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ABSTRACT 24 Cyclic di-GMP was the first cyclic di-nucleotide second messenger described, presaging the 25 discovery of additional cyclic di-nucleotide messengers in bacteria and eukaryotes. The GGDEF 26 diguanylate cyclase (DGC) and EAL and HD-GYP phosphodiesterase (PDE) domains conduct the 27 turnover of cyclic di-GMP. These three unrelated domains belong to superfamilies that exhibit 28 significant variations in function, to include both enzymatically active and inactive members with a 29 subset involved in synthesis and degradation of other cyclic di-nucleotides. Here we summarize 30 current knowledge of sequence and structural varitions that underpin the functional diversification 31 of cyclic di-GMP turnover proteins. Moreover, we highlight that superfamily diversification is not 32 restricted to cyclic di-GMP signaling domains, as particular DHH/DHHA1 domain and HD domain 33 proteins have been shown to act as cyclic di-AMP phosphodiesterases. We conclude with a 34 consideration of the current limitations that such diversity of action places on bioinformatic 35 prediction of the roles of GGDEF, EAL and HD-GYP domain proteins.  36  37  38 
  39 
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INTRODUCTION 40 The di-nucleotide cyclic di-GMP is the most abundant second messenger in Bacteria. It promotes 41 the environmental life style switch between sessility and motility as well as the host-related life 42 style switch between acute and chronic/benign infection. A hallmark of the cyclic di-GMP signaling 43 network is an apparent redundancy of cyclic di-GMP turnover proteins encoded in one genome. 44 However many of these proteins have distinct N-terminal sensing and signaling domains, 45 suggesting that their activities in cyclic di-GMP turnover respond post-translationally to various 46 (and different) intra- and extra-cellular signals. In gross terms, the number of cyclic di-GMP 47 turnover proteins is linearly correlated with genome size within the different bacterial phyla with 48 
Thermotogae having one of the highest cyclic di-GMP related “IQs”, density of enzymes per Mbp, 49 with some species harboring over 100 cyclic di-GMP turnover proteins 50 (http://www.ncbi.nlm.nih.gov/Complete_Genomes/c-di-GMP.html). As in other domain 51 superfamilies, extensive sequence diversity exists. Here, we review the knowledge on the 52 translation of sequence diversity of cyclic di-GMP turnover proteins into functional diversity.  We 53 conclude by discussing whether and how a unified nomenclature for cyclic di-GMP turnover 54 proteins can be established. 55  56 
FUNCTIONAL DIVERSIFICATION OF THE GGDEF DOMAIN 57 The approx. 180 amino acid long GGDEF domain catalyzes synthesis of cyclic di-GMP from two 58 molecules of GTP with the release of pyrophosphate (Fig. 1; (1, 2)). So far, the GGDEF domain is the 59 only identified protein domain to carry out this specific condensation reaction. Even before 60 functional characterization, the GGDEF domain was recognized to be a structural homologue of the 61 adenylate cyclase domain, both belonging to the RRM (ferredoxin) fold palm domain family, which 62 includes other enzymes forming 3’-5’ phosphodiester bonds such as reverse transcriptases, class A 63 and B DNA polymerases and RNA dependent RNA polymerases (3, 4). In approximately 40% of 64 
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proteins, the GGDEF domain is not only coupled to an N-terminal signaling domain, but also a C-65 terminal EAL domain.  Stand-alone GGDEF domains are rare and have not been characterized 66 extensively (5). The GGDEF domain frequently possesses suboptimal catalytic activity and requires 67 dimerization for the condensation reaction to occur at the active half-sites of the two monomers. 68 Dimerization can be further promoted by allosteric activation of the N-terminal sensor domain (6). 69 Various mechanisms of activation are emerging reflecting the diversity of cytoplasmic, 70 transmembrane and periplasmic signaling domains as well as linker and signal transducing 71 domains, which are potentially associated with sequence diversification of the turnover domain (1, 72 6-10).  Notably, the DgcZ  (YdeH) DGC is an active dimer with Zn2+ ion binding to inhibit the 73 catalytic activity (10). GGDEF domains can be differentiated into three major classes: enzymatically 74 functional domains; enzymatically functional domains, linked to an EAL domain; and enzymatically 75 non-functional domains ((Fig. 2); (11)). This classification is based on the homology of the entire 76 domain in combination with the conservation of the extended signature motif (Fig. 2; (12, 13)).  77  78 
Key residues in catalysis and allosteric regulation 79 The GGDEF domain consists of the defining GG(D/E)EF sequence motif that includes the D/E 80 catalytic base and other residues intimately involved in substrate binding and coordination of one 81 of the two divalent cations (14). The position of the substrate GTP in the crystal structure(s) of 82 GGDEF domain proteins indicates the presence of the glycines provides space for the ribosyl sugar 83 and phosphates thus explaining conservation of these residues (Fig. 3; (14, 15)). In PleD, the most 84 well investigated di-guanylate cyclase for which a crystal structure is available, the guanine base is 85 bound in a pocket with N335 and D344 as key contact residues curtailed by apolar side chains of 86 L294, F331 and L247. D/E is the catalytic base, while K332 stabilizes the transition state. All those 87 residues are well conserved in catalytically competent diguanylate cyclases (for further 88 information see Fig. 2).    89 
