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Abstract: A high percentage of the pigments produced by Talaromyces spp. remains inside the cell,
which could lead to a high product concentration inhibition. To overcome this issue an extractive
fermentation process, perstraction, was suggested, which involves the extraction of the intracellular
products out of the cell by using a two-phase system during the fermentation. The present work
studied the effect of various surfactants on secretion of intracellular pigments produced by Talaromyces
spp. in submerged fermentation. Surfactants used were: non-ionic surfactants (Tween 80, Span 20
and Triton X-100) and a polyethylene glycerol polymer 8000, at different concentrations (5, 20, 35 g/L).
The highest extracellular pigment yield (16 OD500nm) was reached using Triton X-100 (35 g/L), which
was 44% higher than the control (no surfactant added). The effect of addition time of the selected
surfactant was further studied. The highest extracellular pigment concentration (22 OD500nm) was
achieved when the surfactant was added at 120 h of fermentation. Kinetics of extracellular and
intracellular pigments were examined. Total pigment at the end of the fermentation using Triton
X-100 was 27.7% higher than the control, confirming that the use of surfactants partially alleviated
the product inhibition during the pigment production culture.

Keywords: fungal pigments; perstraction; surfactant; Talaromyces

1. Introduction

In recent years, consumer trends have been oriented to natural products, especially in the food
industry. Consumer expectations have led the food processing industry to improve processes in order
to deliver high quality-products [1]. To meet the requirements for safer food and also satisfy consumer
preferences, scientists are searching for new food additives and new food processing methods [2].
The application of food additives will depend on their function in foods and can be classified as
preservatives, nutritional additives, flavouring agents, texturising agents and colouring agents [3].
Natural colourants are obtained from sources like plants [4,5], insects [6] and microorganisms [7].
However, application of microbial pigments still represents a major challenge to biotechnology due to
lower extraction or production yields. Dufosse et al. (2014) [8] emphasised in their fungal pigments
review, the crucial role that filamentous fungi are currently playing as microbial cell factories, mainly
due to the attractive range of stable bio-colourants that they are able to synthesise under controlled
conditions. The most-well documented pigment producer fungi is Monascus [9]. However, in the last
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years, pigment producing fungi from other species have gained more attention due to the mycotoxin
(citrinin) produced by Monascus [10].

Fungi belonging to the genus Talaromyces (formerly Penicillium) have attracted the attention of
scientists due to their high pigment production yields [11,12] and moreover, due to the high thermal
stability [13], antioxidant properties [14], antibacterial properties [15] and the absence of toxicity of
these pigments [15,16].

However, their successful industrial application will not only depend on their safety or added
value properties. The economics of the process need to be assessed early in the design stage before
going through more expensive research, such as the scale-up of the process or the characterisation
of the molecules. There are various strategies to achieve a cost-effective process such as using
cheaper substrates to reduce raw material costs, optimising process conditions to achieve high yields
or implementing an efficient product recovery. From these, developing an efficient downstream
processing seems to be a rapid strategy to maximise product recovery and to reduce costs.

Pigments produced by Talaromyces are excreted out of the cell. However, most remain inside the
cell, adding several unit operations to the downstream processing such as cell disruption, extraction of
intracellular products, followed by the cell debris removal. Furthermore, a high intracellular pigment
concentration could lead to product concentration inhibition. To overcome this issue researchers have
been applying an extractive fermentation process, “perstraction”, where the intracellular products
are transported out of the cell by using a two-phase system during the fermentation, where the
fermentation media represents one of the phases and the other should be an extractive solution.
This process has been used in microalgae cultures [17,18] and is also known as “milking”. Ziolkowska
and Simon, (2014) [17] reported that “milking algae” is a new successful technology that allows
for the reduction of process costs by the extraction of intracellular products, increasing yields and
reduction of unit operations. Two aspects are of significant importance for the selection of a suitable
extractant for the perstraction of an intracellular product [19]: the biocompatibility of the solvent with
the microorganism allowing cell growth, and that the extractant should induce permeability of the cell
wall. Recent studies have reported the application of non-ionic surfactant as an effective extractant
on the perstraction of intracellular pigments produced by the fungus Monascus [20,21]. Wang et al.
(2013) [22] reported that the use of non-ionic surfactant Triton X-100 highly increased the pigment
production and the extracellular/intracellular pigment ratio by Monascus in submerged fermentation.
A specific characteristic of the non-ionic aqueous solution is the formation of the cloud point system.
The addition of non-ionic surfactant to an aqueous solution forms micelles and when this solution is
above the surfactant cloud point, the micelle aqueous solution separates into two phases, a surfactant
rich phase (coacervate phase) and a dilute phase [23]. The application of the cloud point system has
been reviewed as an advantageous pre-concentration step prior to purification in many bioprocesses,
such as extraction of fatty acids from microalgae cultures [18]; extractive fermentation of proteins
produced by bacteria [24]; production of L-phenylacetylcarbinol by Sacharomyces cerevisiae [25] and in
exporting intracellular pigments produced by Monascus into its fermentation broth [20,22,26].

