
Title Analytical expressions for inductances of 3D air core inductors for
integrated power supply

Authors Shetty, Chandra;Kandeel, Youssef;Ye, Liang;O'Driscoll,
Séamus;McCloskey, Paul;Duffy, Maeve;Ó Mathúna, S. Cian

Publication date 2021-05-06

Original Citation Shetty, C., Kandeel, Y., Kulkarni, S., Ye, L., O’Driscoll, S.,
McCloskey, P., Duffy, M. and Mathúna, C. Ó. (2021) 'Analytical
expressions for inductances of 3D air core inductors for
integrated power supply', IEEE Journal of Emerging and
Selected Topics in Power Electronics, In Press, doi: 10.1109/
JESTPE.2021.3077203

Type of publication Article (peer-reviewed)

Link to publisher's
version

10.1109/JESTPE.2021.3077203

Rights © 2021 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Download date 2024-03-28 11:11:21

Item downloaded
from

https://hdl.handle.net/10468/12536

https://hdl.handle.net/10468/12536


2168-6777 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JESTPE.2021.3077203, IEEE Journal
of Emerging and Selected Topics in Power Electronics

Analytical Expressions for Inductances of 3D Air
Core Inductors for Integrated Power Supply

Chandra Shetty, Student Member, IEEE, Youssef Kandeel, Student Member, IEEE, Liang Ye, Séamus O’Driscoll,
Paul McCloskey, Maeve Duffy, Senior Member, IEEE, and Cian O’Mathuna, Fellow, IEEE

Abstract—This work presents analytical expressions for the DC
inductance of 3D air core inductors with circular cross section
pillars (CCSP) and rectangular cross section pillars (RCSP). We
consider the following four types of inductor structures: (1) a
toroid with CCSP; (2) a toroid with RCSP; (3) a solenoid with
RCSP; and (4) a solenoid with CCSP. For each type, a unique
analytical model is developed for obtaining DC inductance.
High frequency (1-100 MHz) effects on inductance are also
discussed. The inductance values predicted by the proposed
analytical models of the first three types of inductor structures
are in an acceptable agreement with numerical Finite Element
Analysis (FEA) solutions, where the maximum difference is 7.3%.
Also, our analytical model for the fourth type inductor reduces
the error, when correlated with FEA inductance value, up to
6× compared to previously published models. A comparison
of results using proposed analytical expressions with published
measured values as well as our measurement data demonstrates
error ranging from 0.5 to 16.2%, while conventional formulae
show errors of up to 143%. The results of the proposed models
could serve as a good initial estimate for power supply on chip
(PwrSoC) and power supply in package (PSiP) applications.

Index Terms—Inductance model, 3D solenoid inductor, 3D
toroidal inductor, self-inductance, mutual inductance, partial
inductance, loop inductance, through silicon via (TSV), air core,
power supply on chip (PwrSoC), power supply in package (PSiP).

NOMENCLATURE

µr Relative permeability.
µo Permeability of free space (4π × 10−7 H/m).
H Magnetic field strength.
f Frequency.
ρ Radius of circular pillar.
N Number of turns.
θ Angle between any two turns.
Ri Inner radius of the toroidal inductor.
Ro Outer radius of the toroidal inductor.
lp Length of copper pillar.
αp Width of the copper pillar.
βp Height of the copper pillar.
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αi Width of the interconnect.
βi Height of the interconnect.
Lcirc Self-inductance of a circular cross sectiion con-

ductor.
Lrect Self-inductance of a rectangular cross section

conductor.
LRECT 1 Self-inductance of a rectangular loop with non-

uniform rectangular cross section conductors.
LRECT 2 Self-inductance of a rectangular loop with uni-

form rectangular cross section conductors.
Lsq 1 Self-inductance of a square loop with uniform

rectangular cross section conductors.
Lsq 2 Self-inductance of a square loop with square

cross section conductors.
Lip Self-inductance of inner pillar.
Lop Self-inductance of outer pillar.
Lti Self-inductance of the top interconnect.
Lbi Self-inductance of the bottom interconnect.
Li ST

i = 1, 2,

3, 4

Self-inductance of a single turn of type 1,type

2, type 3, and type 4 inductors, respectively.
L3 ST (rect) Self-inductance of a single turn (rectangular

shape with rectangular cross section conduc-
tors) of type 3 inductor.

L3 ST (sq) Self-inductance of a single turn (square shape
with square cross section conductors) of type
3 inductor.

L1 e Total inductance (self and mutual inductances)
of type 1 inductor with even turns.

L1 o Total inductance of type 1 inductor with odd
turns.

L3 Total inductance of type 3 inductor.
Lin Internal inductance of a conductor.
Lex External inductance of a conductor.
Mpar Mutual inductance between parallel conduc-

tors.
Mlm 1 Mutual inductance between two conductors at

an angle.
Mlm 2 Mutual inductance between two skewed and

displaced conductors.
Mrect Mutual inductance between two filamentary

parallel rectangles.
Msq Mutual inductance between two filamentary

parallel squares.
Mθ Mutual inductance between any two turns at an
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angle.
Mip Mutual inductance between inner pillars.
Mop Mutual inductance between outer pillars.
Mbi Mutual inductance between bottom intercon-

nects.
Mti Mutual inductance between top interconnects.
Mio ST Mutual inductance between inner and outer

pillars of a single turn.
Mio TT Mutual inductance between inner and outer

pillars of two turns.
Mbt ST Mutual inductance between the bottom and top

interconnects of a single turn.
Mbt TT Mutual inductance between the bottom and top

interconnects of two turns.
M1 e Net mutual inductance of the type 1 inductor

with even turns.
M1 o Net mutual inductance of the type 1 inductor

with odd turns.
M3 Net mutual inductance of type 3 inductor.
Ms(rect) Mutual inductance between two rectangular

shape turns of the type 3 inductor with spac-
ing s.

Ms(sq) Mutual inductance between two square shape
turns of the type 3 inductor with spacing s.

I. INTRODUCTION

INDUCTORS are essential components in power supplies.
Increasingly, point-of-load (POL) power delivery is now

the primary issue across all market sections, such as battery-
powered portable electronic systems, including laptops, smart-
phones, tablets, etc [1]. With increasing performance and
decreasing footprint, there is a rising demand for on-chip
three dimensional (3D) inductors [2], [3]. Micro inductors
are used in on-chip voltage regulators, radio-frequency (RF)
circuits, micro sensors, micro actuators, power MEMS devices,
etc. The benefits of 3D inductors can be extended to such
applications. On-chip inductors are classified either as mag-
netic core inductors or air core inductors. Although magnetic
core inductors can achieve high inductance density, the loss
associated can limit operation at very high frequencies. The
presence of core will reduce the Q-factor of the inductor unless
the core is laminated and low loss magnetic cores are used;
also, it is difficult to induce anisotropy in magnetic cores [4].
Another challenge is the integration of the magnetic core for
the toroidal inductors [5]. On the other hand, air core inductors
have limited inductance density, but have no core loss, which
enables air core inductors to be used in the higher-frequency
range (>10 MHz) [6]–[8]. High frequency operation reduces
the inductance requirement of power converters; however,
at the same time it introduces switching losses. Resonant
converters employ soft switching to reduce switching losses.
As a consequence, air core inductors find good application in
resonant converters [9].

In principle, the modelling of inductors is more complicated
than the modelling of other components of electrical engi-
neering such as resistors. This is particularly true of air-core
inductors, where the variation in coupling between different

pairs of turns is significant due to the absence of a core.
Therefore, simplified analytical equations for the inductance of
inductors with magnetic cores that are based on an assumption
of ideal coupling are not accurate. Simulators such as ANSYS
Q3D and ANSYS Maxwell can be used to obtain an accurate
numerical solution for the inductance of 3D inductors. How-
ever, simulators demand huge computation time and are also
expensive to license. Conventional analytical expressions for
the inductance of toroidal and solenoidal inductors are not
suitable for 3D inductors (section II offers a comprehensive
explanation); typical errors are more than 20%. Hence, there is
motivation to derive better analytical models for the inductance
of 3D inductors.

