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Highlights

On planar self-folding magnetic chains: Comparison of Newton-
Euler dynamics and internal energy optimisation

T.H. Fass, Guangbo Hao, Pádraig Cantillon-Murphy

• Characterisation and implementation of planar magnetic chains at bench-
top scale to investigate magnetic self-folding

• Analysis of folding prediction methods for planar self-folding magnetic
chains, with special focus on energy minimization methods and Newton-
Euler dynamics

• Novel analytical interpretation and numerical application of Newton-
Euler equations for the prediction of planar self-folding magnetic chains

• Demonstration of potential for self-folding magnetic chains for applica-
tions in minimally invasive surgery
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Abstract

Within the wide field of self-assembly, the self-folding chain has the unique
capability to pass through narrow openings, too small for the assembled
structure, yet consists in one connected body. This paper presents a novel
analytical framework and corresponding experimental setup to quantify the
results of a self-folding process using magnetic forces at the centimetre-scale,
with the aim to put experimental results and prediction methods in the
context of surgical anchoring and therapy. Two possibilities to predict the
folding of a chain of magnetic components in 2D are compared and inves-
tigated in an experimental setup. Folding prediction by system Coulomb
energy, neglecting folding dynamics, is compared with a simulation of the
system dynamics using a novel approach for 2D folding chains, derived from
the Newton-Euler equations. The presented algorithm is designed for the
parallel computation architecture of modern computer systems to be easily
applicable and to achieve an improved simulation speed. The experimental
setup for the self-folding chain used to validate the simulation results con-
sists of a chain of magnetic components where movement is limited to one
plane and the chain is agitated by the magnetic forces between the chain
components. The folding process of the experimental setup is validated for
its stability and predictability under different deployment modes. Finally,
the results are discussed in light of the folding prediction of longer chains.
The implications of the presented findings for a 3D folding chain are dis-
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cussed together with the challenges to apply the novel dynamics simulation
algorithm to the 3D case. The work clearly demonstrates the potential for
this novel approach for complex self-folding applications such as magnetic
compression anastomosis and anchoring in minimally invasive surgery.

Keywords: Magnetic self-folding chain, self-assembly, Newton-Euler
dynamics, magnetic surgery

1. Introduction

Self-assembly, as a branch of robotics, seeks to enable machines and de-
vices to assemble themselves in order to allow for improved assembly methods
or a flexible change of functionality [1]. A sub group of self-assembly is the
self-folding, where a chain of components folds to specific shapes [2]. The
biological model par excellence for this is protein biosynthesis.

Protein biosynthesis is a process in every living cell in which a chain of
amino acid molecules folds into complex 3D structures called proteins [3].
The process is able to produce a wide range of shapes, depending on the
sequence of amino acids along the chain. Understanding and predicting the
principle of self-folding chains could not only lead to engineering of proteins,
but the process could be translated to origami robots[4] across multiple scales,
capable of mimicking a wide range of shapes and tools. One particular ap-
plication of interest is to apply self-folding chains, with magnetism as the
processes driving force, for uses in minimally invasive surgery, exploiting the
property of magnetic self-folding chains to pass through narrow deployment
ports. During surgery, a chain of magnetic components could be fed through
a catheter [5, 6] to be deployed in a otherwise difficult to reach orifice. After
deployment the chain assembles itself as a surgical tool or therapeutic device
larger than the catheter or port used to deploy them. Self-assembled tools
might be an anastomoses ring [7] or magnetic anchor [8]. In order to fold
the chain into a specific shape, reliable prediction of the folding process is
necessary.

Many mathematical approaches for the prediction of self-folding [9] and
rigid body dynamics [10] exist. The current work explores a concept for
simple 2D magnetic self-folding chains mimicking the capability of protein
biosynthesis for a self-assembling process and explores two different approaches
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to predict the folding of the chain. In this paper the folding process is limited
to a 2D plane for controllability.

A simple 2D magnetic folding chain has been constructed and its folding
behaviour analysed for repeatability and real time dynamics. These experi-
mental results are used to validate numerical prediction methods. The real-
time dynamics simulation is based on a novel interpretation of Newton-Euler
dynamics, that seeks to offer an alternative to existing rigid body dynam-
ics algorithms. By expressing the dynamics of a planar chain in a single
vectorised differential algebraic equation, the resulting algorithm allows a
convenient implementation that utilises parallel computation architecture.
The dynamics simulation, is compared to experimental results as well as the
prediction of the folding comparing the free energy of all possible foldings of
the system. As the chains discussed in this paper fold themselves into as-
sembled structures without coordinated manipulation from outside driving
forces, they may be considered self-assembling [1]. However, for self-assembly
to reliably fold into useful structures, it has to be predictable. As magnets
are scalable and might produce high forces in comparison to their weight
and size, they are used as actuators in many applications of self-assembling
systems [11].

Here we discuss existing ways to predict this process of self-folding in order
to validate the results of the paper. The movement of a chain of components
can be predicted in one of two different ways:

(1) Analysing the dynamics of the system, allows to predict the steps of
movement and follow it to its state of interest.

(2) Directly predicting possible states of interest and picking the one most
likely to occur.

In both cases, a particular state of interest is where the system is in equilib-
rium and the components stop moving with respect to each other.

As all systems drive toward their minimum of internal free energy [12],
the folding chain has such states of interest where the internal energy of the
system reaches a global or local minimum. These states of interest, where
the components of the chain stop moving with respect to each other, are
referred to as folded states in this paper. By its definition, these state of in-
terest are static and, in the case of a folding chain, the internal free energy of
the system might be defined by potential energy resulting from forces acting
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on the system, such as gravity, or forces acting within the system, such as
magnetic attraction or repulsion. If the internal energy of the system can be
calculated, its minimum value can be found and, with it, the folded states
of the system, without regarding the movement to reach this state. Depend-
ing on the system, this approach may be more efficient than calculating the
system dynamics and is often used in the prediction of protein folding [3]. A
real system, however, might fold into a local minimum of internal free energy
instead of the global minimum. Different approaches exist to compensate
for such events. Analysing the dynamics of the system gives a better under-
standing of the folding process and predicts in which minima of free energy
the system may lie [13].

