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HOLOMORPHIC GEOMETRIC STRUCTURES ON
KÄHLER–EINSTEIN MANIFOLDS

BENJAMIN MCKAY

Abstract. We prove that the compact Kähler manifolds with c1 ě 0 that
admit holomorphic parabolic geometries are the flat bundles of rational homo-
geneous varieties over complex tori. We also prove that the compact Kähler
manifolds with c1 ă 0 that admit holomorphic cominiscule geometries are the
locally Hermitian symmetric varieties.
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1. Introduction

Parabolic geometries are geometric structures modelled on generalized flag vari-
eties; for example: projective connections are modelled on projective space, while
conformal connections are modelled on the sphere with its standard conformal
structure. Parabolic geometries arise in Penrose’s twistor programme, in hypercom-
plex analysis, in the study of the large scale behaviour of geodesics, in conformal
geometry and in CR geometry; see [10] for a comprehensive introduction to parabolic
geometries. There is a long literature on the obstruction theory of various types
of holomorphic geometric structure on compact complex manifolds; see [26] for a
survey of some of these results, many concerning holomorphic parabolic geometries.
However, there is as yet no classification, or conjectured classification, of the smooth
projective varieties admitting holomorphic parabolic geometries.

Definitions of our terminology appear in section 2. We will classify all holomorphic
parabolic geometries on compact Kähler manifolds with c1 ě 0; these turn out
to be constructed from flat bundles on complex tori. This motivates the problem
of classification for c1 ă 0; we will only solve part of this problem. Every locally
Hermitian symmetric variety has a holomorphic cominiscule geometry. We prove
that a compact complex manifold M with c1 ă 0 admits a holomorphic cominiscule
geometry just when M is a locally Hermitian symmetric variety, and we prove that
the moduli space of cominiscule geometries on M is a finite dimensional complex
vector space. Moreover, we find that the normal cominiscule geometries on locally
Hermitian symmetric varieties are precisely the obvious flat ones.

There is a subtlety in the study of holomorphic Cartan geometries because we
need to be careful about holomorphic moduli of principal bundles, an issue which
does not arise in the real smooth category where these geometric structures have
been thoroughly studied. Principal bundles of holomorphic Cartan geometries with
a fixed model and defined on a fixed complex manifold can vary in the moduli space
of holomorphic principal bundles [35]. We prove that cominiscule geometries with
fixed underlying first order structure all have isomorphic principal bundles. We
prove that any holomorphic parabolic geometry with reducible model on any smooth
projective variety gives that variety a holomorphic local product structure.

The classification of normal holomorphic cominiscule geometries on Kähler–
Einstein manifolds is known for geometries with certain models [28, 29, 30, 31].
Similarly, the rigidity of flat holomorphic cominiscule geometries with irreducible
models on locally Hermitian symmetric varieties is known [23]. We largely follow
the methods of those papers. After this paper was released on the arXiv, Antonio
Di Scala pointed out that it is similar to [11], which had appeared earlier on the
arXiv.

We outline the arguments of the paper. If a compact Kähler manifold M has
c1 ď 0, it is known to be a holomorphic bundle of rational homogeneous varieties
over a complex torus, up to finite covering. In a previous paper [4], we explained how
to reduce the classification problem of holomorphic parabolic geometries on compact
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Kähler manifolds to the same problem on those which contain no rational curves. In
section 3, we apply that work to classify holomorphic parabolic geometries on M .

We develop an obstruction theory to cominiscule geometries on any complex
manifold in sections 4, 5, reducing the problem to the construction of holomorphic
tensors satisfying suitable linear relations in each tangent space, and the vanishing
of a certain cocycle in the sheaf cohomology of a certain associated vector bundle.

Take a compact Kähler manifold M with c1 ă 0 and a holomorphic cominiscule
geometry, i.e. modelled on a cominiscule variety pX,Gq. In section 6, we prove
that every holomorphic cominiscule geometry on M splits TM analogously to
each G-invariant splitting of TX. In section 8, we show that this splitting splits
every Kähler–Einstein metric on M , by using the cominiscule geometry to generate
information about Chern classes of the tangent bundle, and then using the expression
of those Chern classes in the Kähler–Einstein metric.

In section 9, we quote a theorem of Klingler and Mok which ensures rigidity of
the flat cominiscule geometry associated to a locally Hermitian symmetric variety.
Finally, in section 10, we classify all holomorphic cominiscule geometries on Kähler–
Einstein manifolds.

2. Definitions

In this section, we give all of the definitions of the less familiar terms. The
definition of a Cartan geometry on a subbundle of the tangent bundle is new, as
is the definition of a G-structure on such a subbundle. The other definitions are
standard.

2.1. Cartan geometries. Sharpe [40] gives an introduction to Cartan geometries.
If E ÑM is a principal right G-bundle, we will write the right G-action as rge “ eg.
Suppose that M is a manifold, VM Ă TM a vector bundle and π : E Ñ M a
principal bundle. Let

VE “
 

pe, vq
ˇ

ˇ e P E, v P TeE, π
1peqv P VM

(

.

Let H Ă G be a closed subgroup of a Lie group, with Lie algebras h Ă g and let
X “ G{H. A pX,Gq-geometry, or G{H-geometry, or Cartan geometry modelled on
pX,Gq, on a vector subbundle VM Ă TM on a manifold M is a choice of principal
right H-bundle E Ñ M , and section ω of V ˚E b g, called the Cartan connection,
which satisifies all of the following conditions:

(1) r˚hω “ Ad´1
h ω for all h P H.

(2) ωe : VeE Ñ g is a linear isomorphism at each point e P E.
(3) For each A P g, define a vector field ~A on E by the equation ~A ω “ A; the

vector fields ~A for A P h generate the right H-action.
A Cartan geometry on a manifold M means a Cartan geometry on VM “ TM .

Similarly a Cartan geometry on a nonsingular foliation F means a Cartan geometry
on the tangent bundle of F . For example, the bundle GÑ X “ G{H is the total
space of a Cartan geometry on X, with Cartan connection ω “ g´1 dg the left
invariant Maurer–Cartan 1-form on G; this geometry is called the model Cartan
geometry.

If E0 Ñ M0 and E1 Ñ M1 are Cartan geometries with models pG0, X0q and
pG1, X1q and Cartan connections ω0 and ω1, their product geometry is the Cartan
geometry with bundle E0 ˆ E1 ÑM0 ˆM1 and Cartan connection ω0 ` ω1.
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Suppose that pX,Gq is a homogeneous space and let H be the stabilizer of some
point of X. Suppose that X “

ś

iXi splits G-equivariantly and let Ki Ă G be the
subgroup of G acting trivially on Xi. Let Gi “ G{Ki be the quotient of G acting
effectively on Xi and Hi Ă Gi the stabilizer of the associated point of Xi. Pick a
pX,Gq-geometry π : E Ñ M on a subbundle V “ VM on some manifold M . For
each point e P E over any point m P M , the Cartan connection ω induces a map
ω ` h : TmM Ñ g{h. The splitting X “

ś

iXi defines a splitting V “
À

i Vi by the
requirement that ω ` h take Vi to gi{hi. Let Ei “ E{Ki and ωi “ ω ` hi: then
Ei ÑM is a pXi, Giq-geometry on Vi.

On the other hand, suppose that various Lie groups Gi each act smoothly,
transitively and effectively on various homogeneous spaces Xi and we let X “

ś

Xi

and G “
ś

iGi. Suppose that M bears vector bundles Vi Ă TM and Vi X Vj “ t0u
when i ‰ j and each Vi has a pXi, Giq-geometry πi : Ei ÑM . Let V “

À

Vi Ă TM
and let E be the product bundle of the Ei ÑM . Add up the Cartan connections
to produce a pX,Gq-geometry on V, the product geometry.

2.2. Curvature. If E ÑM is a Cartan geometry over a vector bundle VM Ă TM ,
let I “ V KM Ă T˚M and form the sheaf I 1 of 2-forms which are locally divisible
either by local sections of I or by exterior derivatives of local sections of I. Locally
extend ω to an H-equivariant 1-form valued in g; the curvature of E Ñ M is
dω` 1

2 rω, ωs P
`

Ω2 pMq {I 1
˘

bH g. In particular, the curvature of a Cartan geometry
on a foliation is just the usual notion of curvature of a Cartan geometry on the
leaves of the foliation.

2.3. First order structures. Suppose that V0 is a vector space. The V0-valued
frame bundle FV of a vector subbundle V “ VM Ă TM on a manifold M is
the associated principal bundle, i.e. the set of all pairs pm,uq with m P M and
u : Vm Ñ V0 a linear isomorphism. Let π : FV Ñ M be the map pm,uq Ñ m.
The frame bundle is a principal right GLpV0q-bundle under the obvious action
rgpm,uq “

`

m, g´1u
˘

. Let VFVM
“ pπ1q

´1
VM . Define a section σ of V ˚FVM

b V0 on
FVM by v σ “ u pπ1pm,uqvq , where v P Vpm,uqFVM .

Suppose that G Ñ GLpV0q is a morphism of Lie groups and that VM Ă TM
is a subbundle. A G-structure or first order structure on VM is a principal right
G-bundle B Ñ M together with a G-equivariant bundle map B Ñ FVM . If G0
is the kernel of the morphism G Ñ GLpV0q, then B{G0 Ñ FV is the underlying
immersed first order structure, and is a submanifold of FVM .

2.4. Underlying first order structures. Let X “ G{H be a homogeneous space.
Let M be a manifold with a vector bundle VM Ă TM , and π : E Ñ M a pX,Gq-
geometry on VM . Let g and h be the Lie algebras of G and H. Let V0 “ g{h. Let
FVM be the V0-valued frame bundle. Let σ “ ω`h, a semibasic 1-form defined on VE
and valued in V0. At each point e P E the 1-form σ determines a linear isomorphism
u : VM,m Ñ V0 by the equation upπ1peqvq “ v σ. Map e P E ÞÑ u “ upeq P FVM .
This map is an H-structure. The fibers of this map consist of the orbits in E of
the subgroup H1 of H acting trivially on V0 “ g{h. The map descends to a map
E{H1 Ñ FVM called the underlying pH{H1q-structure or underlying first order
structure of the pX,Gq-geometry.

2.5. Holomorphy. From now on, all Cartan geometries in this paper will be
assumed to be holomorphic Cartan geometries, i.e. G is a complex Lie group, X is
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a complex manifold on which G acts holomorphically, effectively and transitively,
E ÑM is a holomorphic principal bundle on a complex manifold M , VM ĂM is a
holomorphic vector bundle, and the Cartan connection is holomorphic. Isomorphisms
of Cartan geometries will therefore be biholomorphic.

2.6. Rational homogeneous varieties and parabolic geometries. A rational
homogeneous variety is a pair pX,Gq where G is a complex semisimple Lie group
acting effectively, transitively and holomorphically on a compact complex manifold
X. A parabolic geometry is a Cartan geometry modelled on a rational homogeneous
variety. By a theorem of Chevalley [5] theorem 11.16 p. 154, if G is a complex
semisimple Lie group, then every parabolic subgroup P Ă G (i.e. containing a
maximal solvable subgroup) is connected and equal to its normalizer in G and has
compact quotient X “ G{P and every rational homogeneous variety arises this way.
The center of G acts trivially on X, so without loss of generality G is in adjoint
form.

