
Title On issues concerning Cloud environments in scope of scalable
multi-projection methods

Authors Moutafis, Byron E.;Filelis-Papadopoulos, Christos K.;Gravvanis,
George A.;Morrison, John P.

Publication date 2016

Original Citation Moutafis, B. E., Filelis-Papadopoulos, C. K., Gravvanis, G. A. and
Morrison, J. P. (2016) 'On issues concerning Cloud environments
in scope of scalable multi-projection methods', 18th International
Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC) Timisoara, Romania, 24-27 September.
doi:10.1109/SYNASC.2016.061

Type of publication Conference item

Link to publisher's
version

10.1109/SYNASC.2016.061

Rights © 2016, IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Download date 2024-04-18 14:46:57

Item downloaded
from

https://hdl.handle.net/10468/6081

https://hdl.handle.net/10468/6081

On issues concerning Cloud environments in scope of
scalable multi-projection methods

Byron E. Moutafis, Christos K. Filelis-Papadopoulos,
George A. Gravvanis

Department of Electrical and Computer Engineering,
School of Engineering,

Democritus University of Thrace
University Campus, Kimmeria, GR 67100, Xanthi, Greece.

{vmoutafi, cpapad, ggravvan}@ee.duth.gr

John P. Morrison
Irish Centre for Cloud Computing and Commerce,

Department of Computer Science,
University College Cork,

Cork, Ireland.
j.morrison@cs.ucc.ie

Abstract— Over the last decade, Cloud environments have
gained significant attention by the scientific community, due to
their flexibility in the allocation of resources and the various
applications hosted in such environments. Recently, high
performance computing applications are migrating to Cloud
environments. Efficient methods are sought for solving very large
sparse linear systems occurring in various scientific fields such as
Computational Fluid Dynamics, N-Body simulations and
Computational Finance. Herewith, the parallel multi-projection
type methods are reviewed and discussions concerning the
implementation issues for IaaS-type Cloud environments are
given. Moreover, phenomena occurring due to the “noisy
neighbor” problem, varying interconnection speeds as well as
load imbalance are studied. Furthermore, the level of exposure of
specialized hardware residing in modern CPUs through the
different layers of software is also examined. Finally, numerical
results concerning the applicability and effectiveness of multi-
projection type methods in Cloud environments based on
OpenStack are presented.

Keywords—semi-coarsening, aggregation, algebraic domain
decomposition, high performance computing, parallel hybrid
solver, sparse and dense matrix computations, cloud computing.

I. INTRODUCTION

Cloud computing has gained significant attention over the
last decade. A gradually increasing number of software
products and applications are migrating to Cloud environments.
Cloud computing environments have multiple advantages over
classical computing techniques, such as flexibility in resource
allocation, virtually unlimited storage and a unified
environment offering tools that allow “on-the fly” deployment
of services. There are various deployment models offered by
Cloud Service Providers (CSPs) including: a) Infrastructure as
a Service (IaaS), b) Platform as a Service (PaaS), c) Software
as a Service (SaaS), [1]. A major problem in modern Cloud
environments is over-provisioning of resources which
adversely affects utilization, thus leading to increased power
consumption. Management and organization of such large scale
heterogeneous parallel systems further impact performance and
power consumption, [1,2,3]. Recently, a Self-Organizing, Self-
Management system, namely CloudLightning, [4], has been
proposed to tackle the aforementioned problems. Moreover,
CloudLightning aims to improve the performance, while

simultaneously reducing power consumption, of High
Performance Computing (HPC) applications in IaaS
Environments by returning explicit control over resources back
to the CSP, [4]. The CloudLightning approach introduces the
notion of vRacks, which are composed of homogeneous
resources and represents a partitioning of one or more physical
racks. The various vRacks will be composed of different
hardware types. Thus, different homogeneous vRacks form a
collection of heterogeneous resources within a collection of
resource known as a Cell. Cells are composed of multiple
physical racks and multiple Cells comprise the entire cloud in
an architecture which is akin to a Warehouse Scale Computer
(WSC), [3,4]. This new system enables multilevel control
through local decision making, concerning resource allocation,
leading to reduced intercommunications and improving service
delivery. The local decision making is performed by
specialized software components that are responsible for
selecting adequate resources based on parameters such as:
performance, energy consumption, available hardware, etc.
More information on the CloudLightning system can be found
in [4].

One of the HPC use cases involved in the CloudLightning
system is general sparse and dense matrix computations. This
use case, among others, involves the solution of large sparse
linear systems. The solution of such systems is usually
performed in large HPC clusters and supercomputers, using
domain decomposition techniques, [5]. Modern Cloud
environments can be used for solving large sparse linear
systems. The performance and efficiency of classic domain
decomposition type methods for Cloud environments is
extensively examined in [6,7,8]. Recently, an algebraic domain
decomposition method, based on Multi-Projection, has been
proposed and used for solving large sparse linear systems in
large scale hybrid parallel systems. The method has been
experimentally proven to be scalable up to a large number of
processors for solving general sparse linear systems, [9,10].