The dynamics of a system are commonly characterised by the Newton-
Euler equation or the Euler-Lagrange equation. The Newton-Euler equation
is based on an equilibrium of forces F and acceleration a acting on a body
with the mass m;

ma = F (1)

and the equilibrium of torques τ and angular acceleration α of the same body
with inertia I can be described as;

Iα = τ +
∂α

∂t
× I ∂α

∂t
(2)

In the 2D case ∂α
∂t
× I ∂α

∂t
= 0 and Equation (2) is reduced to;

Iα = τ (3)

The Euler-Lagrange equation (second kind) is expressed as;

∂

∂t

∂L

∂ξ̇i
− ∂L

∂ξi
= 0 (4)

where L = T − V is the difference of the kinetic energy T and the potential
energy V . ξi are the generalised coordinates of the system and ξ̇i are the
generalised velocities. Silver 1982 [14] attempts a comparison between the
Euler-Lagrange and the Newton-Euler approach and shows that both are
comparable in the possible representation of rotation in the system and both
may potentially be used recursively to compute the dynamics of a system.
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The system dynamics can be efficiently computed recursively with the
Articulated-Body Algorithm[15], by computing the forces in the links, com-
ponent by component. Due to the use of Graphics Processing Units (GPU),
multi core processors and the Single Instruction Multiple Data (SIMD) model
[16] modern computers are able to process multiple operations simultane-
ously and significantly increase computational speed. A different class of
algorithms is necessary to utilise this potential for parallel computation ar-
chitecture, such as with the Divide and Conquer algorithm [17] that is based
on the Newton-Euler equations. Chadaj 2017 [18] presents a implementation
of Divide and Conquer algorithm for the Hamilton equations to utilise paral-
lel computation capability. These algorithm separate the chain in segments
that are computed simultaneously. Another possibility is the vectorisation of
the algorithm, where the dynamics of the system are represented in a set of
vector equations that allow for the computation of system dynamics for all
components of the system simultaneously. GPUs and the SMID model are
particularly efficient in regards to vector computations [16]
K. Chadaj 2017 [18] presents a recursive algorithm suitable for parallel com-
putation is based on Euler-Lagrange equations. A. Stokes1996 [19] and P.C.
Müller 1992 [20] describe two vectorised approaches to the Euler-Lagrange
kinematics.

A vectorised approach to Newton-Euler dynamics, as presented by P.C.
Müller 1992 [20] and R. Lathrop 1985 [21], is generalised for any composite
of rigid bodies to compute the forces in the system and associated system
dynamics [22].

2. Self-Folding Magnetic Chain Design

While the preceding approaches of describing the dynamics of multi-rigid-
body systems based on Newton-Euler or Euler-Lagrange are applicable to
general folding chains, they are applied and tested in this paper for a chain
folding itself driven by magnetic forces between the components on a plane.
This section describes the analysed setup.

Each chain component is a square casing and is connected to the previous
and the next component by a wire as seen in Figure 1. A cotton, polyester
wire with high bending elasticity and a low axial elasticity was chosen, to
best approximate a revolute joint between the components. The dimension
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Figure 1: Experimental setup of the 2D self-folding magnetic chain

20mm

20mm

Magnets

Wire

Lid

Casing

3.2mm

6.4mm 20mm

3.2x6.4x3.2mm

Figure 2: Single component of the 2D self-folding magnetic chain, investigated in this
work. Orientation of the magnet is displayed on the lid of the casing.
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Figure 3: Tested sequences of components in 2D self-folding. ”N” and ”S” indicate the
magnet polarisation relative to outward faces.

of each component can be seen in Figure 2. The casings were designed to
allow an exchange of the magnets and approximate the behaviour of an ideal
chain. In the present work, the degree of freedom is defined as the angle be-
tween each chain component. The chain folds on a flat, low friction surface
due to the forces acting between the magnets. All movement is normal to
the surface and is restricted to two dimensions. Gravity is only applied in
the friction model. Each component contains one magnet on each of the four
faces, having either its north or south side closest to the outer face as seen
in Figure 2.

The chain is defined by the sequence of casing components and how their
magnets are oriented relative to outward faces. For components containing
four magnets as seen in Figure 2. This results in 24 = 16 different combi-
nations of magnetic orientation in each casing component, resulting in 16n

different sequences of chain components, for a chain with n components. This
setup allows for an easy implementation of different sequences by manually
exchanging the magnets, while the limitation of the movement to a plane
increases controllability and allows for a better observation and analysis of
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the chain movement.

The given experimental setup supports a chain length of up to 6 com-
ponents. In experiments with more components the magnets at this scale
does not provide sufficient force to overcome surface friction and the folding
process does not occur. During the folding process the self-folding chain is
assumed to minimise its internal free energy. The chain changes from an un-
folded high energy state to a folded low energy state. This low energy state
might not be the minimal possible energy of the system but a local minimum.
The free energy of the chain is the sum of kinetic and potential energy. In the
folded position the chain is in rest and the kinetic energy is zero. Therefore,
only the potential energy defines the folded states of the chain. However,
during the folding process the inertia of the chain might influence how the
fold occurs and which energy minimum is reached. The experimental setup
allows for the specific construction of number and shape of possible folding
shapes and the corresponding energy minima. It is of interest what the effect
of multiple energy minima has on the reliability of the folding process as well
as the possible effect of the chain inertia. Three distinct chain types were
investigated to quantify the folding process:

(1) The chain has multiple stable states, resulting in multiple local minima
of the internal free energy.

(2) The chain has multiple stable states, resulting in local minima of the
internal free energy, one of which requires the least possible lateral
displacement of the components.

(3) The chain is constructed to only support one stable state.

A state is considered stable if it is fully folded and no two magnets with the
same polarity face toward each other. Therefore, for each chain type case,
a representative exemplar of a distinct chain as displayed in Figure 3 was
build and analysed. In the following sections, a folding prediction search
based on minimisation of internal energy is compared to a novel interpreta-
tion of the Newton-Euler equations to simulate the dynamics of a magnetic
chain, followed by presentation of an experimental setup of self-folding mag-
netic chains. Finally, simulated results are compared to the experimental
outcomes.
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3. Magnetic Point Charge Model

In this paper, the magnets are simulated with the point charge model,
where each magnetic face is represented by a set of point charges. These
point charges are introduced based on the magnetic charge analogy to electric
charges but with no physical significance [23]. Each magnet is approximated
by 2ḣ point charges of equal absolute charge |q| and with h point charges
equally distributed over each north and south polarised surface. The forces
acting between the magnets are approximated by the sum of forces acting
between the point charges. The force acting on the kth magnetic point charge
with respect to the lth magnetic point charge, with the charges qk and ql, is
defined by Coulomb’s law for magnetic charges [23]:

~Fmag kl = (~xl − ~xk)
µ0

4π

qkql
|~xl − ~xk|3

(5)

where ~xk and ~xl are the positions of the respective point charges and µ0 =
4π · ∗/10−7 Am/T is the constant magnetic permeability of free space.

