biofuel. Algal biomass can also be produced using waste 

streams such as CO2 from industries (for producing micro-algae) and fish waste (for macro-

algae). Hydrogen produced using surplus electricity can be then transformed to methane by 

biological or catalytic methanation is also considered as a candidate for third generation 

feedstock to produce gaseous biofuel.  EU allows a weighting of 2 to third generation 

biofuels in assessing 2020 renewable energy in transport targets: these include for biofuels 

produced from algae and gaseous fuel from non-biological sources (hydrogen from surplus 

electricity).  

Micro-algal biomass can be produced using waste exhaust streams from industries containing 

CO2, SOx, NOx. One of the primary sources of fossil fuel such as coal is used for electricity 

generation. The emissions from a 1 GWe coal power plant (operating at 35% electrical 

efficiency and a capacity factor of 75% can produce 6.72 million tonnes of CO2 per annum) if 

captured can produce 2.69Mt of micro-algal (volatile solids) in a closed cultivation system 

with a carbon capture efficiency of 80 %, in a foot print of 19,200 hectare for a tubular photo-

bioreactor. If this waste derived micro-algal biomass is subjected to a three-stage process of 
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dark fermentation, photo-fermentation and anaerobic digestion, ca.35 % of the primary 

energy in coal can be retrieved as renewable gaseous fuel. However, at the current state of 

technology, operating a tubular photo bioreactor is very expensive and thus the energy input 

to the cultivation system can be greater than energy output. 

Another form of algal biomass such as macro-algae (seaweed) can also be produced by 

sequestering nitrogen from waste streams that are released by fish farms that can cause 

eutrophication of water. As global fish demand is increasing natural stocks will not be 

sufficient to cater to this demand, hence aquaculture will be contributing heavily to this 

supply demand gap. An integrated multi-trophic aquaculture system can be used around fish 

farms that sequester waste through co-culture of seaweed and mussels. A production of 

168Mt of seaweed integrated with 13Mt of farmed salmon is required if 1.25 % of energy in 

transport is to be provided by seaweed biomass. However this involves operating 2600 

anaerobic digesters, each treating 64,500t/a   of S.latisma in coastal digesters. 

Brown seaweed such as Laminaria digitata was subjected to a two-stage fermentation 

process that involved hydrolysis followed by methanation. A comparison was made between 

single and two stage fermentation. It was found that two stage fermentation of L. digitata can 

be implemented if shorter retention times and higher organic loading rate are required. 

Average methane yields of 176 and 234 L/kg VS (two stage) and 221 L/kg VS (single stage) 

were obtained with higher methane compositions than that of the single stage process.  

Hydrogen from surplus electricity can be reacted with CO2 via the Sabatier process for 

production of methane. Ex-situ biological methanation was conducted at two thermophilic 

temperatures (55°C and 65°C) with methane compositions of 85–88% and volumetric 

productivities of 0.45 and 0.4L CH4/Lreactor were observed at 55°C and 65°C after 24h 

respectively. Methanothermobacter species represent likely and resilient candidates for 

thermophilic biogas upgrading.  
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1.1 Introduction and background to thesis  

The biofuel industry has been steadily growing in the provision of first and to lesser extent 

second generation feedstocks. Third generation biofuels such as those derived from algae 

(micro- and macro-) and power to gas systems are the subject of increasing research and from 

a commercial perspective may be found at demonstration scale or early commercialisation. It 

has been the goal of the European Union to move away from crop based biofuels that 

interfere with food production and cause inflation of food prices. Ligno-cellulosic wastes are 

energy intensive as they need appropriate pre-treatments to increase the rate of breakdown of 

the substrates for easy fermentation. Micro and macro algae have higher biomass 

productivities and are lignin free and can be produced by sequestering carbon emissions and 

fish farm derived waste streams. Ireland has a coastline of 7500 km which is a rich source of 

marine based kelp (brown seaweed) that can be used to produce hydrogen and methane via a 

two-stage process. However excessive removal of natural seaweed can affect the coastal 

environment. Another potential resource for the production of renewable gaseous fuel could 

be the issue of curtailment of wind energy generated in Ireland. Curtailment can be 

minimised by adopting a power to gas approach (P2G), wherein the surplus wind electricity 

can be converted to hydrogen (via electrolysis) and then transformed to methane using CO2 

via the Sabatier reaction through biological (or catalytical) methanation. This is considered as 

a third-generation biofuel from non-biological source as the hydrogen gas is derived from 

surplus wind electricity as opposed to biomass.  

Process optimisation and factors affecting process stability need to be continuously studied 

and researched at laboratory and pilot scale to test the techno-economic viability of these 

technologies before complete implementation. This thesis mainly investigates the production 

of third generation gaseous biofuels from algal and non-biological sources.  
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1.2 Thesis aims and objectives 

The aims and objectives of the thesis were as follows: 

Micro-algal biogas associated with carbon capture at a coal fired power plant 

• To study the process of carbon capture via micro-algae from coal power plant 

emissions and calculate the quantities of algal biomass that can be produced using 

open and closed cultivation systems. 

• To estimate the footprint needed to cultivate micro-algae along with a brief view on 

the parasitic energy demand that will determine the method of cultivation and the 

viability of this technology. 

• To assess the production of gaseous biofuels (hydrogen and methane) from micro-

algae subjected to a three-stage sequential fermentation process of dark, photo 

fermentation and anaerobic digestion.  

Macro-algal biogas sourced from seaweed in an integrated multitrophic aquaculture 

system 

• To investigate the importance of aquaculture as a source of seaweed production for 

food, hydrocolloids and biogas production. 

• To highlight the interdependence of the fish industry and seaweed production to 

mitigate the environmental disturbance caused by fish farms. 

• To calculate the production of seaweed (Saccharina latissima) derived from waste 

streams of fish farms using integrated multi-trophic aquaculture (IMTA) whilst 

studying a simplified model to provide 1.25 % of energy in transport (as bio-methane) 

from coastal digesters digesting seaweed derived from IMTA 
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Single and Two stage production of biogas from seaweed 

• To examine the effect of single versus two stage digestion of the seaweed Laminaria 

digitata on its process parameters such as hydraulic retention time and organic 

loading rate. 

• To identify the merits of the two digestion systems based on their overall energy 

yield, methane composition and yields. 

• To estimate the hydrogen yield and VFA composition of the hydrolysis effluent for a 

comparison with those found in literature for seaweed and its sugars. 

Biological methanation in a power to gas system 

• To study the process of biological methanation using H2 and CO2 as input gaseous 

substrates at two different thermophilic temperatures whilst examining the effects of 

time and temperature on the rate of reaction. 

• To investigate its methane composition, volumetric productivity and microbial 

diversity responsible for methanation. 

 

1.3 Thesis outline and link between chapters 

This thesis is a compilation of 8 chapters starting from introduction to conclusions and 

recommendations. Chapter 2 examines the state of the art in third generation gaseous 

biofuels. Chapters 3 to 7 outline the research undertaken both desktop and laboratory based. 

Chapters 3 to 7 are either published or submitted for publication to peer review journal press. 

A short summary of these chapters (2-7) is given below. 
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Chapter 2: Literature review of gaseous biofuels from micro, macro algae and    

biological    methanation 

This chapter focuses on the work that has been done on micro algae; their production (using 

raceway ponds, tubular and flat plate photo bioreactors) from carbon capture of emissions 

from industry and their subsequent utilisation to produce hydrogen and methane via dark, 

photo fermentation and anaerobic digestion. Chapter 2 also gives a perspective on 

seaweed/macro-algae and its production from fish farms through IMTA. A perspective is also 

given on how the use of seaweed could potentially be a little controversial as it is used as 

food in most Asian countries and fetches a higher price to produce chemical commodities 

such as hydrocolloids that are used in various industrial applications. A literature search on 

two stage digestion of Laminaria digitata shows that there is a scarcity of studies on 

continuous two stage digestion of this seaweed. The chapter ends with a literature review on 

biological methanation using biogas, hydrogen, carbon dioxide as various input gases (both 

in-situ and ex-situ). Biogas is used where the reaction is carried out in-situ and the process 

can also be termed as upgrading. The experiment done in this thesis was ex- situ with the use 

of H2 and CO2 as input gases. 

Chapter 3: A perspective on gaseous biofuel production from micro-algal generated 

from CO2 from a coal-fired power plant 

Chapter 3 is a desktop study on the potential of carbon capture using emissions from coal 

power plants. It discusses the characteristics of exhaust from such plants, the different 

methods of cultivating micro-algae with their merits and demerits. It was found that tubular 

photo bioreactors have the highest biomass productivity and have a smaller footprint than 

raceway ponds and flat plate reactors; however tubular photo bioreactors are expensive to 

operate and are energy intensive, and it was concluded that any benefits arising from the 

production of gaseous biofuel from the micro-algae produced using such a system. 
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Chapter 4: Seaweed Biofuel derived from Integrated Multi-trophic Aquaculture 

Chapter 4 is also a desktop study and explores the other form of algae i.e. seaweed (macro-

algae). It sheds light on global production of seaweed (both natural and aquaculture derived) 

and the various industrial applications of seaweed and its consumption as food. Seaweed 

production can be tied with the fish industry as fish protein is becoming an increasingly 

important source of protein globally. The negative effects of such large-scale fish farms can 

be reduced by sequestering the waste from such farms to grow seaweed and use it for biogas 

production. 

Chapter 5: Comparative study of single and two stage mono-fermentation of brown 

seaweed Laminaria digitata  

Chapter 5 is laboratory work where 4 reactors were operated at mesophilic temperature for 

mono-fermentation of L. digitata. Two stage digestion comprising of hydrolysis (production 

of hydrogen and VFAs) and methanation (the VFAs produced in the hydrolysis reactor were 

consumed to form methane) were employed along with a single stage digestion process 

(digesting seaweed directly). Factors such as hydraulic retention time, organic loading rate 

pH and the profile of volatile fatty acids were monitored and studied to see its effect on 

methane yield and composition. 

Chapter 6: Study of the performance of a thermophilic biological methanation system 

Chapter 6 is laboratory work where 3 reactors were set up with mixed culture as inoculum to 

produce methane using H2 and CO2 as input substrate gases. The reactor contents were 

replenished with 25 ml of nutrient medium (with 25 ml of digestate withdrawn daily) to 

provide essential vitamins and minerals for the growth and sustenance of the microbes. The 

reactors were run at thermophilic temperatures of 55 and 65°C. The variability in methane 

composition and volumetric productivity due to temperature and retention times were 
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monitored and studied. Microbial analysis was also done to investigate the species 

responsible for biological methanation at thermophilic temperatures 

 

Chapter 7: Conclusions and Recommendations based on the work done in the thesis 

Appendix A: Co-authored papers on third generation feedstock and two stage fermentation.  

This gives a summary of the papers where certain significant parts of the experiment were 

conducted by me to add to this thesis. These papers fall well in line with the theme of my 

thesis that also deals with algal (micro and macro) biomass. A detailed study on the effect of 

increasing organic loading on two stage digestion of food waste was done. This helped to the 

understanding of running the same process for the brown seaweed Laminaria digitata.  
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2. Literature review of gaseous biofuels from micro, macro algae and 

biological     methanation 
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2.1 Micro and macro algal biomass 

Micro-algae: Biological fixation of CO2 can be achieved using micro algae that possess high 

biomass productivity when compared to terrestrial crops. These tiny mostly autotrophic 

organisms have very high rates of multiplication and can have biofuel yields of nearly 10-100 

times those of terrestrial crops because of their high productivities [1]. Microalgae can be 

cultivated in seawater or waste water, they can be suitably used to sequester industrial CO2. 

Microalgae can exist as bacteria (cyanobacteria), diatoms or unicellular plants such as 

chlorophyta; some species can contain more than 70% lipids, and some could be high in 

proteins such as spirulina. Micro-algal growth can be affected by rates of CO2 absorption, 

intensity and duration of illumination, availability of nutrients and method of cultivation such 

as: open systems (raceways ponds); or closed systems (tubular, parallel, bubble column, 

airlift, biofilm or flat plate reactors) [2]. By varying the above factors different species of 

micro-algal strains can be grown to produce biodiesel or biogas. To reduce operating costs 

and to increase CO2 absorption, an indirect process can also be used whereby CO2 is captured 

as bicarbonate and used in a liquid medium to cultivate micro-algae [3]. 

Cultivation of micro-algae using carbon emissions from various kinds of industries such as 

coal power plants, cement manufacturing plants have been attempted. Coal power plants have 

been studied extensively as it a major source of electricity production with high carbon 

footprint. Several lab scale and pilot plant studies have been conducted to test the viability of 

flue gas as a source of carbon to produce micro-algae. Satisfactory growth of micro-algae 

was observed under varying conditions of temperature, micro-algal strain, CO2 percentage 

and NOx/SOx concentrations in the flue gas. Maximum biomass productivity (1000 mg/L/d) 

was obtained for the Chlorella sp. at 25oC and 15 % of CO2 at a CO2 consumption rate of 

1880 mg/L/d [4]. To improve gas transfer in the micro-algal medium, different reactors were 

tested such bubble column, airlift, tubular and flat plate reactors and open ponds. However 
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hollow fibre membrane reactors were the most efficient for gas mass transfer [5]. Despite 

technological advances, cost of cultivation of microalgae is still an issue for its use as a 

biofuel feedstock [6]. 

Macro-algae: Also, known as seaweed is found naturally on coastlines or in eutrophic 

waters. Its growth is accelerated at high nitrogen content in the water [7]. Seaweed is 

traditionally eaten as food in some Asian countries (Kombu, Nori). Seaweed contains 

typically 20% dry matter and is lignin free and is easy to degrade when compared to 

terrestrial counterparts [8]. Seasonal variation of the carbohydrate content in seaweed can be 

an impediment to its successful implementation in the use of biogas production. The main 

polysaccharide molecules found in seaweed are alginate, mannitol, laminarin and fucoidan. 

Several pigments such as polyphenols are also present in certain seaweeds. As seaweed are 

mostly grown in seawaters, they are an excellent source of minerals. Some of the most 

common metals/minerals found in the intracellular parts of the brown seaweed ascophyllum 

nodossum are zinc and manganese (60 and 38 mg/kg dry weight) while traces of cobalt, 

chromium, copper and nickel were found as well [9]. Brown seaweed contain more of the 

above-mentioned metals than red and green seaweed. Because of the high metal sequestration 

capacity of seaweed, it can effectively be used as a tool to clean waste waters that are 

released by fish farms. The growth of seaweed in such highly rich nitrogenous waters can 

give high yields of biomass that can be used to produce biogas. Integrated multi-trophic 

aquaculture can be implemented to clean up fish farms that excrete nitrogenous substances 

into the water; seaweed sequester in-organic waste and shellfish sequester organic waste [10]. 

Studies done on a Salmon farm near Chile showed biomass productivity of 53 g/m2 /d for 

Gracilaria chilensis with a nitrogen removal capacity of 9.3 g/m for long line cultivation 

[11]. It has also been found that nitrogen sequestration by P. palmata and S. latissima can 
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remove up to 12% and 5% of the nitrogen released from the growth period of 500 tonnes of 

salmon in the sea over 2 years [12]. 

2.2 Photofermentation, Dark fermentation/hydrolysis and anaerobic digestion 

 

Hydrogen gas (H2) is considered to be a clean burning fuel; several thermochemical methods 

reliant on the petro-chemical and coal industries are still used for the mass industrial 

production of hydrogen; these methods are expensive, energy intensive and do not constitute 

renewable hydrogen. Biohydrogen produced from biological processes are considered to be 

less expensive however they are yet to be proven viable for industrial application due to the 

low yields obtained in processes such as dark/photo fermentation [13]. Dark fermentation is 

the fermentative breakdown of carbohydrate molecules (higher and lower polysaccharides) 

resulting in the production of hydrogen and volatile fatty acids (VFAs). For higher yields and 

productivities of H2 the VFAs can then be subjected to photo fermentation. 

 

Dark fermentation: also known as hydrolysis is the breakdown of all complex 

carbohydrates  in the reactor under anaerobic conditions; mediated by a wide variety of 

bacteria, such as the spore forming Clostridium species, facultative Enterobacter sp, Bacillus 

sp. This process is enzymatically catalysed by hydrogenases that mainly act on 

monosaccharides as their carbon source (glucose), that are obtained by hydrolysis of 

polysaccharides. Dark fermentation results in the conversion of glucose to H2, acetic acid and 

CO2 as given in Eq. (1). This process has a high negative free energy and as a result it is a 

highly spontaneous reaction; a maximum of 4 mol of H2 (theoretically) can be obtained per 

mole glucose if acetic acid is the only VFA product[14].  

 

C6H12O6 + 2H2O  ----------    2CH3COOH + 4H2 + 2CO2     ∆Go = - 206 kJ       Eq. (1). 
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Microbial growth and maintenance also need energy hence lower yields than theoretical are 

obtained. The butyric acid pathway leads to 2 mol of H2 per mole of glucose. The optimal pH 

for dark fermentation is found to be between 5-6.5. A pH of lower than 5 will result in lactic 

acid and ethanol formation that do not contribute to H2 production. Co-formation of  acetic 

and butyric acids results in 2.5 mol H2 per mole glucose.  

Thermophilic temperatures result in higher hydrogen yields (40-65oC) as they prevent the 

growth of hydrogen consuming bacteria and promote the rate of the reaction by increasing 

metabolic activity. Certain nutrients help in the growth of the bacteria such as nitrogen 

phosphorous, iron and sulfur[15]. 

 

Photofermentation: Photosynthetic non-sulfur (PNS) bacteria can convert VFAs to H2 and 

CO2 under anaerobic conditions; they could also use carbon sources like glucose, sucrose and 

succinate rather than VFAs [16]. Rhodobacter sphaeroides O.U001, Rhodobacter capsulatus, 

R. sphaeroides-RV, Rhodobacter sulfidophilus, Rhodopseudomonas palustris and Rho-

dospirillum rubrum are some of the commonly used (PNS) bacteria [16]. Along with 

hydrogenase, nitrogenase is the main enzyme catalysing this reaction with a positive free 

energy (Eq 2). As such the reaction does not proceed spontaneously and needs an external 

energy source in the form of light, with appropriate wavelengths and intensities of 400-

1000nm and 6-10 klux. The ideal operating conditions were obtained at a pH of 6.8-7.5 and a 

temperature in the range of 31-36oC [17]. As Fe and Mo are the main co-factors present in  

nitrogenase, addition of such trace elements can enhance H2 production[13, 16]. 

 

CH3COOH + 2H2O  ----------- 4H2 + 2CO2                 ∆Go = +104 kJ         Eq. (2). 
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Anaerobic Digestion/Methanation: the production of methane from VFAs can be achieved 

through methanation under anearobic conditions; methanogens such as hydrogenotrophic and 

acetoclastic archaea produce methane from hydrogen, carbon dioxide and acetic acid 

repectively [18]. The process functions at its optimum level at a pH between 7-7.5. The 

hydraulic and solid retention time (HRT and SRT) are key process parameters and should be 

sufficiently high enough to allow the active populations of microbes to  remain in the reactor, 

especially methanogens since they have a long doubling time [19]. Mesophilic and 

thermophilic temperatures have been utilised for increasing the performance of the reactor. 

However at high temperatures ammonia inhibition can take place as proteins breakdown 

faster releasing free NH3 into the liquid state in the reactor that cause toxicity in the cell 

structure of methanogens. A very high concentration of VFAs ( >1000 mg/L) can cause the 

pH to reduce and lower methane yields eventually causing reactor failure [20]. 

 

2.3 Gaseous biofuels production from micro and macro algae 

Gaseous biofuels from micro-algae: Hydrogen and methane have been derived from micro-

algae through sequential fermentation as shown in Table 2.1. Most of these studies have been 

done at the lab scale (batch) with very few studies done for continuous digestion process. 

Carbohydrate rich micro-algae are suitable for the production of hydrogen and methane. 

Species such as Chlorella pyrenoidosa and Nannochloropsis Oceanica are rich in high molecular 

weight carbohydrates such as xylan and glucans that necessitate pretreatment of micro-algae 

(steam pretreatment, microwave heating, methods coupled with dilute acid treatment) to 

obtain low molecular weight sugars (saccharides) such as xylose and glucose for efficient 

hydrolysis. Micro-algae rich in proteins such as spirulina may not be suitable for hydrogen or 

methane production as excessive protein breakdown can cause unionised ammonia inhibition 

during fermentation leading to process failure and low yields of hydrogen and methane. 
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Table 2. 1: Gaseous biofuel production from micro-algae 

 

1: subjected to sequential dark fermentation, photo-fermentation and anaerobic digestion [1], [21]. 

2: subjected to sequential dark fermentation and photo-fermentation [22]. 

3: subjected to sequential dark fermentation and anaerobic digestion [15]. 

