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Abstract 18 

Yeasts have been used for centuries for the leavening of bread. The main emphasis on the selection of 19 

yeast strains has been in relation to wheat products. This study is the first evaluation of different yeasts 20 

coming from the baking and brewing industry in a gluten-free system. Five different yeast strains (US-21 

05, WB-06, T-58, S-23, Baker’s yeast) of the species Saccharomyces cerevisiae were evaluated for 22 

their suitability to leaven gluten-free dough. A wide range of dough quality characteristics such as the 23 

time and temperature-dependent rising behaviour, the chemical composition of the dough and the pH 24 

were determined. In addition to this, the bread quality attributes like, volume, texture, structure, aroma 25 

and flavour were evaluated. Obtained results indicated different activity levels between the selected 26 

yeast strains. Doughs prepared with US-05 showed a slower dough rise during proofing and a decreased 27 

height, in comparison to the Baker’s yeast control. The application of WB-06 and T-58 however, 28 

resulted in a faster dough rise and increased dough height with greater gas cells (p. < 0.05). These 29 

observations were also found in the baked breads, where these two yeasts reached a higher specific 30 

volume and a softer breadcrumb than the Baker’s yeast bread (p. < 0.05). Statistical analysis revealed 31 

strong correlations (p. < 0.05) between activity level, dough properties and bread properties. Results 32 

obtained showed that the selected yeast strains reached different level of activity due to diverse 33 

preferences in temperature, time and sugars. Yeast strains which originated from the brewing industry 34 

performed were found to be suitable for gluten-free breadmaking.  35 

 36 

Keywords: Dough-rise, beer yeast, starch-based system, fermentation 37 

 38 

Acknowledgement 39 

The authors want to thank Tom Hannon for his technical and Kieran Lynch for editorial support. Further 40 

thanks goes to Concept Life Sciences, UK for the volatile compound analysis.The work for this study 41 

was part of the PROTEIN2FOOD project. This project has received funding from the European Union’s 42 

Horizon 2020 research and innovation programme under grant agreement No 635727. 43 

  44 



3 

 

1. Introduction 45 

The preparation of bread by yeast fermentation is one of the oldest biochemical processes in the world 46 

[1]. Saccharomyces cerevisiae (or Baker’s yeast) is the commonly used yeast, which is the primary 47 

leavening agent in bread products [2]. Fermentation plays a key role in the breadmaking process, as it 48 

can improve texture, structure, taste and flavour in the final product [2]. In recent years the effect of 49 

yeast modification and replacement by alternative yeast strains in the bread baking process has become 50 

a topic of interest. Studies focused on the harvesting time of Baker’s yeast at different physiological 51 

phases [3] or the replacement of Baker’s yeast by beer yeasts [4]. Beer yeast strains are known to have 52 

optimized metabolism suitable for beer making in terms of flavour compounds and alcohol production. 53 

On the other hand, Baker’s yeast focuses on a fast fermentation and uniform dough leavening due to 54 

carbon dioxide production [5]. Studies by Heitmann et al. [4, 6] demonstrated that the use of different 55 

Saccharomyces cerevisiae strains showed significant differences to the commonly applied Baker’s 56 

yeast in wheat bread. It also was found that brewer’s yeast can improve quality parameters like the 57 

texture, structure and the aroma profile of bread. 58 

 However, people who  suffer from coeliac disease or other gluten-related disorders cannot consume 59 

these products. For these individuals, a gluten-free diet is currently the only treatment for these disorders 60 

[7]. A recent study by Tsatsaragkou et al. [8], stated that the gluten-free bread market still faces the 61 

main challenges of improving technological quality parameters bread technology quality, an extension 62 

of shelf life and a balanced nutritional value. The application of different yeast strains from the brewing 63 

and baking industry in gluten-free breads is a novel approach. It is believed that the different strains 64 

influence the final gluten-free bread properties due to different gas cell expansion and interactions. Not 65 

only the influence on the dough and bread parameters but also aroma and flavour profile of breads can 66 

be influenced by the application of different yeasts and their individual fermentation process [9]. 67 

Bircher et al. [10] identified a wide range of aroma active volatiles within the yeast metabolism. The 68 

change of this flavour and aroma profiles, using different yeasts has become a further topic of 69 

commercial interest. Since some of the aroma profiles are considered as quality parameters for bread 70 

products [10-12]. Especially, the aroma and flavour profiles of gluten-free breads are still considered 71 

as improvable by the consumers. Hence, the modification of these profiles by the application of different 72 

yeasts could improve the perception and acceptance of gluten-free products. 73 

To the authors knowledge, this study is the first study to apply different yeast strains which are 74 

commonly used in the brewing industry in a gluten-free bread system. During the fermentation process 75 

yeast produces mainly carbon dioxide and ethanol, but also secondary metabolites, such as glycerol, 76 

organic acids and flavour compounds which have an impact on the final product quality [13]. The 77 

effects of yeast on bread quality characteristics include the volume, structure, flavour and shelf life of 78 

each fermented product [2]. Based on the specific characteristics of various S. Cerevisiae yeast strains, 79 

the authors believe that their application will have significant influence on final gluten-free bread 80 

quality (Table 1). The main differences between the yeast strains are the optimum temperatures and 81 

their different tolerances to temperature changes. The optimal temperature for Baker’s yeast is higher 82 

than in comparison to the beer yeasts. Despite the lower optimum temperatures for the yeast strain S-83 