If pX,Gq is a rational homogeneous variety then, up to reordering factors, there
is a unique decomposition G “

ś

iGi and X “
ś

iXi into products so that each
Gi acts trivially on all Xj except Xi and pXi, Giq is a rational homogeneous variety
which cannot be thus decomposed, i.e. is irreducible.

2.7. Cominiscule varieties. A cominiscule variety is a rational homogeneous
variety pX,Gq so that the stabilizer P of a point x0 P X acts on Tx0X as a sum
of irreducible representations; see [2, 32]. Each cominiscule variety pX,Gq admits
a Kähler metric, invariant under a maximal compact subgroup of G, in which X
becomes a compact Hermitian symmetric space. The group G in our definition is a
complex group of biholomorphisms of M “ G{P ; G does not preserve any metric on
G{P . For example, if G{P “ Pn, we will have G “ PSLpn` 1,Cq, not PUpn` 1q.
For this reason, we use the term cominiscule variety rather than compact Hermitian
symmetric space.

Example 1. Suppose that X “ G{P is a cominiscule variety. Denote by X 1 “ G1{P 1

its dual noncompact Hermitian symmetric space [18], i.e. G1 Ă G is a real form
acting on X, and P 1 “ P X G1 is compact, and G1 acts on X with an open orbit
X 1 “ G1{P 1. Pullback the standard flat pX,Gq-geometry on X to a flat pX,Gq-
geometry on X 1. If Γ Ă G1 is a cocompact lattice, then the flat pX,Gq-geometry on
X 1 is pulled back from a unique flat pX,Gq-geometry on the manifold M “ ΓzX 1,
called the standard geometry on M .

Example 2. If pX,Gq “ pPn,PSLpn` 1,Cqq then any holomorphic pX,Gq-geometry
is called a holomorphic projective connection. The space of holomorphic projective
connections on any Riemann surface is canonically identified with the space of
holomorphic quadratic differentials [33].

Example 3. Call a holomorphic cominiscule geometry standard if, after perhaps
replacing by the pull back to a finite étale covering space, it becomes a product
geometry of the form M “ M 1 ˆ

ś

jMj , where each Mj is a compact Riemann
surface with a holomorphic projective connection and M 1 “ ΓzX 1 is the standard
geometry, for X 1 the noncompact dual of a cominiscule variety.

Theorem 1. Suppose that M is a connected compact complex manifold with
c1pMq ă 0 bearing a holomorphic cominiscule geometry. Then M is a locally
Hermitian symmetric variety. All holomorphic cominiscule geometries on M have
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An Grassmannian of k-planes in Cn`1

Bn
p2n´ 1q-dimensional hyperquadric, i.e. the variety of
null lines in C2n`1

Cn space of Lagrangian n-planes in C2n

Dn
p2n´ 2q-dimensional hyperquadric, i.e. the variety of
null lines in C2n

Dn
one component of the variety of maximal dimension
null subspaces of C2n

Dn the other component

E6 complexified octave projective plane

E6 its dual plane

E7 the space of null octave 3-planes in octave 6-space

Figure 1. The classification of irreducible cominiscule varieties;
every cominiscule variety is a product of these.

the same model. The moduli space of holomorphic cominiscule geometries on M
is a finite dimensional complex vector space. The normal holomorphic cominiscule
geometries on M form a finite dimensional linear subspace. Every holomorphic
normal cominiscule geometry on M is standard. If no finite covering space of M
splits into a product M1 ˆM2 with M1 a compact Riemann surface, then every
holomorphic cominiscule geometry on M is normal.

Theorem 1 is a consequence of theorem 8 on page 27.

2.8. Roots. Helgason [18] and Knapp [24] both prove all of the results we will use
on Lie algebras; we give some definitions only to fix notation; also see Landsberg
[32]. Suppose that G{P is a cominiscule variety. Fix a Cartan subalgebra of g. Let
b be the Borel subalgebra, i.e. the subalgebra consisting of the sum of the Cartan
subalgebra and all of the positive root spaces. The Lie algebra p can be made to
contain b by conjugation [14] p. 382; assume without loss of generality from now on
that b Ă p. For each root α, let gα be the root space of the root α. Write g as a
sum of simple Lie algebras g “

À

i g
i. Let pi “ giX p. Then p “

À

i p
i. A root α is

compact if both gα X p ‰ t0u and g´α X p ‰ t0u. Each gi has a unique noncompact
simple root αi. Write a noncompact root of g as β` or β´ to indicate that it is a
noncompact positive or noncompact negative root. If we write a root without a
superscript, e.g. β, this means that it is allowed to be any of the above, or even a
compact root. If β´ is any (necessarily noncompact negative) root, we will write
β` to mean ´β´, etc.

2.9. The grading. Grade g into a sum: g “ g´ ‘ g0 ‘ g`, where g´ is the sum of
all noncompact negative root spaces, g` is the sum of all noncompact positive root
spaces, and g0 is the sum of the Cartan subalgebra of g with all of the compact root
spaces, so p “ g0 ‘ g`. Each of the Lie algebras g´, g0, g` is the Lie algebra of a
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connected algebraic Lie subgroup G´, G0, G` of G. The subgroups G´ and G` are
abelian and simply connected (see Knapp [24] theorem 7.129 p. 506). This grading
of g is only G0-invariant, but the associated filtration is P -invariant and P “ G0G`.
Identify g˚´ “ g` using the Killing form. If X` P g` and Y “ Y´ ` Y0 ` Y` P g
then
(1) Ad

`

eX`
˘

Y “ Y´ ` pY0 ´ rX`, Y´sq ` Z`

where
Z` “ Y` ´ rX`, Y0s `

1
2 rX`, rX`, Y´ss .

2.10. Chevalley bases. A Chevalley basis Xα, Hα (see Serre [39]) is a basis of g
parameterized by roots α P h˚ (with h Ă g a Cartan subalgebra) for which

(1) rH,Xαs “ αpHqXα for each H P h

(2) α pHβq “ 2 〈α,β〉
〈β,β〉 (measuring inner products via the Killing form)

(3) rHα, Hβs “ 0,
(4)

rXα, Xβs “

#

Hα, if α` β “ 0,
NαβXα`β , otherwise

with
(a) Nαβ an integer,
(b) N´α,´β “ ´Nαβ ,
(c) If α, β, and α`β are roots, then Nαβ “ ˘pp`1q, where p is the largest

integer for which β ´ pα is a root,
(d) Nαβ “ 0 if α` β “ 0 or if any of α, β, or α` β is not a root.

3. Classification of holomorphic parabolic geometries with
c1 ě 0

We give some examples of holomorphic parabolic geometries, and then prove
(largely by citation) that these examples exhaust the holomorphic parabolic geome-
tries with c1 ě 0.
Example 4. Suppose that P̄ Ă Q̄ is a parabolic subgroup of a complex semisimple
Lie group Ḡ and let X̄ “ Ḡ{P̄ . Denote the Lie algebra of P̄ as p̄. Take a complex
linear p̄-complementary subspace V Ă ḡ, letting s P V ˚ b g be the inclusion map.
Take a lattice Λ Ă V , let M̄ “ V {Λ, and let Ē “ pV {Λq ˆ P̄ with elements
written as pz ` Λ, p̄q. Let ω̄ “ p̄´1 dp̄` Ad pp̄q´1

s. Then Ē Ñ M̄ is a translation
invariant holomorphic pX,Gq-geometry on a complex torus, with holomorphic Cartan
connection ω̄.
Example 5. Continuing with the previous example, suppose that G0 is a complex
semisimple Lie group and pick parabolic subgroups Q0 Ă G0 and Q̄ Ă P̄ . Let
G “ G0ˆḠ, P “ Q0ˆQ̄ and X “ G{P . Take any group morphism ρ : Λ Ñ G0. Let
E1 “ V ˆρ G0 Ñ M̄ be the associated flat G0-bundle. Let ω0 be the holomorphic
flat connection on E1 Ñ M̄ . Let E “ E1 ˆM̄ Ē, with obvious G0 ˆ P̄ -action. Write
the pullback form of ω0 to E also as ω0 and similarly write the pullback form
of ω̄ to E also as ω̄. Let ω “ ω0 ` ω̄ and let M “ E{P . Then E Ñ M is a
holomorphic pX,Gq-geometry with Cartan connection ω. Moreover, M Ñ M̄ is a
holomorphic fiber bundle with all fibers biholomorphic to pG0{Q0q ˆ

`

P̄ {Q̄
˘

. In
particular, c1pMq ě 0.
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Theorem 2. Suppose that M is a connected compact Kähler manifold with c1 ě 0
and pX,Gq is a rational homogeneous variety with dimM “ dimX. Then M admits
a holomorphic pX,Gq-geometry if and only if, after perhaps replacing M by a finite
étale covering space,

(1) M “ X with the standard flat pX,Gq-geometry or
(2) M is a complex torus and the holomorphic pX,Gq-geometry is as constructed

in example 4 on page 7 or
(3) M , with its holomorphic pX,Gq-geometry, is constructed as in example 5

on page 7.

Proof. By a theorem of Campana, Demailly and Peternell [8], every compact Kähler
manifold M with c1 ě 0 is, up to a finite étale covering space, a holomorphic fiber
bundle, with rationally connected fibers, over a compact Kähler base with c1 “ 0,
so without loss of generality assume that M is such a bundle M ÑM 1.

If M also admits a holomorphic parabolic geometry, say modelled on a rational
homogeneous variety pX,Gq, X “ G{P , then M is a holomorphic fiber bundle with
rational homogeneous fibers M Ñ M̄ over a compact Kähler manifold M̄ which
contains no rational curves, and the holomorphic pX,Gq-geometry on M drops to a
holomorphic parabolic geometry on M̄ [4] theorem 2 p. 4. This means precisely that
there is a surjective morphism of complex semisimple Lie groups GÑ Ḡ, say with
kernel G0, with both G and Ḡ in adjoint form, carrying P to lie inside a complex
parabolic subgroup P Ñ P̄ Ă Ḡ, and the bundle P Ñ E Ñ M of the parabolic
geometry maps equivariantly E Ñ Ē to a holomorphic P̄ -bundle P̄ Ñ Ē Ñ M̄ , and
there is a holomorphic Cartan connection ω̄ on Ē which pulls back to ω ` g0 and ω
is a Cartan connection for E Ñ M̄ .

Since all rational curves in M live in the fibers of M Ñ M̄ , the map M Ñ M̄
drops to a holomorphic fiber bundle mappingM 1 Ñ M̄ . The fibers ofM 1 Ñ M̄ have
preimages in M which are the fibers of M Ñ M̄ , and so are rationally connected.
Any immersed rational curve C Ă F in a fiber F ĂM 1 Ñ M̄ has preimage a smooth
subvariety of M which lies in a fiber of M Ñ M̄ , so there is a copy of this variety
in every fiber of M Ñ M̄ , so this variety has deformations moving it around in M ,
and so its images in M 1 allow that rational curve to deform freely, i.e. the ambient
tangent bundle TM 1|C is a sum of line bundles of nonnegative degree, one of which,
TC, has positive degree. But the sum of these degrees must be c1pM 1q “ 0, a
contradiction unless there are no rational curves in M 1, i.e. M 1 “ M̄ .

