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Abstract 

Wildlife populations and their habitats are exposed to an expanding diversity and intensity of 

stressors caused by human activities, within the broader context of natural processes and 

increasing pressure from climate change. Estimating how these multiple stressors affect 

individuals, populations, and ecosystems is thus of growing importance. However, their 

combined effects often cannot be predicted reliably from the individual effects of each stressor, 

and we lack the mechanistic understanding and analytical tools to predict their joint outcomes. 

We review the science of multiple stressors and present a conceptual framework that captures 

and reconciles the variety of existing approaches for assessing combined effects. Specifically, we 

show that all approaches lie along a spectrum, reflecting increasing assumptions about the 

mechanisms that regulate the action of single stressors and their combined effects. An emphasis 

on mechanisms improves analytical precision and predictive power but could introduce bias if 

the underlying assumptions are incorrect. A purely empirical approach has less risk of bias but 

requires adequate data on the effects of the full range of anticipated combinations of stressor 

types and magnitudes. We illustrate how this spectrum can be formalised into specific analytical 

methods, using an example of North Atlantic right whales feeding on limited prey resources 

while simultaneously being affected by entanglement in fishing gear. In practice, case-specific 

management needs and data availability will guide the exploration of the stressor combinations 

of interest and the selection of a suitable trade-off between precision and bias. We argue that the 

primary goal for adaptive management should be to identify the most practical and effective 

ways to remove or reduce specific combinations of stressors, bringing the risk of adverse impacts 

on populations and ecosystems below acceptable thresholds. 
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Keywords: adaptive management, climate change, combined effects, mechanistic modelling, 

multiple stressors, population consequences.   
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1. Introduction: the science of multiple stressors and the problems of inconsistent concepts 

and terminology 

Most terrestrial and aquatic populations in the Anthropocene are exposed to a myriad of 

physical, chemical, or biotic factors that can move them out of their normal operating range 

(hereafter, ‘stressors’; see Glossary in Appendix A) (Geldmann et al., 2014; Halpern et al., 2015; 

National Academies, 2017; Ormerod et al., 2010). Expanding human activities are increasing the 

variety and intensity of stressors, whose effects are also exacerbated by accelerating climate 

change (Brown et al., 2013; Gissi et al., 2021; He and Silliman, 2019; Li et al., 2018). Assessing, 

predicting, and managing the combined effects of multiple natural and anthropogenic stressors is 

therefore a primary management and conservation goal, as reflected in many regulatory 

frameworks. Because stressors are heterogeneous and can affect individuals, populations, 

communities, and their habitats, estimating their combined effects is salient in many disciplines, 

from pharmacology and epidemiology (Groten et al., 2001; Taylor et al., 2016), to toxicology 

(Altenburger et al., 2013; Hernandez et al., 2019), environmental science, conservation biology, 

and ecology (Breitburg et al., 1998; Côté et al., 2016; Folt et al., 1999; Orr et al., 2020; Rudd and 

Fleishman, 2014; Simmons et al., 2021; Vinebrooke et al., 2004). 

Across disciplines, a common challenge is that combined effects cannot be predicted reliably 

from the individual effect of each stressor, because the way each stressor operates in isolation 

may change or be modified in the presence of other stressors (Folt et al., 1999; Orr et al., 2020; 

Piggott et al., 2015). The terms ‘additivity’ and ‘interaction’ (either ‘synergistic’ or 

‘antagonistic’, depending on whether the additional stressors mitigate or aggravate effects) are 

frequently used to describe how stressors operate in combination, albeit with contrasting and 

often controversial interpretations. In a recent review, Orr et al. (2020) discussed the lack of 
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communication across disciplines, highlighting that the same term may have dissimilar meanings 

and different terms may be used for the same meaning by different communities. Even within 

disciplines, terminology has been used inconsistently (e.g., Hertzberg and MacDonell, 2002; Orr 

et al., 2020; Webster, 2018). This has distracted research on the topic from its applied goals and 

complicated development of a unified, cross-disciplinary approach to multiple stressors (Orr et 

al., 2020).   

Many existing methods draw on concepts from pharmacology and toxicology and use data-

driven analyses to assess whether two stressors interact. The classic approach involves factorial 

studies, where the effect of a dose of each stressor is evaluated in isolation, and compared to the 

effect of a mixture of both stressors (Schäfer and Piggott, 2018). Here, we define ‘dose’ as the 

magnitude or amount of a stressor that is directly experienced, ingested, inhaled, or absorbed by 

an animal. The implicit null model, known as response addition in toxicology, assumes the 

combined effect is equal to the sum of the separate effects. This equivalence is tested via linear 

models (e.g., analysis of variance, or ANOVA) and, whenever it is not met, studies conclude that 

there has been an interaction.  

There are alternative null models for predicting the combined effect of two stressors assuming 

they do not interact (Schäfer and Piggott, 2018). For example, a dose addition null model can be 

used when two stressors share the same molecular mechanism. In this case, stressor doses are 

corrected based on their relative potency (e.g., their toxicity) and summed into a joint dose to 

determine the combined effect (Bliss, 1939; Loewe and Muischnek, 1926) via a dose-response 

function (Fig. 1). 
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Figure 1. Combined effect of two stressors A and B, which share the same molecular mechanism 

and dose-response function (solid black line), obtained by adding the dose of stressor A to that of 

stressor B (dose addition). The dashed and dotted green lines represent the effect of A and B 

alone, respectively. The combined effect of A+B (solid green line) is much higher than the 

prediction if their effects are assumed to be additive (orange line). More details are given in 

Appendix B. 