The application of this concept to submerged fermentation of Talaromyces spp. has not been
studied, and therefore, the objective of this work was to analyse the effect of various surfactants, at
different concentrations, on secreting the intracellular pigments produced by Talaromyces spp. into the
fermentation broth. The relevance of the precise time of addition of the surfactant was further studied
in order to define conditions for maximum extracellular pigments recovery. In addition, the kinetics
of pigment production, biomass and substrate consumption during Talaromyces spp. culture using
non-ionic surfactant micelle aqueous solution were analysed.
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2. Materials and Methods

2.1. Microorganism

Talaromyces spp. was used for the production of red pigments (DIA-UAdeC). The purified strain
had been previously isolated and characterised as Penicillium purpurogenum GH2 [27,28]. Penicillium
purpurogenum has, however, been transferred to Talaromyces spp. [29]. The strain was maintained on
PDA (Potato dextrose agar) slants at 4 ◦C and sub-cultured periodically.

2.2. Culture Media

The PDA medium was prepared with a concentration of 39.0 g/L (Bioxon, Mexico). The medium
Potato Dextrose Broth (PDB medium, ATCC medium: 336) was prepared by boiling 0.3 kg of finely
diced potatoes in 500 mL of water until thoroughly cooked; then the potatoes were filtered through
cheesecloth and water was added to the filtrate to complete a volume of 1.0 L. Finally, 20.0 g of glucose
is added before sterilisation. The Czapek-dox modified medium [30] consisted in (g/L): D-xylose 15.0,
NaNO3 3.0, MgSO4·7H2O 0.5, FeSO4·7H2O 0.1, K2HPO4 1.0, KCl 1.0 and ethanol 20.0.

2.3. Inoculum Preparation

PDB medium was used for the inoculum preparation. Flasks (125 mL) containing 25 mL of
PDB medium were sterilised and then inoculated with a spore suspension (1 × 105 spores/mL) of
Talaromyces spp. previously incubated for 5 days. The flasks were then incubated at 30 ◦C for 84 h in
an orbital shaker (Innova 94, New Brunswick Scientific, Edison, NJ, USA) at 200 rpm [11,31].

2.4. Cultivation Conditions

Czapek-dox medium was used for pigment production. The initial pH of the Czapek-dox modified
medium was adjusted to 5 before sterilising by using 0.22 m sterile membranes (Millipore, Billerica,
MA, USA).

Four different surfactants were tested, assessing their effect on the pigment production and
growth in submerged fermentation of Talaromyces spp. The surfactants analysed were Tween 80,
Span 20, Triton X-100 and polyethylene glycerol polymer PEG 8000, at 3 different concentrations (5, 20,
35 g/L). Surfactants were added at the beginning of fermentation. Extractive fermentation was carried
out in 125 mL Erlenmeyer flasks containing 25 mL of medium. Flasks were inoculated with a mycelial
suspension 10% (v/v). The inoculated flasks were incubated at 30 ◦C in an orbital shaker (Innova 94,
New Brunswick Scientific, Edison, NJ, USA) at 200 rpm for 8 days. Control experiments were also
performed with no surfactant added.