The potential energy in the system wich is defined by magnetic interaction
as a function of point charge position can be expresed as;

U(~x1, .., ~xnq) =

nq∑

k

nq∑

l|k 6=l

µ0

4π

qkql
|~xl − ~xk|

(6)

with U(~x1, .., ~xnq) being the Coulomb energy of the system, given by the
double summation over all nq point charges with k 6= l.
The absolute charge |q| = |qk| = |ql| was considered equivalent for all mag-
netic charges, as is typically the case in a magnetic system.

4. Energy Minimisation Method

In this section the calculation of internal free energy for a magnetic chain
is discussed and used to identify possible minima of internal free energy, to
attempt a prediction of the results of the folding process [12].

The approach is applied to the chains described in Figure 3. Only fully
folded chains are considered states of interest. A chain is fully folded if none
of the components is moving with respect to each other. As such, the kinetic
energy of the system is neglected and the internal free energy of the static
system is defined only by the potential energy resulting from the magnetic

9

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



force between the magnets, presented in (6). As only static states of the
system are analysed, friction is neglected in this calculation.

For this simulation the residual flux density for each magnet was esti-
mated as 0.6 T , measured with a flux meter on the surface of the magnet,
resulting in a point charge magnitude of

qi = ±17.1892 Am

2h
(7)

No significant change in the folding prediction was observed for h ≥ 3 point
charges per polarised surface as subsequently shown by the comparison to the
experimental setup. Therefore each polarised magnetic surface was initially
approximated with h = 3 point charges, corresponding to a magnetic point
facet area of 6 mm2. The dimension of each component can be seen in Figure
2.

Input:(φr i, .., φr n) ∈ Rn

(i) Update component position depending on (φr i, .., φr n)

(ii) Update charge position (~x1, .., ~xnq) depending on component position.

(iii) solve Equation (6) U(~x1, .., ~xnq) =
∑nq

k

∑nq

l|k 6=l
µ0
4π

qkql
|~xl−~xk|

Output: Coulomb energy U ∈ R

Figure 4: Pseudo code describing the cost-function for the Coulomb-energy

The cost function that is to be minimised is the internal potential energy
of the system. In the idealised planar case we assume the potential energy is
equivalent to the Coulomb energy presented in Equation (6). Point charges
with a large distance between them might have an insignificant influence on
the coulomb energy of the system, however as the computational effort of the
analysed systems is low, no distance threshold was implemented to exclude
point charges from computation. The variables of interest are the relative
angles φr i between adjacent components, is fixed to a position relative to one
of the components where the magnet surface is located in the experimental
setup. Therefore, the position of each point charge is fully defined by the
relative angle between components and we therfore define the cost function
as a function of the angles between the components as seen in Figure 4.
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(i) prepare list of results

(ii) for all possible states of φr i ∈ {π/2, 0,−π/2}
(iii) –calculate distance between component centres

(iv) –if all centre distances are greater than 3 mm

(v) —calculate Coulomb energy with cost function (4)

(vi) —add Coulomb energy and corresponding input (φr 1, .., φr n) to list of
results

(vii) Sort list of results for minimum Coulomb energy

Figure 5: Pseudo code describing the full search space optimisation of a magnetic self-
folding chain

This paper does not seek to improve possible optimisation methods but
rather seeks to place possible results of optimisation into the context of ex-
perimental folding and folding dynamics for magnetic chains. Therefore, in
order to eliminate the possibility of missing a state of interest, the internal
energy of all possible states of interest of the chains displayed in Figure 3 were
taken into account. Due to the geometry of the components, only relative
angles of φr i ∈ {π/2, 0,−π/2} could lead to folded states, where φrelative = 0
corresponds to the initial position seen in Figure 3. This results in 36 = 729
states, for n = 6 components. Under certain conditions other stable states
are possible, for example if a component is repelled and attracted at the same
time by closely neighbouring components. This is more likely to occur as the
number of components increases and the closer they are located. In the ex-
perimental setup, the chain was mechanically prevented from these states
to occur as they unnecessarily complicate the experimental setup. To filter
these unrealistic states, all states where the centres of any two components
were less than 3 mm apart are excluded from computation. This includes all
the states where two components overlap and that therefore can not occur in
the experimental setup. Therefore, the optimisation was executed in a dis-
crete search space of φr i ∈ {π/2, 0,−π/2} and with the constraint to exclude
states with overlapping tiles. The corresponding pseudocode is displayed in
Figure 4.

In a clinical application, the self-folding magnetic chain might be de-
ployed via a catheter or needle [7]. In this case, the chain might not fold all
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Figure 6: Component by component energy minimisation to approximate tube-feed de-
ployment mode of sequence 1, in forward (left) and backward (right) deployment.

components at a time as the deployment catheter causes the components to
fold sequentially as they exit the catheter. If the folding speed is higher than
the deployment speed, this might cause the chain components to fold one at
a time. Therefore, we assume a deployment speed slower than the folding
speed to achieve a clear differentiation between three deployment modes:

(i) Free-fold : All components of the chain fold at the same time. All 729
possible folding states are tested.

(ii) Forward tube-feed : The chain is considered to fold one relative angle
between components at a time. Energy minimisation prediction is con-
ducted for the whole chain, one degree of freedom at a time, starting
with the angle between the first and second component, as seen in
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Figure 6.

(iii) Backward tube-feed : The chain is considered to fold one relative angle
between components at a time. Energy minimisation prediction is con-
ducted for the whole chain, one degree of freedom at a time, starting
with the angle between the last and second to last component, as seen
in Figure 6.