4: subjected only to dark fermentation [23] 

5. subjected only to anaerobic digestion/methanation [24] 

 

Gaseous biofuels from macro-algae: Macro-algae has been used to produce liquid biofuels; 

however downstream processing of fuels such as ethanol and biodiesel are very energy 

intensive and hence gaseous biofuel production via anaerobic fermentation is deemed more 

feasible as macro-algae are not high in lipids and it is more prudent to produce hydrogen and 

methane than biodiesel. Macro-algae contain carbohydrates and essential minerals such as 

cobalt, nickel and zinc that may aid in fermentation as these minerals are considered to help 

microbial growth and maintenance as they form co-factors for certain enzymes that are 

Substrate H2 yield 

(ml H2  /g VS) 

CH4 yield 

(ml CH4 /g VS) 

Mode of operation 

Chlorella pyrenoidosa1 198.3 186.2 Batch 

Nannochloropsis 

Oceanica1 

183.9 161.3 Batch 

Arthrospira platensis2 354.7 - Batch 

Arthrospira maxima3 82.8 115.3 Batch 

Chlorella pyrenoidosa4 ca.20 - Batch 

Nannochloropsis4 

Oceanica 

ca.20 - Batch 

Arthrospira platensis5 - 330.2 Continuous 
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produced by microbes for hydrolysis and methanation. Liquid phase fermentation is more 

feasible as seaweed contains close to 75-90% water that can increase the cost of drying and 

cause problems associated with storage and transportation. Coastal digesters can be used to 

produce biogas from seaweed to alleviate these problems. Plenty of batch scale studies have 

been done on macro-algae to produce hydrogen and methane. However, very few studies 

have focussed on continuous digestion. Table 2.2 gives the gaseous biofuel yields of some 

types of seaweed that have been studied for their hydrogen and methane production. 

Table 2. 2: Gaseous biofuel production from macro-algae 

 

1-5: subjected only to anaerobic digestion(methanation) 

6,7: subjected only to dark fermentation 

8   : subjected to sequential dark fermentation and  anaerobic digestion(methanation) 

a   :  mL H2/g dry cell weight  

b   :  mL CH4/g COD  

Substrate H2 yield 

(ml H2  /g VS) 

CH4 yield 

(ml CH4 /g VS) 

Mode of 

operation 

Reference 

Ulva lactuca1 - 271 Batch [25] 

Laminaria digitata2 

 

 238 Batch [26] 

Saccharina latissima3 

 

 340 Batch [27] 

Ascophyllum nodosum4 

 

 110 Batch [28] 

47 Batch [29] 

Gracilaria5 

vermiculophylla 

 295 Batch [30] 

Laminaria digitata6 

 

ca.80ml - Batch [23] 

Saccharina latissima7 

 

ca.35ml  - Batch [23] 

Laminaria japonica8 113a 250-300b Batch for H2 

Continuous for 

CH4 

[31] 
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2.4 Biological methanation 

 

 Methanation of hydrogen and carbon dioxide is a process that can be mediated by chemical 

or biological catalysts such as methanogenic archaea. Methane can be produced by reacting 

hydrogen with either carbon monoxide or carbon dioxide. described by Eq. (3). (Sabatier 

Equation) or by Eq. (4). 

 

4H2 + CO2 → CH4 + 2H2O  ∆HR = -165 kJ/mol        Eq. (3). 

3H2 + CO → CH4 + H2O          ∆HR = -206 kJ/mol       Eq. (4). 

 

Biological methanation carried out by methanogenic archaea is generally the final step in the 

anaerobic digestion process utilising CO2, H2, acetate, formate or other alcohols as substrate 

to form methane. Some, such as those belonging to the order methanosaeta, may only utilise 

acetate, while other orders such as methanosarcina are more flexible and can utilise either 

acetate or H2 + CO2. Methanogens generally grow at 35-70°C[32]. Biological methanation 

may be carried out at industrial scales, typically in conjunction with a conventional biogas 

plant; in such a case hydrogen is injected into an anaerobic digester digesting grass, maize or 

food waste. Such a process can be deemed as in-situ biological methanation whereas ex-situ 

methanation can be carried out in a separate stainless steel vessel with the injection of 

hydrogen and carbon dioxide that are consumed by methanogenic culture. Various reactor 

designs have been studied particularly to improve the gas transfer rate of hydrogen into the 

liquid state as it is a sparingly soluble gas in water when compared to carbon dioxide. Apart 

from reactor design, a number of other process variables that can affect the performance of 

the reactor are temperature, mechanical mixing rates, gas flow rates and the specific strains of 

methanogens utilised. A review of the various designs available in the literature is presented 

in Table 2.3. 
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Table 2. 3: Existing reactor designs and performance data 

 

CSTR:  Continuous Stirred Tank Reactor; HFM: Hollow Fibre Membrane Reactor  

 

Biogas plants that aim for absolute natural gas quality methane would try to operate the 

reactor at maximum possible efficiency to obtain methane concentrations as high as 95-98%. 

Solubility of the gas can be increased by providing a larger surface area such as trickle bed 

and hollow fibre membrane reactors with packing (see Table 2.3) or by increasing the 

retention time of the gas in the reactor by designing tall reactors. Mechanical mixing via 

stirring in a continuosuly stirred tank reactor (CSTR) is probably the simplist method of 

assisting H2 to go into solution. Another alternative to mechanical mixing is micro-sparging. 

In this case, the gas is released into the liquid via micro-porous material, such as a hollow 

fibre membrane (HFM) [35, 36] creating small hydrogen bubbles with high partial pressure 

Reactor Temp 

(°C) 

Inoculum Influent 

gas 

Operation 

mode 

Working 

volume (L) 

Max methane 

concentration 

(%) 

Reference 

CSTR 55 Anaerobic 

digestate 

Biogas + 

H
2
 

Continuous 0.6 95.4 [33] 

Trickle 

bed with 

packing 

37 Anaerobic 

digestate 

H
2 

+ CO
2
 Batch 88 96 [34] 

Up-flow 

bed 

35 Anaerobic 

digestate 

H
2 

+ CO
2
 Continuous 7.8 - [35] 

HFM 37 Anaerobic 

digestate 

H
2 

+ CO
2
 Continuous 0.195 85 [36] 

CSTR 37 Anaerobic 

digestate 

H
2 

+ CO
2
 Continuous 100 92 [37] 

CSTR 60 Pure 

culture 

Biogas+ 

H
2 

H
2 

+ CO
2 

Continuous 3 - [38] 

CSTR 65 Pure 

culture 

Biogas + 

H
2
 

Continuous 10 85 [32] 
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and a high ratio of surface area to volume. With the help of this literature review, the desktop 

work and experiments have been designed to fill in the literature gap as well as shed light on 

third generation gaseous biofuels from algae and non- biological sources. 
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3. A perspective on gaseous biofuel production from micro-algae generated 

from CO2 from a coal-fired power plant 
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Abstract 

There are significant resources of coal on the planet. It is likely that a lot of this coal will be 

combusted. A 1 GWe coal power plant operating at 35% electrical efficiency and a capacity 

factor of 75% produces 6.72 million tonnes of CO2 per annum. A closed cultivation system 

with a carbon capture efficiency of 80 % allows production of 2.69Mt of micro-algal (volatile 

solids), in a foot print of 19,200 ha for a tubular photo-bioreactor (PBR) and 34,000 ha for a 

Flat Plate PBR. An open system (raceway pond) at a carbon capture efficiency of 50 % 

produces 1.68Mt of micro-algal (volatile solids) and requires a footprint of 52,303 ha. 

Employing a three-stage sequential process (combining dark fermentation, photo 

fermentation and anaerobic digestion) to produce bio-hydrogen and bio-methane from the 

micro-algae could potentially generate 35% of the primary energy in the coal in the form of 

renewable gaseous fuel if a closed system of cultivation is used. This is sufficient to fuel 

600,000 cars per annum. In the cultivation of micro-algae, pumping and circulation is a 

considerable parasitic energy demand. The ratio of energy output (gaseous biofuel) to energy 

input (pumping and circulation) is less than 1 for all the three cultivation systems assessed, 

ranging from 0.71 for raceway ponds to 0.05 for a tubular PBR. If coal powered electricity is 

the source of this parasitic energy, then a tubular PBR system produces more CO2 than the 

CO2 captured by the micro-algae. 

 

Keywords: coal; gaseous biofuel; micro-algae; CO2 fixation; bio-hydrogen; bio-methane. 
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3.1 Introduction 

3.1.1   Coal: a cheap and plentiful fossil fuel 

Coal contributed 29.9% of the world’s primary energy needs and 41% of global electricity 

production in 2013 and remains the predominant source of electricity production in countries 

like India and China [1, 2]. Coal is a relatively cheap fossil fuel; widely distributed across the 

world (Figure 3.1); proven coal reserves in 2013 were sufficient to meet 113 years of global 

production. This is the highest Reserves/Production (R/P) ratio for any fossil fuel; natural gas 

and oil have R/P ratios of 55.1 and 53.3 respectively [3]. An estimate from the World Bank 

suggests that over 1.2 billion people still remain without access to commercial energy 

supplies; this is particularly the case for electricity [1]. Coal, being the cheapest and most 

abundant fossil fuel resource in non-OECD nations, will more than likely be used as a 

primary source of power generation. Developed OECD nations such as the US, Russia and 

Australia also have large indigenous coal reserves that will most likely be utilised to produce 

electricity at the cheapest cost. Coal combustion contributed 40% to global CO2 emissions 

with a share of 28% from coal-fired power plants in 2012 [4]. CO2 emissions from coal 

combustion increased by 4.9% in 2011 compared to 2010 [5].   

 

Figure 3. 1: Proven coal reserves in the top five coal producing countries [3]. 
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3.1.2     Capture of CO2 

Absorption of CO2 is effected using various chemical agents such as Monoethanolamine 

(MEA), solid adsorbents like activated carbon, or zeolite 5A [6-8].  Membranes and 

cryogenic fractionation have also been employed for the removal of CO2 [7]. The chemical 

methods of CO2 separation are highly energy intensive and expensive [6, 9]. Conventional 

carbon capture technologies (largely using chemical methods) have a capture efficiency of 

85-95% [10]. It has been reported that 3.7 GJ of energy/tonne of CO2 absorbed is required 

during the regeneration of MEA, which corresponds to around 370 kg of extra CO2 (per t CO2 

absorbed) emitted if this energy input comes from a fossil fuel such as coal [7]. 

 

3.1.3 Cultivation of micro-algae using flue gases from industries as a source of CO2 

3.1.3.1 Suitability of flue gases to provide CO2 to micro-algae 

Flue gases from coal power plants can be a potential CO2 source to produce micro-algal 

biomass [9, 11]. Micro-algae can utilize CO2 with the help of solar energy, ten times more 

efficiently than terrestrial plants [12, 13]. Micro-algae can be grown in saline conditions or 

wastewater throughout the year [14]. Flue gases are generally dominated by N2 (72-74%), 

CO2 (4.8-26.9%), H2O (9-13.8%) and O2 (0.7-15%). However, they also contain smaller 

quantities of NO (59-1500 mg/Nm3), NO2 (2-75mg/Nm3), SO2 (20-1400 mg/Nm3), SO3 (0-32 

mg/Nm3), CO (100-11250 mg/Nm3), particulate matter (2000-15000 mg/Nm3) and heavy 

metals (2.2 mg/Nm3) [9, 15]. Typically, flue gases are treated for the removal of particulate 

matter, heavy metals and NOx and SOx to comply with the regulations on effluent discharge 

and air quality set by the Clean Air Act that is monitored by the Environmental protection 

agency.  
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3.1.3.2 Factors effecting growth of micro-algae 

CO2 levels of 10-16% (v/v) can be obtained from pulverised coal-fired power plants with 

100-1000ppmv of NO and 100-2000ppmv of SO2 [7]. Studies conducted on the flue gas 

composition of two coal-fired power plants in Australia showed NOx and SOx levels of up to 

524ppmv and 258.9ppmv (wet basis) [16]. Several species of micro-algae can easily uptake 

CO2 up to a level of 18-20%, with most strains of micro-algae exhibiting favourable rates of 

CO2 fixation [6-8]. Typically, levels of NOx and SOx below 100ppm and 50 ppm have no 

effect on micro-algal growth, however raw flue gas contains higher levels, hence flue gas 

may need to be pre-treated [7, 9, 17]. Apart from carbon, nitrogen and phosphorus also play 

an important role in cell development and growth. Nitrogen is important to produce proteins, 

nucleic acids whereas phosphorous helps in growth and maintenance of optimum pH. 

Micro-algal strains such as Chlorella Sp. T-1 can be cultivated by direct injection of flue gas 

with little hindrance from the high levels of NOx and SOx. Optimum growth was observed at 

10% CO2 concentration. However, no inhibition to growth was found at 50%, 80% or 100% 

CO2 [17]. The temperature of flue gases from industries can be in the range of (430-950K).  

However, a temperature range of 20oC to 35 is considered favourable for the growth of 

micro-algae [17, 18].  

 

3.1.3.3  Micro-algae production systems 

Micro-algae can be grown in two ways: closed systems (photo-bioreactors) and open systems 

(raceway ponds) [19-21]. Open systems are cheaper, easy to clean and require lower capital 

investments; however, they are not a technically sound choice since rates of water 

evaporation and CO2 loss are very high [21, 22]. Operational parameters, such as 
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temperature, light utilization, mixing and process control, are very difficult to maintain in 

such systems.  

Photo-bioreactors (closed systems) have higher productivities than open systems with better 

process control; they occupy less space and are technically more advanced than open 

systems. They have higher costs of installation and operation [19, 21-23].  

The CO2 fixation efficiency of Chlorella vulgaris was reported to be 74% and could vary for 

different strains of micro-algae [8]. The remainder of the carbon may be found in the form of 

bicarbonates in the culture medium, with a smaller fraction potentially leaving the system as 

carbon dioxide (which has lower solubility at higher temperatures). Carbon capture 

efficiencies could be as high as 90% for closed systems such as photo-bioreactors [24], with 

some reports suggesting a range between 45%-70% [25]. Raceway ponds have lower 

efficiencies (25% -50%) and are prone to contamination and high rates of water losses [25].  

 

3.1.4   Gaseous biofuel production from micro-algae 

3.1.4.1 Bio-hydrogen from dark and photo-fermentation 

The process of anaerobic digestion can be sub-divided into phases and optimised for each 

consortium of microbes. In a two-stage system, the first stage can be used to produce volatile 

fatty acids (VFA) which can then be fed to a second phase methane reactor. The first phase 

known as dark anaerobic fermentation requires a low pH (5 - 6), a high organic loading rate 

(ca. 20 kg COD/m3/d), and a short retention time (ca. 2 days) [26]. Dark anaerobic 

fermentation produces a biogas rich in hydrogen and carbon dioxide [27-29]. 

Small chain fatty acids in the effluent of dark fermentation can be utilised by photosynthetic 

non-sulphur (PNS) microbes to produce hydrogen under anoxic conditions in the presence of 

light thereby increasing the hydrogen yield. This process is known as photo-fermentation. A 

pH of 6.8-7.5, a temperature range of 31-36oC and a wavelength of 400-1000nm have been 

reported to be the optimum operating parameters for photo-fermentation [27]. The effluent 
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from dark  fermentation needs to be treated if it contains high concentrations of ammonium 

ion (NH4
+) (exceeding 40ppm) which can inhibit activity of the nitrogenase enzyme which 

mediates hydrogen generation. Fe and Mo (co-factors of nitrogenase) are also required for the 

optimum performance of this enzyme [27, 30, 31]. 

Theoretically if complete degradation takes place then 1 mole of glucose can liberate 12 

moles of H2 by a sequential dark and photo-fermentation process when acetic acid is the sole 

VFA obtained [27, 29]. However, such ideal yields are not obtained and a yield of at least 

8mol of H2 /mol of glucose is expected to make the process economically practical [27, 32]. 

A high experimental yield was obtained by a sequential dark and photo-fermentation of a 

medium containing 10g/L of sweet potato starch (7.2mol H2 /mol of glucose) [33]. 

 

3.1.4.2 Bio-methane 

Bio-methane production has been studied for algal residue from micro-algae derived bio-

diesel, as well as micro-algae as a raw material [11, 34, 35]. Experimental yields ranging 

from 200- 450 L CH4/ kg VS have been reported in the literature for continuous as well as 

batch reactors [11-13, 34]. The initial focus of biofuel studies from micro-algae was on 

biodiesel; however, drying of the micro-algae prior to the bio-esterification process and the 

subsequent high cost of lipid extraction is a major hindrance to the energy balance [20, 23, 

36]. There is limited literature examining a three-stage continuous process for the combined 

production of hydrogen and methane via dark fermentation, photo-fermentation and 

anaerobic digestion. One study reported values of 82.8 ml H2/g VS and 115 ml CH4/g VS on 

dark fermentation followed by anaerobic digestion for Arthrospira maxima [37]. Higher 

yields of up to 198.3 ml H2/g VS and 186.2 ml CH4/g VS have been obtained for dark 

fermentation, photo-fermentation and anaerobic digestion of Chlorella pyrenoidosa. 
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3.1.4.3 Bio-hydrogen and bio-methane from micro-algae 

Several species such as A. maxima, C. vulgaris, and C. pyrenoidosa have been studied for 

bio-methane and bio-hydrogen production. Pre-treatments such as steam heating with dilute 

acid and ultra-sonication and enzyme treatments have been used to increase the yield of the 

gaseous fuels produced [12, 13, 35]. Researchers at the Zhejiang University conducted a three 

stage sequential dark fermentation, photo-fermentation and anaerobic digestion of pre-treated 

C. pyrenoidosa and effected an experimental yield of 198.3 ml H2/g VS and 186.2 ml CH4 /g 

VS [12] . Table 3.1 gives the energy yields of micro-algae via combined dark fermentation, 

photo-fermentation and anaerobic digestion. 

Table 3. 1: Energy yields obtained from sequential fermentation and digestion of micro-algae 

Substrate H2 yield 

(ml H2 /g 

VS) 

Energy 

yield 

(kJ/g VS)4 

CH4 yield 

(ml CH4 /g 

VS) 

Energy yield 

(kJ/g VS)4 

Total energy 

yield (kJ/g 

VS) 

Reference 

Chlorella 

pyrenoidosa1 

198.3 2.1 186.2 6.7 8.8 [12] 

Nannochloropsis 

Oceanica1 

183.9 1.98 161.3 5.77 7.75 [13] 

Arthrospira 

platensis2 

354.7 3.8 - - 3.8 [38] 

Arthrospira 

maxima3 

82.8 0.89 115.3 4.12 5 [37] 

1: subjected to sequential dark fermentation, photo-fermentation and anaerobic digestion. 

2: subjected to sequential dark fermentation and photo-fermentation. 

3: subjected to sequential dark fermentation and anaerobic digestion. 

4: calculated using lower heating values of H2 (10.78 MJ/m3) and CH4 (35.8MJ/m3) 
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3.1.5   Energy consumption and carbon emissions.  

The proposed system captures carbon dioxide emissions through production of micro-algae 

but as these micro-algae are used to produce biofuels that will be combusted , the carbon 

dioxide captured will eventually be re-released to the atmosphere. Total energy from the 

proposed system has been increased as a gaseous fuel is now produced from the original coal. 

However energy is required to produce micro-algae and hence indirect emissions have to be 

taken into consideration. It has been observed that the energy used to pump the micro-algal 

culture contributes ca. 79 % of the total energy used in raceway ponds and 92 % of the total 

energy used in tubular photobioreactors [21]. This paper does not proport to undertake a full 

energy audit but will examine the parasitic energy demand required for pumping and 

circulating the culture medium and express this as a ratio of the energy output in the gaseous 

fuel.  

 

3.1.6 Technology readiness level of biological carbon capture 

Efforts are being made for large scale implementation of bio-sequestration of CO2 using 

micro-algae on an industrial level. Several companies have implemented this method of 

biological carbon sequestration and recycle. Seambiotic, Ashkelon, Israel use flue gases from 

the Israel Electric Company to grow micro-algae for numerous applications in the field of 

fine chemical, pharmaceuticals and biodiesel. Other companies operating in this sphere 

include A2BE Carbon Capture, Boulder, and Solix Biofuels, Fort Collins in Colorado [6]. 

Most recently AlGAE.TEC, a company founded in Australia have signed a deal with 

Macquarie Generation (owned by the New South Wales government) to build a large algae 

facility which will sequester carbon emissions from the 2.64GWe coal-fired power plant at 

Bayswater in Hunter Valley, New South Wales. They initially plan to capture 270,000 tonnes 

of CO2 and increase this to 1.3 million tonnes in the next few years. This coal power plant 
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uses about 7.5 million tonnes of coal with an annual CO2 emission of about 19 million tonnes 

[39, 40].   

However, the sequential process of dark fermentation, photo-fermentation and anaerobic 

digestion has not been tested in a commercial setting. Several lab scale studies have been 

done to establish the proof of concept and to improve the efficiency of the process [12, 13]. 

 

3.1.7   Aims and Objectives   

The aim of this chapter is to present a perspective on an innovative biological capture system 

of CO2 from a coal-fired power plant complete with generation of renewable algal biofuel. 

The investigation assessed the scale, the energy return and the CO2 efficiency of the process. 

The objectives of this chapter are to: 

• Assess the potential yield of micro-algae through use of CO2 emissions from a 1GWe 

coal- fired power plant. 

• Assess the footprint required for micro-algal cultivation. 

• Calculate the potential production of renewable gaseous fuel in the form of bio-

hydrogen and bio-methane from micro-algae through a three-stage sequential process 

combining dark fermentation, photo fermentation and anaerobic digestion. 

• Provide a perspective on the parasitic energy demand of the three different cultivation 

systems. 

