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How Large Can a Star Be?

Niall O'Murchadha
I'hysies Department, University College, Cork, Ireland

(Received 17 June 1986)

In a recent article Schoen and Yau develop an inequality which shows that there exists a relationship

between the minimum energy density po in a star and the size R of the star, of the form p0R n/6.

This article shows that this inequality is valid for two different measures of the size of the star and con-

jectures that the inequality can be improved to pDR2~3z/32.

PACS numbers: 97.10.gh, 04.20.Fy, 95.30.Sf

Schoen and Yau' directly attack a more geometrical
problem. Given a subset Q of a three-dimensional
Riemannian manifold with the three-scalar curvature,
t lR, greater than or equal to Ro (a positive constant) on

0, they show that

Ro[X(Q )]'~82/3. (3)

Condition (3) can be translated into condition (2) if
we assume that the Riemannian manifold is part of an in-
itial data set for the Einstein equations. In this case the
Hamiltonian constraint ' gives

lR —[K; K'~ —(trK) l =16rrp

in a system of units ~here 6 =c = l. If the slice is maxi-

A uniformly held view among general relativists is that
one cannot put a large amount of matter inside a small
volume without causing gravitational collapse. This view

is reinforced by the knowledge that for a spherically sym-
metric distribution of matter, the total mass M cannot
exceed R/2 (where R is the radius of the distribution,
measured in Schwarzschild coordinates, i.e., such that the
area of the surface is 4' ).

However, a naive calculation for a spherical star of
uniform density po and radius R would have us believe
that the total mass should be the rest mass (—', zpoR )
minus the Newtonian binding energy ( P, m p(R ),

M = —", xpoR ——',, x poR .

It is easy to show that this M, for arbitrary choices of po
and R, never exceeds R/2!

Therefore, it is pleasing to discover that an inequality
recently announced by Schoen and Yau' gives a precise
formulation of this idea. Their expression gives a rela-
tionship between the energy density of material filling a

region and the size of that region. Given a three-dimen-
sional set 0, which is filled with material whose density

p is greater than or equal to po (some positive constant),
they define a measure of the size of 0, which shall be
denoted here as %(Q), and show that

mal, i.e., trEC =0, we get

(s)

On substituting (5) into (3) we get (2).
A key part of the Schoen and Yau analysis is their def-

inition of R(Q ). It is expressed in terms of the "largest"
torus that can be imbedded in Q. Let I be a simple
closed curve in Q. Choose a constant p such that the set
of points within a distance p of I is contained within Q
and forms a proper torus, i.e., has a hole through the
middle. p is a measure of the size of Q and R(Q) is de-
fined as the largest value of p we can find by considering
all curves I .

On one level, the idea of the largest imbedded torus is
useful in that it conveys the notion that Q must be large
in all three directions. On the other hand, it is hard to
evaluate in practice.

In proving Theorem 1 of Ref. 1, Schoen and Yau con-
sider a minimal-area two-surface Z imbedded in a three-
manifold 1V. Consider a point x in Z and the shortest
path 5 in Z from x to the boundary of Z. If the length of
5 is L and the three-curvature along 5 is bounded below

by Ro, it can be shown that

RoL ~8m /3.

This inequaltiy is applied by Schoen and Yau to the
minimal-area two-surface which spans I" to obtain (3).

One way of sharpening the Schoen and Yau result is to
find a better measure for the size of A. Let me define
9'(Q) as the size of the largest minimal-area two-
surface that can be imbedded in A, where the size of a
set is the distance from the boundary to that internal
point which is furthest from the boundary. Inequality
(6) gives us

Ro[X'(Q)]' 82/3,

just like (3).
The important reason (apart from computational ease)

of switching from (3) to (7) is that one can show that for
any set 0,
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and thus make an improvement in the inequality.
Consider an imbedded three-torus of radius p of the

kind used to define %(Q). Now draw a closed curve 1'
on the surface of the torus "perpendicular" to the curve I
which generated the torus, i.e., so that I and I" form a
pair of linked rings. Consider the minimal-area surface
that spans I '. This surface must cut I at some point P.
This point P must be at least a distance p from the boun-

dary of the part of the minimal surface contained in Q.
Hence

(1+ar$) 2(1+ar )

I+arj/r, r & ro,

r ~rp,

where r is the flat-space radial coordinate, and a and ro
are positive constants. %e get for the scalar curvature

24a(1 +ar$ )
R

0, r Prp.
r ~rp,

(io)

Thus we have a spherically symmetric uniform density
region matched to an exterior Schwarzschild solution.