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Non-functional GGDEF domains are usually characterized by a degenerate GGDEF motif as any 90 mutation within the GGDEF motif of catalytically active GGDEF domain proteins usually abolishes 91 the catalytic activity, although there are exceptions. For example, the GGDEF domain protein of 92 
Staphylococcus aureus and Staphylococcus epidermidis with a well-conserved GGDEF motif has been 93 experimentally proven to be non-functional (16). The structural basis of non-functionality of 94 
Staphylococcal GGDEF domains still remains an enigma. As to alteration in the signature motif, it is 95 fairly common that GGDEF domains contain a degenerate GG(D/E)EF motif with the first G not 96 conserved. Recent experimentally characterized proteins with a G>A or G>S substitution still 97 exhibit significant functionality demonstrating unexpected flexibility in the GGDEF containing 98 active site hairpin (Fig. 2; (17-19)).  99 Besides the gross classification into catalytically active and non-active GGDEF domains, the 100 inhibitory site (I-site), designated by the central signature motif RxxD is another functional feature 101 which characterizes the activity profile (14, 20). The I-site, which is formed at an intra- or 102 intermolecular interface bridged by a cyclic di-GMP dimer, variably extends beyond the central 103 conserved RxxD cyclic di-GMP binding motif and mediates allosteric non-competitive product 104 inhibition, feedback control of cyclic di-GMP synthesis (20, 21). The RxxD motif is absent in a 105 proportion of GGDEF domains; alternative mechanisms to control cyclic di-GMP synthesis have 106 been described for some of these proteins (6, 22, 23). A second recently discovered function of the 107 I-site is the participation in protein-protein interaction with cyclic di-GMP receptor, which ensures 108 a stringent specificity of cyclic di-GMP signaling even in the presence of cyclic di-GMP production 109 (21). In divergent GGDEF domain proteins (see below), a retained I-site in catalytically non-110 functional GGDEF domains converts these domains into cyclic di-GMP receptors (24-27). It should 111 be noted that the enzymatic activity of the GGDEF domain can also be positively regulated by 112 cooperative binding of the GTP substrate (19).   113 
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Some GGDEF domains have diverged to be enzymatically nonfunctional. These nonfunctional 114 GGDEF domains can act as sensor domains that bind the substrate GTP, thereby allosterically 115 regulating the enzymatic activity of a C-terminal EAL phosphodiesterase (28). In this way the 116 degenerate GGDEF motif is involved in allosteric control (20, 29). A surprisingly high catalytic 117 plasticity has been demonstrated as a highly degenerate GGDEF domain has been shown to display 118 ATPase activity, albeit at suboptimal levels (30).  119  120 
Alternative cyclic dinucleotides synthesized by GGDEF domain proteins 121 A hallmark of binding of nucleotide and sugar derivatives to proteins is the low stringency of the 122 specificity of the binding site. Accordingly, alteration of few amino acids can alter substrate 123 specificity of nucleotides and sugars. Although it is the common perception that cyclic di-GMP 124 synthases can be readily identified in bacterial genomes as being members of the GGDEF domain 125 superfamily, GGDEF domain proteins that predominantly synthesize cyclic GMP-AMP, but also 126 cyclic di-GMP and cyclic di-AMP have recently been identified (31). The relative specificity of cyclic 127 GMP-AMP synthase activity as opposed to stringently using GTP as substrate on this specific 128 protein scaffold is determined by the amino acid serine, which has replaced aspartate 344 129 (designation according to PleD sequence), a key contact residue in the base-binding pocket. As the 130 exchange of aspartate for serine in an established di-guanylate cyclase did not lead to the 131 conversion into a cyclic GMP-AMP synthase, additional features of the protein scaffold must also 132 contribute to substrate specificity. 133  134 
Specificity in regulatory action 135 In general, GGDEF domains encoded by a single genome are functional paralogues, which have a 136 low amino acid sequence identity/similarity below 40%, while orthologues with identical domain 137 structure and high sequence identity can be found even in distantly related species (32). One of the 138 
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hallmarks of cyclic di-GMP signaling is a relative or absolute specificity of a phenotypic output of an 139 individual chromosomally encoded GGDEF domain protein. This specificity is partly explained by 140 the close proximity of signal production/degradation with receptor and/or effector proteins 141 mediated through protein-protein interactions, a first example being the involvement of the I-site 142 of a GGDEF domain in interaction with an EAL domain cyclic di-GMP receptor (21, 33). Interactions 143 between the EAL domain protein YciR and diguanylate cyclase YdaM control a key step in E. coli 144 biofilm formation through modulation of localised cyclic di-GMP levels (34).  Functionality is also 145 provided, however, by specific protein-protein interactions that are independent of the catalytic 146 activity (19, 35). In this case, the xxDxDx motif, which is highly conserved in GGDEF domains, is 147 required for the interaction with the HD-GYP domain. HD-GYP::GGDEF complex formation serves to 148 control motility through recruitment of a PilZ domain protein and interaction with the pilus 149 biogenesis machinery (35, 36). Overall, these data indicate that GGDEF domain proteins possess 150 several protein interaction interfaces, which participate in the formation of supramolecular 151 complexes.   152 
