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Abstract— Over the last decade, Cloud environments have 
gained significant attention by the scientific community, due to 
their flexibility in the allocation of resources and the various 
applications hosted in such environments. Recently, high 
performance computing applications are migrating to Cloud 
environments. Efficient methods are sought for solving very large 
sparse linear systems occurring in various scientific fields such as 
Computational Fluid Dynamics, N-Body simulations and 
Computational Finance. Herewith, the parallel multi-projection 
type methods are reviewed and discussions concerning the 
implementation issues for IaaS-type Cloud environments are 
given. Moreover, phenomena occurring due to the “noisy 
neighbor” problem, varying interconnection speeds as well as 
load imbalance are studied. Furthermore, the level of exposure of 
specialized hardware residing in modern CPUs through the 
different layers of software is also examined. Finally, numerical 
results concerning the applicability and effectiveness of multi-
projection type methods in Cloud environments based on 
OpenStack are presented. 

Keywords—semi-coarsening, aggregation, algebraic domain 
decomposition, high performance computing, parallel hybrid 
solver, sparse and dense matrix computations, cloud computing. 

I.  INTRODUCTION 

Cloud computing has gained significant attention over the 
last decade. A gradually increasing number of software 
products and applications are migrating to Cloud environments. 
Cloud computing environments have multiple advantages over 
classical computing techniques, such as flexibility in resource 
allocation, virtually unlimited storage and a unified 
environment offering tools that allow “on-the fly” deployment 
of services. There are various deployment models offered by 
Cloud Service Providers (CSPs) including: a) Infrastructure as 
a Service (IaaS), b) Platform as a Service (PaaS), c) Software 
as a Service (SaaS), [1]. A major problem in modern Cloud 
environments is over-provisioning of resources which 
adversely affects utilization, thus leading to increased power 
consumption. Management and organization of such large scale 
heterogeneous parallel systems further impact performance and 
power consumption, [1,2,3]. Recently, a Self-Organizing, Self-
Management system, namely CloudLightning, [4], has been 
proposed to tackle the aforementioned problems. Moreover, 
CloudLightning aims to improve the performance, while 

simultaneously reducing power consumption, of High 
Performance Computing (HPC) applications in IaaS 
Environments by returning explicit control over resources back 
to the CSP, [4]. The CloudLightning approach introduces the 
notion of vRacks, which are composed of homogeneous 
resources and represents a partitioning of one or more physical 
racks. The various vRacks will be composed of different 
hardware types. Thus, different homogeneous vRacks form a 
collection of heterogeneous resources within a collection of 
resource known as a Cell. Cells are composed of multiple 
physical racks and multiple Cells comprise the entire cloud in 
an architecture which is akin to a Warehouse Scale Computer 
(WSC), [3,4]. This new system enables multilevel control 
through local decision making, concerning resource allocation, 
leading to reduced intercommunications and improving service 
delivery. The local decision making is performed by 
specialized software components that are responsible for 
selecting adequate resources based on parameters such as: 
performance, energy consumption, available hardware, etc. 
More information on the CloudLightning system can be found 
in [4]. 

One of the HPC use cases involved in the CloudLightning 
system is general sparse and dense matrix computations. This 
use case, among others, involves the solution of large sparse 
linear systems. The solution of such systems is usually 
performed in large HPC clusters and supercomputers, using 
domain decomposition techniques, [5]. Modern Cloud 
environments can be used for solving large sparse linear 
systems. The performance and efficiency of classic domain 
decomposition type methods for Cloud environments is 
extensively examined in [6,7,8]. Recently, an algebraic domain 
decomposition method, based on Multi-Projection, has been 
proposed and used for solving large sparse linear systems in 
large scale hybrid parallel systems. The method has been 
experimentally proven to be scalable up to a large number of 
processors for solving general sparse linear systems, [9,10]. 