For an effective research, we should put as much emphasis
on analytical modelling as we do on experimental research.
Analytical methods can evaluate the quality of the experimen-
tal data. Even though there are numerous published works on
the fabrication of 3D toroidal inductors [10], [11], little or
no attention has been given to validating experimental data
with analytical expressions for inductance. The same holds
true for fabricated 3D solenoid inductors [12], [13]. This may
be due to the fact that little progress or no attempt towards
the development of analytical models for the inductance of 3D
inductors has been made. In previous works [14], [15], consid-
erable effort has been made to develop an analytical expression
for the inductance of 3D solenoid inductors with CCSP.
These analytical models are based on the self-inductances
of individual conductors and the mutual inductance between
any two conductors. In [14], the analytical model introduces
large error, up to 11.67% when compared with FEM simulated
inductance value, due to approximations, which are described
as follows: (1) rectangular conductors are approximated as
circular conductors, and (2) skewed and displaced conductors
are treated as parallel conductors. On the other hand, [15]
proposes a better analytical model compared to [14], maximum
error is around 3.6%. The disadvantage of this model is the
involvement of the computation of mutual inductances of a
large number of conductor pairs for the estimation of the
net mutual inductance (mutual inductances of all the turn
pairs), which contributes to error. We have developed a new
analytical model for the inductance of such inductor struc-
tures in section III. Our model directly computes the mutual
inductance between any two turns, without the requirement of
the calculation of mutual inductances of conductor pairs. As
a result, the proposed model requires a lower number of pairs
of turns than pairs of conductors for the estimation of the net
mutual inductance. Hence, our model achieves higher accuracy
compared to the analytical model from [15]; maximum error
exhibited by our model is 1.78%. More details on the reason
for the improved accuracy is dealt in section IV. As far as a
toroid with CCSP, a toroid with RCSP and a solenoid with
RCSP are concerned, this is the first attempt, based on the
literature survey, for developing an analytical model.

In this work, we have developed new analytical models for
the inductances of 3D inductors such as the solenoid and the
toroid. Fig. 1(a)-(d) show the parameterized physical structures
for a toroidal inductor with CCSP, a toroidal inductor with
RCSP, a solenoidal inductor with RCSP, and a solenoidal in-
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ductor with CCSP, respectively. Our model treat the inductors
either as (1) a group of loop currents, where the number of
loops equal to the number of turns, or (2) a group of piecewise
current sources: each segment of the 3D inductor, which is
formed by a number of piecewise-straight conductor segments,
considered as a current source. The proposed analytical models
(which represents physical phenomena) are a set of linear and
nonlinear equations: the basic equations are borrowed from
the previously published works and the applied equations,
relating the partial and loop inductances (self and mutual) to
the inductances of multi turn loops such as the solenoid and the
toroid, are introduced on our own. Also, the proposed formulas
are tested with our measurement data as well as previously
published measurements.

The rest of this paper is organized as follows. The basic
equations for self and mutual inductances are introduced in
section II. In section III, analytical models for four different
types of inductors are presented. In section IV, the accuracy
of the proposed models is evaluated with electromagnetic field
simulation solution (ANSYS Maxwell and ANSYS Q3D), and
measurement data from this and previous works. Also, the ac-
curacy of the proposed analytical models is compared with that
of previously published models. Significance, application and
performance of all four types is presented in section V. High
frequency effects on inductance are discussed in section VI.
Section VII draws some conclusions.

II. BACKGROUND THEORY

This section is dedicated to reintroducing all the associated
formulas for self and mutual inductances of straight conductors
as well as turn geometries composed of straight conductors,
such as rectangular and square loops, from the previously
published literature [16]–[19]. The formulas are based on the
concept of a partial inductance, which has been reviewed
in [20], [21]. The conventional, self-inductance, and mutual in-
ductance formulas are presented in Appendix A, Appendix B,
and Appendix C, respectively. The relative permeability (µr)
is assumed to be unity in all the formulas.

As mentioned in the introductory section, this work focus
on the development of the analytical models for 3D toroidal
and solenoidal inductors as existing conventional models are
not suitable to compute the inductance of 3D micro inductors.
The conventional formulas for the inductance of toroidal and
solenoidal inductors, given by (A.1) and (A.2) (refer to the
Appendix A), respectively, are derived with the following
assumptions: (1) the coil length, l, is greater than the radius (r)
of the core, l >> r for a solenoid, (2) the H-field is confined
within the core and is in the circumferential direction for a
toroid, (3) the relative permeability of the core is very large,
µr >> 1, and (4) the system exhibits cylindrical symmetry.
Since 3D microfabricated air-core inductors do not possess
these properties, there is a necessity to derive alternative
expressions.

3D inductors can either be embedded within the substrate
(in-chip or substrate embedded inductors) [11] or fabricated on
top of the substrate (on-chip or on-substrate inductors) [22].
In both categories, the inductor consists of a combination

of vertical conductors and interconnecting conductors. In the
former category, vertical conductors are sometimes formed
as through-silicon-vias (TSVs) [23], [24]. There is one main
distinction, which is necessary to consider for developing
an analytical model, for these two categories: for substrate-
embedded inductors, the height of the vertical conductor is
equal to the height of the substrate, whereas for on-substrate
inductors it is equal to the photoresist height. Throughout this
paper, we use the term copper pillar (or simply pillar) in lieu of
vertical winding, vertical conductor or TSV, which are used in
the literature. By the same token, we use the term interconnect
for radial conductor, copper slab, redistribution layer (RDL)
or metal track.

The solenoid and toroidal 3D inductors can be constructed
with conductors of circular or rectangular cross section, as
shown in Fig.1. All the four inductor formats we considered
comprise of straight conductors. The total inductance of the
complete inductor structure is the summation of the self-
inductances of all straight conductors connected in series to
form a turn and the mutual inductances between all resulting
pairs of turns.

A. Self-Inductance Formulas

Here, we introduce the self-inductance of different types
of geometries such as straight conductors with circular and
rectangular cross sections and a rectangular loop composed of
square cross section or rectangular cross section conductors.

1) Self-inductance of a straight conductor: The self-
inductance of a straight conductor of length l, with a circular
cross section of radius ρ is given by (B.1) [16].

Similarly, the self-inductance of a conductor of length l and
rectangular cross section α× β is given by (B.2) [19].

2) Self-inductance of a rectangular loop [16]: The self-
inductance of a rectangular loop, having length a and breadth
b, composed of four rectangular cross section conductors of
sides α and β can be calculated from (B.3).

In (B.3), it is assumed that the cros section of the rectangular
loop is non-uniform (i.e., conductors along the length a and the
breadth b have cross section αa×βa and αb×βb, respectively).
If all four conductors of the rectangular loop have the same
cross section, that is, (α+ β)a = (α+ β)b , the formula (B.3)
reduces to (B.4).

For a square loop, a = b, (B.4) simplifies to (B.5). If α =
β, the section of the conductor is a square, (B.5) is further
simplified to (B.6).

B. Mutual-Inductance Formulas

Here, we reproduce mutual inductances of different types
of geometries such as parallel straight conductors, conductors
at an angle, skewed and displaced conductors.

1) Mutual inductance between two parallel conduc-
tors [16]: To calculate the mutual inductance between two
parallel conductors of length l and separation D, we can
use (C.1), which is valid for both circular as well as rectangular
cross section conductors. Here, D is the distance between the
centers of the conductors.

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on May 19,2021 at 12:46:44 UTC from IEEE Xplore.  Restrictions apply. 



2168-6777 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JESTPE.2021.3077203, IEEE Journal
of Emerging and Selected Topics in Power Electronics

Fig. 1. 3D parameterized mechanical drawings of inductor structures: (a) toroid with CCSP (b) toroid with RCSP (c) solenoid
with RCSP, (d) solenoid with CCSP.

2) Mutual inductance between two conductors at an an-
gle [17], [18]: Fig. 2 shows two conductors having lengths
l and m, and placed at an angle θ in the same plane. When
the lengths l and m are extended to the point of intersection,
extension lengths µ and ν will be generated. The mutual
inductance of two conductors at an angle θ is given by (C.2).
The four distances between the ends of the conductors, as
shown in Fig.2, are given by (C.3)-(C.6).

3) Mutual inductance between two skewed and displaced
conductors [17], [18]: Fig. 3 shows two conductors having
similar features of the preceding case except that the conduc-
tors are displaced by a distance d. Similar to the last case, the
four distances between the ends of the conductors, as shown
in Fig. 3, are given by (C.7). The mutual inductance between
the conductors having lengths l and m is given by (C.8). The
parameter Ω in (C.8) is given by (C.9).

Fig. 2. Two conductors at an angle [17].
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Fig. 3. Two skewed and displaced conductors [17].

The main difference between (C.2) and (C.8) is due to the
angle Ω , which vanishes for d = 0. In other words, if the
displacement between the conductors, d, is zero, then the angle
θ between the two conductors is the same as in the previous
case.

4) Mutual inductance between two filamentary parallel
rectangles [16]: For two equal parallel rectangles of sides
a and b, and separation s, the mutual inductance is given
by (C.10). For two squares, where a = b, (C.10) simplifies
to (C.11).