 

Non-linear dose-response functions complicate the analysis of factorial experiments. Consider an 

experiment that tests the effect of adding a fixed dose of stressor B to a population of subjects 

exposed to stressor A. Each subject is characterised by a given sensitivity to stressor A, defined 

as the minimum stressor intensity leading to an effect (Schäfer and Piggott, 2018). If there is a 

uniform distribution of sensitivity (Fig. 2A1), the dose-response function for the population is 
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linear (Fig. 2A2), and the additional effect of stressor B is constant across all doses of stressor A 

(Fig. 2A3). However, the distribution of subjects’ sensitivity could be unimodal (Fig. 2B1) 

(Schäfer and Piggott, 2018), leading to a sigmoidal dose-response function (Fig. 2B2). In this 

case, the additional effect of the second stressor is not constant even when the two stressors are 

additive (Fig. 2B3). In other words, the same function can lead to opposite conclusions on the 

occurrence and direction of an interaction depending on the selected range of stressor doses.   

 

 

Figure 2. Illustration of the problems with classic factorial experiments. A1) Uniform 

distribution of sensitivity to stressor A, i.e., the minimum stressor intensity leading to an effect. 

This results in a linear dose-response function (solid black line; A2); A2 also reports the 
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combined effect of stressor A with a fixed dose of stressor B, when A and B are additive (dashed 

line) or interacting (blue and orange lines). A3) The additional effect of the fixed dose of stressor 

B is constant across the doses of stressor A when the two stressors are additive (dashed black 

line) and increases or decreases when the two are interacting (blue and orange lines). B1) 

Unimodal distribution of sensitivity to stressor A: a minority of individuals are sensitive to high 

or low doses of the stressor, while the majority are sensitive to intermediate values. This results 

in a sigmoidal dose-response function for stressor A (solid black line; B2); B2 also reports the 

combined effect of stressor A with a fixed dose of stressor B, when A and B are additive (dashed 

line) or interacting (blue and orange lines). B3) Because the dose-response function is not 

linear, the additional effect of the fixed dose of stressor B is not constant even when A and B are 

additive (dashed black line). Therefore, adding a second stressor may cause a combined effect 

that is either larger or smaller than the sum of the effects of the stressors acting in isolation. The 

solid black line indicates the effect of the fixed dose of stressor B on its own. More details are 

given in Appendix C. 

 

As a result, classic factorial experiments seldom conclude that combined effects are additive 

(Schäfer and Piggott, 2018). This fallacious interpretation of interactions is still common, even 

though it has been repeatedly rejected in many fields (e.g., Hertzberg and MacDonell, 2002; 

Howard and Webster, 2009; National Academies, 2017; Schäfer and Piggott, 2018; Tekin et al., 

2020; Webster, 2018). Similarly, sudden changes in response with small changes in stressor 

doses, often referred to as tipping points (Hillebrand et al., 2020) and attributed to complex 

stressor interactions, may simply emerge from the transition from low to steep slope in non-

linear dose-response functions (Kreyling et al., 2018). Factorial studies testing only one 
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combination of stressor doses are also less useful from a management perspective, because they 

only support predictions of the effects of other doses if a linear relationship is assumed (Orr et 

al., 2020).  

Besides discussion of available null models to test (Schäfer and Piggott, 2018), alternative 

definitions of ‘interaction’ have also been put forward. For example, Gennings et al. (2005) 

defined interactions as occurring when the presence of one stressor changes the shape of the 

dose-response function of the other stressor. They used a link function to linearise the dose-

response in a generalised linear modelling framework and referred to the ‘shape’ as the slope in 

the linear predictor. Here, we extend their definition and postulate that an interaction occurs 

whenever the second stressor modifies the coefficient(s) linking the first stressor and the 

response. In other words, two stressors are additive when the dose-response function describing 

their combined effect can be separated into two functions without shared terms (Appendix D). 

While conceptually valid, this definition is challenging to use in real-world ecological scenarios. 

Estimating the dose-response function for a stressor in the presence and absence of a second 

stressor is seldom feasible (Hertzberg and MacDonell, 2002; National Academies, 2017). 

Moreover, a change in the shape of such a function does not, on its own, illuminate any of the 

mechanisms that underpin the way stressors combine.  

Data-driven analyses that focus on detecting and categorizing interactions are thus of limited use 

for understanding combined effects because their outcome depends on how the absence of 

interaction is defined, which varies across research fields (Hertzberg and MacDonell, 2002). 

Additional confounding factors include the context-dependent nature of many effects, the 

sequence of exposure, the temporal scale and interval between exposures, and the organisational 

level (biochemical, physiological, individual, population, ecosystem) at which effects are 
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measured (Boyd and Brown, 2015; Clements et al., 2012; Gunderson et al., 2016; Jackson et al., 

2021; Orr et al., 2020). As a result, attempts to find common patterns in the prevalence and 

direction of stressor interactions in various systems have generated conflicting results (Ban et al., 

2014; Côté et al., 2016; Crain et al., 2008; Darling and Côté, 2008; Dieleman et al., 2012; 

Harvey et al., 2013; Holmstrup et al., 2010; Jackson et al., 2016; Lange et al., 2018; Piggott et 

al., 2015; Przeslawski et al., 2015; Tekin et al., 2020; Yue et al., 2017). The only broad 

conclusion is that situations where the effects of multiple stressors are simply additive are likely 

rare (National Academies, 2017; Orr et al., 2020). 