Herewith, the Multi-Projection method, presented in detail 
for HPC clusters in [9,10], is reviewed and implementation 
details with respect to Cloud environments, based on 
OpenStack, are given, [11]. Moreover, the exposure of 
specialized hardware residing in modern CPUs, with respect to 
the virtualization strategy, i.e., AVX vector units is 



investigated. The impact on performance due to multiple 
Virtual Machines running on the same resource, known as the 
“noisy neighbor” problem as well as other Cloud environment 
related phenomena, is also investigated. The effect of this 
performance degradation in the simulation of a Cloud 
environment is also discussed. Numerical results for the 
performance and efficiency of Multi-Projection methods for 
various problems are given. Furthermore, comparisons of 
Cloud based HPC, based on OpenStack, with a HPC cluster are 
discussed. The main contributions include the derivation of a 
linear performance degradation model with respect to observed 
performance degradation due to “noisy neighbor” 
phenomenon, as well as the exposure of specialized hardware, 
in modern Cloud environments. Moreover, the effect of such 
phenomena in general sparse and dense matrix computations is 
also studied, since Multi-Projection methods include various 
types of such computations existing in most scientific 
computing algorithms. 

In Section 2, a brief introduction of an OpenStack-based 
Cloud Environment with respect to the available hardware is 
given. In Section 3, a review of the Multi-Projection domain 
decomposition type methods is given along with discussions 
concerning the implementation in Cloud Environments. In 
Section 4, the exposure of specialized hardware as well as the 
performance degradation due to Cloud environment related 
phenomena, such as the “noisy neighbor” problem, is 
discussed. In Section 5, numerical results obtained from 
experimentation on a Cloud environment with different 
workloads and for different types of problems are given. 
Moreover, comparative results against an HPC cluster are 
presented. 

II. OPENSTACK CLOUD ENVIRONMENT 

OpenStack is an open-source software platform for 
deploying Infrastructure-as-a-Service (IaaS) type cloud 
computing environments. The OpenStack platform is 
composed of multiple core components including the 
following, [11]: 

 Horizon: It is a web-based management and 
administration service used for provisioning, managing 
and monitoring resources. 

 Heat: It is an orchestration framework for managing the 
lifecycle of infrastructure and applications. Moreover 
the Heat is based on TOSCA and provides ReST and 
CloudFormation based APIs. 

 Nova: It is the compute service that manages virtual 
machine instances with respect to a chosen hypervisor 
such as KVM, Xen, Hyper-V, etc. 

 Cinder: It is the block storage service which handles the 
creation and attachment of volumes to compute 
instances. 

 Neutron: It is the software defined networking service 
used for tasks such as IP address management, DNS, 
DHCP, load balancing, etc. 

 Glance: It is the image service used to provide image 
recovery, registration and delivery services to the 
Compute service. 

 Swift: It is the object storage service used to handle 
storage and retrieval of arbitrary data in the Cloud 
environment. 

 Keystone: It is the authentication and authorization 
service for the entire cloud infrastructure. 

The OpenStack platform supports multiple other 
components such as Sahara or Manila used for data processing 
using clusters or shared file system services, respectively. A 
minimal setup for an OpenStack based Cloud environment, 
[11], is depicted in Fig.1. In Fig. 1, the lines represent network 
connections between components and ovals network interfaces 
as required by the Neutron networking component. Thus, the 
Network node requires three different network interfaces (one 
of them connected to an external network), the Controller node 
one network interface and the Compute node two network 
interfaces. The Controller node has the Identity, the Image 
service and the management part of the Compute service, as 
well as supporting services such as NTP, message queue and 
database services. Additional services can reside in the 
Controller node such as Object and Block storage, Telemetry, 
Orchestration, etc. The Network node has the networking plug-
in and includes several agents used to manage networks by 
providing switching, routing NAT and DHCP services, [11]. 
The Compute node includes the hypervisor part of the 
Compute service, which manages virtual machines and images 
as well as part of the networking plug-in. It should be noted 
that a more complete OpenStack based cloud environment 
requires block and object storage services. 