Herewith, the Multi-Projection method, presented in detail
for HPC clusters in [9,10], is reviewed and implementation
details with respect to Cloud environments, based on
OpenStack, are given, [11]. Moreover, the exposure of
specialized hardware residing in modern CPUs, with respect to
the virtualization strategy, i.e., AVX vector units is

investigated. The impact on performance due to multiple
Virtual Machines running on the same resource, known as the
“noisy neighbor” problem as well as other Cloud environment
related phenomena, is also investigated. The effect of this
performance degradation in the simulation of a Cloud
environment is also discussed. Numerical results for the
performance and efficiency of Multi-Projection methods for
various problems are given. Furthermore, comparisons of
Cloud based HPC, based on OpenStack, with a HPC cluster are
discussed. The main contributions include the derivation of a
linear performance degradation model with respect to observed
performance degradation due to “noisy neighbor”
phenomenon, as well as the exposure of specialized hardware,
in modern Cloud environments. Moreover, the effect of such
phenomena in general sparse and dense matrix computations is
also studied, since Multi-Projection methods include various
types of such computations existing in most scientific
computing algorithms.

In Section 2, a brief introduction of an OpenStack-based
Cloud Environment with respect to the available hardware is
given. In Section 3, a review of the Multi-Projection domain
decomposition type methods is given along with discussions
concerning the implementation in Cloud Environments. In
Section 4, the exposure of specialized hardware as well as the
performance degradation due to Cloud environment related
phenomena, such as the “noisy neighbor” problem, is
discussed. In Section 5, numerical results obtained from
experimentation on a Cloud environment with different
workloads and for different types of problems are given.
Moreover, comparative results against an HPC cluster are
presented.

II. OPENSTACK CLOUD ENVIRONMENT

OpenStack is an open-source software platform for
deploying Infrastructure-as-a-Service (IaaS) type cloud
computing environments. The OpenStack platform is
composed of multiple core components including the
following, [11]:

 Horizon: It is a web-based management and
administration service used for provisioning, managing
and monitoring resources.

 Heat: It is an orchestration framework for managing the
lifecycle of infrastructure and applications. Moreover
the Heat is based on TOSCA and provides ReST and
CloudFormation based APIs.

 Nova: It is the compute service that manages virtual
machine instances with respect to a chosen hypervisor
such as KVM, Xen, Hyper-V, etc.

 Cinder: It is the block storage service which handles the
creation and attachment of volumes to compute
instances.

 Neutron: It is the software defined networking service
used for tasks such as IP address management, DNS,
DHCP, load balancing, etc.

 Glance: It is the image service used to provide image
recovery, registration and delivery services to the
Compute service.

 Swift: It is the object storage service used to handle
storage and retrieval of arbitrary data in the Cloud
environment.

 Keystone: It is the authentication and authorization
service for the entire cloud infrastructure.

The OpenStack platform supports multiple other
components such as Sahara or Manila used for data processing
using clusters or shared file system services, respectively. A
minimal setup for an OpenStack based Cloud environment,
[11], is depicted in Fig.1. In Fig. 1, the lines represent network
connections between components and ovals network interfaces
as required by the Neutron networking component. Thus, the
Network node requires three different network interfaces (one
of them connected to an external network), the Controller node
one network interface and the Compute node two network
interfaces. The Controller node has the Identity, the Image
service and the management part of the Compute service, as
well as supporting services such as NTP, message queue and
database services. Additional services can reside in the
Controller node such as Object and Block storage, Telemetry,
Orchestration, etc. The Network node has the networking plug-
in and includes several agents used to manage networks by
providing switching, routing NAT and DHCP services, [11].
The Compute node includes the hypervisor part of the
Compute service, which manages virtual machines and images
as well as part of the networking plug-in. It should be noted
that a more complete OpenStack based cloud environment
requires block and object storage services.

Fig. 1. Minimal service requirements for OpenStack based Cloud
environment.

OpenStack supports multiple Type 1 and Type 2
hypervisors, [12]. Herewith, a Type 2 hypervisor is used,
namely Kernel-based Virtual Machine (KVM), which is a
hardware accelerated variant of QEMU, [13]. Type 2 or hosted
hypervisors operate on top of the preconfigured Operating
System (OS) abstracting guest operating systems. However, the
distinction between Type 1 and Type 2 hypervisors is not
always clear, for instance in the case of KVM, the host OS

operates as a Type 1 hypervisor. In the OpenStack
environment, resource handling is realized through the Nova
component using libvirt software library, [11]. Each Virtual
Machine is spawned using the Nova component with respect to
user requirements e.g., number of vCPUs, available memory,
operating system, etc.