23 and T-58 for fermentation. These two strains are described to have a faster fermentation at higher 84 
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temperatures, which are close to the optimum temperature of Baker’s yeast. A further important 85 

characterising of yeasts is the metabolism of different sugars of the various yeasts. Especially in a very 86 

refined system such as that of a gluten-free formulation, sugar sources are limited and usually 87 

constructed of mainly complex sugars. These sugars are usually only accessible to yeast fermentation 88 

when degraded by enzymes to smaller fermentable sugars. The gluten-free system in this study creates 89 

such case which consists of limited amounts and varieties of sugar and further does not contain added 90 

enzymes for the breakdown of the complex sugars. The main component in the system is potato starch, 91 

which consists of about 92% total starch, 1% damaged starch, 0.02% protein and no lipids. Additionally, 92 

no enzyme activity (α- and β-amylase) was determined in this potato starch. This gluten-free bread 93 

system is very refined and does not offer as many nutrients for yeast metabolism as the conventional 94 

wheat bread system. However, effects on the gluten-free bread quality parameters by the application of 95 

the various yeasts was expected. Therefore, five yeast strains of the S. cerevisiae family namely US-05, 96 

T-58, S-23, WB-06 and a control Baker’s yeast have been selected and their effect on dough and final 97 

bread quality have been analysed. This study will broaden the understanding of the yeast on gluten-free 98 

dough characteristics, bread quality parameters and sensory attributes. 99 

 100 

 101 

2. Experimental  102 

2.1 Materials 103 

Potato starch was supplied by Emsland, Germany; pea protein by Roquette, France; pectin by Cp Kelco, 104 

Germany; sugar by Siucra Nordzucker, Ireland; salt by Glacia British Salt Limited, UK. Instant active 105 

dry Baker's yeast was obtained from Puratos, Belgium; Dry yeast s-23, T-58, us-05 and wb-06 were 106 

supplied by Fermentis Division of S. I. Lesaffre, France. All the yeasts applied in this study belonged 107 

to the species S. cerevisiae. All chemicals were supplied by Sigma-Aldrich, Arklow, Ireland. 108 

2.2 Compositional analysis 109 

The total starch content of potato starch was determined according to AACC Method 76-13.01. The 110 

alpha (AACC Method 22-02.01) and beta (K-BETA3) amylase activity were determined using 111 

commercially available enzyme kits, supplied by Megazyme, Ireland. The total nitrogen content of the 112 

starch sample was determined according to the Kjeldahl method (MEBAK 1.5.2.1). To convert the 113 

nitrogen content into the protein content the factor of 6.25 was used. The air oven method (AACC 114 

Method 44-15A) was applied to determine the moisture content of the samples. The determination of 115 

the lipid content was performed according to the Soxlet-method (AACC Method 30-25.01) with a pre-116 

digestion of the samples in HCl, to release bound lipids. 117 

2.3 Cell count 118 
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Cell viability (cfu/g) of the yeast powders, was analysed by suspending 1 g freeze-dried yeast in 10 mL 119 

distilled water. From this stock solution, serial dilutions were prepared with ringer solution and spread 120 

on malt extract agar (Merck, Germany) plates and incubated aerobically for 2 days at 25°C. Plates with 121 

30 to 300 colonies were selected for yeast cell counts. 122 

2.4 Total available carbohydrates 123 

The total available carbohydrate level from freeze-dried dough and breadcrumb samples was 124 

determined spectrophotometrically by using an enzyme kit (K-TSTA) supplied by Megazyme, Ireland. 125 

  126 
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2.5 Sugars and acids 127 

Sugar levels of dough and breadcrumb were analysed for glucose and fructose by an Agilent 1260 high-128 

performance liquid chromatography system (HPLC) with a Hi-Plex H+ column (Agilent, Cork, Ireland) 129 

coupled to a refractive index detector (RID) at 35 °C. The sugars were extracted with distilled water for 130 

20 min under shaking and then centrifuged at 3000g for 10 minutes. The HPLC analysis was performed 131 

at 30 °C column temperature with water (HPLC-grade) at a flow rate of 0.6 mL/min. The analysis of 132 

citric acid, succinic acid and acetic acid were analysed with the same system but small modifications. 133 

A Diode-Array Detection (DAD) and the HiPlex H+ Column at 65 °C were used to detect the acids. 134 

Samples were eluted with 0.005 M H2SO4 at a flow rate of 0.5 mL/min. 135 

2.6 Dough and bread crumb pH measurement 136 

Dough pH before and after proofing was measured according to the AACC method 02-52. 137 

2.7 Time- and temperature-dependent rising behaviour of dough 138 

The measurements were conducted using an Anton Paar MCR rheometer with the TruStrain™ option. 139 

A confined measuring system (CMS) was placed on the inset plate (I-PP25) of a plate-plate system 140 

(Figure 1b). The CMS is a stainless-steel cylinder with the height of 33 mm and the inner diameter of 141 

25 mm. A Peltier temperature device (PTD) was used as well as a convention temperature device (CTD) 142 

for temperature control (Figure 1b). To mimic the proofing properties the PTD was set at 30°C for 45 143 

min with a constant normal force (FN) was set to 0.0 to ensure permanent contact between sample and 144 

upper plate. For determination of the oven spring and the determination of yeast activity during the 145 

baking process the temperature was increased to 90°C with a heat rate of 4°C /min. Recorded and 146 

calculated parameters were the max height [mm], which is the maximum height the dough reached 147 

during the measurement. Further the slope during the fermentation process (Slope 30°C) and then 148 

during the baking process (Slope 90°C) for determination of yeast activity was calculated. Also, the 149 

max height temperature (TMH) [°C] was recorded and used as an indicator for the heat tolerance of the 150 

various yeasts.  151 

2.8 Bread production 152 

Bread samples were prepared according to Horstmann et al. [14]. The formulation of the various breads 153 

included: 2% pectin, 2% pea protein, 2% salt, 4% sugar, 75% water based on starch weight. Amounts 154 

of yeasts were added according to their cell viability (Table 2). Dry ingredients were mixed and yeast 155 

was suspended in warm water (27°C) and regenerated for a period of 10 min. Mixing was carried out 156 

with a k-beater (Kenwood, Havant, UK) at low disk speed (level 1 of 6) for 1 minute in a Kenwood 157 