 

Fig. 1. Minimal service requirements for OpenStack based Cloud 
environment. 

OpenStack supports multiple Type 1 and Type 2 
hypervisors, [12]. Herewith, a Type 2 hypervisor is used, 
namely Kernel-based Virtual Machine (KVM), which is a 
hardware accelerated variant of QEMU, [13]. Type 2 or hosted 
hypervisors operate on top of the preconfigured Operating 
System (OS) abstracting guest operating systems. However, the 
distinction between Type 1 and Type 2 hypervisors is not 
always clear, for instance in the case of KVM, the host OS 



operates as a Type 1 hypervisor. In the OpenStack 
environment, resource handling is realized through the Nova 
component using libvirt software library, [11]. Each Virtual 
Machine is spawned using the Nova component with respect to 
user requirements e.g., number of vCPUs, available memory, 
operating system, etc. 

Our OpenStack deployment uses the KVM hypervisor and 
is running six services: Nova, Swift, Heat, Cinder and Neutron. 
The underlying hardware consists of 7x Dell M600; 1x Dell 
2950; and 2x Dell R410 servers. It should be mentioned that in 
the current installation of OpenStack each vCPU is mapped to 
an actual CPU. 

III. MULTI-PROJECTION TYPE METHODS 

The Multi-Projection methods are categorized into the class 
of domain decomposition methods for solving large sparse 
linear systems. Let us consider a sparse linear system of the 
following form: 

   bAx  ,            (1) 

where A is the coefficient matrix, b is the right hand side vector 
and x is the solution vector. The linear system (1) can be solved 
by preconditioned Krylov subspace iterative methods, such as 
PGMRES(m), [14], in conjunction with Multi-Projection 
methods, [9,10]. 

A. Multi-Projection Method (MPM) 

Let us consider the domain Ω, partitioned algebraically into 
ndoms non-overlapping subdomains Ωj, j=0,…,ndoms-1, using 
graph-partitioning algorithms, such as Metis, [15], on the graph 
corresponding to the coefficient matrix A. In each subdomain 
Ωj, mj components are contained. The Multi-Projection method 
is based on the oblique projection of domain Ω into semi-
coarse subdomains Zj, which contain mj fine and ndoms-1 
aggregated (coarse) components. The fine components are 
derived from subdomain Ωj and each of the aggregated (coarse) 
components corresponds to a subdomain Ωk, with jk  . The 

prolongation matrices Vj∈Թ
))1ndoms(m(n

j
 : jZ , associate 

the respective semi-coarse subdomains with the domain Ω. Let 
us consider the ith column of an (n×n) identity matrix ei and a 
column vector pj, whose elements are 1/mj if the element 
belongs to Ωj, otherwise, they are zero. The first mj columns of 
the matrix Vj are ei column vectors, corresponding the indices 
Ωj and the remaining (ndoms-1) columns are pi column vectors 
that correspond to every remaining subdomain Ωi. In Fig. 2, the 
domain Ω, discretized with h=1/3 and partitioned into 4 
subdomains Ωj, and the semi-coarse subdomain Z0, are 
depicted. A linear system of the following form should be 
solved in each subdomain Zj: 

  j
T
jjj

T
j bbVxAVV  ,           (2) 

where the solution vector xj has two parts, xF and xC , which are 
associated with fine components and aggregated (coarse) 
components, respectively. 

The xF is used for updating the components of the solution 
vector x corresponding to a subdomain Ωj. Let us define the 

matrix Wj : jZ  that maps xF to the respective fine 

components of domain Ω and discards the auxiliary 
components xC. The ith column of Wj is an ei column vector, 
corresponding the indices Ωj, if i belongs to Ωj, otherwise it is a 
zero column vector. The product of the MPM preconditioner 
by a vector can be described by the following algorithmic 
procedure, [9]: 

 

For j=0,…,ndoms-1 
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End For 
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The MPM is inherently parallel and thus suitable for 
distributed-memory parallel systems. 