III. ANALYTICAL MODELS

In this section, analytical expressions for the inductances
of four different types of inductor structures are developed
based on their approximated and actual geometric models
(hereinafter together referred to as ‘the geometric models’).
The geometric models of all four types inductor structures
are classified into two categories: (1) single-turn geometric
model (STGM): the physical structure employed for computing
self-inductance of a single turn and (2) two-turn geometric
model (TTGM): the physical structure employed for computing
mutual inductance between any two turns. The inductance of
each type of inductor structure, as shown in Fig. 1, is the
summation of self-inductances of all N -turns and the mutual
inductances between all pairs of N -turns.

A. Type 1: Toroidal Inductor with CCSP

This type of inductor was embedded in a silicon substrate
with TSVs (referred to as copper pillars in this work) and
suspended copper windings (referred to as interconnects in
this work) [9].

The geometric models of this inductor structure have the
following features: STGM considers the actual structure of the
turn, as shown in Fig. 4, whereas TTGM assumes that the turns
are closed, as shown in Fig. 5. We will now walk through the
steps involved in determining the self and mutual inductances
of this inductor structure by using its geometric models.

1) Self-inductance of a single toroidal turn (L1 ST ): L1 ST

can be computed by using the STGM, as shown in Fig. 4 and
is composed of the following components:

(i) Self-inductance of inner pillar (Lip) and outer pillar
(Lop): Equation (B.1) can be used to calculate the self-
inductance of inner and outer pillars of length, lp and
radius, ρ, given by (1).

Lip = Lop = Lcirc(lp, ρ) (1)

(ii) Self-inductance of the top interconnect (Lti) and the
bottom interconnect (Lbi): Similarly, (B.2) can be used to
calculate the self-inductance of the top and bottom inter-
connects having length lp and rectangular cross sectional
dimensions of αi (width) and βi (height), given by (2).

Lti/bi = Lrect(lti/bi, αi, βi) (2)

(iii) Mutual inductance between inner and outer pillars
(Mio ST ): Mutual inductance between inner and outer pil-
lars can be determined by placing l = lp and D = Ro - Ri
+ 2ρ in (C.1) and the resulting expression is:

Mio ST = Mpar(lp, Ro −Ri + 2ρ) (3)

Where Ri and Ro are the inner and outer radii of the toroidal
inductor, respectively. In Mio ST , subscript denotes the case
of a single turn (ST).

(iv) Mutual inductance between the bottom and top intercon-
nects (Mbt ST ): The expressions for the lengths of the top
interconnect, lti, and the bottom interconnect, lbi, are given
by (4) and (5), respectively.

lti = Ro −Ri + 2ρ (4)

lbi =

√
(Ro + ρ)

2
+ (Ri − ρ)

2 − 2 (Ro + ρ) (Ri − ρ) cosθ

(5)

From Figs. 1(a) and 4, we can see that θ = 360/N, where
N is the number of turns.
Therefore, we can calculate the distances between the
ends of the bottom and top interconnects, that is, R1 ST ,
R2 ST , R3 ST , and R4 ST , as illustrated in Fig. 4. Equation
(C.7) from the literature can be employed to obtain the
expressions for all four distances. By plugging the values
l = lti, m = lbi, d = lp+βi, µ = 0, ν = 0, θ1 ≈ θ = 360/N
in (C.7), (C.8), and (C.9), we obtain the values of R1 ST ,
R2 ST , R3 ST , R4 ST , Mbt ST , and Ωbt ST , respectively
and the expressions are given as follows:

R1 ST =
√

(lp + βi)2 + r1(lti, lbi, 0, 0, 360/N) (6)

R2 ST =
√

(lp + βi)2 + r2(lti, 0, 0, 360/N) (7)

R3 ST =
√

(lp + βi)2 + r3(0, 0, 360/N) (8)

R4 ST =
√

(lp + βi)2 + r4(lbi, 0, 0, 360/N) (9)

Mbt ST = Mlm 2(lti, lbi, lp + βi, 0, 0, 360/N) (10)

Ωbt ST = Ω(lti, lbi, lp + βi, 0, 0, 360/N) (11)
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Fig. 4. Single-turn geometric model (STGM) of type 1 for computing the self-inductance of a single-turn.

where d is the center to center distance between the top
and bottom interconnects of a single turn and, d = lp + βi,
this relation can be easily understood with the help of Fig.
4. The parameter θ1 is the angle between top and bottom
interconnects as shown in Fig. 4. For the sake of brevity,
Mbt ST is presented as a function of variables rather than
the whole expression; the same holds true for most of the
equations presented in this paper.

Finally, L1 ST is the sum of all the components, i.e., Lip+
Lop + Lti + Lbi − 2Mio ST − 2Mbt ST . The expression for
L1 ST is given by

L1 ST = 2Lcirc(lp, ρ) + Lrect(lti, αi, βi)

+ Lrect(lbi, αi, βi)− 2Mpar(lp, Ro −Ri + 2ρ)

− 2Mlm 2(lti, lbi, lp + βi, 0, 0, 360/N) (12)

All other conductor pair combinations yield zero mutual
inductance due to orthogonal currents. Equation (12) can be
easily understood with the help of Fig. 9, which is the STGM
for type 4 inductor. The STGMs of type 1 and type 4 are
the same. The negative sign in (12) signifies that currents

flowing in pillars and interconnects are in opposite directions
as illustrated in Fig. 9.

2) Mutual inductance between any two turns at an angle
(Mθ): Mθ can be determined by employing the TTGM, as
shown in Fig. 5. In the TTGM, the position of the bottom
interconnect is reoriented as an approximation; however, the
actual length is preserved. This modification would enable us
to employ existing basic equations to find Mθ. The modi-
fication provides reasonable accuracy, which is discussed in
validation section. While computing Mθ, we can use (5) to
determine the bottom interconnect length, lbi. Before proceed-
ing to the determination of Mθ, we should familiarize with
mutual inductances of conductors at an angle, and skewed and
displaced conductors, which are discussed in section II. Mθ

consists of the following components:
(i) Mutual inductance between bottom interconnects

(Mbi): First, we have to calculate the following parameters
r1b, r2b, r3b and r4b, which are the distances between the
ends of the bottom interconnects as illustrated in Fig. 5.
The parameter r4b is not shown on the figure as it is equal
to r2b. The expressions for the parameters can be computed
by using (C.3)-(C.6). Substitute l = m = lbi, µ = ν = Ro+ρ

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on May 19,2021 at 12:46:44 UTC from IEEE Xplore.  Restrictions apply. 



2168-6777 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JESTPE.2021.3077203, IEEE Journal
of Emerging and Selected Topics in Power Electronics

Fig. 5. Two-turn geometric model (TTGM) of type 1 for computing the mutual inductance between any two turns (only the
parameters required for the calculation are presented).

- lbi, θ = 360/N in (C.2), (C.3), (C.4), (C.5), and (C.6) to
get the values of Mbi, r1b, r2b, r3b and r4b, respectively.
The expressions are given as follows:

Mbi = Mlm 1(lbi, lbi, Ro + ρ− lbi, Ro + ρ− lbi, 360/N)
(13)

r1b = r1(lbi, lbi, Ro + ρ− lbi, Ro + ρ− lbi, 360/N) (14)

r2b = r4b = r2(lbi, Ro+ρ− lbi, Ro+ρ− lbi, 360/N) (15)

r3b = r3(Ro + ρ− lbi, Ro + ρ− lbi, 360/N) (16)

(ii) Mutual inductance between top interconnects (Mti): Sim-
ilar to the previous case, first we need to find the distance
between the ends of the top interconnects. The distances are
denoted by r1t, r2t, r3t, and r4t. The value of r1 is the same
for both top and bottom interconnects, that is, r1t = r1b; this
is evident from Fig. 5. Also, we should note that r2t = r4t.
The values of Mti, r1t, r2t, r3t and r4t can be computed
by substituting l = m = lti, µ = ν = Ri - ρ, θ = 360/N

in (C.2), (C.3), (C.4), (C.5), and (C.6), respectively. The
expressions are given by

Mti = Mlm 1(lti, lti, Ri − ρ,Ri − ρ, 360/N) (17)

r1t = r1(lti, lti, Ri − ρ,Ri − ρ, 360/N) (18)

r2t = r4t = r2(lti, Ri − ρ,Ri − ρ, 360/N) (19)

r3t = r3(Ri − ρ,Ri − ρ, 360/N) (20)

(iii) Mutual inductance between outer copper pillars
(Mop): The distance between outer pillars is r1b (given by
(14)), which is the same as one of the distances between
the ends of the bottom interconnects, as illustrated in Fig.
5. Then we should replace D by r1b in (C.1) to calculate
Mop and is given by (21).