Our OpenStack deployment uses the KVM hypervisor and
is running six services: Nova, Swift, Heat, Cinder and Neutron.
The underlying hardware consists of 7x Dell M600; 1x Dell
2950; and 2x Dell R410 servers. It should be mentioned that in
the current installation of OpenStack each vCPU is mapped to
an actual CPU.

III. MULTI-PROJECTION TYPE METHODS

The Multi-Projection methods are categorized into the class
of domain decomposition methods for solving large sparse
linear systems. Let us consider a sparse linear system of the
following form:

 bAx  , (1)

where A is the coefficient matrix, b is the right hand side vector
and x is the solution vector. The linear system (1) can be solved
by preconditioned Krylov subspace iterative methods, such as
PGMRES(m), [14], in conjunction with Multi-Projection
methods, [9,10].

A. Multi-Projection Method (MPM)

Let us consider the domain Ω, partitioned algebraically into
ndoms non-overlapping subdomains Ωj, j=0,…,ndoms-1, using
graph-partitioning algorithms, such as Metis, [15], on the graph
corresponding to the coefficient matrix A. In each subdomain
Ωj, mj components are contained. The Multi-Projection method
is based on the oblique projection of domain Ω into semi-
coarse subdomains Zj, which contain mj fine and ndoms-1
aggregated (coarse) components. The fine components are
derived from subdomain Ωj and each of the aggregated (coarse)
components corresponds to a subdomain Ωk, with jk  . The

prolongation matrices Vj∈Թ
))1ndoms(m(n

j
 : jZ , associate

the respective semi-coarse subdomains with the domain Ω. Let
us consider the ith column of an (n×n) identity matrix ei and a
column vector pj, whose elements are 1/mj if the element
belongs to Ωj, otherwise, they are zero. The first mj columns of
the matrix Vj are ei column vectors, corresponding the indices
Ωj and the remaining (ndoms-1) columns are pi column vectors
that correspond to every remaining subdomain Ωi. In Fig. 2, the
domain Ω, discretized with h=1/3 and partitioned into 4
subdomains Ωj, and the semi-coarse subdomain Z0, are
depicted. A linear system of the following form should be
solved in each subdomain Zj:

 j
T
jjj

T
j bbVxAVV  , (2)

where the solution vector xj has two parts, xF and xC , which are
associated with fine components and aggregated (coarse)
components, respectively.

The xF is used for updating the components of the solution
vector x corresponding to a subdomain Ωj. Let us define the

matrix Wj : jZ that maps xF to the respective fine

components of domain Ω and discards the auxiliary
components xC. The ith column of Wj is an ei column vector,
corresponding the indices Ωj, if i belongs to Ωj, otherwise it is a
zero column vector. The product of the MPM preconditioner
by a vector can be described by the following algorithmic
procedure, [9]:

For j=0,…,ndoms-1

 Compute xVAVWWy T
j

1
jj

T
jjj

 (3)

End For







1ndoms

0j

jy y (4)

The MPM is inherently parallel and thus suitable for
distributed-memory parallel systems.

0
T
0 :V 

Fig. 2. Domain Ω and subdomain Z0

B. Multi-Projection Method with Subspace Compression
(MPMSC)

The MPMSC method is a variant of MPM that utilizes a
subspace compression technique to decrease the memory
requirements, [10]. Moreover, in the MPM method the ndoms-
1 should be less than mj, otherwise the local linear systems
have more aggregated (coarse) components than fine
components. The aggregated (coarse) components of a
subdomain Zj are re-aggregated together to reduce the number
of aggregates (naggs) and therefore the size of the local linear
system is decreased. Consider the respective compressed

subdomains jZ
~

 and their prolongation matrices

jV
~
∈Թ)naggsm(n

j
 : jZ

~
. The local linear systems are of

the following form:

 j
T
jjj

T
j b

~
bV

~
x~V

~
AV

~
 , (5)

and the product of the MPMSC preconditioner by a vector is
given by the following algorithmic procedure, [10]:

For j=0,…,ndoms-1

 Compute xV
~

AV
~

WWy T
j

1
jj

T
jjj

 (6)

End For







1ndoms

0j

jy y (7)

Further details concerning the subspace compression
technique are given in [10].

C. Implementation Details

Multi-Projection-type Methods are used as a preconditioner
in the Parallel Preconditioned restarted Generalized Minimum
Residual Method, namely (PPGMRES(m)), [16,17]. The
algorithm of PPGMRES(m) along with discussion concerning
implementation issues are given in [9]. The IaaS cloud
computing model provides virtual machines, where each of
them has a number of vCPUs (virtual CPUs). Therefore, the
hybrid parallel implementation of PPGMRES(m) in
conjunction with Multi-Projection-type Methods is suitable for
the cloud environment. Every subdomain of the Multi-
Projection-type Methods is mapped to a virtual machine. The
MPM and MPMSC are designed to require only minimum
internode communication, since its subdomain is handled
separately. The local linear system of each subdomain is solved
in parallel by a direct method. Both PARDISO, [18,19,20], and
a variant of sparse LU, [21], have been used. It should be noted
that the factorization phase of the direct method is included in
the pre-processing step.

