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Abstract

Transformers have achieved a state of the art
performance across most natural language pro-
cessing tasks. However, the performance of
these models often degrades when being trained
on data that exhibits skewed class distributions
(class imbalance) common social media data.
This is because training tends to be biased to-
wards head classes that have majority of the
data points . Most of the classical methods
that have been proposed to handle this prob-
lem like re-sampling and re-weighting often
suffer from unstable performance, poor appli-
cability and poor calibration. In this paper, we
propose to use Bayesian methods and Venn-
Abers predictors for well calibrated and robust
training against class imbalance. Our proposed
approach improves f1−score over the base-
line RoBERTa (A Robustly Optimized Bidirec-
tional Embedding from Transformers Pretrain-
ing Approach) model by about 6 points (79.0%
against 72.6%) when training with class imbal-
anced data.

1 Introduction

The phenomena of skewed class distribution also
known as class imbalance is ambiguous and com-
mon in most real-world datasets and natural lan-
guage processing (NLP) tasks (Tayyar Madabushi
et al., 2019). Instead of preserving an ideal uni-
form distribution over each category of labels, most
large-scale datasets exhibit skewed class distribu-
tions with a long tail having some target distri-
butions with significantly more observations than
others (Yang and Xu, 2020).

Although transformer-based models (Vaswani
et al., 2017) have achieved a state of the art per-
formance across several tasks in NLP, their perfor-
mance tends to degrade when trained on long-tailed
data. The main challenge lies in the sparsity of tail
classes leading to estimation of the decision bound-
aries severely biased towards head classes (classes
with more observations) (Pan et al., 2021a).

Class imbalance problem can be tackled at ei-
ther model training or model inference phases.
Approaches to handle class imbalance at training
phase can be classified into re-weighting or re-
sampling and those at model inference phase are
mostly calibration techniques (Menon et al., 2020;
Tian et al., 2020) which adjusts a classifier’s confi-
dence scores without changing the internal weights
or architectures (Pan et al., 2021b) of the underly-
ing models.

Post-processing calibration techniques have
been found to be efficient since they requires no fur-
ther training of the model and are effective on mul-
tiple class imbalanced classification benchmarks
in computer vision (Kang et al., 2020; Pan et al.,
2021b). Inspired by the success of post-processing
calibration techniques, we experiment with tech-
niques that are theoretically known to produce well
calibrated predictions; Bayesian inference for neu-
ral networks (Blundell et al., 2015; Wen et al., 2018;
Gal and Ghahramani, 2016) and Venn-Abers pre-
dictors (Vovk and Petej, 2014, 2012).

We test these methods by participating in the
shared task at the third Workshop on Figurative
Language Processing 2022 at EMNLP 2022 (Con-
ference on Empirical Methods in Natural Language
Processing). The training dataset exhibited a long
tail distribution with 70% of the training texts con-
taining euphemism (Gavidia et al., 2022; Lee et al.,
2022).

Euphemisms are mild or indirect expressions
that are used in place of more unpleasant or of-
fensive ones common in social media data. They
are used to show politeness when discussing sensi-
tive topics or as a way to make unpleasant things
sound better for example saying "laid to rest" in-
stead of "buried" or "armed conflict" instead of
"war" (Lee et al., 2022). With the need to curb inap-
propriate material on social media, people use these
euphemisms to bypass media censoring software
and thus automatically identifying texts containing
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these statements is a timely task. Several compu-
tational techniques have been proposed for the eu-
phemism task (Gavidia et al., 2022; Lee et al., 2022;
Zhu and Bhat, 2021). To the best of our knowledge,
this is the first attempt to combine Bayesian trans-
formers and Venn-Abers predictors for this task.
The contributions of this work are:

• We show that fine-tuning transformers with
Bayesian methods boosts performance over
naive training in imbalanced class setting.

• We propose an an approach to combine
Bayesian transformers and Venn Predictors
for long tail distribution learning.

• We propose a euphemism detection method
with considering of the class imbalance.