 153 
FUNCTIONAL DIVERSIFICATION OF THE EAL DOMAIN 154 The EAL domain was the first identified cyclic di-GMP specific phosphodiesterase, and remains the 155 most well characterized (Fig. 4, 5; Fig. S1; (2, 37, 38)). The product of EAL phosphodiesterase 156 activity is the di-nucleotide pGpG, while hydrolysis of pGpG into GMP is considered to be too slow 157 to be physiologically relevant.  EAL phosphodiesterases require a divalent cation for enzymatic 158 activity, which in most cases is Mg2+ or Mn2+ ion, while Ca2+ and Zn2+ efficiently inhibit the 159 enzymatic activity (39, 40). Catalytically active EAL domains usually have a high substrate affinity 160 in the physiological nanomolar range and cyclic di-GMP binding can increase the dimerization 161 affinity (41). Although monomers can be catalytically active, dimerization substantially enhances 162 protein stability and catalytic activity (37). 163 
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 164 
Key residues for activity 165 Systematic alanine substitutions of conserved signature amino acids have given insights into the 166 catalytic mechanism, even before a crystal structure had become available (42, 43). That work 167 showed that the EAL motif is part of a larger conserved signature motif that is required for catalytic 168 activity including amino acids required for binding of divalent cations, the substrate and catalysis. 169 In addition, a flexible loop (“loop 6”) extensively characterized in (β/α) barrel proteins mediates 170 
dimerization and controls substrate and cation binding, thus being required for catalytic activity (42, 171 44). The findings from this mutagenesis study enabled the differentiation of EAL domains in three 172 classes: catalytically active, potentially catalytically active and catalytically inactive EAL domains 173 (32, 42), thus facilitating the prediction of the function of further EAL domains. Based on the 174 functional characterization of additional EAL domains, a further sub-classification can be made (see 175 Fig. 4). 176 The crystal structures of several EAL domain-containing proteins revealed that these proteins 177 possess a protein fold variant of the (β/α) TIM-barrel structure arranged as eight alternating alpha 178 helices and beta-strands (Fig. 5; (44). This arrangement of secondary structures is found in over 50 179 diverse protein superfamilies (45). The functionality of this highly conserved arrangement of 180 secondary structures is highly flexible as these protein families bind different substrates and 181 catalyze different reactions. In case of the light-inducible phosphodiesterase Blrp1 of Klebsiella 182 
pneumoniae, interdomain interaction between the sensor domain and a non-conserved connector 183 in the EAL domain of only four amino acids in length controls the catalytic activity in response to 184 light (Fig. 5A; (44)).  185  186 
Classification of divergent domain members 187 
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As with the GGDEF domain, the EAL domain superfamily contains diverged members. Most EAL 188 domains are class I EAL domains, which possess a N-terminal signaling domain and features 189 substantial, but still suboptimal catalytic activity in the non-activated state, requiring the correct 190 positioning of conserved loop 6 (42, 44). Class II EAL domains potentially possess catalytic activity 191 with deviations of some amino acids from the conserved signature motifs; they are most poorly 192 characterized. Of note, catalytically active EAL-only domain proteins comprise a specific subgroup 193 within the class II family. Class III EAL domains can already be recognized by bioinformatic analysis 194 to be catalytically inactive, since class III domains possess deviations from the conserved signature 195 motifs of active enzymes in several determinative positions. Nevertheless some class III domains 196 can still bind cyclic di-GMP, thus serving as cyclic di-GMP receptors (class IIIa), whereas others are 197 unable to bind the di-nucleotide (Fig. 5B; (class IIIb)).  198 Cyclic di-GMP binding and non-binding EAL domains cannot be distinguished with certainty (Fig. 199 4). However, in both cases, several conserved signature amino acids are missing and loop 6 is not 200 conserved. Binding of cyclic di-GMP to a receptor EAL domain allosterically controls subsequent 201 events. In the conserved Lap system with the GGDEF-EAL receptor LapD, interactive inside-202 out/outside-in signals mediated by the HAMP domain couple cytoplasmic cyclic di-GMP binding to 203 reinforcement of periplasmic protein-protein interactions controlling e.g. periplasmic proteolysis of 204 cell surface proteins (46, 47). Interestingly, homologous GGDEF-EAL receptors have variations in 205 their cyclic di-GMP binding sites and bind cyclic di-GMP in different conformations, which reflects 206 the structural polymorphism of this second messenger (48, 49) as well as binding site flexibility 207 (Fig. 5C; (50)). Such polymorphisms make it still challenging to predict cyclic di-GMP binding 208 residues by bioinformatics. 209 Catalytically inactive, non-cyclic di-GMP binding EAL proteins function solely through protein-210 protein interactions. Several well-investigated class IIIb proteins of Escherichia coli and Salmonella 211 
typhimurium, YdiV and Salmonella specific STM1697, bind to the major flagella regulator FlhDC 212 