4.1. Results

Figure 7 shows the calculated Coulomb energy for the 5 folded states with
the least Coulomb energy, for each chain sequence shown in Figure 3. The
results show that only sequence 3 provides one stable folded state. Further-
more, it shows, that sequence 1 and 2 feature more than one possible stable
state, with associated local minima which the chain could fold into.

The result show that different sequences can stably fold into the same
shape, as S1A and S3A have equivalent outlines, yet different Coulomb en-
ergy score results. As (6) shows, the potential energy between two equally
polarised point charges, repelling each other, increases the sum of Coulomb
energy in the system, whereas two opposite polarised point charges reduce
it. The Coulomb energy is computed between all point charges, including
those point charges that are located in the same component. As the relative
distance between point charges in the same component does not depend on
the position to other components, these add a sequence specific constant to
the Coulomb energy score. As a result, the Coulomb energy score of a folded
chain might be positive as seen for Sequence 2 and yet represent a stable
folding state.

The difference in Coulomb energy between S2B and S2A is 55.89% with
just one of the relative angles between the components being different. S2B
in comparison to S2C has two different angles and a change in Coulomb en-
ergy of just 8.75%. Therefore the change of Coulomb energy is not directly
proportional to the change in shape.

The results also support the assumption that, as the Coulomb energy of
stable foldings decreases, the more faces with opposite polarity are in contact
with each other and as a result, the more compact the shape is.

The tube-feed simulation shows that the chain under the conditions of a
tube-feed does not necessarily fold into its global minima of internal free en-
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ergy. The tube-feed energy minimisation prediction results for each sequence
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are summarised in Table 1.

Table 1: Component by component energy minimisation results, for the tube-feed deployment
mode.

energy minimisation simulation predicted shape

sequence 1; forward S1A
sequence 1; backward S1C
sequence 2; forward S2B
sequence 2; backward S2B
sequence 3; forward S3A
sequence 3; backward S3A

As sequence 3 only supports one possible stable state, it is to be expected
that both forward and backward tube-feed simulation result in the shape S3A.
Sequence 1 shows different folding shapes depending on deployment direc-
tion, as different states might be more favourable depending on deployment
direction when only one component at a time folds. However, sequence 2
features multiple stable states but only folds into shape S2B during tube-feed
simulation. As shape S2B is a straight line of components, the calculation of
Coulomb energy component per component remains constant whether if the
simulation starts with the first or the last component. The reason for this can
be described by comparing shape S2A and S2B. The only difference between
these two shapes is the angle between component 4 and 5. The connection
between component 3 and 6 gives shape S2A two more magnetic surfaces in
contact with each other than all other stable states and as a result shape
S2A is the global minima of all states of interest of sequence 2. However, in
the forward tube-feed scenario when the angle between component 4 and 5 is
optimised, component 6 is still in the tube and cannot come in contact with
component 3. As a result, a fold in the opposite direction is more favourable.
Similarly, the shape S2B is more favourable during the backward tube-feed
scenario.

The backward tube-feed prediction of Sequence 1 suggests that the chain
does not necessarily fold into its global minima, depending on the deployment
mode. In conclusion the energy minimisation method might be modified such
as in the tube-feed prediction to compensate for some deployment modes.
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However, the internal energy of the system is computed by assuming the
system to be static and depending on the movement speed, the dynamics
of the system might cause a fold into an unpredicted minimum of internal
energy.

5. Dynamic Simulation

In light of the evident shortcomings of the energy minimisation approach,
this section formulates the vectorised forward dynamics of a generalised 2D
magnetic chain. The forward dynamics use the forces acting on the chain as
an input and describe the resulting chain movement.

As both the Newton-Euler and the Euler-Lagrange methods are capable
of describing the dynamics of a chain, it is important to determine which one
leads to the computationally more efficient algorithm, to accurately compute
the dynamics of longer chains. In the presented case of a magnetic folding
chain, the degrees of freedom are the folding angles between the chain com-
ponents. Applying the Euler-Lagrange Equation (4) directly, the potential
energy and therefore the Coulomb energy given in Equation (6) is derived
by all degrees of freedom. J. Luh 1980 [24] proposed the introduction of
pseudo accelerations to compensate for gravitational forces. However, the
forces acting on each component in a self-folding magetic chain and the po-
tential energy in the system depend on their distance to other components
in the chain as seen in Equations (5) and (6), whereas this distance is depen-
dent of the folding angles between chain components. The magnetic forces
and the potential energy in the presented system dependent on all folding
angles defining the system. The resulting equation gets super-linearly more
complex with a increasing number of chain components.

In contrast to the Euler-Lagrange algorithm is the consideration of forces
in the Newton-Euler more convenient. In the 2D case as it is analysed here,
the Newton-Euler equations are expressed in their simplified Equations (1)
and (3) and therefore chosen to formulate a single vectorised differential
equation describing the dynamics of a planar folding-chain with any number
of components and thus allowing for a convenient use vector computation
libraries, that are able to utilise the advantages of SIMD architecture.
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Table 2: Table of symbols
sym. description set
n number of components in the chain ∈ N
mi mass of the ith component ∈ R
Ii inertia with respect to the centre of

mass of the ith component
∈ R

zm i position of the ith centre of mass with
respect to the world frame

∈ C

~zm = [zm1, .., zmn]t ∈ Cn
vmi velocity of the ith centre of mass with

respect to the world frame
∈ C

~vm = (vm1, .., vmn)t

ami acceleration of the ith centre of mass
with respect to the world frame

∈ C

~am = [am1 , .., amn ]t

rli complex vector pointing from link be-
tween component i and i−1 to center
of mass of ith component

∈ C

rci complex vector pointing from center
of mass of ith component to the link
between component i and i+ 1

∈ C

φi orientation of ith component with re-
spect to the world frame

∈ R

~φφφ = [φ1 , .., φn ]t ∈ Rn
ωi angular velocity of ith component

with respect to the world frame
∈ R

~ωωω = [ω1 , .., ωn ]t ∈ Rn
ω̇i angular acceleration of ith component

with respect to the world frame
∈ R

~̇ωωω = [ω̇1, .., ω̇n]t ∈ Rn
fgi generalised force acting on the ith

component
∈ C

~fg = [fg 1 , .., fg n ]t ∈ Cn
fli force acting on the joint between the

component i and i− 1
∈ C

~fl = [fl 1 , .., fl n ]t ∈ Cn
tgmi generalised torque acting on the cen-

ter of massof the ith component
∈ R

~tgm = [tgm 1 , .., tgm n ]t ∈ Rn
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5.1. Vectorised complex 2D dynamics of a chain

