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Abstract

Abstract

As a device, the laser is an elegant conglomerate of elementary physical theories
and state-of-the-art techniques ranging from quantum mechanics, thermal and
statistical physics, material growth and non-linear mathematics. The laser has
been a commercial success in medicine and telecommunication while driving the
development of highly optimised devices specifically designed for a plethora of
uses. Due to their low-cost and large-scale predictability many aspects of modern
life would not function without the lasers. However, the laser is also a window into
a system that is strongly emulated by non-linear mathematical systems and are an
exceptional apparatus in the development of non-linear dynamics and is often used
in the teaching of non-trivial mathematics. While single-mode semiconductor
lasers have been well studied, a unified comparison of single and two-mode lasers
is still needed to extend the knowledge of semiconductor lasers, as well as testing
the limits of current model. Secondly, this work aims to utilise the optically
injected semiconductor laser as a tool so study non-linear phenomena in other
fields of study, namely ’Rogue waves’ that have been previously witnessed in
oceanography and are suspected as having non-linear origins. The first half of
this thesis includes a reliable and fast technique to categorise the dynamical
state of optically injected two mode and single mode lasers. Analysis of the
experimentally obtained time-traces revealed regions of various dynamics and
allowed the automatic identification of their respective stability. The impact of
this method is also extended to the detection regions containing bi-stabilities. The
second half of the thesis presents an investigation into the origins of Rogue Waves
in single mode lasers. After confirming their existence in single mode lasers, their
distribution in time and sudden appearance in the time-series is studied to justify
their name. An examination is also performed into the existence of paths that
make Rogue Waves possible and the impact of noise on their distribution is also
studied.
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Chapter 1

Introduction

1.1 General Introduction

Since the invention of Differential Calculus in the mid 17th century (somewhat
co-dependently/independently by Sir Issac Newton and Gottfried Leibniz), the
division between mathematics and the physical sciences has become blurred. It
could be argued that, in this ambiguous area, the field of Applied Mathematics
was first forged when the rigorous abstract concepts of ’pure mathematics’ became
entwined with the curiosities of the physical world.

Historically, applied mathematics has been a mix of mathematical sciences
and specialised knowledge that is used in formulating and studying mathematical
models in a plethora of related disciplines. Computer science, material physics,
financial and actuarial sciences, population dynamics, laser physics, and compu-
tational biology are just a few of the disciplines that have emerged. They have
been inspired by unavoidably interesting, real-world problems that at their core
are governed by the seemingly abstract yet indisputable axioms of mathematics.

The story of the laser began in a 1917 as a physics paper by Einstein on sponta-
neous and stimulated emission [18]. It has evolved over the last century to become
a problem of deep interest to applied mathematics as controllable, isolated, simple
(straightforward in experimental setup) device that exhibits non-linear, complex
behaviour that is accurately reproduced by the rate-equation model [94, 64]. The
current state of the research allows for two directions of expansion: an experi-
mental/theoretical study that analyses the semiconductor lasers regardless of the
device type/number of modes [68], and the use of a semiconductor laser as a
test-bed for dynamical systems theory [8]

The topic of this thesis is therefore two-fold, firstly to extend and further vali-
date the appropriateness of the multi-mode model for single and two mode lasers
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1. Introduction 1.2 Laser Types

using experimentally observed data and numerical computations, and secondly,
to utilise the laser itself as a window into an isolated, non-linear dynamical sys-
tem for testing and verification of mathematical theories that have been formed
for noisy and externally influenced systems.

Traditionally, lasers have been a test-bed for new physical theories since their
experimental demonstration by Maiman [54]. The device itself, is experimental
validation of several fundamental concepts beginning most notably with Einstein’s
work on spontaneous and stimulated emission [18] and Boson Statistics.

However, it is not sufficient to merely confirm the basic characteristics of
light-matter interactions. To construct a laser, one needs to avail of leading
technological achievements including growth methods to produce low-defect gain
media. A quality gain media is required to provide a population-inversion where
excited molecules would be continuously destabilised into emitting additional
photons and re-excited by an external pump mechanism. The pump mechanism
can be either optical (optical injection) or electrical (current). To achieve a
population inversion in a ’cheap’ way via pumping required multi-level atomic
systems and took almost 30 years to achieve after Einstein’s initial prediction.
Since then, different types of lasers have emerged and can be categorised based
on several of their structural properties, including the gain material used and the
direction of propagation of the beam relative to the cavity.

1.2 Laser Types

From a purely fundamental view point, all lasers make use of the same ba-
sic underlying principles (population inversion of a many-state atomic/semi-
conductor/gas gain medium via pumping). However, lasers types can be sub-
divided based upon the type of gain medium utilised, operational lasing wave-
length, number of wavelengths emitted and direction of light propagation (per-
pendicular/parallel to top surface). These categories can again be subdivided,
but only an overview of the laser types will presented here.

The first functioning laser had a three-level ruby rod gain medium and oper-
ated in the deep red region (694.3nm) [54]. The first gas laser invented in the
following year [39] consisted of a Helium–neon gain medium.

Laser-Diode

A laser-diode is an electrically (or optically) pumped semi-conductor laser that
utilises a p-n junction as the gain medium. Many of everyday electronic devices
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today that use a laser, will more often than not be a laser-diode.

VCSEL vs Edge Emitting

Vertical-Cavity Surface-Emitting Laser(VCSEL) is a sub-group of laser diodes.
These lasers can be tested at many points in the manufacturing process for cor-
rectness and usability of the device (unlike Edge-emitting). As VCSELs emit light
from the top surface, thousands of VCSELs can be processed simultaneously from
a single wafer.

A VCSEL has the optical cavity parallel to the direction of current flow, unlike
Edge-Emitting lasers which have the optical cavity perpendicular to the current
flow.

Edge-Emitting laser diodes can only be tested at the end of the manufactur-
ing process. Therefore if any of the intermediate manufacturing steps fail (bad
contacts, material growth, processing time, growing time etc), resources can be
wasted unknowingly. Edge-Emitting lasers are the original form of the semicon-
ductor laser, and are still widely used.

1.2.1 Use of Laser Devices in Society

Optically injected lasers have been the source of considerable interest and use in
telecommunications since their creation as low powered, fast, small and efficient
data communication devices [12, 69, 33]. With the ever evolving demand for
data driven telecommunication and internet services, the semiconductor laser
has been adapted for numerous uses already (CD/DVD players) in the drive
towards environmentally conscious and energy-efficient photonics and away from
their heat generating electronic counterparts.

Simultaneously, in applied mathematics the semiconductor laser has been of
substantial interest as it has been shown to strongly emulate the properties of
low-order, multidimensional, non-dimensionalized, complex, non-linear, coupled,
time-dependant, first-order differential equations [97], and therefore a practical
application of some of the more abstract areas of mathematics [98, 66]. The non-
linear and chaotic behaviour of semiconductor lasers was first reported over 20
years ago and initially was of little interest and considered a nuisance. It is now
well known to be a fundamental consequence of non-linear dynamics [44]. Since
then the chaotic dynamics of lasers has found many areas of application including
cryptography [13, 89, 57] and random number generation.

The subject of this thesis is optical injection of multi-mode semiconductor
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lasers, and this allows for a broad and thorough study of single-mode and two-
mode devices using numerous applied mathematical methods including: dynami-
cal systems theory, time-series analysis, bifurcation theory, and stability analysis.

The main goals of this study are to analyse devices with different number of
active modes [68] and to use these devices as tools to study dynamical phenomena
in other areas such as ’Rogue Waves’ in oceanography [8, 4, 82].

The next section places my work in historical context (Sec. 1.3). Chapter 2
provides some specific background information on the problem along with some
required derivations of the multi-mode semiconductor laser model. Chapter 3
introduces the work previously published in Optics Express [68], with particu-
lar emphasis on the numerical and experimental comparison of single-mode and
two-mode lasers. Additionally, previously unpublished work on the bi-stability
analysis of two-mode lasers is also included. Chapter 4 discusses the applications
of optically injected lasers as a test-bed for the dynamical theory in other fields,
particularly in discussing the origins of ’Rogue Waves’ that were originally ob-
served in oceanography. Finally Chapter 5 provides a conclusion of the thesis
and an outlook of future research directions.

1.3 Historical Context

Almost a century has passed since Einstein presented his theory of spontaneous
and stimulated emission and emission of electromagnetic radiation [18] in 1917,
which was the first step towards the invention of the laser. However it was thirty
years later before the idea of using stimulated emission to amplify electromagnetic
radiation make significant progress [32, 90]. In a close race Gorden et al. achieved
the first ammonia MASER (Microwave Amplification by Stimulated Emission of
Radiation). As the name implies, this device operated in the microwave range,
and soon afterwards an extension to the MASER was delivered by Schawlow and
Townes [76]. In Schawlow et al. [76] they suggested that the MASER can be
made to operate in the visible and infrared part of the spectrum. However it was
not until Maiman et al. [54] used a ruby gain medium that Light Amplification
by Stimulated Emission of Radiation (LASER) was observed. This was the birth
of the laser.

Since then, lasers have been refined and optimised to exhibit specific proper-
ties for a copious number of uses, all following a primary and fundamental goal:
to produce a coherent light source (within the context of the specific application).
For example, in the use for telecommunications, a coherent light source in the
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1500nm range is needed. Ideally the lasers have stable operation at room tem-
perature (that is, in the absence of temperature control). The 1500nm range is
required as the currently employed optical fibres are made from silica, which is a
cheap and reasonably flexible medium which has the lowest loss at 1500nm.

It has been shown [31] that GaAs (Gallium arsenide) lasers operate predom-
inately in the TE (Transverse-Electric) mode. The lasers studied in this thesis
(and employed in telecommunications) are made from GaAs and InGaAs alloys
that retain this property.

Soon after the inception of the laser, books on the theory of laser physics [75,
55, 84] were published for use as educational tools as the interest in lasers (and
more specifically, semi-conductor lasers) grew. As theoretical models were de-
veloped to explain the complex, non-trivial laser behaviour, an interesting com-
parison was drawn by Haken [34] between the single-mode laser system and the
famous atmospheric model studied by Lorenz [53]. This comparison predicted
that multi-mode lasers could also become chaotic and reconciled experimental
observations of complex dynamics with sensitivity to initial conditions [6, 91, 14].

Building upon this confirmation of chaotic dynamics, the interest in semi-
conductor lasers for applied mathematics grew enormously. This is because the
laser presented a device that was already of important use to engineers and physi-
cists, but also provided an opportunity to demonstrate mathematical objects,
such as bifurcations in a system that can be studied in isolation (compared to
the examples of meteorological and financial markets that cannot account for
all external influences). Therefore, many experiments and real-world validation
of mathematical models can be performed with pre-existing infrastructure and
technology (motivating the latter aspect of this thesis).

Thorough single-mode semiconductor laser studies have been conducted [93,
94, 95, 96, 97] and the single-mode laser is considered to be a well-known sys-
tem, involving many experimental measurements of mathematical objects and
predictions [67, 36, 60, 59, 11]. However, these works leave room for a compre-
hensive multi-mode (a two-mode laser is utilised in this thesis) comparison with
the single-mode theory (motivating the former part of my thesis). Already it has
been confirmed that there are additional structures present in two-mode devices,
using a low order, coupled differential system of equations [66]. The system of
ODE’s for a multi-mode laser will be derived in Chap. 2.2. As a result of these
additional structures, new applications of semiconductor lasers have been found,
such as bi-stability and wavelength switching [67].

In the next chapter, the derivation of the rate equation model of the multi-
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mode lasers is introduced, beginning with energy transition between a two-state
atomic system and ending with semi-classical laser theory. The intermediate
sections include a master equation approach to the gain derivation and Maxwell
Bloch equations for a semi-conductor gain material.
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Chapter 2

Background to the problem

2.1 Derivation of Rate-equation model for Two-
mode Laser

In this chapter the model and application of multi-mode semiconductor lasers
is introduced through the derivation of a rate equation model. The desired
rate equation model should be a simple system of ordinary differential equations
(ODE’s) which will be studied in later parts. The derivation will be semi-classical
in nature, and is designed to extend the current and experimentally validated
model for lasers with a single longitudinal mode[80], where mode selection occurs
as a consequence of the cavity length. For simplicity, I will first introduce an
atomic model which is similar to a semiconductor laser model if the details of the
gain medium can be neglected. As a laser operates on the basis of stimulated
emission, it is natural to begin the introduction of lasers with a discussion on
quantised energy transitions.

2.1.1 Energy Transitions of an atom between states.

When discussing photons and their interaction with matter one must acknowl-
edge the revolutionary foundations laid by Einstein[18], namely that given an
atom with two discrete energy levels, there are three possible transitions between
these energy levels: stimulated emission, stimulated absorption and spontaneous
emission.

2.1.1.1 Stimulated Emission

Stimulated emission was first predicted by Einstein in 1917[18] and later con-
firmed experimentally by Ladenburg[47] after 11 years when technology had ad-
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2. Background to the problem
2.1 Derivation of Rate-equation model for

Two-mode Laser

hν

(a) Before Emission

Ground State: E0

Excited State: E1

hν

(b) During Emission

hν

hν

(c) After Emission

Figure 2.1: Two-level laser system:(a) Atom is excited to an above-ground state
energy level E1. (b) A photon with energy hν = ∆E is incident on the excited
atom, relaxing the atom into the ground state. (c): The relaxing atom emits a
second photon with energy of hν = ∆E and decays to the ground state.

vanced far enough. In his paper Einstein hypothesised that an excited atom
can be destabilised by an incident photon and emit a second photon of identical
energy.

Let us consider an atom with two discrete energy levels E0 (ground state)
and E1 (excited state) with energy difference (∆E) E1 − E0 = ∆E = hν, and
E1 > E0. Here h is Planck’s constant and ν is the frequency of the photon
emitted. This is a homogeneously broadened system with precisely one spectral
line, that is atoms can only decay and produce a photon with an energy precisely
matching the energy difference between the two states. If the atom was in the
higher energy state, an incident photon with energy of hν could destabilise the
atom and cause a photon with identical energy and momentum to be emitted by
the atom. The atom would, at the time of stimulated photon emission, drop to
the lower energy state as depicted in Fig. 2.1.

Let us write the rate of stimulated (RStim) emission from the excited state
(n1) as:

RStim = Bρ(ν)n1 (2.1)

with B the Einstein coefficient of stimulated emission (from E1 to E0) and ρ(ν)
the spectral energy density (number of photons of frequency ν per unit volume).
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2. Background to the problem
2.1 Derivation of Rate-equation model for

Two-mode Laser

hν

(a) Before Absorption

Ground State: E0

Excited State: E1

hν

(b) During Absorption (c) After Absorption

Figure 2.2: Two-level laser system:(a) Atom is unexcited and in the ground state
energy level E0. (b) A photon with energy hν = ∆E is incident on the excited
atom, exciting the atom with exactly an energy of ∆E. (c): The excited atom is
now in the above-ground state. The incident photon has been absorbed.

2.1.1.2 Stimulated Absorption

Similarly with stimulated emission, stimulated absorption can only occur when
the incident photon’s energy precisely matches the energy difference between the
ground and the excited state, otherwise the material appears transparent to that
wavelength. This is depicted in Fig. 2.2.

Let us write the rate of stimulated absorption (RAbs) from the ground state
(n0) to be:

RAbs = Cρ(ν)n0 (2.2)

with C the Einstein coefficient of stimulated absorption.

2.1.1.3 Spontaneous Emission

Unlike stimulated absorption and emission, spontaneous emission does not in-
volve an incident photon. An atom in the excited state (which may have occurred
through stimulated absorption) can decay randomly to the ground state by emis-
sion of a photon of energy ∆E = hν in a random direction. The spontaneous
emission is quantum effect often attributed to zero-point energy in the radiation
field[71, p355], as opposed to a classical interaction between the excited atom and
the surrounding medium.
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2. Background to the problem
2.1 Derivation of Rate-equation model for

Two-mode Laser

(a) Before Emission

Ground State: E0

Excited State: E1

hν

(b) During Emission

hν

(c) After Emission

Figure 2.3: Two-level laser system:(a) Atom is in the higher energy level E1. (b)
The atom spontaneously decays releasing a photon with energy hν = ∆E.(c):
The atom is now in the ground state and the a photon travels off in a random
spatial direction.

Let us write the probability for this transition (RSpon) with decay from the
excited state (n1) to be:

RSpon = An1 (2.3)

with A the Einstein coefficient of spontaneous emission.

2.1.1.4 Relation of Einstein Coefficients.

In equilibrium, the number of transitions between states must be equal. Using
(2.3), (2.1), (2.2), we can relate the transition rates:

RStim +RSpon = RAbs (2.4)
n1(Bρ(ν) + A) = Cρ(ν)n0 (2.5)

In solving for ρ(ν) we obtain:

ρ(ν) =
A
B

Cn0
Bn1
− 1

(2.6)

As the atoms are in thermal equilibrium, the ratio of the populations can
be expressed using the Boltzmann factor nm = gme

− Em
kBT with nm,Em,gm the
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population, energy and degeneracy of the mth energy level. T temperature of the
system Kelvin and kB the Boltzmann constant. The population ratio is therefore:

n1

n0
= e

− hν
kBT

g1

g0
(2.7)

ρ(ν) can be simplified:

ρ(ν) =
A
B

Cg0
Bg1

e
hν
kBT − 1

. (2.8)

Eq. (2.8) can be compared with Planck’s Equation for Black Body radiation:

ρ(ν) = 8πν2

c3
hν

e
hν
kBT − 1

(2.9)

which must agree for all temperatures. Thus the prefactors are related by the
following expressions:

A

B
= 8πhν3

c3 (2.10)
B

C
= g0

g1
(2.11)

for the Einstein coefficients. A (trivial) consequence of these relations is that
when n0 = n1 and g0 = g1 the likelihood of stimulated absorption and stimulated
emission are equal.

2.2 Semi-classical Laser Theory

Next a semi-classical approach is introduced, extending the single-mode theory
explored previously[48, 97] for semiconductor lasers with multiple longitudinal
modes[77, Ch. 3.2]. The simplest construction of a laser consists of a multi-level
atomic system placed in a laser cavity. For a semiconductor material, excited
atoms are not utilised but electron-hole pairs.

These electron-hole pairs recombine to emit a photon, and are generated by
pumping or incident photons. The generation of an electron-hole pair therefore
corresponds to a transitions from ground to excited energy state in an atom.
However, this analogy is not perfect, as the number of atoms in the ground state
has no direct equivalent in the electron-hole pair description. This difference is
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significant and its importance will be addressed later.
A homogeneous medium, such as the laser gain medium composed of identical

two-level atoms, has a finite expected lifetime in an excited state. The length
of the lifetime is inversely proportional to the width of the emission spectra in
the frequency domain. Thus a semiconductor gain medium, with a relatively
short carrier lifetime, can be subject to homogeneous broadening of the emission
spectrum. However, electron-hole pairs in a laser gain medium do not necessarily
have identical energy band gaps, due to the material composition and lattice
structure. Therefore broadening of the emission spectra can also be influenced by
in-homogeneous broadening. It has been shown that the interesting laser dynamics
regarding saturation and broadening are a combination of the homogeneous and
in-homogeneous properties of the semiconductor material[15].

To correctly describe the evolution of the electric field in the semiconductor
laser cavity Maxwell’s Equations are used in the following mks units:

∇ · ~B = 0 (2.12)

∇× ~E = − ~̇B (2.13)

∇× ~H = ~j + ~̇D (2.14)

∇ · ~E = ρ

ε0
(2.15)

with ~j = (σ ~E) the current density, ~B = µ0 ~H,ρ charge density and ~D = ε0 ~E + ~P .
Here ~B is the magnetic field, ~H is the magnetic field strength, ~D is the electric
displacement. The constants µ0 and σ take the usual meanings of magnetic
permeability and conductivity of the medium of the laser cavity and give rise to
the loss terms in the spatial-temporal evolution of the wave.

The well-known wave-equation for the electric field can be found by taking
the time derivative of Eq. (2.14):

∇× ~̇H = j̇ + ~̈D (2.16)

∇× ( 1
µ0
~̇B) = σ ~̇E + ε0 ~̈E + ~̈P (2.17)

∇× (∇× ~E) = σµ0 ~̇E + ε0µ0 ~̈E + µ0 ~̈P (2.18)

and using the well-known vector identity

∇× (∇× ~A) = ∇(∇ · ~A)−∇2 ~A (2.19)
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and ∇ · ~E = 0, Eq. (2.18) becomes:

∇2 ~E − σµ0 ~̇E − ε0µ0 ~̈E = µ0 ~̈P (2.20)

Eq. (2.20) is the same form of the wave equation as previously derived in [34,
97, 75] to include the material effects of the propagating radiation.

The spatial dependence can be separated from the time dependence[102] and
the appropriate spatial boundary conditions, from the facets, can be imposed. I
therefore expand ~E and ~P in the form:

~E(z, t) = 1
2
∑
n

~An(t)Un(z) (2.21)

~P (z, t) = 1
2
∑
n

~Pn(t)e−i[νnt+φn(t)]Un(z) (2.22)

Denoting ~An as the complex electric field

~An(t) = ~En(t)e−i[νnt+φn(t)] (2.23)

where ~En and ~φn(t) are slowly varying variables compared to the fast optical
frequency oscillation. The evolution of the electric field ~En and ~Pn (slow, real
functions) can now be expressed in differential form. Having performed a sep-
aration of variables, and utilised boundary conditions that reduced the spatial
dependence of the laser to a single axis, I now drop the vector notation for bre-
vity, and consider the magnitude of the En and Pn fields.

In an infinite medium with no facets, there exist a continuum of modes. How-
ever, the length L of the cavity is finite and well-defined, (formed using two highly
reflective mirrors or facets cut into the gain medium[31]). This places boundary
conditions on the electric field allowing only a discrete set of modes in the laser
to achieve significant magnitude[75, Sec 21-2]. As a result only modes with a
circular frequency:

Ωn = nπc

L
= Knc

1
√
εrµr

(2.24)

c = 1
√
ε0µ0

(2.25)

are relevant. Here c is the speed of light in a vacuum, n is a large integer ,
Kn is the corresponding wave number and Ωn is the eigenfrequency. ε0 and µ0
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2. Background to the problem 2.2 Semi-classical Laser Theory

are the permittivity and permeability of the vacuum. The addition of εr and µr
(relative permittivity and permeability) correct for the presence of the medium.
Using a separation of variables, the spatial component of the wave equation is
assumed to have the form (of a plane wave)

U(z) = sin(Knz) (2.26)

as it satisfies the boundary conditions imposed by the cavity. Fox and Li[24]
have shown that there is little variation in the X − Y plane in an optical wave-
length and are therefore we can approximate the cavity as a strip existing in Z
(The orientation of Z is transverse to the direction of optical propagation).