2 Background and Related Work

2.1 Euphemism Detection

Machine learning approaches have been proposed
for euphemism detection (Kapron-King and Xu,
2021; Magu and Luo, 2018; Gavidia et al., 2022;
Lee et al., 2022). Sentiment analysis methods have
been utilized to recognize and classify euphemistic
language in text (Felt and Riloff, 2020; Lee et al.,
2022). Magu and Luo, 2018 used word embed-
dings and network analysis to identify euphemisms
in the context of hate speech (Magu and Luo, 2018).
Self supervised methods (Zhu and Bhat, 2021; Zhu
et al., 2021) have also been employed. Our method-
ology is different from methods in literature in
that we consider the long tailed distribution na-
ture of the task and we also present apply novel
techniques from Bayesian inference and Venn pre-
dictors which have not been used before in this
task.

2.2 Learning under skewed class distributions

The dominant solutions to learning data with
long-tailed distributions can be classified into re-
sampling, re-weighting, confidence calibration and
regularization. Re-sampling strategies flatten the
data distribution, popular techniques are over-
sampling (Buda et al., 2018; Byrd and Lipton,
2019; Shen et al., 2016) and under-sampling (He
and Garcia, 2009; Haixiang et al., 2017). However,
under-sampling may discard most of the data points
and over-sampling results into over-fitting on the
minority classes.

Cost sensitive learning (loss re-weighting) is an-
other widely used method which works by assign-
ing weights for different training samples. class-
balanced loss assigns weights to classes propor-
tional to the inverse of their frequency in the
dataset (Huang et al., 2016, 2019). But optimiz-
ing deep learning models with this method under
extreme class class imbalance may deteriorate per-
formance (Zhong et al., 2021). Focal loss (FL)
is a weighted version of cross-entropy loss with
sample-specific weight. Label distribution-aware
margin loss (LDAM) derives a generalization er-
ror bound for imbalanced training and proposes
a margin-aware weighted cross-entropy loss (Cao
et al., 2019) by minimizing margin-based gener-
alization bound achieving significant performance
boost over unweighted cross-entropy loss.

Post-processing methods of handling class im-
balances re-calibrate the posterior distribution from
the predicted confidence scores at test time. Ex-
amples of the methods are are logit adjustment
(Menon et al., 2020) and posterior calibration (PC)
(Tian et al., 2020).

2.3 Bayesian modeling with transformers

Deep learning models especially those based
on the transformer architecture (Vaswani et al.,
2017) have achieved a state-of-the-art performance
across several tasks. BERT (Devlin et al., 2019)
(Bidirectional Embedding from Transformers) and
RoBERTa (Liu et al., 2019) (Robustly Optimized
BERT Pretraining Approach) are among the most
influential transformer variants in NLP. Despite
their impressive performance, deep learning mod-
els tend to be produce over-confidence scores that
are not calibrated which may deteriorate perfor-
mance in imbalanced learning settings (Blundell
et al., 2015).

Unlike the traditional neural networks trained
with Maximum Likelihood Estimation (MLE) that
fit a point estimate for the neural network’s weights,
Bayesian inference puts a prior distribution p(w)
over the weights and approximates the posterior dis-
tribution p(w|D) ∝ p(w)p(D|w). The predictive
distribution of an unknown label ỹ of a test data
item x̃ is given by p(ỹ|x̃) = Ep(w|D)[p(ỹ|x̃, w)],
we observe that taking an expectation over the pos-
terior distribution of the weights is equivalent to
using an ensemble of unaccountably infinite num-
ber of neural networks which would results into a
boost in performance over a single neural network
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Model Precision Recall f1-score
BERT-base 0.712 0.714 0.713
RoBERTa-base (Baseline) 0.745 0.719 0.726
RoBERTa-Platt Scaling 0.702 0.710 0.706
RoBERTa-Venn-Abers 0.736 0.728 0.731
RoBERTa-bayesian 0.732 0.761 0.743
RoBERTa-LDAM 0.769 0.779 0.774
RoBERTa-bayesian-LDAM 0.769 0.819 0.787
RoBERTa-Bayesian-LDAM-Venn-Abers (Ours) 0.794 0.786 0.790