This work seeks to analyse the dynamics of planar folding chain. In
contrast to the 3D case, each component in the chain has one degree of
freedom, the folding angle. As such, to make use of parallel computation,
a vectorised differential equation was devised that would express angular
acceleration of all chain components in the form

~̇ωωω = F(~ωωω,~φφφ,~f ,~τττ) (8)

Expressing the dynamics in such a form allows for an convenient imple-
mentation with common vector computation libraries, enabling a convenient
utilisation of parallel computation architecture, including SIMD. The vec-
torisation library used in this work is NumPy. This section shows how the
function F(~ωωω,~φφφ,~f ,~τττ) might be acquired from the Newton-Euler equations.
Each component of the chain, with index i ∈ [1, .., n] is characterised as one
rigid body with a mass mi and Imi is the inertia with respect to the cen-
tre of mass. For ease of trigonometric notation and due to their convenient
representation of 2D rotations, complex numbers were used to express coor-
dinates and rotations in this work. The Cartesian coordinates of the vector
~p = [px, py]

t are represented by complex numbers of the form z = px + jpy,
with j =

√
−1. The imaginary and real part of these complex numbers rep-

resent orthogonal coordinates in a Cartesian coordinate system as shown in
Figure 8. The chain is considered to have n components. The position of
each component in the system is dependent on the angles of the components
with respect to the world frame. For the ith component, this angle is named
φi. All angles are the degree of freedom of the system, represented by the
vector ~φφφ = [φ1, .., φn] defining the whole system at time-point t. Absolute
angles were chosen to eliminate the need for coordinate transformations and
a direct application of φi and ωi into Equation 3.
Table 2 shows an overview of all variables and constants used in the presented
equations. The first component of the chain with the index 1 is considered
to be connected to the world frame by a rotational joint, as seen in Fig-
ure 8. The last component of the chain with the index n is considered to
be only connected to the component with the index n−1, as seen in Figure 8.

The complex representative of the vector from the link connecting com-
ponent with indices i and i− 1 to the center of mass of the ith component is
labelled rli, as shown in Figure 8. rci represents the complex vector from the
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Figure 8: Free force diagram of planar folding chain.
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ith center of mass to the link connecting the ith component to the component
with the index i + 1. Consequently di is the complex representation of the
vector from one link of the ith component to its other link. As di, rli and rci,
all belong to the same rigid body, where their position and orientation with
respect to each other is constant over time, these might be defined as

di = |di|ejφi = rli + rci (9)

rli = |rli|ej(φi+βli) (10)

rci = |rci|ej(φi−βri) (11)

with e being Euler’s number. As |rli|, |rci|, βli and βri are constant in
time , therefore the first and second derivative of rli, rci derived by time t
are [25]:

∂rli
∂t

= ṙli = jrliφ̇i = jrliωi (12)

∂rci
∂t

= ṙri = jrciφ̇i = jrciωi (13)

and
∂2rli
∂t2

= r̈li = jrliω̇i − rliω2
i (14)

∂2rci
∂t2

= r̈ri = jrciω̇i − rciω2
i (15)

Note that the derivation with respect to time t of any variable p is noted as
∂p
∂t

= ṗ and ∂2p
∂t2

= p̈.
The position of the ith components centre of mass in relation to the previous
components centre of mass, for all i ∈ [2, .., n], can be described as

zmi = zmi−1 + rci−1 + rli (16)

Using (15) to twice differentiate (16) by times, the corresponding acceleration
of the ith center of mass, for all i ∈ [2, .., n], may be expressed as

ami = z̈mi = z̈mi−1 + r̈ri−1 + r̈li

= ami−1 + jrliω̇i − rliω2
i + jrci−1ω̇i−1 − rci−1ω2

i−1
(17)

As seen in Figure 8, the component with index 1 is considered to be connected
with a rotational joint to the world frame. In conclusion, (17) for i = 1 may
be expressed as

am1 = jrl1ω̇1 − rl1ω2
1 (18)
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Expressed as vector equation, where every entry corresponds to one com-
ponent, this leads to

A~am = jR~̇ωωω −R~ωωω2 (19)

with

A =




1 0 0 .. .. .. 0
−1 1 0 :
0 −1 1 :
: .. :
: −1 1 0 0
: 0 −1 1 0
0 .. .. 0 0 −1 1




(20)

R =




rl1 0 0 .. .. .. 0
rc1 rl2 0 :
0 rc2 rl3 :
: .. :
: rcn−3 rln−2 0 0
: 0 rcn−2 rln−1 0
0 .. .. 0 0 rcn−1 rln




(21)

From Newton-Euler’s law, the acceleration of the ith component [25], for
all i ∈ [1, .., n− 1], also follows as

miami = fgi + fli − fli+1 (22)

As the last chain component with the index n is considered free and only
connected to the previous component as seen in Figure 8, (22) for i = n
might be expressed as

mnamn = fgn + fln (23)

(22) and (23) might be expressed as a vector equation as

M~am = ~fg + B~fl (24)

with

M = diag(m1, ..,mn) =




m1 0 .. 0
0 . :
: . 0
0 .. 0 mn


 (25)
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B =




1 −1 0 .. .. 0
0 1 −1 :
0 0 1 :
: .. :
: 1 −1 0
: 0 1 −1
0 .. .. .. 0 0 1




(26)

Solving (24) for ~fl and (19) for ~am, leads to the force acting on the joints
expressed as

~fl = jB−1MA−1R~̇ωωω −B−1MA−1R~ωωω2 −B−1~fg (27)

As B,M,A,~ωωω and ~̇ωωω are real, they can be seen as scalars to the complex
matrix R. Therefore the real and complex part of ~fl might be expressed as

Re(~fl) = −B−1MA−1RI ~̇ωωω −B−1MA−1RR~ωωω
2 −B−1~fgR (28)