 on January 3, 2017 by U
N

IV
 C

O
LLE

G
E

 C
O

R
K

http://jb.asm
.org/

D
ow

nloaded from
 

http://jb.asm.org/


10  

with apparently similar, but highly distinct interfaces (51-53). Furthermore, the class IIIb protein 213 YdiV, interacts in complex with FlhDC, with the ClpXP protease guiding FlhDC for degradation (54) 214 and regulates other physiological traits besides motility (55).  215 
 216 
Regulation of dual-function diguanylate cyclase-phosphodiesterases 217 Of particular complexity is the regulation of the activity of GGDEF-EAL domain proteins in case 218 where the two domains are both catalytically functional (56). Notably, the three DGCs and three 219 PDEs of Komatagaeibacter xylinus that affect cellulose production, the first biological function 220 recognized to be affected by cyclic di-GMP signaling, are GGDEF-EAL domain proteins, and both 221 domains are predicted to be functional by bioinformatics analysis (39). Differential regulation of 222 the catalytic activity of these domains can include allosteric regulation by ligand binding, signal 223 perception or protein-protein interactions which favors one catalytic activity over the other (7, 57-224 60), but could also include a combination of regulatory mechanisms such as proteolytic cleavage in 225 combination with signal perception (61). This points to a multifactorial regulation of catalytic 226 activity in vivo. However, catalytically active domains can even predominantly affect certain aspects 227 of physiology through protein-protein interactions. For example, the GGDEF-EAL 228 phosphodiesterase YciR of E. coli affects expression of csgD, a major biofilm regulator, through 229 interaction with a DGC and a transcriptional regulator, which inhibits biofilm formation (34). 230 
 231 
A phosphodiesterase involved in pGpG degradation 232 The observations that the EAL domain hydrolyses cyclic di-GMP into 5’-pGpG (Fig. 1) have raised 233 the question of the possible cellular role and fate of this di-nucleotide product (62). As an inhibitor 234 of the enzymatic activity of particular EAL domain proteins, this molecule could potentially impinge 235 on cyclic di-GMP levels and signaling. Furthermore, it has been suggested that this nano-RNA is a 236 signaling molecule in its own right, involved in the initiation of transcription by RNA polymerase 237 
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(63). Two classes of enzymes are implicated in 5’-pGpG degradation: a subgroup of HD-GYP domain 238 phosphodiesterases that can hydrolyse both cyclic di-GMP and 5’-pGpG (see below) and the 239 oligoribonuclease Orn, recently identified as the primary degradative enzyme for 5’-pGpG in 240 
Pseudomonas aeruginosa (64, 65). Homologues of Orn are widely distributed in bacteria, although 241 Cohen and colleagues (65) identified over 200 species that lack an Orn homolog, but have EAL and 242 HD-GYP domain proteins, as well as over 100 species that lack both an Orn homolog and EAL 243 domains, but have HD-GYP domain proteins.  Thus in some bacteria, HD-GYP domain proteins may 244 influence cyclic di-GMP levels both directly, by hydrolysis of the nucleotide, and indirectly by 245 preventing product inhibition of the activity of EAL domain enzymes. 246 
 247 
FUNCTIONAL DIVERSIFICATION OF THE HD-GYP DOMAIN 248 There are fewer studies of HD-GYP domain proteins compared to those with the GGDEF and EAL 249 domains. Although well-studied model organisms harbor mostly EAL domain phosphodiesterases, 250 the HD-GYP domain is one third as abundant throughout the phylogenetic tree 251 (https://www.ncbi.nlm.nih.gov/Complete_Genomes/c-di-GMP.html). The prototype of an HD-GYP 252 domain protein is the response regulator RpfG from Xanthomonas campestris (36, 66). This protein 253 is part of a two component system that affects expression of multiple virulence functions in this 254 plant pathogen (67, 68). In vitro, RpfG converts cyclic di-GMP to GMP via the intermediate 5’-pGpG 255 dependent on Mn2+ (66, 69). Alanine substitution within the signature HD dyad leads to loss of both 256 enzyme activity and regulatory action (66). In contrast, although alanine substitutions in the 257 signature GYP motif have little or no effect on enzyme activity, they do counteract interaction of 258 RpfG with particular GGDEF domain proteins to modulate a specific subset of RpfG mediated 259 phenotypes (35, 66, 70).  260 
 261 
Diversity in metal binding 262 
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The crystal structure of the enzymatically-active HD-GYP phosphodiesterase PmGH from 263 
Persephonella marina EX-H1 unexpectedly showed a trinuclear Fe center with iron in two redox 264 states as Fe(II) and central Fe(III) buried at the bottom of the cavity forming the c-di-GMP binding 265 site (Fig. 6; (71)). In general, the HD domain superfamily of enzymes has been shown to catalyze 266 phosphomonoesterase and phosphodiesterase reactions depending on their catalytic metal center 267 being mono- or binuclear, respectively. Variations in the metallic center of the HD-GYP domain 268 were seen in the structure of the unconventional, catalytically inactive Bd1817 from Bdellovibrio 269 
bacteriovorans (72) and PA4781, a two component regulatory protein from Pseudomonas 270 