By taking the first and second time derivatives of Eq.(2.21) we arrive at

Ė =
∑
n

e−i(νnt+φn){Ėn(t) + En(t)[−i(νn + φ̇n)]}Un(z) (2.27)

Ë =
∑
n

e−i(νnt+φn){Ën(t) + 2Ėn(t)(−i[νn + φ̇n]) + En(t)[(−i(νn + φ̇n))2 − iφ̈]}

· Un(z) (2.28)

with identical expressions for Ṗn and P̈n respectively. Substituting
Eqs. (2.27), (2.28) and (2.26) into (2.20) we obtain:

K2
nEn + µ0σ[Ėn − i(νn + φ̇)En]

+µ0ε{Ën − iφ̈En + Ėn[−2i(νn + φ̇)]− En{(νn + φ̇)2}

= µ0(νn + φ̇)2(Pn) + terms in Ṗn and P̈n (2.29)

after factoring out the multiplicative exponential and U(z) terms.
For our slowly varying complex fields, that vary by a negligible amount in an

optical frequency period, I neglect second order time derivatives and mixed-first
order time derivatives[75, p100], P̈n, φ̈n, Ën, Ėnφ̇n, φ̇n

2. Under the property of
Class B semiconductor lasers, the dipole-moments in the gain medium contribute
to a slowly varying polarisation, and high reflectively is achieved at the boundaries
(required for signal amplification) φ̇nPn and Ṗn are also neglected.

Finally we arrive at:

k2En + µσ{0− iEn(νn + φ̇)]}
+ µε[0− 0− 2iĖn(νn + 0)]− En{(νn + φ̇)2}

= µ(νn + 0)2Pn (2.30)
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2. Background to the problem 2.2 Semi-classical Laser Theory

which relates the En and Pn fields.
By separating the the real and imaginary parts of Pn, we obtain for the

imaginary part:

−µσ{En(νn + φ̇)]} − 2µεĖnνn = µ(νn)2Im{Pn}

Ėn{−2µενn} = µσ{En(νn + φ̇)]}+ µ(νn)2Im{Pn}

Ėn = −1
2ΓEEn −

1
2
ν

ε
Im{Pn} (2.31)

and for the real part

k2En − µεEn{(νn + φ̇)2} = µ(νn)2Re{Pn}

En(k2 − µε{(νn + φ̇)2}) = µ(νn)2Re{Pn}

(Ω2
n − {(νn + φ̇)2}) = (νn)2

εEn
Re{Pn} (2.32)

using ΓE = σ
ε
and σ = ε ν

Ωn , where ν is understood to be a good approximation
of the passive modal frequencies when the difference between the νn’s is small.

Traditionally [75, p100], (νn)2 is approximated by νnν, where ν closely rep-
resents the passive modal frequency when there is little variation between the
νn’s across n . In this approximation (and that in the absence of a field Pn,
Ωn = νn + φ̇n), (Ω2

n − {(νn + φ̇)2}) becomes 2νn(Ωn − {(νn + φ̇)}).
Eq (2.32) becomes Eq. (2.33)

2νn(Ωn − {νn + φ̇}) = νnν

εEn
Re{Pn}

(Ωn − {νn + φ̇}) = ν

2εEn
Re{Pn}

{νn + φ̇} = Ω− ν

2εEn
Re{Pn} (2.33)

Eq. 2.31 and 2.33 are known as the self-consistency equations, having com-
bined classical- and statistical mechanics to obtain them[75, 97]. They also require
that the microscopic polarisation, due to the electron-hole pairs, be equal to the
macroscopic polarisation. This will be addressed shortly.

Eq. 2.31 is also recognisable as one of the Maxwell-Bloch Equations, which
depends on the polarisation of the medium Pn. Let us consider the physical
meaning of Eq. ( 2.31) and ( 2.33). In the absence of Pn(no active medium), we
have an exponentially decaying En field with the appropriately named constant
1
2ΓE, the inverse lifetime of the electric field. However, for a homogeneous and
isotropic dielectric medium, such as the semiconductor laser gain medium, a
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2. Background to the problem 2.2 Semi-classical Laser Theory

polarisation exists (due to the electron-hole pairs) and is aligned with En[22,
Chapter 10].

Pn = ε(χ′ + iχ′′)En (2.34)

Therefore 2.31 and 2.33 can be written as:

Ėn = −1
2ΓEEn + 1

2νχ
′′En (2.35)

{vn + φ̇} = Ω− ν

2χ
′ (2.36)

The first and second terms of Eq 2.35 are frequently identified as the field
decay and gain terms. Hence χ′′ is referred to as the material gain due to the
electric field and population inversion. χ′ is referred to as the population-induced
refractive index change. The following definitions are used to represent the modal
gain and the population induced refractive index (δn).

νχ′′ = c

nb
g(N, ν,E1, E2) (2.37)

χ′ = 1
nb
δn (2.38)

Eq (2.37) is defined here for a semiconductor laser with two primary modes,
but g(N, ν,E1, E2) can be arbitrarily extended for additional modes. Here the
spectral component ν is unimportant[16] and is absorbed in the prefactor of
the g(N, ν,E1, E2) and δn functions. The exact form of g(N, ν,E1, E2) will be
derived later. The complex (passive) refractive index of the gain medium, in the
absence of a pumping or population inversion, is defined as nb =

√
ε0µ0εrµr

c
. δn

and g(N, ν,E1, E2) can be related through the Kramers-Kronig relation[45] and
the well-known α factor (line-width enhancement factor) can be defined through
their relation

α = −
∂χ′

∂N
∂χ′′

∂N

= −
∂(δn)
∂N

c
ν
∂g(N,ν,E1,E2)

∂N

. (2.39)

Although the gain function and refractive index change do not vary linearly,
a good linearisation of the gain can be made around lasing threshold[1, p36 and
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191], hence I can write g and δn in as dependant on N and NThr while neglecting
the spectral dependence.:

g(N −NThr, E1, E2) = nb
2c [ΓE + ζ(N −NThr, E1, E2)] (2.40)

δn = −nb
ν

[B0 + α

2 ζ(N −NThr, E1, E2)] (2.41)

where NThr is N at the onset of a population inversion. B0 is a constant of
integration which will be determined later and ζ is the non-linear differential gain
function. The exact form of ζ will be investigated later. The additional ΓE term
in Eq.(2.40) comes from knowing that at N = NThr, the net gain of En should be
zero, as well as Ė. That is, the gain should equal the cavity losses at threshold.
Eq.(2.40) and Eq.(2.41) are still related through the α parameter as defined in
Eq.(2.39).

Next a formulation for N and Pn is required in order to fully understand α,
as well as the full temporal evolution of our system. I will now motivate their
corresponding Maxwell-Bloch forms.

2.2.1 Maxwell-Bloch

In this section I will motivate an expression for the macroscopic polarisation
of the medium which are obtained by a statistical summation of the microscopic
polarisation. The atom laser was introduced as simple description of a functioning
laser, however I now have reached the point where the differences between a
semiconductor gain medium and atomic laser gain medium must be addressed.
The atom laser requires a minimum of three distinct energy levels to achieve a
population inversion. However, in a semiconductor laser, electron-hole pairs are
the excited state of the gain medium. The differences between semiconductor
and atomic gain media in the quantum picture are irreconcilable, given that it is
not trivial to model the ground state of the semiconductor laser by counting the
number of annihilated election-hole pair. I will quickly derive the Maxwell-Bloch
equations for two-level atom laser and discuss the restrictions.

In the atom laser, a wave function describing the atom’s probability of existing
in either of two states is trivial. Using the well-known Schrödinger Equation[55],
for two-level atom, the wave-function |Ψ(t)〉is modelled by:

i~
∂ |Ψ(t)〉
∂t

= H |Ψ(t)〉 (2.42)

H = H0 + V (2.43)
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2. Background to the problem 2.2 Semi-classical Laser Theory

with H is the Hamiltonian operator, describing the total energy of the system
as a linear combination of the atoms energy at the state plus the contribution of
the present En field: V = e~r. ~eEE. Here En is the scalar magnitude of the electric
field, ~r. ~eE are the unit vectors acting in the r and E directions respectively. e is
the electron charge.

The wave-function |Ψ(t)〉 for the atom (with normalised population |A2| +
|B2| = 1) is a linear combination of the wave-functions of the individual states
(absorbing the time dependence for brevity):

|Ψ〉 = A |ψ0〉+B |ψ1〉 H0ψj = ~ωjψj, j = 0, 1 (2.44)

The evolution of the population in each state evolves according to[55, p.2]:

i
∂A

∂t
= ω0A+ µEn

~
B +

�
�
�
��>

0
ν0En
~

A

i
∂B

∂t
= ω1B + µEn

~
A+

�
�
�
��>

0
ν1En
~

B (2.45)

with A,B the population in the ground states and excited respectively.
In Eq. (2.45) µ is introduced as an approximation of the dipole[55, p.2] and

ν0 and ν1 vanish when the gain medium is invariant under a relaxation under a
reflection symmetry. Other atom specific approximations, including neglecting
the centre of mass are also used.

Using angle-brackets, I denote the ensemble average taken over all atoms, for
two useful quantities A∗B (microscopic polarisation due to a single excited atom)
and |A|2 (probability that the atom is in state A). ∗ is the complex conjugation
operator.

∂ 〈A∗B〉
∂t

= −i(ω1 − ω0) 〈A∗B〉+ i
µ

~
[〈En|B2|〉 − 〈En|A2|〉]

∂ 〈|A2|〉
∂t

= −∂ 〈|B
2|〉

∂t
= i

µ

~
[〈EnAB∗〉 − 〈EnA∗B〉] (2.46)

Defining D as the difference 〈|A2|〉−〈|B2|〉, (normalised population difference)
and P = 〈A∗B〉(complex polarisation) we obtain the Maxwell-Bloch equations
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for D and Pn

∂D

∂t
= −2iµEn

~
[Pn − P ∗n ] (2.47)

∂Pn
∂t

= −i(ω1 − ω0)Pn − i
µEn
~
D (2.48)

It should be noted that Pn and En here are slow variables, thanks to the same
expansion utilised in (2.22). As Pn is complex, Pn − P ∗n becomes:

Pn − P ∗n = i2Im{Pn} (2.49)

Next I re-normalise the population inversion to N , such that the value of
N = 0 will correspond to a zero population inversion.

N = −D + 1
2

N = 〈|B
2|〉 − 〈|A2|〉+ 1

2 (2.50)

Now, substituting Eq. (2.49) and (2.50) into Eqns. (2.47) and (2.48) yield
the re-normalised, simplified Maxwell-Bloch equations for a two-level atom:

∂N

∂t
= −4µEn

~
[Im{Pn}] (2.51)

∂Pn
∂t

= −i(ω1 − ω0)Pn + i
µEn
~

(2N − 1) (2.52)

Regrettably, many of the atomic specific properties used in deriving the clas-
sical Maxwell-Bloch equations make it difficult to justify their use for semicon-
ductor lasers. Issues can be seen immediately when a Hamiltonian is sought
to model the microscopic semiconductor behaviour. Simply put, in the excited
state, a semiconductor material has an electron-hole pair, whereas in the ground
state, the electron-hole pair has annihilated to produce a photon. Thus the
first challenge begins with accounting for the changing number of particles be-
tween states. In 1995, the search, spanning over a decade[51], for Semiconductor
Maxwell-Bloch Equations(SBE’s)[9, 58] with a similar representation to that of
Eqns (2.51), (2.52) came to a satisfactory end.

Beginning with the Hamiltonian for a two-level semiconductor, which includes
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direct Coulomb interactions is:

H =
∑
k

εc(k)a†c,kac,k +
∑
k

εv(k)a†v,kav,k + V +HF , (2.53)

V = 1
2

∑
k,k′;q 6=0

v(q)[a†c,k+qa
†
c,k′−qa

†
c,k′a

†
c,k

+a†v,k+qa
†
v,k′−qa

†
v,k′a

†
v,k

+2a†c,k+qa
†
v,k′−qa

†
v,k′a

†
c,k′ ], (2.54)

HF = −
∑
k

[µkEL(t)a†c,ka
†
v,k + µ∗E∗La

†
v,ka

†
c,k] (2.55)

where εc(k) and εv(k) are the momentum specific energies in the conduction and
valence bands respectively, EL is the microscopic field that couples with the dipole
and v(q) are the Coulomb-exchange interaction coefficients.

v(q) = ~ωx
8πa0

κbq2 , εc(k) = Eg + ~2k2

2me

,

εv(k) = −~2k2

2me

. (2.56)

Eg is the unperturbed band gap energy, a0 is the Bohr radius, the Coulomb-
exchange interaction coefficients are given in terms of the excitation energies
~ωx. The methodology followed in [9] is too detailed to repeat here completely.
However, similar to the approach for the atomic laser, E and P are expanded
as the slowly varying variables En and Pn respectively. The key points of the
derivation include the calculation of the occupation and transition probabilities
nk = 〈a†c,kac,k〉 , pk = 〈a†c,kav,k〉 and the use of the relation 〈a†c,kac,k〉+〈a

†
v,kav,k〉 = 1

to reduce the order of the equations by eliminating the need to calculate the
equation of motion for valence-band electrons. The macroscopic (Maxwell) En
and Pn fields are due to an average over a density of states of the microscopic
electric and polarisation fields. By calculating the density of states average to the
∂pk
∂t

, as pk is a slowly varying variable, the macroscopic equation for ∂Pn
∂t

is shown
to be identical to Eq. 2.52, up to a correction of the prefactors. Therefore, I can
continue to use Eq. 2.52 in my discussion of the Semiconductor Maxwell-Bloch
equations.

Additionally, I add decay terms to Eqns (2.51, 2.52) phenomenologically, to
represent the fields’ decay ΓNN , ΓPP , and the pump driving the normalised
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population difference, Λ.

∂N

∂t
= −4µEn

~
[Im{Pn}]− ΓNN + Λ (2.57)

∂Pn
∂t

= −i(ω1 − ω0)Pn + i
µEn
~

(2N − 1)− ΓPPn (2.58)

Different classes of lasers can be distinguished by the relative magnitude
of ΓP ,ΓN and ΓE[6]. In the approximation, where ΓP � ΓN ,ΓE, the po-
larisation appears constant. As a result, the four-dimensional phase-space
(E,Re{P}, Im{P}, N) reduces to two dimensions, and the system evolves on
the slow manifold, where Pn has the form shown in Eq. (2.60) below.

The time-scale magnitude of Pn is one of the first device-specific approxima-
tions introduced in this derivation. The devices studied in this thesis are Class
B devices [88, p. 48], where the polarisation amplitude is well approximated as
constant and the phase is still a fast varying quantity. The polarisation and elec-
tric fields can be expanded using (2.22) and (2.49). I consider the fixed point
solution of the polarisation amplitude:

∂Pn
∂t

= 0 (2.59)

[+i(ω1 − ω0) + ΓP ]P = i
µEn
~

(2N − 1)

Pn = iµEn(2N − 1)
~[+i(ω1 − ω0) + ΓP ]

Pn = iµEn(2N − 1)
~[+i(ω1 − ω0) + ΓP ]

[−i(ω1 − ω0) + ΓP ]
[−i(ω1 − ω0) + ΓP ]

Pn = µEn(2N − 1)
1

[+(ω1 − ω0) + iΓP ]
[(ω1 − ω0)2 + Γ2

P ] (2.60)

Therefore, the imaginary and real parts of P are now:

Im{Pn} = µ(2N − 1)ΓP

~[(ω1 − ω0)2 + Γ2
P ]En (2.61)

Re{Pn} = µ(2N − 1)(ω1 − ω0)
~[(ω1 − ω0)2 + Γ2

P ] En (2.62)

The Lorentzian profile, defined as:

L (ω0 − ω1) = Γ2
P

(ω0 − ω1)2 + Γ2
P

(2.63)
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simplifies the gain and population-induced refractive index change expressions.
The gain and population-induced refractive index change are:

g(N,E1, E2) = µ

~ΓP
(2N − 1)L (ω0 − ω1) (2.64)

δn = µ

~Γ2
P

µ(2N − 1)(ω1 − ω0)L (ω0 − ω1) (2.65)

In this form, it is shown that with the presence of the Lorentzian profile, that
the g and therefore ∂n have a nonlinear dependence on the square of the difference
of the photons energy (ω0 − ω1)2)( up to an additional ~ in the denominator). It
is desirable to derive a relation based upon the amplitudes of the lasing electric
fields (the ζ function introduced earlier). This will be addressed in the next
section. Again, in this form, both g and therefore ∂n can be seen to be related
through the α factor, however these functions have been derived for the case of a
single electron-hole pair.

Ṅ = Λ− ΓNN −
2cµ
εnb

[g(N,E1, E2)|E2
1 |+ g(N,E2, E1)|E2

2 |] (2.66)

Ṅ = Λ− ΓNN −
2cµ
εnb

nb
2c [ĝ(N,E1, E2)|E2

1 |+ ĝ(N,E2, E1)|E2
2 |]

Ṅ = Λ− ΓNN −
µ

ε
[ĝ(N,E1, E2)|E2

1 |+ ĝ(N,E2, E1)|E2
2 |] (2.67)

where ĝ(N,E1, E2) = 2c
nb
g(N,E1, E2).

Next, a rescaling of both N and E is needed to transform the rate equa-
tion model into a more desirable form. Therefore for population inversion n is
introduced in terms of N and NThr (the lasing threshold value of N):

n = N −NThr

2NThr

(2.68)

This can be rewritten as:

(2n+ 1)NThr = N

2ṅNThr = Ṅ (2.69)
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Substituting Eqs. (2.68) and (2.69) into Eq. (2.67) yields:

2NThrṅ = Λ−ΓN(2n+ 1)NThr

− µ

ε
[ĝ((2n+ 1)NThr, E1, E2)|E2

1 |

+ ĝ((2n+ 1)NThr, E2, E1)|E2
2 |]

(2.70)

2NThrṅ = Λ− ΓNNThr−ΓN(2n)

− µ

ε
[ĝ((2n+ 1)NThr, E1, E2)|E2

1 |

+ ĝ((2n+ 1)NThr, E2, E1)|E2
2 |]

(2.71)

At this point in the rescaling, a derivation of ĝ in terms of N,E1 and E2 is
required before any further simplifications can be made.

To accurately describe the behaviour of the many electron-hole pairs with
this approach would require considering a Fermi-Dirac distribution of the entire
volume. Fortunately, it has been shown[16] that the gain peak and population
induced refractive index functions are linear in N around threshold. Therefore,
only an understanding of the gain function’s dependence on E1 and E2 remain.

2.2.2 Non-linear Gain Derivation.

Next a more complete understanding of the material gain function is required. As
presented in Sec.2.2.1 the gain is expected to have a dependence on N and E1, E2.
As stimulated emission depletes electron-hole pairs, with a specific energy, it is
anticipated that nearby electron-hole pairs (that have similar hν) will attempt to
fill in energetically attractive vacancies left behind.

In Fig.2.4 I assume a simple model for gain picture: There exists a single global
carrier population N , which consists of all possible electron-hole pairs in the gain
medium. N is the sum of all electron-hole pair populations Nk with energy gap:
hνk. In this model, for our two-mode devices, there exist two carrier populations
N1 and N2, that contribute to N , but represent the electron-hole pairs that are
predominately responsible for the lasing of their respective modes E1 and E2.
Nn represent the populations of electron-hole pairs that do not (directly) achieve
stimulated emission.

To completely understand the modal gain would require an exceedingly long
and thorough study of Free Carrier Theory[16, Chapter 2]. Therefore I present a
Master Equation Approach of the gain derivation where we consider the transition
of excited electron-hole pairs between three allowable states: N1, N2 and Nn

which are the population sizes of electron-hole pairs in states 1, 2 and n, which
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Nn

E
n

Figure 2.4: Cartoon of material gain due to population inversion of two-mode
laser.

correspond to the two lasing modes (1, 2), and a general population (n) that does
not achieve lasing. Fig. 2.5 shows the allowed transitions of the electron-hole
pairs, namely an electron-hole pair can move from state X to Y with a transition
(coupling) rate TY X if it the transition is favourable. An electron-hole pair in N1

or N2 can also reach the ground state by stimulated emission.
The basis of this model will be a paradigmatic rate equation for the discrete

N populations similar to Eq.(2.71).

Ṅ1 = −(Γ1 + |E2
1 |)N1 − (T21 + Tn1)N1 + T12N2 + T1nNn (2.72)

Ṅ2 = −(Γ2 + |E2
2 |)N2 − (T12 + Tn2)N2 + T21N1 + T2nNn (2.73)

Ṅn = P − ΓnNn + Tn1N1 + Tn2N2 − (T1n + T2n)Nn (2.74)
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1

2 n

T21

Tn1T12

Tn2

T2n

T1n

E2

E1

Figure 2.5: Three discrete states are available with six possible transitions be-
tween them: N1, N2 and N2. Electron-hole pairs can move from state X to Y
with a transition probability TY X . Electron-hole pairs in N1 and N2 also have a
certain lasing rate.

Which can be written in matrix form as:

d

dt


N1

N2

Nn

 =


0
0
P

−


Γ1 + |E1|2 0 0
0 Γ2 + |E2|2 0
0 0 Γn



N1

N2

Nn



+


− (T21 + Tn1) T12 T1n

T21 − (T12 + Tn2) T2n

Tn1 Tn2 − (T1n + T2n)



N1

N2

Nn


(2.75)

Now, a model using a single population N is preferred as it reduces complexity
and uses the idea of a single common electron-hole population. Therefore N1 and
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N2 are removed adiabatically by locating their fixed points in terms of Nn:

 0
0

 =
 0

0

−
 Γ1 + |E1|2 0 0

0 Γ2 + |E2|2 0



N1

N2

Nn



+
 − (T21 + Tn1) T12 T1n

T21 − (T12 + Tn2) T2n



N1

N2

Nn


 0

0

 = −

 Γ1 + |E1|2 0
0 Γ2 + |E2|2

 N1

N2


+
 − (T21 + Tn1) T12

T21 − (T12 + Tn2)

 N1

N2

+
 T1n

T2n

Nn

In the above equation, only terms contributing to Ṅ1 and Ṅ2 have been kept. 0
0

 = −

 Γ1 + |E1|2 + T21 + Tn1 −T12

−T21 Γ2 + |E2|2 + T12 + Tn2

 N1

N2

+
 T1n

T2n

Nn

 Γ1 + |E1|2 + T21 + Tn1 −T12

−T21 Γ2 + |E2|2 + T12 + Tn2

 N1

N2

 =
 T1n

T2n

Nn

(2.76)

Using the usual formula for the inversion of a square matrix with non-zero
determinant:  a b

c d

 = 1
ad− cb

 d −b
−c a


and introducing the short-hands

Q1 = Γ1 + |E1|2 + T21 + Tn1

Q2 = Γ2 + |E2|2 + T12 + Tn2

we have  Q1 −T12

−T21 Q2

−1

= 1
Q1Q2 − T21T12

 Q2 T12

T21 Q1
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and thus  N1

N2

 = 1
Q1Q2 − T21T12

 Q2 T12

T21 Q1

 T1n

T2n

Nn (2.77)

We now assume that the intraband relaxations are much quicker than the inter-
band and stimulated emission, i.e.