0
T
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Fig. 2. Domain Ω and subdomain Z0 

B. Multi-Projection Method with Subspace Compression 
(MPMSC) 

The MPMSC method is a variant of MPM that utilizes a 
subspace compression technique to decrease the memory 
requirements, [10]. Moreover, in the MPM method the ndoms-
1 should be less than mj, otherwise the local linear systems 
have more aggregated (coarse) components than fine 
components. The aggregated (coarse) components of a 
subdomain Zj are re-aggregated together to reduce the number 
of aggregates (naggs) and therefore the size of the local linear 
system is decreased. Consider the respective compressed 

subdomains jZ
~

 and their prolongation matrices 

jV
~
∈Թ )naggsm(n

j
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~
. The local linear systems are of 

the following form: 
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and the product of the MPMSC preconditioner by a vector is 
given by the following algorithmic procedure, [10]: 

For j=0,…,ndoms-1 

 Compute xV
~

AV
~

WWy T
j

1
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T
jjj

            (6) 

End For 
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Further details concerning the subspace compression 
technique are given in [10]. 

C. Implementation Details 

Multi-Projection-type Methods are used as a preconditioner 
in the Parallel Preconditioned restarted Generalized Minimum 
Residual Method, namely (PPGMRES(m)), [16,17]. The 
algorithm of PPGMRES(m) along with discussion concerning 
implementation issues are given in [9]. The IaaS cloud 
computing model provides virtual machines, where each of 
them has a number of vCPUs (virtual CPUs). Therefore, the 
hybrid parallel implementation of PPGMRES(m) in 
conjunction with Multi-Projection-type Methods is suitable for 
the cloud environment. Every subdomain of the Multi-
Projection-type Methods is mapped to a virtual machine. The 
MPM and MPMSC are designed to require only minimum 
internode communication, since its subdomain is handled 
separately. The local linear system of each subdomain is solved 
in parallel by a direct method. Both PARDISO, [18,19,20], and 
a variant of sparse LU, [21], have been used. It should be noted 
that the factorization phase of the direct method is included in 
the pre-processing step. 

IV. IMPACT ON PEFORMANCE AND SIMULATION 

The performance of HPC applications in Cloud 
environments is affected by phenomena such as the “noisy 
neighbor” phenomenon, the heterogeneity of hardware or the 
varying network speeds due to software defined networking or 
bottlenecks. 

A. Related work on Cloud related phenomena 

The “noisy neighbor” phenomenon is caused by the 
simultaneous execution of applications by different users in the 
same physical resource. The three major factors that affect 
performance in modern NUMA architecture multicore systems 
are: a) remote access penalty, b) shared resource contention 
and c) cross-chip data sharing overhead. The shared last-level 
cache (LLC) is also a major factor that affects performance, 
[22,23]. Moreover, as the number of applications that run 
simultaneously on a physical resource increases, the more the 
performance decreases, since the available cache per 
application is reduced, [23]. With the aforementioned in mind, 
it can be seen that the execution of applications in Cloud 
environments leads to varying results from the aspect of 
performance, especially in the case of multiple virtual 
machines running in the same physical resource, [22,23]. 
Multiple solutions have been proposed to tackle the problems 
of scheduling virtual processors, including real time 
hypervisors, [22], and weighted scheduling strategies, [23]. 
Moreover, in [23] performance degradation in examined for 
various types of applications. Various researchers have 
proposed different solutions to the problem of scheduling, 
especially in scope of real time systems, [24,25,26]. Adaptive 
reservation based approaches have been also proposed, [27]. 