Major Titanium kmm 020 Mixer (Kenwood, Havant, UK). After the first mixing, the dough was scraped 158 

down from the bowl walls. A second mixing step of 2 minutes at higher disk speed (level 2 of 6) was 159 

applied. 300g of batter were weighed into baking tins of 16,5 cm x 11 cm x 7 cm and placed in a proofer 160 
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(KOMA, Netherlands) for 45 min at 30°C and 85% relatively humidity (RH). The proofed samples 161 

were then baked for 45 min at 220°C top and bottom heat in a deck oven (MIWE, Germany), previously 162 

steamed with 0.4 L of water. The breads were cooled for 2 hours prior to analysis.  163 

2.9 Bread analysis 164 

The specific volume of the bread was determined by use of a Vol-scan apparatus (Stable Micro System, 165 

UK). The specific volume is calculated on the basis of loaf volume and weight. An image analysis 166 

system (Calibre Control International Ltd., UK) was used to analyse the breadcrumb structure, chosen 167 

parameters were the cell diameter and the number of cells per slice area. Crumb firmness was analysed 168 

using a Texture Profile Analyser (TA-XT2i, Stable Micro Systems, Godalming, England) with a 25 kg 169 

load cell, which compresses the breadcrumb with a 20 mm aluminium cylindrical probe. Bread samples 170 

were sliced into 20 mm slices and analysed with a test speed of 5 mm/s and a trigger force of 20 g, 171 

compressing the middle of the breadcrumb to 10 mm. The measurement with the various parameters 172 

was conducted on the baking day and 24h after baking to monitor the staling process. Baked breads 173 

were stored in polythene bags (polystyrol-ethylene veniyl alcohol-polyethylene).  174 

2.10 Extraction of Volatile Aroma Compounds by Thermal Desorption (TD) and Quantification 175 

using GC-MS 176 

To extract volatile compounds, samples were prepared by weighing 0.1g of bread crumb into a clean 177 

glass thermal desorption (TD) tube to concentrate the volatile aroma compounds in a gas stream prior 178 

to injection (Perkin Elmer Turbomatrix 650). Subsequently, the aroma compounds were absorbed at 179 

90°C for 10 min. For the quantification of the aroma-active volatiles, a gas chromatography-mass 180 

spectrometer (GC-MS, Agilent 5977B MSD) with a Rxi 624-Sil 20m column and helium as a carrier 181 

gas was used. The details for the temperature profile are: start temperature: 35°C (4 min) with an 182 

increase of 15°C/min to 220°C (hold 1 minute). The total run time was 17.3 min. For the detected 183 

compounds a database search was conducted. The aroma compounds detected and analysed in this study 184 

by GC-MS TD were ethanol, acetic acid, 2,3-butandiol and 1-hydroxy-2-propanone. 185 

2.11 Sensory Analysis 186 

Aroma profile analysis on bread samples was performed by a trained panel (training over 2 weeks based 187 

on reference sample) consisting of 10 panellists. Training began by generating a consensus vocabulary 188 

for attributes and descriptors based on the control sample. The sensory evaluation was performed by 189 

each panellist individually in an isolated booth. All trainings and sensory analyses were performed in a 190 

sensory panel room at 21 +/- 1°C. Agreed descriptors are listed in Online resource  1. For the descriptive 191 

aroma profile, each breadcrumb sample was cut into slices (thickness 2cm) and presented to panellists 192 

90 minutes after baking. The sensory scale was based on an unstructured line scale to describe the 193 

intensity of rated sensory attributes. 194 

2.12 Statistical analysis 195 



8 

 

All measurements were performed at least in triplicate. The significance of the results was analysed 196 

using One Way ANOVA (R version 3.0.1). The level of significance was determined at p. < 0.05. In 197 

addition, Pearson correlation analysis (R version 3.0.1) was applied to find correlation between yeast 198 

properties and the results of the baked products. 199 

3. Results and Discussion 200 

3.1 Cell Count 201 

The viability of freeze-dried yeast cells was analysed to standardise the inoculum level of yeast for the 202 

baking of the various breads. The control yeast S. cerevisiae Baker’s yeast had a cell count of 1.06E + 203 

09 cfu/g. The beer yeasts showed lower cell count in decreasing order: S. cerevisiae WB-06 7.16E +08 204 

cfu/g; S. cerevisiae T-58 5.5E +08 cfu/g; S. cerevisiae S-23 5.18E +08 cfu/g and S. cerevisiae US-05 205 

4.74E +08 cfu/g. Comparable results were found by Heitmann et al. [4]. The addition levels of the yeast 206 

in the dough formulation were based on the concentration usually reached by the control yeast (S. 207 

cerevisiae Baker’s yeast) (Table 1). When dried yeasts are used in bread the non-viable cells need to be 208 

considered, since non-viable cells can release glutathione as a stress response [15-17]. In wheat doughs, 209 

the release of glutathione has a strong reducing effect which ultimately leads to a modification of the 210 

viscoelastic gluten network [16, 18]. Glutathione was further applied in a gluten-free formulation and 211 

found to improve rice-flour based bread quality parameters [19]. The analysed bread system showed 212 

interactions between glutathione and the rice protein ‘glutelin’ resulted in an improvement of the 213 

volume and crumb structure of the bread. However, based on the lack of gluten, rice flour and glutelin 214 

in the used formulation in this study, the effect of glutathione on bread parameters was neglected. 215 