T21, T12, Tn1, Tn2 � Γ1,Γ2,Γn, |E1|2 , |E2|2 .

We can obtain this by formally introducing a factor ε as follows

Txy = txy
ε

and then expand our results in first order of ε. We get for

εQ1 = ε
(
Γ1 + |E1|2

)
+ t21 + tn1

εQ2 = ε
(
Γ2 + |E2|2

)
+ t12 + tn2

Then we obtain for the denominator in (2.77)

ε2 [Q1Q2 − T21T12] = εQ1εQ2 − t21t12

=
(
ε
(
Γ1 + |E1|2

)
+ t21 + tn1

) (
ε
(
Γ2 + |E2|2

)
+ t12 + tn2

)
− t21t12

≈ (t21 + tn1) (t12 + tn2)− t21t12

+ε
{

(t21 + tn1)
(
Γ2 + |E2|2

)
+ (t12 + tn2)

(
Γ1 + |E1|2

)}
= (tn1tn2 + t21tn2 + tn1t12)

·

1 + ε
(t21 + tn1)

(
Γ2 + |E2|2

)
+ (t12 + tn2)

(
Γ1 + |E1|2

)
tn1tn2 + t21tn2 + tn1t12


and for (2.77) itself
 N1

N2

 = 1
εQ1εQ2 − t21t12

 εQ2 t12

t21 εQ1

 t1n

t2n

Nn

= 1
εQ1εQ2 − t21t12

 εQ2t1n + t12t2n

t21t1n + εQ1t2n

Nn

= 1
εQ1εQ2 − t21t12

 ε
(
Γ2 + |E2|2

)
t1n + (t12 + tn2) t1n + t12t2n

. . .

Nn
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ε
(
Γ2 + |E2|2

)
t1n + (t12 + tn2) t1n + t12t2n = [(t12 + tn2) t1n + t12t2n]

·
[
1 + ε

(
Γ2 + |E2|2

)
t1n

(t12+tn2)t1n+t12t2n

]
≈ [(t12 + tn2) t1n + t12t2n] 1

1−ε Γ2+|E2|2

t12+tn2+t12
t2n
t1n

N1 = Nn
(t12+tn2)t1n+t12t2n
tn1tn2+t21tn2+tn1t12

· 1[
1+ε (t21+tn1)(Γ2+|E2|2)+(t12+tn2)(Γ1+|E1|2)

tn1tn2+t21tn2+tn1t12

][
1−ε Γ2+|E2|2

t12+tn2+t12
t2n
t1n

]
≈ Nn

(t12+tn2)t1n+t12t2n
tn1tn2+t21tn2+tn1t12

· 1[
1+ε
{

(t21+tn1)(Γ2+|E2|2)+(t12+tn2)(Γ1+|E1|2)
tn1tn2+t21tn2+tn1t12

− Γ2+|E2|2

t12+tn2+t12
t2n
t1n

}]

This is of the desired form

N1 = Nn
c1

1 + ε̂1
(
|E1|2 + β1 |E2|2

) (2.78)

where the relative magnitude of the timescales determine the coefficients
c, ε, β. An identical expression is found for N2:

N2 = Nn
c2

1 + ε̂2
(
|E2|2 + β2 |E1|2

) (2.79)

The expressions in Eqns. (2.78)(2.79) are fixed points of the N1 and N2 pop-
ulations respectively, due to the material gain. Therefore I define the normalised
gain function as:

ĝ(N,Ei, Ej) = Nci
1 + ε(|E2

i |+ β|E2
j |)

(2.80)

Ng(Ei, Ej) = N
ci

1 + ε(|E2
i |+ β|E2

j |)
(2.81)

In this form, it is clear that the N contribution can be factored out, which
will allow further simplification of Eq. (2.71). The hats are dropped from g for
simplification.
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2.2.3 Assembling the pieces

Using eq. 2.80 and the newly rescaled n, Eq (2.71) becomes:

2NThrṅ =Λ− ΓNNThr − ΓN(2n)NThr

− (2n+ 1)NThr
µ

ε
[ĝ(E1, E2)|E2

1 |+ ĝ(E2, E1)|E2
2 |]

(2.82)

ṅ =Λ− ΓNNThr

2NThr

ΓN
ΓN
− ΓN

(2n)NThr

2NThr

− (2n+ 1) NThrΓN
ΓN2NThr

µ

ε
[ĝ(E1, E2)|E2

1 |+ ĝ(E2, E1)|E2
2 |]

(2.83)

ṅ = ΓN [P − n− (2n+ 1) 1
ΓN2

µ

ε
[ĝ(E1, E2)|E2

1 |+ ĝ(E2, E1)|E2
2 |]] (2.84)

where the following variables have been introduced for simplification purposes:

ΛThr = ΓNNThr (2.85)

P = Λ− ΛThr

2ΛThr

(2.86)

(2.87)

In Eq. (2.84), En should now be rescaled by a factor of
√

µ
2εΓN . The system

is normalised such that at P = 0.5(twice ΛThr) corresponds to the two-colour
point, that is both modes of the laser are lasing with equal intensity. Further
suitable rescaling of En and g is performed to absorb the frequency information
in Eq. (2.36), as well with the rescaling of time as

t̂

ΓE
= t (2.88)

Propagating this time rescaling the En equation leads to a multiplicative 1
ΓE

factor. Multiplying both En and Eq. (2.84) by ΓE, and introducing:

Γ = ΓE
ΓN

(2.89)
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produces the desired form of the two-mode semiconductor model.

Ė1 = E1[12(1 + iα){g(E1, E2)(2n+ 1)− 1}] (2.90)

Ė2 = E2[12(1 + iα){g(E2, E1)(2n+ 1)− 1}] (2.91)

T ṅ = P − n− g(E1, E2)(2n+ 1)|E2
1 | − g(E2, E1))(2n+ 1)|E2

2 | (2.92)

Also, phenomenologically, a time-varying electric field is injected into E2 with
the form:

EInj = Ke−iωInjt (2.93)

and the frequency detuning ∆ω is defined as:

∆ω = ωInj − ΩThr (2.94)

are added to the rate equation model.

Ė1 = E1
1
2(1 + iα){g(E1, E2)(2n+ 1)− 1} (2.95)

Ė2 = E2[12(1 + iα){g(E2, E1)(2n+ 1)− 1} − i∆ω] +K (2.96)

T ṅ = P − n− g(E1, E2)(2n+ 1)|E2
1 | − g(E2, E1))(2n+ 1)|E2

2 | (2.97)

Traditionally, since there is a single injection into one mode, it is often useful
to simplify Eqns. (2.95), (2.96), (2.97) as:

∣∣∣Ė1

∣∣∣ = 1
2(g1(2n+ 1)− 1) |E1| (2.98)

Ė2 =
[1
2(1 + iα)(g2(2n+ 1)− 1)− i∆ω

]
E2 +KT (2.99)

T ṅ = P − n− (1 + 2n)
(
g1|E1|2 + g2|E2|2

)
(2.100)

g1/2 =
[
1 + ε

(
|E1/2|2 + β|E2/1|2

)]−1
. Typical parameters for the numerical

simulations (for example of size) are α = 2.6, P = 0.5, T = 800, β = 2/3, and
ε = 0.01. The experimental parameters have been established by previous work
[66, 64].

Previously a rate equation model was derived for a single-mode optically in-
jected semi-conductor laser[97]. In the absence of a second mode (E1 = 0, implies
Ė1 = 0) the cross-saturation terms become 0 so the non-linear gain reduces to 1.
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The system 2.99 reduces to:

d

dt
E = (1 + iα)NE − i∆ωE +K (2.101)

T
d

dt
N = P −N − (2N + 1) |E|2 (2.102)

as derived in [97], which is the well-known rate equation for single mode
semiconductor laser undergoing optical injection.

2.2.4 Discussion of parameters

Among the several parameters used in the multi-mode laser model, are K and ∆ω
which are arguably two of the more important parameters of the system. These
parameters are directly controlled during experiments and have direct physical
counterparts that we can perturb, interfere with and control completely. They
allow us to create a window into the dynamical system of the optically injected
semiconductor window.

2.2.4.1 α: Line width enhancement factor.

The phase-amplitude coupling is introduced through the detaining parameter α,
or line-width enhancement factor. This value of the α factor is representative of
various physical properties of the semiconductor material including the refractive
index.

2.2.4.2 T

T is the ratio of the electric field/carrier relaxation times. Analysing the limiting
case of T → 0 allows the separation of the electric field from the population inver-
sion. This will become important later on when fast-slow dynamics is important.

2.2.4.3 P

The pump parameter P

P = Λ− ΛThr

2ΛThr

(2.103)

can be determined experimentally by measuring the Λthr threshold current
of the semiconductor laser, which is dependant on the temperature of the laser.
This will be examined more thoroughly in Chap 3.
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2.2.4.4 ε: gain compression factor

This quantity controls the non-linear element of the modal-gain. At ε = 0, the
two-mode stability of the running laser does not exist and reduces to the single-
mode system.

For finite ε the non-linear gain allows the model to support the two-mode
stability point in the free running laser (K = 0). An extensive experimental
study has already been carried out in [10, Chap. 3] and stability analysis has
been conducted in[50] on the appropriate values of β for the cross saturation
effect.
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2.3 Bifurcations and dynamical phenomena

In the previous sections much emphasis was placed on the physics behind the
behaviour of electron-hole pairs, population inversion and lasing in the semicon-
ductor laser. Having motivated a system of differential equations to model the
dynamical evolution of optically injected semiconductor laser, it is now appropri-
ate to consider more rigorously the mathematical properties of these equations.

Let us therefore begin with an informal discussion of Eq. (2.100), which
describes the time-evolution of the normalised population inversion. As this is
a population evolution, one can expect certain (mathematical) similarities be-
tween our inversion population and other modelled populations, some of which
are described below.

Ṅ = N2 − 1 (2.104)

Eq (2.104) is a simplified equation that represents the flow of a population
in time. This is a first-order (first time-derivative equation), non-linear (N2

term is non-linear) equation. The explicit time-dependence of the system has
been removed(no t present in the equation) and therefore the system is called
autonomous, as time is now considered as a separate variable.

4 2 0 2 4
N

2

0

2

Ṅ

Ṅ

Figure 2.6: Black arrows denote direction of flow of system, red circles denote
fixed points of the system.
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Figure 2.7: Shown are various trajectories of N , depending on initial conditions.
The legend on the right states the initial condition for each trajectory.

In the study on non-linear differential equations, graphical aids, such as phase
portraits are easier to consider that equations alone. Therefore I use Fig. 2.6,
which depicts the phase portrait of our 1-dimensional system. In this diagram, it
is imagined that our N flows along the real line with some velocity Ṅ . The arrows
denote the direction of the velocity. It is observed that the velocity (indicated in
blue), passes through zero twice. In this set-up, the flow has both positive and
negative velocities along the real line. The flow is said to be to the right while
Ṅ > 0 , and to the left when Ṅ < 0. When Ṅ = 0, there is no velocity of the
flow, and the population size does not change in time. This is called a fixed point.
In Fig. 2.6, there are two such points, indicated with red circles (denoted as N∗−

and N∗+, for the fixed points occurring at N = −1 and N = +1 respectively).
However these fixed points have different stability, and their stability is perhaps
best understood with reference to Fig 2.7. In Fig. 2.7 a number of trajectories
are shown for various initial N .

The first observation made should be that trajectories near N∗− are attracted
to the same trajectory asN∗− in finite time. In contrast, a trajectory starting very
close to N∗+ is repelling and the nearby trajectory moves away quickly without
return. This concept of attractiveness, where we consider time as t → ∞, is
called Lyapunov stable[84, p.129], if all trajectories starting sufficiently close to
N∗− remain close to N∗− for all time. By the opposite argument, N∗+ is called
unstable, as nearby trajectories do not remain close by for all times.
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I(N0)

˙
I(
N

0
)

a)

I(N0)

b)

I(N0)

c)

Figure 2.8: Phase portrait for İ vs. I. a) N0 < k
G

b) N0 = k
G

and c) N0 >
k
G
. Physically, a negative intensity (number of photons) is meaningless, but is

included hear to account for the stability exchange as N0 is varied. The fixed
points are marked with circles and their stability is noted with a solid red (stable),
empty circle (unstable) or half-stable (half-fill).

2.3.1 Transcritical Bifurcation

Let us now consider a more complicated equation. In the laser system, there are
other time-varying quantities to consider. Our model has been normalised such
that the population inversion occurs at N = 0. For the sake of generality, let us
assume an unnormalised rate equation for I (photon intensity, E =

√
I)and N :

İ = Gain− Loss

= GIN − kI (2.105)

and

N(t) = N0 − αI (2.106)

Substituting Eq. (2.106) into (2.105) yields a first order equation which can
be analysed graphically.

İ = (GN0 − k)I − (αG)I2 (2.107)

Previously, Eq. (2.104) had two fixed points defined as ±1. While Eq. (2.107)
also has two fixed points: I = 0 and I = GN0−k

aG
, one of which depends on non-

specified constants. This leads us to three separate phase portraits for Eq (2.107)
which depend on N0.

Depending on the value of N0, three different scenarios arise. For N0 <
k
G
,

the phase portrait says the non-trivial fixed point is negative and unstable. For
N0 = k

G
, the system has a two-fixed points at 0 and c) N0 >

k
G

shows that the
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0 k/G
N0

1.0

0.5

0.0

0.5

1.0

I

Lamp

Laser

Figure 2.9: [84, p.55]For N0 <
k
G
, the emitted photons behave like a lamp with

a zero average intensity. At Nc, the stable fixed point becomes non-zero due to
the transcritical bifurcation. The arrows indicate the flow of the system, which
is ’attracted’ towards stable points. When a qualitative change occurs due to a
variation of the control parameter, a bifurcation is said to have occurred.

non-trivial fixed point is now positive and stable, while the zero fixed point is now
unstable (previously stable). The conclusion drawn here should be that our phase
portrait is parameter dependant, and that when certain parameters conditions
are satisfied a transition between phase portrait scenarios occurs. A qualitative
change in a dynamics of a phase portrait is called a bifurcation and occurs when a
bifurcation parameter (N0 for the current model), passes through a critical point
(N0 = k

G
). In the case here, the bifurcation resulted in an exchange of stability

when the fixed points collided.
The stability exchange is due to Transcritical Bifurcation as the control pa-

rameter N0 passes through a critical value: Nc = k
G
. In Fig 2.8(b), the exchange

of stability occurs when the unstable and stable fixed points collide at N0 = Nc,
to form a half-stable point, and then separate (with different stabilities) as N0 is
changed further.

Fig. 2.9 depicts the stability and magnitude of fixed points of I.
The stable fixed point grows linearly with the population inversion and it

should now be apparent that Nc is in fact the lasing threshold NThr. The trans-
critical bifurcation does not change the number of fixed points in a system (outside
of the critical value of NThr) but allows fixed points to collide and exchange sta-
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bility. The stability of a fixed point can change at Nc. The normal form of the
transcritical bifurcation is

ẋ = rx− x2 (2.108)

2.3.2 Pitchfork Bifurcation

2.3.2.1 Supercritical

The next simple bifurcation arises from considering the magnitude of the E field.
Using E =

√
I and Eqn (2.107):

E =
√
I = I

1
2

Ė = 1
2I
− 1

2 İ

Ė = 1
2I 1

2
İ

Ė = 1
2E İ

= 1
2E{(GN0 − k)− aGE2} (2.109)

which is the supercritical pitchfork bifurcation and has the normal-form:

Ė = E(r − E2) (2.110)

and r = GN0−k
aG

. Fig 2.10 depicts the fixed points of Ė as r is varied. For
r <= 0 the system has only the (stable) fixed point at zero. This is consistent
with the dynamics described in Sec: 2.3.1, namely that below Nc (and r <= 0)
the laser acts as lamp with no organised stimulated emission of photons. Unlike
the transcritical bifurcation, fixed points can be created (or annihilated). This is
precisely what happens for the pitchfork bifurcation. When r > 0, N0 >

k
G

and
the stable fixed point at zero breaks up to form an unstable fixed point at zero,
and two stable fixed points that vary as E(N0) = ±

√
GN0−k
aG

2.3.2.2 Subcritical

In Sec. 2.3.2.2, the normal form of the supercrtical pitchfork bifurcation has a
negative cubic term. This acts as a restoring force that pulls E back towards
0. However if we change the sign of the cubic term in Eq. (2.110) we obtain the
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Figure 2.10: Phase portrait with fixed points (and their stability indicated using
the standard notation) as the control parameter r is varied: a) r < 0 b)r = 0 and
c) r > 0 respectively.
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Figure 2.11: Bifurcation diagram for the pitchfork bifurcation. At r = rc = 0
(critical value of r, and is zero in the normalised form) a pitchfork bifurcation oc-
curs and two stable non-zero fixed points occur. The previously stable fixed point
at 0 is now unstable. The arrows indicate the flow of system and a qualitative
change occurs at rc indicating the bifurcation has occurred.
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Figure 2.12: Phase portrait with fixed points (and their stability indicated using
the standard notation) as the control parameter r is varied: a) r < 0 b)r = 0 and
c) r > 0 respectively.

subcritical pitchfork bifurcation which has the normal-form:

Ė = E(r + E2) (2.111)

Examining phase portraits of Eq. (2.111) in Fig. 2.12 show that the stability
of the fixed points have changed. As a result, changing the sign of the cubic term
means the system has undergone a bifurcation as there is a qualitative change in
the system’s phase portraits.

The bifurcation scenarios discussed here, and many more, exist in the multi-
mode laser device. More of these will appear in later chapters as experimental
observations (such as a Hopf bifurcation and period doubling bifurcation). The
undergraduate book by Strogatz[84] provides a full course on non-linear dynamics
with examples in lasers, physics, biology and engineering.
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2.4 Literature Review

The subject matter of this thesis is an extensive study into optically injected
multi mode semiconductor lasers. This requires investigating the existing theo-
retical treatments of optically injected lasers and previous mapping techniques
used to analyse experimental time-series. The existing literature in this field is
quite extensive and therefore this section is merely a summary of existing work to
place this thesis in the correct scope based upon the research goals undertaken.
For this reason the literature will be divided into three sections: theoretical mod-
els, experimental mapping techniques and rogue wave dynamics. The first two
subsections refer to the treatments undertaken (theoretically and experimentally)
previously (with a brief summary/comparison of their suitability to this thesis)
and the the third section refers to the works already done in the area of identifying
and the studying optical rogue wave phenomena.

2.4.1 Theoretical Models

Many theoretical approaches have been taken in order to capture the intricate
and complex behaviour of semiconductor laser. With each modelling decision,
typically one aspect or characteristic of the underlying structure is chosen of-
ten at the expense of another. A careful balancing act of approximations and
assumptions are made based on a desirable form of equations, simplification of
parameters based on empirical experimental knowledge. For example, in White
et al. [92], a Travelling Wave Model (TWM) approach is taken to a model an
optically injected two-mode semiconductor laser and has shown good agreement
with experiment. The model is presented in the form of a second order Partial
Differential Equation (PDE) for the forward and backward fields. The model
captures important dynamical properties including mode hopping and boundary
conditions are used to select the contributing modes. The TWM are successfully
applied in homogeneous and periodically modulated cavities. However TWM can
be problematic in the case of more complicated devices with aperiodic reflective
features in the cavity. In the case of the lasers utilised in this thesis, this approach
therefore is not suitable as each slot would contribute a new source of reflection
and the system of equations would then grow enormously. Additionally, trav-
elling wave models are not easily amenable to the tools of non-linear dynamics
such as bifurcation analysis and numerical continuation. Therefore, a spatially
independent rate equation model subject to external optical injection is preferred.

When considering the existing contributions to optically injected semicon-
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ductor lasers using rate-equation models, significant work has been done in both
single-mode and two-mode lasers. Some of the early work is described here briefly.
Moving beyond the model characteristics, Solari et al.[81] made leading efforts to
develop the initial bifurcation diagrams of the optically injected laser. In Solari
et al. [81] they utilise bifurcation theory to establish the existence of fixed points,
periodic orbits and tori and confirm their results with computer simulations of the
rate equation model. They introduce flow pattern diagrams which are parameter
dependent and discuss the importance of the detuning between the cavity and
atomic frequencies.

In Wieczorek et al. [93], the results go further and they describe the vari-
ous regions bounded by bifurcation lines detected using nonlinear tools. These
lines included Saddle-Node, Hopf, Period-Doubling, Saddle-Node of limit cycles
and Torus bifurcations. Simulations were performed on a three dimensional rate-
equation model subject to optical injection, for various linewidth enhancement
factors (α) values. Their results culminated in the the first global stability dia-
grams. Previous to this, only partial diagrams or small parameter region map-
pings were available. The persistence of the bifurcation lines under parameter
changes demonstrates the robustness of bifurcation analysis. Their work was
mostly involved with single mode optically injected lasers, but it is an aim of this
thesis to extend this work to two-mode lasers.

Moving to two-mode rate-equation laser models, Kawaguchi et al. [40] employs
a two-mode rate equation model without optical injection and focuses on the the
existence (and stability) of a two-mode equilibrium region (often referred to as
a two-colour point). It is shown that the stability of the two-colour point is
dependent on the self and cross saturation terms, which are in turn affected by
the separation of the two primary modes. For our model, the parameter of the
self and cross saturation terms were chosen to yield a stable two-colour point with
equal intensities in the free-running laser. Similar to our model, Kawaguchi also
uses a single shared population inversion for the two Transverse Electric (TE) and
Transverse Magnetic (TM) modes present. The modal competition is modelled
in Kawaguchi et al. [40] by including the field intensities in the numerator of
the non-linear gain. Both models agree in the first order of the nonlinearality
parameter ε. However, Kawaguchi does not include an optical injection term
which is necessary for this this thesis.

In Simpson et al. [79] a DFB laser with optical injection is studied. While
the free running laser is almost perfectly single mode, it is shown that through
optical injection side modes (at a distance of the relaxation oscillation frequency)
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side can have significant magnitudes. The effect can be modelled on the basis of
a multi-mode rate equation model, where the additional mode is closely coupled
with the primary mode. This is different to our model where the two primary
lasing modes coexist in the free running case. Also the close coupling in Simpson
et al. [79] does not allow for a straightforward expansion to lasers with a higher
number of lasing modes. This renders this model unusable for our setup.

In an effort to describe the behaviour of an optically injected VCSEL Gatare et
al. [30] utilises a model with two modes corresponding to x and y polarisations (of
the fields) and two carrier variables. This yields a complex six dimensional model.
They were successful in capturing many of the expected bifurcation scenarios that
exist in the VCSEL system. Both modes are mutually coupled in both phase and
amplitude. The structure of this model is similar to ours if the second carrier
variable vanishes, however there is a direct dependence of the amplitude of each
polarisation mode with each other. This explicit cross-dependence does not allow
for an easy extension to a higher number of lasing modes.