In summary, the debate over interactions has limited applied relevance (Côté et al., 2016; 

Hertzberg and MacDonell, 2002; Schäfer and Piggott, 2018). In contrast, there has been growing 

cross-disciplinary recognition that a detailed understanding of the mechanisms in which stressor 

effects combine, from chemical to ecological, provides greater predictive power (Ankley et al., 

2010; Hernandez et al., 2019; Hertzberg and MacDonell, 2002; Hooper et al., 2013; Schäfer and 

Piggott, 2018; Simmons et al., 2021). In pharmacology, pharmacokinetic models are increasingly 

used to capture the movements of compounds in the body (Cohen Hubal et al., 2019). In 

toxicology, combined effects are formulated in terms of adverse outcome pathways (AOPs), 

which describe the linkages across levels of biological organisation, mostly focusing on sub-

organismal levels (Ankley et al., 2010). In ecology, the cascade of effects that connect 

individuals to populations and ecosystems has been formulated into explicit transfer functions 

(National Academies, 2017; Pirotta et al., 2018; Wilson et al., 2020). These mechanistic 

approaches help address the more relevant questions: do combined effects result in an adverse 

impact for the unit of interest (e.g., an individual or population), and how can that risk be 

reduced?  
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The aim of this paper is therefore twofold. First, we present a conceptual framework that 

encompasses the diversity of approaches proposed to analyse the combined effects of multiple 

stressors, demonstrating that they lie on a spectrum of mechanistic assumptions that are built into 

the analysis. Second, we reaffirm the centrality of management needs in guiding the 

interpretation of combined effects. We argue for a pragmatic approach where case-specific 

priorities, predictive power and data availability drive the choice of analytical methods.  

 

2. Reconciling the diverse approaches for studying the combined effects of multiple 

stressors: the assumption spectrum 

Initially, we consider a management scenario where only two stressors are operating, and assume 

that a common response variable can be identified. As we show below, there is a spectrum of 

approaches for assessing their combined effects. This ‘assumption spectrum’ reflects increasing 

mechanistic assumptions about how the system works (Fig. 3), formalised into a functional 

model. The increasingly theoretical description of the underlying biological processes results in a 

progressive move away from a phenomenological, or data-driven, analysis of the relationship 

between stressors and effects. The distinction between mechanistic and phenomenological 

models has been discussed before, and all ecological models lie somewhere between these two 

extremes (e.g., White and Marshall (2019) and references therein). Here, we argue that 

organising the analysis of combined effects in this light provides a useful framework for 

selecting effective modelling techniques in different scenarios of data availability and 

management needs.  
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Figure 3. The assumption spectrum, encompassing approaches to conceptualise and analyse the 

combined effects of multiple stressors. Data-driven approaches require a lot of empirical 

information and have limited predictive power but make few assumptions and thus show low 

bias. Process-driven approaches have higher precision and predictive power but make stronger 

assumptions about mechanisms; incorrect assumptions may introduce bias.  

 

At one extreme of the assumption spectrum, where sufficient data are available from a range of 

stressor doses, combined effects can simply be described empirically. Under this data-driven 

approach, minimal assumptions are made about how the two stressors act, alone or in 

combination. For example, a minimum assumption could be that the effect of varying stressor 

levels is locally smooth. Such an approach is largely unbiased, because any pattern is directly 
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inferred from the data, but it may be highly imprecise, because extensive data are required to 

reduce variance around the described relationships. A fully empirical approach does not require a 

test for the occurrence of interactions, because combined effects are described (and can be 

predicted) across the observed range of stressor doses. However, it has limited predictive power 

beyond this range. Surfaces describing how varying responses as a function of stressor doses 

have been fitted to the effects of mixtures of chemical compounds in toxicology (Ren, 2003; 

Webster, 2018), and of combined environmental and anthropogenic stressors in epidemiology 

(e.g., Burkart et al., 2013). In ecology, they have been used to model the effects of precipitation 

and temperature on vegetation index (Larsen et al., 2011), the physiological consequences of 

combined environmental stressors (e.g., Porter et al., 1999) and the behavioural responses to 

disturbance sources as a function of contextual factors (e.g., Dunlop et al., 2017). At higher 

organisational levels, multivariate auto-regressive models have been fitted to time-series data 

(often from freshwater plankton communities) to assess the effects of multiple abiotic and biotic 

stressors on species density (Hampton et al., 2013). When the data are subject to large 

measurement errors, hierarchical modelling techniques (e.g., state-space models; Auger-Méthé et 

al., 2021) can be used to explicitly model uncertainty in the observation process. Another data-

driven example is the robust definition of interaction based on Gennings et al. (2005), which 

requires extensive data to characterise dose-response functions.  