 

3. 2       Analysis of carbon capture and micro-algal gaseous biofuel system  

3.2.1 Production of micro-algae using CO2 emissions from a coal-fired power plant. 

Carbon emissions from a 1GWe coal-fired power plant can be captured to grow micro-algae 

in closed systems such as tubular photo-bioreactors. Figure 3.2 broadly illustrates the idea 

proposed. Typically, to comply with discharge regulations for gaseous effluents, a pre-

treatment process consisting of De-NOx and De-SOx is used; installation of such units is 
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prudent if the strain of the micro-algal species is sensitive to high levels of these compounds. 

Levels of NOx and SOx should be brought down to 100 and 50 ppm respectively [7, 9, 17]. 

Excess heat from the flue gas can be used to dry the micro-algae for down-stream processing 

or for use as a source of heat treatment prior to digestion by using a heat exchanger.  

 

 

 

Figure 3. 2: Proposed system for production of gaseous fuel from micro-algal biomass 

produced using the flue gas of coal-fired power plants 

 

3.2.2 Micro-algal biomass production from a 1GWe coal-fired power plant 

3.2.2.1 CO2 produced from a coal-fired power plant 

The coal assessed is assumed to be bituminous with a 65% carbon content and an energy 

value of 24 GJ/t. Combustion of 2.82 Mt of coal per annum in a 1GWe coal power plant 

operating at an electrical efficiency of 35% and a capacity factor of 75% results in an 

emission of 6.77 Mt of CO2 per annum (Box 3.1).  
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Box 3.1 CO2 emissions from a 1GWe coal fired power plant 

 

3.2.2.2 Micro-algae produced from CO2 emissions from a coal-fired power plant 

Carbon constitutes 36-65% of dry algal biomass [6, 9, 22]. The ratio of (volatile solids) VS to 

total solids (TS) is 0.8. The analysis assumes that 1kg of CO2 yields 0.5 kg of volatile solid 

algal biomass. A carbon capture efficiency of 80% and 50 % has been used for closed and 

open systems respectively. Thus, the closed system generates (0.5 kg VS * 80% capture of 

6.77 MtCO2/a) 2.69Mt VS while the open system generates (0.5 kg VS * 50% capture of 6.77 

MtCO2/a) 1.68 Mt VS (Table 2). 

Photo-bioreactors have higher productivities than raceway ponds hence they occupy smaller 

areas making them more suitable for installation near large power plants. Photo-bioreactors 

can be flat plate or tubular [41, 42]. Micro-algal production and the land footprint of the 

different systems of cultivation have been calculated in Table 3.2. The areal productivities of 

the system are a function of the micro-algal species under cultivation, CO2 fixation rate, 

method of mixing employed and mass transfer of CO2. For example the tubular PBR has an 

areal productivity of 0.048 kg/m2.d (or 0.48 t/ha.d). The area required for 2.69 Mt VS per 

Assumptions 

Bituminous coal at 65% carbon content and an energy value of 24 GJ/t combusted at an electrical 

efficiency of 35%; capacity factor of 75% 

Combustion Equation 

C + O2    to  CO2 

12 tonne carbon to 44 tonne CO2 

1 tonne of carbon to 3.7 tonne CO2 

1 tonne of coal  to  2. 4 tonne CO2 (coal 65% carbon) 

Coal power plant 

At an electrical efficiency of 35%, 1 tonne of coal can produce 2.33MWeh. 

430 kg coal equates to 1MWeh and produces 1.03 t CO2. 

A 1GWe plant operating at 75% capacity consumes 2.82 Mt of coal per annum and produces 6.77 Mt 

of CO2 per annum 
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annum (or 7,370 t VS per day or 9,213 t TS per day) is 19,192 ha (Table 3.2). The open 

racing pond requires 52,303 ha. It is expected in the future that innovative reactor design with 

high biomass productivity can further reduce the land footprint.  

Table 3. 2:  Production per annum and foot print of micro-algal cultivation systems. 

Method of 

cultivation 

Micro-algae 

produced 

(Mt VS)1 

Type of 

bioreactor 

Areal 

productivity 

(kg/m2. d)1 

Area 

occupied 

(ha)2 

Reference 

Closed 

system 

2.69 Tubular 0.048 19,192 [43] 

2.69 Flat-Plate 0.027 34,094 [41, 42] 

Open 

system 

1.68 Raceway 

pond 

0.011 52,303 [41] 

1: Values from literature.  

2: Calculated values  

 

3.2.3  Energy return and carbon emissions allocation for the proposed system 

Biological capture of CO2 and the subsequent dark fermentation, photo-fermentation and 

anaerobic digestion of micro-algae species can yield an energy return of 35 % of the primary 

energy in coal for a closed system such as tubular photo-bioreactor (Box 3.2). This is 

sufficient fuel to fuel 600,000 cars per annum. For a tubular bioreactor this equates to 31 cars 

fuelled per hectare. This is a very high return especially considering that agricultural land is 

not required. For a closed system one tonne of coal can generate 8.4 GJ of renewable gas. 

One tonne of VS micro-algae can generate 8.8 GJ of renewable gas. 
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Box 3.2. Energy return from micro-algae using a three-stage sequential dark 

fermentation, photo-fermentation and anaerobic digestion of Chlorella pyrenoidosa  

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.4       Energy consumption and carbon emissions of the proposed system 

Thus, far the paper has considered gross energy return in the produced gaseous fuel generated 

through micro-algae cultivated in capturing CO2 from coal fired power plant. This paper will 

not undertake a detailed analysis of all energy inputs or parasitic energy demand of the whole 

system as these are unknown for the three-stage sequential gaseous fuel production process as 

they are not yet commercialised. The paper provides a perspective on the relative differences 

in energy input in the micro-algal cultivation systems. Power consumption for pumping has 

been considered as the main energy input. This energy input if derived from a fossil fuel 

(such as coal) will reduce the net energy of the system and will create carbon emissions in 

capturing carbon.  

 

Gaseous fuel yields from CO2 from coal combustion (using data from [12] as in Table 1) 

 1 tonne of coal can give 0.96 t VS of micro-algal (2.4 tCO2 * 0.8 * 0.5 t VS/ t CO2) 

This corresponds to:  2 GJ H2 gas (198.3 m3 H2/t VS*0.96 tVS*10.78MJ/m3)  

                                          & 6.4 GJ CH4 gas (186.2 m3 H2/t VS*0.96tVS*35.8MJ/m3) 

Energy Return:  

8.4GJ renewable gas / 24 GJ = 35% energy return on the primary energy in the coal. 

1 t coal produces 2.4t CO2, 0.96 tVS micro-algae (80% capture) & 8.4 GJ renewable gas. 

1 t coal produces 2.4t CO2, 0.6 tVS micro-algae (50% capture) & 5.28 GJ renewable gas  

Thus 1 t VS micro-algae produces 8.8GJ of renewable gas 

1 T CO2 can produce 0.4 tVS micro-algae and 3.52 GJ (at 80% capture) 

1 T CO2 can produce 0.25 tVS micro-algae and 2.2 GJ (at 50% capture) 

Cars powered: 

A VW Passat consumes 4.4 kg/100 km or 6.6m3 of bio-methane/100 km  

If a car travels 16,700 km per annum it uses 39.5 GJ of CH4 

A 1GWe plant consumes 2.82 Mt of coal per annum and can produce 23.7 PJ of gas. 

600,000 cars powered by renewable gas 
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3.3 Discussion of Results 

The crux of the paper deals with the production of gaseous fuels from micro-algae that is 

grown using the carbon emissions from a coal fired power plant. However, it is observed 

from Table 3.3 that the energy output is higher for the closed systems than the open systems 

because pumping requirements are far higher in the closed systems especially in the tubular 

PBR. The ratio of the energy output to the energy input is 0.71 for the raceway pond; for each 

unit of energy put into the system only 0.71 units of energy leave the system. This drops to 

0.05 for tubular photo PBR systems. At present level of technology, it may be said that the 

tubular PBR is not sustainable from an energy balance perspective. The energy input required 

to cultivate the micro-algae by carbon capture (GJ/tonne of CO2) is significant, especially for 

the closed systems. Capture by flat plate and tubular PBR is 2.2 and 19 times more energy 

intensive respectively, when compared to chemical capture by Mono-ethanol amine 

(3.7GJ/tCO2). Raceway ponds consume less energy than Mono-ethanol amine. 

From a carbon perspective raceway ponds emit 31% of the carbon captured. This rises to 

700% for the tubular PBR. Tubular PBRs because of their high pumping requirements are 

energy intensive, carbon intensive (if electricity from coal is used), as well as expensive. This 

negates the high biomass productivity per unit area of the tubular PBR system (Table 3.2).  
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Table 3. 3: Comparative analysis of micro-algal carbon capture and energy return using three 

different cultivation systems 

Parameter Raceway Pond Flat Plate PBR Tubular PBR 

Energy output (GJ/tCO2)1 2.20 3.52 3.52 

Volumetric productivity 

(kg/m3. d)2 
0.035 0.26 1.535 

Power consumption (W/m3)2 4 50 2500 

Energy input (GJ /t algal VS)3 12.34 20.78 175.90 

Energy input (GJ/tCO2)4 3.09 8.31 70.36 

Net energy ratio (NER); Ratio 

of energy output to energy 

input5 

0.71 0.42 0.05 

Carbon emissions (t/tCO2 

captured)6 
0.31 0.83 7.04 

 

1: from Box 3.2 

2: Values from literature [41, 43, 44]. 

3: Determined by dividing power consumption by (volumetric productivity* volatile solids to total solids ratio 

(0.8)). The calculation precedes as follows making allowance for the correct units (W/m3 / kg/m3. d = W/m3 * 

m3. d/kg = J.d/kg.s). For a raceway pond: (4 W/m3 * 24 h/d * 60m/h * 60 s/m) / (0.035 kg/m3. d) = 9,874,286 

J/kg TS = 9.9 GJ/t TS = 12.34 GJ/tVS  

4: Determined by multiplying values obtained in previous row (described in point 3) by conversion rate of CO2 

to micro-algal volatile solids (0.5), then by capture efficiency. For raceway ponds: 12.34 GJ/tVS * 50% 

conversion to microalgae VS = 6.17 GJ/ t CO2 = 3.09 GJ/t CO2 (50% capture efficiency) 

5: NER: (Energy output (GJ/t CO2)) / (Energy input (GJ/tCO2)). 

6: Determined by multiplying (Energy input (GJ/tCO2) by carbon emissions per tonne of coal (2.4t CO2/t coal), 

divided by the primary energy content of coal (24 GJ/t) 

 

The variation of micro-algal productivity has significant impact on NER (Figure 3.3) as well 

as carbon emissions of raceway pond (Figure 3.4). Passell et al. [45] suggested a low 

productivity of 0.003 kg/m2. d (or 0.01 kg/m3. d) based on the measured productivity for 

year-around. This leads to a very low NER value of 0.20, which indicates energy input is 

much higher than energy output in micro-algal cultivation. The carbon emissions of 1.08 

t/tCO2 are also high, which indicate more carbon dioxide is produced during micro-algal 

cultivation process. While Delrue et al. recommended a relative high productivity of 0.03 
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kg/m2.d (or 0.1 kg/m3.d), resulting in significantly increasing in the NER (2.04) and 

decreasing in the carbon emissions (0.11 t/tCO2) [46]. A higher productivity of 0.128 kg/m3.d 

suggested by Stephenson et al. can further improve the NER to 2.61, and reduce the carbon 

emissions to 0.08 t/tCO2 captured [23]. 
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Figure 3. 3: Net energy ratios based on micro-algal productivities. Case 1: Jorquera et al. 

[41], Case 2: Passell et al. [45], Case 3: Delrue et al. [46] and Case 4: Stephenson et al. [23]. 
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Figure 3. 4: Carbon emissions based on micro-algal productivities. Case 1: Jorquera et al. 

[41], Case 2: Passell et al. [45], Case 3: Delrue et al. [46] and Case 4: Stephenson et al. [23]. 
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This analysis is meant as a perspective. It has examined the broader concept big picture. It 

has generated the potential energy returns in the form of gaseous fuel depending on the 

cultivation technology. Gaseous micro-algal fuels have benefits over biodiesel production as 

the considerable parasitic energy demand in drying the algae and extracting the lipids is not 

required. However, energy required to operate the three-step sequential process and energies 

in pre-treatment of the substrate have not been assessed. These steps will lower the energy 

return and increase the indirect carbon emissions of the system. A detailed life cycle analysis 

including energy and carbon analysis for each step of the proposed idea should include the 

following. 

• Photo-bioreactors have high installation and operating costs; 

• The carbon footprint associated with the construction and operation of the renewable 

gas production system; 

• The electricity required to operate photo-bioreactors, particularly to bring about 

effective light utilization in the reactor for better micro-algal growth is significant, 

and should come from a carbon-free source; 

• Although open systems are cheaper, they have high downstream processing costs and 

they suffer from contamination and require high water use.  

• Analysis of the effects of diurnal variations and geographical conditions on algal 

growth need to be studied as this will result in a large variation in the yields reported 

Micro-algal cultivation has the potential to combine with various combustion systems for 

CO2 capture. The land footprint can be significantly reduced in a small combustion system 

(such as wood chip boiler). Alternatively, micro-algae can also be used in biogas upgrading 

by CO2 removal to meet vehicle fuel standard (CO2<3%) [47]. A recent study proposed an 

integrated system comprising biogas production and upgrading by micro-algae [48]. CO2 in 
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produced biogas (ca. 40%) is efficiently removed by micro-algae via a carbonate/bicarbonate 

cycle. The accumulated micro-algal biomass can be used as co-substrates for further biogas 

production. This system has significant advantages in reducing parasitic energy demand in 

biogas upgrading, minimising CO2 emission, and enhancing energy output of gaseous fuels 

[48]. 

 

3.4  Conclusions 

The abundance of coal on the planet suggests that not combusting this coal is unlikely. 

Micro-algae may be used to capture the carbon and further be used to produce a gaseous 

biofuel with an energy content 35% of that of the coal. Cars may be powered at a rate of 31 

per hectare. Of issue is the scale and the parasitic energy demand. A 1GWe coal fired power 

plant requires a micro-algal cultivation system occupying between 19,200 ha for a tubular 

PBR and 52,303 ha for a race pond system. The ratio of energy output to energy input is less 

than 1 for all the three cultivation systems assessed. 

Despite this micro-algal carbon capture continues to gain attention. Increasing biomass 

productivity along with innovative photo-bioreactor design can lead to improvement in 

energy balance. Complete sequestration of CO2 requires that the micro-algae are buried and 

not processed to produce combustible fuel.  

At the current level of technology raceway ponds seem to be the only option for cheap and 

low carbon intensive micro-algal cultivation and carbon capture.  
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Abstract 

Aquaculture contributed 23.8 million tonnes of aquatic algae globally in 2012. Increasing 

consumption of seaweed (as food, for the production of hydro-colloids, and for production of 

third generation biofuels) will lead to an upward trend in its production and cultivation.  

Aquaculture contributed 66.6 million tonnes of fish in 2012, 42 % of global production. Fish 

demand globally is rising to meet food and nutritional requirements; aquaculture for fish will 

grow. However, fish farms are marred by criticism of pollution caused by discharge of waste. 

Integrated multi-trophic aquaculture can reduce pollution through co-culture of several 

species such as seaweed and mussels that utilise waste disposed from fish farms for their 

growth and development.  

A model is investigated which would provide 1.25% of energy in transport in the EU from 

seaweed. This would involve annual production of 168Mt of seaweed (more than present 

world harvest) integrated with 13 Mt of farmed salmon. The model proposes 2603 anaerobic 

digesters, each treating 64,500t/a of S.latisma in coastal digesters adjacent to natural gas 

infrastructure for downstream use in natural gas vehicles.  

 

 

Keywords: seaweed; hydro-colloids; gaseous biofuel; integrated multi-trophic 

aquaculture; bio-hydrogen; bio-methane. 
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4.1 Introduction 

4.1.1     The market for seaweed 

 Seaweed (macro-algae) is extensively used as a food in several countries including China, 

Japan and the Republic of Korea. In the last decade seaweeds, have been used to produce 

hydrocolloids in the food processing and cosmetics industry. Recent applications of seaweeds 

include in the field of bio-catalysis, bio-plastics, pharmacology and textiles [1]. The level of 

use of seaweed is excessive for natural stocks; hence close to 90 % of the seaweed used today 

comes from aquaculture [1]. There has been a significant increase in the production of farmed 

aquatic plants. The FAO reported a production of 15.8 million tonnes (wet weight) of aquatic 

plants in 2008 from aquaculture; 99.6% of this production is seaweed [2]. By 2013 the 

aquaculture harvest rose to 26.1 million tonnes of aquatic plants; again, the majority of which 

is seaweed [3]. This is a 65% increase in 5 years. In 2013, China was responsible for 13.5 

million tonnes of this harvest [3]. The seaweed industry is valued at US$ 5.5-6 billion 

annually [4]. Products for human consumption account for US$ 5 billion of this [1, 5]. 

Hydrocolloids are substances, which form gel in water. In the food industry, there are used to 

bind food proteins in the dairy and meat industry. Seaweeds can be a vegetarian substitute for 

gelatine. The hydrocolloids industry produces alginates, agar and carrageenan from seaweed; 

this industry was worth US$ 600 million in 2003 and increased to US$ 1156 million in 2014 

[1, 6]. This is an increase of 92.6% in 11 years. 

 

4.1.2 The market for seafood 

By 2050 our planet will be home to close to 9.6 billion people [7]. More food and nutrition 

will be required. Most importantly an adequate amount of protein will be necessary to 

prevent malnourishment. Meat protein is increasingly being used as a source of protein but it 

is unsustainable in the long run as the amount of CO2 liberated per kg of edible meat is 

highest for cattle meat (30 kg CO2/kg edible meat) and is the least for farmed fish (2.9 kg 

CO2/kg edible meat) [8]. Globally around 158 Mt of food fish was produced in 2012; this 
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includes finfish, crustaceans, molluscs, amphibians, sea squirts and edible jellyfish. 

Aquaculture contributed 42 % to the total production of food fish in 2012; the remainder was 

supplied by capture production [3].  

 Protein from fish contributed 16.7% to the global animal protein intake in 2010, with 150 g 

of fish being sufficient to meet more than half of  an adult’s daily protein need [3, 9]. In 2012, 

136.2 Mt of food fish was utilised for human consumption with an extra 21.7 Mt used for 

non-food uses, such as fish oil and fish feed used in aquaculture [3]. 

Global aquaculture (including food fish and aquatic plants) attained an industry value of 

US$144.4 billion in 2012 and produced 66.6 million tonnes of farmed food fish, with farmed 

finfish accounting for two-thirds of the production [3, 10]. Salmon trade (both wild and 

cultivated) has increased considerably and contributes 14% to world fishery trade. Salmon 

and trout aquaculture is increasing in parts of North and South America (Canada, Chile) and 

Northern Europe; Norway leads the production of Atlantic Salmon [3, 8, 10, 11]. 

Europe is the largest market for fish and fishery imports with a value of US$ 24.9 billion in 

2012 (excluding intraregional imports). Europe is responsible for 23 % of the world imports 

of fish. Efforts are being made to make aquaculture more economically viable to reduce the 

burden of imports [3, 12]. 

 

4.1.3 Role of Integrated Multi-Trophic Aquaculture (IMTA) 

IMTA is one of the most scientifically promoted methods of removing wastes from fish farms 

and has been used by Asian countries for centuries. It is now gaining importance as a method 

to reduce the ill-effects of fish farms (including inland and marine aquaculture) especially the 

discharge of inorganic nitrogen that is responsible for water eutrophication [13]. The basic 

concept of IMTA involves two levels: a Fed Trophic level (FTL) and an Extractive Trophic 

level (ETL). The FTL species may be Salmon or Trout (usually a carnivorous species). This 

species is the primary product being cultivated and is generally fed with fish processing 
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wastes or fish oil. The ETL species can be further divided as inorganic extractive species 

(such as seaweed) and organic extractive species (such as shellfish) [14-16]. The nutrient rich 

waste that is discharged by the fish farms is sequestered by these extractive species. The 

dissolved nutrients (containing nitrogenous compounds and phosphates) are absorbed by the 

inorganic extractive species (aquatic plants including seaweed). The floating and suspended 

particulate matter released is eaten by organic extractive species such as mussels, sea urchins 

and sea cucumbers [17-19].  

 

4.1.4 Requirement for advanced biofuels such as sourced from seaweed 

On the 24th February 2015, a press release from the Environment Committee of the European 

Parliament concluded that biofuels from seaweed or certain types of wastes should contribute 

at least 1.25 per cent of energy consumed in transport by the year 2020 [20] 

Biofuels from seaweed is an emerging area of research for both liquid and gaseous biofuels 

[21]. It could not be said that there is any consensus on what the seaweed biofuel system 

would look like. What would be the species of seaweed? Would it be cast seaweed, or sub 

tidal seaweed? Would it be sourced from natural or cultivated stocks? Would the biofuel be 

liquid or gaseous? Whatever the system is, it is a massive task to generate 1.25% of energy 

from transport by 2020 from seaweed.  