2.5. Analytical Methods

Extracellular pigment recovery was performed according to the methodology reported by
Méndez-Zavala et al. (2011) [32]. Each sample was centrifuged at 8000 rpm for 20 min at 4 ◦C (Sorvall,
Primo R Biofuge Centrifugation Thermo, Waltham, MA, USA). The supernatant was then filtered
through a 0.45 µm cellulose filter (Millipore, USA). Recovered mycelia were rinsed with distilled
water until the supernatant was cleared and used for further extraction of intracellular pigments [20].
Mycelia were soaked in 25 mL of a 70% (v/v) ethanol aqueous solution which represented the initial
fermentation broth volume. Extraction was carried out on an orbital shaker (Inova 94, New Brunswick
Scientific, USA) at 200 rpm at 30 ◦C for 1 h. The concentration of red pigments (extracellular and
intracellular) was quantified indirectly by simply measuring the optical density at 500 nm using a
spectrophotometer (Cary 50, UV-Visible Varian, Palo Alto, CA, USA). The biomass concentration was
determined using the gravimetric method. The analysis of substrate consumption was determined
by quantifying the total sugar content using the method reported by [33]. The experiments were
replicated three times.
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2.6. Cloud Point Extraction

Extracellular pigment was separated into a two-phase cloud point system: a surfactant-rich
phase and a dilute phase [18]. Pigments-surfactant solution was heated until the formation of these
two phases (70 ◦C) and until reaching the equilibrium (30 min).

An estimation of the pigments that remained in each phase (diluted and coacervate) was done by
performing a spectral analysis within the visible wave range (Cary 50, UV-Visible Varian). Various
authors have expressed fungal pigments concentration as optical density units at the absorption
maxima for a specific wavelength: 400–420 (yellow), 450–470 (orange) and red (490–510) [12,20,26,34,35].

2.7. Kinetic Parameters

Pigment extraction productivity (PY/t, OD/h), biomass productivity (PB/t, g/L/h) and yield of
product per unit of biomass (YY/B, OD·L/h) were determined by the following equations, [36]:

PY
t
=

Y∞−Yo

t∞ − to
(1)

PB
t
=

B∞−Bo

t∞ − to
(2)

YY
B
=

Y∞ − Yo

B∞ − Bo
(3)

where Yo and Bo correspond to the yield of intracellular pigment (OD500nm) and biomass (g/L) at the
time (to, min) when the surfactant (Triton X-100) was added; Y∞ and B∞ are the yield of pigments
(OD500nm) and biomass (g/L) at the end of the fermentation (t∞, min).

2.8. Data Analysis

Kinetic parameters were set from experimental data. Statistical analyses were made with Statistica
7.0 software (StatSoft, Tulsa, OK, USA).

3. Results and Discussion

3.1. Effect of Surfactants on Secretion of Intracellular Pigments into Fermentation Broth (Screening)

As a first step towards developing a non-ionic surfactant micelle aqueous solution as a
fermentation media, a screening of the non-ionic surfactants most commonly used in bioprocess
was performed [22,23]. Selection of a suitable surfactant was based on the highest pigment production
and extracellular/intracellular pigment ratio. Figure 1 shows the extracellular and intracellular
pigments obtained after eight days of fermentation for each surfactant, evaluated at three different
concentrations (5, 20 and 35 g/L).

Results for the control media indicated that a high extracellular pigment yield was reached
and nearly 40% of the total pigment was still remaining inside of the cell. Talaromyces spp. was
capable of growing in all surfactants studied; however, pigment production was strongly affected by
the addition of surfactant at the beginning of the fermentation. The addition of PEG 8000 caused a
reduction in pigment production by more than 50%, in comparison with the control media. This finding
limits the use of PEG as a water soluble polymer in aqueous two-phase systems (ATPS) on in-situ
product removal processes [37]. When Span 20 was added, the total pigment level was reduced by
80%, in comparison with control media. It was also observed that mycelia morphology changed
(dispersed mycelia) and led to a higher biomass growth. Similar behaviour (higher cell growth)
was reported [38] on β-Carotene production by Blakeslea trispora (Mating type, + and −) with the
addition of Span 20. Biomass increment may be due to the change in morphology, i.e., fragmented
mycelium led to a major aeration, conditions that allowed higher growth, but were not optimal for
pigment production. The addition of Tween 80 at low concentration (5 g/L) caused a reduction of
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only less than 10% of the total pigment, however, the extracellular/intracellular pigment ratio was
increased from 1.72 (control) to 1.79. This may be an indication of the permeability induced on the
cell wall by Tween 80; however, increasing the levels of this surfactant resulted in a reduction in both
biomass and total pigment, showing the low biocompatibility of this surfactant with Talaromyces spp.
Similarly, Zhang et al. (2013) [39] reported that the addition of a high concentration of Tween 80
during the production of Antrodin C in submerged fermentation by A. camphorata led to massive
damage on the cell membrane. When Triton X-100 surfactant was added (35 g/L), an enhancement of
extracellular pigment production level (44%) was observed. Total pigment production (extracellular
and intracellular) was not statistically different from the control experiments (without addition of
surfactant); however, extracellular/intracellular pigment ratio was increased from 1.73 (control)
to 11.75. Biomass reduction with elevated concentration of Triton X-100 may indicate that this
non-ionic surfactant has a low biocompatibility with the strain, although it may also be related
to the secretion of the intracellular pigments. A cell with an elevated concentration of pigment
presents a higher weight than an “empty cell”. Triton X-100 has been successfully applied on the
secretion of intracellular pigments of Monascus [20,26,40], similarly, Triton X-100 has presented high
biocompatibility with microbial cell allowing modification of membrane to induce permeability of
certain desired metabolites [21,41]. Based on the above results, Triton X-100 (3.5%) was selected for
subsequent studies.
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Figure 1. Screening of surfactants’ effect on extracellular and intracellular pigment yield, extracellular/
intracellular pigment ratio and growth. Ctrl) Without surfactant, (A) polyethylene glycerol polymer
PEG 8000; (B) Span 20; (C) Triton X-100 and (D) Tween 80. [Ci, g/L]: C1, 5; C2, 20; C3, 35.