Krstic et al. [46] investigates a multimode Fabry-Pérot (FP) laser with optical
injection. In their setup optical injection occurs into the side mode and the form
of their model is similar to ours with a low-dimensional rate equation model,
albeit they have a linear gain dependence on the lasing photon density. Their
comparison of results are quite promising as they demonstrate numerically and
experimentally the presence of a bistability in laser devices. However, a larger
comparison of theory and experiment is needed in the form of a full parameter
sweep and dynamical feature mapping for our edge-emitting device.

Finally, in Ogita et al. [62] a similar approach was introduced for lasers with
a large number of longitudinal modes. Their model is a low-dimensional (n + 1
equations for n lasing modes) rate equation model with a unified population in-
version and is explored specifically for a two-mode and twenty-one mode laser.
The experimental and theoretical comparisons consider transient dynamics en-
tirely and external optical injection is not utilised or modelled. The lack of optical
injection places a limit on their model, however it has a similar form to our model
(up to the missing optical injection). Furthermore, they do not generate stability
maps of bifurcation analysis for the either of the multi-mode laser configurations.

From analysis of the existing literature, the model presented in this thesis has
been shown to be previously useful in both single-mode and multi-mode devices.
However there are still contributions that can be made using this model, one such
example is the extended stability and bifurcation mapping of two-mode optically
injected lasers. While the literary review is not intended as a place to judge
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relevant work on scale of best-to-worst, it does allow for brief overview of the
existing research to adequately place this thesis in the scope of existing work and
highlight the differences and most importantly the contributions to science.

2.4.2 Experimental Mapping Techniques

Given access to both a powerful theoretical model and a optically injected semi-
conductor device, experiment-theory comparisons are a natural development. For
an optically injected laser there are two natural (and easy) parameters to vary: K
and ∆ω (the injection strength and detuning from the free running laser respec-
tively). In this thesis, a dynamical systems mapping technique was developed for
two-mode optically injected lasers. This technique is introduced in a way which
is scalable for lasers with a larger number of lasing modes. With this technique
the complete two-mode equilibrium (locked injected mode and free-running unin-
jected mode) was mapped out for positive detuning. To the best of the author’s
knowledge this is the first experimental confirmation of this dynamical region.
Previous work in this area were focused on single-mode lasers predominately, or
their dynamical mapping techniques were not easily extendable to semiconductor
lasers with a larger number of lasing modes. A selection of mapping techniques
are discussed below. In Eriksson et al. [21, 20], a single-mode optically injected
semiconductor laser (with multiple quantum wells) is studied in a master-slave
approach. They discuss briefly the previous successes of using a master-slave con-
figuration for optically injected lasers. This includes detecting many elements of
nonlinear dynamical systems in physical systems, such as period doubling routes
to chaos. For the optical injection they have chosen to vary the optical intensity
and frequency separation from the free running state. In both papers they present
experimental stability diagrams (for various laser current values in [20]) however
it is always a laser operating in a single-mode regime. Additionally, there is no
theoretical stability map generated for comparison.

Simpson et al. [79] and Wieczorek et al. [98] performed a complete theoret-
ical and experimental analysis of the single-mode laser. In their work a low-
dimensional rate equation model was used to model the expected laser behaviour
and was overlaid across the experimental results. The experimental results here
were in fact the first experimental stability diagrams (obtained from the optical
spectra) and demonstrated strong agreement with the theory.

Ideally, for a multi-mode laser the mapping technique should be reasonably
fast, automatic and scalable according to the number of modes lasing in a laser.
Therefore we consider a few automatic mapping techniques in the literature. In
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Toomey et al. [87] automated algorithms were produced to determine the various
boundaries between dynamical regimes of optically injected VCSELs. However
they do not expand on the details of their algorithms but describe the quantities
used for dynamical classification such as peak-to-peak amplitudes and mean in-
tensity. These quantities can be used for classifying lasers with a higher number
of modes with algorithms.

In their later work, Toomey et al. [85] introduce a more complicated dynami-
cal classification system using permutation-entropy for mapping a semiconductor
laser subject with optical feedback. Their two-dimensional parameter maps are
then presented in terms of injection current vs feedback (Acousto-optic modula-
tor transmission). This presents a technique formed to characterise the unpre-
dictability of the system (chaos) but possible not all other dynamical regimes
of the system. For our system, we desire a complete dynamical regime identi-
fication for a multi-mode device. In an effort to form a completely automated
correlation tool for an optically injected semiconductor laser, Toomey et al. [86]
describe their automatic correlation algorithm which utilises time-series informa-
tion in the two-dimensional K-∆ω plane. The optical injection occurs from a
similar semiconductor laser in a master-slave setup. The entire setup, although
described for a single-mode laser can be extended to multi-mode lasers, where a
complete complex dynamical behaviour identifier can be formed using time-series
information from all of the recorded modes. This is the motivation behind our
experimental setup and mapping technique.

2.4.3 Optical Rogue Waves

With a long and exhaustive history of study, one could perhaps consider the
single-mode optically injected laser as well understood; however, recently Bonatto
et al. [8] and Zamora et al. [101] have identified rare, large amplitude excursions in
(single-mode) semiconductor lasers which have yet to be satisfactorily explained.
These phenomena have been labelled Rogue Waves (RW) and their name orig-
inally comes from the oceanographic problem of rare, random large amplitude
events that ’appear and disappear randomly without a trace’ [3]. In [8, 72] it
has been shown that the large amplitude events are predicted by a rate equation
model and also have been experimentally observed. In Chap. 4 it is shown that
the rate equation model in [8, 72] is equivalent with the model used in this thesis
under a re-scaling.

The relationships between noise and the mean-time between RW events has
been discussed in [72] and it was established that noise can be used to either en-
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hance or suppress the occurrence of RM events. Experimental time-series and bi-
furcation diagrams are generated for their optically injected VCSEL that demon-
strate experimentally the existence of rare, large amplitude events. They generate
Lyapunov exponents diagrams and overlay locations where RW events have been
detected in simulated time-traces. Predominately the RW events occur in chaotic
regimes. Given that RW events are expected to be random, an investigation into
the randomness of the RW events is presented in this thesis and the mean-time
between events could be explored as a function of K − ∆ω. This could yield
a clearer understanding into what happens near or at the chaotic boundaries.
Additionally, there are histogram plots presented that show a distinct gap in the
amplitude spectrum of the local maxima of the fields. It is not clear if this is
just a result of the length of the time-trace taken and may in-fact be filled if the
time trace was run for longer (In [8] it is stated that they ’cannot exclude the
existence of physical mechanisms that result in a nearly forbidden “gap”’).

In Perrone et al. [72] and Ahuja et al. [2] the dependence on current mod-
ulation and phase modulation are explored and are shown to have a complex
relationship with RW occurrence. In both of these papers, the role of direct cur-
rent modulation and modulation phase are studied in an attempt to enhance or
suppress RW events. A strong analytical approach is still needed to understand
the origins of such events.

In Zamora et al. [101] it is demonstrated that RW events can be predicted
several ns in advance. They also investigate the contribution of the fixed points
(saddle and unstable foci) in the generation of RW events. It is noted that on
the path to a RW event the system travels very close to the stable manifold of
the saddle-focus. This merits further study and an analytical investigation is
desirable to determine the causes and requirements of a RW event. In this thesis,
surface plots are generated in an attempt to explain the origin and path of the
RW event, these are referred to as the ’chimney’ and ’spike’ plots in Ch. 4. A
path leading to the onset of a RW is discovered through the chimney and spike
structures, but the mechanism that forces the laser onto this path is still not fully
understood. Also the rarity and randomness are RW’s are understandable given
the narrow window for RW’s close to the origin and the difficulties associated
with staying close to the origin. An analytic solution for the path of the RW
near the upper unstable focus is sought by revisiting the spike structure and it
is shown that the RW diverges from that saddle-node trajectory. Based on the
literature examined above, Ch. 4 contributes in furthering the knowledge of RW
events through identifying a window through which a RW can be generated, but
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the origins of the RW event remain elusive.
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Chapter 3

Dynamical classification of
optically injected lasers

Abstract

We present a reliable and fast technique to experimentally categorise the dynam-
ical state of optically injected two mode and single mode lasers. Based on the
experimentally obtained time-traces locked, unlocked and chaotic states are dis-
tinguished for varying injection strength and detuning. For the two mode laser,
the resulting experimental stability diagram provides a map of the various single
mode and two mode regimes and the transitions between them. This stability dia-
gram is in strong agreement with the theoretical predictions from low-dimensional
dynamical models for two mode lasers. We also apply our method to the single
mode laser and retain the close agreement between theory and experiment.
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3.1 Motivation

In the previous chapter, devotion was given to motivating the rate equation model
for the optically injected two mode laser. It has been previously shown that this
model reveals a wealth of dynamical behaviour[67, 63]. As the ultimate ambition
in developing a mathematical model is in the application, a comparison is sought
with the experimentally observed behaviour of the optically injected laser.

In this chapter, the method and results of the experimental investigation into
a two-mode and single-mode laser are presented. These particular devices, while
unique in design, are excellent examples of typical optically injected semiconduc-
tor lasers.

In [61, 60] a Fabry-Perot inspired multi-mode semiconductor laser was de-
veloped to generate stable two-mode operation in a free-running semiconductor
laser. This device was developed in conjunction with Eblana Photonics, and the
separation between lasing modes was shown to be tunable over a large range of
frequencies. Traditional methods of optically synthesising these frequency ranges
involve mixing the outputs of two single mode semiconductor lasers [56]. While
this is a simple and easily implemented approach, it presents unavoidable draw-
backs. As the output of the source lasers are uncorrelated, a broadening of the
frequency difference line-width occurs. Several techniques, including an optical
phase locked loop feedback mechanism, can be employed to improve the line-
width resolution. However this adds to the complexity of the experiment[83, 26].

Other methods of optically generating these wavelengths include external cav-
ity lasers[70] and compound cavity designs[100, 43]. However, the devices studied
here are prototypes which do not utilise external or compound cavities. The key
aspect of these devices is a spatially varying refractive index profile, which is op-
timised according to the desired spectral output of the laser. The design of these
lasers is not part of this thesis and therefore will not be included here. More-
over, the underlying mechanism of laser design is often of secondary importance
compared to its operation and behaviour. Therefore, a simple method of device
characterisation is sought based upon an intuitive control parameter variation.
In the case of the optically injected laser, the natural control parameters are the
∆ω and K (the injection detuning and strength as defined in Chap. 2). As these
parameters are varied, the dynamics of the injected laser will vary accordingly. It
is expected, based on past experimental single-point measurements, and theoret-
ical mapping, that different regions of dynamical behaviour are present in these
devices. In mathematics, a bifurcation (Sec. 2.3) is used to denote a change in the
phase portrait of a system when some condition has been met. This quantitative
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change can be seen as the change in the number of fixed points in the system,
or a change in the stability of a fixed point. Experimentally (and numerically)
systems will only follow the stable solution. Therefore, our characterisation tech-
nique will rely on recording the system as it tends towards a stable solution, and
the interpretation of changes in stability of the laser, as a function of K and ∆ω.
The regions of different dynamics will then be identified according to a stability
measurement performed over a 2-D parameter mapping of K and ∆ω.

3.2 Introduction

The experimental acquisition of a two-dimensional stability diagram therefore
involves characterising the optical output of the laser for varying K and ∆ω [29,
79].

Here we demonstrate an experimental technique, which uses a fast (i.e. within
10µs) modulation of the injection strength K for fixed ∆ω and simultaneously
record the time trace of the optical output. This allows for a characterisation
of the dynamical state for varying injection strength with high accuracy. The
procedure is then repeated for varying values of ∆ω. Therefore a complete sweep
of the overall K-∆ω plane is completed.

The impact of this method is demonstrated for Two Mode and Single Mode
lasers. The resulting experimental stability diagrams show parameter regions of
different dynamical behaviour in excellent agreement with theoretical rate equa-
tion models [97, 65, 64].

The main results in this chapter were previously published in Optics
Express[68]. This chapter is divided into the following sections:

Sections 3.3 to 3.4 explain the experimental technique, Section 3.5 and 3.6
describes the routines derived to characterise the dynamical behaviour of the
laser, and to classify a state as on, off, locked, unlocked or some combination
thereof. Section 3.6 then presents the complete experimental K-∆ω stability dia-
gram and discusses the accuracy of the experimental results with their numerical
counterparts. Finally, Sec. 3.10 includes some previously unpublished results on
bi-stability measurements.

3.3 Outline of experiment

Fig. 3.1 depicts the setup for the experiment. The master laser (injecting laser),
is a low line-width, wavelength tunable coherent light source that operates in the
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Figure 3.1: Diagram of Experiment:

1550 nm range, with a maximum power output of 4.2PW and the slave-laser is
a two-mode semiconductor laser[63, 59] (The method here is explained for the
two-mode laser, but is easily adapted for the single-mode laser.).

The detuning of the master laser (∆ω) is increased incrementally with a step
size of the order of 0.001nm and is controlled via a mechanical apparatus inside the
master laser device. The modulation ofK is performed via an electrical sinusoidal
signal (100kHz) acting on a photo-crystal. Therefore, as K is a smoothly varying
experimental parameter the decision was made to fix ∆ω while K is modulated.
The polarisation controller was a Thor-Labs FPC030device in which the optical
fibre went through an azimuthal twisting to induce a polarisation change in the
wave travelling along the optical fibre. The polarisation is adjusted in two places
in the optical circuit: 1) Immediately before the injected light is coupled with
a 100kHz sinusoidal wave generated by a photonic crystal, and 2) immediately
before the injected light leaves the optical fibre (and immediately after passing
through a 90: 10 beam splitter) and enters the free space section of the circuit.

The polarisation is adjusted in the first instance to ensure maximum coupling
of the 100kHz signal with the injected light, and in the second instance to ensure
that the modulated injected wave has maximum interaction with the slave laser
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Figure 3.2: Optical Spectra of (a) Single-Mode and (b) Two-Mode laser

output in the free-space optics (this second adjustment also accounts for any
change in polarisation due to a change in medium when going from glass to air).

The ideal polarisation is set by ensuring that an amplitude locking can be
achieved with an optical injection at −8GHz. This detuning was chosen for
several reasons: the majority of the dynamics that are of interest exists above
−8GHz, and the limiting bandwidth of our photo-detector is 8GHz. Once am-
plitude locking can be obtained at this point, locking can be attained at lower
detunings where possible.

Once the polarisation is set, it remains constant for the entirety of the exper-
iment (up to a significant change in laboratory conditions). The apparatus was
isolated from air conditioning and secured on an anti-vibration table to ensure
stable laboratory conditions.

10% of the modulated injected light is recorded directly via a photo-diode for
reference. The remaining 90% of light is then injected into the optical output of
the slave laser. The beam is divided by a standard 90: 10 beam-splitter.

The slave laser is temperature stabilised to within ±1mK (using a Peltier
cooler). The spectral output of the free-running (no injection) slave laser at a
temperature of 21.7◦ and twice threshold is shown in Fig 3.2. The temperature
dependence of the threshold current and the two-colour point are measured in
the next section, as part of the pre-experiment setup measurements.
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3.3.1 Measuring Threshold and Temperature Selection

The lasing threshold corresponds to the lowest current at which the output of
the laser is dominated by stimulated emission (rather than spontaneous emis-
sion). This occurs above the transparency current which signifies the onset of
a population inversion. The threshold current JThr (which is the experimental
counterpart of the dimensionless inversion ΛThr) is easily measured experimen-
tally for a range of temperature values. The semiconductor laser is expected to
operate in a room-temperature environment and will experience a temperature
increase due to Joule heating from the electrical pumping. Therefore the stan-
dard operating temperature range should be of the order 20− 24◦C. The pump
current J is slowly increased in mA until a considerable amplitude is achieved
by one of the primary modes, as depicted in Fig. 3.2. The onset of lasing occurs
when the threshold current, JThr, is passed. In terms of experimental quantities
the normalised pump parameter from equation (2.103) is given by

P = J − JThr
2JThr

. (3.1)

For the two-mode laser, the pump current is increased until the second mode
achieves an equal magnitude in the optical spectrum. In Fig. 3.2 (bottom panel),
it is observed that both modes lase with an equal intensity of −20dB (log scale),
and therefore we are satisfied that the intensities are equal. The value of pump
current in this situation is the two-colour point (J2C).

The quantities J2C and JThr are now explored as functions of temperature.
Fig. 3.3 shows the data points recorded for the JThr in red, and J2C in black. The
temperature was increased in steps of 0.5◦C and the system was allowed to relax
before recording the new current values. A line of best fit is applied to both data
points and depicts a strong linear relation between J2C , JThr and temperature.
Using Eq. 2.103 the normalised pump parameter P can be calculated, and is
depicted in Fig. 3.4.

A normalised P is desired, such that the laser operates at the two-colour point
and is well above the threshold current, JThr. For convenience J2C is set to be
twice JThr. Using Eq. 2.103, P is therefore set to be 0.5. In Fig 3.4, the red dot
indicates the interception of P = 0.5 with the line of best fit. The red dashed line
marks the corresponding temperature required which is shown to be 21.75◦C.
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Figure 3.3: Threshold Current (Blue) and Two-Colour Point Current (Green)
measured as the temperature is varied. The measurements were taken over the
course of a day, providing the semiconductor laser ample time to stabilise after a
temperature change.
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Figure 3.4: Plot of P versus temperature. The dashed line indicates how the
temperature was selected to ensure a P value of 0.5.
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3.3.2 Free Space Optics

During the set-up of the experiment, the optimal orientation of the free space
optics is found by passing a reference beam through the plane of the slave/filter
and connecting the beam received at the filter to the photo-detector.

The fine and coarse controls on the mounts are adjusted so that a maximum
power of light is recorded on the photo-detector. Finally the reference beam is sent
along the path of the injected light, which intersects the plane of the slave/filter
at the beam splitter. Only the fine and coarse controls on the mount for the
mount with the reference beam are adjusted (beam-splitter and master/slave are
no longer adjusted) until a maximum light power is measured again on the photo-
detector. The maximum power obtained was of the order of 300µW (this is later
seen to be sufficient to achieve locking). The fine-tune controls are not modified
during the course of the experiment.

The optical output of the slave laser consisted of two primary modes (in the
two-mode laser, only one lasing mode was present in the single-mode laser) and
the output is filtered such that the data from one optical mode was recorded at
a time.

3.3.3 Measuring Detuning

Having set up the experiment as described, a LabView program automates the
data collection. The wavelength ranges were determined in advance of the exper-
iment. To begin, a low strength optical injection is injected into the slave laser.
This is used as a reference beam, as the low strength injection is detectable as a
additional peak in the Fast Fourier Transform (FFT)[17] of the optical time-trace,
but is sufficiently small that the underlying laser dynamics are not perturbed by
the injection. The Table 3.1 below lists the detuning values.
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Table 3.1: Table listing frequency detuning (GHz) and the corresponding wave-
lengths (nm) of the master laser.

Detuning List
Freq (GHz) Wavelength (nm)
-10 1546.542
-8 1546.524
-6 1546.516
-4 1546.497
-2 1546.479
0 1546.470
2 1546.464
4 1546.456
6 1546.448
8 1546.340
10 1546.382

3.4 Data Collection and Inspection

Beginning with an modulated optical injection at 1546.542nm, the optical output
of the master laser (K) is modulated with 100kHz, and injected into the slave
laser. The output of the slave laser is passed through a filter where only the
injected mode is allowed through. The injected mode optical data is then recorded
on an oscilloscope (via a photo-diode of 8GHz bandwidth) with a time-step
resolution of 5× 10−11s.

The wavelength is stepped through with a step size δλ of 0.001nm and the
optical output of the slave laser is recorded again. This process is repeated until
the wavelength of the master laser reaches 1546.382nm.

The filter is then adjusted to allow only the uninjected mode of the slave laser
through. Then the experiment is repeated, but this time the output from the
uninjected mode of the slave laser is recorded.

Once all time-series recording has taken place, the optical output of the slave
laser (with no filter) is then connected to a power-spectrum analyser to ensure
mode locking is still attained at −8GHz. This check is also performed before
adjusting the filter.

Having collected the data for the K-∆ω parameter space, we now proceed to
identify the dynamical features of the time traces. In Fig.3.5(a) the recorded K2

(10% of injection via 90: 10 beam-splitter) is shown above the time-trace recorded
at +2.7GHz detuning. Depicted here are almost three full periods of K and a
correlation between the injected K2 and |E|2 (Fig.3.5(c)) is clearly evident. Some
broadening of the sinusoidal wave ofK2 is also evident at the minima and maxima
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Figure 3.5: a) RecordedK2 (injection strength) with fitted sine curve (white). b)
FittedK. c) Sample time-trace at +2.7GHz detuning. The red and green vertical
lines indicate the locations of the local maxima and minima of K respectively.

of K2. This is due to setting the amplitude of the sine wave, which is biased at
zero. The max/min of the sine wave are hitting the limits of the modulator.
Setting the modulator any higher would result in ’inverted’ sine waves at the
max/min and any lower would lessen the K2 range explored. This broadening of
the injected signal adds partially to an error in fitting a sine function to K2 and
it will be shown soon that this is a very small error.

Having automatically found the turning points in K, the time-traces split
up according to upward and downward sweeps in K. Fig 3.6 demonstrates the
splitting of the time-traces.

In Fig. 3.6(a) and (d) the plateaus at the upper and lower limits of K2 are
clearly evident. Later the plots will be cut to exclude the plateau regions as a
constant K2 will add no new information.
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Figure 3.6: a) - c): Experimentally recorded K2, fitted K and experimentally
recorded |E|2 for the first upward sweep in K2.d) - f): Experimentally recorded
K2, fitted K and experimentally recorded |E|2 for the first downward sweep in
K2.

3.4.1 Mean and Standard Deviation Thresholds

From here onwards, optical time-trace will be plotted against K instead of time,
as K is varied in time and E changes correspondingly. To begin the dynamical
regime identification, the various dynamical properties at each K − ∆ω point
need to be identified. The mean and standard deviation of the optical intensities
are arguably the most easily obtained quantities, therefore we determine them
for the full K-∆ω plane. The time-trace was split into segments of 500 points
(2nns) and over this interval K was assumed to be approximately constant.

This is shown in the top row plots of Fig. 3.7. The top left panel shows that
the injected mode is lasing (red) for large regions of the parameter regime, and
non-lasing for a blue region between 0 and 6GHz detuning at low K values and
a second blue region below -5 GHz.

By comparing with the top right hand panel of Fig. 3.7, we observe that the
uninjected mode and injected mode appear to have some conservation of total
intensity. It can be seen that outside of the TME state, only one of the modes
is lasing with a large mean at a time. For example, it is shown that when the
uninjected mode is at it’s lowest intensiy (off) the injected mode is at a maximum
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value. Conversly, when the uninjected mode has a large average intensity, the
injected mode is low (but never off). There also exist regions where both modes
lase with intermediate mean values. This alludes to a conservation of total optical
output.