Since c1
`

M̄
˘

“ 0 and M̄ admits a holomorphic parabolic geometry, it follows
[36] that, after perhaps replacing M̄ by a finite étale covering space (and thereby
replacing M by the pullback bundle), M̄ is a complex torus. Moreover the parabolic
geometry on M̄ is obtained by the process given in example 5 on page 7 [36].

Because G is semisimple, the Lie algebra g0 of G0 is a sum of irreducible G-
modules, i.e. of simple ideals of G, and we can inductively replace any expression
of g as a sum of simple ideals with an expression in which the ideals are drawn
from g0 or from a g0-complementary G-invariant sum of simple ideals, which is
then isomorphic to ḡ, so g “ g0 ‘ ḡ. Since G and Ḡ are in adjoint form, so is G0,
and therefore G “ G0 ˆ Ḡ. We need to have P contained in the preimage of P̄ ,
i.e. in G0 ˆ P̄ , and to be parabolic, so P “ Q0 ˆ Q̄ for some parabolic subgroups
Q0 Ă G0 and Q̄ Ă P̄ . Since ω is a Cartan connection for the principal bundle
G0 ˆ P̄ Ñ E Ñ M̄ , ω0 is a flat connection on the bundle G0 Ñ E1 “ E{P̄ Ñ M̄ .
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Clearly we can recover the principal bundle E Ñ M̄ from the two principal bundles
E1 Ñ M̄ and Ē Ñ M̄ as E “ E1 ˆM̄ Ē. We can recover the Cartan connection
on E by pulling back the flat connection from E1 and the Cartan connection from
Ē, and with obvious G0 ˆ P̄ -action. We can recover M as M “ E{

`

Q0 ˆ Q̄
˘

.
Therefore we can just pick any holomorphic principal G0-bundle E1 Ñ M̄ with any
flat holomorphic connection, and pick any holomorphic parabolic geometry on M̄ ,
and build a complex manifold M and its parabolic geometry as above.

Holomorphic G0-bundles E1 Ñ M̄ with holomorphic flat connection are classified
up to isomorphism by conjugacy classes of representations of the fundamental group,
i.e. group morphisms Λ Ñ G0, so the resulting geometry is constructed as in
example 5 on page 7. �

4. Invariant tensors on cominiscule varieties

In this section, we construct a collection of invariant holomorphic tensors on
every cominiscule variety pX,Gq. We associate to each of these tensors and to each
pX,Gq-geometry E Ñ M an analogous tensor on M . We then prove that these
tensors determine the underlying first order structure of the cominiscule geometry.
We will later explain how to construct every cominiscule geometry as some additional
information added to its first order structure.

4.1. The fundamental tensor of a cominiscule variety. There is a well known
invariant holomorphic tensor on any cominiscule variety G{P ; see Kobayashi and
Ochiai [30]. Take any elements X´ P g´ and ξ´ P g˚´. Pick out the element Y` P g`
dual to ξ´ under the Killing form of g. Define τ pX´, ξ´q “ ad rX´, Y`s : g´ Ñ g´;
τ P g˚´ b g´ b g˚´ b g´. We extend τ by G-equivariance to a tensor on G{P , a
holomorphic section of T˚ b T b T˚ b T , where T “ T pG{P q is the holomorphic
tangent bundle.

Lemma 1. Suppose that P Ă G is a parabolic subgroup of a complex semisimple
Lie group G in adjoint form. Split P into the Langlands decomposition P “ G0G`
as above. The adjoint action of G0 on g{p is faithful.

Proof. Elements of G from different simple factors commute, so we can restrict our
attention to the case where G is a simple Lie group. Take an element g0 P G0 acting
trivially on g{p “ g´. By invariance of the Killing form, g0 acts trivially on g`
too, and so acts trivially on the Lie subalgebra h of G generated by g´ Y g`. So h
contains the root spaces of the noncompact roots. Since both g´ and g` are invariant
under reflection in the compact roots, so is h. By the relation rXα´ , Xα`s “ Hα´ ,
h contains the coroots of the noncompact roots. By the relation rHα´ , Xγs “

γ pHα´qXγ , h contains the root spaces of all compact roots γ so that γ is not
perpendicular to some noncompact root α´. Applying the same equation inductively,
h contains the root space of each simple root γ which lies in the same component
of the Dynkin diagram as some noncompact root. Since G acts effectively on
X “ G{P , every component of the Dynkin diagram of G contains a noncompact
root. Therefore h “ g. So g0 acts trivially on g, i.e. lies in the center of G, which is
t1u by hypothesis. �

Lemma 2. If τ is the fundamental tensor of a cominiscule variety G{P then
τ P g˚´ b g´ b g0. As we vary X´ and ξ´, the values of τ pX´, ξ´q span g0.
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Proof. It suffices to prove the result under the assumption that G{P is irreducible,
i.e. G is simple. Let V Ă g0 be the span of all vectors in g0 of the form rX´, Y`s.
We have only to prove that V “ g0. For any Z0 P g0,

rZ0, rX´, Y`ss “ rrZ0, X´s , Y`s ` rX´, rZ0, Y`ss

lies in V . So V is an ideal in g0.
If we take the Dynkin diagram of g and cut out the compact simple roots, we get

the Dynkin diagram of g0. The connected components in the Dynkin diagram of
g0 are the Dynkin diagrams of simple subalgebras of g0. The Lie algebra g0 also
contains all of the noncompact coroots of g, which sum to an abelian subalgebra.
Moreover, g0 is the sum of this abelian subalgebra with those simple subalgebras.
Take a Chevalley basis. For each root α`, Hα` “ rXα` , Xα´s P V. So V is an
ideal in g0 containing the Cartan subalgebra, and therefore containing the abelian
summand of g0 and intersecting all of the simple summands. Since V intersects
each simple summand of g0, and is an ideal, it must contain each simple summand,
and contains the abelian summand, so V “ g0. �

Suppose that G{P is a cominiscule variety. Let Γ be the group of automorphisms
of the Dynkin diagram of G{P , i.e. automorphisms of the Dynkin diagram of G
which leave each component invariant and which fix every noncompact root. With
a Cartan subalgebra of G chosen, we can canonically realize Γ as a subgroup of G
leaving the Cartan subalgebra invariant; see Fulton and Harris [14] p. 498. To be
specific, we just take a Chevalley basis and move around the labels on the simple
roots according to Γ. Since Γ acts trivially on the noncompact root, it acts as
isomorphisms of the compact roots, and as isomorphisms of the Lie groups G,G´, G0
and G`.

Example 6. Among the Dynkin diagrams of Grassmannians, only those of the form
Gr

`

p,C2p˘ have a symmetry in their Dynkin diagram, interchanging the ends, fixing
the noncompact root at the middle. The Dynkin diagram of the maximal semisimple
subgroup of G0 is precisely the Dynkin diagram of G{P with the noncompact
root removed. So in this case, G0 has disconnected Dynkin diagram, and so g0
is a direct sum C ‘ slpp,Cq ‘ slpp,Cq. The group Γ “ Z2 interchanges these two
subalgebras, while the adjoint G0-action leaves them each invariant. The Lie algebra
g0 imbeds as a subalgebra of GLpg{pq “ GL

`

p2,C
˘

. Therefore the projection
operator α P gl

`

p2,C
˘˚
b gl

`

p2,C
˘

which projects onto the first of these slpp,Cq
subalgebras is invariant under G0, but not invariant under Γ. To be explicit, write
each linear map s : glpp,Cq Ñ glpp,Cq as spAq “ si`jkA

k
` , and then αpsq “ t where

ti`jk “
1
n

´

sippk ´ s
pq
pqδ

i
k

¯

δ`j .

Example 7. Quadric hypersurfaces Q2n´2 Ă P2n´1 have an automorphism from
their Dynkin diagram, interchanging the upper and lower roots on the right hand
side of the diagram. The groups are

G “ POp2n,Cq , G0 “ Cˆ SOp2n´ 2,Cq , g´ “ g{p “ C2n´2.

The group G0 acts in the obvious representation on g´. This automorphism swaps
the two representations in the splitting

Λn´1 pg{pq
˚
“ Λn´1 `C2n´2˘˚ “ Λ` ‘ Λ´
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into self-dual and anti-self-dual n-forms. So the group Γ of automorphisms of the
Dynkin diagram will not preserve the Λ` component. Let α P Λn´1 `C2n´2˘ b

Λn´1 `C2n´2˘˚ be the projection to Λ`. So α is invariant under G0 but not under
Γ. Since Λn´1 pg´q Ă

Ân´1
g´ we think of α as an element of

ˆ n
â

g´

˙

b

ˆ n
â

g˚´

˙

“

n
â

`

g´ b g˚´
˘

.

Suppose that G{P is an irreducible cominiscule variety. If G “ A2p´1 “
PSLp2p,Cq and G{P “ Gr pp, 2pq, then let α be the tensor defined in example 6 on
page 10. If instead G “ Dn “ SOp2n,Cq so that G{P “ Q2n´2 Ă P2n´1, then let α
be the tensor defined in example 7 on page 10. Otherwise let α “ 0.

Suppose that G{P is a cominiscule variety, factoring into irreducibles as

G{P “
ź

i

Gi{P i.

Define the barnacle tensor to be the tensor that is the formal sum of the various
tensors α on each factor.
Lemma 3. Suppose that G{P is a cominiscule variety. The kernel of the obvious
morphism ρ : P Ñ GLpg{pq is G` and the image is G0. The group G0 is precisely
the group of linear transformations of g{p which stabilize the fundamental tensor
and the barnacle tensor and preserve the splitting

g{p “
à

i

gi{pi.

Note that the splitting can be defined by a collection of complex linear projection
operators.

Proof. Since G and G0 preserve the splitting, we can safely assume that G is a
simple Lie group. Let G10 be the group of linear transformations of g{p which
stabilize the fundamental tensor and the barnacle tensor and preserve the splitting.
Since G10 is by definition a linear algebraic group, it has finitely many components.
The group G` lies in the kernel of P Ñ G10.

Suppose that r P G10. The image of the fundamental tensor is the Lie algebra g0 Ă
glpg{pq. Therefore Adr g0 “ g0 inside glpg{pq. Since G0 is connected, Adr G0 “ G0
inside GLpg{pq, i.e. G0 Ă G10 is a normal subgroup.

Define a Lie algebra g2 “ g´ ‘ g0 ‘ g˚´, by using the usual brackets on g0, and
by making g´ and g˚´ abelian (so 0 brackets), and by making the brackets of g0 on
g´ and on g˚´ be the obvious action as linear transformations. Then finally define
rX´, ξ

´s “ τ pX´, ξ
´q for X´ P g´ and ξ´ P g˚´. This bracket is G10-invariant, and

g2 “ g are isomorphic Lie algebras. Moreover, p Ă g is an G10-invariant subalgebra.
So G10 acts as automorphisms of the connected Lie group G preserving the

connected subgroups G0, G`, G´, P , say by a morphism σ : G10 Ñ AutG. This
morphism σ fixes G0 to give the usual morphism Ad: G0 Ñ G Ă AutG. The
automorphism group AutG is a finite extension of AdG (where AdG acts on G by
inner automorphisms), since G is semisimple (see Fulton and Harris [14] p. 498).
Since G acts effectively on X “ G{P , G “ AdG, so AutG is a finite extension of
G. The morphism σ takes g0 Ă g10 Ñ g0, so takes G0 Ă G10 Ñ G0 Ă G, since G0 is
connected, so G0 is embedded as a subgroup of GLpg{pq.