aeruginosa (73) which harbor bi-nuclear metal centers, although of a distinct nature.  271 A phylogenetic comparison of HD-GYP domains showed a distinct separation into two evolutionary 272 groups independent of the type of associated regulatory and/or sensory domain (71) with seven 273 out of the eight PmGH metal ligand residues shared (Fig. 7; (71)).  The variable ligand which 274 corresponds to E185 in PmGH is embedded in the signature motif E/D-T-G for the PmGH subfamily. 275 E185 has been predicted to be determinative for a three-metal center valency (71, 74). Conversely, 276 the other subfamily primarily presents a tyrosine or phenylalanine (Y/F) and lacks a unique 277 signature.. The separation of HD-GYP proteins into these two subfamilies is not entirely clear-cut 278 though (Fig. 7); (73), (75)). For example, RpfG from X. campestris, despite phylogenetically 279 clustering within the E/D-T-G subgroup, aligns a glycine in place of the E/D residue, as well as 280 variation in a H-site metal ligand (Fig. 7). Thus RpfG is more likely to possess a binuclear metal ion 281 center.  282 Recent work has provided evidence that the differences in the occupancy of the metal site and the 283 redox status affect catalysis (74). The activity of VCA0681 requires Fe(II) at the bimetallic center, 284 and derivatives with Fe(III) are inactive suggesting that the activity of this protein is redox-285 regulated (76). Also isolated TM0186 from Thermotoga maritima with two Fe(III) atoms is inactive; 286 reduction to Fe(II) enables the enzyme to generate 5’-pGpG but not GMP.  Additional 287 
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supplementation with either Mn(II) or Fe(II) leads to production of GMP. The phylogenetic 288 clustering of TM0186 within the E/D-T-G subgroup of HD-GYP domain proteins suggests that it has 289 a tri-metallic center.  Furthermore, a variant protein with an alanine substitution of the glutamate 290 generates only 5’-pGpG as a product.  The findings point to the association of a tri-metallic center 291 with the ability to generate GMP from 5’-pGpG. Also, the action of HD-GYP domains in converting 5’-292 pGpG to GMP suggests regulation by the intracellular availability of metals and metal site 293 occupancy. Finally, catalytically inactive SO2541 HnoD from Shewanella oneidensis and PA2572 294 from P. aeruginosa are variant at the HD dyad (SE and YN respectively) and have only 1 conserved 295 residue involved in metal chelation (77, 78); as a result, these proteins may exert their effect 296 through protein interactions involving the GYP motif (77, 78).  297 
 298 
Diversity in substrate binding and catalysis 299 Determination of the structure of PmGH in complex with the substrate cyclic di-GMP and final 300 reaction product GMP has revealed the mode of binding and shed light on the possible catalytic 301 mechanism (71, 79). Adequate space is available for the substrate to bind and both hydrolysable 302 phosphates to interact with the metal center to sequentially hydrolyze cyclic di-GMP to GMP. Cyclic 303 di-GMP is bound in a cis conformation (71), in contrast to the more extended conformation 304 observed when cyclic di-GMP is bound to EAL domain proteins (80) or predicted in binding to the 305 HD-GYP domain protein PA4108 (81).  306 The structural analysis of PmGH-cyclic di-GMP complex shows that the bound cyclic dinucleotide 307 interacts with the central (M-site) Fe(III) and is involved in diverse hydrogen bonds and 308 hydrophobic interactions (Fig. 6). As in RpfG, in PmGH alanine substitutions of six residues involved 309 in metal binding in addition to the HD dyad (H221, D222) (see Fig. 7) essentially abolish or 310 markedly reduce the phosphodiesterase activity. Alanine mutation of other conserved residues 311 near the metal center (D183, D308, and K225) have a similar impact on activity (71). Alanine 312 
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substitutions of residues implicated in cyclic di-GMP recognition do not, however, result in a 313 substantial decrease in catalytic activity (71). The proposed enzymatic mechanism is that M-site 314 Fe(III) directly interacts with a non-bridging oxygen of one of the scissile phosphate diesters of 315 cyclic di-GMP to provide a strong Lewis acid catalyst, whereas a metal-activated bridging hydroxide 316 ion of the M-H Fe pair is the likely nucleophile for the hydrolysis of the scissile bond (71).  The 317 occurrence of a hydroxide ion bridging ligand is consistent with the metal-ligand bond lengths (72, 318 82). The structure does not reveal how the O3’ leaving group is protonated, however.  319 The structure of PA4781 reveals potential steric hindrance of cyclic di-GMP binding by a glutamate 320 at position 314 (73). Accordingly, the purified enzyme has a relatively low affinity for cyclic di-GMP 321 (KM ~120 μM) compared to 5’-pGpG (KM ~27 μM). In other enzymatically active HD-GYP domain 322 proteins, position 314 is occupied by an alanine (see Fig. 7), and an E314A variant of PA4781 shows 323 substantially enhanced affinity for cyclic di-GMP (81). Detailed kinetic analyses indicate that 324 PA4781 has a low enzymatic activity but hydrolyses 5’-pGpG more effectively than cyclic di-GMP 325 (81). Although similar kinetic experiments on other HD-GYP domain proteins have not been 326 reported, the available evidence suggests that differences in the relative activity against 5’-pGpG 327 compared to cyclic di-GMP do occur (83) (76) (84) (77) (66, 69, 71).   328 