The heterogeneity of underlying hardware is a major 
concern in Cloud Environments, since it affects the symmetry 
of computations, especially in parallel distributed memory 
applications. High Performance Computing applications 
heavily rely on symmetry of the underlying hardware. In order 
to ensure symmetry of computations the CloudLightning 
system allocates resources belonging to homogeneous vRacks. 
Moreover, the allocation of resources can be performed with 
locality criteria in order to avoid large variations in network 
speeds, [4]. 
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Fig. 3. Performance degradation in a vRack with NS=50, PO=1.0, PW=0.5. 
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Fig. 4. Performance degradation for two vRacks composed of different types 
of servers. 

B. Linear performance degradation model for the 
CloudLightning system 

The CloudLightning system involves three major use cases: 
a) Oil and Gas Exploration, b) Ray-Tracing and c) Genomics. 
These use cases are composed of general sparse and dense 
matrix computations and have irregular memory access 
patterns. Multi-Projection type methods involve general sparse 
and dense matrix computations, thus model the three major use 
cases involved in CloudLightning. These types of computations 
are expected to suffer degradation ranging from 100% to 10%, 
[23]. The simulation of a Cloud environment, such as 



CloudLightning, [4], should take into account the performance 
degradation occurring due to the aforementioned issues. Let us 
consider a vRack, composed of NS (homogeneous) servers and 
NA the number of servers occupied. Then a linear model can be 
used to adjust the performance of underlying simulated 
hardware: 

   WO
S

A
OC PP

N

N
PP             (8) 

where   OWC P,PP Թ,    ,0PW Թ,    ,PP WO Թ 
with PO>PW are the current performance index, the worst 
performance index and the optimal performance index, 
respectively. It should be noted that PC, PO and PW are 
dimensionless numbers and can be computed as the ratio of 
performance metrics, such as GFLOPS, obtained in baseline 
system and another system, with respect to a certain procedure 
(or collection of procedures). In example, if the matrix 
multiplication algorithm is computed 20% faster on a CPU-
GPU system compared to a baseline CPU system then its 
PO=1.2. Equivalently, PC can be defined as the ratio of 
performance metrics obtained from the same CPU-GPU system 
in presence of performance degrading phenomena, such as 
“noisy neighbor”, using as denominator the same baseline 
metrics as before. Thus, this linear performance degradation 
model, based on differential performance indices, can be used 
to express the expected extension of required time to complete 
a given task when there are other users that simultaneously 
utilize the same physical resources. From Equation (8) it can be 
seen that current performance index is analogous to the number 
of servers NA that are already occupied in the vRack. An 
example of performance degradation in a vRack with NS=50, 
PO=1.0, PW=5 is presented schematically in Fig. 3. 

It should be noted that the linear model of Equation (8) can 
be used to model the performance degradation of more 
complicated types of resources grouped in vRacks i.e., CPU-
GPU pairs. Moreover, vRacks that group different types of 
servers can be modelled simultaneously i.e., let us consider two 
vRacks composed of 50 servers each. vRack 1 has CPU type 
servers and vRack 2 has CPU-GPU type servers. Let as also 
consider an application that has implementations for CPU type 
servers and CPU-GPU type servers, where the CPU-GPU type 
implementation is 20% faster. Furthermore, the worst case 
performance is 0.5 and 0.6, for CPU type servers and CPU-
GPU type servers, respectively, for the aforementioned 
application. Then the linear model is of the following form: 

  


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
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
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A
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C .          (9) 

The performance degradation model (9) is schematically 
represented in Fig. 4. Analogously, linear performance 
degradation model (9) can be extended to multiple types of 
hardware with respect to a baseline implementation with 
optimal performance index set to PO=1. 