3.2. Effect of Addition Time of Triton X-100 during the Fermentation

In the previous experiments, surfactants were added at the beginning of the fermentation.
Many authors have added surfactants at different stages of the fermentation to enhance microbial
production [39,41]; however, the best time for surfactant addition will vary depending on the
microorganism. In order to fully comprehend the effect of Triton X-100 on biomass growth and
to enhance pigments production by Talaromyces spp., 35 g/L was added at different fermentation times
(0, 24, 48, 72, 96, 120 and 144 h). Results for final biomass, extracellular and intracellular pigments are
presented in Figure 2.

Biomass was reduced by 20% when Triton X-100 was added in the interval of 0–3 days and
decayed to 50% when it was added at later stages of the fermentation, in comparison with the control.
Wang et al. (2013) [22] reported that the addition of Triton X-100 to pigments production by Monascus
at later stages of the fermentation process resulted in higher biomass growth. In contrast, in this study
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a consequent addition time of Triton X-100 did not represent better conditions to biomass growth; thus,
the results obtained were not sufficient to demonstrate a noticeable Triton X-100 inhibitory effect on
the cell. A time course study for each addition time could give more understanding of the Triton X-10
harmful effect on the cell growth, i.e., extended lag phase, reduced maximum biomass and reduced
growth rate. However, the main objective of this study was to enhance pigment production and to
increase extracellular/intracellular pigment ratio. Figure 2 shows that the excretion of intracellular
pigments was considerably enhanced with the addition of Triton X-100; extracellular pigment increased
gradually with the time of addition reaching the maximum extracellular pigment (22.1 ± 1.2 OD500nm)
when Triton X-100 was added at 120 h of fermentation, which corresponds to an increment of 90%,
as compared to the control. Furthermore, extracellular/intracellular pigment ratio increased from
2.5 ± 0.1 to 37.9 ± 5.2 for control and Triton X-100 addition at 120 h of fermentation process, respectively.
These results are in agreement with previous studies reported on Monascus pigments [20,26,40], where
it was determined that adding Triton X-100 at a late stage of the fermentation process stimulated
intracellular pigment excretion. Based on the above results, the addition of Triton X-100 at 120 h of
fermentation at a concentration of 35 g/L was selected for further studies.
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yield and biomass growth.

3.3. Pigments Production Kinetics of Talaromyces spp. by Using Triton X-100

Kinetics of biomass growth, pigment production and substrate consumption with and without
the addition of Triton X-100 at 120 h of fermentation are depicted in Figure 3 (a and b respectively).
Figure 3a shows that there is no lag phase for biomass growth; the microorganism started to grow
(exponential phase) from 0 to 120 h, then reached a short stationary phase (120 to 150 h), after which
biomass weight decayed. There was a slight relation between growth and pigment production.