The inclusion map G10 Ñ AutG gives an inclusion g10 Ñ g on Lie algebras,
extending the inclusion g0 Ñ g. The Cartan subalgebra of g is a subalgebra of
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g10, so g10 is a sum of root spaces. The noncompact root spaces don’t preserve the
subspaces g´, g` Ă g, so none of these root spaces lie in g10. Since g0 is an ideal of
g10, the compact root spaces lie inside g10, so g10 “ g0. In particular G0 is the identity
component of G10.

Every automorphism of a complex semisimple Lie group G factors uniquely as
kg where g P G and k is an automorphism of the Dynkin diagram; see Fulton and
Harris [14] p. 498. So each element of G10 must factor as kg where k lies in the
automorphism group of the Dynkin diagram of G, and g P G. This same element
must act as an automorphism of G0.

The group of inner automorphisms of a complex affine group G0 acts transitively
on the Cartan subgroups; Borel [5] p. 156. Therefore if we pick any element g10 P G10,
we can arrange after multiplication with some g0 P G0 that g10 acts on G0 preserving
its Cartan subgroup, which is also the Cartan subgroup of G. The element g10
therefore acts as an automorphism of the Dynkin diagram of G, leaving invariant the
roots whose root spaces belong to g0, i.e. as an automorphism of the Dynkin diagram
of G{P . Examining the Dynkin diagrams, there are only two cases of irreducible
cominiscule varieties whose Dynkin diagrams have nontrivial automorphism groups:
for A2p´1, the Grassmannian Gr

`

p,C2p˘, and Dn, the quadric Q2n´2. In each case
the automorphism has order 2, and does not preserve the barnacle tensor. Therefore
G10 “ G0. �

The group of linear transformations of g{p preserving the fundamental tensor and
splitting is already a finite extension of G0. The barnacle tensor is defined here in
order to get rid of the order two automorphisms of the Grassmannians Gr

`

p,C2p˘

and the quadric hypersurfaces.

4.2. The curvature boundary operator. Suppose that G{P is a cominiscule
variety. Following Calderbank and Diemer [7], given any representation ρ : P Ñ
GLpW q, we define an associated space of chains Ck pW q “ Λk pg´q˚ bW, and a
linear map which we call the boundary operator δ : Ck pW q Ñ Ck´1 pW q , by

δ pβ b wq “
ÿ

α´

`

Xα´ β
˘

b ρ
`

Xα`

˘

w,

for β P Λk pg´q˚ and w PW .

4.3. The torsion operator. Define the torsion operator

D : g˚´ b g0 Ñ Λ2 pg´q
˚
b g´,

as follows: for any a P g˚´ b glpg´q, and any X,Y P g´, let

DpaqpX ^ Y q “ rapXq, Y s ´ rapY q, Xs .

Lemma 4. Suppose that G{P is a cominiscule variety, with grading g “ g´‘g0‘g`.
The morphism ad: g` Ñ g˚´ b g0, X` ÞÑ ad pX`q is injective.

Proof. Suppose that K` is the kernel of this morphism. It follows from the Leibnitz
identity that K` is a g0-module. Therefore K` is a sum of root spaces of g. So
it is enough to prove that for any root α`, Xα` is not in K`, which follows from
rXα` , Xα´s “ Hα` ‰ 0. �

Lemma 5. The map ad: g` Ñ g˚´ b g0 has image inside kerD.
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Proof. Pick a root γ. Pick Xγ and X´γ bases of the root spaces gγ and g´γ .
The kernel of ad must be a sum of root spaces, by equivariance under the Cartan
subalgebra. By the Jacobi identity, for X` P g` and Y´, Z´ P g´,

“

adX` pY´q , Z´
‰

“ ´rrZ´, X`s , Y´s ´ rrY´, Z´s , X`s

“
“

adX` pZ´q , Y´
‰

.

�

4.4. The torsion operator in a Chevalley basis. Let

H “
ÿ

β´

Hβ´ .

Then for any a P g˚´ b g0, define tr a P g`, the trace of a, by

tr a “
ÿ

β´,δ´

〈“
a
`

Xβ´
˘

, Xβ`
‰

, Xδ´
〉

δ´pHq 〈Xδ´ , Xδ`〉
Xδ` .

It is easy to check that for any X` P g`, if a “ adX` then tr a “ X`.

Lemma 6. If a P g˚´ b g0 and Da “ 0 then a “ adX` `b, for a unique X` P g`
(given by X` “ tr a) and a unique b P g˚´ b g0 for which Db “ 0 and tr b “ 0.

Proof. Let X` “ tr a and let b “ a´ adX` . �

4.5. Tensor invariants in cominiscule geometries. Suppose that P Ñ E ÑM
is a cominiscule geometry, with Cartan connection ω, over a vector subbundle
VM Ă TM . The identification

0 verticale VeE VmM 0

0 p g g{p 0

ωe ωe

identifies the fundamental tensor τ of G{P with a tensor on VmM , which we will also
call τ . Because τ is a P -invariant tensor on g{p, this identification is independent of
the point e P E, determining a holomorphic section τ of V ˚ b V b V ˚ b V , where
V “ VM .

If g “
À

i g
i, let pi : g{p Ñ gi{pi be the obvious projection. The same identifi-

cation yields a splitting V “
À

i Vi corresponding to the splitting g{p “
À

i g
i{pi,

and a holomorphic projection tensor $i P V ˚bVi identified with pi. It also yields a
barnacle tensor α, a section of V ˚bVi on M . A cominiscule geometry on a foliation
is normal if its curvature is δ-closed.

Lemma 7. Suppose that E Ñ M is a cominiscule geometry on a vector bundle
VM Ă TM , with model G{P . The underlying first order structure of E Ñ M is
the G0-structure E{G` Ñ FVM . Its image in FVM consists precisely in the linear
isomorphisms u : VmM Ñ g{p preserving the canonical splitting tensors, fundamental
tensor and barnacle tensor. In particular, two cominiscule geometries have the same
underlying first order structure just precisely when they have the same canonical
splitting, fundamental tensor and barnacle tensor.

Proof. See lemma 3. �
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5. Cominiscule geometries and underlying first order
structures

Now that we can describe the underlying first order structure of any cominiscule
geometry as a collection of holomorphic tensors, we want to see how a cominiscule
geometry is built from its first order geometry and some additional data. We will
show that two cominiscule geometries E ÑM , E1 ÑM with the same first order
data (i.e. the same associated holomorphic tensors) have canonically isomorphic
total spaces, with Cartan connections differing by a canonical section of an associated
vector bundle. We thereby reduce the obstruction problem for cominiscule geometries
on a complex manifold M with a given model pX,Gq to two problems: (1) the
obstruction problem for the existence of holomorphic tensors on M “analogous” to
the G-invariant tensors found on X, and (2) the vanishing of a canonically associated
element of a certain sheaf cohomology group arising from any projective space factors
in X, say X “ Pn1 ˆ Pn2 ˆ ¨ ¨ ¨ ˆX 1.

Suppose that π : E Ñ M is a Cartan geometry over a vector bundle VM , with
model X “ G{H. Write the composition E Ñ E{H1 Ñ FVM as πp1q. Suppose that
E ÑM and E1 ÑM are two holomorphic Cartan geometries on the same vector
bundle VM Ă TM , with the same model X “ G{H, and with the same underlying
first order structure. Let E ˆFVM

E1 be the set of all tuples pm,u, e, e1q , so that
m PM and u : VmM Ñ g{h is a linear isomorphism and e P E and e1 P E1 and

u “ πp1qpeq “
`

π1
˘p1q `

e1
˘

.

The bundle E ˆFVM
E1 ÑM is a holomorphic principal right H ˆH{H1 H-bundle.

The obvious maps E ˆFVM
E1 Ñ E and E ˆFVM

E1 Ñ E1 are each holomorphic
principal right H1-bundles.

Lemma 8. Suppose that E Ñ M and E1 Ñ M are two Cartan geometries over
the same vector bundle VM Ă TM with the same model X “ G{H, and the same
underlying first order structure. If we write the pullback of any form by the same
symbol, then on E ˆFVM

E1, σ “ ω1 ` h “ ω ` h.

Proof. By symmetry it is enough to prove that ω` h “ σ, and it is enough to prove
this on E, which we see by unwinding definitions. �

Proposition 1. Suppose that E ÑM and E1 ÑM are two cominiscule geometries
with the same model G{P , on the same vector bundle VM Ă TM and with the
same fundamental, splitting and barnacle tensors. On E ˆFVM

E1, there are unique
holomorphic functions s : E ˆFVM

E1 Ñ g˚´ b g0, and X` : E ˆFVM
E1 Ñ g`, so

that
(1) tr s “ 0,
(2) ω10 “ ω0 ` ps` ad pX`qq σ,
(3) s and X` are equivariant under the P ˆG0 P -action.

Proof. From lemma 8, ω´ “ ω1´ “ σ. Taking the exterior derivative of some local
extension of ω and ω1 to equivariant differential forms:

0 “ 1
2
“

ω0 ´ ω
1
0, ω´

‰

`
1
2
“

ω´, ω0 ´ ω
1
0
‰

´
1
2
`

K´ ´K
1
´

˘

σ ^ σ,

where Kσ^σ and K 1σ^σ are the curvatures, and K´ and K 1´ are the components
of K and K 1 valued in g´. Pick any vector v P VEˆF VM

E1 for which v σ “ 0. Let
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A0 “ v pω0 ´ ω
1
0q. Then plug in v to the above to find

0 “ 1
2 rA0, ω´s `

1
2 rω´, A0s .

In other words, if B´ P g´, then 0 “ rA0, B´s . By lemma 3 on page 11, g0 is a
subalgebra of glpg´q, ie. this forces A0 “ 0. Therefore on the kernel of ω´ “ σ, we
have ω0 “ ω10, so ω10 “ ω0 `

`

s` adX`
˘

σ, where s P g˚´ b g0 and tr s “ 0. �

Lemma 9. Suppose that E ÑM is a cominiscule geometry with model G{P and
Cartan connection ω. If X` P g` and we let g` “ eX` , then

r˚g`

¨

˝

ω´
ω0
ω`

˛

‚“

¨

˝

I 0 0
´ ad pX`q I 0
1
2 ad pX`q2 ´ ad pX`q I

˛

‚

¨

˝

ω´
ω0
ω`

˛

‚

Proof. From the definition of a Cartan connection, r˚g`ω “ Ad pg`q´1
ω. The result

then follows from eq. (1) on page 7. �

Theorem 3. Any two cominiscule geometries on the same vector bundle, with the
same model and underlying first order structure have canonically isomorphic total
space. To be more specific, suppose that E ÑM and E1 ÑM are two cominiscule
geometries with the same model G{P and on the same holomorphic vector bundle
VM Ă TM . Suppose that E and E1 have the same fundamental tensor, barnacle
tensor and splitting. Then there exists a unique bundle isomorphism E – E1 so that
ω1 “ ω ` S σ for a unique holomorphic P -equivariant function S : E Ñ pg{pq

˚
b p

with trS “ 0. The two cominiscule geometries are isomorphic, via an isomorphism
that is the identity on M , if and only if S “ 0.