Another important issue arising in Cloud environments is 
the exposure of specialized hardware i.e., vector units that 
reside in modern CPUs, available to the user through the 

virtual machines. These vector units are known to enhance 
performance of computations. This type of specialized 
hardware and other types of specialized hardware such as 
GPUs or SSD disks have to be explicitly prescribed to the 
scheduler of the Nova component in order to allocate sufficient 
resources, [11]. In this example, the Nova component should 
be configured to allow either “host-pass through” or “host-
model” in order for specialized hardware residing in CPUs, 
such as vector units, to be visible to the user, [11]. The “host-
pass through” property enables full visibility of the underlying 
hardware which favors performance, but hinders portability in 
migrating a VM to other hardware. The “host-model” property 
reveals the model of the underlying processor (with respect to 
processor family), thus enabling improved portability in VM 
migration, in the expense of slightly reduced performance. 
Herewith, the OpenStack Nova component is configured with 
“host-model” property to ensure portability during the VM 
migration. 

In the following Section, numerical results depicting the 
applicability and effectiveness of Multi-Projection type 
methods obtained are given. 

V. NUMERICAL RESULTS 

In order to assess the performance of the OpenStack based 
Cloud environment various model problems were solved using 
Multi-Projection type methods. The first model problem is the 
3D Poisson equation in three space variables, subject to 
Dirichlet boundary conditions. The Poisson equation was 
discretized with the 7-point stencil. The right hand side of the 
linear systems was computed as the product of coefficient 

matrix A with the solution vector set to T]1n,...,1,0[  , where n 
denotes the order of the linear system. Two additional model 
problems, obtained from the Florida University sparse matrix 
collection, were considered, [28]:  

 apache2 with size n=715176 and number of 
nonzero elements equal to 4817870, 

 af_shell3 with size n=504855 and number of 
nonzero elements equal to 17562051. 

The right hand side vector b for the above model problems 
was computed as the product of coefficient matrix A with the 

solution vector set to T]1n,...,1,0[  . The restart parameter of 
PPGMRES(m) was set to 20 and the maximum iterations was 
set to 500 iterations. The termination criterion for the Multi-

Projection methods, for all experiments, was 
2

8
2

b10r  , 

where r is the residual vector, b is the right hand side vector 
and 

2
.  is the 2-norm. The execution time is given in “seconds. 

hundreds (ss.hh)”. A cluster was deployed in the OpenStack 
based Cloud environment consisting of 4 VMs, with 2 vCPUs 
each, running CENTOS 7. It should be noted that two different 
implementations of the MPM and MPMSC method where used 
for assessing performance. The first Cloud based 
implementation denoted hereafter as (MKL) is based on Intel 
MKL and PARDISO, [18,19,20,29]. The second Cloud based 
implementation denoted hereafter as (BLAS) was based on 
BLAS and a variant of sparse LU, [21,30]. For assessing the 



scalability of the MPM and MPMSC methods additional 
results were obtained using a BlueGene/P (BG/P) 
supercomputer with the following specifications: (CPU: 1024x 
Quad-Core PowerPC-450 850Mhz, RAM: 4GB/node, inter-
connect: 3D-Torus network with bandwidth 5.1 GBps). It 
should be noted that “Subds” denote the number of subdomains 
and “Aggs” denote the number of aggregates. 

In Table 1, the performance and convergence behavior of 
the MPM and MPMSC methods for various numbers of 
processors (BG/P) and for the 3D Poisson problem with 
n=125000 are given. In Table 2, the performance and 
convergence behavior of the MPM and MPMSC methods for 
various numbers of processors (BLAS) and for the 3D Poisson 
problem with n=125000 are given. In Fig 5, the strong 
scalability of the MPM and MPMSC methods for different 
implementations and for the 3D Poisson problem with 
n=125000 is given. From Tables 1, 2 and Fig. 5 can be seen 
that the strong scalability of the MPM and MPMSC methods is 
better in the BG/P system than the Cloud system, [6,7,8]. In 
Fig. 6, the strong scalability of the MPM and MPMSC methods 
for different compatibility modes of Intel MKL for the 3D 
Poisson problem with n=512000 is presented. From Fig. 6, it 
can be observed that the use of AVX units greatly improves the 
performance for both methods. In Fig 7, the weak scalability of 
MPM and MPMSC methods (MKL) for the 3D Poisson 
problem with 64000 unknowns per node, is given. 