Mop = Mpar(lp, r1b) (21)

We can also use r1t in place of r1b in the above expression
since r1t = r1b.
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(iv) Mutual inductance between inner and outer pillars
(Mio TT ): In this case, the distance between inner and outer
pillars is the same as one of the distances between the ends
of the top interconnects, i.e., r2t (given by (19)), as shown
in Fig. 5. Next, we should follow the same step as we did
in the previous type to find Mio TT . We can also use r4t in
place of r2t as r4t = r2t. The value of Mio TT is equal to:

Mio TT = Mpar(lp, r2t) (22)

In Mio TT , subscript denotes the case of a two-turn (TT).
(v) Mutual inductance between inner pillars (Mip): The same

procedure, described for the above two types, can be used
to find Mip. Note that the distance r3t (given by (20)), one
of the distances between the ends of top interconnects as
illustrated in Fig. 5, is the distance between inner pillars.
The value of Mip is equal to:

Mip = Mpar(lp, r3t) (23)

(vi) Mutual inductance between the bottom and top inter-
connects (Mbt TT ): We can repeat the same steps that we
adapted for finding Mti or Mbi. That is, here also we should
find the distance between the ends of the top and bottom
interconnects. The distances R1 TT , R2 TT , R3 TT , and
R4 TT of the bottom and top interconnects, as illustrated
in Fig. 5, can be calculated from (C.7). Substitute l = lti, m
= lbi, µ = Ri - ρ, ν = Ro + ρ - lbi, d = lp+βi, θ = 360/N
in (C.7), (C.8), and (C.9) to get the expression for R1 TT ,
R2 TT , R3 TT , R4 TT , Mbt TT , and Ωbt TT , respectively.
The expressions are given by

R1 TT =
√
d2 + r1(lti, lbi, Ri − ρ,Ro + ρ− lbi, θ) (24)

R2 TT =
√
d2 + r2(lti, Ri − ρ,Ro + ρ− lbi, θ) (25)

R3 TT =
√
d2 + r3(Ri − ρ,Ro + ρ− lbi, θ) (26)

R4 TT =
√
d2 + r4(lbi, Ri − ρ,Ro + ρ− lbi, θ) (27)

Mbt TT = Mlm 2(lti, lbi, d, Ri − ρ,Ro + ρ− lbi, θ) (28)

Ωbt TT = Ω(lti, lbi, d, Ri − ρ,Ro + ρ− lbi, θ) (29)

Finally, Mθ is the sum of all the above components and is
equal to:

Mθ = 2Mbi + 2Mti + 2Mop − 4Mio TT

+ 2Mip − 4Mbt TT (30)

Equation (30) can be easily understood with the help of Fig.
7, which is the TTGM for type 2 inductor, as the components
of Mθ are the same for type 1 and type 2 inductors. The
mutual inductance contribution from all the pairs of turns can
be expressed as:

M1 e = N
(
Mθ +M2θ · · ·M(N

2 −1)θ

)
+

(
N

2

)
M180 (31)

M1 o = N
(
Mθ +M2θ +M3θ · · · · · · · · · · · ·M(N−1

2 )θ

)
(32)

in which Mθ is the mutual inductance between the turns
having angle θ, M2θ is the mutual inductance between the
turns having angle 2θ and so on.

Equations (31) and (32) are expressions for the net mutual
inductance for an inductor having an even number of turns,
and an odd number of turns, respectively. The total inductance
of the whole inductor structure is given by (33) for an even
number of turns and (34) for an odd number of turns.

L1 e = NL1 ST +M1 e (33)

L1 o = NL1 ST +M1 o (34)

B. Type 2: Toroidal Inductor with RCSP

Silicon-embedded 3D inductors can be fabricated using a
lithography-based process or a shadow-mask-based process;
the shadow mask approach reduces process time [11], [25].
Since the shadow mask based process does not support circular
features [26], rectangular cross section geometries can be
chosen while employing this approach in order to reduce
overall processing time.

For the type 2 inductor structure, new geometric models
are adapted for computing self and mutual inductances. The
STGM and TTGM of type 2 are shown in Figs. 6 and 7,
respectively. There are two subtle differences between the
type 2 and type1 inductors’ STGM and TTGM: 1) in the
STGM of type 2, the turn is completely closed, whereas in
the case of type 1 the actual structure of the turn, without
any physical approximation, is considered and (2) when it
comes to TTGM, for both types the turns are completely
closed; however, in type 2 the bottom interconnect length is
approximated as equal to the top interconnect length, i.e.,
lbi = lti = Ro − Ri + βp, while in the case of type 1, the
actual length of the bottom interconnect is considered, i.e.,

lbi =

√
(Ro + ρ)

2
+ (Ri − ρ)

2 − 2 (Ro + ρ) (Ri − ρ) cosθ.
In fact, the actual length of the bottom interconnect is larger
than the top interconnect length in both types of inductors.

The TTGMs of type 2 and type 1 are interchangeable.
The TTGM of type 2 was employed to find the net mutual
inductance of type 1. The FEA solution demonstrates that
the mutual inductance predicted by TTGM of type 2 is 5%
less accurate compared to that of TTGM of type 1. For the
comparison, we used the specifications of an example inductor
with even turns, which are given in Table I of section IV. On
the other hand, the advantage of the TTGM of type 2 is the
reduced complexity, which is discussed later in this section
while comparing TTGMs type 1 and type 2.

The STGMs are specific to the inductor types. In other
words, the STGM, shown in Fig. 6, is more suitable for
type 2 structure. Because in this configuration the structure
is uniform, that is, pillars and interconnects have the same
geometry; in this case, it’s rectangular geometry.

Now, we derive the expressions for the self-inductance of a
single turn and the mutual inductance between any two turns.

1) Self-inductance of single turn (L2 ST ): In section II, the
inductance formulae for rectangular loops of various types are
discussed. Equation (B.3) is used to find L2 ST . Substitute
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Fig. 6. Single-turn geometric model (STGM) of type 2 for computing the self-inductance of a single-turn.

a = Ro −Ri + βp, b = lp + βi, αa = αi, βa = βi, αb = αp,
and βb = βp in (B.3), where lp, αi, βi, αp, and βp are the
length of the copper pillar, the width of the interconnect, the
height of the interconnect, the width of the copper pillar, and
the height of the copper pillar, respectively. This results in an
expression for the self-inductance of a single turn, which is a
rectangular shape and composed of rectangular cross section
conductors. The expression is equal to:

L2 ST = LRECT 1(Ro−Ri+βp, lp+βi, αi, βi, αp, βp) (35)

2) Mutual inductance between any two turns: The same
procedure used to find the mutual inductance between any
two turns of the type 1 inductor can be adapted here. However,
there is a fine distinction between the TTGMs of type 2 and
the type 1 inductors, which has been explained in detail while
introducing this inductor. The differences can be noticed by
comparing Figs. 5 and 7. As far as the computation of mu-
tual inductance is concerned, the differences and similarities
between the parameters of the TTGMs of type 1 and type 2
can be summarized as follows:

? The distances r1, r2, r3 and r4 for both bottom and top
interconnects are the same for TTGM of type 2; that is,
r1b = r1t, r2b = r2t, r3b = r3t, and r4b = r4t. However, in
TTGM of type1, only r1 is the same for both bottom and
top interconnects, i.e., r1b = r1t.

? The values of r2 and r4 are equal for both top and bottom
interconnects of type 2 as well as type 1: that is, r2t = r4t
and r2b = r4b for both models.

? In type 2, the distance between inner pillars is r3 of top
interconnects or bottom interconnects (i.e., r3t or r3b),
whereas in type 1, it is r3 of top interconnects (i.e., r3t).
The distance between outer pillars is the same as r1 of top
interconnects or bottom interconnects for both types.

? For type 1, the values of R1 TT , R2 TT , R3 TT , and R4 TT ,
which are the distance between the ends of the bottom and
top interconnects as shown in Fig. 5, are distinct. In the
case of type 2, R2 TT = R4 TT .

? The term ρ must be replaced by 0.5βp, as illustrated in Fig.
7, in all the set of equations, which are employed for finding
the mutual inductance between any two turns of type 1, in
order to apply for type 2.
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Fig. 7. Two-turn geometric model (TTGM) of type 2 for computing mutual inductance between any two turns.

Finally, the mutual inductances of all the pairs of turns
can be calculated from (31) or (32) and total inductance of
the inductor structure can be calculated from (33) or (34),
depending on the number of turns is even or odd.