In addition we also observe regions where both modes have intermediate in-
tensities (yellow, green and light blue regions), in theses regions the sum of the
intesities should be approximately equal to the maximum attained when either
mode has a low mean intensity. From the plot of the standard deviation of the
uninjected mode shown in the bottom right panel of Fig. 3.7 it is evident that the
dynamics of the uninjected mode is not constant in these regions of intermediate
intensities suggesting complex dynamical Two Mode behaviour. The standard
deviation of the injected mode shown in the bottom left hand panel is also large
for large K values, where the uninjected mode is off. In this region we expect
complex single mode dynamics. The precise value of the standard deviation will
depend on the bandwidth of the oscilloscope, but is not critical for the classifi-
cation of the dynamical states. We therefore observe that already the average
intensities and standard deviations of both modes reveal nontrivial dynamical
features which depend on injection strength and detuning.

In Fig 3.7, it is evident that a distinction can be made between K - ∆ω
points where the injected and uninjected modes have large or small means and
standard deviations. It is generally assumed that the injected mode is always
lasing, precisely because is undergoing continuous injection, but nothing is known
about the state of the uninjected mode. Therefore, it would be useful to define
a threshold value for he mean and standard deviation of the uninjected mode to
quantify if a point in K −∆ω has single or two-mode dynamics, and also if the
injected mode is in a locked or unlocked state.

In Fig. 3.8(a), several time-traces over various detunings are plotted. The
threshold value of the mean is set to 0.0048. Fig. 3.8(b) depicts the standard-
deviation for the same time-traces with a threshold of 0.0001.

In Fig. 3.9 the thresholds depicted in Fig. 3.8 are applied to the whole K−∆ω
plane and the main structures of the laser dynamics are outlined.

Apart from the intensity average and the standard deviation, another easily
accessible quantity is the number of separated peaks in the power spectra of the
mode intensities. The power spectra for a number of time traces are shown in the
bottom row of Fig. 3.12. At low K (left hand panel at K = 0.027) we see that
the laser is unlocked, and the only (relatively weak) peak in the power spectrum
is due to the beating between injected light and the free running laser. We use an
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1Figure 3.7: Experimentally measured average (top row) and standard deviation
(bottom row) of injected (left column) and uninjected (right column) modes in
the K-∆ω plane.

intensity threshold as shown in Fig. 3.12 to distinguish strong peaks from possible
noise. The threshold value for counting the peaks was chosen to be significantly
higher than the unavoidable noise background and significantly lower than the
maximum oscillation amplitude. The chosen threshold value corresponds to 2% of
the maximum peak. Therefore transitions from sub-harmonic peaks are captured
even if they are considerably weaker than the fundamental peak.

In order to determine the number of frequencies present in the time-trace
segment, a Discrete Fourier Transform is performed on the time-trace segment.
In Fourier Theory, the transform assumes an infinitely repeating signal, however
in the experimentally observed time-trace the injection strength K is varied in
time. Consequently the signal is non-stationary and the discontinuity at the ends
of the time-trace contribute non-existant frequencies and noise to the FFT. To
overcome this well-known and anticipated problem a smoothing can be applied to
the time-trace segment which lessens the discontinuity at the edges of the time-
trace segments. The smoothing function applied in this work is the Hamming
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Figure 3.8: a)Mean threshold for uninjected mode and b) Standard deviation
threshold for Injected mode. Time trace from several different ∆ω are plotted as
a single threshold is used for the full two-dimensional plane.

Window[7, 5], which is defined as:

w(n) = 0.54− 0.46cos
( 2πn
M − 1

)
0 ≤ n ≤M − 1. (3.2)

whereM is the number of points in a time-trace segment. The Hamming Window
is multiplied by the time trace before an FFT is performed. The coefficients
chosen decrease the discontinuity between the ends of the time-trace chunk as
the FFT requires a periodic function and the discontinuity would appear as noise
in the frequency domain.

Fig. 3.10 depicts the Hamming Window and its Fourier Transform. It should
be noted that the coefficients dictate the side-lobe compression. These coeffi-
cients [35] were chosen such that the maximum size of the side lobe is one-fifth
the size lobe of the Hanning Window [19, p.142].

For the time-trace segments, the time-traces were discretised into chunks of
25ns. This resulted in a truncated maximum FFT resolution signal of the order of
(0.2)GHz. As the typical laser dynamics occur on the GHz scale, no dynamical
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Figure 3.9: (a) Mean of Uninjected Mode and (b) Standard deviation of Injected
Mode. (c) Mean threshold and (d) standard deviation threshold as depicted in
Fig. 3.8.
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Figure 3.10: a) Hamming Window. b) FFT of Hamming Window.
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Figure 3.11: Number of peaks present in the FFT of the experimentally obtained
time traces as a function of K and ∆ω

phenomena are omitted due to the chunk size selected.
An overview of the number of peaks in the power spectrum of the injected

mode at every point is shown in Fig. 3.11. Here the dark blue regions have no
peaks above the FFT intensity threshold. Most of these regions correspond to
states where the injected mode is locked, except for states with large standard
deviations. All other colours correspond to unlocked behaviour. However, only
considering the number of peaks present, does not always allow us to distinguish
between Single Mode and Two Mode dynamics. For example, the dark blue region
around (0.027,+4) is a locked state, where the uninjected mode is on (Two Mode
locked state), while in the band shaped dark blue region around (0.043,-2) the
uninjected mode is off (Single Mode locked state). In order to distinguish between
Two Mode and Single Mode dynamics and to identify other dynamical features,
we will now introduce a method, which combines the information from Fig. 3.7
and Fig. 3.11.

Having described all of the analytical tools utilised in the analysis, Fig 3.12 is
introduced as an example of their combined information. Using the detuning at
+2.7GHz most of the systems’ dynamics can be seen in a single time-trace. At
K = 0.028 the injected mode locks and no peak is present in the lower spectrum.
At higher K = 0.04 the laser shows undamped relaxation oscillations with a
single peak appearing at 5.9GHz. For even higher K = 0.047 (right most panel),
a number of peaks appear in the power spectrum due to the complex dynamics
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Figure 3.12: Top row: Sample time traces for various values of K at ∆ω =
+2.7GHz. Bottom Row: FFT of time traces in Top Row, with detected peaks
indicated by full circles. Colour fill represent the identified state as explained in
the main text. The red dashed line indicates the intensity threshold used for peak
detection. FFTs are shown on a log scale.

Table 3.2: State colour definitions, based on if the Mean (Mn) or Standard De-
viation (SD) is Large (L) or Small (S) and the number of peaks detected in the
injected mode.

Injected Mode Uninjected Mode
State Mn SD Peaks Mn SD Colour

TM Locked L S 0 L NA Light Green
SM Locked L S 0 S NA Dark Green

TM Unlocked L L ≤ 1 L NA Light Grey
SM Unlocked L L ≤ 1 S NA Dark Grey
TM Complex L L ≥ 2 L NA Light Orange/Red
SM Complex L S ≥ 2 S NA Dark Orange/Red

present in the time trace. In the bottom row of Fig. 3.12 the FFT of each
time-trace chunk is colour filled. The colours grey, green and orange are used to
indicate unlocked,locked and complex dynamics respectively. In the next section
this colour pattern scheme will be applied to a full time-trace, and then to the
entire K −∆ω plane and a shading will be introduced to distinguish two-mode
and single-mode dynamics.

For completeness, Table. 3.2 contains the colours used for each type of state
identified.
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3.5 State Identification

First we demonstrate our method for determining the dynamical states of the laser
for the case of ∆ω = +2.7GHz. In the middle and lower panel of Fig. 3.13 the
time traces of the injected and uninjected modes are shown during one upward
sweep of K and the top panel shows a power spectrum density plot. For low
K = 0.027 we observe a low intensity peak in the FFT, which is below our
cut-off point for peak intensity. However, the standard deviation of the injected
mode is non-zero as indicated by a non-zero standard deviation at K = 0.027.
For this Two Mode unlocked state we adopt a light-grey colour as shown in the
background of FFTs in Fig. 3.12 and the middle and lower panels of Fig. 3.13.
For K between 0.028 and 0.036 the standard deviation in the injected mode
decreases, but both modes remain on. This is a Two Mode locked state which we
indicate with a light green colour. Then for K > 0.036 the state unlocks and the
relaxation oscillation frequency appears in the power spectrum. This unlocked
state is again indicated by a light grey colour. For higher K values between 0.046
and 0.049 additional peaks are picked up in the power spectrum, and we denote
them with orange and red colours. At K = 0.047, both modes are on with a
significant standard deviation and there are three peaks in the power spectrum
(see the lower right hand panel in Fig. 3.12). We identify this as a Two Mode
chaotic state, and denote this point by a light orange colour. In the following,
points with more than one peak in the power spectrum are coloured from yellow
to red, for small and large standard deviation, respectively. This yields a useful
indicator of chaotic behaviour. At even higher K > 0.05 the uninjected mode
vanishes and we enter a regime of Single Mode dynamics, which is indicated by
a dark shading.
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Figure 3.13: Experimentally recorded dynamics at fixed detuning ∆ω =
+2.7GHz and varying K. Top panel: Power spectrum of injected mode. Middle
panel: Time trace for injected mode. Bottom panel: Time trace of uninjected
mode. The coloured backgrounds in the middle and bottom panels represent the
identified state.

3.6 Experimental Stability Diagram

Applying the technique demonstrated in Fig. 3.13 for all ∆ω allows us to build
a K-∆ω stability diagram which identifies the dynamical state of the two colour
laser at given parameter values. The result is presented in the top left panel
of Fig. 3.14. We observe two regions of Two Mode locked states (light green),
one at positive detuning (∆ω between 0 and 6GHz) and one at negative detuning
(∆ω < -6GHz). This latter region of Two Mode locked states was partly identified
previously in [65]. Both Two Mode locked states are bounded by regions of Two
Mode dynamical states (light grey). The top Two Mode dynamical region shows a
distinctive triangular shape. Two bubbles of Two Mode complex behaviour (light
orange/ light red) extend at two of the sides of this triangle. At larger K values
the dynamics becomes single mode (dark shading), including a prominent bubble
of complex behaviour (dark orange and red) at the centre of the stability diagram.
In the top right corner a further bubble of complex Single Mode dynamics (dark
red) exists. We observe a large dark green band of Single Mode locked states
below 1GHz and a large dark grey region of single mode unlocked states and
there is a further region of Single Mode complex dynamics around ∆ω = −4GHz
below the band of Single Mode locked states.

After generating the experimental stability diagram for a Two Mode laser at
P = 0.5, our aim is now to put this result in a broader context, firstly by compar-
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Figure 3.14: Left panels: experimental stability diagrams for the Two Mode laser
at P=0.5 (upper) and the Single Mode laser at P=0.5 (lower). Right panels:
corresponding theoretical stability diagrams based on numerical time-traces and
Lyapunov exponents. Light (dark) colours indicate Two Mode (Single Mode)
dynamics. Stable Fixed point (FP) states are green, stable limit cycles (LC) are
grey, stable tori (TR) are blue and chaotic (CH) states are yellow and red.

ing with a theoretical model and secondly by comparing different experimental
configurations. For the theoretical comparison we explore the use of Lyapunov
Exponents in Sec 3.7.

3.7 Lyapunov Exponents

The following dimensionless model for Two Mode lasers is used to model the
amplitude of the uninjected mode |E1|, the complex slowly varying field for the
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injected mode E2 and the population inversion n [65]:
∣∣∣Ė1

∣∣∣ = 1
2(g1(2n+ 1)− 1) |E1| (3.3)

Ė2 =
[

1
2(1 + iα)(g2(2n+ 1)− 1)− i∆ω

]
E2 +KT (3.4)

T ṅ = P − n− (1 + 2n) (g1|E1|2 + g2|E2|2) (3.5)

where the nonlinear modal gain is g1/2 =
[
1 + ε

(
|E1/2|2 + β|E2/1|2

)]−1
. The

parameters for the numerical simulations are α = 2.6, P = 0.5, T = 800, β = 2/3,
and ε = 0.01. This model is also identical to the system of ODE’s motivated in
Sec. 2.2.3. The experimental parameters have been established by previous work
in the Tyndall National Institute [65, 64]. The bifurcation parameters are the
injection strength KT and the frequency detuning ∆ω. As previously mentioned,
the parameter KT in (3.4) and the experimental injection strength of the master
laser K cannot be quantitatively compared, because the experimental coupling
efficiency is not known. Integrating this model numerically and calculating the
Lyapunov exponents (LEs) [99] allows us to distinguish between fixed points (all
LEs less than zero), limit cycles (one LE equals zero), tori (two LEs equal to
zero) and chaotic states (one or more LE positive).

Fig. 3.15 contains a graphical representation of the concept of a Lyapunov
calculation. The point d0 is the unperturbed state that is integrated forward in
time to d0(t). In the model employed here, there are three dimensions in which
the point d0 can be perturbed. This perturbation in three-dimensions forms the
sphere in Fig. 3.15 centred at d0. This sphere is then evolved forward in time to
a more complex ellipse-like strucure. The rates of compressing/stretching of the
radii correspond to the Lyapunov exponents at that point. Mathematically, they
are defined as:

λ = Limitt→∞
1
t
ln
|δd0(t)|
|δd0|

(3.6)

where t is the time integrated forward, and δ represents the change in d0 and
d0(t) due to a perturbation.

The theoretical stability diagram is shown in the upper right panel of Fig. 3.14.
We find that this diagram mirrors astonishingly well the overall shape and loca-
tion of both regions of Two Mode locked states (light green) identified in the
experimental diagram shown in the top left panel of Fig. 3.14. In addition, the
band of Single Mode locked states (dark green) agrees with the theoretically ob-

Optically Injected Multi-mode
Semiconductor Lasers

67 David O’ Shea



3. Dynamical classification of
optically injected lasers 3.7 Lyapunov Exponents
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ERe

d0

d0(t)

Figure 3.15: Lyapunov Exponent diagram: An initial point d0 is integrated for-
ward to d0(t). The initial point is perturbed by a small influence and ends up
on black sphere. The sphere is integrated forward in time and maps onto the
ellipse. The rates of stretching/compressing of the radii of the sphere/ellipse are
the Lyapunov Exponents of the ERe,EIm and n dimensions respectively. If any
of the Lyapunov Exponents are positive, the system is said to be chaotic as two
trajectories, initially close, will diverge in finite time.

tained Single Mode fixed points at negative detuning. The top row of Fig. 3.14
also shows that the regions of Two Mode (light grey) and Single Mode (dark
grey) dynamics in the left upper panel are consistent with the stable limit cycles
found theoretically in the upper right panel. The remaining dynamics in the
theoretical model are the tori and chaotic states, which are identified with a blue
and yellow/red colouration, respectively. Experimentally we did not attempt to
distinguish between tori and chaotic behaviour, however, the complex dynamical
regions in the upper left panel of Fig. 3.14 correspond strongly with the collective
tori and chaotic regions in the central lower panel of Fig. 3.14. Unavoidably, we
experimentally slightly overestimate the band of Single Mode locked states at
low K. This is explained by the experimental difficulty of distinguishing between
Single Mode locked and Single Mode unlocked states. This issue does not arise
for Two Mode states, as our state identification routine can use the behaviour of
the uninjected mode as a reference point.
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Figure 3.16: Left panel: Experimental stability diagram for the Two Mode laser
at P = 0.2. Lower panel: Theoretical stability diagram for the Two Mode laser at
P = 0.2. Locked, unlocked and complex dynamical states are identified using the
same colour scheme as the Two Mode and Single Mode P = 0.5 configurations.

3.8 Single Mode Stability Analysis

Having established qualitative agreement for the Two Mode laser at P = 0.5,
we now examine the Single Mode laser at P = 0.5 shown in the lower left and
right hand columns of Fig. 3.14. By its nature, there are no Two Mode states
present in the Single Mode laser and we now distinguish between locked (green),
unlocked (grey) and complex (red/yellow) states. In the experimental stability
diagram we observe a band of locked states and two prominent bubbles of complex
dynamics. These features are in agreement with the corresponding theoretical
stability diagram in the lower right panel. Again a slight overestimation of the
band of locked states occurs at low K. One of the more striking results of the
Two Mode/Single Mode laser comparison is the persistence of states identified
as Single Mode states in the Two Mode laser, that remain Single Mode states
in the Single Mode device. For example, all states in the Single Mode band of
locked states in the Two Mode laser are still locked states in the Single Mode
laser. However, states which are Two Mode in the Two Mode laser in general
change their character in the Single Mode laser, for example a region of Two
Mode unlocked states near the centre of the top central panel becomes part of the
complex bubble in the top left panel. This behaviour is reproduced theoretically
in the lower right panel, and is due to the presence of the invariant manifold
|E1| = 0 in the system of equations (3.3)-(3.5).
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3.9 Lower P

The final configuration explored via our technique is the Two Mode laser at a lower
pump parameter P = 0.2. The respective experimental and theoretical stability
diagrams are shown in the left and right hand panels of Fig. 3.16. Experimentally,
we observe that all dynamical regions identified for P = 0.5 are still present at
P = 0.2, however, the boundaries shrink to smaller K and ∆ω values. For
example, the upper bound of the Two Mode locked state at positive detuning has
decreased from 6GHz to 4GHz. In addition the distance between the Two Mode
and Single Mode locked states at negative detuning becomes smaller and almost
closes at ∆ω ≈ -6GHz. These experimental trends are in striking agreement with
the theoretical results shown in the lower right panel of Fig. 3.14, where the same
dramatic shrinking of the domain boundaries to smaller values of KT and ∆ω is
observed.

3.10 Optical Bi-stability

The results thus far have been utilised in characterising an optically injected
laser, however uses of optically injected lasers have not yet been fully explored.
In today’s technology-centred world, all optical signal processing is a strong
competitor to meet the bandwidth demands in telecommunication. Novel ap-
proaches are sought to implement many electrical circuit elements optically such
as switching[52], logic gates[73] and RAM[23] (random access memory). It has
already been shown[49, 41] that a master-slave configuration, similar to the one
utilised here, can achieve optical bi-stability.

Having thoroughly developed a characterisation method for dynamical state
identification in an optically injected laser, the next logical step is utilise the
information available to demonstrate the automatic detection of an optical bi-
stability in an optically injected laser. As K is varied sinusoidally, the laser will
visit all K −∆ω combinations as K both increases and decreases. Therefore, a
bi-stability in the mean of the injected mode should be observed in comparing
Figs. 3.6(a)-(c) with the previously unused down sweeps (downsweep of K) time-
traces from Figs. 3.6(d)-(f).

Previously, the estimate of the turning points of K in Fig. 3.6 were sufficient
for dynamical region mapping. However, a different type of accuracy is required
for the detection of an optical bi-stability.

Therefore an investigation into the accuracy of the fit is now required as we
now compare the upward and downward sweeps of K. This is shown in Fig 3.17.
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Figure 3.17: a): Plot of the mean of |E|2 as K is increasing (blue) and decreasing
(green).b): Plot of the difference (subtracted) between the upward and downward
means.

An explanation of the terminology used to describe the bi-stability detection
is included here: All choices of bi-stability are made assuming that K begins
at zero and increases first. Therefore, the green time-trace in Fig. 3.17 is the
first half of the full K sweep and the blue is the second half (referred to as K
upsweep and K downsweep respectively). Furthermore, the test for the existence
of a bi-stability will the subtraction of the latter from the former. The instances
where (if any) points on the downsweep of K the mean is larger, the bi-stability
will be labelled “K switches down”, acknowledging that the mean is larger at this
K−∆ω point while K is decreasing. The reverse situation (K upsweep is larger)
is referred to as “K switches up”.

Fig 3.17(a) shows that a misalignment exists with the estimation of the turning
points of K in the previous section. The error in detecting the exact turning
points of K is small, but important. The error is estimated to be approximately
2.4% over the full K period. For the automatic detection of optical bi-stability,
the two time-trace segment must align and their differences must equal 0 in the
absence of a bi-stability.

Fig 3.17(b) (that difference of two means plotted in (a) )demonstrates that
a deviation from 0 is present despite no bi-stability exists. This is due to both
time-traces tending to 0 near K = 0.027 and due to the misalignment becoming
significant near K = 0.05. The red horizontal lines indicate y thresholds of −0.01
and 0.01 (a tolerable deviation from 0 for indicating bi-stability.)

To correct alignment issue, the trace for the downward sweep of |E|2 is shifted
along K by 6 points (in the segmented view, a 2.4% error in the of the total
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Figure 3.18: a) CorrectedK fit for +2.75GHz detuning showing a much improved
overlap.b) Plot of the difference (subtracted) between the upward and downward
means showing no bi-stability at this ∆ω.

recorded K2 ). This shift size was selected as it was small ( 6 of 250 points)
and is an acceptable error given only a minimal effort was made in locating the
turning points of K. Once the shift was made, the mis-alignment near K = 0.05
disappeared as the temporal profiles over lapped sufficiently.

Also the time-trace segments are truncated at K = 0.027 and K = 0.060
as K2 is non-varying beyond those limits. The results of this shift are seen in
Fig 3.18 and Fig 3.19, where two different frequency detunings are selected to
test if only correct bi-stabilities are detected. This method is now applied to full
K-∆ω plane as shown in Fig. 3.20.

Fig 3.20 shows that whenK is varying sinusoidally, the injected mode switches
on from a previously off-state on the downward sweep of K. This is indicated as
the large blue region in Fig 3.20. However, as this is a closed system under optical
injection, the total power output of the laser must remain constant and a corre-
sponding change must be seen elsewhere. Therefore, an analysis of the uninjected
mode is required. Fig 3.21 combines the results of a bi-stability examination of
the injected and uninjected modes as K is varied sinusoidally. The left column
of Fig 3.21 have already been discussed, however when presented here, the bi-
stability is easily confirmed visually in the injected mode. Now in the right-hand
column, the results of the uninjected mode are presented in an identical fashion,
but the results display the opposite transition has occurred. The results show
that when K switches down (from a higher K), the uninjected mode goes from
an on state to an off state. In the grid view, it is easy to see that the bi-stability
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Figure 3.19: a) Corrected K fit for −7GHz detuning showing a much improved
overlap.b) Shows a correctly identified bi-stability using the difference of the
corrected means.
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Figure 3.20: A large bi-stability region is detected for negative detuning. This
bistability occurs in the injected mode.
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Figure 3.21: Combination of results of the bi-stability analysis for both the in-
jected (left column) and uninjected mode (right column), as K is swept upwards
(top row) and downwards (middle row). The bi-stabilities detected are shown in
the bottom row.

area in both modes is identical in shape, size and location. This means that this
bi-stability is a region where two modes can be configured to be in either an off
or on state by means of optical injection manipulation and therefore this device
can be used to provide an optical memory element. This particular bi-stability
region has been detected before [36] but using the experimental method outlined
in this thesis, the full bi-stability region has been traced out with little effort.