Conversely, suppose we have a cominiscule geometry E Ñ M with model G{P
and Cartan connection ω. Every holomorphic section S of T˚M b adpEq satisfying
trS “ 0 determines a Cartan connection ω1 “ ω ` S σ, which has the same
fundamental, splitting and barnacle tensors.

Call S the obstruction of the pair E,E1. Let Ш0 Ă pg{pq
˚
bp be the P -submodule

consisting of all s P pg{pq˚ b p so that tr s “ 0. For any holomorphic G0-structure,
let Ш “ E ˆP Ш0 so that Ш Ñ M is a holomorphic vector bundle. Similarly, if
we have a local biholomorphism f : M Ñ M 1 and G{P -geometries E Ñ M and
E1 ÑM 1, and f locally identifies their underlying first order structures, define the
obstruction of f to mean the obstruction of the pair pE, f˚E1q.

Proof. Under the P ˆG0 P -action on E ˆFVM
E, the action on ω and ω1 is obvious.

Pick pg0, g0q P G0 ˆG0 G0 “ G0. Let ρ´ : G0 Ñ GLpg´q and ρ` : G0 Ñ GLpg`q be
the obvious representations. Then check that

r˚
pg0,g0q

S0 “ Ad pg0q
´1
pS0 ˝ ρ´ pg0qq .

Similarly, r˚
pg0,g0q

X` “ ρ` pg0q
´1
X`.
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Pick Y`, Y 1` P g`. Then let g` “ eY` , g1` “ eY
1
` . By lemma 9 on page 15, on

E ˆFVM
E1,

r˚
pg`,g1`q

`

ω10 ´ ω0
˘

“ r˚
pg`,g1`q

ppS ` ad pX`qq ω´q

“
`

S ` ad
`

X` ´ Y
1
` ` Y`

˘˘

ω´

“

ˆ

r˚
pg`,g1`q

S ` ad
ˆ

r˚
pg`,g1`q

X`

˙˙

ω´.

Let F be the set of points of E ˆFVM
E1 at which the function X` (defined in

proposition 1 on page 14) vanishes. The set F is a principal right P -subbundle.
Indeed its tangent space is a maximal integral manifold of the Pfaffian system
tr pω10 ´ ω0q “ 0. Therefore both maps F Ñ E and F Ñ E1 are bundle isomorphisms.
We henceforth identify E with E1 by E Ñ F Ñ E1.

The function S0 : E Ñ g˚´ b g0 is P -equivariant, and therefore G`-invariant.
Consequently if v is any tangent vector to E for which 0 “ v ω´ “ v ω0 then
v dS0 “ 0 and S0 is G0-equivariant. If v is any tangent vector to E for which
0 “ v ω´ and v ω0 “ A0, then v dS0 “ ´ ad pA0qS0 ` S0 ˝ ρ pA0q . Therefore
(2) dS0 “ ´ ad pω0qS0 ` S0 ˝ ρ pω0q `∇S0 ω´,

where ∇S0 : E Ñ g˚´ b g˚´ b g0 is a holomorphic P -equivariant map. The equation
trS “ 0 forces tr dS “ 0, so forces tr ∇S “ 0.

Taking the exterior derivative of both sides of the equation ω10 “ ω0 ` S ω´,

0 “´ 1
2 rS ω´, ω0s ´

1
2 rω0, S ω´s ´

1
2 rS ω´, S ω´s ´

1
2
“

ω´, ω
1
` ´ ω`

‰

´
1
2
“

ω1` ´ ω`, ω´
‰

`
1
2
`

K 10 ´K0
˘

ω´ ^ ω´ ´ dS ^ ω´ ` S

ˆ

1
2 rω´, ω0s `

1
2 rω0, ω´s ´

1
2 rω´, ω0s

˙

.

Plugging in what we know about dS from eq. (2),

0 “´ 1
2 rS ω´, S ω´s ´

1
2
“

ω´, ω
1
` ´ ω`

‰

´
1
2
“

ω1` ´ ω`, ω´
‰

`
1
2
`

K 10 ´K0 ´ SK´
˘

ω´ ^ ω´ ´ p∇Sω´q ^ ω´.

Pick a vector v tangent to E for which 0 “ v ω´. Suppose that v ω` “ A`
and v ω1` “ A1`. Plug in to find

0 “ 1
2
“

ω´, A
1
` ´A`

‰

´
1
2
“

A1` ´A`, ω´
‰

.

If we then pick any B´ P g´ and take a vector w tangent to E with w ω´ “ B´,
we find 0 “

“

B´, A
1
` ´A`

‰

, i.e. ad
`

A1` ´A`
˘

acts trivially as a linear map in
g˚´ b g0. By lemma 4 on page 12, A1` “ A`. Therefore ω1` “ ω` modulo ω´.
So ω1` “ ω` ` b ω´ for some unique holomorphic function S` : E Ñ g˚´ b g`. Set
S “ S0 ` S`; the required morphism exists.

Suppose that there are two isomorphisms
f : E Ñ E1, f˚ω1 “ ω ` Sσ,

f̃ : E Ñ E1, f̃˚ω1 “ ω ` S̃σ.

Since f˚ω1´ “ ω´ “ σ, it follows that E and E1 have the same underlying first order
structure. Construct the set F as above: the set of points of E ˆFVM

E1 at which
the function X` (defined in proposition 1 on page 14) vanishes. It follows that the
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graphs of f and f̃ both lie inside F . Being principal P -bundles over M , they must
therefore be equal to F and to one another. �

A projective factor of a cominiscule variety
G{P “

`

G1{P 1˘ˆ
`

G2{P 2˘ˆ ¨ ¨ ¨ ˆ pGs{P sq .

is a factor Gi{P i “ Pn with Gi “ PSLpn` 1,Cq. A projective line factor is a
projective factor Gi{P i “ P1.

Lemma 10 (Čap and Slovak [10] p. 277 theorem 3.1.16, Goncharov [16]). Suppose
that pX,Gq is a cominiscule variety. If a complex manifold admits a holomorphic
pX,Gq-geometry, then the underlying holomorphic first order structure is a holo-
morphic G0-structure. Conversely, if a complex manifold admits a holomorphic
G0-structure, then this G0-structure is locally the underlying first order structure
of a normal holomorphic pX,Gq-geometry. If pX,Gq contains no projective factors,
then the normal holomorphic pX,Gq-geometry is unique.

The proofs of [10] and [16] are in the real category, but they work identically in
the holomorphic category. The algorithm of Čap and Slovak assumes a fundamental
tensor and splitting, but doesn’t assume a barnacle tensor. However, the Cartan
geometry is defined on a covering space corresponding precisely to the possible
choices of barnacle tensor. It is trivial to modify the proof of Čap and Slovak to
include a barnacle tensor.

Lemma 11. Suppose that X “ G{P is a cominiscule variety, M is a complex
manifold and VM Ă TM is a holomorphic subbundle. If a VM admits a holomor-
phic pX,Gq-geometry, then the underlying holomorphic first order structure is a
holomorphic G0-structure. Conversely, if VM admits a holomorphic G0-structure,
then every G0-structure on VM is locally the underlying first order structure of a
holomorphic pX,Gq-geometry. If VM is bracket closed and admits a holomorphic
G0-structure, then every G0-structure on VM is locally the underlying first order
structure of a normal holomorphic G{P -geometry. If G{P contains no projective
factors, then then normal holomorphic pX,Gq-geometry is unique. For any two
local choices of holomorphic pX,Gq-geometries with the given G0-structure, wherever
both are defined, there is a unique holomorphic bundle isomorphism between their
principal bundles so that they differ by an obstruction.

Proof. If VM “ TM then this is just lemma 10. Next, suppose that M is a product
M “ X ˆ Y of complex manifolds, and that VM “ TF is the tangent bundle of
the foliation F whose leaves are txu ˆ Y for x P X. Then we carry out the same
algorithm as Čap and Schichl [9], but carrying around a point x P X with us
as we do. Moreover the algorithm specifies a choice of projective connection (for
any projective factors) using a choice of some additional local data. An arbitrary
foliation is locally a product, and our result is local, so the proof for VM the tangent
bundle of any holomorphic foliation is immediate.

Next suppose that we have an arbitrary holomorphic subbundle VM Ă TM . Since
our problem is local, we can suppose that M “ M1 ˆM2, splitting the tangent
bundle into T “ T 1‘T 2 with T j

pm1,m2q
“ Tmj

Mj , so that V “ VM is complementary
to T 1 at every point. Make the obvious linear identification Vm Ñ T 2

m. Use this to
push the first order structure on V to a first order structure on T 2. Use the above
process to locally generate a pX,Gq-geometry E ÑM with Cartan connection ω1.
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Locally trivialize E “M1ˆM2ˆP . If v P VE , write v “ pv1, v2, Aq P T
1‘T 2‘TP

and define ω by ωpvq “ ω1p0, v2, Aq. �

Corollary 1. Suppose that X “ G{P is a cominiscule variety. Suppose that
VM Ă TM is a holomorphic vector bundle on a complex manifold M bearing a
holomorphic G0-structure. There is a holomorphic principal P -bundle E ÑM and
a holomorphic map E Ñ FVM with image equal to the G0-structure, so that for any
local biholomorphism M 1 ÑM , every holomorphic pX,Gq-geometry on M 1 with the
pullback G0-structure as its underlying first order structure has bundle canonically
holomorphically isomorphic to the pullback of E.

Proof. We construct bundles Eα locally by the previous corollary, and then we
(must) glue them together as in theorem 3 on page 15. �

Cover M in open sets Uα, each equipped with a holomorphic G{P -geometry
Eα Ñ Uα for which the G0-structure is the underlying first order structure. Let
Uαβ “ Uα X Uβ , and if φ : X Ñ M is any bundle, write Xα to mean φ´1Uα and
Xαβ to mean φ´1Uαβ . Over Uαβ , identify Eα with Eβ as in corollary 1 to make a
bundle E, arranging that

ωβ “ ωα ` Sαβσ

so that Sαβ is a holomorphic section of Шαβ . The obstruction S “
`

Sαβ
˘

is a
1-cocycle S P H1pM,Шq. Since each ωα is a holomorphic partial connection on
Eα ˆP G over VM , the Sαβ are differences between holomorphic partial connections
on E ˆP G. Thus the linear embedding Ш0 Ñ pg{pq b g induces a sheaf morphism
Ш Ñ V ˚M b ad pE ˆP Gq which takes the obstruction cocycle S to the Atiyah class
a pM,VM , E ˆP Gq, giving the obstruction to constructing a holomorphic partial
connection on E ˆP G over VM .

Lemma 12. Suppose that pX,Gq is a cominiscule variety. A holomorphic G0-
structure B on a holomorphic vector bundle VM Ă TM is the underlying first order
structure of a holomorphic pX,Gq-geometry if and only if the obstruction of that
structure vanishes in H1pM,Шq. If the obstruction vanishes, then the space of all
holomorphic pX,Gq-geometries with B as underlying first order structure, modulo
any isomorphism which is the identity on M , is a complex affine space modelled on
the complex vector space H0pM,Шq.

For example, if M is a Stein manifold then any holomorphic G0-structure on
M is induced by a holomorphic G{P -geometry, since the cohomology groups in
dimension 1 or higher of any coherent sheaf on any Stein manifold all vanish.