 329 
Structural insights into the multifunctional roles of HD-GYP domains 330 A sequence-based analysis identified the GYP signature motif of HD-GYP proteins as part of a larger 331 widely conserved motif HHExxDGxGYP (66). The PmGH structure suggests an extension of this 332 consensus motif to HHExxDGxGYPxxxxxxxI, to include a conserved isoleucine residue (I294 in 333 
PmGH) that stabilizes the structure of the loop by hydrophobic interactions with G284 from the 334 GYP motif (71). The structural conservation of the ‘GYP loop’ (Fig. 6) (73) between PmGH and 335 PA4781 suggests that it is integral to the functions(s) of HD-GYP domain proteins.  The GYP motif is 336 
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critical for protein-protein interactions of RpfG with specific GGDEF domain proteins in X. 337 
campestris, but is not necessary for the phosphodiesterase activity (66).  338 The available evidence suggests that the HD-GYP domain of RpfG can also interact with proteins of 339 other classes, including the transcriptional regulator NtrC (36, 85). Furthermore the enzymatically 340 inactive HD-GYP domain response regulator HnoD can inhibit the activity of the EAL domain 341 response regulator HnoB to regulate cyclic di-GMP levels in Shewanella oneidensis (77). The 342 mechanistic basis of this inhibition is not known. Different HD-GYP domain proteins within the 343 same organism may interact with different partners in vivo, although this remains to be tested 344 experimentally.  345 The structure of the PmGH HD-GYP complex with cyclic di-GMP reveals that Y285 of the GYP motif 346 is placed inside the substrate-binding pocket, where it H-bonds to cyclic di-GMP (Fig. 6).  This 347 presents a conundrum for the action of RpfG. If GGDEF domains interact directly with Y285, they 348 need to intercalate with the inner side of the HD-GYP nucleotide-binding pocket. This would 349 prevent cyclic di-GMP binding and phosphodiesterase activity, although such effects have not been 350 observed in vitro (35). An intriguing alternative is that RpfG involvement in protein-protein 351 complexes is determined not only by cyclic di-GMP binding but also by conformational alterations 352 associated with cyclic di-GMP degradation, which would be ‘reported’ via the GYP loop. In this way, 353 RpfG would act as a trigger enzyme for protein complex formation and regulation similar as 354 suggested for the EAL domain protein YciR of Escherichia coli (34). However mutation of the HD 355 dyad of the HD-GYP domain of RpfG does not significantly affect its in vivo interaction with GGDEF 356 domain proteins, as revealed by FRET analysis (35). Only further work can reveal whether 357 particular regulatory actions of HD-GYP domain proteins occur independently of their ability to 358 bind or hydrolyse cyclic di-GMP or 5’-pGpG.   359 
 360 
Further substrates for HD-GYP domain proteins   361 
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In addition to cyclic di-GMP, bacteria have been shown to utilise cyclic di-AMP and most recently 362 the dinucleotide 3’3’-cyclic GMP-AMP as intracellular signal molecules. The latter molecule was 363 discovered in Vibrio cholerae as a regulator of chemotaxis and of factors contributing to 364 colonisation of the intestine (86).  A screen of potential phosphodiesterases for 3’3’-cyclic GMP-365 AMP from V. cholerae identified three HD-GYP domain proteins, VCA0210, VCA0681 and VCA0931 366 which were capable of hydrolysis of the cyclic dinucleotide into 5’-pApG, with VCA0681 having an 367 additional 5’ nucleotidase activity to generate 5’-ApG (87). The nucleotidase and phosphodiesterase 368 activities were associated with the HD and HD-GYP domains respectively that are present in 369 tandem (87).  All three proteins hydrolyse 3’3’-cyclic GMP-AMP specifically, with no activity against 370 other cyclic GMP-AMP forms with different phosphodiester linkages, to include the mammalian 371 innate immunity regulator 2’3’-cGMP-AMP. Variant VCA0681 proteins with alanine substitutions in 372 the signature HD dyad and GYP motif have no detectable activity (87)(Gao et al., 2015), in contrast 373 to the role of the GYP motif in PmGH and RpfG (Bellini et al., 2014; Ryan et al, 2010).    374  375 
FUNCTIONAL DIVERSIFICATION OF CYCLIC DI-AMP PHOSPHODIESTERASES 376 
The functional diversification also extends to other cyclic di-nucleotide signaling networks. As the 377 
currently most prominent example, DHH/DHHA1 proteins usually function as phosphatase or 378 
phosphodiesterases for hydrolyzing a wide variety of substrates that range from pyrophosphate to ssDNA. 379 
The substrate specificity of DHH/DHHA1 enzymes is usually governed by the DHHA1 domain rather 380 
than the DHH domain. A bioinformatics search of potential phosphodiesterases for cyclic di-AMP, a 381 
universally essential cyclic di-nucleotide second messenger in Gram-positive bacteria (88, 89), led to the 382 
discovery of a DHH domain protein (YybT or GdpP) from B. subtilis as a cyclic di-AMP 383 