Im(~fl) = B−1MA−1RR~̇ωωω −B−1MA−1RI~ωωω
2 −B−1~fgI (29)

with RR = Re(R), ~fgR = Re(~fg) and RI = Im(R), ~fgI = Im(~fg) being the

real and complex part of R and ~fg

Analysing the momenta [26] in the ith component we find

Imiω̇i = tgi + (−rli)× fli + rci × (−fli+1) (30)

Considering the boundry condition displayed in Figure 8 the force acting on
the free link of the last component is zero:

fln+1 = 0 (31)

Considering two vectors with their complex representatives

~p1 = [px1, py1, 0]t ⇒ z1 = px1 + j · py1 (32)

~p2 = [px2, py2, 0]t ⇒ z2 = px2 + j · py2 (33)

the cross product might be written as

~p1 × ~p2 = Re(z1)Im(z2)− Im(z1)Re(z2) (34)
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Therefore, (30), taking (31) into account, might be written as

Imiω̇i =tgmi − Re(rci)Im(fli+1) + Im(rci)Re(fli+1)

− Re(rli)Im(fli) + Im(rli)Re(fli)
(35)

To satisfy the constraint of the component with the index n being a free end,
(35) for i = n might be expressed as

Imnω̇n =tgmn − Re(rln)Im(fln) + Im(rln)Re(fln) (36)

(35) and (36) expressed as a vector equation might be written as

Γ~̇ωωω = ~tgm −Rt
R
~flI + Rt

I
~flR (37)

with ~flI = Im(~fl) and ~flR = Re(~fl) being complex and real part of ~fl, Rt is
the transpose of R and

Γ = diag(Im1, ..., Imn) =




Im1 0 .. 0
0 . :
: . 0
0 .. 0 Imn


 (38)

Substituting (28) and (29) into (37) leads to the nonlinear differential equa-
tion describing the motion of a 2D pendulum chain with n components:

(Γ + Rt
RERR + Rt

IERI)~̇ωωω =
~tgm + (Rt

RERI −Rt
IERR)~ωωω2 + Rt

RB−1~fgI −Rt
IB
−1~fgR

(39)

with the substitution E = B−1MA−1.

5.2. Numerical simulation

As rl and rc are a function of the angle between the component, so is
the matrix R. As a result, the non-linear differential equation (39) describes
the angular acceleration between the components as a function of angular
velocity and the angle. Equation 39 is solvable if the square matrices B and
(Γ+Rt

RERR+Rt
IERI) are invertible. Under the described constraint, matrix

B is invertible. The left hand side of Equation (39) (Γ + Rt
RERR + Rt

IERI)
is shown in simulation to be invertible for significant cases with |rli|, |rci| > 0
and rli 6= rci. In this work a double Euler integration [27] is used to simulate

the system dynamics with defined initial conditions ~φφφ = ~φφφ0, ~ωωω = ~ωωω0, the ma-
trices M, Γ, E, B−1 and time step ∆t. The iterative algorithm is described
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(i) Calculate matrix R(~φφφ)

(ii) Update forces and momenta acting on components ~fg,~tgm

(iii) Solve (39) for ~̇ωωω

(iv) ~ωωω = ~ωωω + ∆t · ~̇ωωω
(v) ~φφφ = ~φφφ+ ∆t · ~ωωω

(vi) Collision handling

Figure 9: Pseudo code for the Double-Euler-Integration of Equation 39

in Figure 9.
During the folding process the components might come in contact with each
other outside of their joints. No reflection or bouncing was observed upon
two components snapping together due to magnetic forces in experiment.
Therefore, to compensate for contact physics a simple collision handling was
added in every iteration in Figure 9 in step (vi), to approximate impulse
transfer between components in contact and prevent overlapping. The col-
lision handling depends on the relative angle between the components ~φφφrel,

which is computed from the absolute angle ~φφφ of all components in respect to
the world frame. The unfolded position, as shown in Figure 3, is considered
φrel i = 0 rad for i ∈ [2, .., n]. The components i and i − 1 are considered
snapped together if

φrel i > |90% π/2 rad| (40)

If condition (40) is satisfied, then the relative angle between component i
and i − 1 is set to φrel i = π/2 for φrel i > 0 or φrel i = −π/2 for φrel i < 0.
Additionally the angular velocity is averaged over both components.

5.3. Error analysis

The algorithm was applied to the 2D folding chain with component one
being fixed to the world frame and analysed for its expected error and en-
ergy conservation, as well as compared to the a motion tracking of the real
system. For a realistic comparison, dynamic friction was introduced based
on the Coulomb friction model L. Lazzarotto 1997 [28]. A friction force was
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t=0s

t=0.1s

t=0.2s

Figure 10: Motion tracking footage of different time steps of modified free-fold experiment
for sequence 3, with overlay dynamic simulation results. With the left chain end fixed
in place and the other chain end free. Diagonal lines are produced by motion tracking.
Squares display simulated system response.
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Figure 11: Mean squared error (MSE) of the degrees of freedom (angles) over time for
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Figure 12: Mean squared error (MSE) of degree of freedom (angles) over different number
of charges per polarised magnet surface h, with ∆t = (240 ∗ 5)−1 s.
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Figure 13: Displacement of the center of mass between simulation and motion tracking of
sequence 3 over time, with ∆t = (240 ∗ 5)−1 s. The Coulomb friction coefficient µf = 0.35
and charge density of qtotal = 17.1892 Cm−3.

introduced to the generalised force equivalent to

~ffric = − ~vm
|~vm|

µf ~mg (41)

with ~m = (m1, ..,mi).
The friction coefficient of µf = 0.35 was adopted using the data of L. Laz-

zarotto 1997 [28] and H.S. Benabdallah 2007 [29]. The static friction in the
system was neglected as the dynamic behaviour of the chain was analysed.
The folding process of sequence 3 was recorded by a Hero 4 black (GoPro
Media Ltd, UK) camera with a frame rate of 240 frames per second. Position
and orientation of each component was detected in each frame, as seen in
Figure 10 and compared against simulation results.

Figure 11 shows the mean squared error over time for different step sizes
∆t. A time step of ∆t = (240 ∗ 5)−1 s was chosen for further computation.