If G{P has no projective factors, then the obstruction of any holomorphic G0-
structure vanishes, because the uniqueness of the normal holomorphic pX,Gq-
geometry gives a canonical global choice of a normal pX,Gq-geometry, and the
obstruction 1-cocycle class in H1 is precisely the obstruction to such a choice.
Therefore for any rational homogeneous variety G{P , the obstruction of any holo-
morphic G0-structure is precisely identified with the sum of the obstructions of the
projective factors: if these vanish, we can then put a product normal holomorphic
G{P -geometry on the manifold.

5.1. The Schwarzian derivative and projective connections on foliations.
If Z “ fpzq is a local biholomorphism between open sets in the complex plane, the
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Schwarzian derivative is

spfq “

˜

Z3pzq

Z 1pzq
´

3
2

ˆ

Z2pzq

Z 1pzq

˙2
¸

dz2.

On the other hand, if Z “ fpzq is a local biholomorphism between open sets of Cp
for some p ě 2, then let J “ log detZ 1pzq and the Schwarzian derivative is

spfq “

˜

BijZ
`

BkZ`
´
δkj BiJ

p` 1 ´
δki BjJ

p` 1

¸

dzi b dzj b Bk.

Gunning [17] pp. 48–50 proves that Z “ fpzq is a projective linear transformation
just when spfq vanishes. More generally, if pZ,W q “ fpz, wq is a local biholomor-
phism between open sets of Cp ˆ Cq, and f takes the level sets of w to the level
sets of W , we use the same expression to define spfq but viewing Z as if it were
a function of z only. Then spfq “ 0 just when pZ,W q “ fpz, wq has Zpz, wq a
holomorphic projective transformation of z for each fixed w.

Suppose that F is a holomorphic nonsingular foliation of a complex manifold M .
A Frobenius coordinate chart on M is a coordinate chart pz, wq defined on a Stein
domain in M so that each leaf of F intersects the coordinate chart in a union of
level sets of w. If pz, wq and pZ,W q are any two Frobenius coordinate charts, on
the overlap where both are defined we can compute spfq where pZ,W q “ fpz, wq.
Pick Frobenius coordinate charts pzα, wαq on open sets Uα covering M , so that any
finite intersection of these open sets is a Stein domain. Write the overlaps of charts
as pzβ , wβq “ fαβ pzβ , wβq and let sαβF “ s pfαβq. By Gunning’s result, there is a
flat holomorphic projective connection on M just when there are Frobenius charts
pzα, wαq whose domains cover M so that sαβ “ 0.

We can ask for much less than a flat holomorphic projective connection. Let
TF be the tangent bundle of F , i.e. the bundle of tangent vectors tangent to the
leaves of F . If we take any tensor products of TF and T˚F , we write b0 to mean
the subbundle of all tensors that are traceless in all possible ways, corresponding
to an irreducible representation of the general linear group. If the leaves of F are
1-dimensional, then sF determines a 1-cocycle sF P H1pM,´2TF q. On the other
hand, if the leaves of F have dimension p ě 2, then sF determines a 1-cocycle
sF P H

1`M,TF b0 Sym2
pT˚F q

˘

. The vanishing of sF as a 1-cocycle is of course
a weaker condition than requiring that sF vanish on each overlap of coordinate
charts, as it only requires that sF equal the differences on overlaps of a local section
on each chart. We can also consider sF as a 1-cocycle in larger sheaves than
TF b0 Sym2

pTF q
˚. Molzon and Mortensen [37] p. 3024 construct a holomorphic

projective connection explicitly in coordinates out of any local choice of 0-cochain
in TF b Sym2

pTF q
˚ with sF as coboundary, but now viewing sF as a 1-cocycle

in TF b Sym2
pTF q

˚ rather than in TF b0 Sym2
pTF q

˚. (The same computations
work for foliations as for manifolds, so we can make the obvious reinterpretations of
the work of Molzon and Mortensen.) They also prove that the family of holomorphic
projective connections on a given complex manifold is parameterized by the 0-
cycles in that sheaf. However, on p. 3019 they show explicitly in coordinates
how to alter a 0-cochain in TF b Sym2

pTF q
˚ with coboundary sF to obtain a

0-cochain in TF b0 Sym2
pTF q

˚ with the coboundary sF . Their construction of
a holomorphic projective connection then yields a holomorphic normal projective
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connection. Therefore under the splitting

TF b Sym2
pTF q

˚
“ T˚F `

`

TF b0 Sym2
pTF q

˚
˘

,

the 1-cocycle sF viewed as valued in the left hand side splits into two pieces, but
the first vanishes, so sF is valued in TF b0 Sym2

pTF q
˚. Warning: Molzon and

Mortensen use the term normal differently than the definition that we have used,
since they don’t require that their 0-cochain be traceless. We use the same definition
as [7, 9] which is the standard definition today. One sees easily from the explicit
expression of Molzon and Mortensen that the obstruction s “

`

sαβ
˘

between the
Cartan connections on overlaps defined earlier is exactly the Schwarzian derivative
cocycle written explicitly above together with a complicated expression in the first
derivative of the Schwarzian derivative.

Lemma 13. The Schwarzian derivative 1-cocycle sF of a holomorphic foliation
F on a complex manifold M vanishes just when the obstruction 1-cocycle SpTF q
obstructing a holomorphic projective connection vanishes. A holomorphic foliation
F on a complex manifold M admits a holomorphic projective connection just when
it admits a normal holomorphic projective connection, and the space of normal
holomorphic projective connections is then a complex affine space modelled on
H0`M,TF b0 Sym2

pTF q
˚
˘

.

Proof. If this Schwarzian derivative 1-cocycle sF vanishes, then there is a holo-
morphic projective connection constructed by Molzon and Mortensen, and so the
obstruction 1-cocycle vanishes. On the other hand, by the work of Molzon and
Mortensen described above, the Schwarzian derivative 1-cocycle sF “ spTF q is a
quotient of the obstruction 1-cocycle, so if the obstruction 1-cocycle vanishes then
the Schwarzian derivative 1-cocycle vanishes as well. Consequently, a holomorphic
normal projective connection appears precisely when a holomorphic projective con-
nection appears. Once we have one such, say ω on E Ñ M , then any other, say
ω1 on E1 ÑM , will have its bundle identified, E1 – E, by adding the requirement
that ω1 “ ω ` Sσ with trS “ 0 as in theorem 3 on page 15. But to have ω1 also
normal requires precisely the vanishing of the antisymmetric and trace parts of S:
see Kobayashi and Nagano [27] p. 227. �

It is not known how to relate the classical Schwarzian derivative 1-cocycle to the
obstruction 1-cocycle of a vector bundle if the vector bundle is not bracket closed.

5.2. The Atiyah class and projective connections on foliations. If E ÑM
is any holomorphic principal bundle, and V Ă TM is any holomorphic subbundle, the
Atiyah class apM,V,Eq P H1pM,V ˚ b adpEqq is the obstruction to the construction
of a partial holomorphic connection on E over V , given explicitly as the cocycle
consisting of differences between choices of local holomorphic partial connection.
The Atiyah class apM,V,W q of a vector bundle W is defined to be the Atiyah class
of the associated principal bundle. In particular, if V “ TF is the tangent bundle
of a holomorphic foliation, then the Atiyah class of apM,TF, TF q is represented by
the cochain BjkZ

`

BiZ` and the Atiyah class of a pM,TF,detT˚F q is represented by

B log det BZ
Bz

Bzi
.
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Therefore if F has rank p then

sF “ apM,TF, TF q ´
I

p` 1 b a pM,TF,detTF˚q ´ a pM,TF,detTF˚q b I

p` 1 ,

represents the Schwarzian derivative in more familiar terms for algebraic geometers.
There is no known analoguous interpretation of the Schwarzian derivative of a rank
1 foliation, or of a holomorphic subbundle of TM which is not bracket closed.

5.3. Vanishing of all other obstructions.

Proposition 2. Suppose thatM is a complex manifold, and X “ G{P a cominiscule
variety. Split up X “

ś

iXi into irreducibles, with G “
ś

iGi and P “
ś

i Pi.
Then M has a holomorphic pX,Gq-geometry if and only if M has

(1) a holomorphic vector bundle V Ă TM and
(2) a splitting V “

À

i Vi so that the rank of Vi is the dimension of Xi and
(3) for each Xi which is not a projective factor, holomorphic tensors on Vi point-

wise complex-linearly isomorphic to the fundamental tensor and barnacle
tensor of Xi and

(4) for each projective factor Xi, the obstruction 1-cocycle of Vi vanishes; if
it should happen that Vi is bracket-closed then this occurs just when the
classical Schwarzian derivative cocycle of Vi vanishes.

In particular, if all of the Vi associated to projective factors Xi are bracket closed,
then there is a holomorphic pX,Gq-geometry inducing the underlying holomorphic
G0-structure just when there is a normal holomorphic pX,Gq-geometry inducing the
underlying holomorphic G0-structure.

Proof. Once we have the bundle V and the splitting, the splitting X “
ś

iXi splits
the obstruction 1-cocycle into a sum S “

ř

i Si, Si P H1pM,Шiq. If each of these
Si vanish, then there is a pXi, Giq-geometry on Vi, and if this holds for every Si,
then the product geometry is a pX,Gq-geometry on V . So without loss of generality,
X is irreducible, and then the existence of an inducing pX,Gq-geometry holds as
explained above.

If Xi is not a projective factor, then we have already ensured that the pXi, Giq-
geometry is normal by using lemma 11 on page 17 to construct the geometry. For
each projective factor Xi, if Vi is bracket-closed, then the existence of a holomorphic
projective connection (which we have hypothesized) is equivalent to the vanishing
of the obstruction 1-cocycle Si by lemma 12, which is equivalent to the vanishing of
the classical Schwarzian derivative by lemma 13 on page 20, which is the obstruction
to the existence of a normal holomorphic projective connection (as explained by
Molzon and Mortensen [37]). �

6. Splitting of the tangent bundle

In this section, we address whether, if a homogeneous model splits into a product,
there is some associated splitting of every geometry with that model. If the model
pX,Gq of a Cartan geometry splits

X “ X1 ˆX2,

G “ G1 ˆG2,
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with pX1, G1q and pX2, G2q homogeneous spaces, then every pX,Gq-geometry on
any manifold M splits the tangent bundle of M , but this infinitesimal splitting does
not necessarily arise from a local or global splitting of M into a product.