3.2 Total starch 216 

The total starch content of the doughs and breads was analysed to identify difference in the yeast 217 

performance. No significant differences between the total starch contents in the dough were found 218 

(Table 2). However, differences in the starch content of the final breads were detected. This indicates 219 

different activities of the various yeast strains during processing. Breads baked with the S. cerevisiae 220 

strains T-58 (75.97%) and S-23 (78.57%) showed the significant lowest amount of total starch. The 221 

control baked with S. cerevisiae Baker’s yeast had the significant highest amount of total starch left 222 

(87.27%), suggesting a lower activity. Heitmann et al. [4] analysed the application of beer yeast strains 223 

in wheat bread and also found Baker’s yeast to have the highest amount of starch left in the final bread. 224 

The authors mentioned that the lower content of total starch in the breads prepared with beer yeast 225 

resulted from their higher enzyme activities in comparison to Baker’s yeast, which degrade starch into 226 

more fermentable sugars [20]. The values in the study by Heitmann et al. [4] showed lower total starch 227 

values, which is explained by the higher concentration of starch in this study as explained earlier in the 228 

introduction. 229 

3.3 Sugars and Acids 230 

http://www.dict.cc/englisch-deutsch/significance.html
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The analysis of fermentable sugars like glucose and fructose showed fluctuation and significant 231 

differences amongst the different yeasts (Table 3). All the yeasts showed a decrease in glucose and 232 

fructose after baking, confirming that all the yeast strains have metabolic activity. The sugar contents 233 

in the final bread of fructose and glucose showed the lowest values in the formulations with the addition 234 

of T-58, suggesting a higher activity in comparison to the other yeasts. This functionality is 235 

hypothesised by the authors to be the result of the higher temperature tolerance and fast fermentation at 236 

higher temperatures in comparison to the remaining yeast strains (Table 1). It is well known that yeast 237 

activity can be influenced by many factors such as the pre-growth conditions of yeast, dough 238 

fermentation conditions, dough ingredients and the genetic background of the various yeast strains [21]. 239 

The acid analysis (citric acid, succinic acid, lactic acid, acetic acid) of the dough and bread samples 240 

formulated with the different yeasts did not find detectable quantities. Only quantities of acetic acid 241 

were found in bread samples as part of volatile compound analysis (Table 4). The detection of acetic 242 

acid during the volatile compound analysis is explained by the different detection limits of the two used 243 

detection methods. GC-MS used for the volatile compound analysis can detect compounds in ppm 244 

quantities while the detection limit of the HPLC is significantly higher. Acetic acid values measured by 245 

the GC were observed to be four times higher in bread crumbs baked with S. cerevisiae S-23 in 246 

comparison to the remaining yeasts. The lowest value was found in breadcrumbs of breads baked with 247 

US-05, which overall showed low amounts of volatile compounds. Acetic acid contributes to the overall 248 

aroma of baked goods [22]. Its organoleptic descriptors are vinegar, pungent and sour, hence the 249 

differences in the amounts of acetic acid are assumed to influence the sensory evaluation. These small 250 

quantities however are not considered to affect the dough and bread properties or to contribute to the 251 

flavour or aroma profile. Based on the refined gluten-free system in this study in addition to the limited 252 

amount of oxygen in a dough system, the acid analysis suggests that the metabolic pathways of the 253 

various yeasts followed the alcoholic fermentation, rather than the TCA cycle [6]. As discussed earlier, 254 

the refined system was considered to not provide enough nutrients for the yeast to synthesise 255 

metabolites like acids. 256 

3.4 pH values 257 

Changes in pH of the dough before and after proofing and in the final bread are shown in Table 2. The 258 

various S. cerevisiae yeast strains showed significant differences in the pH development over the 259 

breadmaking process. Overall it was observed that the doughs decreased in pH during fermentation and 260 

increased after baking. US-05 and S-23 had the significant highest pH before proofing. Doughs 261 

formulated with S. cerevisiae T-58 showed the significant lowest pH. Also, after proofing T-58 showed 262 

the lowest and US-05 the highest pH. The effect of acids on pH in this study was excluded since they 263 

were not detected. Thus, the effect of CO2 production is assumed to be the main cause for the changes 264 

in pH [23]. After the baking process, an increase in the pH values in all the baked breads was observed. 265 

Even though the pH increased, the lowest pH was found for breads formulated with T-58. The 266 

significant highest pH value was reached by breads containing the yeast strain WB-06 followed by US-267 

05. The effect of the pH increase after baking is explained by the loss of carbon dioxide and linked 268 

carbonic acid. Reduction in pH indicates CO2 and ethanol production by the yeasts. The more active 269 
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the yeasts the more sugars are fermented, and the more CO2 is produced, dropping the pH in the dough 270 

[24]. 271 

3.5 Time- and temperature- dependent rising behaviour of dough 272 

The evaluation of dough rising behaviour is a commonly determined parameter in wheat-doughs, to 273 

achieve constant dough quality. The measurement is usually conducted with the aid of the 274 

rheofermentometer. This machine, however, showed limitations in analysing gluten-free batters due to 275 

their liquid nature. 276 

Therefore, a new method was established using the Anton paar® rheometer attached with the 277 

TruStrain™ system, allowing the determination of the dough rise and providing a prediction tool for 278 

yeast activity (Figure 1). Analysed parameters were the max height, the slope during the fermentation 279 

process (Slope 30°C), the baking process (Slope 90°C) and max height temperature (TMH) (Table 2). 280 