Moving along the spectrum, the problem can be progressively constrained by making 

increasingly stringent mechanistic assumptions. In doing so, precision should be increased, 

because the assumed functional forms reduce the influence of empirical noise on the estimation, 

and predictive power beyond the observed range of doses is enhanced. However, these 

advantages come at the risk of introducing biases if the assumptions are incorrect. Information 
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about the mechanisms through which stressors operate is available at all levels of stressor effects, 

from molecular to ecological. For example, a sigmoidal dose-response function (the ‘Hill 

equation’) is traditionally used to represent the effect of chemical stressors binding to a receptor 

(Goutelle et al., 2008) (Fig. 4A). Physiological dose-response functions can be used to represent 

the variation of biological rates in response to environmental stressors. For example, the 

dependence of biological rates on temperature can be described using thermal performance 

curves (Angilletta, 2009), e.g., the Sharpe-Schoolfield model (Schoolfield et al., 1981), which 

are typically unimodal (Fig. 4B). At the level of the individual, exposure to a stressor can elicit 

changes in behaviour. Behavioural dose-response functions have been estimated using a probit 

transformation of the probability of responding (Miller et al., 2014) (Fig. 4C). A further 

generalization of this approach could involve time-to-event hazard models, where the ‘hazard’ of 

responding is modelled as a function of exposure to stressor doses, either in discrete (Tutz and 

Schmid, 2016) or continuous time (Kleinbaum and Klein, 2014). A focus on mechanisms can 

also help investigate the functional forms for ecological dose-response functions. For example, 

prey limitation can act as a stressor affecting energy acquisition by a predator (where available 

prey density represents the dose). Holling (1965) and Real (1977) considered the mechanisms for 

foraging and developed a general equation encompassing different functional responses (Fig. 

4D). 
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Figure 4. Examples of dose-response functions informed by knowledge of the mechanisms. 

A) Sigmoidal dose-response function of a toxicant (the Hill equation), representing the effect of 

ligands binding to a receptor. B) Thermal performance curve described using the Sharpe-

Schoolfield model. C) Probability of individual animals changing their behaviour in response to 

increasing levels of a source of disturbance. D) Examples of type I, II and III functional 

responses, i.e., prey consumption rate as a function of prey density. 
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Mechanistic assumptions can similarly guide investigation of the combined effects of stressors. 

For chemical toxicants, deviations from the dose-addition model emerge if the presence of one 

chemical changes the bioavailability, uptake, metabolisation, or excretion of the other 

(Cedergreen, 2014). For example, Delfosse et al. (2015) showed how a pharmaceutical oestrogen 

and a persistent organochlorine pesticide can each enhance the binding affinity of the other to a 

shared receptor. The choice of alternative null models in factorial studies (e.g., independent 

action or dominance models) can also be guided by appropriate mechanistic assumptions 

(Schäfer and Piggott, 2018). In the behavioural response scenario described above, a second 

stressor could increase the average threshold at which individuals respond, while, for ecological 

functional responses, a second stressor could decrease prey encounter rate or increase handling 

time. Analysis of data from factorial experiments using linear models (see Introduction) is an 

example of a stringent mechanistic assumption that is likely to introduce bias.  

At the mechanistic end of the spectrum, a fully mechanistic approach uses extensive a priori 

assumptions about the underlying functional processes (Fig. 3). While most mechanistic models 

are not fitted directly to data, there has been progress in fitting complex, process-driven models, 

e.g., using approximate Bayesian computation or emulation (Hooten et al., 2020). Mechanistic 

approaches have high predictive power (and therefore wide management applicability), but also 

high structural uncertainty and concomitant risk of bias from selecting an inappropriate model 

(Barton et al., 2007; Regan et al., 2002). Chemical, biological and ecological knowledge can be 

used to describe the pathways linking stressor exposure to potential adverse outcomes at 

different organisational levels (Simmons et al., 2021). This idea has been formalised in the 

concept of biological upscaling in conservation physiology (Cooke et al., 2014) and AOPs in 

ecotoxicology (Ankley et al., 2010). For example, Hooper et al. (2013) used AOPs to predict that 
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toxicants may alter the ability of organisms to respond to climate change and, in turn, climate 

stressors may affect chemical toxicity. Highly mechanistic models have also been used for 

mixtures of drugs and toxicants. For example, physiologically based pharmacokinetic and 

toxicokinetic models describe the absorption, distribution, metabolism, and excretion of 

chemicals, mapping chemical movement among organs and tissues, and modelling their 

combined effects mechanistically (Cohen Hubal et al., 2019).  

When stressors operate along the bioenergetic response pathway (i.e., they interfere with the 

baseline flow of energy acquisition and allocation), a Dynamic Energy Budget (DEB) model can 

be used to capture energy fluxes mechanistically and specify the level at which stressors operate 

(Costa, 2012; Kooijman, 2009; Nisbet et al., 2012). Bioenergetic modelling could also integrate 

the energetic consequences of stressors traditionally considered to act along different response 

pathways. For example, Bennett et al. (2021) showed that persistent organic pollutants can 

interfere with energy balance regulation in marine mammals, Regnault and Lagardere (1983) 

found that noise exposure increases metabolism in shrimp, and Anestis et al. (2010) reported that 

changes in seawater temperature alter the metabolism of mussels and promote the outbreak of 

parasites that further impair energy balance. In ecology, mechanistic models of combined effects 

on individuals and populations (e.g., using bioenergetic principles) can be formulated as 

individual-based models (IBMs, also known as agent-based models), where individual agents 

characterised by internal state variables are simulated to interact with dynamic landscapes over 

time (Grimm and Railsback, 2013). Galic et al. (2018) provided an example involving a 

freshwater amphipod, Semeniuk et al. (2014) used an IBM to assess the effects of anthropogenic 

stressors on the habitat use and energetics of a terrestrial mammal, while McRae et al. (2008) 
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used this approach to predict the population consequences of heterogeneous stressors on two bird 

species under different land-use and climate change scenarios.  