Table 1: Accuracy, precision and f1−score in percentages on the test data set for baseline model (RoBERTa-base)
and our proposed approach (RoBERTa-Bayesian-LDAM-Venn-Abers), LDAM stands for label-distribution-aware
margin loss

(Blundell et al., 2015).
However computing the posterior distribution

over the weights often involve high dimensional
integrals that are intractable and cannot be obtained
in closed form. Popular approaches that have been
proposed to produce approximates of these dis-
tribution are based on monte-carlo estimates and
variational inference. Popular methods that utilise
Bayesian principles for approximating the poste-
rior distribution over neural networks are Bayes
by Backprop (Blundell et al., 2015) and Flipout
(Wen et al., 2018) and monte-carlo dropout (Gal
and Ghahramani, 2016).

Flipout (Wen et al., 2018) is an efficient method
for decorrelating the gradients within a mini-batch
by implicitly sampling pseudo-independent weight
perturbations for each example. Bayes by Back-
prop (Blundell et al., 2015) learns a probability
distribution on the weights of the neural networks
by minimizing the expected lower bound on the
marginal likelihood. Monte Carlo dropout (Gal
and Ghahramani, 2016) casts dropout training dur-
ing training of neural networks as approximate
Bayesian inference in deep Gaussian processes.

2.4 Venn-Abers Prediction
Venn-Abers predictors (Vovk and Petej, 2012) are
a special case of Venn predictors (Vovk and Petej,
2014) which are distribution-free probabilistic pre-
dictors that have a guarantee of being valid under
a sole assumption of the training examples being
exchangeable. They work by transforming the out-
put of a scoring classifier which in our case is a
machine learning model into a multi-probabilistic
prediction that has calibration guarantees.

More formally, assume we are given training
samples D = {(x, y)}ni=1 consisting of two com-
ponents; a data point x ∈ X and its label y ∈ Y .

Given a test data point xn+1, the Venn predictor
outputs a multi probabilistic prediction in the form
of a probability distribution over possible values of
the label.

A venn taxonomy B is a measurable function
B that assigns to each n ∈ {1, 2, ...} and each
sequence (d1, ...dn) ∈ Dn an equivalence relation
∼ on {1, ..., n}. The relation has to be equivariant
in the sense that for each n and each permutation
ϕ of {1, ..., n},

(i ∼ j|d1, ...dn) ⇒ (ϕ(i) ∼ ϕ(j)|dϕ(1), ..., dϕ(n))
(1)

where (i ∼ j|d1, ...dn) means that i is equivalent
to j under the relation assigned by B to (d1, ...dn).
A venn predictor with a Venn taxonomy B outputs
a pair (p0, p1) where

py =
|{i ∈ B(n+ 1|d1, ..., dn, (xn+1, y))|yi = 1}|

|B(n+ 1|d1, ...dn, (xn+1, y))|
(2)

where B(j|d1, .., dn) the class of the equivalence
of j is defined as follows:

B(j|d1, .., dn) = {i ∈ {1, ..., n}|(i ∼ j|d1, ...dn)}
(3)

p0 and p1 express the predicted probabilities of the
test object xn+1 belonging to a certain class.

3 Methodology

The dataset D = {(x, y)}ni=1 is divided into 3
splits; Dtrain for training the model, Dvalidation

for selecting the best models and calibration step,
Dtest for testing our approaches. We fine-tune
RoBERTa (Liu et al., 2019) with standard cross
entropy loss and with label-distribution-aware mar-
gin loss (LDAM) function (Cao et al., 2019). We
first experiment with training our models in non-
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Bayesian way using the standard maximum likeli-
hood estimation and also in a Bayesian way by ap-
plying Bayesian layers in our neural network. The
Bayesian layers used for our experimentation are
Monte carlo dropout (Gal and Ghahramani, 2016).