It was found that doughs formulated with S. cerevisiae T-58 had the highest dough rise in comparison 281 

to the other strains. The lowest dough rise was observed for US-05. The temperature at which the 282 

maximum height was reached indicates that the control yeast reached its maximum height significantly 283 

earlier than the remaining yeasts. The yeast strains S-23 and WB-06 reached their maximum height at 284 

significantly higher temperatures. The different temperatures to reach the max height are not correlated 285 

but can be explained by the different activities of the yeast strains and their preferred temperatures 286 

(Table 1) [25]. The slope during the fermentation phase (FP) at 30°C presented T-58 as the most active 287 

yeast with a slope twice as high as the control, which is the second most active strain. The authors 288 

hypothesise that this high activity is the result of the temperature optimum for fast fermentation (32 289 

°C).  The explanation why S-23 and WB-06 reached a higher height than the control is due to their 290 

increase in activity at higher temperatures (Slope BP). This high increase would suggest a more 291 

pronounced oven spring as usually observed during the baking process. The differences in the optimal 292 

fermentation temperatures and metabolism of sugar affected the chemical and technological properties 293 

of the gluten-free dough. When optimal conditions are provided, yeast can work at its full potential. 294 

This was confirmed by reduced levels of sugars in the final bread and the pH development of the bread 295 

making process. Correlation analysis revealed strong negative correlations between the pH and dough 296 

rise (r. 0.921, p.<0.001). The correlation is explained by the produced CO2, which is decreasing the pH 297 

due to its carbonic acid and the expansion of gas cells accelerating the dough rise [4, 23]. The production 298 

of CO2 is considered as an indicator for yeast activity [4]. The more CO2 and ethanol are produced by 299 

yeast, the more active it is considered. The differences in the activity between the various yeast strains 300 

can be explained by the negative correlations between the remaining sugars in the final bread and the 301 

dough rise (r. -0.879, p.<0.001). This is due to the metabolism of the different yeasts, which ferment 302 

the available sugars and produces CO2 [13]. The more sugars are fermented the more CO2 is produced 303 

and the higher is the dough rise. Overall the method showed similarities to rheofermentometer results 304 

found by Heitmann et al. [4], who applied beer yeast strains to wheat breads. In their study, it was also 305 

observed that T-58 had the highest activity and US-05 the lowest which was explained by a slower 306 

fermentation of sugars. The obtained results of the various yeast strains show the suitability of the 307 
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method for gluten-free doughs. It is further hypothesised that it can be used as an indicator for the final 308 

bread properties.  309 

3.6 Bread results 310 

One of the most important quality parameters and the first impression for the consumer is the 311 

appearance of a product. Figure 2 illustrates cross sections and surface images of the baked breads with 312 

the different yeasts. It can be observed, that breads baked with the ale yeast US-05 showed reduced loaf 313 

volume and smaller average cell pore size. Bread baked with WB-06 and S-23 showed a closer 314 

resemblance to the control bread in terms of size and cell pore size. The effect of T-58, however, showed 315 

a bigger loaf volume and big gas cells in comparison to the control bread (Baker’s yeast). A more 316 

detailed description of the quality parameters is presented in Table 3. The images of the breads 317 

containing the different yeasts depicted in Figure 2 indicate significant differences between the bread. 318 

The specific volume and its related appearance is the most important bread quality parameter which has 319 

a high influence on the consumers quality perception [27]. The differences of the specific volume are 320 

significant and show the breads baked with T-58 showed the highest loaf volume (Table 3). The other 321 

applied yeasts either had no significant differences (WB-06) or resulted in inferior bread characteristics 322 

(S-23, US-05) particularly relating to the volume of the breads. Next, to the influence of the yeast, a 323 

key role for the rise of a bread is the dough consistency. After mixing and heating, the dough can 324 

facilitate the entrapment of produced gas and the expansion of the gas cells [28]. The cell structure of 325 

bread is a key quality criterion which can be related to crumb hardness and the specific volume. The 326 

development of crumb structure and gas cells expansion initially starts during fermentation, when CO2 327 

and ethanol are produced as products of the yeast metabolism. In the baking process then the produced 328 

ethanol evaporates with some of the water and helps the expansion of gas cells and ultimately the loaf 329 

rise [23]. Cell structure of bread is a key quality criterion which can be related to crumb hardness and 330 

the specific volume. Parameters chosen for the crumb structure were the number of cells, cell diameter 331 

and the number of cells per slice area. The application of the ale yeast US-05 was the only yeast which 332 

increased the number of cells significantly in comparison to the baker’s yeast (control). The addition of 333 

the remaining yeast led to breads with a lower number of cells when compared to the control. The 334 

combination of the number of cells and their development of crumb structure and gas cells expansion 335 

initially starts during fermentation, when CO2 and ethanol are produced as products of the yeast 336 

metabolism. In the baking process then the produced ethanol evaporates with some of the water and 337 

helps the expansion of gas cells and ultimately the loaf rise [23]. This explains the results of breads 338 

baked with US-05, which despite their high number of cells, but because of their small crumb cell 339 

diameter led to small loaf volume. The opposite effect was found in breads containing T-58. The breads 340 

showed the lowest number of cells; however, these cells showed the significant highest cell diameter 341 

resulting in breads with the significant highest specific volume (Table 3). The number off cells / slice 342 

area (mm2) gives the ratio of cells per mm2 on the bread. Breads baked with US-05, S-23 showed the 343 

highest ratio in comparison to the control. No significant differences were found between WB-05 and 344 

the control. The significant lowest value was found in breads baked with T-58. Texture is a further 345 

important quality characteristic for consumer acceptance [25]. The process of increasing hardness over 346 
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time is known as staling and has been claimed to affect the flavour of a bread [29]. Hardness of the 347 

breadcrumb was chosen to determine textural parameters. The hardness was measured 2h and 24h after 348 

baking. Both measurements of hardness showed significant differences between the bread samples 349 

baked with the various yeast strains. Further observations showed that all bread samples increased in 350 

hardness. Measurements conducted after 2h of baking showed that breads baked with S-23, WB-06 and 351 