C. Type 3: Solenoid Inductor with RCSP

The Type 3 was embedded in a Si substrate; the copper
pillars and interconnects are developed through deep Si etching
and Cu electroplating [12].

For this type also we will consider closed turn geometric
models for determining both self and mutual inductances as
we did for the type 2. Here also, the bottom interconnect length
is taken as equal to the top interconnect length, similar to the
case of type 2. The approximated geometric models for this
type of inductor are shown in Fig. 8. The analytical models
for inductances of square and rectangular solenoid inductor
structures are discussed here.

We derive the expressions for the self-inductance of a single
turn and the mutual inductance between any two turns.

1) Self-inductance of a single turn (L3 ST ): As the STGM,
Fig. 8(a), of this type of inductor is similar to that of second

type of inductor, we can follow the same steps. The main
difference between the geometric models of the two types
is that the turn of this type has uniform cross section; the
copper pillars and interconnects have the same cross section:
(α+ β)p = (α+ β)i. Also, the design parameters are dif-
ferent. Substitute α = αp = αi, β = βp = βi, a = p, and
b = lp + βi = lp + βp = lp + β in (B.4), where αp, βp,
αi, βi, p, and lp are width of the pillar, height of the pillar,
width of the interconnect, height of the interconnect, pitch of
the solenoid turns, and length of the pillar, respectively. This
results in the expression for the self-inductance of a single
turn of rectangular solenoid inductor structure with rectangular
cross section pillars being given by

L3 ST (rect) = LRECT 2(p, lp + β, α, β) (36)

Similarly, we can develop the expression for the self-
inductance of a single turn of square solenoid inductor struc-
ture with square cross sectional pillars by substituting a = p
and α = αi = αp = βi = βp in (B.6). The resulting expression
is equal to:

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on May 19,2021 at 12:46:44 UTC from IEEE Xplore.  Restrictions apply. 



2168-6777 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JESTPE.2021.3077203, IEEE Journal
of Emerging and Selected Topics in Power Electronics

Fig. 8. (a) Single-turn geometric model (STGM). (b) Two-turn geometric model (TTGM) of type 3.

L3 ST (sq) = Lsq 2(p, α) (37)

If the cross section of the conductors (pillars and intercon-
nects) of the turn is non-uniform as in the second type, we can
use (B.3) to develop the analytical equation for the inductance
of a single turn with proper substitution of design parameters.

2) Mutual inductance between any two turns (Ms): The
TTGM of type 3 is shown in Fig. 8(b). This model resembles
two parallel square or rectangular loops. This implies that we
can apply (C.10) and (C.11) to find the mutual inductance be-
tween parallel rectangular turns, and square turns, respectively.

By substituting a = p, b = lp + βi and s = s in (C.10)
and (C.11), we get the expressions for mutual inductance
between rectangular shape turns, Ms(rect), and square shape
turns, Ms(sq), respectively and can be written as:

Ms(rect) = Mrect(p, lp + βi, s) (38)

Ms(sq) = Msq(p, s) (39)

where s is the turn spacing.
The net mutual inductance of the type 3 inductor, M3, is

given by

M3 = 2

(
(N − 1)MS + (N − 2)M2S + (N − 3)M3S · · ·

· · ·+ (N − (N − 1))M(N−1)S

)
(40)

where Ms is mutual inductance between the turns with spacing
s, M2s is mutual inductance between the turns with spacing
2s and so on.

The total inductance of the inductor structure can be esti-
mated by

L3 = NL3 ST +M3 (41)

D. Type 4: Solenoid Inductor with CCSP

For this type of inductor architecture, the top and bottom
interconnects are formed using metal tracks and the pillars
are produced by TSVs [13]. The geometric models of this
type of inductor are shown in Fig. 9. The computation of self
and mutual inductances for this type of inductor is described
below.
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1) Self-inductance of a single turn (L4 ST ): The STGM for
this type of inductor is same as that of first type; however, the
design parameters are different as illustrated in Fig. 9(a). For
calculating L4 ST , we can follow the similar steps that we did
for the first type. The steps are described below:

(i) Equations (B.1) and (B.2) can be used for determining the
self-inductance of pillars and interconnects, respectively.

(ii) The same set of equations that we used in the first
type inductor can be reconsidered here, that is, (6)-(11)
for computing mutual inductance between the top and
bottom interconnects. But the parameters, such as top
interconnect length (lti), bottom interconnect length (lbi),
and the angle between the top and bottom interconnects
(θ), in these equations will have new values: lti = p,
lbi =

√
p2 + s2 , cosθ = p/

√
p2 + s2. The value of d,

equal to lp + βi, in (6)-(11) remains unchanged.
(iii) The mutual inductance between the inner and outer pillars

can be computed by (C.1).
(iv) Finally, (12) can be used to calculate L4 ST .

2) Mutual inductance of any two turns (Ms): The TTGM
of this type of inductor, as shown in Fig. 9(b), is similar to
that of third type. The only difference between the TTGMs
of this inductor and type 3 is that pillars and interconnects
of the former are of different cross sections: pillars are
circular and interconnects are rectangular, whereas pillars and
interconnects of the later are of rectangular cross section. Since
the mutual inductance is independent of the cross section of
the conductors (a simplifying assumption), we can use the
same equations that were employed in type 3 to determine the
mutual inductance of any two turns; that is, we can employ
either (38) or (39), depending on the type of turns (i.e.,
rectangular or square shape).

The net mutual inductance and in turn the total inductance
of the whole structure can be determined by (40) and (41),
respectively.

IV. MODEL VALIDATION

The proposed analytical models for the inductances of
all four types of inductor structures are validated here. Our
measurement values, previously published measurement data,
and FEA solutions from this work are considered for the
model validation. The performance of our models is compared
with the conventional analytical expressions, commonly used
for calculating large size toroidal and solenoid inductors, to
demonstrate the significance of proposed models in calculating
the inductance of 3D micro fabricated inductors. Also, the
accuracy of the analytical model of type 4 is compared with
previously published models.

The simulations are performed at low frequencies. The
measured inductance values from the references at lower
frequencies of the given frequency range are considered for
the comparison. Effects of high frequency on inductance are
discussed in section VI.

A. Type 1

The results of the inductance obtained from analytical model
and field solver simulation of this work are compared with

those provided by experimental test described in [10]. Also,
the accuracy of the proposed analytical model is compared
with conventional expression for the inductance of a toroidal
inductor, given by (A.1). The same set of specifications of
the example inductors from [10] are considered, as given
in Table I, in order to make the comparison. In [10], the
top and bottom interconnects of the fabricated inductors are
trapezoidal slabs. However, in our model we considered rect-
angular cross section top and bottom interconnects. We had
to adapt this modification as there is no precise analytical
expression for the inductance of trapezoidal slabs. Also, the
characterization of an inductor with trapezoidal cross section
interconnects in ANSYS Maxwell requires relatively higher
simulation time and memory. The changeover from trapezoidal
to rectangular interconnect in our model contributes to the
error when compared to the measurement result which is
apparent from comparison tables of design examples. Tables II
and III show comparison results for the example inductors
with even turns and odd turns, respectively. Fig. 10 shows
the mutual inductances of the pillars and interconnects of the
example inductor with even turns.

TABLE I
DIMENSIONS OF THE EXAMPLE INDUCTORS FOR TYPE 1

Design Parameter Value
Example inductor

with even turns [10]
Example inductor

with odd turns [10]
Number of turns (N) 20 25

Inner radius of
the toroid (Ri)

750 -

Outer radius of
the toroid (Ro) 1500 -

Length of the
copper pillar (lp) 280 -

Copper pillar
radius (ρ) 15 -

Top interconnect
dimensions

(lti × αi× βi)
780 × 30 × 30 -

Bottom interconnect
dimensions

(lbi × αi × βi)
847 × 30× 30 824 × 30× 30

All dimensions are in micrometers (µm).

TABLE II
COMPARISON OF INDUCTANCE FROM OUR MODEL, CONVENTIONAL

MODEL, SIMULATION, AND MEASUREMENT OF EXAMPLE
INDUCTOR WITH EVEN TURNS FOR TYPE 1

Simulation
(32.03 nH)

Measurement@1 MHz [10]
(36.24 nH)

Our Model
(30.41 nH) 5.06% 16.09%

Conventional Model (A.1)1

(17.19 nH) 46.33% 52.56%

1 Refer to the Appendix A. Only the first term of (A.1) is considered for the
calculation as we are interested in low frequency inductance value for the
comparison.