 

4.1.5 Objectives 

This chapter presents a perspective on a seaweed biofuel system based on co-location of 

farmed fish and seaweed in an integrated multi-trophic aquaculture system. An objective is to 

suggest the resource of seaweed required to satisfy 1.25% of energy from transport by 2020 

in the EU.  
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4.2 Fish farms, seaweed and gaseous biofuel production. 

4.2.1 Salmon production and IMTA 

Around 60 % of the global salmon production comes from salmon farms [8, 22]. Farmed 

Atlantic Salmon dominates the farmed salmon market with a share of more than 90 % and 

contributes more than 50% to the global salmon market [23].  The total supply of farmed 

Atlantic Salmon in 2013 was 1.84 million tonnes HOG (head-on-gutted) [8, 23].  Atlantic 

Salmon production is largely a function of seawater temperature and hence only selected 

coastal regions, where the water temperature is between 8 and 14 ° C is considered optimal 

for salmon growth and production. The main regions for production are around the coast of 

Norway, Scotland, Canada and Chile; in these areas certified licenses are required for 

farming as well as for catch production [8, 24]. A few studies have been carried out on bio-

extraction by seaweed of carbon and nutrients excreted from fish farms [17]. Table 4.1 gives 

an overview of results obtained at field scale as well as laboratory studies to determine the 

nutrient sequestration capacity of certain seaweeds. Various factors such as water 

temperature, currents, light hours, seeding and stocking density of the seaweed affect the 

productivity of such a system [25]. 
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Table 4. 1: Seaweed cultivation in Integrated Multi-Trophic Aquaculture 

  

4.2.2 Gaseous biofuels from seaweed 

Gaseous fuels such as biomethane and biohydrogen can be produced from seaweed via 

thermochemical or biological processes. The ash content of seaweed is higher (ca. 15-30% 

dry matter basis) [28, 29] than terrestrial biomass (ca. 5-10 % dry matter basis) [30]. High ash 

content is a hindrance if used in thermal processes such as pyrolysis and gasification as ash 

causes fouling and slagging [31]. Hence seaweed may be more suited to anaerobic digestion. 

Fed Trophic level species Seaweed cultivated  Reference 

Sea bass (Dicentrarchus labrax), 

Turbot (Scophthalmus rhombus), 

Senegalese sole juveniles (Solea 

senegalensis Kaup) 

 

A productivity of 23 g/m2/day (dry weight) for 

Gracilaria vermiculophylla was achieved with a 

nitrogen removal capacity of 1.3 g/m2/day. 

 

[25] 

Atlantic Salmon (Salmo salar) Mean weight ratios of 6.7:1 and 12.9:1 for 

Alaria esculenta and Saccharina latissima were 

required to sequester nitrogen excreted per unit 

weight of salmon 

[17] 

Salmon farms located near Chile A productivity of 53 g/m2/day (fresh weight) 

for Gracilaria chilensis was achieved with a 

nitrogen removal capacity of 9.3 g/m for long 

line cultivation. 

 

[26] 

Atlantic Salmon Palmaria palmata and Saccharina latissima 

were grown at a productivity of 180 t/ha/a and 

220 t/ha/a and removed ca. 12 % and 5 % of 

nitrogen released by about 500 tonnes of fish 

over a period of 2 years. 

[27] 
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Table 4.2 gives the biomethane yields for a selection of seaweeds. A study was also 

conducted on the methane potential of the sludge obtained post alginate extraction from 

seaweed yielding 100-150 L CH4 /kg VS [32]. A recent study investigated the yield of 

hydrogen and methane from seaweed (Laminaria japonica) using a two-stage system (dark 

fermentation followed by anaerobic digestion). Yields of 71.4 ml H2/g TS and methane yields 

of 309 ml CH4 /g COD were obtained [33].  

 

Table 4. 2:  Biomethane potential of selected seaweeds 

Type of seaweed Methane yield L CH4/kg 

Volatile solids (VS) 

Reference 

Ulva lactuca 271 [34] 

Laminaria digitata 

 

238 [35] 

Saccharina latissima 

 

256 [36] 

340 [37] 

Ascophyllum nodosum 

 

110 [38] 

Gracilaria vermiculophylla 295 [39] 

 

4.2.3 Potential resource of seaweed biofuel associated with a fish farm.  

Figure 4.1 provides a concept of the proposed Fish to Fuel model. Depending on the 

composition (and hygiene) of the seaweed, it can be used for food and hydrocolloid 

production or biofuel. In some cases, where the cost of fish feed is expensive, operators of 

salmon farms may prefer to use the produced seaweed as fish feed. 

 



65 
 

 

Figure 4. 1: Fish to Fuel Model  

The average weight of an Atlantic Salmon after two years of growth at sea is in the range 3.6-

5.4 kg [40]. The amount of nitrogen excreted per kilogram growth of Salmon is 29.49 g; this 

can be sequestered by 12.9 kg of Saccharina latissima (wet weight) [17]. Using a methane 

yield of 340 L/kg VS for S. latissima (Table 2) the resource of seaweed biomethane from a 

5000-t salmon farm can be assessed as 79,216 GJ (Box 1).  

In 2012, the total energy consumed in transport in the EU was of the order of 16.5EJ [41]. 

If advanced biofuels from seaweed are to satisfy 1.25% of this energy, then 206 PJ of 

transport biofuel is required per annum. In Box 4.1 it is shown that 5000 t of salmon can 

generate 64,500t of S.latisma or 79.2 TJ of biomethane. Based on this model 168 Mt of 

seaweed would need to be digested by 2020, in 2600 anaerobic digesters, each treating 

64,500 t ww of laminaria per annum; at present the EU has approximately 9,000 digesters. 

The distribution system would be the existing natural gas grid. The vehicles would be natural 

gas vehicles (NGVs) of which there are over 16.7 M in operation in 2012 

[http://www.iangv.org/current-ngv-stats/] 
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Thus, based on this model, the EU would need 13 million tonnes of salmon associated with 

the production of 168 Mt of seaweed. To put this in context the total supply of farmed 

Atlantic Salmon in 2013 was 1.84 million tonnes HOG (head-on-gutted). The world harvest 

of farmed fish was 66.6Mt in 2012. Aquaculture contributed 23.8 million tonnes of aquatic 

algae globally in 2012. A considerable ramping up of aquaculture is required for the EU to 

provide transport biofuel from seaweed.  

 

Box 4.1: Seaweed biofuel system allowing production of 1.25% of energy in transport in 

the EU 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Relationship between salmon and seaweed  

 

A 5000 t salmon fish farm produces      150t of nitrogen 

 [29.49g nitrogen excreted per kg of salmon] 

150 t of nitrogen allows production of 64,500 t (wet weight) of S. latissima 

 [12.9 kg of S.latisma produced per unit weight of salmon] 

 

Relationship between seaweed and biomethane 

Biomethane production from 64,500 t (ww) of S. latissma   = 2,212,737mn
3 CH4 

[64,500t (ww) *0.1009 (%VS)* 340 m3/t VS)] 

This scale is equivalent to a 1MWe digester system (at 40% electrical efficiency). 

 

Scale of industry required to satisfy 1.25% renewable energy in transport in the EU 

Energy produced in seaweed biomethane from 5000 t of salmon  = 79,216 GJ  

[2,212,737 mn
3 * 35.8 MJ/m3] 

1.25% of energy in transport in the EU equates to 206 PJ 

2603 seaweed digesters each digesting 64,500 t ww of S.latissima, produce 16.5 EJ 

 

Model of seaweed biofuel system 

The model proposes that seaweed is harvested in late summer when the biomethane potential is 

highest. The seaweed is ensiled on shore adjacent to a coastal digester and to the natural gas 

grid. The biogas from the seaweed is upgraded to biomethane (methane composition of 97% 

plus) and injected to the natural gas grid. The Alternative Transport Fuel Directive stipulates 

that compressed natural gas service stations are situated no further than 150km distant in the EU 

by 2025 (http://www.eubusiness.com/topics/transport/clean-fuels) 
   

 

 

http://www.eubusiness.com/topics/transport/clean-fuels
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4.2.4 Blue growth and blue carbon 

The nutrient load of the 5000-t salmon farm is equivalent to the sewage released by a 

community of 37,500 people; 4 kg of nitrogen is excreted by an average human being per 

year [42]. Implementation of IMTA can have a three-fold benefit:  

1. Excessive nutrient extraction/sequestration;  

2. Co-production of diverse products whilst only feeding the main species (the lower 

trophic levels live off the waste from the fish farm);  

3. Improved amenity of coastal habitat.  

IMTA promotes high productivity of seaweed as there is a constant source of nutrients 

supplied. Similar to carbon credits, a nutrient credit system/trading is also implemented in 

countries (such as Sweden) for fish farms, thus increasing the total income generated by 

farmed fish aquaculture [25]. The release of wastewater can be taxed, such as employed in 

Denmark where charges of €4 per kg of N released, are in place [43]. If similar charges are 

imposed on salmon farms the use of IMTA can reduce the burden of such taxes. The 

nitrogenous wastes can be compared to valuable nutrients; nitrogen based fertilizers cost ca. 

€800/t [44]. Effective use of the coastal environment through IMTA concepts is classified as 

blue growth. Carbon sequestration in the marine environment is termed as blue carbon and is 

considered as an effective sink for carbon absorption [45]. 

 

4.3 Seaweed: Food versus Fuel debate   

4.3.1 Use of seaweed for food 

Irrespective of the nature and method of cultivation or harvest of seaweed, there could be a 

competition for the resource. Asian countries are the largest producers and largest consumers 

of seaweed. Unlike in the West, seaweed forms an important part of the cuisine in many 

Asian countries. In food circles Laminaria is known as kombu, Undaria is known as 

Wakame, Porphyra is known as Nori. Kombu, Wakame and Nori have sold at US$ 2,800/dry 

tonne, US$ 6,900/dry tonne and US$ 16,800/dry tonne respectively [1]. Of the 220 species of 
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seaweed cultivated, Laminaria, Undaria, Porphyra contribute 74.8 % of total production [4]. 

There is an increasing market in Europe for seaweed as food. In Rogaland, Norway 

approximately 140 kg of Ulva spp is harvested by hand per annum; this is sold to restaurants 

at €50/kg ww [46]. 

 

4.3.2 Use of seaweed for industrial applications 

Hydrocolloids from seaweed are a suitable alternative to synthetic gums, stabilisers, 

thickeners and gelling agents. Hydrocollids include for gelatin, xanthan, pectin, carboxy 

methyl cellulose, carrageenan, alginate, agar and guar; these are considered high value 

speciality chemicals. These are used in food products and pharmaceutical applications. 

Seaweeds have an asset value in industrial applications. Laminaria hyperborea can command 

a price of €23/tonne ww. Ascophyllum nodosum is sold at €50/tonne ww in Norway [46]. 

The world hydrocolloid market is expected to reach annual sales of US$ 7911 million by 

2019 [47]. The hydrocollid market is a competitor to seaweed biofuels. 

 

4.3.3 Use of waste derived seaweed as fish feed 

Seaweed that is grown using waste streams from integrated multi trophic aquaculture is a 

suitable feedstock for biofuel, as it does not directly compete with natural or farmed 

resources. Its primary function is to sequester nutrients from the waste secreted from fish 

farms and as such may not be seen as a high value food for human consumption commanding 

prices such as for Kombu (laminaria) of US$ 2,800/dry tonne. 

Fish feed and fish oil high in omega-3 fatty acids, are the preferred choice of feed for fish 

farms, especially for species such as salmon and trout. Fish feed has witnessed a considerable 

increase in price [3, 48, 49] and is responsible for 50-70 % of the production costs of fish 

farmers [50]. The prices of fishmeal and fish oil had increased to ca. US$ 2000/tonne in 2013 

and has remained around the same value in 2015 [3, 51]. Alternative sources of fish food 
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such as soymeal and corn meal have been used. Micro and macro-algae (seaweed) are also 

suggested to supplement the nutrient requirement of fish farms. Certain species of sea 

urchins, abalones and fish utilise seaweed as their source of food during the early stages of 

growth [52]. Hence the seaweed produced from fish farms may partly be used as feed for the 

organisms being cultivated.  

 

4.3.4 Further Research 

Much research is required on seaweed and biofuel production from seaweed. Technical and 

economic feasibility of offshore and onshore based IMTA systems is required. Offshore 

systems will require new infrastructure to be built (such as structural rigs); onshore systems 

require land. Detailed composition of the seaweed produced using IMTA is necessary. Life 

cycle analysis including for sustainability analysis for seaweed biofuel [52] is required to 

justify the benefits of this third-generation biofuel as compared to first (food crops) and 

second (lignocellulosic biomass) generation biofuel systems. Biorefinery systems, which 

include for biofuel production from the residues obtained after alginate and other high value 

products have been extracted, should be assessed [51].  

Moreover, the sustainability of salmon farms may also be assessed. The production of farmed 

finfish is associated with many problems such as disease outbreak; that can also affect the 

wild species present in the natural water. Use of antibiotics, chemicals and steroids are 

damaging to the ecosystem, as are the high levels of nutrient discharge from the waste from 

fish farms [26, 53, 54]. Regulations will come into force, which will ultimately improve on 

the shortcomings of aquaculture [55-59] and may lead to IMTA and seaweed production 

becoming standard at fish farms.  
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4.4 Concluding remarks 

 

Seaweed is a food and a versatile raw material. If advanced biofuels from seaweed are to 

satisfy 1.25% of energy in transport, the EU would need 13 million tonnes of salmon, 

generating 168 Mt of seaweed. The world harvest of farmed fish was 66.6Mt in 2012; 

aquaculture contributed ca. 23 million tonnes of seaweed in 2012. Natural stocks of seaweed 

cannot be involved in this increasing demand for seaweed. IMTA can improve the 

sustainability of fish farms, clean the waters of excess nutrients and supply seaweed as raw 

material for industry and as biofuel. 
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 Glossary 

Food Fish: Includes Finfish, Crustaceans, Molluscs, Amphibians, Sea Squirts, 

Edible Jellyfish. 

Fish Feed: Food used for the growth of fish in farms (inlcudes fish processing 

waste, soyfeed, seaweed) 

Hydrocolloids: Colloidal particles that are hydrophilic polymers dispersed in 

water to form a colloidal solution. 

Finfish, crustaceans, molluscs: Salmon, Shrimps, Mussels. 

Extractive species: Species that derive nourishment from their environment, 

especially from the waste matter excreted by a higher trophic level in the 

surroundings. 

Stabilisers: Additives added to food products to maintain their structure and to 

prevent emulsions from splitting into their individual components.  

Feed conversion ratio:  Measure of how effectively the feed is converted to 

animal body weight. 

Protein retention: kg protein present in edible parts/kg protein in feed. 
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Abstract 

 

 

This study contrasted single and two-stage mesophilic fermentation of Laminaria digitata. 

The two-stage system comprised a hydrolysis reactor (H1) with a hydraulic retention time 

(HRT) of 4 days followed by two methanogenesis reactors M1 and M2 with HRT of 20 and 

14 days respectively. The single stage reactor (M3) had a HRT of 24 days. Specific methane 

yields of 176, 234 and 221 L/kg VS were obtained for M1, M2 and M3. The methane 

concentration of the biogas was 22% higher for the two-stage system (58% to 61%) than the 

single-stage system (50%). Hydrolysis yielded a hydrogen yield of 26 L/kg VS. The two-

stage system (H1, M2) provided an overall energy yield of 8.66 MJ/kg at a HRT of 18 days 

compared to 7.89 MJ/kg in the single-stage system with a HRT of 24 days. Thus two-stage 

system reduced HRT by 33% whilst improving the energy conversion by 9.8%. 
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5.1 Introduction 

The sustainability of first generation biofuels derived from terrestrial crops (such as rapeseed 

biodiesel and maize ethanol) is in doubt and has raised ethical questions in the food fuel 

debate. Second generation biofuel feedstock tends to be highly ligno-cellulosic woody type 

crops; this increases the parasitic energy input for processing to suitable forms of biofuel 

(Allen et al., 2015). Marine biomass such as seaweed (also known as macro-algae) are 

considered third generation feedstocks for biofuels, as they do not compete with land based 

food systems, nor do they require any land for growth (in contrast with woody non-edible 

second generation substrates). Algae are a highly productive biomass and are easy to ferment 

as they contain no hard lingo-cellulosic material (Coelho et al., 2014). 

However macro-algal based biofuel is at a very low technology level and there is a sparsity of 

literature on algal biogas. Feedstock procurement is an issue as excessive removal of natural 

seaweeds can cause environmental imbalance and habitat destruction. Cultivation is 

preferable but has some issues in the immaturity of the industry; sowing, harvesting, logistics 

of collection, storage, processing, and the high cost of all these steps can be challenging. 

Seaweed composition is also subject to seasonal variation in its composition (Tabassum et al., 

2016c). Moreover there are certain kinds of seaweed that are more valuable and profitable for 

the production of value added chemicals (used in  industrial gums, emulsifiers and 

hydrocolloids) than for biogas production (Hardouin et al., 2014; Fertah et al., 2014). Circular 

economy concepts may offer advantages to the seaweed biogas system. This includes 

integrated multi-trophic aquaculture, whereby cultivation of seaweed adjacent to fish farms 

can sequester nitrogenous compounds excreted by the fish increasing growth of the seaweed 

and reducing eutrophication of the marine environment (Abreu et al., 2011)  

Seaweeds have no lignin hence are quite easily broken down by even mild processing 

temperatures. However, they contain very different polysaccharides such as alginate, 
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fucoidan, agar, mannose (van Hal et al., 2014). These seaweeds can contain cations such as 

calcium and magnesium that can reduce efficient degradation of the polysaccharides to their 

monomers. However, when anaerobic inoculum are acclimatised to seaweed feedstocks for a 

significant period of time, degradation of these complex carbohydrates is increased 

(Tabassum et al., 2016a). Laminaria digitata, which is a typical brown seaweed found in 

temperate oceanic waters, is comprised predominately of carbohydrates, with very low levels 

of proteins when compared to red or green algae (Hong et al., 2014). As a result, L.digitata is 

suitable for the production of biogas in the form of hydrogen and methane via fermentation. 

Single stage anaerobic digestion of brown seaweed such as Laminaria spp. were conducted 

showing that particle size reduction yielded an increase in methane yield of upto 53% 

(Tedesco et al., 2014). Continuous prolonged periods of anaerobic digestion was also found 

to be conducive for  Laminaria hyperborea (Hinks et al., 2013). Certain studies also reported 

low yields and unstable operation due to some inhibitory compounds such as polyphenolic 

pigments present in specific brown seaweeds. Certain seaweeds such as Ascophyllum 

nodosum are considered to be unfit for anaerobic digestion as their specific methane yields 

(SMY) are low, with levels of 47 L CH4/kg VS recorded (Tabassum et al., 2016b). However, 

A. nodosum may be used as a source of pigments and alginic acid; it may also be used as a 

fertilizer. Since brown seaweeds tend to have good carbon to nitrogen (C:N) ratios in advance 

of 20:1, they can also be co-fermented with protein/nitrogen rich substrates like microalgae 

and dairy slurry to improve their methane yield (Herrmann et al., 2016; Tabassum et al., 

2016a). 

Two stage fermentation involves hydrolysis of an initial substrate in a separae reactor to 

volatile fatty acids (VFAs) at an optimum pH in the range 5 to 5.5 (Jung et al., 2011b; Kim 

and Kim, 2011). The VFAs are then fed to a second methanogenic reactor that produces 

biomethane with the aid of the methane archaea at a pH in the range of 7 to 7.5. The two-
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stage process is seen as theoretically improving both the hydrolysis and methanogenesis 

stages as pH is optimised for these in different reactors. This is not the case for a single stage 

where the pH is in the range of 7 to 7.5 in a single reactor and as such hydrolysis is not 

optimised.  The hydrolytic stage also results in the production of biogas free from methane 

and including hydrogen and carbon dioxide. This process is often referred to as dark 

fermentation (Krupp and Widmann, 2009; Levin and Chahine, 2010). Several types of 

feedstocks have been assessed for two stage digestion in the literature including: straw, grass 

silage and food waste; these substrates have been converted to biogas in laboratory two-stage 

processes with reasonably high yields (Browne and Murphy, 2014; Massanet-Nicolau et al., 

2015).  

Fermentative hydrogen production and two-stage fermentation of Laminaria japonica has 

been studied by Jung and co-workers (2011a; 2011b; 2011c; 2012). Optimised pre-treatments 

including for acid pre-treatment and high temperature treatments facilitated hydrogen yields 

of 159.6 L H2/kg dry cell weight (Jung et al., 2011a). Liu and Wang (2014) investigated the 

effect of pH and mixed anaerobic bacteria on fermentative hydrogen production from 

L.japonica. Jung et al (2012) focused on continuous two stage digestion of L. japonica; in 

this study the effluent from the methanogenic stage was used as an alkali to maintain the pH 

of the dark fermentation reactor (Jung et al., 2012).  