T-58 had a significant softer breadcrumb texture in comparison to Baker’s yeast. T-58 however showed 352 

the significant lowest hardness in comparison to all applied yeast strains. Bread baked with the yeast 353 

strain US-05 showed the significant highest hardness. Similar observations were made by Heitmann et 354 

al. [4], who also showed that wheat breads formulated with the yeast strain US-05 had the highest 355 

hardness after baking. A similar order of hardness of the different breads baked with the various yeast 356 

strains was observed after 24h. Breads baked with US-05 resulted in the significant highest hardness. 357 

The applied yeast S-23 and T-58 showed the significant lowest hardness in comparison to the other 358 

yeasts, with T-58 having still the significant softest breadcrumb. The application of WB-06 resulted in 359 

breads which showed now similar results to the control Baker’s yeast, indicating a faster staling process. 360 

The differences of the varies breads in crumb hardness are hypothesised to be caused by the crumb 361 

structure. The hardness of breadcrumb is measured by compression over a certain area (probe diameter 362 

20mm). Due to the significant difference in cell diameter, different areas of cell walls are compressed. 363 

Hence, it is suggested that breads with high cell diameter provide less cell walls for the measuring probe 364 

to compress resulting in less resistance and a lower measurement of hardness. Correlations between 365 

dough properties and the final bread properties were found (r > 0.8). The dough rise had strong 366 

correlations between the crumb cell structure, in particular with the cell diameter (r. 0.937, p. < 0.001). 367 

This was explained by the production of CO2, which expands the crumb cells and in turn increases the 368 

dough rise. Based on this, it can be expected to find correlations between the dough rise properties of 369 

the doughs and the specific volume of the various breads (r. 0.844, p. < 0.001). The found correlation 370 

suggests that the dough rise measurement offers the potential to be used as prediction tool for the final 371 

volume of baked breads and yeast activity. Correlation analysis also confirmed the discussed connection 372 

between cell structure and texture. After baking a higher number of cells was positively correlated with 373 

the hardness of the breadcrumb 2 h (r. 0.870, p. < 0.001) and 24 hr (r. 0.929, p. < 0.001). This suggests 374 

that the increase in cells increased the number of cell walls which in turn strengthen the breadcrumb 375 

and results in higher hardness values. A further correlation was found for the specific volume and the 376 

bake loss (r. 0.802, p. < 0.001). This correlation has also been found in a previous study [14] and is 377 

known to be caused by a greater specific volume which offers a greater surface area for water to 378 

evaporate. 379 

3.7 Volatile Aroma Compounds Analysis 380 

The identification of the aroma compounds revealed ethanol and acetic acid as the only components 381 

being detected in all the breadcrumb samples (Table 4). Ethanol, which is the most produced volatile 382 

compound during bread fermentation, was also found in this study to be the main compound. The S. 383 

cerevisiae yeast strain T-58 was found to have produced almost twice as much ethanol in comparison 384 

to the other yeast strains. The high activity of T-58 was also earlier discussed during the dough-rise 385 
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measurement and the lower pH in the final bread. Overall it is suggested that it is due to its tolerance to 386 

high temperature [4]. Further detected aroma compounds in some of the bread samples were 2,3-387 

butanediol and 1-hydroxy-2-propanone. 2,3- butanediol is a metabolite of alcoholic fermentation, which 388 

was found in breads fermented with the yeast strains S-23 and T-58. The metabolic pathway for the 389 

production of 2,3- butanediol by yeast was reported to be the oxidative decarboxylation and 390 

enzymatically reduction of 2-acetolactat [30]. The production of 2,3-butandiol is discussed to increase 391 

ethanol production [31]. However, in this study this effect could not be confirmed. The aroma 392 

compound 1-hydroxy-2-propanone was found in breads baked with S-23. This compound is a product 393 

of Maillard reaction and created by the reaction between reducing sugars and amino acids, mainly 394 

proline [32]. The presence was explained by the pea protein present in the used gluten-free system. A 395 

study by Heitmann et al. [4], who applied the same yeasts and conducted the same method for aroma 396 

compound determination in a wheat bread found further compounds such as isobutyric acid, 1-hexanol, 397 

2-phenylethanol and 3-methyl-1-butanol. The lower diversity of aroma compounds found in the current 398 

study is suggested to be caused by the metabolic pathways of the various yeasts, which followed the 399 

alcoholic fermentation, rather than the TCA cycle. To produce significant amounts of aroma 400 

compounds, conditions like amino acid composition, glucose supply and oxygen must be provided [33]. 401 

The refined system in this study based on pure potato starch, lacks on nutrients for the yeast growth and 402 

the connected metabolite production. Due to the lack of alpha-amylase activity of potato starch [34], no 403 

glucose can be generated by degrading the starch. A low content of damaged starch, due to the 404 

extraction process of potato starch further prevents the generation of glucose [35]. 405 