phosphodiesterase (30). GdpP is a metal ion-dependent phosphodiesterase that breaks down cyclic di-384 
AMP into 5’-pApA at physiologically relevant substrate concentrations (μM). In accordance with its 385 
specificity towards cyclic di-AMP, the DHHA1 domain of GdpP does not share significant sequence 386 
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homology with the DHHA1 domains of other DHH/DHHA1 proteins. Importantly, a number of Arg 387 
residues critical for the binding of polyphosphate, RNA, or ssDNA in other DHHA1 domain proteins 388 
(e.g. RecJ and YtqI) are not conserved in YybT.  Another DHH/DHHA1 protein (Pde2) that lacks the 389 
PAS and GGDEF domain of GdpP and degrades cyclic di-AMP into AMP was discovered in S. 390 
pneumoniae (90). Pde2 is an ortholog of B. subtilis YtqI (also named NrnA) that was claimed to be 391 
responsible for degrading nanoRNA (RNA oligonucleotides of ≤5 nucleotides) and dephosphorylating 392 
pAp to AMP (91, 92)  393  In addition to the DHH-DHHA1 proteins, a subfamily of HD domains possesses cyclic di-AMP 394 phosphodiesterase activity.  The first example is the Listeria monocytogenes protein PgpH (93). 395 Biochemical and structural studies revealed binding of cyclic di-AMP with high affinity (Kd = 0.3–0.4 396 μM) and hydrolysis to 5’-pApA in the presence of divalent metal ions such as Mn2+ and Fe2+. 397      The discovery of the DHH/DHHA1 and HD-domain based phosphodiesterases for degrading 398 cyclic di-AMP mirrors the converging evolution of the EAL and HD-GYP domains involved in cyclic 399 di-GMP degradation. Although the structural basis for the recognition of cyclic di-AMP by the PDEs 400 remains to be fully defined, the crystal structure of the stand-alone DHH/DHHA1 protein Rv2837c 401 in complex with the hydrolytic intermediate 5-pApA suggests that a set of residues from both DHH 402 and DHHA1 domains contribute to the binding of cyclic di-AMP (94). Even assuming that only two 403 families of cyclic di-AMP phosphodiesterases are found in nature, identification of the members of 404 the two families by bioinformatic should still proceed with caution and experimental validation is 405 necessary.     406 
 407 
CONCLUDING REMARKS 408 As outlined above, diversity in the function of GGDEF, EAL and HD-GYP domains is evident in terms 409 of enzymatic activity, the ability to synthesize or degrade alternate di-nucleotides as well as in 410 interactions with other proteins. This functional diversity certainly extends to other cyclic di-411 
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nucleotide turnover proteins such as the DHH/DHHA1 enzymes. Further biochemical and 412 structural work is required to gain knowledge of the molecular bases for the substrate specificity or 413 preference. Work on stringent cyclic mononucleotide synthases shows that quite limited variations 414 give rise to different specificities; cyclic GMP synthases can be experimentally changed to cyclic 415 AMP synthases and vice versa by just two or three amino acid exchanges (95, 96). On the other 416 hand, relaxed enzymes can produce several different cyclic nucleotides (97). In addition, a three 417 amino acid replacement in the human cyclic di-nucleotide synthase cGAS changes the 418 phosphodiester linkage specificity so that 3’3’ cyclic GMP-AMP rather than the non-canonical 2’3’ 419 cyclic GMP-AMP is synthesized (98). The three new residues incorporated were the determinative 420 amino acids in DncV, a bacterial homolog of cyclic GMP-AMP synthase (98). Indeed ancient cGAS is 421 a 3’3’ cyclic GMP-AMP synthase (99). As outlined above, distinct GGDEF domain proteins that have 422 been shown to produce cyclic GMP-AMP (31) and some HD-GYP domain phosphodiesterases can 423 have cyclic GMP-AMP hydrolytic activity (87). Similar changes in substrate specificity to those 424 within the GGDEF and HD-GYP domain protein families could also occur within the EAL domain. In 425 addition, novel enzymes with cyclic di-nucleotide turnover activity might be recognized. Recently, 426 CpdB which is characterized by a diffusion determined speed of 3’-AMP hydrolytic activity, was also 427 shown to hydrolize cyclic di-AMP with a reasonable turnover rate (100). With the current stage of 428 knowledge, it thus appears difficult to assign substrate specificity and product outcome with 429 certainty by bioinformatics. Thus, current species-specific nomenclatures might limit the 430 comparison to distantly related species, which frequently harbor orthologous proteins, while 431 functional paralogues of di-nucleotide turnover proteins dominate within a species. The elucidation 432 of the structures of cyclic di-GMP turnover domains in complex with other cyclic di-GMP turnover 433 domains and other interacting proteins will also be necessary to provide a deeper understanding of 434 the regulatory action of the diversity of these families of signaling proteins and to fully explore their 435 true functions. This is certainly the case for those proteins that may be multifunctional and which 436 
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may regulate different functions through protein-protein interactions and modulation of cyclic di-437 GMP levels.    438 