B. Type 2

The proposed analytical model inductance value is cor-
related with the simulation of this work and the measured
value from [25]. The accuracy of the proposed analytical
model is also compared with (A.1). Table IV shows the design
parameters of the example inductor from [25]. The comparison
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Fig. 9. (a) Single-turn geometric model (STGM). (b) Two-turn geometric model (TTGM) of type 4.

TABLE III
COMPARISON OF INDUCTANCE FROM OUR MODEL, CONVENTIONAL

MODEL, SIMULATION, AND MEASUREMENT OF EXAMPLE
INDUCTOR WITH ODD TURNS FOR TYPE 1

Simulation
(43.17 nH)

Measurement@1 MHz [10]
(41.69 nH)

Our Model
(40.67 nH) 5.79% 2.44%

Conventional Model (A.1)
(26.85 nH) 37.80% 35.59%

results are shown in Table V. Fig. 11 shows the mutual
inductances of copper pillars and interconnects of the example
inductor.

TABLE IV
DIMENSIONS OF THE EXAMPLE INDUCTOR FROM [25] FOR TYPE 2

Design Parameter Value

Number of turns (N) 25

Inner radius of the toroid (Ri) 1000

Outer radius of the toroid (Ro) 3000

Copper pillar dimensions (lp × αp × βp) 300 × 160 × 120

Interconnect dimensions (lti × αi × βi) 2120 × 160 × 20

All dimensions are in micrometers (µm).

TABLE V
COMPARISON OF INDUCTANCE FROM OUR MODEL, CONVENTIONAL

MODEL, SIMULATION, AND MEASUREMENT OF EXAMPLE
INDUCTOR FOR TYPE 2

Simulation
(63.42 nH)

Measurement@1 MHz [25]
(60 nH)

Our Model
(59.12 nH) 6.78% 1.47%

Conventional Model (A.1)
(42.57 nH) 32.87% 29.05%

C. Type 3

The inductance values from the analytical model and the
FEA solution of this work are compared with experimental
result of [12]. Also, the accuracy of the proposed analytical
model is compared with conventional expression for the in-
ductance of solenoid inductor, i.e., (A.2). Table VI shows the
comparison result. The dimensions of the inductor to verify
the analytical model are taken from [12] and are reproduced
here: 1 mm is the height, two different widths (0.5/1 mm),
cross section of the conductors (pillars and interconnects) is
100 µm × 100 µm, the spacing between turns, s, is 200 µm
and four different turns (5/10/15/20). Variation of mutual
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Fig. 10. Plot showing the components of the mutual Inductance between any two turns of the design example (even turns) of
type 1: Mutual inductance between (a) inner pillars (b) outer pillars (c) inner and outer pillars (d) top interconnects (e) bottom
interconnects (f) bottom and top interconnects.

inductance with the spacing between the turns of rectangular
solenoid inductor structure (design example with dimension
0.5 mm × 1 mm) and square solenoid inductor structure
(design example with dimension 1 mm × 1 mm) are shown
in Fig. 12(a) and (b), respectively.

The developed analytical model is corresponding to the
air core. However, in [12] the inductors are fabricated in a
silicon substrate. To put it another way, these are silicon core
inductors. Since silicon has high resistivity, the effect of eddy
currents on the inductance is not significant over the frequency
range of 1-100 MHz. The effects of high frequency on the
inductance of air core and silicon core inductors are discussed
in section VI.

D. Type 4

The performance of the proposed analytical model is com-
pared with the conventional model, (A.2), as well as the
previous models from [14], [15], as shown in Table VII. The
design parameters, reproduced from [15], are lp of 200 µm,
ρ of 10 µm, αi of 20 µm, βi of 4 µm, p of 300 µm, s of
40 µm. There is a minuscule difference between the physical
structures of the inductors from this work, [14], and [15].
Consequenctly, the Q3D results are different. The difference
is negligibly small, which is evident from second and third
columns of Table VII; nevertheless, this work, [14], and [15]
analytical model results are compared with their corresponding

Q3D results. Fig. 13 depicts the variation of mutual inductance
with the spacing between the turns.

The analytical model from [15] considers an extra term, i.e.,
internal inductance, in the expression (equation (3)) for the
inductance of a rectangular cross section conductor, referred
to as “RDL interconnect” in [15]. We have presented the
corrected inductance values, by removing the contribution
from the added extra term, in Table VII. We have put an effort
to demonstrate that the inductance expression (equation (B.2))
for a rectangular conductor, adapted in this work, is more
accurate compared to (3) from [15] by comparing inductance
values predicted by the expressions and simulation; Table VIII
illustrate the comparison results. The results demonstrate that
the accuracy of (B.2) from this work is around 7× higher
than (3) from [15]. The specifications of the rectangular
conductor, reproduced from [15], are as follows: cross section
is 20 µm × 4 µm and the length is 300 µm, which is equal
to the pitch.

From Table VII, we see that our model is more accurate
than the models from [14], [15]. The maximum error is 1.78%.
This value is 6× and 2× smaller than the errors introduced
by analytical models from [14] and [15], respectively. The
reason for the improved in accuracy compared to [15] can
be explained as follows. In [15], the computation of mutual
inductance between any two turns requires calculation of mu-
tual inductance between 6 pairs of conductors. Consequently,
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Fig. 11. Plot showing the components of the mutual Inductance between any two turns of the design example of type 2: Mutual
inductance between (a) inner pillars (b) outer pillars (c) inner and outer pillars (d) top interconnects (e) bottom interconnects
(f) bottom and top interconnects.
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Fig. 12. Variation of mutual Inductance as a function of spacing, s, between the turns of type 3. (a) Square solenoid
inductor (1 mm × 1 mm). (b) Rectangular solenoid inductor (0.5 mm × 1 mm).

the determination of the net mutual inductance needs the
computation of mutual inductances between 6×NC2 pairs of
conductors. However, in our model the calculation of the net
mutual inductance requires only NC2 pairs of turns. Mutual
inductance calculation of each pair, either turns or conductors,
contributes certain amount of error. The greater the number of

pairs, either turns or conductors, are employed for calculating
mutual inductance, the more will be the error. Since our model
demands less number of pair of turns than the number of pair
of conductors, the model achieves higher accuracy. For the
same reason, there is a drastic reduction in the simulation
time of the proposed analytical model. The other two factors
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TABLE VI
COMPARISON OF INDUCTANCE FROM OUR MODEL, CONVENTIONAL MODEL,

SIMULATION (Q3D), AND MEASUREMENT OF EXAMPLE INDUCTOR FOR TYPE 3

N Width
(mm) Inductance (nH) Percent Error (%)

Our
Model

Conventional
Model
(A.2)2

Q3D Measurement@
frequency (MHz) [12]

Our Model
versus

(A.2)
versus

Q3D [12] Q3D [12]

5 0.5 8.13 17.45 8.48 7.18@2 4.13 13.23 105.78 143.03

10 0.5 18.28 33.07 19.22 18.78 @2 4.89 2.66 72.06 43.21

15 0.5 28.60 48.75 30.31 29.62@2 5.64 3.44 60.84 39.24

20 0.5 38.98 64.44 41.40 39.16@2 5.85 0.46 55.65 39.23

5 1 16.68 34.91 16.98 15.65@1 1.77 6.58 105.59 55.17

10 1 39.61 66.14 40.52 35.38@1 2.25 11.96 63.23 46.50

15 1 63.37 97.5 65.04 58.73@1 2.57 7.90 49.91 39.76

20 1 87.37 128.89 89.74 75.17@1 2.64 16.23 43.63 41.67
2 Refer to the Appendix A.