IV. IMPACT ON PEFORMANCE AND SIMULATION

The performance of HPC applications in Cloud
environments is affected by phenomena such as the “noisy
neighbor” phenomenon, the heterogeneity of hardware or the
varying network speeds due to software defined networking or
bottlenecks.

A. Related work on Cloud related phenomena

The “noisy neighbor” phenomenon is caused by the
simultaneous execution of applications by different users in the
same physical resource. The three major factors that affect
performance in modern NUMA architecture multicore systems
are: a) remote access penalty, b) shared resource contention
and c) cross-chip data sharing overhead. The shared last-level
cache (LLC) is also a major factor that affects performance,
[22,23]. Moreover, as the number of applications that run
simultaneously on a physical resource increases, the more the
performance decreases, since the available cache per
application is reduced, [23]. With the aforementioned in mind,
it can be seen that the execution of applications in Cloud
environments leads to varying results from the aspect of
performance, especially in the case of multiple virtual
machines running in the same physical resource, [22,23].
Multiple solutions have been proposed to tackle the problems
of scheduling virtual processors, including real time
hypervisors, [22], and weighted scheduling strategies, [23].
Moreover, in [23] performance degradation in examined for
various types of applications. Various researchers have
proposed different solutions to the problem of scheduling,
especially in scope of real time systems, [24,25,26]. Adaptive
reservation based approaches have been also proposed, [27].

The heterogeneity of underlying hardware is a major
concern in Cloud Environments, since it affects the symmetry
of computations, especially in parallel distributed memory
applications. High Performance Computing applications
heavily rely on symmetry of the underlying hardware. In order
to ensure symmetry of computations the CloudLightning
system allocates resources belonging to homogeneous vRacks.
Moreover, the allocation of resources can be performed with
locality criteria in order to avoid large variations in network
speeds, [4].

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of occupied Servers (N
A

)

C
ur

re
nt

 P
er

fo
rm

an
ce

 (
P

C
)

Fig. 3. Performance degradation in a vRack with NS=50, PO=1.0, PW=0.5.

0 5 10 15 20 25 30 35 40 45 50
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

C
ur

re
nt

 P
er

fo
rm

an
ce

 (
P

C
)

Number of occupied Servers (N
A

)

CPU Type vRack

CPU-GPU Type vRack

Fig. 4. Performance degradation for two vRacks composed of different types
of servers.

B. Linear performance degradation model for the
CloudLightning system

The CloudLightning system involves three major use cases:
a) Oil and Gas Exploration, b) Ray-Tracing and c) Genomics.
These use cases are composed of general sparse and dense
matrix computations and have irregular memory access
patterns. Multi-Projection type methods involve general sparse
and dense matrix computations, thus model the three major use
cases involved in CloudLightning. These types of computations
are expected to suffer degradation ranging from 100% to 10%,
[23]. The simulation of a Cloud environment, such as

CloudLightning, [4], should take into account the performance
degradation occurring due to the aforementioned issues. Let us
consider a vRack, composed of NS (homogeneous) servers and
NA the number of servers occupied. Then a linear model can be
used to adjust the performance of underlying simulated
hardware:

  WO
S

A
OC PP

N

N
PP  (8)

where   OWC P,PP Թ,    ,0PW Թ,    ,PP WO Թ
with PO>PW are the current performance index, the worst
performance index and the optimal performance index,
respectively. It should be noted that PC, PO and PW are
dimensionless numbers and can be computed as the ratio of
performance metrics, such as GFLOPS, obtained in baseline
system and another system, with respect to a certain procedure
(or collection of procedures). In example, if the matrix
multiplication algorithm is computed 20% faster on a CPU-
GPU system compared to a baseline CPU system then its
PO=1.2. Equivalently, PC can be defined as the ratio of
performance metrics obtained from the same CPU-GPU system
in presence of performance degrading phenomena, such as
“noisy neighbor”, using as denominator the same baseline
metrics as before. Thus, this linear performance degradation
model, based on differential performance indices, can be used
to express the expected extension of required time to complete
a given task when there are other users that simultaneously
utilize the same physical resources. From Equation (8) it can be
seen that current performance index is analogous to the number
of servers NA that are already occupied in the vRack. An
example of performance degradation in a vRack with NS=50,
PO=1.0, PW=5 is presented schematically in Fig. 3.