The final step is to confirm bi-stability numerically. This is shown in Fig 3.22.
This figure contains the numerical integration of Eqns 2.98 - 2.100 with the
addition of a small noise term. The small noise is added to ensure that the bi-
stability occurs correctly and the system does not stay trapped on the single mode
manifold (see App. A.1 for a demonstration that without noise the uninjected
mode can remain in an unstable off state).
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Figure 3.22: Numerical simulation of Bi-stability

3.11 Conclusion

In conclusion we have experimentally obtained a two-dimensional stability dia-
gram of an optically injected Two Mode laser for varying injection strengths and
detunings. Our method is based on a fast modulation of the injection strength and
an analysis of the resulting time traces of the individual modes. The experimental
stability diagram agrees quite well with the theoretical model, and thereby con-
firms the existence, shape and location of many dynamical phenomena. Locked
and unlocked states, and complex behaviour have been clearly identified.

The agreement between theory and experiment is mirrored in our results for
the Single Mode laser. This validates our technique as device independent and
opens new opportunities for other optically injected dynamical systems. Fur-
thermore, this agreement is continued as P is varied, demonstrating that the
dynamical regions are robust areas of dynamics.

In addition to the previously published results, the method has been extended
to bi-stability detection and automatically detected the previously known bi-
stability region, confirming its novelty and impact. This addition means that a
complete dynamical classification routine now exists and can characterise the dy-
namics of an optically injected laser entirely after simple yet fruitful experiment.

Optically Injected Multi-mode
Semiconductor Lasers

75 David O’ Shea



Chapter 4

Origins of abnormally large
’Rogue Waves’ in optically
injected lasers.

4.1 Background

With the previous thorough studies of single-mode, optically injected lasers, one
could easily conclude that the single mode laser is well understood, with few
surprises remaining. However, recently [8, 101] rare, large amplitude excursions
have been discovered in semiconductor lasers which have yet to be satisfactorily
explained. In [8, 72] it has been shown that the large amplitude events are
predicted by the rate equation model and also have been experimentally observed.
This confirms their existence as a feature of semiconductor device and not an
anomalous aberration from faulty lasers or numerical precision errors.

The title of ’Rogue Wave’ (abbreviated from here on-wards as RW) origi-
nated initially from the oceanographic problem of rare, large amplitude waves
that "appear from nowhere and disappear without a trace" [3] and is currently
a popular topic in the study of dynamical phenomena [74]. Additionally, rogue
waves have also been identified in capillary waves [78], super-fluid helium [27],
atmosphere [28] or microwaves [37]. Their existence in multiple disciplines only
further fuels their interest. The semi-conductor laser is an excellent research tool
to investigate these phenomena as it is already known to provide an accessible win-
dow into a dynamical system. In Sec 4.2 I will compare the previously used model
for rogue wave study with the singe mode model outlined in Eqns. (2.101, 2.102).
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4.2 Model Comparison

Optically injected semi-conductor lasers have been of considerable interest since
their invention, as they allow the investigation of complex non-linear dynami-
cal problems in a controllable system isolated from vibration and thermal vari-
ation and noise [8]. However, the rate-equation models previously used in [8]
(Eqns. (4.1, 4.2)) to numerically reproduce the rare, random, large excursions
are derived to model an optically injected laser subject to noise (characterised
by the noise strength

√
D) as-well as being presented in a dissimilar form to

Eqns. (2.101, 2.102). The first task is to-rewrite Eqns. (4.1, 4.2) and compare
them to Eqns. (2.101, 2.102). Following this model comparison, a thorough com-
parison of previous work into Optical RW events can be made.

d

dt
E = κ (1 + iα) (N − 1)E + i∆ωE +

√
PInj +

√
Dξ(t) (4.1)

d

dt
N = γn

(
µ−N −N |E|2

)
(4.2)

Where E,N, α,∆ω and t take the same meanings as previously used up to
constant proportionality factors which are derived in the next section.

√
PInj is

the strength of the injected light. κ, γn and µ are the field decay rate, carrier
decay rate and the injection current respectively. ξ is a complex Gaussian white
noise function.

4.2.1 Dimensionless model

Using (4.1) and (4.2), let us first re-scale N using N̂ = N−1
2 which gives

d

dt
E = 2κ (1 + iα) N̂E + i∆ωE +

√
PInj +

√
Dξ(t) (4.3)

2γ−1
n

d

dt
N̂ = µ− 1− 2N̂ −

(
2N̂ + 1

)
|E|2 (4.4)

and both sides are divided by γn. Next a re-scaling of t is introduced as t̂ = 2κt
for the dimensionless time. Note that

〈ξ(t)ξ(t′)〉 = δ(t− t′) (4.5)
〈ξ̂(t̂)ξ̂(t̂′)〉 = δ(t̂− t̂′) (4.6)∫ t2

t1
δ(t− t′)dt = 1 = 2κ

∫ t̂2

t̂1
δ(t̂− t̂′)dt̂ (4.7)
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Therefore

ξ̂(t̂) = 1√
2κ
ξ(t) (4.8)

This results in

d

dt̂
E = (1 + iα) N̂E + 1

2κ
[
i∆ωE +

√
PInj +

√
2κDξ̂(t̂)

]
(4.9)

2γ−1
n 2κ d

dt̂
N̂ = µ− 1− 2N̂ −

(
2N̂ + 1

)
|E|2 (4.10)

Furthermore define Ê = E√
2 , ∆ω̂ = −∆ω

2κ (Note that the sign of ∆ω̂ changes) and
D̂ = D

4κ to yield

d

dt̂
Ê = (1 + iα) N̂Ê − i∆ω̂Ê + 1

2κ
√

2

√
PInj +

√
D̂ξ̂(t̂) (4.11)

γ−1
n 2κ d

dt̂
N̂ = µ− 1

2 − N̂ −
(
2N̂ + 1

) ∣∣∣Ê∣∣∣2 (4.12)

Finally introduce 1
2κ
√

2

√
PInj = K = 0.00913, µ−1

2 = P, γ−1
n 2κ = T = 600. The “

ˆ” notation is dropped for simplicity and the system reduces to:

d

dt
E = (1 + iα)NE − i∆ωE +K +

√
Dξ(t) (4.13)

T
d

dt
N = P −N − (2N + 1) |E|2 (4.14)

which is the simplified single mode model in the case of linear gain (ε = 0) and
the absence of noise (D = 0). Having successfully re-normalised Eqns. (4.1, 4.2)
into (2.101, 2.102), it has been verified that all dynamical structures measured
in [8] are contained in the model derived in this thesis, and by extension, exist
in the semiconductor lasers studied in this thesis.

Having compared the two rate equation models and confirmed their similarity
it is now necessary to investigate time-series for the presence of RW events. This
search will be conducted in the next section and all numerical simulations were
begun with the same arbitrary point in the E −N field, namely:

Ere = Eim = 0.1 (4.15)
N = −0.0001 (4.16)

Using the relations derived above, the parameter values from [8] are translated
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as:

P = 0.472
α = 3.0

∆ω = −0.005769
K = 0.00913
T = 600 (4.17)

These constants will be used for time-series plots unless otherwise stated.
These parameter values were chosen to fall into the centre of an RW region

identified in [8]. An investigation into RW events at this P value is therefore of
high interest as a considerable amount of work in this thesis has utilised P = 0.5.

Without knowing the precise underlying causes of an optical rogue wave phe-
nomenon, a precise definition is difficult. However, rogue waves are often char-
acterised as rare, random events that are abnormally large. The threshold for
being considered large is often chosen from one of the following definitions: 1)
”the ratio between the height of the wave and the average wave height among
one-third of the highest waves in a time series” [42] and 2) “any wave whose
height is higher than the mean surface value plus 8 σ is considered a rogue wave”
[42](σ is the standard deviation). For the purpose of this study, I will employ
the latter definition for a rogue wave amplitude. In the next section I begin
an analysis of time-traces that produce rogue-waves (RW’s) to understand the
responsible mechanism and compare the amplitude and distribution of the RW
events to gauge the appropriateness of the name.

4.2.2 Bifurcation Diagram

One of the first important numerical calculations that can be performed is that
of a bifurcation diagram. A one-dimensional bifurcation diagram will quickly and
easily identify the dynamics of the region. Analytical one-dimensional bifurcation
diagrams were discussed in Sec. 2.3.

Fig 4.1 contains the one-dimensional bifurcation diagram in P . The y-axis
contains the local maxima of the |E|2 found after integrating beyond the transient.
The red-vertical line indicates the P value chosen for this chapter as defined in
Eq. 4.17. For the parameter set chosen, the point of interest lies in the middle of a
chaotic region, which agrees with the Lyapunov Exponent calculations performed
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Figure 4.1: One-dimensional bifurcation diagram. The sweep is performed for
varied P . The vertical red line indicates the P used for this investigation. Plotted
along the y-axis are the local maxima found at a particular P .

for this region [8].
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4.3 Time-Trace Analysis

The definition of an RW employed here is:

RWLimit = ¯|E|2 + 8 σ = 3.2 (4.18)

where the first and second terms are the mean and standard deviation of |E|2

respectively. The value of 3.2 was determined from integrating the system for
over a thousand nanoseconds.

Fig. 4.2 depicts a histogram plot of |E|2 integrated for 1000s of ns. The
histogram shows a positively-skewed distribution centred near 1.0. The positive
skew of the distribution is consistent with results presented for the original model
(Eq.( 4.1)) [8], demonstrating that the expected behaviour has survived the trans-
formation. The red dashed line indicates the RW threshold as calculated using
Eq 4.18, which is found to be 3.2. Only after integrating for sufficiently long time,
is a RW event located. This is indicated as the single measurement plotted to
the right of the dashed red line. This confirms the existence of RW events nu-
merically in our system. Furthermore, there is a distinct break in the continuum
of |E|2: from 2.7 to 3.2 the system does not visit any points before the RW event
is detected. A similar plot was obtained experimentally in Fig. 2 of [8], where
a distinct break in the continuum was also observed. However, more than one
RW event was observed. This gap has not been established theoretically either
in [8] (theoretical simulations suggests it fills) or this thesis (only one RW event
was recorded). It is possible that a sufficiently long time-trace would cause this
gap to fill, however RW events are still not completely understood and a break
in continuum could be a distinct characteristic of RW events. More context is
required and therefore the time-trace should also be investigated.

Fig 4.3 depicts the last 3300ns before the first RW event. The RW event and
threshold are both indicated on the plot.

Starting with the parameters outlined previously, over 35000ns were iterated
through (109 steps) before the first RW event was discovered. After first detecting
a RW location, the integration was restarted 3300ns before the event for plotting
convenience. Starting (or continuing) integration from an arbitrary point along
a time-series requires high numerical precision.

The C-Code in Sec B.1.1 are the routines derived to integrate the system.
They are included for completeness and also as additional considerations were
needed during their development that were not necessary in previous integration
routines.
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Figure 4.2: Histogram of |E|2 time-trace. The RW limit (dashed red line) was
calculated using Eq. 4.18
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Figure 4.3: Time-trace segment of |E|2 (Blue) with an optical rogue-wave event
in (Red dot). The red dashed line indicates the RW-Limit.

Careful inspection of Fig 4.3 shows that both before and after the RW event,
no unusual E2 height is attained. Combining this with the continuum gap as
noted in Fig 4.2, this could be considered the origins of quotes such as "appear
from nowhere and disappear without a trace"[3], as no evidence to suggest that
a RW event is about to occur or has just occurred.

As RWs appear to be rare random events, it was extremely useful to develop an
integrator that could successfully be started at any point along a time-trace and
produce the same numerical results without numerical noise or truncation errors
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forcing the time-traces to deviate. However, the RW events are often located
near chaotic[8] regions, and sensitivity to initial conditions must be considered.
In order to arbitrarily integrate from any point in Fig. 4.3, numerical noise due to
storing and passing an initial E −N state must be eliminated. To do so requires
17 decimal places [38] of precision. Secondly, a chaotic system will want to visit
all points in the systems attractor without displaying periodic behaviour.

Ordinarily, it could be taken for granted that the size of the attractor is
sufficiently larger than the number of points visited by integration, however with
the current time-step (0.01 dimensionless time) 109 unique points were already
used to find only the first RW event. Many more RW events will be needed
to uncover their origins. Aside from estimating the size of the attractor that
can be visited numerically before either a) the system begins to repeat itself or
b) the system begins to settle on to a steady-state system with fewer (or no)
RW events, the distribution of RW events can be investigated as a function of
noise. If the addition of small noise effects does not affect the distribution of
RW events, it can be assumed that the (finite-numerical) attractor has not yet
been filled. If it appears that in the absence of noise RW events become rarer
(or stop appearing altogether) it can be understood that the system has settled
down onto a steady-state system. It is also likely that some-other unanticipated
scenario can happen, however the important aspect of this approach is to ensure
that the system remains in a chaotic state while being evolved numerically. To
begin, the RW distribution is investigated without noise.

4.4 Rogue Wave Mean-Time

Fig. 4.4 depicts the location in time of 200 different RW events. The time in
ns required for the laser to physically experience this number of RW events is
2.2× 106ns, or 2.2ms.

Visually, the RW events appear to have a random maximum value. There
is some clustering and spacing of RW points which would suggest the the RW
events are also randomly distributed. To determine if the RW event are randomly
distributed, the time-between consecutive RW events must be measured and a
histogram should be made of the distribution. If the mean-time between rogue
waves is well approximated by an exponential fit, then it can be understood that
the mean-time is a randomly varying quantity. This is the expected result, as it
has been shown in existing literature (experimentally and numerically) that RW
events are randomly distributed in time [101].
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Figure 4.4: Time-trace plot indicting the detection of RW events. 200 separate
RW events were detected after integrating the system for 2.2×106ns (≈ 1.3×1010

steps with a time-step of 0.1).
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Figure 4.5: Histogram of time-between RW events. Blue bars are the binned ob-
servations. The green line is the least-squares fit of the Exponential Distribution.
An error of the square-root of the numerical observation is assumed to be suffi-
cient. The vertical red dashed line indicates the average time between observed
events.
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Fig 4.5 shows that that Exponential Distribution fits the observed data quite
well, but not perfectly. The red dashed line indicates the average time between
RW events. This is determined as T imetaken

numberofRWevents
= 2143593.259ns

200 = 10881.2ns.
This line intersects the second bin of observations, therefore it can be estimated
that over 100 of the 200 RW events occur within 12000ns of the previous RW
event, and 130 of the events occur within 15000ns of the previous event.

The fact that the time taken to observe the first RW point was 35000ns means
that the first RW mean-time is an outlier of this distribution but over 65% of the
mean-times are below the average mean-time of 11000ns. The initial point taken
just happened to be sufficiently far away from the the RW events, but still lies
within two standard deviations of the distribution.

The exponential-fit function used is defined as:

y(x) = ae−cx (4.19)

The fitting parameters a, c were determined to be 84 and 0.501 respectively.
Here 0.501 (decay constant) corresponds to the inverse of the mean-time and is
normalised to the bin size. Therefore, the centre of the second bin ( 1

0.5 ≈ 2),
12000ns should correspond to the mean time. This is of the same order as the
mean time calculated from the total time taken to find 200 RW events. The
close agreement of the exponential fit to the numerical data suggest that the RW
events are indeed random, as the exponential function describes the mean-time
between stochastic (random) events. Including this result, with the RW anomaly
size analysis in Fig. 4.2, allows one to conclude that these events meet the criteria
for RW events. That is, the RW events are rare, random and abnormally large
optical phenomena. Therefore the remaining task is to attempt to determine the
cause of the RW events.

In [101], a similar study was performed (with and without additive noise)
with the same conclusion regarding a random time-distribution (see Fig. 2 of
[101]). Another contribution from [101] is the observation that RW events could
be predicted up to 1.5ns before an RW occurs. This is an important first for
optical RW events, however a complete explanation is still lacking. Therefore in
the next section, I consider the similarity between RW events.

4.5 Rogue Wave Comparison

In Fig. 4.6 the time-series evolution of 4 RW events are examined. These are
the first 4 RW events indicated in Fig. 4.4 and the common x-axis denotes time
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Figure 4.6: Time series of 4 RW events are plotted, aligned at the RW event.
Plot of: a) |E|2 in a log scale. b) N (scaled ×30 to make features clearer). c)
Phase of |E|. A black dashed line at 2ns before the RW event and a dashed green
line is used to indicate the time of the RW events.
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(ns) before the RW event. The black dashed line at 2ns before the RW event is
intended to mark the beginning of time-region of interest.

The green dashed line at 0ns denotes the RW event. Fig. 4.6(a) depicts the
evolution of |E|2 on a log-scale, for each of the 4 sample RW events. Therefore,
any such differences should be considered very small. In this plot, after the black
dashed line, the values of |E|2 are almost indistinguishable (apart from a small
deviation in RW:3, this is explained by a phase variation in c)) until the RW
event. A similar picture is presented in Fig. 4.6(b) and Fig. 4.6(c), from −2ns
to 0ns before the RW event, the plotted N and the phase (respectively) for all 4
RW events are almost indistinguishable.

This agreement between RW events (up to 2ns before an event) has been
demonstrated previously in [101], and thus-far the RW events in this chapter
have primarily served to confirm the existence of RW events in the optically
injected lasers utilised in this thesis. However, Fig. 4.6 contributes additional
insight in the the understanding of RW events that is not yet demonstrated in
the literature. This new insight comes from the comparison of log(|E|2) with
N(Fig. 4.6(a) and (b) respectively). From inspection, it is evident that before an
RW event (where |E|2 obtains a maximum value) N first must grow abnormally
large. In addition, N can only grow sufficiently large if |E| remains very small.

A close study of Fig. 4.6(b) reveals that the N before the RW event is per-
mitted to grow unusually large (N of RW:3 grows slightly larger than the other
traces). The corresponding point in the |E|2 fields shows that they are simulta-
neously small (RW:3 smallest of all). Finally, at the RW event in each time-trace
(0ns) the abnormally large N is depleted to allow |E|2 to grow to an unusually
large height that is the RW event. Assembling these pieces of information, one
can theorise that this path that is followed from −2ns leads to an unusually large
N , which in turn allows the abnormally large optical event. Understanding the
origins of the RW events has now been reduced to understanding two smaller
problems. That is, an explanation is sought for:

1. the conditions that allow this path to the RW to exist

2. the conditions necessary that ensure the system ends up on this path.

This regular RW behaviour and predictability (up to 2 ns) is in stark contrast
to behaviour of the time-traces further from the RW event, where the time-traces
do not appear comparable to one another. If the |E|2, N and phase of the E-N
space are said to evolve in the same way, as depicted in Fig. 4.6, it could be
suggested that the system ends up on a path at −2ns that will ultimately result
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in a RW event. From Sec. 4.4, one could conclude that this path is rarely and
randomly visited.

4.6 Chimney and Spike Structure

Item 1 requires consideration of the local-maxima of the time-traces presented in
Fig. 4.6(a) and (b). Both the time-trace of E2 and N go through local maxima
between −2ns and 0ns. However, these local maxima are monotonically increas-
ing before the RW event. Therefore, an inspection of the Eqns. (2.101, 2.102) is
required. Writing:

|E|2 = Im2 +Re2 (4.20)

where Im and Re are the real and imaginary parts of our complex electric field,
Eqns. (2.101, 2.102) can be re-written as:

Ṙe = N(Re− αIm) + ∆ωIm+K (4.21)
˙Im = N(Im+ αRe)−∆ωRe (4.22)

Ṅ = 1
T

(P −N − (2N + 1)[Im2 +Re2]) (4.23)

When N is a local max, Ṅ = 0 and therefore:

1
T

(P −N − (2N + 1)[Im2 +Re2]) = 0 (4.24)

(P −N − (2N + 1)[Im2 +Re2]) = 0 (4.25)
P −N = (2N + 1)[Im2 +Re2] (4.26)

P −N
(2N + 1) = [Im2 +Re2] (4.27)

[Im2 +Re2] = |E|2 = P −N
(2N + 1) (4.28)

r =
√
|E|2 =

√
P −N

(2N + 1) (4.29)

where r is the radius of the |E| field in polar coordinates. The surface defined
in Eq. 4.29 describes a chimney-like surface. This surface describes three separate
areas of dynamics:

1. On the surface (r =
√

P−N
(2N+1)) of this chimney Ṅ = 0
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2. Inside the chimney (r <
√

P−N
(2N+1)) Ṅ > 0 and

3. Outside the chimney (r >
√

P−N
(2N+1)) Ṅ < 0

Now, let us consider the local max of |E|.

r =
√
|E|2 (4.30)

ṙ = 1
2(Im2 +Re2)−1

2 2(Im ˙Im+ReṘe) = 0 (4.31)

(4.32)

At ṙ = 0, only the numerator needs to be zero:

(Im ˙Im+ReṘe) = 0 (4.33)
Im(N(Im+ αRe)−∆ωRe)+

Re(N(Re− αIm) + ∆ωIm+K) = 0 (4.34)
N(Re2 + Im2 + α(ImRe− ImRe))+

KRe+ ∆ω(ImRe− ImRe) = 0 (4.35)
N(Re2 + Im2) +KRe = 0 (4.36)

and solving Eq, 4.36 for N yields:

N = −K Re

Re2 + Im2 = 0 (4.37)

= −K cos(θ)
r

(4.38)

with:

cos(θ) = Re√
Im2 +Re2

(4.39)

The surface generated by Eq 4.38 define two areas of different dynamics:

1. Above the surface:(N > −K cos(θ)
r

) r is increasing

2. Beneath the surface:(N < −K cos(θ)
r

) r is decreasing

Fig 4.7 contains the combined chimney-spike structure described by the equa-
tions derived in this section. The time-trace begins outside the chimney, above
the spike in the left-middle ground (initially: ṙ > 0,Ṅ < 0). From the point, the
time-series evolves towards the reader and down through the spike (ṙ < 0,Ṅ < 0)
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Figure 4.7: 3-D Chimney-Spike (green, blue respectively) structure with time-
series ending with RW event (red).

and evolves towards the chimney. Inside the chimney (ṙ < 0,Ṅ > 0) the time-
series begins to move upwards in N while shrinking in r until it crossed the spike
surface again ( ṙ > 0,Ṅ > 0). The time-series now evolves upwards and outwards
until it crosses the chimney a second time (ṙ > 0,Ṅ < 0). The time-trace is
evolved until it crosses the spike surface in the right-middle ground. From this
figure, part of the RW behaviour is explained: the spike-surface contains a sin-
gularity at 0 and fits inside the chimney structure. Therefore, if a time-series
was allowed to remain inside the spike (|E|2 small) N can be allowed to grow
abnormally large. Once the time-series eventually crosses the spike, a larger than
normal |E|2 will be observed. This coincides with the analysis of Fig. 4.6, and
also with observations made in [101] regarding the trajectory of a RW events
towards a saddle. In both examinations, the time-trace moves upwards while
close to the axis until it approaches the unstable foci and is pushed outwards.
In the chimney-spike structure, the time-series crosses the spike and |̇E| is now
positive. This validation of the chimney-spike analysis motivates its continued
use. A discussion on the importance of the saddle points of the systems will be
included later with emphasis on their relation to the chimney-spike structure.
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The width of the bottom of the spike is narrow, therefore the rarity of the RW
events could be caused by the majority of time-traces crossing the spike-structure
low down, where the time-trace then will evolve outwards towards the chimney
structure sooner and the maximum N achieved will not be sufficient to create an
RW event.