TABLE VII
COMPARISON OF INDUCTANCE FROM OUR MODEL, PUBLISHED MODEL, CONVENTIONAL MODEL,

SIMULATION (Q3D), AND MEASUREMENT OF EXAMPLE INDUCTOR FOR TYPE 4

N Inductance (nH) Percent Error (%) Simulation Time (msec)

Q3D Analytical Model
(A.2)a

(Q3D vs Anal. Model)b
(A.2)
vs

Q3Dc

Q3D
( This work,
[14], [15] )

Our
Model

Model
[14]

Model
[15]This

Work
[14]&
[15]

This
Work [14] [15] This

Work [14] [15]

1 0.589 0.60 0.586 0.53 0.59* 4.04 0.51 11.67 1.67 585.91 75

0.15
†

14 20
2 1.67 1.69 1.65 1.55 1.64* 5.39 1.2 8.28 2.96 222.75 102 19 28
3 3.02 3.05 2.98 2.88 2.95* 7.28 1.32 5.57 3.28 141.06 172 21 32
4 4.54 4.59 4.48 4.43 4.44* 9.24 1.32 3.49 3.27 103.52 205 25 45
5 6.17 6.24 6.08 6.14 6.03* 11.24 1.46 1.60 3.37 82.17 268 27 49
6 7.88 7.97 7.76 7.85 7.7* 13.24 1.52 1.51 3.39 68.02 286 30 52
7 9.64 9.75 9.49 9.92 9.43* 15.25 1.56 1.75 3.28 58.20 314 32 53
8 11.44 11.58 11.26 11.95 11.19* 17.26 1.57 3.2 3.37 50.87 335 33 55
9 13.27 13.46 13.06 14.06 12.98* 19.28 1.58 4.46 3.57 45.29 365 35 56
10 15.14 15.34 14.87 16.22 14.79* 21.30 1.78 5.74 3.59 40.69 412 38 58

* Original values are corrected by deducting the contribution of the added extra term, i.e., internal inductance, to the expression (equation (3) from [15])
of the inductance of a rectangular cross section conductor.
a Conventional expression for the inductance of a solenoidal inductor (Refer to the Appendix A).
b This work, [14], and [15] analytical model results are compared with their corresponding Q3D results.
c Q3D results of this work.
†

The maximum simulation time reported for running the MATLAB code for computing the inductance. The simulation time for all the turns
approximately the same since the variation of the complexity of the code from 1 turn to 10 turns is not considerable.

TABLE VIII
COMPARISON OF INDUCTANCE FROM EXPRESSION AND

SIMULATION FOR A RECTANGULAR
CROSS SECTION CONDUCTOR

Eq. (B.2) from this work3

(224.73 pH)
Eq. (3) from [15]

(239.73 pH)

Simulation
(226.62 pH) 0.83% 5.79%

3 Refer to the Appendix B.

contributing to the improvement of the simulation time can
be explained as follows: (1) to calculate mutual inductance
between any two turns, our model employs (C.10). On the
other hand, model from [15] use (C.7), (C.8), and (C.9),
which are complex and hence increase the simulation time.
However, both models use (C.7)-(C.9) while computing the
self-inductance of a single turn; (2) the code used to calculate
the inductance has been optimized to reduce the simulation

time.

Also, we have evaluated the accuracy of our model by
comparing with measurement data for an inductor fabricated
in-house. Our inductor has the following specifications: radius
of the copper pillar ρ = 100 µm, length of the copper pillar
lp = 1530 µm, width of the interconnect αi = 520 µm,
height of the interconnect βi = 35 µm, length of the top
interconnect lti = 6100 µm, length of the bottom interconnect
lbi = 6130 µm, and the number of turns N is 6.25. The
inductor was fabricated on a PCB; this does not detract the
usefulness of the expression for the inductance since the effect
of PCB substrate on the inductance in the frequency range
of 1 to 100 MHz is insignificant provided that effects of
parasitic capacitance is minimal. This is evident from Fig. 14,
which is an experimental study. The high frequency effects are
discussed in section VI. In Table IX, the inductance values
from our model, conventional model, simulation, and our
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Fig. 13. Variation of mutual inductance as a function of spacing,
s, between the turns of type 4.

measurement are compared.
TABLE IX

COMPARISON OF INDUCTANCE FROM OUR MODEL, CONVENTIONAL
MODEL, SIMULATION, AND MEASUREMENT

FOR TYPE 4 PCB INDUCTOR

Simulation
(92.81 nH)

Our Measurement@0.5 MHz
(89.60 nH)

Our Model
(86.04 nH) 7.29% 3.97%

Conventional Model (A.2)
(109 nH) 17.44% 21.65%

0 . 5 5 5 01 1 0 1 0 0
0

2 0
4 0
6 0
8 0

1 0 0

L (
nH

)

F r e q u e n c y  ( M H z )
Fig. 14. Measured inductance as a function of frequency for
the PCB inductor of type 4.

V. SIGNIFICANCE, APPLICATION AND
PERFORMANCE

This section deals with significance, application and perfor-
mance of all four types inductor structures. The available data
from previously published works consolidated here to under-
stand the importance of various types of inductor structures.

A. Significance and Application

The significance and applications of all four types of induc-
tor structure given in Table X, which provides one application
example from the literature for each of the four inductor types
and describes the features that are specific to the inductor
configurations.

B. Performance Comparison

We have presented performance data points for the various
types of inductor structures in Table XI. The inductance den-
sity, DC resistance (DCR), and quality factor reported in the
literature are reproduced. The published works have achieved
a range of values of inductance, DCR and quality factor. We
have presented only the optimum values achieved by them.
For the type 4 inductor, performance only at integrated power
supply frequency ( i.e., 100 MHz) is considered.

From Table XI, we can draw the following conclusions:
(1) Solenoid inductors achieve higher inductance density
compared to toroidal inductors, provided that dimensions
of conductors and turn pitches of both types of inductors
approximately remain same and (2) Inductors with smaller
cross section conductors achieve high inductance density but
low quality factor; the higher inductance density is due to
low reluctance path and the lower quality factor is due to the
increased resistance.

The published works presented in Table XI do not determine
the required inductance values prior to the fabrication except
in [13], where the maximum error between measured and
estimated values is 11.42%. The proposed analytical models
can provide a good initial estimation of inductance, which
would help to achieve better figure of merit (FOM) values
with minimal effort.

Finally, the summary of the performance of the proposed,
conventional and published models are presented in Table XII.

VI. HIGH FREQUENCY EFFECTS ON INDUCTANCE

The self-inductance of each of the copper pillars and in-
terconnects, which are building blocks of all four types of
inductor structures, is the sum of internal inductance, Lin,
and external inductance, Lex. At very high frequency, the
internal inductance vanishes due to skin effect (i.e., internal
inductance approaches zero at a rate ∝ 1√

f
)). On the other

hand, external inductance remains the same as the total current
in the conductor remains the same; this argument is strictly
true for circular conductors but not for rectangular conductors,
that is, ∆Lex = 0 for circular conductors and ∆Lex 6= 0 for
rectangular conductors [27]. However, ∆Lex can be consid-
ered as zero for rectangular conductors and in turn for the
inductors in the frequency range of 1-100 MHz as the external
H-field variation is not significant in the mentioned frequency
range.

In this work, formula validations are performed for low
frequencies or dc. For frequencies ranging from 1-100 MHz,
the effect of skin effect on inductance is negligibly small.
Consequently, the effect of higher frequencies (1-100 MHz)
on total inductance is insignificant. The above explanation on
the effect of frequency on air core inductance is consistent
with the graph depicted in Fig. 15, which is the simulation
study of the effect of frequency on inductance. An example
inductor with even turns with specifications as given in Table I
from [10] is considered for the study. It is evident from the
Fig. 15 that the change in the inductance is only 0.47% from
1 to 100 MHz. The study considers only the skin effect
and the capacitive coupling is ignored-in other words, the
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TABLE X
SIGNIFICANCE AND APPLICATION OF ALL FOUR TYPES OF INDUCTOR STRUCTURES

Inductor
Types Significance and Application

Type 1
It was employed in a resonant converter at frequencies up to 33 MHz, resulting in a converter power density of
0.65W/cm2 [9]. The advantage is the mitigation of unintentional coupling due to the confinement of magnetic flux
to a circular region.

Type 2
Similar to the type 1, this inductor also offers the advantages such as low EMI and reduced eddy current loss. As far as
the fabrication is concerned, this type helps in reducing overall processing time as explained in section III. The inductor
structure finds application in ultra-compact DC-DC converters [11], [25]

Type 3 Exhibits high inductance density compared to type 1 and type 2. Hence, it can be an excellent candidate for integrating
into power MEMS devices [12].

Type 4 The inductance density is on a par with type 3. This type of inductor architecture was developed for hybrid IC applications
[13]. It has been applied to produce inductors in the range of 0.88-4.66nH for operation at 100 MHz.

TABLE XI
COMPARISON OF THE MEASURED INDUCTANCE, DCR AND

QUALITY FACTOR OF VARIOUS EXAMPLES
OF INDUCTOR TYPES

Reported
Work Type

Ldensity

(nH/mm3)
DCR
(mΩ) Q@frequency (MHz)

[10] Type 1 17.3 180 12.9@41.2

[25] Type 2 4.16 400 17.5@70

[12] Type 3 21.7 NA‡‡ 37.6@21

[13] Type 4 44.53 NA‡‡ 6.78@100
‡‡ Not Available.