It should be noted that the linear model of Equation (8) can
be used to model the performance degradation of more
complicated types of resources grouped in vRacks i.e., CPU-
GPU pairs. Moreover, vRacks that group different types of
servers can be modelled simultaneously i.e., let us consider two
vRacks composed of 50 servers each. vRack 1 has CPU type
servers and vRack 2 has CPU-GPU type servers. Let as also
consider an application that has implementations for CPU type
servers and CPU-GPU type servers, where the CPU-GPU type
implementation is 20% faster. Furthermore, the worst case
performance is 0.5 and 0.6, for CPU type servers and CPU-
GPU type servers, respectively, for the aforementioned
application. Then the linear model is of the following form:

  














2vRack,
50

N
6.02.1

1vRack,
50

N
5.00.1

NP
A

A

A
vRack
C . (9)

The performance degradation model (9) is schematically
represented in Fig. 4. Analogously, linear performance
degradation model (9) can be extended to multiple types of
hardware with respect to a baseline implementation with
optimal performance index set to PO=1.

Another important issue arising in Cloud environments is
the exposure of specialized hardware i.e., vector units that
reside in modern CPUs, available to the user through the

virtual machines. These vector units are known to enhance
performance of computations. This type of specialized
hardware and other types of specialized hardware such as
GPUs or SSD disks have to be explicitly prescribed to the
scheduler of the Nova component in order to allocate sufficient
resources, [11]. In this example, the Nova component should
be configured to allow either “host-pass through” or “host-
model” in order for specialized hardware residing in CPUs,
such as vector units, to be visible to the user, [11]. The “host-
pass through” property enables full visibility of the underlying
hardware which favors performance, but hinders portability in
migrating a VM to other hardware. The “host-model” property
reveals the model of the underlying processor (with respect to
processor family), thus enabling improved portability in VM
migration, in the expense of slightly reduced performance.
Herewith, the OpenStack Nova component is configured with
“host-model” property to ensure portability during the VM
migration.

In the following Section, numerical results depicting the
applicability and effectiveness of Multi-Projection type
methods obtained are given.

V. NUMERICAL RESULTS

In order to assess the performance of the OpenStack based
Cloud environment various model problems were solved using
Multi-Projection type methods. The first model problem is the
3D Poisson equation in three space variables, subject to
Dirichlet boundary conditions. The Poisson equation was
discretized with the 7-point stencil. The right hand side of the
linear systems was computed as the product of coefficient

matrix A with the solution vector set to T]1n,...,1,0[ , where n
denotes the order of the linear system. Two additional model
problems, obtained from the Florida University sparse matrix
collection, were considered, [28]:

 apache2 with size n=715176 and number of
nonzero elements equal to 4817870,

 af_shell3 with size n=504855 and number of
nonzero elements equal to 17562051.

The right hand side vector b for the above model problems
was computed as the product of coefficient matrix A with the

solution vector set to T]1n,...,1,0[ . The restart parameter of
PPGMRES(m) was set to 20 and the maximum iterations was
set to 500 iterations. The termination criterion for the Multi-

Projection methods, for all experiments, was
2

8
2

b10r  ,

where r is the residual vector, b is the right hand side vector
and

2
. is the 2-norm. The execution time is given in “seconds.

hundreds (ss.hh)”. A cluster was deployed in the OpenStack
based Cloud environment consisting of 4 VMs, with 2 vCPUs
each, running CENTOS 7. It should be noted that two different
implementations of the MPM and MPMSC method where used
for assessing performance. The first Cloud based
implementation denoted hereafter as (MKL) is based on Intel
MKL and PARDISO, [18,19,20,29]. The second Cloud based
implementation denoted hereafter as (BLAS) was based on
BLAS and a variant of sparse LU, [21,30]. For assessing the

scalability of the MPM and MPMSC methods additional
results were obtained using a BlueGene/P (BG/P)
supercomputer with the following specifications: (CPU: 1024x
Quad-Core PowerPC-450 850Mhz, RAM: 4GB/node, inter-
connect: 3D-Torus network with bandwidth 5.1 GBps). It
should be noted that “Subds” denote the number of subdomains
and “Aggs” denote the number of aggregates.

In Table 1, the performance and convergence behavior of
the MPM and MPMSC methods for various numbers of
processors (BG/P) and for the 3D Poisson problem with
n=125000 are given. In Table 2, the performance and
convergence behavior of the MPM and MPMSC methods for
various numbers of processors (BLAS) and for the 3D Poisson
problem with n=125000 are given. In Fig 5, the strong
scalability of the MPM and MPMSC methods for different
implementations and for the 3D Poisson problem with
n=125000 is given. From Tables 1, 2 and Fig. 5 can be seen
that the strong scalability of the MPM and MPMSC methods is
better in the BG/P system than the Cloud system, [6,7,8]. In
Fig. 6, the strong scalability of the MPM and MPMSC methods
for different compatibility modes of Intel MKL for the 3D
Poisson problem with n=512000 is presented. From Fig. 6, it
can be observed that the use of AVX units greatly improves the
performance for both methods. In Fig 7, the weak scalability of
MPM and MPMSC methods (MKL) for the 3D Poisson
problem with 64000 unknowns per node, is given.