Figure 12 shows the mean squared error over time for different number
of point charges h per magnet surface. As the difference between h = 3 and
h = 30 is minimal, h = 3 represented best computational performance and
was chosen for further computation.
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Figure 14: Relative angle compared between simulation and motion tracking, with
∆t = (240 ∗ 5)−1 s, Coulomb friction coefficient µf = 3.5 and charge density of qtotal =
17.1892 Cm−3.
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Figure 13 shows the mean displacement between the center of mass in
simulation and the tracked components, with an average displacement over
all time steps and components of 8.2 mm. Noticeable are the jumps in the
mean displacement, due to the previously described collision handling. At
time point t = 0 s, there is a mean displacement of 3 mm between simulation
and experiment as the experimental system only approximated hinges and
the distance between the components is not constant.

Figure 14 shows the change of the relative angle between the components
in simulation compared to the results of the experimental motion tracking.
The simulation predicts the final folded shape correctly, with a difference in
angle averaged over all time steps and components of 0.442 rad. However
as seen in Figure 14, there are small differences between the recorded and
simulated movement. The order of components to reach a relative angle of
±π/2 is different in simulation. In more complex systems, this could cause a
significant difference between the prediction and final folding. However, this
was not the case for the system investigated in this work.

One possible reason for this error in prediction could be the constructive
simplicity of the experimental setup, approximating a system with hinges
and the inevitable error associated with manual priming and triggering of
the folding process. Another possible explanation is the error introduced by
the approximation of the magnetic forces, using the point charge model.

In order to eliminate the error due to the approximation of magnetic
forces and generate a second indicator for the accuracy of the presented al-
gorithm, a non-magnetic, multi-body pendulum was simulated and analysed
for preservation of internal energy. The multi-body pendulum consisted of a
chain with n components, where one end of the chain is fixed to the world
frame and the other is free. The chain is only driven by gravitational forces
~fig = mi · [0,−g]t acting on the components, with gravitational constant on
earth g = 9.8 m/s2. Friction is neglected and therefore the kinetic and po-
tential energy of such a system has to be constant over time. The kinetic
and potential energy sum up to the internal energy of the system and can be
computed by equations presented by A. Jain 2008 [30]. Therefore the change
of the systems internal energy between two time points is interpreted as pro-
portional to the maximum possible error introduced by the simulation time
step. The simulation was run for 1000 time steps. As seen in Figure 15, the
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Figure 15: Percentage difference in kinetic- plus potential energy between two time steps,
in a pendulum system with 3 components, averaged over 1000 time steps for different time
step size ∆t.

error of internal energy decreases with a smaller time step size ∆t. This leads
to the assumption that the numerical integration significantly contributes to
the error and the error can be minimised by minimising ∆t.

5.4. Computing time

As previously noted, the time efficiency of the prediction algorithm is
essential for the folding prediction of long chains. In a comparison between
the dynamic simulation and the energy minimisation prediction, it is to be
expected that the energy minimisation is faster as it only analyses states of
interest instead of time steps and therefore has significantly less states to
compute.
For the estimation of computation time efficency of Equation 39 magnetic
forces, friction and collision have been removed from simulation. The simu-
lated system to estimate computation time is a pendulum of n components,
only agitated by constant gravitational force acting on each component. Sim-
ulations with different numbers of chain components were executed in Python.
All computations were conducted on a Windows computer with a Intel Xeon
E5-2678 v3 processor with 2.5 GHz, 12 cores and 16 GB system memory. The
Simulation was implemented in Python using the NumPy library to solve the
vector Equation 39.
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Figure 16: Average computing time over 10 computation cycle, with 1000 time steps
each, for various numbers of chain components and degrees of freedom and a) for up to 60
components b) up to 450 components, of the vectorised Newton-Euler approach, presented
in this paper.
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a)

b) c)

Pull

Pull Pull

Pull

Figure 17: Folding deployment modes on the example of sequence 1. a) Free-fold, b)
Forward tube-feed : beginning of folding, c) Backward tube-feed : end of folding

As seen in Figure 16, the algorithm presented in this paper shows a near
linear relationship between number of components and computing time for
less than approximately 60 components. For up to 450 components it shows
a super-linear relationship between number of components and computation
time of approximately O(n1.5).

6. Experimental Validation

The system used for the experiments is composed of 3D printed polymer
casings seen in Figure 2. Each casing makes up one rigid body in the chain
and contains four magnets. The casings are connected with an inelastic
string, and fold on a planar, low friction surface due to the forces acting
between the magnets. All movement normal to the surface is restricted,
whereas the string connection approximates a hinge joint between the casings.
Viewed from the top of the plane, as shown in Figure 17, all magnets are
fixed with their north side facing either inwards or outwards from the casings
side-walls. The chain is defined by the sequence of casing components and
how their magnets are oriented. The three sequences shown in Figure 3 were
built.

The chain is considered to have folded to a stable state if all relative angles
between the components are ±90 deg and, therefore, at least one face of all
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components is in contact with a face of another component and the chain has
stopped moving. Due to the friction between the surface and the components,
a chain limited to n = 6 casing components were used, to enable the analysis
of folding error due to friction in relation to the deployment modes of the
release.

Each sequence described in Figure 3 was tested under three different
conditions of release:

(i) Free-fold : The chain was manually pulled apart from start and end and
then released simultaneously, so that all components were free to move
at the same time. 100 experiments per sequence

(ii) Forward tube-feed : The chain was fed component-by-component, out
of a rigid tube, starting with the first component in the sequence. The
components were kept in neutral position using spacers. The chain was
propelled by pulling the spacers manually with a constant speed as seen
in Figure 17. 50 experiments per sequence.

(iii) Backward tube-feed : The chain was fed component-by-component, out
of a rigid tube, starting with the last component in the sequence ana-
logue to the Forward tube-feed but in reversed order. 50 experiments
per sequence.

6.1. Experimental Results

Figure 18 shows the probability of each sequence folding into their de-
fined stable states, or misfolding for each deployment mode as measured in
the experimental setup. The final chain fold is considered a misfold when
the components come to a halt before the folding process is complete. The
folding process is considered complete when all components are in contact
with at least one other component (i.e. surface to surface). The only excep-
tion to this is outcome S1E, which is the only occurrence of a conflict in a
finished folded shape during the experiments and therefore a small gap exists
between components 4 and 5 upon completion of the folding.