The total mass can be read from the 1/r part of the
conformal factor to give

M -2arp3,

The proper surface area of any sphere of coordinate ra-
dius r is 4n&4r . Thus the transformation from the flat
radius r to the Schwarzschild-coordinate radius r is given

by

R'(0) «p,
and so (8) must be correct.

A natural arena to test estimate (7) is to consider a
spherically symmetric region with positive constant scalar
curvature. Such a region can be constructed by confor-
mal transformation of flat space (g;J p b;J) with the fol-
lowing conformal factor:

(assuming trk 0), where ~V is the two-dimensional
Laplacian and ~~ R is the two-scalar curvature of S. One
way of checking for area minimality is to find that func-
tion h which minimizes (17). Thus we vary h in (17) and

get an eigenvalue equation for h:
—~ V h —Ch Xh, h =oon |1S, (i8)

where C= —,
' [ R — iR]+ 2k" k~g, and k is a con-

stant. The eigenvalue k enters as a Lagrange multiplier
in the problem because we wish to normalize h, i.e.,
Jh 1. The function h which minimizes (17) is the one
which corresponds to the lowest eigenvalue A,o of (18) and
the value of (17) is then just ko. Thus the surface is a
minimal-area surface if all the eigenvalues of (18) are
positive.

The obvious place to look for a minimal-area surface in

the constant-density sphere is in the equatorial plane. It
is obviously an extremal surface because k"8 0 for that
surface and so clearly trk —=0. For the equatorial plane
the function C in (18) turns out to be a constant,

C =8a(1+ar$ )

It is a straightforward exercise to show that the func-
tion

dary. The first variation of the area is given by

BA = — v ghtrkd s. (1~)4 $
Since this has to vanish for every h, the surface is an ex-
tremal area surface if and only if

trk =g~~k
"~—=0.

If the surface is minimal, rather than just extremal, we

also require that the second variation of the area be posi-
tive. The second variation is given by

BbA = — u [h V h+ '( R—— R)h
& S 2

(17)

r Pr, (i 2) h =(1 —ar2)/(1+ ar2) (2o)

and the Schwarzschild radius of the surface of the star is

given by

is a solution to

[ —t21V2 —8a(1+ar 2 ) 6) h =() (2i)

(1 —aro ) «0 (i4)

and is satisfied for any choice of a and r p. The limiting
case is ar$ 1, where we get 2M/ra= l.

Any two-surface imbedded in a three-manifold has an
induced two-metric gqq and an induced two-extrinsic
curvature k" (A,B 1,2). Variations of a surface 5
spanning a fixed boundary can be generated by any sca-
lar function h on the surface which vanishes on the boun-

r 0 = (1+ar0 ) ro.

Now it is easy to see that the Schwarzschild condition
2M/r o ~ 1 reduces to

on the equatorial plane. Clearly A. 0 at r =a ' and so
is a zero-eigenvalue solution to (18) when the boundary
of S is the ring r =a ' . However, h is positive every-
where inside r =a '~ . This means that zero must be the
lowest eigenvalue of (18) for this set ("ground states
have no nodes" ). Further, the lowest eigenvalue of any
set enclosed by r =a ' must be greater than zero and
so must be a minimal-area surface, whereas the lowest
eigenvalue of any set which includes r =a '~ must be
negative and so therefore cannot be a minimal-area sur-
face.