TABLE XII
COMPARISON OF OUR MODEL, CONVENTIONAL MODEL, AND

PUBLISHED MODEL OF ALL FOUR TYPES OF INDUCTORS

Inductor
Types

Maximum Percent Error (%)
(Comparison with FEA Solution)

Our Model Conventional Model‡ Published Model

Type 1 5.79 46.33 NA??

Type 2 6.78 32.87 NA??

Type 3 5.85 105.78 NA??

Type 4 1.78 585.91 11.67 [14] &
3.59 [15]

‡ Conventional expressions for the inductance of solenodal and toroidal
inductors are given in Appendix A.
?? Not available

simulation does not consider the effect of parasitic capacitance.
The parasitic capacitance model of toroid air core inductors
presented in [28] composed of the following components: the
capacitance between adjacent turns, the capacitance between
the inner and outer copper pillars of the same turn, and the
capacitance between the top and bottom interconnects of the
same turn. In this model, the capacitance between non-adjacent
turns is neglected. Similarly, the parasitic capacitance model
of a solenoid inductor is discussed in [12].

The effect of frequency on air core and silicon core in-
ductors is illustrated in [10, Fig. 7(d)], which is the measured
inductance characteristics of the inductor with even number of
turns; the specifications of the inductor are given in Table I.
The drop in the inductances over 1 to 100 MHz for the air core
and silicon core inductors are 5.21% and 12.94%, respectively.
The drop in the inductance for air core inductor is mainly
due to parasitic capacitance, whereas for silicon core inductor
its due to parasitic capacitance as well as eddy current. The
percentage change in the inductance over the frequency range

of interest is high in the case of silicon core inductors due to
large parasitic capacitance, 3× higher than air core inductor
capacitance. The larger turn spacing, s, reduces capacitive
coupling and hence the drop in the inductance is smaller.
This statement can be supported by Fig. 14 which shows the
measured inductance values for the PCB inductor over the
frequency range from 1 to 100 MHz. The percentage change in
the inductance over the given frequency range is only 3.74%,
less than both silicon core and air core inductors, attributed to
larger turn spacing of the PCB inductor.

In conclusion, we can safely ignore the effects of high
frequency (1-100 MHz) on the inductance and hence the
analytical model of dc inductance can be adapted without any
appreciable error provided that parasitic capacitances and eddy
currents are minimal.
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Fig. 15. Plot showing inductance from FEM simulation versus
frequency.

VII. CONCLUSION

This work focused on analytical research. An accurate
analytical method provides guidance in research planning.
Unlike experimental research, the analytical method can be
applied over a wide range of conditions, which will save
money, time and, human resources.

We have presented the analytical models for the inductances
of four types of 3D inductor structures. To ease the analytical
modelling process, the physical structures of these inductors
are modified: 3D inductors are conceptualized as a group of
loop currents or piecewise current sources. This enables us
to use the concept of the partial and loop inductances to
determine the inductances of all the four types of inductors.
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We derived equations relating the partial and loop induc-
tances (self and mutual) to the inductances of all the four
inductor formats. All the proposed models are tested with
fabricated inductors: the first three types are tested with the
fabricated inductors from previously published works and the
last type is tested with an inductor fabricated in-house. The
proposed analytical model result of the type 1 inductor is
in good agreement with field solver result (< 5.8% error).
The measurement data [25] is in close agreement with the
analytical expression result for the type 2 inductor, error is
about 1.5%, while the comparison of the model result of
the type 2 with FEA simulation demonstrates an error of
6.78%. An effort has been made to keep analytical model of
type 3 inductor as simple as possible while maintaining good
accuracy (< 5.9% error), by comparison with simulation; also,
the correlation between model and measurement [12] exhibits
errors ranging from 0.46-16.23%. For the type 4 inductor,
our analytical model reduces the error, when correlated with
FEA inductance value, by up to 6× and 2× compared to
the previously published models [14], [15], respectively. The
error between the analytical model result and the previously
published measurement data is as high as 16.09% for type
1 inductor and 16.23% for type 3 inductor. This is due to
the following reasons: (1) geometrical difference between the
modelled and fabricated inductors and (2) experimental set up
under which the inductance was measured.

The comparison results verify that as the size of the inductor
decreases the error introduced by conventional models will rise
dramatically. This indicates that conventional expressions for
the inductance are not suitable for micro fabricated inductors.
From the experimental and simulation study of this work as
well as experimental data [10, Fig. 7(d)], the effect of high
frequency (1-100 MHz ) on the inductance of air core inductor
or silicon core inductor or PCB inductor can be neglected
provided that the parasitic capacitances and eddy currents
are minimal and the analytical model of dc inductance can
be adapted without significant error. The proposed analytical
models can be employed for calculating the inductance of
3D air core, 3D silicon core, and PCB air core inductors
in the frequency range of 1 to 100 MHz. The results of the
proposed models could serve as a good initial estimate even
if there are minor geometrical differences between modelled
and fabricated inductors.

APPENDIX A
CONVENTIONAL FORMULAE

Conventional formulas, given by (A.1) [28]–[30] and (A.2),
are reproduced here. Equations (A.1) and (A.2) are conven-
tional models for the inductance of toroidal and solenoidal
inductors, respectively.

L =
N2hµo

2π
ln

(
Ro
Ri

)
+

(
Ro +Ri

2

)
µo

×
[
ln

(
8× Ro +Ri

Ro −Ri

)
− 2

] (A.1)

L =
µoN

2A

l
(A.2)

where h, Ri and Ro are the height, inner radius, and outer
radius of the toroidal inductor, respectively, l and A are the
length and area of the solenoid inductor, respectively, and N
is the number of turns.

The first term of (A.1) is the inductance due to the magnetic
energy stored inside the toroid and the second term is due
to the circumferential current, which appears only at high
frequency. The second term is generally referred to as single-
turn inductance: the toroid is treated as a circular loop of
conducting wire to derive the second term. The formula for the
inductance of a circular loop is given in [31]. If we substitute
loop radius as 0.5(Ro+Ri) and wire radius as 0.5(Ro−Ri) in
the inductance formula for a circular loop, we get the second
term of (A.1).

APPENDIX B
SELF-INDUCTANCE FORMULAE

Lcirc(l, ρ) =
µo
2π

[
l ln

(
l +
√
l2 + ρ2

ρ

)
−
√
l2 + ρ2

+
l

4
+ ρ

]
(B.1)

Lrect(l, α, β) =
µo l

2π

[
ln

(
2l

α+ β

)
+ 0.5 +

α+ β

3l

]
(B.2)

Lsq 1(a, α, β) =
µo
2π

(
4a

(
ln

(
a

α+ β

)
+ 0.2235

(
α+ β

a

)

+ 0.726

))
(B.5)

Lsq 2(a, α) =
µo
2π

(
4a
[
ln
( a
α

)
+ 0.447

(α
a

)
+ 0.033

])
(B.6)

APPENDIX C
MUTUAL INDUCTANCE FORMULAE

Mpar(l,D) =
µo
2π

[
l ln

(
l +
√
l2 +D2

D

)
−
√
l2 +D2 + D

]
(C.1)

Mlm 1(l,m, µ, ν, θ)=
µo
2π

(
cosθ

[
(µ+ l) tanh−1

(
m

r1 + r2

)
+ (ν +m) tanh−1

(
l
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)
−µ tanh−1

(
m

r3 + r4

)
−ν tanh−1

(
l

r2 + r3

) ])
(C.2)
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LRECT 1(a, b, αa, βa, αb, βb) =
µo
2π

(
2

(
a ln

(
2ab

αa + βa

)
− a ln (a+ z) + 0.5a− b+ z + 0.2235(αa + βa)

)

+2

(
b ln

(
2ab

αb + βb

)
− b ln (b+ z) + 0.5b− a+ z + 0.2235(αb + βb)

))
(B.3)

where z is the diagonal of the rectangle, which is equal to: z =
√
a2 + b2.

LRECT 2(a, b, α, β) =
µo
2π

(
2

(
(a+ b) ln

(
2ab

α+ β

)
− a ln (a+ z)− b ln (b+ z)−

(
a+ b

2

)
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(B.4)

r1(l,m, µ, ν, θ)=

(
(µ+ l)

2
+ (ν +m)

2

− 2 (µ+ l) (ν +m) cosθ

)1/2

(C.3)

r2(l, µ, ν, θ) =

√
(µ+ l)

2
+ ν2−2ν (µ+ l) cosθ (C.4)

r3(µ, ν, θ) =
√
µ2 + ν2−2µνcosθ (C.5)

r4(m,µ, ν, θ) =

√
µ2 + (ν +m)

2−2µ (ν +m) cosθ (C.6)

Ri =
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√
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2π
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