The next issue to resolve is the combination of conditions necessary to have
a time-series evolve high enough in the spike-structure so the N can become
sufficiently large. The next section considers a Poincaré Map approach in an
attempt to find a path high into the spike structure.

4.7 Poincaré Map

In dynamical systems theory, a Poincaré Map is a mapping from a hyper-plane
of the system to itself obtained by following the system evolution until the next
intersection of the hyper-plane. In this section the Poincaré Map is generated
by mapping points along the time-trace where the real and imaginary parts of E
form a −45◦ angle relative to each other. In Fig. 5 [101] a different Poincaré Map
is chosen. In [101] the plane for the Poincaré Map is taken such that it contains
the saddle point S1 at N = 1.0036.

In the previous section, the mean time between RW events was estimated to
be of the order of 10000ns. Therefore, if an RW event is not found after 11000ns,
and a large number of intersection with the Poincaré map have occurred, it can be
interpreted that the starting point is far from an RW event. 11000ns is selected
as a starting point for the integration limitation.

Fig. 4.8 contains the result of this approach. The coloured background repre-
sents the number of times the time-trace will pass through a phase of −45◦ before
an RW event is observed. The brown region corresponds to where four or more
intersections were necessary before an RW event was found (many of these points
did not find an RW point within the time-constraint, but many intersections with
the map were found).

The red circles are the intersection of the time-trace with the map. The
last four points of the time-trace were coloured white to identify the transition
between regions more easily. Starting with the bottom left, the white point is
intersection with the map four intersections before the RW event. From here,
the transition from between regions towards the RW event is easily identified
with the white points in the orange, green and light blue (three, two and one
intersections before RW event.) The dark blue region corresponds to points that
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Figure 4.8: Poincaré Mapping of θ = −π
4 . The colour-bar indicates the number

of times a point on the time-trace will have before an RW event. The circular
points are the intersections of a sample time-trace with the map.

start at a phase of −45◦, but do not intersect again before the RW event. This
is due to starting on a sufficiently large E inside the chimney structure, where N
can still increase and |E| will be greater than the RW threshold before the next
intersection with the hyper-plane.

The aim of this approach was to identify the beginning of a path where a typ-
ical time-trace can begin and be guaranteed to produce an RW event. However,
the iterated regions do not appear to clustered (multiple green regions separated
by other colours) and a very high raster is needed to form small regions. For
example the orange cluster in the lower right was only visible after 500 points
were calculated along Re and N for the background. Also in many regions, even
at this raster, many points on the Poincaré section did not start sufficiently close
to the time-trace to find an accurate count for the remaining number of sections.
For example the white dot in the lower left will undergo three more intersections
with the hyper-plane before an RW event, but the surrounding area is marked as
red. This suggests that a very small orange region is located in this vicinity but
is not visible at this resolution. Given that a very high resolution is already used
in Fig. 4.8, a different choice of hyper-plane may yield a more fruitful Poincaré
type map.
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4.7.1 Maximum N Poincaré Section

In Sec. 4.6 the chimney-spike structure was introduced to graphically illustrate
regions of growth and decay in the governing rate-equations. The spike (resulting
from a singularity at E = 0) in Fig. 4.7 is shown to make the RW possible by
allowing the N to grow abnormally large. The Poincaré Map in Sec. 4.7 was
an attempt to find a path that would lead to an RW event by measuring the
intersection of a time-trace with a phase of −π

4 . This did not succeed entirely and
now a new map is considered. In this section, the analysis of the chimney-spike
structure is extended in that a chimney colouring is sought for two mappings:

1. Maximum N obtained from starting on the chimney

2. Number of intersections with the chimney before an RW event.

It is hoped that both these mappings will shed light on the a more general
triggering mechanism for the RW event. Presently two trivial ways of triggering
an RW event have been discovered:

1. Starting integration with E at an abnormally large value, in a region where
|Ė| and Ṅ > 0

2. Starting with a very small |E| inside the chimney with a trajectory that
takes the time-series trace high into the spike-surface.

The latter is the more interesting situation, but the question remains how
does the system end up onto such a trajectory. As the chimney-spike structure
is the structure of interest, an analysis of the saddle points will be conducted
to fulfil this aim. The saddle points are found where Ė = 0 and Ṅ = 0. From
Eqn. (2.101), setting Ė = 0 and solving for E yields:

E = −K
N + i(αN −∆ω) (4.40)

Equating Eqn(4.29) with Eqn(4.40) and simplifying the polynomial equation
in N is obtained for the saddle points.
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P −N
2N + 1 = K2

(N2+(αN−∆ω)2) (4.41)

(P −N)(N2 + (αN −∆ω)2) = K2(2N + 1) (4.42)
P (N2 + (αN −∆ω)2)−N(N2 + (αN −∆ω)2) = K2(2N + 1)

PN2 + P (α2N2 + ∆ω2 − 2αN∆ω)−N3

−N(α2N2 + ∆ω2 − 2αN∆ω) = K2(2N + 1)
N3(1 + α2) +N2(−P − α2P − 2α∆ω) +
N(2α∆ωP + ∆ω2 + 2K2) +K2 − P∆ω2 = 0 (4.43)

Eqn. (4.43) implies that the saddle N co-ordinates of the saddle points can be
estimated as n = P ,n = −0.5 and the roots of n2 + (αn −∆ω)2 = 0. The roots
of Eqn. (4.43) can be solved numerically for exact results. Using the parameters
defined in Sec. 4.5, the N co-ordinates of the saddle points are: 0.41792,−0.00584
and 0.00245. Note the the leading N is very close to the P value used in this
investigation. It is also the largest of the three N co-ordinates and may be related
to the RW event.

Figs. 4.9 to 4.11 depicts the time-series evolution of a point starting near a
saddle in reverse time. The red points are the saddles and the green points are
the end of the time-series for reverse-time.

In [101], a combination of elements from Figs. 4.9 to 4.11 were presented with
a sample RW event. It was demonstrated that the time-trace followed closely the
one-dimensional sub-manifold before the onset of a RW event. Here the chimney-
spike structure has been plotted over each saddle-point, and a trajectory towards
each saddle point, to determine the effect (if any) of the saddle points on the RW
events.

The C-code in App. B.1.1 includes a routine for solving stiff systems. This is
necessary as the ODE that describes the model represents a dynamical system
that can be numerically unstable, particularly if the system is modelled in reverse
time with a large time-step. Several issues merit consideration when a dynamical
system is integrated backwards, including that the stability of fixed points can
change and that the equation can contain terms that may lead to rapid variation
in a solution. Firstly, the change in stability means that a time-series can converge
to a point or limit cycle that was previously not reachable. Secondly, if the
time-step is not sufficiently small, the trajectories obtained may diverge from the
correct evolution, particularly in a region where multiple trajectories, in forward
time, with vastly different origins, would converge to a point. If too large a time-
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Figure 4.9: Saddle: n = 0.41792. The red trace beginning (in forward time) at
the green point will eventually lead to the red point (saddle). The green structure
is the chimney which is shown to close near n = P . The blue structure is the
spike which is shown to become quite narrow near n = P .

step is taken, the time-series may end up following the wrong path numerically.
Fig 4.9 shows that the trajectory, in forward time would rise upwards in the

chimney-spike structure as desired for an RW event. Therefore, an analysis of the
dynamics involving this point are necessary. Fig. 4.10 and 4.11 suggest that the
trajectories towards the other saddle points exist predominately in the Re− Im
plane and may not contribute strongly to the RW events.
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Figure 4.10: Saddle: n = −0.00584. The red trace beginning (in forward time) at
the green point will eventually lead to the red point (saddle). The blue structure
is the spike which is shown to become quite narrow near n = P .
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Figure 4.11: Saddle: n = 0.00245. The red trace beginning (in forward time) at
the green point will eventually lead to the red point (saddle).The blue structure
is the spike which is shown to become quite narrow near n = P .
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4.8 Fast-Slow Dynamics

A close examination of Fig. 4.9 shows that the saddle node trajectory and sam-
ple RW trace both travel very close to the N axis with consistently small |E|.
However, the saddle node trajectory is only known numerically and an analytical
form for the evolution close to the N axis would be desirable. It has already been
noted that in the spike-structure, N continues to vary while E is approximately
constant. Following this observation, one can conclude that a slow manifold may
exist nearby and separation of time-scales may be appropriate if the change in
|E| is sufficiently small (negligible) compared to the evolution of N . This is in
support of the dynamics witnessed in Fig. 4.6.

In Eq. 2.101- 2.102, T is the ratio of the two time-scales in the semiconductor
laser: namely the ratio of the lifetime of the electron-hole pairs to that of the
photons. To simplify the separation, a re-scaling of the system with T = 1/ε̃ and
t→ ε̃t (when T is large, ε̃ is small) Eq. 2.101- 2.102 reduces to:

ε̃
d

dt
E = (1 + iα)NE − i∆ωE +K (4.44)

d

dt
N = P −N − (2N + 1) |E|2 (4.45)

and there are now two manifolds to consider, depending on the limit taken of ε̃.
Generally speaking, the separation of time-scales will work better with decreasing
ε̃.

4.8.1 Slow Manifold

In the limit of ε̃ → 0, the LHS of Eq. (4.44) tends to zero and E becomes an
additional parameter(constant) in Eq. (4.45)

0 = (1 + iα)NE − i∆ωE +K (4.46)

This now places the evolution of the system onto the slow-manifold, where the
E field is varying very slowly relative to the change in N . Note that Eq. 4.46 is
again the Ė = 0 formula as derived in Eq. (4.40).

The solution for E becomes:
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Figure 4.12: Combined figure of Slow Manifold (Blue), RW time-series and event
(Red) and path to Saddle point (Green)

E = −K
(1 + iα)N − i∆ω (4.47)

E = −K
(1 + iα)N − i∆ω

N − i(αN + ∆ω)
N − i(αN + ∆ω (4.48)

E = −K N − i(αN + ∆ω)
N2 + (αN + ∆ω)2 (4.49)

This means that part of the slow manifold should be contained within evo-
lution of the time-series towards the highest saddle points as the slow manifold
forms part of the third-order polynomial that describes the location of the saddle
points. From Fig. 4.9 it is clear that only this saddle point will draw the evolution
of the time-series upwards into the spike-structure.

Fig 4.12 contains a combined figure of the slow-manifold, an RW event and
the time-series that converges to the highest saddle point (similar to Fig. 3(c)
of [101]). In the upper half of the plane, the slow-manifold and the path to the
saddle converge as expected. In the lower half of the plane, the slow-manifold
diverges from the saddle trajectory. The RW trace is seen to follow the slow
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Figure 4.13: Figure containing segments of the Spike-structure, Chimney-
structure and the Slow-Manifold.

manifold while in the lower-half of the plane but then diverges rapidly. Therefore,
the slow manifold provides an analytical approximation of the trajectory to the
saddle point close to the N axis. According to Eq (4.41), the separation between
between the saddle trajectory and the slow manifold shrink as N → P which
agrees with the results presented.

Fig. 4.13 shows the slow-manifold with the spike-structure and chimney-
structure. It’s clear that the slow-manifold is not contained entirely within the
chimney structure as the slow-manifold is a one-dimensional sub-manifold that
exists on the two-dimensional spike-structure. An analysis of the stability of the
slow-manifold is required.

By splitting up Eq. 4.49 into the real and imaginary parts the following equa-
tions are obtained:

Re(E) = −K N

N2 + (αN + ∆ω)2 (4.50)

Im(E) = K
(αN + ∆ω)

N2 + (αN + ∆ω)2 (4.51)
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Also by substituting Eq. (4.47) into Eq. (4.45), the full slow-manifold equation
is obtained, namely:

d

dτ
N = P −N − (2N + 1)

∣∣∣∣∣ −K
(1 + iα)N − i∆ω

∣∣∣∣∣
2

(4.52)

d

dτ
N = P −N − (2N + 1)K2

N2 + (αN + ∆ω)2 (4.53)

The roots of Eq. 4.53 would be another polynomial with non-trivial roots
(trivial root near P ). Setting the LHS of Eq. 4.53 to zero and applying a simple
re-organising reveals (into Eq. 4.54) that the stability of the slow-manifold is
related to the chimney-structure.

P −N
(2N + 1) = K2

N2 + (αN + ∆ω)2 (4.54)

Where the LHS of Eq. 4.54 is |E|2 as derived in Eq. (4.29) to be the chimney-
structure equation.

Fig. 4.14 depicts the sign and value of Ṅ as N is varied. For small, positive
N up to N = P , the slow-manifold is stable and will pull a nearby trajectory
upwards. A nearby trajectory will continue upwards until it crosses the spike-
structure. How close a trajectory is to the slow-manifold should therefore have
a measure of influence over the maximum height obtained in N , and therefore
the max |E| obtained. Therefore, an easy calculation would be to determine the
maximum N obtained of trajectories beginning on the chimney structure close to
intersection of the slow-manifold with the chimney.

In Fig. 4.15, the chimney-structure is plotted with colour scheme according to
the future evolution of a trajectory beginning a point on the chimney surface. The
upper half of the chimney is coloured blue, as ṙ is positive here and all trajectories
move outward the chimney, and therefore are of little importance. The lower half
of the chimney-structure (here: ṙ < 0) is yellow/red according to the maximum
N reached. A clipped/normalised colour scheme is applied to N values reached:
The lowest 75% of the N ’s are yellow, 75%− 100% are orange-red coloured. This
highlights the region(s) where highest N values are achievable. The black line
marks the trajectory to the saddle-point and crosses the chimney in a cluster of
these red points.

The bands of red suggests the entry points on the chimney that allow large
N exist in thinly spread rings. Following the red areas allow for large N to occur
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Figure 4.14: Plot of Ṅ against N . The plot is coloured according to the sign of
Ṅ .

(and by extension, large |E|). Following these points forward show that they
do in-fact reach large |E|, but do not trigger the RW threshold (maximum |E|
obtained is of the order ≈ 3, but less then the RW limit of 3.2). This means
that trajectory has to be very close to the saddle point trajectory, and that this
trajectory is not attractive on the chimney surface. Therefore the key to the
RW trajectory is intersecting the saddle point trajectory in a region where it is
attractive.
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4.9 Rogue Wave Dynamics in Two-Mode
Laser

Figure 4.15: Chimney coloured according to height in N achieved. The highest
25% are shaded orange. The largest N is shaded red.

4.9 Rogue Wave Dynamics in Two-Mode Laser

To fully reconcile this chapter with the hypothesis of this thesis, the existence
of RW and usefulness of the results uncovered here must be applied to two-
mode lasers. Fig 4.1 depicted that the single-mode laser was in the middle of a
chaotic region and therefore, the first step in moving towards a two-mode laser
should therefore begin in a similar region if the results are to have any meaning.
Two mode rate equation model (derived in Chap. 2 and utilised in Chap. 3) is
now integrated for the same parameter space as for the single mode laser. The
significant change in moving from the single mode to the two mode laser is the
consideration of the non-linear gain, which involves changing of the parameter ε.

4.9.1 ε = 0.01

Fig. 4.16 shows that at the same parameter selection, the Two-mode laser is
possibly also in a chaotic region. The red line indicates the current P value
chosen. At this value, the two-mode laser appears to be in a region with a large
number of local maxima. From numerical integration at this point, the RW
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4.9 Rogue Wave Dynamics in Two-Mode
Laser

Figure 4.16: One-dimensional bifurcation2 diagram of E2 for the Two-Mode
Laser. The sweep is performed over a varied P . The red vertical line indicates
the chosen P for this investigation.

threshold for the two-mode laser is 2.99, which is less than for the single-mode
laser.

Integration of the two-mode laser forward did not reveal an RW event larger
than the threshold value calculated. The integration results are shown in
Fig. 4.17. It now emerges that the Two-mode laser is operating in a two mode
chaotic state.

To construct a similar chimney-spike structure for the two-mode laser would
be beyond a trivial extent of the work presented here. For the two-mode laser, the
number of variables (N and the real and imaginary parts of E1 and E2) increase
to 5. Therefore, at best only sections of Ṅ and Ė surfaces could be plotted
(holding some coordinates constant). However, an examination of the two-mode
laser equations show an identical N dependence on the |E1|2 and |E2|2. Also as
two E fields are present, there are now possibly two spiking structures that could
allow for the generation of RW events. This is left as future work. However, an
investigation into the existence of paths to an RW event in a two-mode laser is
not as trivial simply as adding a second mode.

Considering this, Fig. 4.17 clearly indicates that we are in a particular chaotic
regime with maximum |E|2 of 1.5 compared to higher maximas on either side. In
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4.10 Effect of Small Additive Noise on
Rogue Wave Occurrence
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Figure 4.17: Integration of Two mode laser at for the same parameter space as
the single mode laser. Top panel: |E1|2 (uninjected mode). Bottom panel: |E2|2
(injected mode)

order to produce an RW event in a two-mode laser an alternative P value may
be required.

Finally, an investigation into the effect of noise is necessary to complete the
work within the outlined scope.

4.10 Effect of Small Additive Noise on Rogue
Wave Occurrence

The presence of noise in lasers in an unavoidable problem. Most external influ-
ences can be accounted for, or indeed removed through careful setup and isolation
of the experiment. However, not all forms of noise can perfectly isolated and some
sources of noise include spontaneous emission within the laser itself. Therefore a
decision must be made when modelling the physical system if the remaining noise
is significant and therefore must be included in the model, or that the effect of the
noise is negligible and ignored in the model. Until now, the models in this thesis
assumed noise was negligible and have been accurate in the most part, in their
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4.10 Effect of Small Additive Noise on
Rogue Wave Occurrence
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Figure 4.18: Poisson fit to mean-time between rogue waves. Small additive noise
of the order of 10−5 has been added to the Re at each integration step

predictions of the lasers’ evolution. The literature on RW events have considered
both noisy and noiseless systems. The current opinion [72] on the effect of noise
on optical RW events is that noise can either enhance or suppress the occurrence
of RW events via current modulation.

In this section, small additive noise is added to the RHS of Eq.( 2.101). In the
absence of noise, integration was performed until 200 RW events were recorded.
The number of steps required to find 200 RW events in a noiseless system was of
the order of 1.3×1010. With the addition of noise, integration was performed until
either 200 RW events had occurred, or the number of steps taken had reached
1.3 × 1010. From this an easy conclusion may be drawn on the effect of noise of
RW occurrence, that is it can be found whether the presence of noise increases
or decreases the mean-time between RW events.

To study the effect of noise, a range of amplitudes are added (to the real part
of E) of the order of 10−3 or smaller in an attempt to measure any influence noise
may have on the system.

Fig. 4.18 shows the Poisson fit to mean-time between RW events after the
addition of small additive noise to EReal. The Poisson agrees quite well with the
numerical observations, the effect of the noise seems to have decreased the time
between events. Previously, in Fig. 4.5, 130 of the 200 RW events had occurred
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4.10 Effect of Small Additive Noise on
Rogue Wave Occurrence
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Figure 4.19: Poisson fit to mean-time between rogue waves. Small additive noise
of the order of 10−4 has been added to the EReal at each integration step

within 10000ns of the next event, where after the addition of noise that number
is now 150.

Larger noise has been added in Figs. 4.19 and 4.20. The effect of the noise is
consistent with results seen in Fig 4.18. As the noise is increased, the mean time
between RW events decreases.

The results are discussed here and show that RW events are not only present in
the absence of noise, but also in noisy systems (confirming previous reports). Ad-
ditionally, (and previously not reported) Fig. 4.21 depicts graphically the change
in RW mean-time as noise is increased. Although only four data points are used,
a strong agreement is shown with the exponential decay function.

This is an important result as it would, theoretically, mean that RW events
can occur in single-mode lasers with or without the presence the of noise. Fur-
thermore it demonstrates that RW events are more likely to occur in the presence
of noise, and therefore may be occurring in already implemented devices. A simi-
lar result has been reported in[2], where the effect of current modulation affected
the occurrence of RW events. The threshold for an RW event used was the same
value that was used for all single mode calculations (3.2). However, given that
the RW events occur more often with strong noise, a new threshold may need to
be calculated as their increased presence will contribute to the mean of |E| and

Optically Injected Multi-mode
Semiconductor Lasers

107 David O’ Shea



4. Origins of abnormally large
’Rogue Waves’ in optically
injected lasers.

4.10 Effect of Small Additive Noise on
Rogue Wave Occurrence
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Figure 4.20: Poisson fit to mean-time between rogue waves. Small additive noise
of the order of 10−3 has been added to the EReal at each integration step
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Figure 4.21: Mean-time between RW events versus noise
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4.10 Effect of Small Additive Noise on
Rogue Wave Occurrence

therefore to the threshold value as defined in Eq. (4.18).
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injected lasers. 4.11 Summary/Conclusion

4.11 Summary/Conclusion

The motivation for this work originally came from [8], where they claimed they
had discovered an optical wave example of oceanography problem. As the semi-
conductor laser can be isolated from external noise reasonably well, exploring the
origins of ’Rogue Wave’ events could done without fear of experimental varia-
tion or contamination of results. This chapter has included several different ap-
proaches to understanding the RW events, including analysis of rates of change,
a chimney-spike structure, Poincaré sections, Slow-manifold analysis, bifurcation
diagrams and even numerical detection of an RW event in a two-mode laser.

The results from the above mentioned methodologies have confirmed several
important properties of the events originally reported by [8, 72, 101]. That is,
the rare,random and large amplitude nature of the optical events have been con-
firmed. The RW events have been shown to give less than 2ns notice that (from
a pure time-series approach) an RW event is about to occur. These results give
merit to the title ’Rogue Wave’.

Additionally, several attempts at extending the knowledge surrounding RW
events have been made in this chapter.

The chimney-spike structure, along with the saddle point perturbation have
shown that singularity of the system allows a state where N grows abnormally
large, which is a pivotal property of the system and without it the RW event
would not be possible. The trajectories that are allowed to travel high enough
in N for an RW event, all follow the trajectory towards the upper saddle, until
they strike the spike-structure. However, uncovering how to get the system to
follow the upper saddle point trajectory has not been fully uncovered and merits
further investigation.

The existence of RW in two-mode lasers has not been fully explored but the
results presented here show that the transition to a two mode RW is not trivial.
Future work would entail parameter tuning (firstly in P ) to chaotic regions with
larger visited |E| values. Other considerations for two-mode lasers would include
the addition of noise as it has been repeatedly demonstrated that carefully chosen
noise can enhance RW events in single-mode lasers.