Only the addition of sucrose in the recipe provides a limited amount of glucose after degradation, as 406 

seen in Table 2. Hence the main reason for the switch to alcoholic fermentation is assumed to be caused 407 

by the liquid batter, which causes depletion of oxygen. Based on these conditions it is hypothesised, 408 

that the yeast during fermentation switched to the alcoholic fermentation, rather than following 409 

respiration.  410 

3.8 Descriptive sensory evaluation 411 

For the descriptive analysis of the breadcrumb samples, a total of 12 attributes split into aroma and 412 

flavour were chosen. The descriptors are listed in Online resource 1. The sensory evaluation of the 413 

aroma did not show significant differences between the baked breads with the various yeast strains (data 414 

not shown). The outcome of this analysis is explained by the low production of volatile compounds and 415 

acids. The used gluten-free system lacks sufficient and or specific nutrients for the yeast to metabolise 416 

and produce other products than ethanol and acetic acid. The lack of nutrients for the yeast in a gluten-417 

free system can be confirmed by the volatiles found in wheat-based system, applying the same yeast 418 

strains [31]. In a wheat system higher amounts of volatile aroma compounds were found and hence 419 

differences in sensory profiles were reported. The outcome of the sensory evaluation suggests that the 420 

yeasts can be interchangeably be used without affecting the flavour and aroma profile. This allows 421 

focussing on the techno-functional effects of the yeast strains on the dough and final bead. 422 

 423 
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4.  Conclusion 424 

This study was conducted to investigate the effect of different S. cerevisiae yeast strains on a gluten-425 

free bread formulation. Although only strains of S. cerevisiae were applied, differences in dough and 426 

bread quality parameters were observed. Differences in sugar metabolism and preferred fermentation 427 

temperatures lead to diverse activity levels and performance of the various yeasts. These differences in 428 

activity had major changes in the dough performance and ultimately in the bread baking characteristics. 429 

The application of the yeast strain US-05 showed a decrease in loaf volume and a high increase in 430 

crumb hardness in comparison to the control yeast. On the contrary T-58 resulted in the bread with the 431 

highest loaf volume and the softest bread crumb. The yeast strain WB-06 showed the closest 432 

resemblance to the breads baked with the control yeast strain Baker’s yeast. Pearson analysis showed 433 

significant correlations between yeast activity indicators such as pH and remaining levels of sugar and 434 

the dough rise parameters (r. > 0.70) (Online resource 2). These in turn correlated with loaf volume 435 

crumb structure and texture of the baked breads (r. > 0.75). Volatile aroma compound analysis detected 436 

only low amounts of volatiles which explained the not significant different results of the descriptive 437 

sensory. The low production of volatiles was explained to be caused by the refined gluten-free system 438 

in this study, which lacks nutrients for the yeast metabolism. In summary it was found that the different 439 

yeasts only affected the technological properties rather than the flavour and aroma profile of the baked 440 

breads. This was found to be due to the yeast specific activities and properties. The performed study 441 

demonstrated the suitability of different yeast strains of S. cerevisiae in the application of gluten-free 442 

bread.  443 
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 538 

Figure 1 A: Example diagram for Time- and temperature-dependent rising behaviour of dough. B: Flow 539 

chart of methodology 540 
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 2 

A 
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Figure 2 Images of cross section and surface of breads baked with the various yeast strains 

     
US-05 S-23 Wb-06 T-58 Baker´s Yeast 
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Table 1 Properties of the different yeast strains 545 

S. 
cerevisiae 

Application1 Temperature optimum [C]1 Fermentation 
time 1 

Activity 
[cfu/g]2 

Dosage 
[%]2 

Sugar metabolism 1 

MalT Mal Glu Dextr 

Baker’s 
yeast 

Baked goods 25-30 Hours 1.06 E+09 2 ++ + + + 

S-23 Lager 
12-15 (27 faster) lower temperature 

tolerance 
Up to 14 days 5.18 E+08 4.1 ++ +++ +++ + 

T-58 Ale 
15-20 (32 faster) High temperature 

tolerance 
2-3 days 5.5 E+08 3.86 ++ ++ ++ +++ 

US-05 Ale 15-22 high temperature tolerance 2-3 days 4.47 E+08 4.48 +++ + +++ ++ 

WB-06 Wheat Beer 18-24 2-3 days 7.16 E+08 2.97 + ++ ++ ++ 

1Adapted from Heitmann et al., (Heitmann, Axel, Zannini, & Arendt, 2017) with modifications 546 

2From yeast activity measurement 547 

MalT: Maltosetriose; Mal: Maltose; Glu: Glucose; Dextr: Dextrins 548 

+++ high; ++ moderate; + low 549 

 550 

  551 
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Table 2Chemical and functional properties of the bread doughs containing the different yeast strains 552 

  US-05 WB-06 T-58 S-23 Baker’s Yeast 

 

Total starch 

(dm) 

      

Dough [g/100g] 84.78 +/- 5.38a 81.54 +/- 4.69a 82.71 +/- 5.63a 84.13 +/- 8.66a 78.00 +/- 1.68a 

Bread [g/100g] 82.09 +/- 4.24ab 81.50+/- 4.14 ab 75.97 +/- 1.67b 78.57 +/- 2.24b 87.27 +/- 0.87a 

       

Sugars 

Glucose       

Dough [g/100g] 2.30 +/- 0.60a 2.70 +/- 0.18a 1.94 +/- 0.54a 2.30 +/- 0.04a 1.85 +/- 0.14a 

Bread [g/100g] 2.23 +/- 0.45a 1.24 +/- 0.05b 0.37 +/- 0.07c 1.21 +/- 0.09b 1.17 +/- 0.02b 

Fructose       

Dough [g/100g] 2.03 +/- 0.24a 2.25 +/- 0.12a 2.02 +/- 0.03a 2.02 +/- 0.03a 2.24 +/- 0.10a 