In this section only we will allow parabolic geometries whose model is not
necessarily effective. If P Ă Q Ă G are parabolic subgroups of a complex semisimple
Lie group G, and E ÑM is a holomorphic G{Q-geometry, then let M̂ “ E{P and
then E Ñ M̂ is a holomorphic G{P -geometry, called the lift of E ÑM . Conversely,
we say that a holomorphic G{P -geometry drops to a holomorphic G{Q-geometry if
it is isomorphic to the lift of a G{Q-geometry.
Theorem 4. Suppose that pX,Gq is a complex homogeneous space, G acting effec-
tively, holomorphically and transitively. Suppose that G preserves a splitting of the
tangent bundle of X. Then clearly any holomorphic pX,Gq-geometry on any complex
manifold M induces a corresponding splitting of the tangent bundle of M . If M is
a smooth complex projective variety, then the splitting arises from a local product
structure on M or else the geometry drops to a lower dimensional holomorphic
Cartan geometry with model pY,Gq, where X Ñ Y is a G-equivariant holomorphic
fiber bundle.
Proof. The Cartan geometry on M drops to a lower dimensional Cartan geometry
just when M contains a rational curve [4] p. 2 theorem 2. If a holomorphic splitting
on a smooth projective variety M has a summand which is not bracket closed, then
M is uniruled, i.e. covered by rational curves in an algebraic family [19] p. 466
theorem 1.3, and therefore the geometry drops and the relevant summand in the
splitting maps to a new summand in the new splitting. If the new summand is
bracket closed, then so is the original one, and vice versa, since the two geometries
have the same curvature tensor. Therefore the geometry continues to drop until
we have eliminated the relevant factor, i.e. it becomes a pG{G,G{Gq-geometry,
ensuring that its curvature vanishes, which forces bracket closure in the original
geometry. �

Theorem 5. Suppose that pX,Gq is a rational homogeneous variety which splits
into X “

ś

iXi, G “
ś

iGi into rational homogeneous varieties pXi, Giq. Then
clearly any holomorphic pX,Gq-geometry on any complex manifold M induces a
corresponding splitting of the tangent bundle of M . If M is a smooth complex
projective variety then M is locally a product of complex manifolds with these
subbundles as tangent bundles.
Proof. By theorem 4 the geometry drops. The dropped geometry is still a holomor-
phic parabolic geometry, so we can repeat until all of the subbundles in the resulting
splitting are bracket closed, say for a pY,Gq-geometry where Y “

ś

i Yi, splitting
into just as many varieties, except that perhaps some of these Yi are not rational
homogeneous varieties anymore; this happens precisely when Yi “ Gi. The original
pX,Gq-geometry and the resulting pY,Gq-geometry have the same total space and
Cartan connection. For each factor Yi “ Gi, the curvature vanishes and the pX,Gq-
geometry is a product of a model geometry pYi, Giq and a geometry modelled on the
remaining factors. A product geometry has bracket-closed subbundles corresponding
to the factors in the product. So we can assume that Yi ‰ Gi and that pYi, Giq
is a rational homogeneous variety. But then the summands in the splitting of the
tangent bundle of the original pX,Gq-geometry are each bracket closed clearly just
when the same is true for the pY,Gq-geometry, since they project to those. �
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Theorem 6. Suppose that M is a smooth complex projective variety and M has
split tangent bundle TM “

À

Vi. For factor Vi of rank 1, there is a holomorphic
projective connection on Vi. In other words the obstruction 1-cocycle of Vi vanishes.

Proof. Without loss of generality we can assume TM “ V1‘V2 and that V1 has rank
1. If V2 is bracket closed, then Brunella, Vitório Pereira and Touzet ([6] theorem 1.1
p. 241) tell us that the universal covering space π : M̃ ÑM splits as M̃ “ C ˆN
where C is a connected and simply connected Riemann surface, with π˚V1 “ TC
and π˚V2 “ TN . We can assume that C is the unit disk in the complex plane, the
complex plane, or the projective line. In any case, the automorphisms of M̃ each
preserve the standard holomorphic projective connection, so induce a projective
connection on V1.

On the other hand, if V2 is not bracket closed, then the same theorem of Brunella,
Vitório Pereira and Touzet shows that V1 is tangent the to fibers of a holomorphic
P1-fiber bundle, for which the existence of a holomorphic projective connection on
V1 is clear. �

7. Holonomy groups

We recall the de Rham holonomy splitting theorem in the case of Kähler manifolds.

Lemma 14. Suppose that M is a connected complete simply connected Kähler
manifold. Write M “M1 ˆM2 ˆ ¨ ¨ ¨ ˆMs as a product of Kähler manifolds, s ě 1,
which are themselves not products of lower dimensional Kähler manifolds. Pick
a point m “ pm1,m2, . . . ,msq P M . Let T “ TmM and Ti “ Tmi

Mi. Then each
Mi has some holonomy group Hi at mi, and the holonomy group of M at m is
H “ H1 ˆH2 ˆ ¨ ¨ ¨ ˆHs, with Hi acting trivially on Tj for j ‰ i. Each group Hi

preserves a complex structure and a Hermitian metric on Ti, so complexifies to a
subgroup HC

i of the complex linear group on Ti. Either
(1) Hi is the holonomy group of a unique irreducible compact Hermitian sym-

metric space or,
(2) HC

i is of infinite type;
and both possibilities occur precisely for Hi “ Upnq.

Proof. By Berger’s classification of the holonomy groups of Riemannian manifolds
[21] p. 53 theorem 3.4.1 the holonomy groups Hi of complete simply connected
Kähler manifolds which are not products and not locally symmetric must be among

Upnq ,SUpnq ,Sppnq ,SppnqUp1q .
Their complexifications are of infinite type. Again by Berger’s classification, only
Upnq occurs as the holonomy of a compact Hermitian symmetric space, and then
only for Pn. The rest of the result is the de Rham splitting theorem [21] p. 47
theorem 3.2.7. �

8. Cominiscule geometries on Kähler–Einstein manifolds

In this section, we use well known results about Kähler–Einstein metrics to
prove that, on any compact complex manifold M with c1 ă 0, the local splitting
from any cominiscule geometry splits the universal covering space into a product of
Kähler–Einstein metrics.

If M is a compact complex manifold with c1pMq ă 0 then M admits a Kähler–
Einstein metric g, which is unique up to constant rescaling [1, 42, 43]. Suppose that
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M is a compact complex manifold admitting a Kähler–Einstein metric. Let T “ TM
be the holomorphic tangent bundle. Every holomorphic section s of pT˚ b T qb is
parallel [41] p. 142, [25] p. 7.

Corollary 2. If M is a compact complex manifold with a Kähler–Einstein metric
and a cominiscule geometry E ÑM , then the fundamental tensor, splitting tensors
and barnacle tensor of E ÑM are parallel for the Kähler–Einstein metric.

As noticed by Catanese and Di Scala [11], if a holomorphic tensor in pT˚ b T qb is
isomorphic to a fundamental tensor at just one point of a compact complex manifold
M with c1pMq ă 0, then, since it is parallel, it is isomorphic at every point. In
particular, it determines an underlying holomorphic first order structure, so locally
arises from a holomorphic cominiscule geometry.

Proposition 3. Suppose that M is a connected compact Kähler manifold with
c1 ă 0 and split tangent bundle TM “ T1 ‘ T2 and suppose that T1 has rank n1 ě 2
and let

η “ 2 pn1 ` 1q c2pT1q c1pT1q
n1´2

´ n1 c1pT1q
n1 .

Then η “ 0 just when all of the following occur:

(1) the universal covering space M̃ of M splits into a product M̃ “M1 ˆM2
of complex manifolds and

(2) the Ti pull back to the TMi, and
(3) every Kähler–Einstein metric on M pulls back to a a product metric on

M1 ˆM2 and a constant holomorphic sectional curvature metric on M1.

Proof. Because c1pMq ă 0 and M is Kähler, M admits a Kähler–Einstein metric,
unique up to constant rescaling [1, 42, 43]. The holomorphic projections T Ñ Ti Ă T
are parallel in the Kähler–Einstein metric and so the subbundles Ti Ă TM are
parallel. By the de Rham splitting theorem [13], the universal covering space of M
splits into a direct product M̃ “M1 ˆM2, with the metric a local direct product
metric, and Ti pulls back to TMi for each i., Consequently, the subbundles Ti are
both bracket closed. The holonomy group of the Kähler–Einstein metric reduces to
a product H “ H1ˆH2, with Hi the holonomy group of Mi. The complex structure
is also a holomorphic tensor and so each Hi preserves the complex structure on Ti.

Because the splitting is locally a product, the curvature of the Kähler–Einstein
metric vanishes on orthonormal pairs of vectors v1, v2 with vi P Ti. On some open
set we pick a local unitary coframing, say ωi for T1 and a local unitary coframing
ωI for T2, and take the Chern connection ωµν̄ . The induced metrics on M1 and M2
are Kähler–Einstein, since the Ricci curvature of the restriction of the metric on M̃
is the restriction of the Ricci curvature.

We will see that η “ 0 just when the sectional curvature of the induced metric
on T1 is constant, as in [12, 28, 26]. The Ricci tensor has components Rī “
Rīkk̄, RIJ̄ “ RIJ̄KK̄ and all other components vanish. The scalar curvature of M
is s “ Riı̄ ` RIĪ , while that of M1 is s1 “ Riı̄. Of course, being Kähler–Einstein,
Rī “ λ δī, RIJ̄ “ λ δIJ̄ . The scalar curvature is then s “ pn1 ` n2qλ, while
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s1 “ n1λ. We write out the Chern forms of the subbundle T1:

c1pT1q “

?
´1

2π ∇ωiı̄.

“

?
´1

2π Rīωı̄ ^ ωj

c2pT1q “ ´
1

8π2 p∇ωiı̄∇ωj̄ ´∇ωī∇ωjı̄q

The Kähler form restricted to T1 is

Ω1 “

?
´1

2π ωı̄ ^ ωi.

Without even using the Kähler–Einstein condition,

∇ωiı̄ ^∇ωj̄ ^ Ωn1´2
1 “ pRiı̄kl̄ωk̄ ^ ωlq ^ pRj̄pq̄ωp̄ ^ ωqq ^ Ωn1´2

1

“
`

s2
1 ´RīRjı̄

˘

Ωn1
1 .

Plugging in the expressions for ∇ω in terms of R, we find

c1pT1q
2
^ Ωn1´2

1 “
1

4π2n1 pn1 ´ 1q
`

s2
1 ´RīRjı̄

˘

Ωn1
1 .

c2pT1q ^ Ωn1´2
1 “

1
8π2 n1 pn1 ´ 1q

`

Rīkl̄Rjı̄lk̄ ` s
2
1 ´ 2RīRjı̄

˘

Ωn1
1 .

The holomorphic sectional curvature on M1 is constant just when

Rīkl̄ “
s1

n1 pn1 ` 1q
`

δīδkl̄ ` δil̄δkj̄
˘

.

This motivates the definition of a tensor

Tīkl̄ “ Rīkl̄ ´
s1

n1 pn1 ` 1q
`

δīδkl̄ ` δil̄δkj̄
˘

.

Computation gives

Tīkl̄Tjı̄lk̄ “ Rīkl̄Rjı̄lk̄ ´
2 s2

1
n1 pn1 ` 1q .

In particular, the metric on M1 has constant holomorphic sectional curvature just
when

Rīkl̄Rjı̄lk̄ “
2 s2

1
n1 pn1 ` 1q .

If we assume next the Kähler–Einstein condition, that Rī “ λ δī, then

c1pT1q “
s1

2πn1
Ω1,

and

RīRjı̄ “
s2

1
n1
.
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Plugging this in to our Chern class expressions,

c1pT1q
n1 “

ˆ

s1

2πn1

˙n1

Ωn1
1

“

ˆ

s1

2πn1

˙n1´2
c1pT1q

2
^ Ωn1´2

1

“

ˆ

s1

2πn1

˙n1´2 1
4π2 n1 pn1 ´ 1q

`

s2
1 ´RīRjı̄

˘

Ωn1
1 .

Similarly,

c2pT1qc1pT1q
n1´2

“
1

8π2 n1 pn1 ´ 1q

ˆ

s1

2πn1

˙n1´2 ˆ

Rīkl̄Rjı̄lk̄ `
n1 ´ 2
n1

s2
1

˙

Ωn1
1 .