In a recent paper, Simmons et al. (2021) argue that classifying stressors by their target and 

ecological scale can reconcile the disparate nature of their sources and provide a focus on their 

operating mechanisms of impact. They reviewed a series of mechanistic models that can be used 

to simulate combined effects, particularly at higher organisational levels. For example, 

interconnections between multiple stressors and the unit of interest can be visualised using threat 

webs (Geary et al., 2019), which can then be parameterised using network-based methods such 

as structural equation modelling (e.g., Villeneuve et al., 2018) and Bayesian belief networks 

(e.g., Molina-Navarro et al., 2020).  

National Academies (2017) proposed a general mechanistic framework to study the Population 

Consequences of Multiple Stressors (PCoMS) that captures and connects multiple scales, targets 

and organisational levels (up to population). The health of an individual is defined as its “ability 

to adapt and self-manage” (Huber et al., 2011), and is assumed to result from the integration of 

multiple currency variables (Cohen et al., 2017; Simmons et al., 2021), such as energy stores, 

stress hormones, immune function, oxidative damage and organ status (National Academies, 

2017; Pirotta et al., 2018). The PCoMS framework aims to estimate how stressors affect these 

health variables using empirical data, where available, and appropriate mechanistic models. For 

example, a bioenergetic model can be used to describe the energetic response pathway, through 

which an individual’s energy budget may be disrupted by stressors that affect its ability to feed. 

Sub-lethal, toxic effects on an organ or system can also cause irreparable damage or initiate 

disease processes, leading to higher risk of mortality (Hall et al., 2018). Moreover, reproduction 

might be directly impaired by an individual’s stress levels, contaminant burden or compromised 
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immune status (Aulsebrook et al., 2020; Hall et al., 2018; Rolland et al., 2017; Viney et al., 

2005), while stress levels and survival probability can vary if stressors alter predation risk 

(Madin et al., 2015). Different response pathways in the PCoMS framework can also affect each 

other. For example, there are metabolic costs of mounting an immune response (Lochmiller and 

Deerenberg, 2000), and the chronic elevation of stress hormones is known to downregulate 

immune responses (Råberg et al., 1998; Sheldon and Verhulst, 1996). Upscaling these 

mechanistic models to the level of communities and ecosystems involves a series of conceptual 

and methodological complications, discussed in Appendix E.   

Many analytical approaches described in this section involve a combination of empirical 

estimation and mechanistic assumptions, and the strength of comparable assumptions may vary 

among systems. This makes it difficult to place different approaches at specific positions along 

the assumption spectrum. However, this framework is useful to explicitly explore the strengths 

and limitations of each model component and, particularly, the trade-off between precision and 

bias (Fig. F.1; Appendix F).  

3. The assumption spectrum in practice: an ecological example  

We illustrate the assumption spectrum and explore its conceptual and methodological 

implications through an ecological example. We consider a system where a consumer acquires 

energy from a limiting resource, whose availability may be affected by natural fluctuations and 

climate change. We envisage that human activities also affect the consumer. It is likely that data 

across combinations of stressor doses for such a system will be limited, and we thus use it to 

demonstrate the progression from data-driven to process-driven analytical approaches. 
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For example, the recovery of the critically endangered North Atlantic right whale (Eubalaena 

glacialis) is impaired by prey limitation and accidental entanglement in fishing gear, among 

other stressors (Fortune et al., 2013; Moore et al., 2021; Rolland et al., 2016; van der Hoop et al., 

2017). Both can be thought of as continuous stressors, i.e., a range of prey densities is available 

in the species’ habitat, and entanglement in fishing gear can vary in severity and duration (which, 

for simplicity, we assume can be summarised into some measure of entanglement level). Severe 

entanglement can kill animals by physical injury (Cassoff et al., 2011; Sharp et al., 2019); non-

lethal entanglement can worsen the effects of prey limitation by interfering with prey capture and 

increasing drag forces while swimming (Pettis et al., 2017; van der Hoop et al., 2017). The 

combined effect of the two stressors that we analyse here is at the energetic level, where the prey 

acquired by an individual over some temporal window of interest (e.g., a day) is the shared 

response variable.  

First, we consider a hypothetical scenario where consumption rate can be observed under many 

combinations of prey density and entanglement level (Fig. F.2; Appendix F). In this situation, a 

data-driven, non-parametric surface could be used to describe their combined effect (Wood, 

2006) (Fig. 5B). We could include additional constraints to the surface, make it smoother, set 

consumption rate to zero when prey density is zero, and constrain the function to be monotonic 

(Pya and Wood, 2014). However, if only a subset of prey density values are observable in 

practice, the results of this estimation would not support predictions of consumption rate in a 

novel, unobserved ecological scenario (e.g., unprecedented conditions caused by climate change; 

Fig. 5D).  