TABLE I.  PERFORMANCE AND CONVERGENCE BEHAVIOR OF THE MPM 
AND MPMSC METHODS FOR VARIOUS NUMBERS OF PROCESSORS (BG/P) FOR 

THE 3D POISSON PROBLEM WITH N=125000. 

Method Nodes Cores Subds Aggs Iter. Performance 

MPM 

2 4 16 15 2(11) 2276.8078 

3 6 24 23 2(10) 996.7118 

4 8 32 31 2(10) 505.7879 

MPMSC 

2 4 16 3 3(8) 992.2571 

3 6 24 6 3(10) 586.7975 

4 8 32 6 3(12) 233.6427 

TABLE II.  PERFORMANCE AND CONVERGENCE BEHAVIOR OF THE MPM 
AND MPMSC METHODS FOR VARIOUS NUMBERS OF PROCESSORS (BLAS) FOR 

THE 3D POISSON PROBLEM WITH N=125000. 

Method Nodes Cores Subds Aggs Iter. Total 

MPM 

2 4 16 15 2(11) 179.5582 

3 6 24 23 2(10) 96.4939 

4 8 32 31 2(10) 59.2548 

MPMSC 

2 4 16 3 3(8) 84.2075 

3 6 24 6 3(10) 72.2509 

4 8 32 6 3(12) 28.6298 

From Fig. 7, it can be seen that the weak scalability is not 
constant with the increase of cores, since the underlying 
hardware is heterogeneous in nature. Moreover, the weak 
scalability of the schemes is affected by the interconnection 
speeds. In Tables 3 and 4, the performance and convergence 

behavior of the MPM and MPMSC methods, respectively, for 
various number of cores and for different problems are 
presented. In Table 5, the performance, convergence behavior 
and performance degradation of the MPM and MPMSC 
methods for single processor executions (MKL) and various 
problems are given. 

 

Fig. 5. Strong scalability of the MPM and MPMSC methods for different 
implementations for the 3D Poisson problem. 

 

Fig. 6. Strong scalability of the MPM and MPMSC methods for different 
compatibility modes of Intel MKL for the 3D Poisson problem with 
n=512000. 

 

Fig. 7. Weak scalability of the MPM and MPMSC methods (MKL) for the 
3D Poisson problem with 64000 unknowns per node. 

It should be mentioned that the additional workload to the 
available resources in the OpenStack based Cloud 
environment is created using the Prime95 Stress testing 



software, [31]. Moreover, the latest version of Prime95 has 
AVX2 support. The Prime95 was run in Blend mode (pre-set 
mode) stressing both available CPUs and memory with 
variable size FFT. 

TABLE III.  PERFORMANCE AND CONVERGENCE BEHAVIOR OF THE MPM 
METHOD FOR VARIOUS NUMBERS OF PROCESSORS (MKL) FOR VARIOUS 

PROBLEMS. 

Problem Nodes Cores Subds Aggs Iter Performance 

apache2 

1 1 4 3 4(18) 236.5840 

1 2 8 7 7(12) 187.4231 

2 2 8 7 7(12) 144.0143 

2 4 16 15 7(18) 87.9084 

3 3 12 11 8(12) 188.9736 

3 6 24 23 6(19) 102.7597 

4 4 16 15 7(18) 151.9132 

4 8 32 31 7(18) 107.6127 

af_shell3 

1 1 4 3 2(7) 103.0759 

1 2 8 7 2(17) 65.7306 

2 2 8 7 2(17) 51.6204 

2 4 16 15 3(16) 42.0841 

3 3 12 11 3(10) 73.8761 

3 6 24 23 3(19) 52.9229 

4 4 16 15 3(16) 68.0442 

4 8 32 31 4(6) 54.2996 

TABLE IV.  PERFORMANCE AND CONVERGENCE BEHAVIOR OF THE 
MPMSC METHOD FOR VARIOUS NUMBERS OF PROCESSORS (MKL) FOR 

VARIOUS PROBLEMS. 