L. digitata is one of the dominant seaweeds in the north west Atlantic and is known for its 

high growth rate. The scientific literature records the effect of seasonal variation on its 

methane yield; August is the most suitable season for harvest in terms of biomethane 

potential (Adams et al., 2011; Tabassum et al., 2016c). L. digitata and micro-algae (Chlorella 

pyrenoidosa) were converted to biogas in a batch two-stage fermentation improving 

hydrogen and methane yields as compared to mono-fermentation of micro-algae (Ding et al., 

2016). This chapter deals with the comparative study of a two-stage process and a single 
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stage system both digesting L. digitata. A scientific literature review indicates only one study 

on long term continuous digestion of L.digitata (Tabassum et al., 2016) and no study on two-

stage continuous mono-fermentation of L. digitata. The innovation in this chapter is to fill the 

gap in the literature by assessing the following objectives:  

• Compare the performance of a two-stage and single-stage anaerobic digestion of L. 

digitata based on process parameters including hydraulic retention time and organic 

loading rate. 

• Assess the specific methane yields and biogas composition for the two systems. 

• Assess the specific hydrogen yield and volatile fatty acid production of the hydrolysis 

reactor. 

 

5.2 Material and Methods 

5.2.1 Materials 

 

The seaweed L. digitata was collected from the beaches of Cork in Ireland during the months 

of September and October (Herrmann et al., 2015). The biomass thus obtained was 

thoroughly washed under tap water to ensure the removal of sand and other forms of 

impurities in the surface, and then was processed to obtain a particle size of 4-5 mm using a 

Buffalo Heavy Duty Mincer CD400. The processed samples were subjected to proximate 

analysis. The seaweed was shown to have 18.44 wwt % (total solids or TS), 14.05 wwt % 

(volatile solids or VS), 81.56 wwt % (moisture) and an ash content of 22.84% (of Total 

Solids). The ultimate analysis gave the chemical composition as follows: C (36.01 %TS), H 

(4.59 %TS), N (1.32 %TS), O (35.24 %TS) and C: N ratio (27.3). A biomethane potential 

(BMP) assay generated a value of 305.2±9.1 L/kg VS. The BMP of an internal standard such 

as cellulose (350.2± 12.7 L/kg VS) was also done to check the validity of the results as well 

as the proper functioning of the equipment.  
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Inoculum for the methanogenic reactors were passed through a 2-mm sieve and incubated for 

at least one week at 37°C under anaerobic conditions to reduce any residual gas production. 

The hydrolysis reactor was seeded with inoculum that was heat treated at 100°C to eliminate 

methanogenic archaea thus facilitating the dominance of hydrogen/hydrolysing bacteria. 

 

5.2.2 Chemical and Biological Analyses 

Gravimetric measurements such as TS and VS were obtained by weighing the sample 

residues that were dried for 24 hours at 105 °C and later burning the dried residue at 550 °C 

for 4 hours. Volatile Fatty Acids (VFA) were determined using a gas chromatograph (Agilent 

HP 6890 Series, Agilent Technologies, Santa Clara, CA, USA) equipped with a Nukol™ 

fused silica capillary column (Supelco, Bellefonte, PA, USA), argon as a carrier gas and 

flame ionisation detector. Gas samples were measured using a gas chromatograph (Agilent 

HP 6890 Series, Agilent Technologies, Santa Clara, CA, USA) equipped with a Hayesep R 

packed column and a thermal conductivity detector. The samples were premethylated as per 

ISO standards.  The pH was measured using a Jenway 3510 pH meter. 

Chemical composition such as elemental carbon (C), nitrogen (N) and hydrogen (H) were 

measured using an elemental analyser with thermal conductivity detector (CE 440, Exeter 

Analytical, Coventry, UK). The ratio of VFA to bicarbonate alkalinity, known as the 

(FOS/TAC), was determined by a two-point titration method using 0.1 N sulphuric acid 

titrated against the samples to endpoints of pH 5.0 and pH 4.4 applying a TITRONIC© 

Universal Automatic Titrator (SI Analytics GmbH, Mainz, Germany). Total ammonical 

nitrogen (TAN) was obtained using Hach Lange cuvettes (LCK 303 and LCK 311) and a 

spectrophotometer DR 3900 (Hach Lange GmbH, Dusseldorf, Germany). A biomethane 

potential (BMP) assay was evaluated on the substrate L. digitata using the automatic methane 

potential test system (AMPTS II, Bioprocess Control, Lund, Sweden). In this batch test 500 

mL glass bottles were filled with inoculum and seaweed at an inoculum-to-substrate ratio of 
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2:1 (VS basis) to occupy a final volume of 400 mL. The bottles were sealed and the 

headspace was flushed with nitrogen to maintain anaerobic conditions. These bottles were 

then incubated at 37°C for a period of 30 days in a water bath. The reactor contents were 

stirred semi-continuously at 30 rpm at intervals of 60 s. The same test was also conducted for 

the inoculum that acted as the blank sample. Biogas thus produced was scrubbed through a 3 

M NaOH solution for the removal of CO2   and other trace gases. The total volume of the 

scrubbed gas containing only methane was determined by an in-built wet gas flow 

measurement device. The volume of methane was normalised to standard temperature and 

pressure (standard atmospheric pressure, 0°C, dry gas). The final BMP of the seaweed was 

corrected for the methane produced by the inoculum (Allen et al., 2015). 

 

5.2.3 Set-up and operation of the continuous reactors 

Four PVC cylindrical reactors of total volume of 5 L with working volume of 4 L each were 

used. The reactors were maintained at a temperature of 37± 1°C by using a thermal water 

bath that circulated hot water through the heating coils that were mounted around the 

reactors. To maintain homogeneity of the reactors contents, vertical stirrers with upper and 

lower paddles were used. The reactors were fitted with appropriate tubings through which the 

produced biogas was measured using a tipping device that was connected to a computer 

(digital data logger, LabJack Lakewood, CO, USA), giving the actual volumes of gas 

produced. The measured gas was then collected in gasbags to determine its composition using 

the GC. 

The working volume of the hydrolysis reactor was 2.5 L. The hydrolysis reactor uses 

considerably larger amounts of raw material as this reactor has far higher loading rates when 

compared to the methane reactors (Figure 5.1). Hydrolysis reactor (H1) was fed with L. 

digitata initially at an organic loading rate (OLR) of 7 g VS/L/D with a hydraulic retention 

time (HRT) of 4 days. The HRT was maintained throughout by varying the dilution rate with 
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water when the OLR varied. Water was added to keep the volume of the substrate entering 

the reactor a constant that helped keep the HRT at 4 days. Because of this dilution salinity 

affects were not considered. This hydrolysis reactor operated for a month at this initial OLR 

to ensure sufficient digestate in the form of VFAs were produced. The digestate effluent rich 

in VFAs was divided between methane reactor (M1) with a HRT of 20 days and an OLR of 

1.4 g VS/L/d and methane reactor (M2) with a HRT of 14 days and an OLR of 2 g VS/L/d. 

Together H1 and M1 formed a system with a combined HRT of 24 days and H1 and M2 a 

system with a combined HRT of 18 days. To assess the performance of these two-stage 

fermentation processes a single stage methane reactor (M3) was initiated at an OLR of 1.4 g 

VS/L/d at an HRT of 24 days.  The TS content of the reactors were kept under 8% to 

minimise any stirring issues as the OLR increases  

 

Notes: H1 and M1, H1 and M2 are two stage systems; M3 is a single stage system. Loading rates and retention 

times are at the end of the experiment period 

Figure 5. 1: Experimental design of the two-stage and single-stage fermentation systems.  

The methane reactors were run for a length of time equivalent to a HRT and then the OLR of 

the H1 reactor was increased from 7 to 9 g VS/L/d while the OLR of M1 and M2 were 

increased from 1.4 to 1.8 and 2 to 2.57 g VS/L/d respectively. The OLR of the single stage 
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methane M3 system was also increased from 1.4 to 1.8 g VS/L/d to track and match the two-

stage reactor system of H1 and M1, which has the same combined HRT of 24 days as that of 

M3. The reactors were run for acclimatisation and process stability till the hydrogen 

composition in the hydrolysis reactor was at a constant value of approximately 20% and the 

pH range was between 5-5.5; the methanogenic reactors were acclimatised till a methane 

composition of approximately 48-50 % was achieved. The three methane reactors and the 

hydrolysis reactor were run for a commissioning period of 96 days to obtain the desired 

values of pH, VFA, methane yield and its composition as given in Table 5.1. The data in 

table 5.1 are average values noted during the commissioning period of 96 days. After 

commissioning the process was assessed for 50 days at final operating parameters of: 12 g 

VS/L/d for H1; 2.4 g VS/L/d for M1; 3.43 g VS/L/d for M2; and 2.4 g VS/L/d for M3  

Table 5. 1: Average values and range of operating parameters during the commissioning 

period  

 

 

5.3 Results and Discussion 

5.3.1 Hydrolysis reactor 

Seaweed is a complex substrate as compared to simple sugars that readily degrade in a 

hydrolysis reactor, leading to higher multiplication rates of hydrolysing bacteria. In such 

 

Hydrolysis  

Reactor     

OLR (g VS/L/d) pH VFA (mg/L) 

 

H1 

7 7-6.2 800-1500 

9 6-5.5 2600-5700 

Methane 

Reactor 

OLR (g VS/L/d) % CH4 

 

CH4 yield (L/kg VS) 

M1 1.4 37 94 

1.8 49 150 

M2 2 39 147 

2.57 56 221 

M3 1.4 38 131 

1.8 51 211 
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cases pH, can drop quickly to the desired hydrolysis range of 5 to 5.5. However, since the 

seaweed L. digitata is a novel marine substrate; microbial fauna take a longer time to 

acclimatise and produce enzymes capable of breaking down the cell wall consisting of hetero 

polysaccharides made up of cellulose and alginic acid (Kerner et al., 1991). L. digitata is a 

brown seaweed that contains xanthophyll pigment fucoxanthin giving it its characteristic 

brown colour. Laminarin (made up of glucose), fucoidan (made up of fucose, xylose, 

mannose and galactose), alginate and mannitol are the unconventional carbohydrate 

molecules found in brown seaweed; these can be difficult to completely breakdown through 

microbial action of digestates associated with digestion of terrestrial agricultural feedstocks 

(Bidwell and McLachlan, 1985; Seyfried, 1996). However, as the OLR in the hydrolysis 

reactor was increased from 7 to 9 g VS/L/d a gradual pH reduction was observed to a range 

of 5.2 to 5.6. This is close to the ideal pH operating condition, which maximises VFA 

production. Along with the pH the biogas produced from the hydrolysis reactor was 

monitored. Initially the amount of hydrogen in the biogas was around 30%, which later 

reduced to ca. 20% with the increase in OLR. This whole period was considered as the start-

up period of the hydrolysis reactor. When efficient VFA production and optimum pH levels 

were achieved then the OLR was increased to 12 g VS/L/d. At this loading hydrogen yields 

of 26 L/kg VS were achieved. This value is on par or even slightly higher than values 

obtained from terrestrial feedstock such as pre-treated sewage sludge (18.4 L H2/kg dry 

solids) and wheat co-product (7.0 L H2 /kg VS) (Massanet-Nicolau et al., 2015). However 

this value is less than values of hydrogen obtained from batch fermentation of steam pre-

treated L. digitata of 83 L/kg VS (Xia et al., 2016). 

 

5.3.2 Methane reactors and energy yields. 

The methane reactors M1 (HRT 20 d) and M2 (HRT 14 d) were started at an OLR of 1.4 and 2 

g VS/L/d. Since the OLR was higher in M2 the amount of VFAs that it received from the 
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hydrolysis reactor was significantly higher than M1; as a result, after the initial period of start-

up and acclimatisation, the amount of methane produced in M2 was higher than M1. At an 

OLR of 2.4 g VS/L/d (M1) and 3.43 g VS/L/d (M2), the methane yields for M1 and M2 were 

176 L/kg VS and 234 L/kg VS respectively. With a short HRT of 14 d, M2 performed better 

than M1 as it can be observed that once enough VFAs are produced, a high OLR can be 

employed in the methane reactors to obtain better yields with short HRTs. This aspect is of 

great interest to industries as heating costs and operating costs can be minimised by short 

HRTs (Schievano et al., 2014; Ljunggren and Zacchi, 2010). However, reducing the HRT 

may lead to microbial washout and acidic pH if reactors are run for a very long time. 

Accumulated VFAs at higher OLRs can bring about microbial stress as maintaining the pH in 

the range of 7-7.5 can get increasingly difficult. Sufficient alkali addition (3M NaOH) was 

added to prevent the pH from going below 7. 

Dried brown seaweed of the variety L. japonica was converted to methane through a two-

stage process using the effluent from the hydrolysis reactor as influent to an anaerobic 

sequential batch reactor (ASBR) and an up-flow anaerobic sludge blanket reactor (UASBR); 

values of 200-300 L CH4/kg COD were obtained (Jung et al., 2012). The use of dried 

seaweed is not feasible at commercial scale as the energy demand associated with the drying 

process is very high. 

The single stage reactor M3 (HRT 24 d) digesting L. digitata and not VFAs formed by the 

hydrolysis of L. digitata in H1 performed on par with the two stage systems, with a methane 

yield of 221 L/kg VS at an OLR of 2.4 g VS/L/d. Indeed, M3 performed better than the two 

stage-system of H1:M1 (with an effective HRT of 24 days (4d+20d)) as M3 had a more stable 

pH (ca. 7.6) and had a slightly longer retention time. The performance of M3 was almost on 

par with that of H1:M2 (with an effective HRT of 18 days (4d+14d)).  However, M3 operated 

at a lower OLR than M2. Seaweed has no lignin hence it does not require longer retention 
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times as opposed to grass and other lignocellulosic feedstocks that need anywhere between 

25 to 30 days of HRT; two stage digestion reduces the HRT to less than 20 days as reported 

by (Massanet-Nicolau et al., 2015). Hence the retention times used in this study are based on 

literature and the chemical characteristics of the feedstock.  

The methane composition of the biogas from the two stage systems were 58% and 61% for 

M1 and M2 respectively. These values are significantly higher when compared to the methane 

composition of 50% obtained from the single stage reactor. This may be cost effective in 

upgrading biogas to biomethane in that some of the work is already done through separation 

of some of the CO2 production in the hydrolysis reactor. Thus, employing a two-stage system 

with the appropriate operating conditions and process stability can have the advantages of 

lower HRT (and associated cheaper and smaller reactors) and higher methane composition in 

the biogas (with cheaper upgrading systems) when compared to single stage systems.  

Figure 5.2 gives the methane and overall energy yields of the reactor systems. Lower heating 

values of methane (35.8MJ/kg) and hydrogen(10.98 MJ/kg) were used to calculate the energy 

yields. An energy yield of 7.89 MJ/kg VS was obtained from the single stage system 

consisting of only methane production. However, energy yields for the two-stage systems 

also accounted for the hydrogen produced (although in very small quantities). The overall 

energy yield of the two-stage 18 d retention time (H1:M2) system was 8.66 MJ/kg VS, which 

was 9.8 % higher than the single-stage system. The overall energy yield of the 24-d retention 

time two-stage (H1:M1) system was comparatively lower (6.57 MJ/kg VS). Specific gas 

yields can be based on volatile solids as well as chemical oxygen demand. However, these 

two give slightly different values as volatile solids includes even refractory organics that 

cannot be degraded by microbes. The organic matter present is digested to produce methane, 

carbon dioxide and is also used to produce microbial cells and for their maintenance. 

Chemical oxygen demand is the amount of oxygen used to oxidize soluble and particulate 
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organic matter. Another way of expressing specific gas yield would be to use BOD, which is 

biological/biochemical oxygen demand. This test takes 5 days hence it is not used to calculate 

biogas yields. 

 

 

Notes: System A: M3 (mono-fermentation); system B: H1+M1 (two stage fermentation); system C: H1+M2 (two 

stage fermentation). 

Figure 5. 2: Overall gas yields and energy yields of the different reactor systems.  

 

5.3.3 Process parameters determining process stability. 

The weekly average values of the main process parameters that indicate the stability of the 

reactors were recorded as given in Tables 5.2-5.5; these values are the weekly data for all the 

reactors in the final assessing period (recorded for 6 weeks). The loading conditions were as 

per figure 5.1. The hydrolysis reactor was at an OLR of 12 gVS/L/d and the pH had started to 

drop towards 5. However sufficient quantities of alkali (3M NaOH) were added daily to 

prevent the pH from going below 5. A pH value of less than 5 can lead to poor hydrolysis, 

and ethanol formation rather than VFA production (Fasahati and Liu, 2015). Table 5.6 gives 

the synthesis of the final values averaged over the final 6 weeks of operation with design 

conditions as per figure 5.1. 
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Methanogenic reactors are stable when there is a balance between VFA and the alkalinity 

present in the reactor. This balance prevents the pH from going below 7 and prevents failure 

of the methanogenic reactors. A FOS/TAC value between 0.2 and 0.4 is ideal. Reactor M1 

and M3 operated at a lower OLR than M2 and had a FOS/TAC value closer to 0.2. Whereas 

the M2 reactor operated at a higher OLR and the FOS/TAC value was in the middle of the 

stable range. As a result, the pH values of the reactor M2 was reduced as compared to reactors 

M1 and M3. NaOH was added on alternate days to prevent the pH from reducing any further. 

 

TAN is also a key parameter in the normal functioning of methane archaea. As the TAN 

increases microbes cease to perform efficiently as high TAN levels cause a pH imbalance in 

the cellular structure and can easily penetrate the cell membrane causing dysfunction in the 

cellular transport of nutrients within the cell. However, alkalinity is the result of protein 

degradation as amino groups and ammonia are released, this balances low pH environment if 

excess VFA accumulation takes place in the reactor. L. digitata has a very low nitrogen 

content (1.32%). This is true for most types of brown seaweed such as L. digitata, L. japonica 

and E. bicyclis, which have low protein content (less than 12%) as compared to red (ca. 23%) 

and green (ca. 20%) seaweeds such as Ulva lactuca and Gelidium amansii (Hong et al., 2014; 

Shi et al., 2011) which have higher levels of nitrogenous compounds. Hence fermentation of 

brown seaweed would result in low levels of TAN in the reactor. In addition to this the 

reactor contents were very dilute as water was added to fix the retention time. As a result, the 

values are extremely low and didn’t pose any process instability issues.  
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 Table 5. 2: Weekly data for Hydrolysis reactor H1 at OLR 12 gVS/L/d 

 

 

Table 5. 3: Weekly data for Methane reactor M1 at OLR 2.4 gVS/L/d 

 

 

 

 

 

 

 

 

PARAMETERS Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 

ACETIC (mg/L) 2388.51±0.21 2266.63±.45 2139.67±.5 2378.51±.4 2588.43±.56 1888.67±.65 

PROPIONIC (mg/L) 53.92±.013 51.46±.32 34.64±.28 43.92±.3 13.4±.32 93±.47 

ISO-BUTYRIC 
(mg/L) 

117.33±.01 114.77±.02 104.89±.03 111.33±.034 132.32±.035 167.7±.03 

BUTYRIC (mg/L) 4225.24±.16 4103.69±.2 4123.90±.2 3225.24±.19 4285±.18 3125.78±.12 

ISO-VALERIC 
(mg/L) 

20.35±.01 21.65±.014 13.41±.015 22.35±.018 20.35±.013 25.78±.014 

VALERIC (mg/L) 30.32±.02 31.82±.02 32.89±.03 30.32±.035 29.31±.04 30.32±.05 

ISO-CAPROIC 
(mg/L) 

0 24.45±.04 0 0 0 0 

CAPROIC (mg/L) 126.20±.26 125.47±.3 122.78±.4 136.2±.32 176.34±.38 115.67±.33 

ENANTHIC (mg/L) 26.53±.01 41.10±.02 24.89±.03 22.53±.04 16.34±.05 24.89±.01 

TAN (mg/L) 10.69±.01 10.8±.03 9.89±.02 11.2±.03 12.4±.021 12.2±.022 

pH 5.5±0.2 5.21±0.1 5.19±0.3 5.35±0.1 5.23±0.2 5.13±0.1 

SHY (L H2/kg VS) 32.67±2.1 28.6±3.4 22.4±1.3 24.48±1.4 23.54±2.6 22.12±2.1 

PARAMETERS Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 

ACETIC (mg/L) 590.48±.65 588.01±.4 548.98±.35 589.67±.58 467.89±.3 578.54±.5 

PROPIONIC (mg/L) 143.83±.01 143.13±.03 145.90±.034 132.78±.02 105.8±.03 134.78±.05 

ISO-BUTYRIC (mg/L) 21.61±.23 21.59±.2 22.50±.32 18.65±.33 15.78±.4 28.9±.3 

BUTYRIC (mg/L) 21.47±.12 0 23.82±.14 22.56±.12 0 45.8±.2 

ISO-VALERIC (mg/L) 0 0 21.50± 19.78± 0 0 

VALERIC (mg/L) 0 21.49±.32 0 0 17.89±.33 0 

ISO-CAPROIC 
(mg/L) 

0 0 0 0 0 0 

CAPROIC (mg/L) 0 0 21.47±.3 16.89±.2 0 48.97±.35 

ENANTHIC (mg/L) 26.12±.01 0 0 0 0± 0 

TAN (mg/L) 248±.3 235±.32 245±.43 250±.2 256±.2 238.5±.25 

pH 7.6±.5 7.4±.2 7.55±.5 7.33±.10 7.65±.4 7.53±.2 

FOSTAC 0.34±.23 0.47±.4 0.36±.1 0.14±.1 0.13±.32 0.326±.2 

% CH4 58.43±1.5 59.2±2.3 57.34±1.6 58.4±2.56 59.3±1.7 56.42±1.2 

SMY (L CH4/kg VS) 196.5±12.5 188.4±16.8 160.56±20.6 166.7±15.78 174.2±22 169.54±25 
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Table 5. 4: Weekly data for Methane reactor M2 at OLR 3.43 gVS/L/d  