We can impose further assumptions to improve predictive power. A factorial experiment would 

be inappropriate in this case (Fig. 5E). A better solution is obtained by assuming a type II 
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functional response to represent feeding activity at varying prey densities, assuming that 

entanglement level affects the parameters of the function (Fig. 5F). This more process-driven 

approach supports predictions beyond the range of observed stressors and identifies clear 

mechanisms for how the stressors operate in isolation and in combination. However, mistakes 

can still arise: for example, a type III functional response might better represent the feeding 

process (Fig. 5G). Alternative scientific hypotheses can be encoded as different parametric 

functions, using model selection methods to identify the best fitting one. 

When empirical information is scarce, a fully mechanistic approach may be used, informed by 

existing knowledge of this or other comparable systems. We might develop, for example, a 

simple movement simulation model to describe how individuals in an area explore their 

environment and encounter food patches (Fig. F.3; Appendix F). We could simulate varying 

levels of entanglement affecting both feeding rate and the maximum amount of prey intake per 

unit time. This simple IBM could be used to reconstruct the average daily consumption rate for 

an individual under various combinations of prey density and entanglement level (Fig. 5H). It 

may be extended beyond one day, introducing rules for leaving the area and longer-term 

motivations, or modelling energy levels explicitly (e.g., using a DEB model). Ultimately, it may 

be formulated as a population model under the PCoMS framework.   Jo
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Figure 5. The assumption spectrum, illustrated using an ecological example involving North Atlantic right whales. A) Non-parametric 

surface fitted to the data, using a tensor product with fixed degrees of freedom in a Generalised Additive Model (GAM). B) GAM 
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surface where the range of the data does not cover the combination of stressor levels of interest (red dot). C) Results of a factorial 

experiment, only measuring consumption rate for four combinations of the two stressors (the red dots and segments are the sampling 

means and standard deviations of consumption rate); a traditional two-way analysis of variance implicitly assumes that each stressor 

has a linear effect on the response variable, as represented by the blue plane. D) Type II functional response, with entanglement level 

affecting the search rate and prey handling time parameters, fitted to the data in a Bayesian setting (using Markov chain Monte Carlo 

algorithms). E) Comparison of type II (orange) and type III (blue) functional responses. F) Results of a simple mechanistic model 

simulating the movements of 10 individuals over a day for different combinations of 100 prey density scenarios and 11 entanglement 

levels; mean consumption rates across individuals for increasing prey density, given each simulated level of entanglement. More 

details are given in the text and Appendix F. 
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4. Management implications: identifying thresholds for adverse impacts and selecting 

combinations of stressors to manage 

From a management and conservation perspective, establishing whether stressors interact or not 

is secondary compared to finding practical solutions to reduce the current risk to populations. 

Management goals could guide the selection of which stressors within the available mixture can 

effectively be manipulated to ensure that the risk of adverse impacts on populations remains 

below acceptable thresholds (Groffman et al., 2006; Huggett, 2005; Kelly et al., 2015), i.e., the 

stressors that are relevant in practice (Diefenderfer et al., 2021; National Academies, 2017).  

Some stressors, such as climate change, persistent pollutants, or the regime shifts resulting from 

centuries of human activities (e.g., overfishing or deforestation) (e.g., Jepson and Law, 2016; 

Pauly et al., 2005; Solomon et al., 2009) cannot be mitigated rapidly. In the short term, the focus 

must therefore be on tackling stressors that can be reduced, such as anthropogenic noise, non-

persistent pollutants, extraction of biotic and abiotic resources (e.g., mining, local fishing effort, 

farming, unintended harvesting), and disturbance from human presence (Brown et al., 2013; 

Falkenberg et al., 2013). Empirical evidence or mechanistic predictions of interactions can help 

quantify the cascading benefits of reducing each stressor. In particular, a surface could be drawn 

across the dose-response surface identifying acceptable combinations of stressor doses, i.e., those 

resulting in a combined effect within the target management objective. 

In the ecological example described in Section 3, this surface would be at the level of 

consumption rate that results in individual energy budgets supporting a viable population (Fig. 

6A). The surface might have to be tilted to account for other stressor effects: for example, higher 

consumption rate is required at higher entanglement levels to compensate for the increased cost 
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of movement, which is not accounted for in the functional response (Fig. 6A). While our 

example focused on the energetic effects of prey availability and entanglement, two of the 

controllable stressors (entanglement and collision with vessels) kill enough individuals to hinder 

the species’ recovery (Moore et al., 2021). Risk factors for these stressors and their effects on 

whales have been well studied, enabling a data-driven analysis of their combined effects on 

survival rate (e.g., Fig. 6B). Therefore, two management objectives could be envisioned for this 

case study: one defining a minimum consumption rate to ensure a favourable energy budget (and 

thus reproductive rate), and another setting a minimum acceptable survival rate. Survival and 

reproductive rates supporting a viable, recovering population could then be derived using 

population modelling tools. 
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Figure 6. Example of management objective defining acceptable combinations of stressor levels. 

In shaded blue, the dose-response surface; in A, this represents variation in consumption rate for 

varying levels of prey density and entanglement level, and in B this represents variation in 

survival rate for varying levels of entanglement and ship collisions. The shaded red surface 

represents the rates required to meet the management objective; in A, the surface is tilted 

because entanglement imposes additional energetic costs that are not captured in the dose-

response surface (but need to be accounted for when calculating the minimum consumption 

rate). 