TABLE I. PERFORMANCE AND CONVERGENCE BEHAVIOR OF THE MPM
AND MPMSC METHODS FOR VARIOUS NUMBERS OF PROCESSORS (BG/P) FOR

THE 3D POISSON PROBLEM WITH N=125000.

Method Nodes Cores Subds Aggs Iter. Performance

MPM

2 4 16 15 2(11) 2276.8078

3 6 24 23 2(10) 996.7118

4 8 32 31 2(10) 505.7879

MPMSC

2 4 16 3 3(8) 992.2571

3 6 24 6 3(10) 586.7975

4 8 32 6 3(12) 233.6427

TABLE II. PERFORMANCE AND CONVERGENCE BEHAVIOR OF THE MPM
AND MPMSC METHODS FOR VARIOUS NUMBERS OF PROCESSORS (BLAS) FOR

THE 3D POISSON PROBLEM WITH N=125000.

Method Nodes Cores Subds Aggs Iter. Total

MPM

2 4 16 15 2(11) 179.5582

3 6 24 23 2(10) 96.4939

4 8 32 31 2(10) 59.2548

MPMSC

2 4 16 3 3(8) 84.2075

3 6 24 6 3(10) 72.2509

4 8 32 6 3(12) 28.6298

From Fig. 7, it can be seen that the weak scalability is not
constant with the increase of cores, since the underlying
hardware is heterogeneous in nature. Moreover, the weak
scalability of the schemes is affected by the interconnection
speeds. In Tables 3 and 4, the performance and convergence

behavior of the MPM and MPMSC methods, respectively, for
various number of cores and for different problems are
presented. In Table 5, the performance, convergence behavior
and performance degradation of the MPM and MPMSC
methods for single processor executions (MKL) and various
problems are given.

Fig. 5. Strong scalability of the MPM and MPMSC methods for different
implementations for the 3D Poisson problem.

Fig. 6. Strong scalability of the MPM and MPMSC methods for different
compatibility modes of Intel MKL for the 3D Poisson problem with
n=512000.

Fig. 7. Weak scalability of the MPM and MPMSC methods (MKL) for the
3D Poisson problem with 64000 unknowns per node.

It should be mentioned that the additional workload to the
available resources in the OpenStack based Cloud
environment is created using the Prime95 Stress testing

software, [31]. Moreover, the latest version of Prime95 has
AVX2 support. The Prime95 was run in Blend mode (pre-set
mode) stressing both available CPUs and memory with
variable size FFT.

TABLE III. PERFORMANCE AND CONVERGENCE BEHAVIOR OF THE MPM
METHOD FOR VARIOUS NUMBERS OF PROCESSORS (MKL) FOR VARIOUS

PROBLEMS.

Problem Nodes Cores Subds Aggs Iter Performance

apache2

1 1 4 3 4(18) 236.5840

1 2 8 7 7(12) 187.4231

2 2 8 7 7(12) 144.0143

2 4 16 15 7(18) 87.9084

3 3 12 11 8(12) 188.9736

3 6 24 23 6(19) 102.7597

4 4 16 15 7(18) 151.9132

4 8 32 31 7(18) 107.6127

af_shell3

1 1 4 3 2(7) 103.0759

1 2 8 7 2(17) 65.7306

2 2 8 7 2(17) 51.6204

2 4 16 15 3(16) 42.0841

3 3 12 11 3(10) 73.8761

3 6 24 23 3(19) 52.9229

4 4 16 15 3(16) 68.0442

4 8 32 31 4(6) 54.2996

TABLE IV. PERFORMANCE AND CONVERGENCE BEHAVIOR OF THE
MPMSC METHOD FOR VARIOUS NUMBERS OF PROCESSORS (MKL) FOR

VARIOUS PROBLEMS.

Problem Nodes Cores Subds Aggs Iter Performance

apache2

1 1 4 2 13(4) 551.2392

1 2 8 3 18(12) 428.7588

2 2 8 3 18(12) 327.5805

2 4 16 5 17(3) 198.6106

3 3 12 5 18(20) 410.0613

3 6 24 7 25(14) 362.4505

4 4 16 5 17(3) 318.6274

4 8 32 10 21(15) 280.1670

af_shell3

1 1 4 1 0(11) 37.5874

1 2 8 4 3(9) 78.2034

2 2 8 4 3(9) 60.7310

2 4 16 5 3(8) 36.6561

3 3 12 5 2(15) 59.3741

3 6 24 7 2(13) 38.2436

4 4 16 5 3(8) 61.6374

4 8 32 11 3(10) 43.6878

The Blend mode automatically allocates required memory
and uses in-place as well as small FFTs that stress cache
memory and FPU units, [31].