Production of pigments started at 24 h and increased gradually until the end of fermentation.
It is interesting to note that there is a correlation between extracellular, intracellular pigments and
biomass decay. Extracellular and intracellular pigment profiles incremented in a similar pattern until
120 h. After 120 h of submerged fermentation, intracellular pigments decreased correspondingly
with the biomass decay and further increment of the extracellular pigments. This behaviour led us to
hypothesise that when the fungus reaches the stationary phase (120 h), it stops producing pigments
and the further increase of extracellular pigments is partially due to the excretion of intracellular
pigments out the cell. This excretion of intracellular pigments may contribute to the biomass decay
after 120 of fermentation.
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At 120 h of fermentation process, the fungus had reached the stationary phase and thus the
addition of Triton X-100 did not cause biomass growth inhibition; this was the reason for the highest
extracellular yields being obtained when Triton X-100 was added at this stage. The above results
suggested that the surfactant only induced cell permeability and allowed intracellular pigments
excretion. Previous work on excretion of Monascus pigments have suggested that the addition of Triton
X-100 increases the permeability and fluidity of the cell due to the surfactant effect on cell membrane
lipids [22]. Furthermore, Deive et al. (2009) [42] reported that the addition of surfactants increased the
lipids solubility on the cell membrane changing the cell mass transfer.

The major effect on the cell of the addition of Triton X-100 to the fermentation process could
be reflected in the elevated increment of extracellular pigments. Extracellular pigments rose from
8.8 ± 0.2 to 14.9 ± 0.56 OD500nm after 24 h of Triton X-100 addition, which showed this increment as
being 5.3 times higher than the control. Furthermore, the extracellular/intracellular pigment ratio
was highly increased after 24 h Triton X-100 addition, in comparison with the control, from 1.6 to
4.6. A remarkable observation is that after Triton X-100 addition (120 h), the correlation between
extracellular pigments accumulation, intracellular pigments decrease and biomass decay was similar
in comparison to the control. This suggests that when the fungus has reached the stationary phase,
extracellular pigment increment is only due to the release of intracellular pigments contributing to the
higher reduction in biomass weight observed when using Triton X-100 than with the control.

In order to correlate the extraction of intracellular pigments to biomass decay; the pigment
extraction productivity (PY/t, OD/h) and biomass productivity (PB/t, g/L/h) was obtained after the
addition of Triton X-100 for both kinetics (control and perstraction processes). Table 1 shows the
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parameters obtained. PY/t and PB/t were 400% higher when using Triton X-100 in comparison with
control (negative signs indicate intracellular pigments reduction and biomass decay).

Table 1. Intracellular realising (KI), biomass decay (KB) rates from 120 h to 168 h of fermentation
kinetics and KI/ KB ratio. (A) Control, without surfactant; (B) Addition of Triton X-100.

Kinetics
Rate, k Ratio

Intracellular, OD500/h Biomass, g/L/h KI/KB, OD500, L/g

A −0.023 ± 0.001 −0.0125 ± 0.002 1.90 ± 0.19
B −0.103 ± 0.004 −0.052 ± 0.004 1.97 ± 0.10

The yield of intracellular product released per unit of biomass was calculated at 120 h of
fermentation (time of Triton addition) for both kinetics. Statistical analysis showed that there were no
significant differences (95% confidence level) between the YY/B obtained in the control and after the
addition of Triton X-100. In both cases the cell was releasing approximately 1.90 OD500nm per gram of
biomass per litre.

Biomass decay (cell death) has represented a critical concept in microbiology and its estimation is
continuously approached by different kinetic models [43]. Van Bodegom (2007) [44] mentioned that
there are some inconsistencies related to cell death, because its quantification does not distinguish
between biomass losses related to cell lysis or to the actual transport phenomena of intracellular
products outside of the cell. In order to understand the mechanism of pigments release and biomass
decay relationship, more studies need to be done, due to the variety of components present in the cell.

Regarding substrate consumption, there was no effect when Triton X-100 was added, as the
addition occurred after substrate depletion. At the end of the fermentation process (192 h), extracellular
pigments were enhanced above 80% with the addition of Triton X-100 at the end of the exponential
growth phase (120 h). Visual kinetics for extracellular pigments enhancement are illustrated in
Figure 4. Similar results were obtained by Wang et al. (2013) [22] who reported an increment of
88.4% of pigments produced by Monascus by adding Triton X-100 at a late stage of the submerged
fermentation. Furthermore, total pigment (extracellular pigment plus intracellular pigment) at the end
of the fermentation was 27.7% higher with Triton X-100 compared to control.
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3.4. Pigments Partitioning in Cloud Point System

The inner figure in Figure 5 shows the phase separation of the micelle aqueous solution when
it reached a temperature above its cloud point (70 ◦C). It can be seen that the extracellular pigments
obtained were separated between the dilute and coacervate phase.