 

This alternative way of addressing multiple stressors is a form of adaptive management (Holling, 

1978; Walters, 1986) (Fig. 7). In passive adaptive management, current scientific evidence is 

used to choose the policy action most likely to bring the unit of interest closest to the 

management goals. In active adaptive management, the selection process also involves 

considering what could be learned from its implementation (Williams, 2011). The effects of the 
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implemented action are monitored to reduce uncertainty and inform the next management round. 

This iterative process incorporates the best available evidence when making a decision under 

uncertainty, but explicitly requires a re-evaluation once the policy measure has been put in place 

and enforced. Adaptive management promotes data collection and progressively leads to an 

improving evidence base. In the context of multiple stressors, managers could use political 

judgments and cost-benefit analyses (including the value of information that can be gained, 

Bolam et al., 2019) to identify the set of stressors whose reduction is predicted to achieve the 

management goal while balancing costs and societal values. It may also be possible to implement 

alternative manipulations in different areas to compare their efficacy (Breitburg et al., 1998; 

Wilson et al., 2006). The changes that result from these management actions would both refine 

the supporting analyses and inform the selection of effective stressor combinations in other areas. 

To this purpose, adaptive monitoring can be used to assess the effectiveness of adopted 

management strategies (Côté et al., 2016; Lindenmayer and Likens, 2009).    
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Figure 7. The iterative framework to assess and manage the combined effect of multiple stressors 

on a unit of interest (e.g., a population). The definition of management goals (i.e., the thresholds 
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of adverse impacts) guides the identification of the priority set of stressors and stressor 

combinations that can be manipulated. In turn, these priorities help select the correct analytical 

approach along the assumption spectrum, in light of data availability. Analyses generate 

predictions of the combined effects of stressor reductions, which inform applied management. 

The effects of implemented actions are monitored, and the management strategy is re-evaluated 

as a result. Text in red along the left-hand margin shows the equivalent terminology from the 

integrated ecosystem assessment framework proposed by Levin et al. (2009). 

 

5. Where along the spectrum should we model? Data limitations, relevance for 

management and the role of mechanisms 

While the assumption spectrum is conceptually appealing, it does not provide practical guidance 

on whether or when a more data- or process-driven approach should be preferred. We argue that 

choosing a position along the spectrum in specific cases should be based on the objectives of the 

potential management applications. Specifically, the guiding principle should be a pragmatic 

assessment of the predictive power of the resulting analysis in light of data availability and 

management priorities.  

As discussed above, only the effects of a limited number of combinations of doses for a selected 

set of stressors may be of management interest. Ideally, experimental or observational studies 

can then be designed to determine stressor responses over this range, and a data-driven analytical 

approach will be most effective, since it results in minimum bias while supporting relevant 

predictions.  
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The pragmatic solution of targeting analytical approaches to combinations of stressors and 

stressor levels of interest has been previously highlighted in toxicology, when assessing the 

effects of complex but defined mixtures of compounds (Hernandez et al., 2019). Here, the effects 

of the complete, environmentally realistic mixture can be tested directly (Feron et al., 1998; 

Webster, 2018). More generally, the number of possible combinations of doses is often limited, 

with many combinations not occurring and thus not requiring investigation (Carlin et al., 2013). 

Similarly, in ecology, Boyd et al. (2018) advocated the identification of the most relevant 

combinations and levels of key stressors in marine systems (which they called ‘drivers’, see 

Appendix G), and presented practical solutions to the challenges of designing and carrying out 

multi-stressor experiments for quantifying their combined effects. Despite these considerations, 

there are several challenges to using purely data-driven approaches (Box 1).  

 

Box 1. Challenges to the use of data-driven approaches for the study of combined effects 

of multiple stressors 

 

1) Relevant data may not be available and designing suitable studies to inform the 

combinations of interest may be challenging or unrealistic in practice. This is the case for 

many populations of large animals that cannot be manipulated in the laboratory, or that are 

already endangered (e.g., North Atlantic right whales, Section 3). 

2) The sequence of stressor addition or removal may be critical to determine combined effects 

(Gunderson et al., 2016; Jackson et al., 2021). For example, contaminants can compromise 

an individual’s immune status and cause a greater susceptibility to infectious diseases 
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(Lafferty and Holt, 2003), but contaminant exposure must precede exposure to the pathogen 

for it to increase the risk of acute infection.  

3) The time intervals between stressor exposures might alter their combined effects (Jackson 

et al., 2021; Orr et al., 2020). 

4) Stressors can operate at distinct organisational levels, affecting different proximate 

response variables (Segner et al., 2014; Simmons et al., 2021). Even though there might be 

some common level at which a combined effect can be measured, this shared response 

currency could be too far down the cascade of effects (i.e., at higher organisational levels) 

to allow collection of relevant data and efficient management. For example, if we only 

observe the combined effects of disease and contaminants on individual survival, and if the 

unit of interest is a population of a long-lived species, then experimental manipulation is 

likely unfeasible and any effect would only be observed when it is too late to intervene and 

reverse impacts (National Academies, 2017). 