TABLE V. PERFORMANCE, CONVERGENCE BEHAVIOR AND
PERFORMANCE DEGRADATION OF THE MPM AND MPMSC METHODS FOR
SINGLE PROCESSOR EXECUTIONS (MKL) AND FOR VARIOUS MODES AND

VARIOUS PROBLEMS.

Method Wload Mode Problem
Subds/
Aggs -

Iter
Perf.

Degr.
(%)

MPM

NO
A

3D Poisson
n=512000

4/3 -
2(14)

239.9149 -

YES 266.6759 11.15

NO
C

188.0013 -

YES 209.4785 11.42

MPMSC

NO
A

3D Poisson
n=512000

4/1 -
3(10)

215.7437 -

YES 229.8989 6.56

NO
C

265.9169 -

YES 298.5315 12.26

MPM
NO

A
apache2

n=715176
4/3 -
4(8)

236.5840 -

YES 242.0023 2.29

MPMSC
NO

A
apache2

n=715176
4/2 -
13(4)

551.2392 -

YES 567.1074 2.88

Average
Degradat

ion
7.76

0 5 10 15 20 25 30 35 40 45 50
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

C
ur

re
nt

 P
er

fo
rm

an
ce

 (
P

C
)

Number of occupied Servers (N
A

)

Fig. 8. Performance degradation in a vRack with NS=50, PO=1.0, PW=0.9234.

The experiments presented in Table 5, have an average
degradation in performance 7.76% when the Cloud
environment is in maximum load. Thus, a linear model can be
derived using equation (8):  SAC N/N)9234.01(1P  . The
linear performance degradation model of a vRack composed of
the hardware presented in Section 2, based on the obtained
experimental results, is schematically represented in Fig. 8.
Cloud environments offer the flexibility of dynamically
allocating resources of variable capacity with respect to vCPU

number or available memory, however the scalability,
compared to dedicated HPC clusters, is limited and the
performance is affected by other users simultaneously using the
same physical resources, as presented in Fig. 5,6 and Table 5.

VI. CONCLUSION

The presented methods have been shown to be scalable in
Cloud environments for solving various types of problems.
Moreover, the use of vector units substantially improves
performance, thus the “host-model” or “host-passthrough”
property should be used in the configuration of the Nova
component, especially for HPC applications in an OpenStack
based Cloud environment. Furthermore, a linear performance
degradation model has been derived based on experimental
results obtained from the solution of various problems with and
without additional workload in the OpenStack based
environment. The linear performance degradation model can be
used for large scale simulation of Cloud environments, based
on the CloudLightning system, [4]. Future work will
concentrate in the augmentation of the linear performance
degradation model with the impact of intercommunications as
well as its refinement based on results obtained in a
CloudLightning based Cloud environment.

ACKNOWLEDGMENT

This work is partially funded by the European Union’s
Horizon 2020 Research and Innovation Programme through the
CloudLightning project (http://www.cloudlightning.eu) under
Grant Agreement Number 643946.

The authors would like to express their thanks to Professor
Dana Petcu, Department of Computer Science, West
University of Timisoara (UVT), for the provision of
computational facilities through the UVT HPC Center.

REFERENCES
[1] D.C. Marinescu, A. Paya, J.P. Morrison and P. Healy, “Distributed

Hierarchical Control versus an Economic Model for Cloud Resource
Management,” arXiv: 1503.01061v4 [cs.DC], 2015.

[2] A. Barroso and U. Hozle, “The case for energy-proportional
computing,”. IEEE Computer, vol. 40, issue 12, pp. 33-37, 2007.

[3] A. Barroso, J. Clidaras and U. Hozle, “The Data-center as a Computer;
an Introduction to the Design of Warehouse-Scale Machines,” 2nd ed.,
Morgan & Claypool, 2013.

[4] T. Lynn, H. Xiong, D. Dong, B. Momani, G. Gravvanis, C. Filelis-
Papadopoulos, A. Elster, M.M. Khan, D. Tzovaras, K. Giannoutakis, D.
Petcu, M. Neagul, I. Dragon, P. Kuppudayar, S. Natarajan, M. McGrath,
G. Gaydadjiev, T. Becker, A. Gourinovitch, D. Kenny, J. Morrison,
“CLOUDLIGHTNING: A Framework for a Self-Organising and Self-
Managing Heterogeneous Cloud”, in Proceedingsof the 6th International
Conference on Cloud Computing and Services Science (CLOSER),
Rome, Italy, Volume 1, pp. 333-338, 2016.

[5] T.F. Chan and T.P. Mathew, “Domain decomposition algorithms,” Acta
Numerica, vol. 3, pp. 61-143, 1994.