Problem Nodes Cores Subds Aggs Iter Performance 

apache2 

1 1 4 2 13(4) 551.2392 

1 2 8 3 18(12) 428.7588 

2 2 8 3 18(12) 327.5805 

2 4 16 5 17(3) 198.6106 

3 3 12 5 18(20) 410.0613 

3 6 24 7 25(14) 362.4505 

4 4 16 5 17(3) 318.6274 

4 8 32 10 21(15) 280.1670 

af_shell3 

1 1 4 1 0(11) 37.5874 

1 2 8 4 3(9) 78.2034 

2 2 8 4 3(9) 60.7310 

2 4 16 5 3(8) 36.6561 

3 3 12 5 2(15) 59.3741 

3 6 24 7 2(13) 38.2436 

4 4 16 5 3(8) 61.6374 

4 8 32 11 3(10) 43.6878 

The Blend mode automatically allocates required memory 
and uses in-place as well as small FFTs that stress cache 
memory and FPU units, [31].  

TABLE V.  PERFORMANCE, CONVERGENCE BEHAVIOR AND 
PERFORMANCE DEGRADATION OF THE MPM AND MPMSC METHODS FOR 
SINGLE PROCESSOR EXECUTIONS (MKL) AND FOR VARIOUS MODES AND 

VARIOUS PROBLEMS. 

Method Wload Mode Problem 
Subds/
Aggs - 

Iter 
Perf. 

Degr. 
(%) 

MPM 

NO 
A 

3D Poisson 
n=512000 

4/3 - 
2(14) 

239.9149 - 

YES 266.6759 11.15 

NO 
C 

188.0013 - 

YES 209.4785 11.42 

MPMSC 

NO 
A 

3D Poisson 
n=512000 

4/1 - 
3(10) 

215.7437 - 

YES 229.8989 6.56 

NO 
C 

265.9169 - 

YES 298.5315 12.26 

MPM 
NO 

A 
apache2 

n=715176 
4/3 - 
4(8) 

236.5840 - 

YES 242.0023 2.29 

MPMSC 
NO 

A 
apache2 

n=715176 
4/2 -
13(4) 

551.2392 - 

YES 567.1074 2.88 
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Fig. 8. Performance degradation in a vRack with NS=50, PO=1.0, PW=0.9234. 

The experiments presented in Table 5, have an average 
degradation in performance 7.76% when the Cloud 
environment is in maximum load. Thus, a linear model can be 
derived using equation (8):  SAC N/N)9234.01(1P  . The 
linear performance degradation model of a vRack composed of 
the hardware presented in Section 2, based on the obtained 
experimental results, is schematically represented in Fig. 8. 
Cloud environments offer the flexibility of dynamically 
allocating resources of variable capacity with respect to vCPU 



number or available memory, however the scalability, 
compared to dedicated HPC clusters, is limited and the 
performance is affected by other users simultaneously using the 
same physical resources, as presented in Fig. 5,6 and Table 5. 

VI. CONCLUSION 

The presented methods have been shown to be scalable in 
Cloud environments for solving various types of problems. 
Moreover, the use of vector units substantially improves 
performance, thus the “host-model” or “host-passthrough” 
property should be used in the configuration of the Nova 
component, especially for HPC applications in an OpenStack 
based Cloud environment. Furthermore, a linear performance 
degradation model has been derived based on experimental 
results obtained from the solution of various problems with and 
without additional workload in the OpenStack based 
environment. The linear performance degradation model can be 
used for large scale simulation of Cloud environments, based 
on the CloudLightning system, [4]. Future work will 
concentrate in the augmentation of the linear performance 
degradation model with the impact of intercommunications as 
well as its refinement based on results obtained in a 
CloudLightning based Cloud environment. 
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