To calibrate our predictions, we perform in-
ference on the validation dataset Dvalidation of
size k with our trained model and obtained un-
calibrated confidence scores denoted as {z1, ..., zk}
for each test data point x. Venn-Abers predictors
proceeds by fitting an isotonic regression on the
set (z1, y1), ...(zk, yk), (z, 0) and the computing
the score s(xi) for each calibration data points
(xi, yi). Let g be an increasing function on the
set s(x1), ...s(xk) that maximizes the likelihood∏k

i=1 pi where:

pi =

{
g(s(xi)) if yi = 1

1− g(s(xi)) if yi = 0
(4)

Thus the multi-probabilistic prediction for x is the
pair

(p0, p1) = (g0(s0(x)), g1(s1(x))) (5)

The estimated label for a text data point x is the
probability that minimizes the regret of the loss
function calculated as in Equation 6.

p =
p1

1− p0 + p1
(6)

4 Results and Discussion

4.1 Datasets

The dataset used for experiments is an Euphemism
detection (ED) dataset (Gavidia et al., 2022; Lee
et al., 2022) released by Third Workshop on Figu-
rative Language Processing 2022 at EMNLP 2022
shared task on Euphesim Detection. This was a
binary classification problem for identifying text
expression that was euphemistic. The training data
consisted of 1572 training points and test data con-
sisted of 393 texts. Of the 1572 training texts, only
466 (30%) were did not contain euphemism.

4.2 Experimental Setup

We conduct experiments with pretrained trans-
former language models; RoBERTa (Liu et al.,
2019), Bayesian methods and Venn-Abers predic-
tors . Experiments are done for 50 epochs, max
length of 512, batch size of 50 and the learning
rate was set at 0.0005. The final submission were

evaluated using f1-score. Transformers are im-
plemented using hugging-face transformer library
(Wolf et al., 2019), bayesian layers are imple-
mented using Bayesian torch and baal (Krishnan
and Tickoo, 2020; Atighehchian et al., 2022) and
conformal predictors were implemented using reli-
abots (Shafer and Vovk, 2008).

4.3 Discussion

To assess the impact of Bayesian fine-tuning and
Venn predictors, we perform experiments on the
euphemisms detection dataset (Lee et al., 2022) de-
scribed in section 4.1. Table 1 shows a combination
of different models and their results on the test set.
F1-score, recall and accuracy measures were used
to evaluate the performance of different models as
shown in Table 1. RoBERTa achieves a a slightly
better performance compared to BERT (72.6% ver-
sus 71.3%). The observation is re-enforced by the
impact of the architecture design of the pre-trained
model on downstream tasks.

Experiments results on the test as shown in Fig-
ure 1 reveal that calibrating confidence scores of
RoBERTa using Venn Abers predictors improves
performance of the model by 1.2%. This is con-
sistent with other results that report improved per-
formance with post-hoc posterior calibration but
naive calibration using platt scaling degrades per-
formance of the model (Tian et al., 2020). Fine-
tuning RoBERTa with a Bayesian layer boosts per-
formance (about 2%) compared to the traditional
fine-tuning, This is because Bayesian layers in a
neural networks can be seen an ensemble of many
networks at test time.

The biggest performance boost comes from train-
ing our models with a label distribution aware mar-
gin loss function (LDAM) and differed weighting,
and this demonstrated the importance of cost sensi-
tive learning when the data distribution is skewed.
Finally our best system which we submitted for
competition to the euphemism shared tasks was
a combination of RoBERTa, Bayesian learning,
cost sensitive learning and Venn Abers Predictors
(RoBERTa-bayesian-LDAM-Venn-Abers) with an
f1−score of 79% as shown in Table 1.

5 Conclusion

In this work, we have presented an approach for im-
proving classification performance of transformer
model when the data exhibits skewed class distribu-
tions. Data exhibits skewed class distribution when
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majority of the data points belong to some classes
while other classes have very few data points. The
situation makes naive training of neural networks
hard since they tend to biased towards head classes.
Our approach is based on cost sensitive Bayesian
learning with Venn predictors for robust training
against the class imbalance. Experiments the Eu-
phemisms detection dataset which had class im-
balance show that this method improves over tra-
ditional fine tuning by about 6% in terms of f−
score (79.0% versus 72.6%). As future work, we
would like to investigate how these finding extend
beyond the euphemisms detection dataset.
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