While there may be RW events present in multi-mode devices, the single-mode
lasers present the simplest device available to studying these phenomena. Future
work for this area would involve further study of the saddle-point trajectory, up
to where it becomes attractive or possibly intersects with the chaotic attractor
which would explain the final piece of this puzzle.
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Chapter 5

Conclusion

In this thesis we investigated the dynamical behaviour of single and two-mode
lasers using optical injection. The main results of this work are the published re-
sults on the two-mode stability diagram - which is a first is several ways. Firstly,
previous stability diagrams were generated for only single-mode lasers, and sec-
ondly, several areas of two-mode dynamics including two-mode locked, unlocked,
and chaos were identified (as well as the single mode counter-parts) were cap-
tured in a single two-parameter mapping. In addition the transitions between
two-mode and single-mode dynamics were also captured in a single unified view.

The detection of the two-mode equilibrium state (as positive detuning) is the
first experimental verification of that region (to the best of the author’s knowl-
edge). Extraordinarily strong agreement is seen between the theoretical Lyapunov
Exponents generated (from a simple, low-dimensional, rate-equation model) with
the dynamical system mapping of the two-mode laser. The strength of this tech-
nique comes from the elegant experimental design where all of the optical data is
captured for both lasing modes with a high sampling rate. The optical injection
is controlled via a master laser and undergoes sinusoidal amplitude modulation
and a portion of the modulated injected signal is directly recorded. Therefore we
can quickly (less than 15min) sweep through a large frequency detuning where
the main limitation to our results are the limitations of the apparatus used (such
as the bandwidth of the photo-detector, time-resolution of the electrical spectrum
analyser etc). From this data, simple yet crucial information of the state of the
laser (two-mode/single-mode operation etc) can be extracted using easily acces-
sible and well-understood quantities. From here, the mean, standard-deviation
and FFT Spectra are used to generate a colour mapping for the different dynam-
ical states present. The strength of this work is in the combination of theory and
experiment and this unique perspective and understanding allowed for the results
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to take form.
The technological impact of this dynamical mapping technique is far reach-

ing. As well as being able to extend this technique to lasers with a higher num-
ber of lasing modes, it can also be used to characterise the dynamics of other
types of optically injected lasers. Additionally this technique could be used to
identify the location of desirable dynamics, or the transition between different
desirable dynamics, such as all optical switching. It can also be used to charac-
terise the complex dynamics from non-trivial devices such as Photonic Integrated
Circuits(PIC), where output is desired behaviour requires extensive engineering.

As yet unpublished results from this thesis include the new insight into the
origins of the RW phenomena. The introduction of the ’chimney-spike’ structure
allows for a greater understanding into this complex problem, highlighting a win-
dow through which a time-series can be guaranteed to generate a RW event, if the
window is closely struck. Also additional time-series analysis and careful manifold
analysis, while unsuccessful in explaining the true origin, highlight the contribu-
tion (if any) of the saddle points. Through this exploration, the importance of
the singularity at the origin is highlighted. The singularity produces the ’spike’
structure through which the abnormally large excursions are possible. Each of
these new techniques came as a result of a thorough comparison and recreation
of existing results in the area of optical RW. This includes a translation of the
rate-equation model in [8] to the model used in this thesis. This was also in itself
an important result as, although trivial it proved that we could expect to see
RW events in our single-mode lasers which were previously thought to be well
understood.

5.1 Future Work

Unavoidably in every thesis, the time comes when a line must be drawn between
contributions that are to be included in the narrative and work that is left for
future exploration. In this section I will list briefly some of the possible future
applications and extensions to this thesis.

In the case of the dynamical system mappings, an obvious extension is to
modify the colour mapping technique to include tori dynamics. This was left
out (and marked as complex dynamics) due to the difficulty with automatically
and robustly identifying secondary peaks that were located at precisely half the
original frequency. This of course can be done by hand, but one of the goals
is a fully automatic dynamical mapping process. Other extensions include the
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5. Conclusion 5.1 Future Work

improving the signal to noise ratio at very low K. This would allow for map-
ping the system stability for lower injection and experimental verification of the
two-mode equilibrium region closing would be desirable as it is predicted numeri-
cally. In particular would allow comparison to [25] where they also detect observe
experimentally the two-mode equilibrium regions.

In the case of the RW investigation, the true origins of these phenomena re-
main not completely understood. A complete mathematical statement describing
the minimal requirements to create a RW event is desired. Presently the opti-
cally injected mode is the simplest known device (to the best of the author’s
knowledge) that displays the RW phenomena. Therefore presently the minimum
known requirement is a three-dimensional autonomous system (chaos is required)
with a singularity at the origin (this enables the ’spike’ structure). Future work
also should in could determining the presence of RW events in two-mode lasers
as they are the next simplest device that meets the known requirements.
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Appendix A

Dynamical Classification of
Optically Injected Lasers

A.1 Additional Plots:Bi-stability Analysis

Fig A.1 contains the numerical integration for Eq 2.98-2.100 without an additional
random noise term. The system is initially in a state where both modes are non-
zero, then a bi-stability is generated and the system moves to the single mode
manifold but fails to switch back. The addition of the noise term in Fig 3.22
suggests that the single mode manifold is unstable at this region and requires a
small perturbation (example: random spontaneous emission) to move the system
away from the single mode manifold.
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Optically Injected Lasers A.1 Additional Plots:Bi-stability Analysis
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Figure A.1: No random noise for integration. Note that at 15000 ps the uninjected
mode does not become non-zero.
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Appendix B

Rogue Wave Analysis

B.1 Source Code

B.1.1 RW Integrator.

# include <stdio.h>

# include <gsl/ gsl_errno .h>

# include <gsl/ gsl_matrix .h>

# include <gsl/ gsl_odeiv2 .h>

# include <math.h>

# define NDIM 3

typedef struct {

double dt;

double Tinv;

double alpha;

double P;

double K;

double Delta;

} param_type ;

param_type param_default () {

param_type p= {

.dt = 0.01 ,

.Tinv = 1/600.0 ,

.alpha = 3.0,

.P = 0.472 ,
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B. Rogue Wave Analysis B.1 Source Code

.K = 0.00913 ,

.Delta = -0.005769 ,

};

return p;

}

int func ( double t, const double y[], double f[], void *

params )

{

param_type * p = ( param_type *) params ;

double re=y[0], im=y[1], n=y[2];

double tot = re*re + im*im;

f[0]= n * (re - p->alpha * im) + p->Delta * im + p->K;

f[1]= n * (im + p->alpha * re) - p->Delta * re;

f[2]= p->Tinv * (p->P - n - ( (2. * n) + 1.) * tot);

return GSL_SUCCESS ;

}

double Esq(const double y[]) {

return y[0]*y[0] + y[1]*y[1];

}

int jac ( double t, const double y[], double *dfdy , double

dfdt [], void * params )

{

param_type * p = ( param_type *) params ;

double tot1 = Esq(y);

double re = y[0];

double im = y[1];

double n = y[2];

/* Jacobian matrix -> dfdy */
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B. Rogue Wave Analysis B.1 Source Code

*( dfdy + 0 *NDIM+ 0) = n;

*( dfdy + 0 *NDIM+ 1) = -n*(p->alpha) + p->Delta;

*( dfdy + 0 *NDIM+ 2) = -(re - im*p->alpha);

*( dfdy + 1 *NDIM+ 0) = n*p->alpha - p->Delta;

*( dfdy + 1 *NDIM+ 1) = n;

*( dfdy + 1 *NDIM+ 2) = im + re*p->alpha;

*( dfdy + 2 *NDIM+ 0) = p->Tinv *(0+0 -(2*n+1) *(2* re));

*( dfdy + 2 *NDIM+ 1) = p->Tinv *(0+0 -(2*n+1) *(2* im));

*( dfdy + 2 *NDIM+ 2) = p->Tinv *(0 -1 -((2*1) + 0)*tot1);

/* df/dt */

dfdt [0] = 0.0;

dfdt [1] = 0.0;

dfdt [2] = 0.0;

return GSL_SUCCESS ;

}

void jacobian_of_laser ( double const y[], double DF[NDIM ][

NDIM], param_type p){

double dfdt[NDIM ];

double dfdy[NDIM*NDIM ];

jac (0.0 , y, dfdy , dfdt , (void *) &p);

for (int k =0; k<NDIM; k++) {

for (int l =0; l<NDIM; l++) {

DF[k][l] = dfdy[k*NDIM +l];

}

}

}

long long find_fdot ( double y[], double dxdt_out [], double

rw_th , long long Nt , param_type p) {

const gsl_odeiv2_step_type * T = gsl_odeiv2_step_rkf45 ;

gsl_odeiv2_step * s = gsl_odeiv2_step_alloc (T, NDIM);
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B. Rogue Wave Analysis B.1 Source Code

gsl_odeiv2_system sys = {func , jac , NDIM , (void *) &p};

// Save deriv calcs from previous iter to try and save

run time ...

double dxdt_in [NDIM ];

double y_err[NDIM ];

long long i;

// Initialise system for current params .....

GSL_ODEIV_FN_EVAL (&sys , 0.0, y, dxdt_in );

for (i =0; (! rw_th || Esq(y) < rw_th) && (!Nt || i<Nt)

; i++) {

double t = i * p.dt;

int status = gsl_odeiv2_step_apply (s, t, p.dt , y,

y_err , dxdt_in , dxdt_out , &sys);

if ( status != GSL_SUCCESS ) {

printf ("error , return value =%d\n", status );

break;

}

}

gsl_odeiv2_step_free (s);

// return final estimate of dxdt_out

/* return dxdt_out ; */

return i;

}

long long find_rw_chimney ( double y[], double rw_th , long

long Nt , param_type p, int * go_in_chimney , int *

go_out_chimney ,const gsl_odeiv2_step_type * gstype ){

gsl_odeiv2_step * s = gsl_odeiv2_step_alloc (gstype ,

NDIM);

gsl_odeiv2_system sys = {func , NULL , NDIM , (void *) &p};
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B. Rogue Wave Analysis B.1 Source Code

// Save deriv calcs from previous iter to try and save run

time ...

double dxdt_in [NDIM], dxdt_out [NDIM ];

double y_err[NDIM ];

long long i;

* go_in_chimney = 0;

* go_out_chimney = 0;

// Initialise system for current params .....

GSL_ODEIV_FN_EVAL (&sys , 0.0, y, dxdt_in );

int ndot_is_positive = ( dxdt_in [NDIM -1] > 0);

// printf (" ndot_is_positive %d\n", ndot_is_positive );

for (i =0; (! rw_th || Esq(y) < rw_th) && (! Nt || i<Nt) ;

i++) {

double t = i * p.dt;

int status = gsl_odeiv2_step_apply (s, t, p.dt , y,

y_err , dxdt_in , dxdt_out , &sys);

if ( ndot_is_positive && ( dxdt_out [NDIM -1] < 0) ) {

(* go_out_chimney ) ++;

ndot_is_positive = 0;

} else if (! ndot_is_positive && ( dxdt_out [NDIM -1] > 0)

) {

(* go_in_chimney ) ++;

ndot_is_positive = 1;

}

if ( status != GSL_SUCCESS ) {

printf ("error , return value =%d\n", status );

break;

}

for (int j = 0; j<NDIM; j++) {

dxdt_in [j] = dxdt_out [j];

}

}

gsl_odeiv2_step_free (s);

return i;

}
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B. Rogue Wave Analysis B.1 Source Code

long long find_rw ( double y[], double rw_th , long long Nt ,

param_type p) {

int go_in_chimney = 0, go_out_chimney =0;

return find_rw_chimney (y, rw_th , Nt , p, &

go_in_chimney , & go_out_chimney ,

gsl_odeiv2_step_rkf45 );

}

long long stiff_solver ( double y[], long long Nt , param_type

p) {

/* gsl_odeiv2_step * s = gsl_odeiv2_step_alloc (gstype ,

NDIM); */

double epsabs = 1.0e -6;

double epsrel = 0.0;

gsl_odeiv2_system sys = {func , jac , NDIM , (void *) &p};

gsl_odeiv2_driver * d = gsl_odeiv2_driver_alloc_y_new (&

sys , gsl_odeiv2_step_rk4imp , p.dt , epsabs , epsrel );

double t=0.0;

double t_end = Nt*p.dt;

int status = gsl_odeiv2_driver_apply (d, &t, t_end , y);

if ( status != GSL_SUCCESS ) {

printf ("error , return value =%d\n", status );

}

// printf ("#### E %.5e %.5e %.5e\n", t, y[0], y[1]);

gsl_odeiv2_driver_free (d);

return 0;

}

int main (int argc , char ** argv)

{

double y[] = { 0.1, 0.1, -0.0001 };

double y1 []= { 0.1, 0.1, -0.0001 };
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B. Rogue Wave Analysis B.1 Source Code

param_type p = param_default ();

p.dt = -0.1;

printf ("yold\n");

printf (" %25.17 e %25.17 e %25.17 e\n",y[0],y[1],y[2]);

for(int i=0;i <10;i++){

find_rw (y1 ,0.0 ,1 ,p);

printf ("%s","yold");

printf (" %25.17 e %25.17 e %25.17 e\n",y1[0],y1

[1],y1 [2]);

}

for(int i=0;i <10;i++){

stiff_solver (y,1,p);

printf ("%s","ynew");

printf (" %25.17 e %25.17 e %25.17 e\n",y[0],y

[1],y[2]);

}

// Test Jacobian

/* double DF[NDIM ][ NDIM ]; */

/* jacobian_of_laser (y,DF ,p); */

/* printf (" Jacobian \n"); */

/* for(int i=0;i<NDIM;i++){ */

/* for(int j=0;j<NDIM;j++){ */

/* printf ("% lf \n",DF[i][j]); */

/* } */

/* } */

/* printf (" Jac\n"); */

/* double dfdy[NDIM*NDIM ]; */

/* double dfdt[NDIM ]; */

/* jac (0.0 ,y,dfdy ,dfdt ,( void *) &p); */

/* for(int it =0; it <NDIM*NDIM; it ++) { */

/* printf (" jac: %f\n", dfdy[it]); */

/* } */
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exit (0);

}

B.2 Python Code

B.2.1 do_process_data.py

import pandas as pd

import matplotlib . pyplot as plt

import numpy as np

import sys

import os

import time

import matplotlib as mpl

# ###############

# Globals

gamma0 = 9.8 e11

GHz = 2.0* np.pi *1.0 e9/ gamma0

ns = 1.0/( gamma0 /1.0 e9)

fig_ext = ’.png ’

dir1 = ’./ data/’

# ##################

# ##################################

# Colour plot

cmap = plt.cm.jet

cmaplist = [cmap(i) for i in range(cmap.N)]

# force the first color entry to be grey

cmaplist [0] = (.5 ,.5 ,.5 ,1.0)

cmap = cmap. from_list (’Custom cmap ’, cmaplist , cmap.N)

# define the bins and normalize

bounds = np. linspace (-1,5,7)

norm = mpl. colors . BoundaryNorm (bounds , cmap.N)

# ##################################

# ##################################
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B. Rogue Wave Analysis B.2 Python Code

# Functions

def make_hist (data ,b_num =50):

hist , bins = np. histogram (data , b_num)

width = 0.7 * (bins [1] - bins [0])

center = (bins [: -1] + bins [1:]) / 2

return hist , bins , width , center

def examine_data (data_temp ,b_num):

#This considers only local max/min and the histograms

looks more like the experiment

d1 = data_temp [ data_temp .index [1: -1]][( data_temp [

data_temp .index [1: -1]] > data_temp [ data_temp .index

[: -2]]) * ( data_temp [ data_temp .index [1: -1]] >

data_temp [ data_temp .index [2:]]) ]

#Make histogram

hist ,bins , width , center = make_hist (d1)

# Define the limit for Rogue Waves

limit = d1.mean () + 8.0* d1.std ()

return d1 ,hist ,bins ,width ,center ,limit

def make_and_save_plot (file_name1 ,cols ,b_num =50, iflog=False

):

num_cols = len(cols)

# Read data from file

dataset = pd. read_csv (file_name1 , delimiter =r"\s+")

# Create image plot

im1 = plt. figure ()

im1. subplots_adjust ( wspace =0.27 , hspace =0.27 , left =0.12 ,

right =0.9 , top =0.9 , bottom =0.1)

for (j,col1) in zip(range (1, len(cols)+1) ,cols):
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#get column data

data_temp = dataset [col1]

#get histogram data and RW limit

d1 ,hist ,bins ,width ,center ,limit = examine_data (

data_temp ,b_num)

a1 = im1. add_subplot (2, num_cols , num_cols +j)

b1 = im1. add_subplot (2, num_cols ,j)

a1. locator_params (nbins =5)

b1. locator_params (nbins =5)

#Make quick plot of histogram

if( iflog == False):

a1.bar(center , hist , width=width);

a1. set_ylabel (col1)

else:

a1.bar(center , np.log(hist), width=width);

a1. set_ylabel ("log("+col1+")")

a1. axvline (limit , ymin =0.0 , ymax = 2.0, linewidth

=2, color=’r’,ls=’dashed ’)

a1. set_xlabel ("Power (arb units)")

a1. ticklabel_format (style=’sci ’, axis=’y’,

scilimits =(0 ,0))

a1. set_ylim (0 ,0.2*10)

b1.plot( data_temp .index*ns , data_temp );

b1.plot(d1.index*ns ,d1 ,’r+’);

b1. set_xlabel ("ns");

#Save the file next to .dat

plot_file1 = os.path. splitext ( file_name1 )[0]+ fig_ext

print " Saving to "+ plot_file1

im1. savefig ( plot_file1 )

print "File saved"

# im1.show ()

# plt.close(im1) # Closes figure when done ...
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def get_all_names (directory , decision =’new ’):

file_paths = []

for root , directories ,files in os.walk( directory ):

for filename in files:

#Join strings to get full path

filepath = os.path.join(root , filename )

file_ext = os.path. splitext ( filepath )[-1]

fig_name = os.path. splitext ( filepath )[0]

if ( file_ext == ’.dat ’): #Only look at .dat

files

file_paths . append ( filepath ) #Add to the

list

return file_paths

# ###################################################

def find_array_value (data_array ,value=-np.pi /4.0 ,

value_error =0.9):

diff_in_data = (data_array -value)

signs = np.sign( diff_in_data )

# temp_val2 = signs.index [( signs[signs.index [0]: signs.

index [ -2]]!= signs[signs.index [1]: signs.index [ -1]]) *(

signs[signs.index [0]: signs.index [ -2]]== -1) *(

diff_in_E []<= phase_error )]

# Condition 1: difference passes through zero ...

condition1 = (signs[signs.index [0]: signs.index [ -2]]!=

signs[signs.index [1]: signs.index [ -1]])

# Condition 2: sign of i ==+1 , sign of i+1 ==-1 (

ignoring other way it can pass through zero

condition2 = (signs[signs.index [0]: signs.index

[ -2]]== -1)

# Condition 3: Discontinuities can be flagged as false
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poisitives !

condition3 = (np.abs( data_array [ data_array .index [0]:

data_array .index [-2]]- value) <= value_error )

vals = condition1 * condition2 * condition3

return data_array .index[vals]

def examine_and_count (data , phase_val =(-np.pi /4.0)):

#Take sqrt to get modulus of E2..

d_temp = np.sqrt(data["E2"])

#find largest peak and assume there is at most one RW (

short time traces ...)

peak_index = d_temp . argmax ()

# d1 ,hist ,bins ,width ,center ,limit = examine_data (d_temp ,

b_num =50)

limit = np.sqrt (3.4) #from longer traces

#check number of RW peaks .. see if peak bigger than

limit ...

rws_vals = [i for i in range(len(bins) -1) if bins[i] >

limit and hist[i]>0]

rws = hist[ rws_vals ]. sum ()

#look at phase

temp_ph = np. arctan2 (data["y[2]"],data["y[1]"])

temp_val2 = find_array_value (temp_ph ,value=-np.pi /4.0 ,

value_error =0.9)

#count only phases before rogue wave occurs ..

important_points = [x for x in temp_val2 if x <

peak_index ]

# return [{ rogue waves info },{ phase ==-pi /4}]

return [[rws ,rws_vals ,hist ,bins ,limit , peak_index ],[

important_points , temp_ph ]]

def quick_examine_and_count (data , phase_val =(-np.pi /4.0)):
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#Take sqrt to get modulus of E2..

d_temp = np.sqrt(data["E2"])

#find largest peak and assume there is at most one RW (

short time traces ...)

peak_index = d_temp . argmax ()

limit = np.sqrt (3.4) #from longer traces

if d_temp [ peak_index ]<limit:

return -1

#look at phase

temp_ph = np. arctan2 (data["y[2]"][0: peak_index ],data["y

[1]"][0: peak_index ])

important_points = find_array_value (temp_ph ,value=-np.

pi /4.0 , value_error =0.9)

return len( important_points )

def find_local_max ( data_temp ):

# # bigger than next point ...

b1 = data_temp [ data_temp .index [1: -1]] > data_temp [

data_temp .index [: -2]]

# bigger than last point ...

b2 = data_temp [ data_temp .index [1: -1]] > data_temp [

data_temp .index [2:]]#)]

# pandas cannot handle numexpr , must handle arrays like

this ...

max_locs = b1. values *b2. values

# return index of local max

max_pts = data_temp .index [1: -1][ max_locs ]

# incase there is no local max ...

if len( max_pts )==0:
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#take last coord

max_pts = data_temp .index [1: -1][ -1]

return max_pts

def examine_data2 (data_temp ,limit):

#find largest peak and assume there is at most one RW (

short time traces ...)

peak_index = data_temp . argmax ()

if data_temp [ peak_index ]<limit:

#No rogue wave

return -1

#only need to look as far as the rogue wave

max_pts_E = find_local_max ( data_temp [ data_temp .index [0:

peak_index ]])

return len( max_pts_E )

# ########################################################

#Main

if __name__ == " __main__ ":

len_args = len(sys.argv)

list_args = sys.argv

cols = ["E2"]

print ’Number of arguments :’, len_args , ’arguments .’

print ’Argument List:’, list_args

# Decide which timetraces to look at:

if (len(sys.argv) == 2):

file_name1 = list_args [1]

if file_name1 == "all":

print "do all"

decision = file_name1

list_of_files = get_all_names (dir1 , decision )
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elif file_name1 == "new":

print "do new"

decision = file_name1

list_of_files = get_all_names (dir1 , decision )

else:

" Reading file: "+ file_name1

list_of_files = [ file_name1 ]

elif (len(sys.argv) >= 2):

print "do list"

list_of_files = sys.argv [1: -1]

else:

file_name1 = ’data /0.4/ timetrace_0 .00913 _0.dat ’

print "No file name passed . Using "+ file_name1 +"\n"

for trace in list_of_files :

print trace

make_and_save_plot (trace ,cols ,b_num =50, iflog=True)

# make_and_save_plot (file_name1 ,cols ,b_num =50, iflog=

False)

# ####################

B.3 Relation between ∆ω and ∆ν

∆ωCB = ∆ν2π (B.1)

∆ω = ∆ωCB
2κ (B.2)

∆ω = ∆ν2π
2κ (B.3)

In Eq. B.3, the subscript CB refers to the definition of the dimensionless detuning
from [8]. ∆ν is the laser frequency, and ∆ω is the dimensionless detuning used
predominately in this thesis.
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