5) Combined effects may have opposite signs, or emerge at different time scales, for distinct 

organisational levels (Orr et al., 2020; Segner et al., 2014). For example, Lafferty and Holt 

(2003) discussed how exposure to a stressor might enhance an individual’s risk of 

contracting a disease; however, if the same stressor also reduces the density of the host 

population, it might ultimately restrict the ability of a specialist pathogen (i.e., infecting 

only that host) to spread. 

6) Exposure to some stressors may be transient, making dose-response relationships difficult 

to assess, but the resulting health effects may be chronic or permanent, potentially leaving 

individuals more vulnerable to other stressors. In these cases, the dose of the first stressor 

may be unmeasurable, but the resulting consequences on an individual’s health are specific 
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to that stressor and its modulation of the effects of a second stressor can be measured (Ryan 

et al., 2007). For example, exposure to chemical or biological toxins might compromise the 

status of some organs, which in turn could affect an individual’s ability to mount a 

physiological response or change its behaviour in response to a disturbance source; e.g., 

compromised neurological or pulmonary function might impair anti-predatory responses, 

leading to an increased risk of being injured or killed by a predator or human activity 

(Smith et al., 2017; Tablado and Jenni, 2017; Thomas et al., 2010). Different degrees of 

organ compromise may be measurable, but the corresponding toxin doses that caused them 

might not. 

7) Real-world scenarios generally involve more than two stressors, all of which may modify 

each other’s effects in complex ways (Orr et al., 2020; Simmons et al., 2021). For example, 

climate change is modifying the exposure rate and intensity of many stressors 

simultaneously (e.g., Hooper et al., 2013), leading to new, often unpredictable 

combinations of stressor levels that populations experience (Doak et al., 2008). Rillig et al. 

(2021) and Simmons et al. (2021) have proposed ways to classify stressors based on 

different criteria, which can guide the assessment of combined effects. 

 

To tackle these complexities, a mechanistic understanding of the response pathways is helpful. In 

extreme cases, this would make it possible to completely bypass data collection. For example, 

when modelling the effects of climate change on a population of consumers, the future 

availability and abundance of food resources may be unknown. However, a mechanistic 

ecosystem model could still support reliable predictions based on the connections between 

features of the abiotic environment and reverberations across trophic levels (Griffith et al., 2012; 
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Simmons et al., 2021). Mechanistic approaches should address structural uncertainty by 

comparing the predictions of multiple, plausible functional forms, acknowledging knowledge 

gaps explicitly, and re-evaluating assumptions whenever additional data become available 

(Milner-Gulland and Shea, 2017). 

 

6. Conclusion: we need a coherent framework for the study of the combined effects of 

multiple stressors across disciplines 

Given rapid changes in the environment under the pressure of climate change and encroachment 

of human activities on all ecosystems, various authors (Paine et al., 1998; Rudd, 2014; Steffen et 

al., 2011) have argued that understanding and managing combined effects of multiple stressors is 

the most pressing challenge facing researchers, conservationists, managers and policy makers in 

the 21st century. How best to quantify these effects has been debated across diverse disciplines. 

However, these debates are frequently reduced to sensational claims of synergisms or detailed 

discussions of how to detect the occurrence of functional (as opposed to statistical) interactions 

(Hertzberg and MacDonell, 2002), resulting in limited ability to provide quantitative analyses for 

regulatory applications. It is particularly important that stakeholders across disciplines that have 

historically dealt with different sets of stressors operating along separate response pathways find 

a shared language and methodology to facilitate cross-fertilisation (Orr et al., 2020).  

We show that existing, heterogeneous approaches for analysing multiple stressor effects can be 

placed along an assumption spectrum, providing a conceptual background that guides the 

selection of a suitable methodology in different scenarios. We suggest that, in most cases, some 

reliance on a mechanistic description of the functional processes that underpin a system will be 
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necessary, as recognised in toxicology, environmental science and ecology (Ankley et al., 2010; 

Griffen et al., 2016; Hernandez et al., 2019; Hertzberg and MacDonell, 2002; Hooper et al., 

2013; Schäfer and Piggott, 2018). This mechanistic emphasis reflects a shared goal of capturing 

complexity, ensuring realism, and, ultimately, enhancing predictive power (Orr et al., 2020).  

We also believe that management objectives should be central to this discussion. Finding 

solutions to the risk incurred by target populations requires identifying thresholds for adverse 

impact (Groffman et al., 2006; Huggett, 2005; Kelly et al., 2015), estimating the probability that 

combined effects of stressors may be nearing or exceeding those thresholds, and deciding which 

stressors can be managed, in a practical combination that reduces the risk (National Academies, 

2017) (Fig. 6). Focus on management objectives also helps select the most effective approach 

along the assumption spectrum on a case-by-case basis.  

In conclusion, we have shown how cross-disciplinary methodological differences can be 

reconciled by taking account of the goals and predictive needs of the management scenario to 

which they are applied. The unified view we propose can help conceptualise and structure the 

analysis of the combined effects of multiple stressors and guide the development of successful 

strategies that will ensure the future persistence of species and ecosystems. 
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Highlights 

 Assessing the combined effects of stressors is a primary multidisciplinary goal 

 We review the science of multiple stressors and inconsistencies across disciplines 

 We present a conceptual framework encompassing existing analytical approaches  

 We reinforce the centrality of management in guiding analysis and interpretation 

 Our approach reconciles cross-disciplinary differences and supports management 
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