 

 

Table 5. 5: Weekly data for Methane reactor M3 at OLR 2.4 gVS/L/d  

PARAMETERS Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 

ACETIC (mg/L) 171.08±0.33 162.32±.42 157.46±.15 187.56±.56 123.89±.24 167.5±.36 

PROPIONIC (mg/L) 48.49±.01 49.37±.03 48.47±0.02 0 37.56±.02 24.67±.01 

ISO-BUTYRIC (mg/L) 33.81±.21 26.58±.43 28.32±.38 56.75±.3 23.67±.25 28.76±.4 

BUTYRIC (mg/L) 0 19.04±.11 0 21.675±.17 0  

ISO-VALERIC (mg/L) 18.85±.01 0 19.08±0.03 0 14.56±0.02 23.6±0.03 

VALERIC (mg/L) 0 0 19.29±.18 16.56±.2 0 0 

ISO-CAPROIC 
(mg/L) 

0 0 0 0 0 0 

CAPROIC (mg/L) 0 0 0 0 0 0 

ENANTHIC (mg/L) 0 0 0 0 0 0 

TAN (mg/L) 265±.3 270±.35 280±.48 278±.21 276±.24 287.5±.2 

pH 7.54±.3 7.68±.2 7.33±.1 7.55±.2 7.46±.2 7.68±.3 

FOSTAC 0.2±.14 0.13±.2 0.44±.28 0.21±.1 0.32±.3 0.126±.17 

% CH4 48.65±3.4 48.6±2 52.78±2.5 46.6±5.1 51.6±1.3 52.6±2.3 

SMY (L CH4/kg VS) 200±18.4 220±13.5 213.6±20.5 225.8±12.4 230.5±20.5 232.6±11.2 

 

 

 

 

 

 

 

PARAMETERS Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 

ACETIC (mg/L) 118.61±0.43 122.55±.32 117.16±.35 104.3±.5 145.89±.44 102.3±.3 

PROPIONIC (mg/L) 171.17±.02 174.12±.03 0 0 156.89±.02 112.67±.02 

ISO-BUTYRIC (mg/L) 43.62±.2 36.54±.3 168.29±.36 123.87±.4 21.78±.3 12.78±.4 

BUTYRIC (mg/L) 0 19.38±.12 33.54±.18 35.7±.2 18.97±.28 18.56±.2 

ISO-VALERIC (mg/L) 19.38±.02 0 0 0 0 0 

VALERIC (mg/L) 0 0 19.29±.15 15.89±.18 0 0 

ISO-CAPROIC 
(mg/L) 

0 0 0 0 0 0 

CAPROIC (mg/L) 0 0 0 0 0 0 

ENANTHIC (mg/L) 0 0 0 0 0 0 

TAN (mg/L) 370±.25 365±.3 366±.41 368±.23 372±.25 369.6±.2 

pH 7.4±.2 7.22±.3 7.38±.2 7.5±.3 7.25±.3 7.48±.1 

FOSTAC 0.35±.1 0.22±.14 0.46±.2 0.37±.26 0.13±.2 0.361±.3 

% CH4 59.85±2.3 57.65±1.4 64.77±1.43 60.4±3.1 63.1±1.56 62.4±1.4 

SMY (L CH4/kg VS) 242.67±20.2 238.6±18.3 235.78±13.4 230.8±10.5 236.1±12.3 222.79±20.3 
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Table 5. 6: Final average values taken for all weeks  

 

Notes: System A: M3 (mono-fermentation); system B: H1+M1 (two stage fermentation); system C: H1+M2 (two 

stage fermentation). 

FOS/TAC: Ratio of volatile fatty acids to total inorganic carbon 

TAN: Total ammoniacal nitrogen 

S.D: Standard deviation 

 

VFAs produced in the hydrolysis reactor (H1) are fed as substrates to the methane reactors 

(M1 and M2). The profile of VFA is given in Figure 5.3. It can be observed that the VFA 

profile for the hydrolysis reactor is dominated by butyric followed by acetic acid. A similar 

trend in the VFA profile for the hydrolysis of L. digitata was observed in batch studies for 

hydrogen production as reported by Ding et al (2016) and Xia et al (2016). 

 

Notes: System A: M3 (mono-fermentation); system B: H1+M1 (two stage fermentation); system C: H1+M2 (two 

stage fermentation).  
Figure 5. 3: Weekly volatile fatty acid profile of the different reactors  

 

Reactor 

 

pH 

 

S.D. 

 

FOS

/ 

TAC 

 

S.D

. 

 

TAN 

(mg/L) 

 

S.D

. 

 

VFA 

(mg/L) 

 

S.D. 

 

%CH4 

 

S.D 

 

SHY or 

SMY 

 

S.D 

H1 5.26 0.12 -  11.19 0.87 6511.71 611.50 -  26 3.8 

M1 7.51 0.11 0.29 0.12 245.41 7.02 767.77 74.35 58 1.01 176 12.54 

M2 7.37 0.10 0.31 0.10 368.43 2.39 318.887 40.96 61 2.33 234 6.30 

M3 7.54 0.12 0.23 0.11 276.08 7.17 251.61 26.34 50 2.31 221 11 
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The amount of butyric acid was found to be nearly double that of acetic acid. A value of 0.99 

g/L of butyric acid as compared to 0.52 g/L of acetic acid was reported by Ding et al.  (2016) 

for co-generation of biohydrogen and biomethane through two-stage batch co-fermentation of 

macro- and micro-algal biomass. Another recent study done by Xia et al. (2015) show that 

hydrogen production during hydrolysis of mannitol (carbohydrate present in brown seaweed) 

generated butyric acid as the dominant VFA. The percentage share of butyric acid of the total 

soluble metabolic products (SMP) was 62.9% (Xia et al., 2015). Hydrogen production 

through fermentation of L. japonica under different heat treatment conditions by Jung et al. 

(2011c) showed that 30-45% of VFA was butyric acid followed by acetic acid in the range of 

21-35 %. The high concentration of butyric acid was a result of the use of seaweed containing 

mannitol and the concentrations of the other VFA’s  were unaffected as the hydrogen in the 

reactor was not present in high quantities 

The VFA profile of the methanogenic reactors follows the normal trend as observed in stable 

anaerobic digestion processes where the total amount of VFAs is less than 1000 mg/L, which 

is considered safe for stable operation and better methane yields. However, M1 shows a value 

close to this upper range of acceptable total VFA, which might have affected its methane 

production as it had the lowest methane yields of the three methanogenic reactors. 

 

 

5.4 Conclusion 

A two-stage system including for hydrolytic and methanogenic reactors were commissioned 

for anaerobic fermentation of the brown seaweed L. digitata. This system provided an 

optimal specific yield of hydrogen (ca. 26 L/kg VS at HRT of 4 d) and methane (ca. 234 L/kg 

VS at HRT of 14 d), corresponding to an overall energy yield of 8.66 MJ/kg, which is 9.8% 

higher than the values obtained in a single-stage system (7.89 MJ/kg at HRT of 24 d). The 

overall HRT can be reduced by 33% whilst improving the energy conversion via two-stage 

system. 
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Abstract 

This study investigated the operation of ex-situ biological methanation at two thermophilic 

temperatures (55°C and 65°C). Methane composition of 85 to 88% was obtained and 

volumetric productivities of 0.45 and 0.4 L CH4 /L reactor were observed at 55°C and 65°C 

after 24h respectively. It is postulated that at 55°C the process operated as a mixed culture as 

the residual organic substrates in the starting inoculum were still available. These were 

consumed prior to the assessment at 65°C; thus the methanogens were now dependent on 

gaseous substrates CO2 and H2. The experiment was repeated at 65°C with fresh inoculum (a 

mixed culture); methane composition and volumetric productivity of 92% and 0.46 L CH4 /L 

reactor were achieved in 24 hours. Methanothermobacter species represent likely and 

resilient candidates for thermophilic biogas upgrading.  

 

Keywords: Biogas; Power to Gas; Biological Methanation; Methanogenic Archaea; Volatile 

Fatty Acids. 
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6.1 Introduction 

Methanation refers to the production of methane through either a catalytic or biological 

process. The catalytic methanation process proceeds by reacting hydrogen (H2) with either 

carbon monoxide (CO) or carbon dioxide (CO2) to form methane and water. This may be 

described by Eq. 1(Sabatier Equation) or by Eq. 2. 

4H2 + CO2 → CH4 + 2H2O   ∆HR = -165 kJ/mol        Eq. 1 

3H2 + CO → CH4 + H2O          ∆HR = -206 kJ/mol       Eq. 2 

The catalytic (Sabatier) process is well understood and has been used for many years in 

various applications, such as for the removal of trace amounts of carbon oxides in ammonia 

production. A commonly utilised ammonia synthesis technique is the Haber Bosch process 

which is operated at an optimal temperature of 500-600 °C (Bicer et al., 2016) . A catalyst is 

required to reduce the activation energy of the reaction and allow it to proceed at higher rates. 

Such catalysts are typically nickel-based, on an alumina carrier (Charisiou et al., 2016).   

Biological methanation is biologically catalysed by methanogenic archaea (Shin et al., 2015). 

These are strictly anaerobic microbes of the Archaea domain, which carry out the final step in 

the anaerobic digestion process. Methanogens utilise CO2, H2 and acetate as substrates 

(Nishimura et al., 1992). Most methanogens are capable of utilising H2 and CO2 to produce 

methane, however, only a small number of methanogens can convert acetate to methane. 

Some, such as those belonging to the genus Methanosaeta, may only utilise acetate, while 

other orders such as Methanosarcina are more flexible and can utilise either acetate or H2 and 

CO2. These methanogens generally grow at 35-70°C (Rittmann, 2015; Taubner et al., 2015). 

The free energy associated with the biological reduction of CO2 to CH4 using H2 is -131 

kJ/mol (Madigan, 2012), indicating that the reaction is thermodynamically favourable. 

Biological methanation may be carried out at industrial scales, typically in conjunction with a 

conventional biogas plant. The process may be carried out “in-situ” by simply injecting 

hydrogen into an anaerobic digester containing a variety of anaerobic microorganisms (Luo 
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and Angelidaki, 2012). Alternatively, it may be carried out “ex-situ” in a separate vessel 

containing only methanogens (Rittmann et al., 2015). 

Large-scale biological methanation is an emerging technology with stirred tank reactors 

capable of achieving high volumetric productivity and high methane  product gas 

concentration at the same time (Seifert et al., 2014). At lab-scale, various reactor 

configurations have been trialled with a wide range of results (Bernacchi et al., 2013; 

Burkhardt et al., 2015; Nishimura et al., 1992; Rachbauer et al., 2016; Rittmann et al., 2012; 

Seifert et al., 2014). Apart from the physical layout of the reactor, several other process 

variables are critical. These include temperature, mechanical mixing rates, gas flow rates and 

the specific strains of methanogens utilised. Mixing is the most energy intensive step, certain 

mixers like ribbon mixers can consume upto (10W/m3), centrifugal mixers with paddle 

plows( 20W/m3  ). A review of the various designs available in the literature is presented in 

Table 6.1. 

Process variables may also vary from one reactor design to another depending on the desired 

outcome. Certain reactors may be designed to simply enrich the methane content of an 

existing biogas plant and may aim for a high gas throughput rate rather than high methane 

concentrations (Bensmann et al., 2014). Other facilities may wish to directly produce a green 

renewable gas for use as a transport fuel or for gas grid injection, and will thus aim for very 

high methane concentrations (in excess of 95%) in the product gas (Benjaminsson et al., 

2013). 

Carbon dioxide and hydrogen can only be consumed by the methanogens at the rate at which 

they are made available to them in the liquid methanogenic culture. Solubility of hydrogen 

may be improved by providing a larger transfer surface area such as trickle bed and hollow 

fibre membrane reactors with packing (see Table 6.1) or by allowing a longer period of time 

for the transfer to take place through increased retention time (Burkhardt et al., 2015). 
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Table 6. 1: Existing reactor designs and performance data 

CSTR:  Continuous Stirred Tank Reactor; HFM: Hollow Fibre Membrane Reactor  

 

 Where these factors are unable to be altered too severely, such as in the biological 

methanation process, mechanical mixing may provide an alternative solution such as stirring 

at high speeds. Mechanical mixing via stirring in a continuously stirred tank reactor (CSTR) 

is probably the simplist method of assisting H2 to go into solution. Stirring at speeds of up to 

1500 rpm have been demonstrated in lab scale reactors (Bernacchi et al., 2013; Nishimura et 

Reactor Temp 

(°C) 

Inoculum Influent 

gas 

Operation 

mode 

Working 

volume 

(L) 

Maximum 

methane 

concentration  

(%) 

Reference 

CSTR 55 Anaerobic 

digestate 

Biogas 

+ H
2
 

Continuous 0.6 95.4 (Luo and 

Angelidaki, 

2012) 

Trickle 

bed with 

packing 

37 Anaerobic 

digestate 

H
2 

+ 

CO
2
 

Continuous 88 96 (Burkhardt 

et al., 2015) 

Up-flow 

bed 

35 Anaerobic 

digestate 

H
2 

+ 

CO
2
 

Continuous 7.8 - (Lee et al., 

2012) 

HFM 37 Anaerobic 

digestate 

H
2 

+ 

CO
2
 

Continuous 0.195 85 (Lai et al., 

2008) 

CSTR 37 Anaerobic 

digestate 

H
2 

+ 

CO
2
 

Continuous 100 92 (Kim et al., 

2013) 

CSTR 60 Pure 

culture 

Biogas+ 

H
2 

H
2 

+ 

CO
2 

Continuous 3 - (Martin et 

al., 2013) 

Trickle 

bed 

reactor 

37 Pure 

culture 

H
2 

+ 

CO
2
 

 58 96 (Rachbauer 

et al., 2016) 

CSTR 65 Pure 

culture 

H
2 

+ 

CO
2
 

Continuous 10 85 (Seifert et 

al., 2014) 

Bioreactor 

with 

packing 

50 Methanog

enic 

culture 

H
2 

+ 

CO
2
 

Continuous 4 90 (Alitalo et 

al., 2015) 

Closed 

batch 

system 

55 

and 

65 

Anaerobic 

digestate 

H
2 

+ 

CO
2
 

Batch 1.140 92 This study 
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al., 1992; Rittmann et al., 2012; Seifert et al., 2014), however, this is energy intensive when 

upscaled to commercial reactor scale, where speeds below 60 rpm would be expected. The 

CSTR may be designed to be tall and narrow, providing a longer path for the gas to rise 

through and increased contact time with the methanogen culture. Another alternative to 

mechanical mixing is micro-sparging. In this case, the gas is released into the liquid via 

micro-porous material, such as a hollow fibre membrane (HFM) (Lai et al., 2008; Lee et al., 

2012). This creates very small hydrogen bubbles with high partial pressure and a high ratio of 

surface area to volume, allowing for more effective hydrogen dissolution. Recirculation of 

the gas and/or liquid will also assist in the production of a product gas with a high methane 

content. This concept has been used very effectively in the trickle bed design described by 

Burkhardt and Busch (Burkhardt and Busch , 2015). 

Most of the literature on biological methanation is quiet recent. There are a few studies 

investigating methanation with pure cultures at thermophilic temperatures and high stirring 

speeds (Bernacchi et al., 2014). The innovation in this chapter is the detailed study of 

performance and identification of methanogenic communities in a closed batch system for 

biological methanation at two thermophilic temperatures, using mixed culture and enriched  

culture, with different retention times, with H2 and CO2  as the influent gases. The objectives 

of this chapter are to: 

- Assess the performance of the system with respect to methane concentration and 

volumetric productivity with H2 and CO2  as the input substrate gases at two different 

thermophilic temperatures. 

- Study the effect of time and temperature on the rate of conversion of the substrate gases 

to methane. 

- Compare the performance of the cultures based on volatile fatty acid profile and 

identification of methanogens at genus or family level  
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6.2 Material and Methods 

6.2.1 Initial inoculum and nutrient medium 

The inoculum for this experiment was sourced from a thermophilic (55°C) reactor treating 

maize, grass and farmyard manure. The inoculum was stored at 55°C in a water bath until 

needed, while being fed once a week with cellulose at an organic loading rate (OLR) of 1 kg 

VS.m-3. d-1. As the mixed culture, will only be fed with H2 and CO2, it needs to be supplied 

with certain additional nutrients to maintain growth.  

A system for the preparation and dispensing of the anoxic medium was designed, based on 

guidelines from Wolfe (Wolfe, 2011). The anoxic medium follows the basal medium recipe 

described by Angelidaki and Sanders (Angelidaki and Sanders, 2004).  

 

6.2.2 Reactor configuration 

The reactor consists of a 1 Litre Duran bottle (actual volume 1140 mL). The cap has a rubber 

seal with two steel pipes drilled in to allow for refreshing of gases and the nutrient medium. 

A three-way Luer lock stopcock on each pipe provides a simple system for refreshing the gas 

and anoxic medium, while excluding air from the reactor. Each day, 25 mL of the culture was 

removed using a syringe (by attaching it to one of the ends of the three-way Luer lock 

stopcock) and replenished with anoxic medium. This system prevented any gas from entering 

and leaving the bottles and helpful in pH measurement. The total liquid volume was 380 ml. 

As the procedure was not carried out over the weekends, the effective HRT was 21 days. At 

the same time as the medium replenishment, the 760-ml headspace was flushed out with H2 

from a gas bag and 190 mL of carbon dioxide was then injected from a gas-tight syringe to 

make a 4:1 stoichiometric ratio.  

The daily culture samples were analysed for pH level and adjusted to ideally lie between 7.7 

and 8.2 as this is generally considered optimal for anaerobic digestion (Laaber, 2011). The 

ideal pH will vary for different methanogens; for example, Bernacchi and co-workers 
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obtained high methane production rates between pH 6-7.8 (Bernacchi et al., 2014). The 

samples were tested for pH using a syringe attached to the three way Luer lock stopcock.  

The pH range was maintained using 1M hydrochloric acid (HCl) and 3M NaOH. Samples 

were taken and frozen for future further analysis. 

Each day, before refreshing the gases, a 50-mL gas sample was taken from the reactor using a 

gas tight syringe. This gas sample was then injected into a gas chromatograph (GC) to 

analyse the product gas makeup. Volumetric productivity was calculated based on the amount 

of CO2 injected(0.190L) and the methane composition obtained (% of biogas) per litre of 

liquid reactor volume(0.380L).  

 

6.2.3 Chemical analyses 

Gravimetric measurements including Total Solids (TS) and Volatile Solids (VS) and Volatile 

Suspended Solids (VSS) were determined by weighing the sample residues that were dried 

for 24 hours at 105° C and later burning the dried residue at 550° C for 4 hours. Volatile 

Fatty Acids (VFAs) were determined using a gas chromatograph (Agilent HP 6890 Series, 

Agilent Technologies, Santa Clara, CA, USA) equipped with a Nukol™ fused silica capillary 

column (Supelco, Bellefonte, PA, USA), argon as a carrier gas and a flame ionisation 

detector (Herrmann et al., 2015). Gas samples were measured using a gas chromatograph 

(Agilent HP 6890 Series, Agilent Technologies, Santa Clara, CA, USA) equipped with a 

Hayesep R packed column and a thermal conductivity detector.  The pH was measured using 

a Jenway 3510 pH meter. 

 

6.2.4 Reactor start-up and continuous operation of the process. 

The VSS of the inoculum was determined before inoculation. The literature indicates that a 

VSS value of 5-10 g/L should be used for inoculation (Krajete, 2012; Luo and Angelidaki, 

2012). For this experiment, 5 g VSS/L was chosen. Three bottles were inoculated with a 
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mixture of 47.5 mL inoculum and 332.5 mL of anoxic nutrient medium, making up a total of 

380 mL. The experiment was conducted in a Thermo Scientific Incubator shaker at an rpm of 

180 and initially at a temperature of 55°C. The headspace was replaced with the substrate 

gases (H2 and CO2) batch wise (as this is a closed batch system). The start-up period lasted 

for about 2 months till relatively stable readings were obtained and it was relatively easy to 

maintain pH within the range of 7-8 and a methane concentration of at least 80%. 

 

6.2.5 DNA extraction and sequencing 

The stages of the process were broken into (A) acclimatisation at 55oC; (B) steady state at 

55oC; (C) initial trial at 65oC and (D) reseeded reactor trial at 65oC. Approximately 30ml of 

suspended solids from each Reactor (1, 2, and 3) for stages B, C and D were centrifuged at 

10,000g to pellet biomass (9 samples total). Nucleic acids were extracted in triplicate from 

these pellets using a CTAB/SDS based lysis buffer and two rounds of phenol-chloroform-

isoamyl-alcohol extraction. Primers S-D-Arch-0349-a-S-17 (GYGCASCAGKCGMGAAW) 

and S-D-Arch-1041-a-A-18 (GGCCATGCACCWCCTCTC) (Klindworth et al., 2012) 

spanning 16S V3-V6 were selected and appraised using the SILVA testprime database 

(Klindworth et al., 2012) with parameters of 0 base-pair mismatches, and of 1 base-pair 

mismatch outside the last 3 3’-base-pairs. Under these constraints, coverage was 70% and 

85% for Archaea, 77% and 89% for Euryarchaeota, and at least 82%, 75%, 86%, and 100% 

of the major methanogenic clades (Methanobacteria, Methanomicrobia, Methanococci and 

Methanopyri) respectively. Coverage provided by this primer pair is likely to capture a 

majority of archaeal sequences. A 692bp product was generated via generic Taq polymerase 

(DreamTaq, ThermoFisher) using a PCR program of initial denaturing for 4min at 94°C; x30 

cycles of 1min at 94°C, 54°C, and 72°C each; and a final extension of 4 min at 72°C. 