[6] S-N. Srirama, O. Batrashev, P. Jakovits and E. Vainikko, “Scalability of
parallel scientific applications on the cloud”, Scientific Programming,
vol. 19, pp. 91-105, 2011.

[7] E. Deelman, G. Singh, M. Livny, B. Berriman and J. Good, “The cost of
doing science on the cloud: the montage example,” in International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC 2008, Austin, TX, USA, IEEE CS Press, pp. 1-12, 2009.

[8] L. Ismail and R. Barua, “Implementation and performance evaluation of
a distributed conjugate gradient method in a cloud computing
environment,” Software-Practive and Experience, pp. 1-27, 2010.

[9] B. Moutafis, C.K. Filelis-Papadopoulos and G.A. Gravvanis, “Multi-
Projection preconditioned methods based on semi-aggregation
techniques,” submitted.

[10] B. Moutafis, C.K. Filelis-Papadopoulos and G.A. Gravvanis,
“Scalability of Multi-Projection preconditioned methods based on
subspace compression,” submitted.

[11] OpenStack, “Open source cloud computing software,”
https://www.openstack.org/, June 2016.

[12] G.J. Popek and R.P. Goldberg, “Formal requirements for virtualizable
third generation architectures,” Communications of the ACM, vol. 17,
issue 7, pp. 412-421, 1974.

[13] QEMU, “Open source processor emulator,” http://www.qemu.org, June
2016.

[14] Y. Saad, “Iterative methods for sparse linear systems”. SIAM, 2003.

[15] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM J. Sci. Comput., vol. 20, issue
1, pp. 359-392, 1998.

[16] Y. Saad and M.H. Schultz, “GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems,” SIAM J. Sci.
Comput. vol. 7, issue 3, pp. 856-869, 1986.

[17] C.C. Douglas, G. Haase and U. Langer, “A tutorial on elliptic PDE
solvers and their parallelization,” SIAM, 2003.

[18] O. Schenk and K. Gärtner, “On fast factorization pivoting methods for
sparse symmetric indefinite systems,” Electronic Transactions on
Numerical Analysis vol. 23, issue 1, pp. 158-179, 2006.

[19] O. Schenk and K. Gärtner, “Solving unsymmetric sparse systems of
linear equations with PARDISO”. Future Generation Computer Systems
vol. 20, issue 3, pp. 475-487, 2004.

[20] O. Schenk and K. Gärtner and W. Fichtner, “Efficient sparse LU
factorization with left-right looking strategy on shared memory
multiprocessors,” BIT, vol. 40, issue 1, pp. 158-176, 2000.

[21] T.A.Davis, “Direct methods for sparse linear systems,”. SIAM, 2006.

[22] S. Xi, C. Lu, C.D. Gill, M. Xu, L.T.X. Phan, I. Lee and O. Sokolsky,
“RT-OpenStack: cpu resource management for real-time cloud
computing,” in IEEE 8th International Conference on Cloud Computing,
2015, New York City, NY, IEEE CS press, pp. 179-186, 2015.

[23] J. Rao, K. Wang, X. Zhou and C-Z. Xu, “Optimizing virtual machine in
NUMA multicore systems,” in IEEE 19th International Symposium on
High Performance Computer Architecture (HPCA2013), 2013, Shenzen,
IEEE CS press, pp. 306-317, 2013.

[24] Z. Deng and J.W-S. Liu, “Scheduling real-time applications in an open
environment,” in IEEE 18th Real-Time Systems Symposium, 1997.

[25] I. Shin and I. Lee, “Compositional real-time scheduling framework,” in
IEEE 25th International Real-Time Systems Symposium, 2004.

[26] H. Leontyev and J.H. Anderson, “A hierarchical multiprocessor
bandwidth reservation scheme with timing guarantees,” Real-Time
Systems, 2009.

[27] S. Groesbrink, L. Almeida, M de Sousa and S.M. Petters, “Towards
certifiable adaptive reservations for hypervisor-based virtualizations,” in
IEEE 19th Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2014, Berlin, IEEE CS Press, pp. 13-24, 2014.

[28] T.A. Davis and Y. Hu, "The University of Florida sparse matrix
collection," ACM Transactions on Mathematical Software, vol. 38, issue
1, number 1, pp. 1-25, 2011.

[29] Intel MKL, “Intel Math Kernel Library”, https://software.intel.com/en-
us/intel-mkl, June 2016.

[30] C.L. Lawson, R.J. Hanson, D.R. Kincaid and F.T. Krogh, "Basic linear
algebra subprograms for Fortran usage," ACM Transactions on
Mathematical Software (TOMS), vol. 5, issue 3, pp. 308-323, 1979.

Prime95, “Great Internet Mersenne Prime Search,”
http://www.mersenne.org/, June 2016.