Therefore

η “ 2 pn1 ` 1q c2pT1qc1pT1q
n1´2

´ n1 c1pT1q
n1

“
1

4π2 n1 pn1 ´ 1q

ˆ

s1

2πn1

˙n1´2 ˆ

pn` 1qRīkl̄Rjı̄lk̄ ´
2
n
s2

1

˙

Ωn1
1

“
1

4π2 n1 pn1 ´ 1q

ˆ

s1

2πn1

˙n1´2
`

pn` 1qTīkl̄Tjı̄lk̄
˘

Ωn1
1 .

So finally, we see that η is a nonnegative differential form. In particular,
ş

M
η^Ωn2

2 ě

0 and equality occurs just when η “ 0, which occurs just when T “ 0, which occurs
just when M1 has constant sectional curvature. �

Lemma 15 (McKay [34]). Suppose that G is a complex semisimple Lie group and
P Ă G is a parabolic subgroup. Suppose that W1,W2, . . . ,Wt are P -submodules and
M is a compact Kähler manifold bearing a holomorphic G{P -geometry E ÑM . Let
Vi “ E ˆP Wi, and also write Vi for the corresponding vector bundles GˆP Wi on
the model. Then every polynomial equation

0 “ p pc pV1q , c pV2q , . . . , c pVtqq

in Chern classes satisfied on the model G{P must be satisfied on M .

Corollary 3. Suppose that M is a compact Kähler manifold with c1 ă 0, bearing a
cominiscule geometry with model

G{P “ pG1{P1q ˆ pG2{P2q ˆ ¨ ¨ ¨ ˆ pGs{Psq .

This geometry splits the tangent bundle, say as

TM “ T 1 ‘ T 2 ‘ ¨ ¨ ¨ ‘ T s.

The universal covering space π : M̃ ÑM splits:

M̃ “ M̃1 ˆ M̃2 ˆ ¨ ¨ ¨ ˆ M̃s,

so that π˚Ti “ TM̃i. Every Kähler–Einstein metric on M lifts to a product metric
on M̃ , a product of Kähler–Einstein metrics on each of these M̃i. If Gi{Pi is a
projective factor of complex dimension 2 or more, then M̃i is complex hyperbolic
space.
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Proof. The holonomy group preserves the splitting by corollary 2 on page 24, so
the de Rham splitting theorem ensures that the universal covering space splits as
indicated. We could also derive the local splitting from theorem 4 on page 22,
because c1pMq ă 0 so M is a smooth projective variety. The Chern class inequality
in proposition 3 on page 24 follows from lemma 15 on page 26. Therefore M̃i has a
constant negative holomorphic sectional curvature metric, which we can assume has
the same sectional curvature as complex hyperbolic space, so M̃i must be isomorphic
to complex hyperbolic space. �

9. The Klingler–Mok vanishing theorem

In this section, we quote a theorem of Klingler and Mok, translating the notation
and terminology as needed, which ensures rigidity of the flat cominiscule geometry
associated to a locally Hermitian symmetric variety.

Suppose that G{P is a cominiscule variety. Decompose g into simple Lie algebras
g “ g1 ‘ g2 ‘ ¨ ¨ ¨ ‘ gN . For each simple factor gi Ă g let γi be the lowest weight
whose weight space belongs to gi{pi “ gi´. This weight γi is of course a root, since
g´ is a sum of root spaces of g. Note that γi is not the negative noncompact simple
root in general. Let γ be the weight γ “

ř

i γi (not a root unless g is simple). Call
γ the Klingler weight of G{P .

Theorem 7 (Klingler [23] p. 212). Suppose that G{P is a cominiscule variety
with Klingler weight γ. Suppose that λ is the lowest weight of a finite dimensional
irreducible G0-module V . Suppose that λ ‰ 0 and 〈γ, λ〉 ě 0. Suppose that M
is a compact complex manifold whose universal covering space is the noncompact
dual Hermitian symmetric space to G{P . Take the flat G{P -geometry E ÑM (as
defined in example 1 on page 5. Then 0 “ H0pM,E ˆP V q.

Klinger only states this result when G{P is an irreducible cominiscule variety;
however, his proof works verbatim for any cominiscule G{P . (His sign conventions
differ from ours, so his statement looks a little different.)

10. Holonomy and cominiscule geometries

In this section, we put all of our previous results together to finish the classification
of cominiscule geometries on compact complex manifolds with c1 ă 0.

Theorem 8. Suppose that M is a connected compact complex manifold with c1 ă 0
bearing a cominiscule geometry. ThenM admits a normal cominiscule geometry, and
every normal cominiscule geometry is standard. All (either normal or abnormal)
cominiscule geometries on M have the same model and the same holomorphic
principal bundle E ÑM with the same holomorphic map E Ñ FM to the underlying
first order structure. If the geometry has Cartan connection ω, then each cominiscule
geometry has a Cartan connection of the form ω1 “ ω ` sω´ for some unique
s P H0pM,Шq. Thus the moduli space of cominiscule geometries on M is a finite
dimensional complex vector space, canonically identified with H0pM,Шq.

Proof. Suppose that the geometry has model X “ G{P . Split the model into
irreducibles as X “

ś

iXi, G “
ś

iGi, P “
ś

i Pi. The universal covering space
M̃ of M has split tangent bundle. The splitting is invariant parallel transport by
corollary 2 on page 24. By the de Rham splitting theorem [21] p. 47 theorem 3.2.7,
the universal covering M̃ of M then splits as a corresponding product M̃ “

ś

i M̃i.
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We can assume that the geometry is normal, by proposition 2 on page 21. Each
factor M̃i inherits a normal cominiscule geometry with irreducible model, invariant
under parallel transport.

If the factor Xi is not projective, the holonomy group is the holonomy group
of the G1i-invariant metric on the noncompact Hermitian symmetric space, X 1i and
M̃i “ X 1i. Moreover, the underlying first order structure is invariant under parallel
transport. The complexified holonomy group is precisely the stabilizer of that
first order structure, and also precisely the stabilizer of the standard first order
structure. The proof of lemma 3 on page 11 easily adapts to prove that the data of
the first order structure (the fundamental tensor, barnacle tensor and splitting) are
determined completely by the action of the group G0, so that any two first order
structures with the same stabilizer are identical, ensuring the uniqueness of the
first order structure on M̃i. Klingler [23] p. 211 propositions 4.9 and 4.10 gives an
alternative proof of the rigidity of the underlying first order structure.

If the factor pXi, Giq is a projective factor, say Xi “ Pn for n ě 2, then corollary 3
on page 26 and lemma 15 on page 26 together prove that M̃i is complex hyperbolic
space and the metric on M̃ is a product metric. We need to establish that the
projective connection on M̃i is the standard flat one. As shown in lemma 13 on
page 20, given any two normal holomorphic projective connections on M , one can
be written in terms of the other and a holomorphic section of T ib0 Sym2 `T i

˘˚, the
bundle of traceless symmetric vector-valued 2-tensors, after a suitable holomorphic
bundle isomorphism. (This is also noted with less detail by Klingler [23] p. 17). It
follows from theorem 7 on page 27 that there are no global nonzero sections of this
bundle; see Klingler [23] p. 17 for more details. Therefore the normal holomorphic
projective connection on M̃i is the usual flat one on complex hyperbolic space, and
this is the unique holomorphic normal projective connection on T i.

If Xi “ P1 then M̃i inherits a holomorphic projective connection given by a
holomorphic quadratic differential, say ηi.

The product of all of these geometries on these various factors is a normal
holomorphic cominiscule geometry with the same underlying first order structure as
the pullback geometry, and inducing the same projective connections on the various
vector subbundles. If there are two holomorphic normal pX,Gq-geometries on M
with the given underlying first order structure and inducing the same holomorphic
projective connections on each T i with rank 1, then they each induce the same
normal geometries on each of the T i, and so the Cartan connection restricts to
the same Cartan connection above each of these T i, on the same holomorphic
bundle (corollary 1 on page 18), forcing them to agree. Therefore the product
geometry is the unique normal holomorphic cominiscule geometry on M with the
given model and projective connections on the P1-factors, and the geometry on M
is flat. We still need to prove that it is standard, i.e. that we can replace M by a
finite covering space to split M into a product of compact Riemann surfaces with
holomorphic quadratic differentials and some locally Hermitian symmetric variety
with its standard cominiscule geometry. If dimM “ 1, then the theorem is clear, so
we can assume that G has rank at least 2.

We call Γ reducible if Γ has a finite index subgroup Γ1ˆΓ2 with each of Γ1 and Γ2
lying in different factors in the product G “

ś

iGi. Consequently, some finite cover
ofM splits into a corresponding productM “M 1ˆM2, and the product geometries
on the universal covering space of M then descend to products of geometries on
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each factor and our proof is finished by induction. So we can assume that Γ is
irreducible without loss of generality. The problem arises that there might exist
some projective line factor Xi “ P1 and some nonzero quadratic differential ηi on
the associated factor M̃i.

We follow Klingler [23] p. 205. Suppose that there is such a quadratic differential,
invariant under Γ. The set of Γ-invariant quadratic differentials is a complex
vector space. We have only to prove that it has dimension zero. The geometry on
M is flat, so there is a developing map δ : M̃ Ñ X to the model and a morphism
h : π1pMq Ñ G so that δ˝γ “ hpγqδ for all γ P π1pMq. By the Ehresmann–Thurston
deformation theorem [15], the complex analytic stack of flat pX,Gq-geometries on the
real manifoldM is locally isomorphic to the complex analytic stack of representations
of the fundamental group, by taking each geometry to its holonomy morphism h.
The local rigidity of the flat holomorphic projective connection therefore follows
if we can prove the local rigidity of the representation h. A theorem of Weil tells
us that the vanishing of H1pΓ, gq implies local rigidity of this representation [38]
p. 91 theorem 6.7. Weil’s rigidity theorem [38] p. 137 theorem 7.66 implies the
vanishing of H1pΓ, gq, and therefore the normal geometry on M is locally rigid.
The Γ-invariant quadratic differentials on the various 1-dimensional factors are the
deformations of the geometry on M among normal geometries. Since there are no
deformations, this vector space has dimension zero: the geometry is the unique
normal holomorphic projective connection on M .

There are no cominiscule geometries on M with different models, because the
model is the compact Hermitian symmetric space which is the compact form of the
universal covering space of M , with the identity component of its biholomorphism
group acting on it. The identification of the moduli space follows by lemma 11 on
page 17. �

11. Conclusion

Our results above generalize those of [3, 23, 28, 29, 30, 31]. The dimension of the
moduli space of holomorphic cominiscule (not necessarily normal) geometries on
a general Kähler–Einstein manifold is still unknown, although we have identified
it with the space of holomorphic sections of Ш. It seems unlikely that a compact
complex manifold with c1 ă 0 can admit a noncominiscule holomorphic parabolic
geometry. Smooth projective curves, surfaces and 3-folds admitting holomorphic
projective connections on are classified by Klingler [22] and Jahnke and Radloff
[20]; besides the model, the translation invariant examples on tori, and the locally
complex hyperbolic spaces (as above), there are also certain torus bundles over
curves. It should be feasible to classify holomorphic projective connections on torus
bundles over Kähler–Einstein manifolds in any dimension.
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