Amplicons were purified via gel extraction (QIAGEN) and ligated in EZ-Competent cells 

(QIAGEN) before being plated on ampicillin; twelve successfully transformed colonies per 



111 
 

Reactor per Stage (108 clones total) were used for M13 PCR before commercial sequencing 

by GATC (Konstanz, Germany). 

 

6.2.6 Sequence Analysis 

Chromatograms were manually curated in FinchTV 1.3.1 (Geospiza Inc.) for read length and 

accurate base-pair calling (>200bp, PHRED scores ≥20). Chimera-checking and OTU 

(operational taxonomic unit) clustering (<97% identity) were carried out using USEARCH 

v9.0 (Edgar, 2010). All sequences were submitted to NCBI BLASTn (Altschul et al., 1990) 

to retrieve 16S reference sequences with closest identities. 16S reference sequences were also 

retrieved for major methanogenic groups and a bacterial outgroup (Psychrobacter spcs., 

NR_118027.1). Gapless alignments and Neighbour-Joining phylogenetic trees were 

generated using MUSCLE v3.8.31 (Edgar, 2004) and formatted in MEGA7 (Kumar et al., 

2016). Sequences were uploaded to Genbank under accessions KY077158 - KY077249.  

 

6.3 Results and discussion 

6.3.1 Reactor performance at 55°C and 65°C with respect to methane composition, 

volumetric productivity, retention time and temperature. 

The performance of the three reactors were monitored and process variables such as values of 

methane produced, pH and VFA analysis were actively recorded. Figure 6.1 shows mean and 

the mean deviation of the weekly values obtained for the triplicate reactors for 24-hour gas 

sampling. The reactors were operated for 17 weeks at 55°C for the first 12 weeks and at 65°C 

till week 17.  
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Figure 6. 1: Methane composition and volumetric productivity at 55°C and 65°C for 24-hour 

retention period 

It can be observed that the maximum value for methane composition and methane volumetric 

productivity were ca. 88% and 0.45(L CH4 /L reactor) and later dropped to 85% and 0.4(L 

CH4 /L reactor) at 65°C for the rest of the time. The first few weeks show the acclimatisation 

period as the methane composition and volumetric productivities were low. Table 6.2 

indicates the performance of the reactors at 12-hour sampling to signify the effect of gas 

retention time and temperature on methane composition and productivity. The 12-hour gas 

data at 55°C showed a methane composition and volumetric productivity of 22 % and 0.1(L 

CH4 /L reactor) whereas higher values obtained when the reactor was switched to 65 °C with 

close to 55 % methane composition in the product gas as well as a higher productivity of 

0.28(L CH4 /L reactor). Conducting the experiment at 65°C doubled the methane composition 

and volumetric productivity for the 12-hour retention period. Luo and Angelidaki showed 

that the thermophilic (55°C) process is quicker than the mesophilic (37°C) process (Luo and 

Angelidaki, 2012), but did not investigate any different thermophilic and mesophilic 

temperatures. Since the inoculum had changed to an enriched culture, methane content saw a 



113 
 

decrease towards the end of the experiment. Mixed digestate has more stability and can 

perform better under stress as it has a diversity of microbes that can withstand any change or 

disturbance in their environment as opposed to enriched culture that contain a very narrow 

spectrum of microbes.  

Table 6. 2: Methane composition and volumetric productivities for 12 hour gas sampling at 

55°C and 65°C. 

  

 55°C 

 

 

65°C 

 

 % Methane S.D VP  S.D % Methane S.D VP S.D 

Week 16 21.9 2.63 0.10 0.01 50.29 1.82 0.25 0.8 

Week 17 19.8 4.65 0.099 0.02 54.6 5.75 0.27 0.24 
S.D: standard deviation 

VP: Volumetric productivity (L methane/L reactor) ((0.190*21.9)/ (100*0.380)) 

 

6.3.2 Volatile fatty acid profile of the reactors 

In an anaerobic digester as the complex compounds are systematically broken down to fatty 

acids, there is a significant production of predominantly acetic acid followed by other acids. 

The profile of the VFAs also depends on the particular substrate being broken down. 

However, in biological methanation processes as there are little breakdown of organic solid 

or liquid substrates since gaseous compounds are being consumed, very small quantities of 

VFAs are observed. Figure 6.2 shows the VFAs present in the three reactors.  

At 55°C the reactors contained the highest amounts of VFAs and acetic acid; this could be 

attributed to the initial quantities present in the stock inoculum that were slowly consumed. 

Although it is hoped that all the CO2 and H2 will be consumed directly, an alternative 

pathway is also possible in which acetate is produced via homoacetogenic microbial activity, 

in which some of CO2 and H2 is converted to acetate (Bensmann et al., 2014; Burak Demirel, 

2008; Burkhardt and Busch, 2013; Dahiya and Joseph, 2015; Siriwongrungson et al., 2007). 

The acetate may then be subsequently converted to CH4 and CO2 by acetoclastic 

methanogens. The quantities of acetate reduced gradually and was probably due to the fact 
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that there was little acetic acid production after the residual acetic acid in the inoculum was 

consumed and the only methane production was achieved from gaseous substrates. Residual 

acetic acid was consumed to form methane and the major contributor to methane production 

in the later stages of the reaction was the direct reduction of CO2 by H2 (Alitalo et al., 2015; 

Yu and Pinder, 1993).  

 

Figure 6. 2: Volatile Fatty Acid profile of the reactors 

Note: A- acclimatisation phase at 55°C; B-  steady state operation phase at 55°C; C-D is the operation at 65°C 

 

6.3.3 Effect of fresh inoculum on reactor performance 

As the performance of the reactors was faster at 65°C, the reactors were re-seeded with fresh 

stock inoculum and operated at 65°C for 24 hours and 18-hour gas sampling to determine if 

better and faster methane productivities and composition can be achieved. In the previous 

experiment, it was observed that 12 hours of biological methanation at 65°C gave nearly 55% 

methane composition, hence it was decided to observe the methane production at 18 hours 

along with the 24-hour reading. Figure 6.3 and Table 6.3 highlight the methane production at 

65°C with fresh starting stock inoculum. Starting with a fresh inoculum added a few 

advantages. There was some residual substrate present in the stock inoculum (as the stock 
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inoculum was fed with cellulose) along with the methanogens and bacteria that are already 

present in the inoculum. These together along with the gaseous substrates (H2 and CO2) seem 

to give slightly higher methane composition and volumetric productivity of ca. 92% and 

0.46(L CH4 /L reactor) for 24-hour sampling. Higher methane composition and productivity 

were obtained at 18 hours (77.5% and 0.38 L CH4 /L reactor) when compared to the 12 hour 

values obtained in the previous experiment (54.6% and 0.27 L CH4 /L reactor). It is 

postulated that this is due to a combination of surplus substrate in the reseeded reactor and the 

mixed culture of microbes, as well obviously, as the longer retention time. Prolonged use of 

the stock inoculum leads to a more enriched culture with only the gaseous substrates to feed 

on. It is suggested by the authors that in a commercial industrial process that reseeding is 

required to maintain process efficiency.  

 

Figure 6. 3: Methane composition and volumetric productivity at 65°C (fresh inoculum) for 

24 hours 

 

 



116 
 

Table 6. 3: Methane composition and volumetric productivities for 18 hour gas sampling at 

65°C. 

  

65°C 

 

 % Methane S.D VP S.D 

Week 5 77.56 2.52 0.38 0.5 

Week 6 75.33 1.66 0.37 0.23 
S.D: standard deviation,VP:  

Volumetric productivity (L methane/L reactor) 

6.3.4 Microbial Community Analysis 

Of the 108 clones sequenced, 92 passed quality filters (average length = 626bp), and were 

clustered at 97% similarity identifying 5 closely-related archaeal OTUs. An OTU table is 

presented in Table 6.4. Four OTUs aligned at sequences identities >99% with  

Table 6. 4: Reference OTUs for sequences clustered at 97% as well as the closest 

 

 

Stage B Stage C Stage D  

Reactor R. 1 R. 2 R. 3 R. 1 R. 2 R. 3 R. 1 R. 2 R. 3 Closest Identity 

OTU 13B 8 11 10 10 8 6 5 10 10 Methanothermobacter wolfeii 

 

OTU F01 2 1 1 1 0 1 3 1 1 Methanothermobacter wolfeii 

 

OTU B12 0 0 0 0 0 1 1 0 0 Methanothermobacter wolfeii 

 

OTU D04 0 0 0 0 0 0 1 0 0 Methanothermobacter 

thermautotrophicum 

 

OTU E04 0 0 0 0 0 0 1 0 0 Methanobacterium formicicum 

 

Methanothermobacter wolfeii (OTUs 13B, F01, B12; reference accession KT368944.1) and 

Methanothermobacter thermautotrophicus (OTU D04; reference accession HJQ346751.1). 
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M. wolfeii grows optimally at 55-65°C, pH 7.0-7.7, requiring relatively high concentrations 

of tungsten (8uM) as a growth factor (Winter et al., 1984). M. thermautotrophicum grows 

optimally between 55-70°C over a pH range of between 7.2-7.6 (Wasserfallen et al., 2000). 

Both species are capable of growing autotrophically on CO2 and H2 and were originally 

isolated from digester sludges. Additionally, M. wolfeii can reduce formate as a carbon source 

(Winter et al., 1984). A fifth OTU (E04) associated with Methanobacterium formicicum Mb9 

(accession JN205060.1) at identities >99%. M. formicicum can reduce a slightly wider range 

of carbon sources (CO2 and formate; 2-propanol and 2-butanol without methanogenesis) but 

is associated with a much lower temperature range of 37-45°C (Jarvis et al., 2000). A 

cladogram of sequences from this study, as well as related reference sequences, is provided in 

(Figure 6.4). 

Methanothermobacter-associated OTUs dominate the archaeal community in this 

thermophilic ex-situ reactor. OTU 13B comprises 85% of all sequences and is evenly 

distributed across the study, despite a slightly lower abundance in reactors at Stage D. (Figure 

4) shows clone sequences clearly cluster with Methanothermobacter references, indicating a 

highly homogeneous archaeal community throughout the trial. Association of OTU E04 with 

M. formicicum suggests closely related taxa at lower abundances. Notably, no sequences 

align with other methanogenic clades or non-methanogenic Archaea, despite expected 

coverage of these groups. In particular, a lack of acetoclastic methanogens (Order 

Methanosarcinales) suggests carbon-limited thermophilic conditions may be unsuitable for 

acetoclasts. The significance of OTUs D04 and E04 is less clear given that they occur only 

once in this study 
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Figure 6. 4: Consensus tree (Neighbour-Joining method with Tamura-Nei distances through 

1000 iterations; MEGA) showing evolutionary relationships between cloned and reference 

sequences in this study.  

 

Note the segregation of Orders Methanosarcinales and Methanomicrobiales with respect to O. 

Methanobacteriales and clone sequences. The majority of cloned sequences are located among 

Methanothermobacter sequences. Tight clustering with short branch-length reflects the high sequence-similarity 

of the dataset. No clustering of clones by Reactor or Stage is readily apparent. Only bootstrap values above 75% 

are presented. 

Legend: reference sequences: ○; clustered reference OTUs: ; Reactor 1: ; Reactor 2: ▲; Reactor 3: ■. Stage 

B: █ ; Stage C: █ ; Stage D: █.  

 

6.3.5 Microbial community development 

Sampling covered triplicate reactors at 55°C, 65°C, and 65°C with re-inoculation, revealing a 

homogeneous methanogenic population. Given the changes in reactor conditions (10° 

increase in temperature, re-inoculation), the consistency of these populations indicates a rapid 

acclimatisation from the original inoculum community and the stability of those populations 
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once established. Methanothermobacter species therefore represent likely and resilient 

candidates for thermophilic biogas upgrading. 

Re-inoculation of the reactors at Stage D was associated with some recovery of function 

(from 80-90% to 90-92% CH4 composition after 24hr) but no significant change in Archaea 

was observed. It is therefore unlikely that restructuring of methanogen populations had a role 

in the increased or decreased levels of CH4. Instead, inoculum may have allowed rescue 

through the introduction of depleted organic or inorganic materials. Previous studies have 

identified the importance of trace elements in biogas-orientated in-situ anaerobic digesters 

(Demirel and Scherer, 2011; Wall et al., 2014) and informed the inclusion of supplements in 

the reactor media for this ex-situ reactor. Response to further supplementation seen in Stage 

D may indicate the need for additional growth factors in thermophilic setups - in particular, a 

requirement for tungsten by M. wolfeii (Winter et al., 1984), which associated with over 90% 

of sequences in this study, may be relevant. Alternatively, a recovery in reactor performance 

without changes in archaeal taxa may reflect changes in bacterial taxa associated with 

methanogenic processes in this setup - bacterial taxa excluded at reactor initiation (Stage B, 

55°C) may have aided stabilisation when re-inoculated (Stage D, 65°C). Although this 

study’s microbial resolution may be constrained by primer coverage and depth of sequencing, 

it nevertheless outlines the major methanogenic components of this system through a 

consistent clustering of sequences. Although some necessary components remain 

uncharacterised, thermophilic (55°C-65°C) ex-situ biogas upgrading is likely to rely upon 

select, stable hydrogenotrophic populations of Methanothermobacter and Methanobacterium 

 

 

 



120 
 

6.4 Conclusion 

The operation of an ex-situ biological methanation system is more efficient at 65°C than 

550C. Methane content in excess of 90% can be achieved at volumetric productivity of 0.45 L 

CH4/Lreactor/day. As the inoculum ages, it changes from a mixed culture to a more enriched 

culture; in commercial operations re-seeding of the process would be required. 

Methanothermobacter species dominate the microbial communities in thermophilic ex-situ 

methanation systems.  

 

Acknowledgements 

This work was funded by Science Foundation Ireland (SFI) through the Centre for Marine 

and Renewable Energy (MaREI) under Grant No. 12/RC/2302. The work was also co-funded 

by Gas Networks Ireland (GNI) through the Gas Innovation Group and by ERVIA. 

The reviewers of the paper have greatly enhanced the quality of this paper through rigorous 

interrogation of the original manuscript and expanded the remit to include description of the 

microbial community.  

 

 

 

 

 

 

 

 

 

 

 



121 
 

References 

 

 [1]  Alitalo, A., Niskanen, M., Aura, E., 2015. Biocatalytic methanation of hydrogen and 

carbon dioxide in a fixed bed bioreactor. Bioresour. Technol. 196, 600–605. 

[2] Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J., 1990. Basic local 

alignment search tool. J Mol Biol. Oct 5;215(3):403–10.  

[3] Angelidaki, I., Sanders, W., 2004. Assessment of the anaerobic biodegradability of 

macropollutants. Re/Views Environ. Sci. Bio/Technology 3, 117–129.  

[4]  Benjaminsson, G., Benjaminsson, J., Boogh Rudberg, R., 2013. Power to Gas - A 

Technical Review (Report). Available In: 

http://www.sgc.se/ckfinder/userfiles/files/SGC284_eng.pdf 

[5] Bensmann, A., Hanke-Rauschenbach, R., Heyer, R., Kohrs, F., Benndorf, D., Reichl, U., 

Sundmacher, K., 2014. Biological methanation of hydrogen within biogas plants: A 

model-based feasibility study. Appl. Energy 134, 413–425.  

[6] Bernacchi, D.S., Seifert, A., Rittmann, S., Krajete, A., 2013. Benefits of Biological 

Methanation [WWW Document]. URL http://www.dbi-

gti.de/fileadmin/downloads/5_Veroeffentlichungen/Tagungen_Workshops/2013/H2-

Fachforum/14_Krajete_KrajeteGmbH.pdf 

[7] Bernacchi, S., Krajete, A., Seifert, A.H., Herwig, C., Rittmann, S., 2014. Experimental 

methods for screening parameters influencing the growth to product yield (Y(x/CH4)) of 

a biological methane production (BMP) process performed with Methanothermobacter 

marburgensis. AIMS Bioeng. 1, 72–87.  

[8]  Bicer, Y., Dincer, I., Zamfirescu, C., Vezina, G., Raso, F., 2016. Comparative life cycle 

assessment of various ammonia production methods. J. Clean. Prod. 135, 1379–1395.  

[9]  Burak Demirel, P.S., 2008. The roles of acetotrophic and hydrogenotrophic methanogens 

during anarobic conversion biomass to methane: a review. Rev Env. Sci Biotechnol 7, 



122 
 

173. 

[10] Burkhardt, M., Busch, G., 2013. Methanation of hydrogen and carbon dioxide. Appl. 

Energy 111, 74–79.  

[11] Burkhardt, M., Koschack, T., Busch, G., 2015. Biocatalytic methanation of hydrogen 

and carbon dioxide in an anaerobic three-phase system. Bioresour. Technol. 178, 330–

333.  

[12] Charisiou, N.D., Siakavelas, G., Papageridis, K.N., Baklavaridis, A., Tzounis, L., 

Avraam, D.G., Goula, M.A., 2016. Syngas production via the biogas dry reforming 

reaction over nickel supported on modified with CeO2 and/or La2O3 alumina catalysts. 

J. Nat. Gas Sci. Eng. 31, 164–183.  

[13] Dahiya, S., Joseph, J., 2015. High rate biomethanation technology for solid waste 

management and rapid biogas production: An emphasis on reactor design parameters. 

Bioresour. Technol. 188, 73–78.  

[14] Demirel, B., Scherer, P., 2011. Trace element requirements of agricultural biogas 

digesters during biological conversion of renewable biomass to methane. Biomass and 

Bioenergy 35, 992–998.  

[15] Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high 

throughput. Nucleic Acids Res. 32, 1792–1797 

[16] Edgar, R.C., 2010. Search and clustering orders of magnitude faster than BLAST. 

Bioinformatics 26, 2460–2461..  

 [17] Jarvis, G.N., Strömpl, C., Burgess, D.M., Skillman, L.C., Moore, E.R.B., Joblin, K.N., 

2000. Isolation and Identification of Ruminal Methanogens from Grazing Cattle. Curr. 

Microbiol. 40, 327–332.  

[18] Kim, S., Choi, K., Chung, J., 2013. Reduction in carbon dioxide and production of 

methane by biological reaction in the electronics industry. Int. J. Hydrogen Energy 38, 



123 
 

3488–3496.  

[19] Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., Glöckner, 

F.O., 2012. Evaluation of general 16S ribosomal RNA gene PCR primers for classical 

and next-generation sequencing-based diversity studies. Nucleic Acids Res. gks808.  

[20] Krajete, A., 2012. Method of converting carbon dioxide and hydrogen to methane by 

microorganisms. Publication number WO2012110256 A1, Applicant Krajete GmbH, 

URL: https://www.google.com/patents/WO2012110256A1?cl=en17 

 [21] Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: Molecular Evolutionary Genetics 

Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. msw054.  

[22] Laaber, M., 2011. Gütesiegel Biogas – Evaluierung der technischen, ökologischen und 

sozioökonomischen Rahmenbedingungen für eine Ökostromproduktion aus Biogas 

(Thesis). University of Natural Resources and Life Sciences, Vienna, Vienna. 

[23] Lai, J.-Y., Tung, K.-L., Lee, D.-J., Wang, D.-M., Ju, D.-H., Shin, J.-H., Lee, H.-K., 

Kong, S.-H., Kim, J.-I., Sang, B.-I., 2008. The Fourth Conference of Aseanian 

Membrane Society: Part 2Effects of pH conditions on the biological conversion of 

carbon dioxide to methane in a hollow-fiber membrane biofilm reactor (Hf–MBfR). 

Desalination 234, 409–415.  

[24] Lee, J.C., Kim, J.H., Chang, W.S., Pak, D., 2012. Biological conversion of CO2 to CH4 

using hydrogenotrophic methanogen in a fixed bed reactor. J. Chem. Technol. 

Biotechnol. 87, 844–847.  

[25] Luo, G., Angelidaki, I., 2012. Integrated biogas upgrading and hydrogen utilization in an 

anaerobic reactor containing enriched hydrogenotrophic methanogenic culture. 

Biotechnol Bioeng 109, 2729–2736.  

[26] Madigan, M.T., 2012. Brock Biology of Microorganisms., 13th ed. International 

Microbiology.  

https://www.google.com/patents/WO2012110256A1?cl=en17


124 
 

[27] Martin, M.R., Fornero, J.J., Stark, R., Mets, L., Angenent, L.T., 2013. A single-culture 

bioprocess of Methanothermobacter thermautotrophicus to upgrade digester biogas by 

CO2 -to-CH4 conversion with H2. Archaea 2013, 157529.  