Bread [g/100g] 2.30 +/- 0.41a 1.54 +/- 0.54ab 1.12 +/- 0.05b 1.55 +/- 0.09ab 1.61 +/- 0.03ab 

       

pH 

Dough [-] 5.12 +/- 0.04a 4.96 +/- 0.01 b 4.77 +/- 0.04 c 5.14 +/- 0.01 a 4.98 +/- 0.03 b 

Proofed Dough [-] 4.88 +/- 0.04 a 4.84 +/- 0.01ab 4.54 +/- 0.01 c 4.85 +/- 0.10 ab 4.72 +/- 0.00 b 

Bread [-] 5.26 +/- 0.02ab 5.29 +/- 0.02a 5.05 +/- 0.03c 5.20 +/- 0.03b 5.20 +/- 0.04b 

       

Dough Rise 

SlopeFP [mm/min] 0.04 0.09 0.27 0.10 0.13 

SlopeBP [mm/min] 0.30 0.53 0.43 0.53 0.39 

MaxH [mm] 10.09 ± 0.04d 16.01 ± 0.59b 21.78 ± 0.29a 17.13 ± 0.21b 14.65 ± 0.93c 

TMH [°C] 82.01 ±0.02c 89.92 ±0.01a 83.10 ± 0.04b 89.91 ± 0.01a 74.96 ± 0.03d 

Means in the same row with different letters are significantly different (≥3 = One-way ANOVA; ≥2 0 =t-Test, p < 0.05). n.d. = not detected 553 

 554 

 555 
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 557 

Table 3 Results of bread parameters baked with the different yeast strains 558 

 559 

Yeast strain US-05 S-23 WB-06 T-58 Baker’s Yeast 

Specific Volume [ml/g] 1.96 ± 0.05d 2.18 ± 0.12c 2.50 ± 0.08b 3.43 ± 0.28a 2.42 ± 0.11b 

Bake Loss [g/100g] 15.36 ± 0.25c 16.61 ± 0.28b 17.34 ± 0.79b 19.36 ± 1.18a 16.88 ± 0.38b 

Number of Cells [-] 3192.1 ± 205.2a 2517.056 ± 71.7c 2430.889 ± 195.0c 2297.529 ± 226.6d 2534.278 ± 124.7b 

Cell Diameter [mm] 1.43 ± 0.10d 2.00 ± 0.21c 2.43 ± 0.23b 3.69 ± 0.22a 2.54 ± 0.22b 

Number of Cells/ Slice 

Area (mm2) 
0.805 ± 0.063d 0.560± 0.049c 0.490 ± 0.039b 0.377 ± 0.026a 0.508 ± 0.031b 

Hardness (2h) [N] 8.26 ± 1.26a 4.10 ± 1.18c 3.86 ± 0.50c 2.19 ± 0.46d 5.82 ± 0.92b 

Hardness (24h) [N] 29.91 ± 3.64a 14.62 ± 1.82c 16.67 ± 1.82b 6.33 ± 1.17d 16.75 ± 2.00b 

Means in the same row with different letters are significantly different (≥3 = One-way ANOVA; ≥2 0 =t-Test, p < 0.05). 
n.d. = not detected 

 560 
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 561 

Table 4Volatile compound analysis 562 

Compound 
Organoleptic 

description1 

Concentration [µg/kg] 

S-23 T-58 US-05 WB-06 
Baker’s 

Yeast 

Ethanol 
Alcoholic, 

sweet 
2500 5800 2300 2300 3000 

Acetic Acid 
Vinegar, 

pungent, sour 
1300 360 120 200 260 

2,3-Butandiol 
Fruity, creamy, 

buttery 
300 160 n.d. n.d. n.d. 

1-Hydroxy-2-

propanone 

Pungent, sweet, 

caramellic, 

ethereal 

190 n.d. n.d. n.d. n.d. 

1Described according to (Pico et al., 2015)  563 

n.d.= not detected 564 
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Online resources 566 

Online resource 1 Sensory descriptors 567 

Smell (Odour) Description 

Whey Aroma typical of Whey powder 

Eggy Aromatic characteristics of boiled eggs (sulphuric) 

Nutty Aromatic characteristics of mixed nuts, e.g. walnuts, hazelnuts, brazil 

nuts and pine nuts 

Green (pungent) Aroma typical of cut grass 

Cereal (bread) Aroma typical of cereals (oats, rye, barley, wheat) mixed with boiling 

water 1:3 

Intensity Perceived first impression of odour intensity of breadcrumb 

Taste (Flavour)   

Salty Degree of perceived salty taste, as a basic taste 

Acidic / Sour Degree of sourness taste 

Yeasty Flavour associated with natural yeast as a leavening agent 

Green (pungent) Itchy trigeminal sensation on the tip of the tongue 

Aftertaste Flavour of crumb staying after tasting 

Intensity Intensity of overall flavour in crumb 

 568 

Online resource 2 Correlation of dough properties with final bread characteristics 569 

Pearson correlation: *p. < 0.5, ** p. < 0.1, *** p.< 0.01 570 

 571 

 572 

 
Dough Rise properties 

Max Height [mm] Slope 30C 

Yeast 

activity 

pH proofed Bread -0.728** -0.921*** 

pH Bread -0.744** -0.911*** 

Glucose Bread -0.922*** -0.879*** 

Fructose Bread -0.793*** -0.723** 

Bread 

properties 

Cell Diameter 0.849*** 0.937*** 

Number of Cells / 

Slice Area (mm) 
-0.885*** -0.789*** 

Specific Volume 0.844*** 0.937*** 

Hardness 0h -0.910*** -0.730** 

Hardness 24h -0.948*** -0.851*** 