Spectral analysis (Figure 5) shows a maximum absorbance at 414 and 500 nm for all the analysed
samples. According to previous studies for Talaromyces pigments [12,34,45] these peaks correspond to
yellow and red, respectively. Optical density values for each peak are also shown in Figure 5.



J. Fungi 2017, 3, 33 9 of 12

J. Fungi 2017, 3, 33  8 of 11 

 

The yield of intracellular product released per unit of biomass was calculated at 120 h of 
fermentation (time of Triton addition) for both kinetics. Statistical analysis showed that there were 
no significant differences (95% confidence level) between the YY/B obtained in the control and after the 
addition of Triton X-100. In both cases the cell was releasing approximately 1.90 OD500nm per gram of 
biomass per litre. 

Biomass decay (cell death) has represented a critical concept in microbiology and its estimation 
is continuously approached by different kinetic models [43]. Van Bodegom (2007) [44] mentioned 
that there are some inconsistencies related to cell death, because its quantification does not 
distinguish between biomass losses related to cell lysis or to the actual transport phenomena of 
intracellular products outside of the cell. In order to understand the mechanism of pigments release 
and biomass decay relationship, more studies need to be done, due to the variety of components 
present in the cell.  

Regarding substrate consumption, there was no effect when Triton X-100 was added, as the 
addition occurred after substrate depletion. At the end of the fermentation process (192 h), 
extracellular pigments were enhanced above 80% with the addition of Triton X-100 at the end of the 
exponential growth phase (120 h). Visual kinetics for extracellular pigments enhancement are 
illustrated in Figure 4. Similar results were obtained by Wang et al. (2013) [22] who reported an 
increment of 88.4% of pigments produced by Monascus by adding Triton X-100 at a late stage of the 
submerged fermentation. Furthermore, total pigment (extracellular pigment plus intracellular 
pigment) at the end of the fermentation was 27.7% higher with Triton X-100 compared to control. 

 
Figure 4. Visual kinetics of colour enhancement. X-axis in days. (a) Without surfactant; (b) Triton X-
100 added at 120 h of fermentation. 

3.4. Pigments Partitioning in Cloud Point System  

The inner figure in Figure 5 shows the phase separation of the micelle aqueous solution when it 
reached a temperature above its cloud point (70 °C). It can be seen that the extracellular pigments 
obtained were separated between the dilute and coacervate phase.  

  
Figure 5. Spectral analysis within the visible wave range performed on the extracellular pigments
obtained. Inner Figure: (A) the addition of Triton X-100 (35 g/L) at 120 h of fermentation, (B) coacervate
phase, (C) diluted phase.

Red pigments concentration was much higher in the coacervate phase than in the diluted phase
(13 times higher). Yellow pigments showed more affinity with the coacervate phase than red pigments,
as its concentration was 16 times higher in the coacervate than in the diluted phase. The concentration
factor, defined as the ratio of the pigment concentration in the coacervate phase to the concentration in
the micelle aqueous solution [24], was 2.98 and 3.45 for red and yellow pigments, respectively. Hu et al.
(2012) [20] confirmed the same affinity to the coacervate phase of pigments produced by Monascus in a
cloud point system by Thin-layer chromatography (TLC) analysis.

4. Conclusions

In this study, applying a biphasic fermentation system was shown as a novel and effective
bioprocess strategy for an in-situ extraction of intracellular pigments during fermentation, increasing
the overall production. Among the studied surfactants, nonionic surfactant Triton X-100 was the
most suitable for an in-situ extraction of Talaromyces pigments. Under the optimal perstraction
conditions, the maximum extracellular pigment yield was 80% higher than the control. Total pigment
enhancement (27.7%) confirmed that the addition of Triton X-100 had at least partially alleviated the
product inhibition.

Maximising product recovery was evident, and it was demonstrated that the application of
the cloud point system could be an advantageous pre-concentration step prior to purification of
the pigments produced by Talaromyces spp. However, more studies are needed at large scale
aired-bioreactors to assess if foaming issues must be addressed.

Also, a techno-economic analysis of the process using perstraction is required to verify if the
extraction of pigments during the fermentation reduces, in fact, the costs related to the downstream
processing. In any case, using a surfactant rich media can substitute the use of organic solvents for the
cell disruption and extraction processes during the downstream processing.
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