[28] Nishimura, N., Kitaura, S., Mimura, A., Takahara, Y., 1992. Cultivation of thermophilic 

methanogen KN-15 on H2-CO2 under pressurized conditions. J. Ferment. Bioeng. 73, 

477–480. 

[29] Rachbauer, L., Voitl, G., Bochmann, G., Fuchs, W., 2016. Biological biogas upgrading 

capacity of a hydrogenotrophic community in a trickle-bed reactor. Appl. Energy 180, 

483–490.  

[30] Rittmann, S., Seifert, A., Herwig, C., 2015. Essential prerequisites for successful 

bioprocess development of biological CH4 production from CO2 and H2. Crit. Rev. 

Biotechnol. 35, 141–151.  

[31] Rittmann, S., Seifert, A., Herwig, C., 2012. Quantitative analysis of media dilution rate 

effects on Methanothermobacter marburgensis grown in continuous culture on H2 and 

CO2. Biomass and Bioenergy 36, 293–301.  

[32] Rittmann, S.K.-M.R., 2015. A Critical Assessment of Microbiological Biogas to 

Biomethane Upgrading Systems, in: Guebitz, G.M., Bauer, A., Bochmann, G., 

Gronauer, A., Weiss, S. (Eds.), Biogas Science and Technology. Springer International 

Publishing, Cham, pp. 117–135.  

[33] Seifert, A.H., Rittmann, S., Herwig, C., 2014. Analysis of process related factors to 

increase volumetric productivity and quality of biomethane with Methanothermobacter 

marburgensis. Appl. Energy 132, 155–162.  

[34] Shin, H.C., Ju, D.-H., Jeon, B.S., Choi, O., Kim, H.W., Um, Y., Lee, D.-H., Sang, B.-I., 

2015. Analysis of the Microbial Community in an Acidic Hollow-Fiber Membrane 

Biofilm Reactor (Hf-MBfR) Used for the Biological Conversion of Carbon Dioxide to 



125 
 

Methane. PLoS One 10, e0144999.  

[35] Siriwongrungson, V., Zeng, R.J., Angelidaki, I., 2007. Homoacetogenesis as the 

alternative pathway for H2 sink during thermophilic anaerobic degradation of butyrate 

under suppressed methanogenesis. Water Res. 41, 4204–4210.  

[36] Taubner, R.-S., Schleper, C., Firneis, M., Rittmann, S., 2015. Assessing the 

Ecophysiology of Methanogens in the Context of Recent Astrobiological and 

Planetological Studies. Life 5, 1652. 

[37] Wall, D.M., Allen, E., Straccialini, B., O’Kiely, P., Murphy, J.D., 2014. The effect of 

trace element addition to mono-digestion of grass silage at high organic loading rates. 

Bioresour. Technol. 172, 349–355.  

[38] Wasserfallen A., Nölling J., Pfister P., Reeve J., Conway de Macario E., 2000. 

Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the 

proposals to create a new genus, Methanothermobacter gen. nov., and to reclassify 

several isolates in three species, Methanothermobacter thermautotrophicus comb. nov., 

Methanothermobacter wolfeii comb. nov., and Methanothermobacter marburgensis sp. 

nov. International Journal of Systematic and Evolutionary Microbiology.;50(1):43–53 

 [39] Winter, J., Lerp, C., Zabel, H.-P., Wildenauer, F.X., König, H., Schindler, F., 1984. 

Methanobacterium wolfei, sp. nov., a New Tungsten-Requiring, Thermophilic, 

Autotrophic Methanogen. Syst. Appl. Microbiol. 5, 457–466.  

[40] Wolfe, R.S., 2011. Techniques for cultivating methanogens. Methods Enzym. 494, 1–22.  

[41] Yu, J., Pinder, K.L., 1993. Utilization of volatile fatty acids in methanogenic biofilms. 

Bioresour. Technol. 46, 241–250.  

 

 

 



126 
 

7. Conclusions and Recommendations 
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7.1 Conclusions 

A perspective on gaseous biofuel production from micro-algae generated from 

CO2 from a coal-fired power plant: 

• A 1 GWe coal power plant (at 35% efficiency and capacity factor of 75%) 

consumes around 2.72Mt of coal per annum whilst producing 6.77Mt of CO2. 

The emission from such a plant can be captured by micro-algae at an 

efficiency of 50 and 80% for open and closed cultivation systems respectively. 

The total amount of micro-algal volatile solids (VS) produced would be 

2.69Mt and 1.68Mt for open and closed systems. 

• Photo bioreactors (closed system) have higher productivities and occupy lesser 

area when compared to raceway ponds (open system). If such systems are to 

be used for cultivation of micro-algae from coal powered power plants, then 

an area of 52,303 ha would be required by raceway ponds when compared to 

19,192 ha required by tubular photo bioreactors. 

• The micro-algae thus produced is subjected to sequential dark and photo 

fermentation to produce hydrogen and volatile fatty acids. This is followed by 

methanation to produce methane. Upon the application of such a three-phase 

system, one tonne of micro-algal VS can produce 8.8 GJ of renewable gas. 

Hence a 1 GWe coal plant with carbon capture by micro-algae can produce 

23.7 PJ of energy. 

• Techno-economic analysis from the literature of tubular photo bioreactors 

reveals that the operation cost of such reactors is very high as they have high 

energy requirements (such as pumping, illumination etc.). Such systems utilise 

more energy for operation than the actual energy produced by the micro-algal 

biomass. 
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Seaweed Biofuel Derived from Integrated Multi-Trophic Aquaculture 

• Seaweed (macro-algae) has been used as food in some Asian countries. It has 

several industrial applications in the field of hydrocolloids such as emulsifiers, 

gelling agents and production of bio-plastics. Natural stocks cannot keep up 

with the demand and can be quite detrimental to the environment if they are 

depleted. Hence close to 90% of seaweed used today comes from aquaculture. 

The total value of the seaweed industry per annum is US$5.5-6 billion, with 

human consumption accounting for US$ 5 billion. Whereas the hydrocolloids 

industry was estimated to be worth US$ 600 million in 2003 and has increased 

to US$ 1156 million in 2014. 

• Consumption of meat protein has steadily increased around the world. Protein 

derived from fish contributed 16.7% to the global animal protein intake in 

2010, about 150 g of fish can cater for more than half of an adult’s daily 

protein requirement. Salmon trade (both wild and cultivated) has increased 

considerably and contributes 14% to world fishery trade.  

• Farmed salmon contributes 60% to global salmon production. Hence 

environmental precautions need to be taken to prevent eutrophication of water 

caused by the release of the wastes from fish farms. Integrated multi-trophic 

aquaculture can be used to sequester these wastes and produce seaweed at the 

same time. 

• If 1.25 % of energy in transport is to be provided by seaweed, then under the 

IMTA system 13Mt of salmon would be required to produce 168Mt of 

seaweed (S. latissima) that can be digested in 2603 coastal digesters.  
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Comparative study of single and two stage mono-fermentation of brown seaweed 

Laminaria digitata 

• Brown seaweed Laminaria digitata was subjected to single and two stage 

fermentation. There were two systems performing as two stage fermentation 

with different retention times of 24d (H1:M1) and 18d (H1:M2). The methane 

yield of the two systems were 176 and 234 L/kg VS respectively. The second 

two stage system (H1:M2) had a higher loading rate than the first system 

(H1:M1), hence higher methane yields were observed. 

• A single stage system was also run simultaneously with a retention time of 

24d and a methane yield of 221 L/kg VS. This value is higher than the two-

stage system of (H1:M1) but on par with the other system (H1:M2) as the single 

stage system was however more stable than the two-stage systems. 

• Higher methane compositions of 58% and 61% were obtained for both the two 

stage systems when compared to the single stage system (50%). Energy yields 

of 7.89 MJ/kg VS (single stage system) and 8.66 MJ/kg VS (two stage 18 d 

(H1:M2) system) were obtained, which is 9.8 % higher than the single stage 

system. The overall energy yield of the 24d two stage (H1:M1) system was 

comparatively lower (6.57 MJ/kg VS). 

• The hydrogen yield of the hydrolysis reactor was on par with that found in 

literature for two stage continuous systems. A hydrogen yield of ca.26 L/kg 

VS with butyric acid being the dominant VFA was obtained. 
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Study of the performance of a thermophilic biological methanation system 

• Biological methanation was carried out at 55°C starting with mixed culture as 

inoculum and was later operated at 65°C. The methane composition obtained for 

24h was in the range of 85-88% with volumetric productivities of 0.45 and 

0.4LCH4/Lreactor. 

•  However, after running it for a long period, most of the residual acetic acid was 

consumed and the microbes had to subsist only on the gaseous substrates (H2 and 

CO2) to produce methane as a result a lower methane composition was observed 

in the latter stages. It can be hypothesised that the mixed culture had become an 

enriched culture now.  

• The experiment was started again with fresh mixed culture as inoculum at 65°C, 

methane composition of 92% and volumetric productivity of 0.46LCH4/Lreactor 

were observed at 24h. Methanothermobacter species were identified as 

predominant and to represent the most likely resilient candidates for thermophilic 

biogas upgrading. 

 

7.2 Recommendations 

 

Practicalities of implementing third generation gaseous biofuels:  

Micro-algal production is the main hindrance to its technology as it is more expensive than 

growing terrestrial crops. To obtain high yields closed systems (photo-bioreactors) need to be 

used. High level of instrumentation to maintain light intensity, efficient uptake of CO2 , 

dissolution of nutrient medium (inorganic salts containing nitrogen, phosphorus and iron ), 

pumping energy required for efficient mixing of the reactors are the steps that are expensive. 
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However, if raceway ponds are used the cost of instrumentation can be reduced but it results 

in low yield of algae and occupies 3 times the space required by photobioreactors. Such large 

land footprint nullifies the benefit of low cost of production. In such a scenario arable land 

could be used to produce algae which will interfere with the production of food crops thus 

again leading to a food-fuel debate. One possible solution is to use offshore algal ponds 

without harming the coastal environment. Cost of offshore open and closed systems of algal 

production should be investigated. Apart from the cost and energy input a separate study 

needs to be done to investigate variation in performance of the specie which is a function of 

its geographical conditions, diurnal variation in the amount of carbon and light that it 

receives, effect of nutrient availability. These are the factors that affect the biomass yield of 

algae. Future research should include detail analysis of parasitic energy demand, cost of 

nutrient addition and cost of construction at such a large scale.  

Macro-algal/ seaweed production depends on aquaculture to a large extent as natural sources 

are not enough to cater to the demand. Hence, they get depleted faster affecting the coastal 

environment as certain aquatic species use it as food. Farmed seaweed can also be consumed 

as food by humans if it is of food grade quality as it can fetch higher price as food and to 

produce hydrocolloids rather than feedstock for biofuel production. Cost of offshore seaweed 

farms need to be studied as the method of cultivation (long line net cultivation or floating 

method) , cost of harvesting , infestation by other species , direction of water currents affect 

the yield obtained. Size and cost of such offshore farms and coastal digesters need to be 

studied 

Non-biological source of third generation gaseous biofuel comes from biological 

methanation. Cheap and surplus sources of hydrogen and carbon dioxide are the most 

important requirements for this technology. Cost of producing hydrogen via electrolysis is the 

most important step and is expensive. Different methods of electrolysis (polymer electrolyte 
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membrane, alkaline , and solid oxide electrolyzers) are being studied for their yield of 

hydrogen and cost of production. Efficient biological methanation depends on strict pH and 

temperature control along with efficient hydrogen dissolution needs a good degree of 

instrumentation. Cost of such reactors, energy for mixing can make the operation of ex-situ 

biological methanation expensive. The size of such reactors and its loading rate along with  a 

detailed comparative cost analysis between ex-situ and in-situ biological methanation should 

form the next part this study.  

This thesis demonstrates that third generation gaseous biofuel can be derived from algal and 

non-biological sources. Micro-algae can be grown using carbon emissions from industries. 

The resultant biomass can then be anaerobically digested to produce methane. However, it is 

recommended that the cost of operation and energy input of photo-bioreactors should be 

studied extensively to keep the technology viable. This thesis only gives a broad idea about 

this technology and should be investigated further as discussed. 

Other algal biomass such as seaweed can be grown using waste nitrogenous streams from fish 

farms. This method is more economical than the former; however, if producing hydrocolloids 

from seaweed is more profitable than biogas production, the price of this feedstock may 

become too high and uneconomical for biogas production. This is an ongoing debate as to 

whether seaweed should be used for biofuel or should be used in other industries.  

Cost of biogas production can be reduced by implementing two stage fermentation that 

allows for lesser hydraulic retention times and higher organic loading rates can be used for 

higher and faster methane yields. Future work can be carried out on the cost analysis of two 

stage versus single stage operation. Trace element addition (nutrient addition) in the latter 

stages of the operation should be studied in detail.  
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Biological methanation of hydrogen (from non-biological sources) and carbon dioxide can be 

carried out to produce methane compositions in excess of 90%. Hydrogen and carbon dioxide 

should come from surplus or cheap sources to make the technology economically feasible. As 

the culture got more enriched with specific thermophilic specie the stability of the reactor 

reduced; it can be inferred that with enriched culture better and sophisticated processes and 

instrumentation should be used to avoid contamination and to maintain or even increase 

process efficiency. Such methods will increase the cost of operation and this should be 

further studied.  

Thus, this thesis provides a study on the use and scope of third generation gaseous biofuels 

from algae and non-biological sources. This is in line with the latest developments in the field 

of biofuel that is trying to move away from first and second-generation feedstock that have 

been heavily criticised for its indirect land usage and its role in causing inflation of food 

prices. Algae and non-biological sources of gaseous biofuels should be implemented after a 

thorough study of their techno-economic feasibility. 
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Appendix A: Co-authored papers on third generation feedstock and two 

stage fermentation 
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Assessment of increasing loading rate on two-stage digestion of food waste 

M.A. Voelkleina, A. Jacoba, R. O’ Sheaa, J.D. Murphya,b  
a MaREI Centre, Environmental Research Institute (ERI), University College Cork (UCC), Ireland 
b School of Engineering, UCC, Ireland 

Abstract 

A two-stage food waste digestion system involved a first stage hydrolysis reactor followed by 

a second stage methanogenic reactor. Organic loading rates (OLR) were increased from 6 to 

15 g VS L−1 d−1 in the hydrolysis reactor and from 2 to 5 g VS L−1 d−1in the methanogenic 

reactor. The retention time was fixed at 4 days (hydrolysis reactor) and 12 days (methane 

reactor). A single-stage digester was subjected to similar loading rates as the methanogenic 

reactor at 16 days retention. Increased OLR resulted in higher quantities of liquid 

fermentation products from the first stage hydrolysis reactor. Solubilisation of chemical 

oxygen demand peaked at 47% at the maximum loading. However, enhanced hydrolysis 

yields had no significant impact on the specific methane yields. The two-stage system 

increased methane yields up to 23% and enriched methane content by an average of 14% to 

levels of 71%. 

Keywords: Two-stage digestion; Food waste; Hydrolysis; Biogas; High performance 

reactors 
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Highlights: 

• Single and two-stage digestion of food waste was compared at increased loading. 

• The methane content of the biogas increased by 14% to 71% in the two-stage system. 

• The two-stage system yielded up to 23% more methane than the single-stage system. 

• The two-stage system produced up to 404 L CH4 kg−1 VS or 15.1 MJ kg VS−1. 
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Fermentative bio-hydrogen production from galactose 

Ao Xiaa, b, c, Amita Jacoba, Christiane Herrmanna, c, Jerry D. Murphya, c  

a The MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland 

b Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, 

Chongqing 400044, China 

c School of Engineering, University College Cork, Cork, Ireland 

Abstract 

Bio-hydrogen production through fermentation of waste biomass has considerable benefits 

both as a waste treatment process and a substitute for fossil fuels. Galactose, which can be the 

dominant component in various biomass wastes (such as marine red algae, cheese and dairy 

industry waste streams) was fermented by anaerobic fermentative bacteria to assess bio-

hydrogen production. The impacts of pH, the YE/G (yeast extract/galactose) ratio and 

substrate concentration were investigated and optimised by response surface methodology. 

Hydrogen production was mainly via acetic and butyric acid pathways, while hydrogen 

consumption was via caproic acid and homoacetogenesis pathways. The hydrogen yield and 

production rate were improved to 278.1 mL/g galactose (2.23 mol/mol galactose) and 

33.6 mL/g galactose/h, respectively, under the optimal conditions (pH value of 6.05, YE/G 

ratio of 0.56 and substrate concentration of 5 g volatile solid/L). The overall energy 

conversion efficiency from substrates to hydrogen and soluble metabolic products reached 

68.6%. 

Keywords: Galactose; Bio-hydrogen; Fermentation; Soluble metabolic products; Energy 

conversion efficiency 
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Highlights: 

• Galactose was fermented by anaerobic fermentative bacteria for H2 production. 

• H2 yield of galactose was improved by response surface methodology. 

• The maximal H2 yield achieved 278.1 mL/g galactose (2.23 mol/mol galactose). The 

maximal H2 production rate achieved 33.6 mL/g galactose/h. 

• Overall energy production efficiency reached 68.6% via fermentation. 
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Production of hydrogen, ethanol and volatile fatty acids from the seaweed carbohydrate 

mannitol 

Ao Xiaa,b, Amita Jacoba,b, Christiane Herrmanna,b,Muhammad Rizwan Tabassuma,b, Jerry D. 

Murphya,b,c,  
          a Environmental Research Institute, University College Cork, Cork, Ireland 
          b Science Foundation Ireland (SFI), Marine Renewable Energy Ireland (MaREI) Centre, Ireland 
          c School of Engineering, University College Cork, Cork, Ireland 

 
Abstract 

Fermentative hydrogen from seaweed is a potential biofuel of the future. Mannitol, which is a 

typical carbohydrate component of seaweed, was used as a substrate for hydrogen fermentation. 

The theoretical specific hydrogen yield (SHY) of mannitol was calculated as 5 mol H2/mol 

mannitol (615.4 mL H2/g mannitol) for acetic acid pathway, 3 mol H2/mol mannitol (369.2 mL 

H2/g mannitol) for butyric acid pathway and 1 mol H2/mol mannitol (123.1 mL H2/g mannitol) 

for lactic acid and ethanol pathways. An optimal SHY of 1.82 mol H2/mol mannitol (224.2 mL 

H2/g mannitol) was obtained by heat pre-treated anaerobic digestion sludge under an initial pH of 

8.0, NH4Cl concentration of 25 mM, NaCl concentration of 50 mM and mannitol concentration 

of 10 g/L. The overall energy conversion efficiency achieved was 96.1%. The energy was 

contained in the end products, hydrogen (17.2%), butyric acid (38.3%) and ethanol (34.2%). 

 

Keywords: Seaweed; Mannitol; Hydrogen; Ethanol; Biofuels 
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Highlights 

• Mannitol can be efficiently fermented by AFB to produce H2 and SMPs. 

• The theoretical maximum specific H2 yield is 615.4 mL H2/g mannitol (5 mol/mol). 

• The optimal specific H2 yield achieved was 224.2 mL H2/g mannitol (1.82 mol/mol). 

• The overall energy conversion efficiency achieved was 96.1% via fermentation. 

• Energy production was dominated by H2 (17%), butyric acid (38%) and ethanol (34%). 
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Production of hydrogen, ethanol and volatile fatty acids through co-fermentation of 

macro- and micro-algae 

Ao Xiaa, b, c, Amita Jacoba, Muhammad Rizwan Tabassuma, Christiane Herrmanna, c, d, Jerry D. 

Murphya, c, ,  
a MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland 
b Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, 

Chongqing 400044, China 
c School of Engineering, University College Cork, Cork, Ireland 
d Leibniz Institute for Agricultural Engineering, Potsdam, Germany 

 

Abstract 

Algae may be fermented to produce hydrogen. However micro-algae (such as Arthrospira 

platensis) are rich in proteins and have a low carbon/nitrogen (C/N) ratio, which is not ideal for 

hydrogen fermentation. Co-fermentation with macro-algae (such as Laminaria digitata), which 

are rich in carbohydrates with a high (C/N) ratio, improves the performance of hydrogen 

production. Algal biomass, pre-treated with 2.5% dilute H2SO4at 135 °C for 15 min, effected a 

total yield of carbohydrate monomers (CMs) of 0.268 g/g volatile solids (VS). The CMs were 

dominating by glucose and mannitol and most (ca. 95%) were consumed by anaerobic 

fermentative micro-organisms during subsequent fermentation. An optimal specific hydrogen 

yield (SHY) of 85.0 mL/g VS was obtained at an algal C/N ratio of 26.2 and an algal 

concentration of 20 g VS/L. The overall energy conversion efficiency increased from 31.3% to 

54.5% with decreasing algal concentration from 40 to 5 VS g/L. 

 

Keywords: Algae; Fermentation; Hydrogen; Volatile fatty acids; Ethanol 
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Highlights 

• Micro- and macro-algae may be fermented to produce H2 and ethanol. 

• The optimal pre-treatment was steam heating at 135 °C with 2.5% H2SO4. 

• An optimal H2 yield of 85.0 mL/g VS was achieved at a C/N ratio of 26.2. 

•  The overall energy conversion efficiency reached 54.5% by fermentation. 

• Energy in algae was converted to H2 (5.7%), ethanol (15.6%) and VFAs (33.2%). 

 

 

 