Now the proper distance from the origin of coordinates

2467
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to a ring at r =a is
~ ~-1/2L=„y dr

=(1+ar')'a '~'arctan(a'~'r) ~„':()'
'"

=—'~a '"(1+ar,')'.
Hence [since ~R =24a(l+arp ) ]

L Rp 3z/2,

and thus we have a lower limit [to compare with (7)]

(22)

(23)

When one checks the derivation of either (3) or (7) it
becomes clear that they cannot be sharp estimates, i.e.,
there cannot exist configurations for which Rp[%'(n)]
=8m /3. This means that there must exist a better con-
stant, which clearly must lie somewhere between 3z /2
and 8n /3. I would like to conjecture that the lower limit
I have obtained here (3z /2) is also the best that one can
do and that the true inequality should read

Rp[x'(n)]'» 3d/2,

or

Rp[x'(n )]'» 3d/2. pp[W'(n )]'» 3x/32. (33)

Wp(r, ) =(I+ar)) 2P ]

1+ar~

whereas the area of the hemisphere of radius r ~ is

2' )
W )(r)) -(1+ar$)'

(1+ari
Now

(25)

(26)

%'hat happens to the minimal surface for a ring larger
than r a ' '? lt turns out that the proper area of the
plane of coordinate radius r ~ is

This is based on the fact that the best estimate is invari-
ably found in a highly symmetric situation. Obviously, a
sphere of constant scalar curvature is exactly such a situ-
ation. Further, it is quite surprising that both evaluations
(24) and (31) give exactly the same constant, and that
the value is independent of rp (so long as rp & a '~ ).

Finally, let me return to the original Schoen and Yau
estimate (3), based on the imbedded torus, and try to ap-
ply it to the uniform-density-sphere model. The proper
distance from center to surface is [from (22)]

D ~(1+ar$) a ' arctan(a' rp).

Wp/W, =—,
' (1+ar(). (27) We therefore would expect to imbed a torus of radius

D/2 inside in the sphere. Now we get
Therefore if r~ & a ', Ho&A~, but if r] & a
Ap&A~. Thus the ring of radius r a '~2 supports two
surfaces of equal area, the plane and the hemisphere, and
the surface of minimum area which spans a ring of radius
larger than a ' is a prolate spheroid.

It turns out that the extrinsic curvature of the sphere
of radius r =a '~2 vanishes identically. Further, it turns
out that the function C [in Eq. (18)] is identical to that
for the plane,

Rp(D/2) =6[arctan(a' rp)] . (35)

and

Rp(D/2) 3z /2. (36)

The maximum value of this occurs when a' ro gets large,
in which case

arctan(a'~ rp) n/2

(28) Therefore we expect a lower limit for (3)

Rp[R(n)]'» 3x'/2,

C =8a(1+arp )

Finally, it is possible to show that

h =cosH

(37)

(29)

is a solution to (21) on the sphere. Thus, the hemisphere
is also a minimal-area surface spanning the ring of radius
r =a '~ . The pole-to-ring distance for this minimal sur-
face 1s

Rp&(n)]' 3d/2,

ppÃ(n)]'» 3x/32,

(38)

(39)

just like (24) and (31).
Since we know that R'(n)»R(n) for any set [Eq.

(8)], if we believe (32) we must also accept

L = ry =—r (1+ar p ) (1—+ar )
Z'

2 E
2 2

=—'&ca ' (1+ar )

Again we get [just as with (23) and (24)]

L2Rp =3+/2,

Rp[%'(n )] 3x /2.

(30)

(31)

with the realization that these must now be sharp esti-
mates, that no number smaller than 3z /2 will do.

It cannot be overemphasized that these restrictions
(33) and (39) on the size of stars are entirely indepen-
dent of any equation of state for the material. Further,
they are restrictions which motion in the star can only
make more severe. If there is a matter current J' present,
the momentum constraint '

V~ [K'~ (trK)g'J] 8xJ'—
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means that ~e must have extrinsic curvature K'~ and thus
increase the scalar curvature.
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