 on January 3, 2017 by U
N

IV
 C

O
LLE

G
E

 C
O

R
K

http://jb.asm
.org/

D
ow

nloaded from
 

http://jb.asm.org/


20  

Acknowledgement  439 Cyclic di-GMP research of UR is funded by the Swedish Research Council for Natural Sciences and 440 Engineering (621-2013-4809). Research in LZX’s laboratory is supported by a Tier II ARC grant 441 from MOE, Singapore. The work in the laboratory of JMD has been supported in part by grants 442 awarded by Science Foundation Ireland (SFI 07/IN.1/B955, SFI 07/IN.1/B955/IRPs, SFI 443 11/TIDA/B2036) and the Wellcome Trust (project grant WT093314MA). 444 
 445 
 446 
Funding information  447 The Swedish Research Council for Natural Sciences and Engineering (621-2013-4809) to UR. The 448 research in LZX’s laboratory is supported by a Tier II ARC grant from MOE, Singapore. 449  450  451   452 

 on January 3, 2017 by U
N

IV
 C

O
LLE

G
E

 C
O

R
K

http://jb.asm
.org/

D
ow

nloaded from
 

http://jb.asm.org/


21  

Figure legends 453  454 
FIG 1 Enzymes involved in the turnover of second messengers cyclic di-GMP (B) and cyclic di-AMP 455 (B). GGDEF domain proteins are cyclic di-GMP synthases (2), but a few members can preferentially 456 synthesize cyclic GMP-AMP (31). Cyclic di-GMP is degraded by EAL domain or HD-GYP domain 457 phosphodiesterases into 5’-pGpG and GMP, respectively (66). 5’-pGpG is further hydrolyzed to GMP 458 by the oligoribonuclease Orn. Cyclic di-AMP is synthesized by the DAC domain and hydrolysis has 459 been demonstrated by HD and DHH/DHHA1 domain proteins. Major phenotypes affected upon 460 cyclic di-nucleotide synthesis in many bacteria are indicated.    461  462 
FIG 2 Classification of GGDEF domains according to protein structure and conservation of signature 463 motifs. Amino acids on a grey background interact with the substrate in the diguanylate cyclase 464 PleD. K332 stabilizing the transition state is on a cyan background. The RxxD I-site core motif is in 465 blue. Unconventional amino acids still conferring enzymatic activity are on a blue background. 466 Amino acids conferring cyclic GMP-AMP specificity are on a green background. Amino acids 467 involved in the interaction with the HD-GYP domain are underlined. Conserved amino acids in 468 color. GGDEF domain protein names are in black and GGDEF-EAL proteins in green. Unconventional 469 GGDEF domain names in violet and cGMP-AMP synthesizing proteins in orange. Protein designation 470 in Supplemental material. Modified after (32). 471  472 
FIG 3 Ribbon diagram of the GGDEF domain of PleD binding the substrate analog GTPαS (PDB code: 473 
2v0n). A. Amino acids interacting with the substrate analog αS-GTP (including Lys442 and Arg446 474 
interacing with the phosphate group and the Mg2+ ions (Asp327 and Glu370) (1, 6, 15) are indicated. Mg2+ 475 
ions in green. B. Amino acid motifs providing additional functionality to GGDEF domains. R359xxD362 is 476 
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the core motif of the I-site. The xxD327xD329 motif was demonstrated in protein-protein interactions in 477 
GGDEF domain proteins others than PleD. 478  479 
FIG 4 Classification of EAL domains according to protein structure and conservation of signature 480 motifs. The catalytic base glutamate is shown in red. In green, amino acids involved in Mg2+ binding; 481 in blue, amino acids involved in substrate binding. Alternative amino acids involved in cyclic di-482 nucleotide binding are underlined. The glutamate stabilizing loop 6 is shown in orange. Loop 6 483 amino acids are on a grey background. Names of EAL proteins in black, EAL only proteins in red 484 and GGDEF-EAL proteins in green. Protein designation in Supplemental material. Modified after 485 
(32). 486  487 
FIG 5 Substrate binding by EAL domains. A. Ribbon diagram structure of the EAL domains of BlrP1, 488 a fully functional class I PDE activated by light (44) and YahA (41) binding to the substrate cyclic di-489 GMP. In the middle, enlarged view of the cyclic di-GMP binding site of BlrP1. Cations are shown in 490 violet and pink. Cyclic di-GMP is shown as sticks with carbon atoms colored yellow. B. Comparison 491 of electrostatic surface representation of class III EAL domains FimX of P. aeruginosa and YdiV of E. 492 
coli. While the cyclic di-GMP binding site of class IIIa FimX is conserved (model is shown with cyclic 493 di-GMP bound), the cyclic di-GMP binding pocket is not conserved in class IIIb member YdiV. The 494 electrostatic surface potential shows highly electronegative (red) and electropositive patches 495 (blue) of the two proteins. C. Ribbon diagram structure of three Class IIIa cyclic di-GMP binding EAL 496 domains (EALFimX_PSEAE (Q9HUK6 of P. aeruginosa), EALXcFimX (A0A0H2X6E4 of Xanthomonas 497 
campestris pv. campestris) and EALLapD_Psfluor (Q3KK31 of Pseudomonas fluorescens Pf0-1). Note the 498 different conformations and binding modes of cyclic di-GMP, which is displayed as sticks with 499 carbon atoms in yellow, oxygen in red, phosphate in orange and nitrogen in blue.  500 
 501 
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FIG 6 Substrate binding by the HD-GYP domain of PmGH. A: Surface representation of the PmGH 502 HD-GYP domain monomer subunit showing the binding cavity for cyclic di-GMP, which is 503 represented in stick mode and colored by atom type. B:  Superposition of the structures of PmGH 504 bound to cyclic di-GMP and GMP. Both nucleotides are shown in stick mode. Bonding interactions 505 are represented by dashed lines. The central metal iron has been labeled as the middle site (M) and 506 the two flanking metal sites as H and G, to reflect their proximity to the HD and GYP motifs, 507 respectively. Residues that interact with cyclic di-GMP include Y285 of the GYP motif. Red spheres 508 represent solvent and SIN-1 a succinate molecule (71). 509 
 510 
FIG 7 Primary sequence alignment of HD-GYP domains from proteins that have been characterized 511 structurally and/or enzymatically reveals the diversity within the domain. Protein designation in 512 supplemental material. The top line indicates the helices in the structure of PmGH with an 513 annotation of the inter-helix loops.  Metal ligands are given in red, proposed catalytic residues are 514 given in green. The GYP motif is highlighted in cyan and the substrate binding ligands in magenta. 515 The region of the sequences with consensus motifs E(D)TG/YTY are highlighted in yellow. (Note 516 that these are not fully conserved). The blue triangle points to the E residue in PA4781 that may act 517 in steric hindrance of cyclic di-GMP binding.  518 
  519 
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