As shown in Figure 18, the experiment fully supports the simulation re-
sults for sequence 3. Forward tube-feed and free-fold experiments of sequence
1 and 2 however, have a higher probability to fold into a local minima instead
of the global minimum for that sequence. In these cases, the chains fold into
the respective shapes with the least lateral movement of the components.
While this is predicted by the tube-feed simulation for sequence 2, tube-feed
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Figure 18: Probability of each chain sequence and deployment mode to fold into predicted
shapes displayed in Figure 7 or misfold, as measured during experiment.
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simulation fails to predict the folding of sequence 1. The backward tube-feed
experiment for both sequence 1 and 2 show near equal probability of folding
for multiple shapes and therefore cannot be compared to prediction.
It is noteworthy that sequences 1 and 2 have high probability to fold into
different shapes depending on the deployment modes of the release, whereas
sequence 3 preferentially folds into only one shape. All other possible folds
of sequence 3 would result in two magnets meeting with the same polarisa-
tion and thus repelling each other. Nevertheless, the deployment modes of
deployment also have a measurable influence on the probability of a misfold
of sequence 3. In the case of S3A, components 5 and 6 are connected to com-
ponents 3 and 4. This requires, that component 5 is dragging component 6
along during the free-fold and forward tube-feed experiments. The resulting
friction force, gives rise to a misfold.

For tube-feed systems, the force used to push the chain out of the tube
can be seen as a driving force [12] of the system and can promote the fold into
a lower or higher internal free energy state. However the direction of deploy-
ment of the chain out of the tube also has a significant influence. It follows
that only certain driving forces promote some folded shapes. For example,
the backwards deployment of sequence 1 gives nearly the same probability to
fold into shape S1A as into S1C with a much lower probability to fold into
shape S1B compared to the forward deployment.

7. Discussion

Comparing the experimental results to the energy minimisation predic-
tion shows that the chain, in the absence of a misfold, will fold into one of
the stable states. Clearly the deployment modes have a significant effect on
the folding of the chain. The folding of sequence 1 and sequence 2 supports
the hypothesis that in free-fold, the chain tends to fold into a shape that
requires the least movement for each component, even if the resulting shape
is not the global minimum of internal energy. Sequence 1 however, shows
one more stable and one conflicting result at a lower Coulomb energy than
folding shape S1C, as seen in Figure 19. It is assumed that shape S1E was
experimentally unfavourable due to the wire exiting component 1.
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Minimising the energy for only one degree of freedom at a time (component-
by-component), the energy minimisation prediction can predict the result of
some tube-feed folding experiments. However experiments where the differ-
ent resulting shapes have nearly the same probability of occurring are not
predictable by the energy minimisation method. The energy minimisation
prediction in its basic application presented in this paper does not take the
initial shape into account and therefore cannot compensate for different start-
ing conditions of the fold. Nor can it account for a mis-fold as the energy
minimisation neglects the dynamics of the folding process, only analysing
states of interest. In conclusion, the comparison between the energy opti-
misation and experiment shows that the energy minimisation can be used
to carefully plan a shape to support only one stable state and reliably fold
into the desired shape, depending on the deployment mode and constraints.
However energy minimisation cannot reliably predict the folding of a com-
plex chain with multiple stable states under all possible deployment modes
and constraints, due to its neglecting chain dynamics.

Depending on the use case, a number of unknown factors might influence
the folding of a chain and therefore introduce an error in the folding predic-
tion. For this simple setup, these influences are the human error during the
resetting and execution of the experiments, resulting in different folds for the
same chain under the same release conditions. A second source of error is
the difference between the real chain in experiment and the idealised chain
in simulation. Extrapolating this behaviour for longer, more complex chains,
it is to be expected that the unpredictability for folding will rise with the
length of the chain.
In summary, energy minimisation approaches alone cannot account for error
sources and an analysis of the systems dynamics is necessary. The algorithm
to compute the dynamics of the system, presented in this paper, is special-
ized for chains and allows the folding prediction for long chains as well as
the complex relationships of forces between the components. The algorithm
is largely expressed in a set of vector equations governing the dynamic be-
haviour of the simulated system. These vector equations use square matrices
and therefore, the number of operations to solve the equations has a square
relationship to the number of components in the chain. However, the vec-
torisation allows for a convenient implementation with vector computation
library, such as the here used NumPy library[31], that make full use of par-
allel computation architecture. As Figure 16 shows this results in a near
linear relationship between number of components and computation time.
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Figure 19: a) Folding S1B, not occurring in experiment. b) favourable fold S1A, high-
lighting differences in folding shapes.
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However there is a limit of possible simultaneous operations in a computer
system and for more than approximately 60 components the relationship ex-
asperates. Considering the previously described sources of error, the results
from experiment in this paper indicate that the proposed algorithm is capable
of near-accurate simulation of the dynamics of a 2D chain, on a millisecond
scale. Furthermore, it is to be assumed that the differential equation 39 is
energy preserving as it directly follows from the Newton-Euler equations and
that the small change in the internal energy occurring from this algorithm
originates from the integration method. However the comparison of the dy-
namics simulation to the experimental results show some differences. With
more unknown variables in the system these differences may be expected to
rise.

The novel dynamics algorithm is derived under the assumption of planar
movement only. As such, Newton-Euler Equations (1,2) simplify to Equa-
tions (1,3). The Algorithm was derived from the 2D case of the Newton-Euler
equations and only allows for planar rotation and the introduction of com-
plex numbers further simplifies the handling of rotations. This allows for the
separate Equations (19), (24) and (37) to be combined and rearranged into
equation (39). In a 3D case, these assumptions and conveniences are not
applicable and a combination of all three formulae proves more challenging.
Quaternions similar to complex numbers allow for a convenient representa-
tion of rotation in 3D but are not commutative. Furthermore it can not be
guaranteed that matrix B is invertible for all possible constraints. However
the in this paper analysed case represent an important problem in robotics
in 2D i.e., to efficiently calculate the forward dynamics of a serial chain of
rigid bodys, with one end fixed to the world frame and the other free. The
algorithm needs to be translated to 3D to fully address this problem but its
potential is proven here to be a conveniently implemented algorithm to signif-
icantly speed up computation time for a class of self-folding chains, utilising
parallel computation architectures.

8. Future Work

Even though both presented prediction methods of a folding chain were
proven to be able to predict the folding of most chains, neither approach is
able to predict the folding under all possible circumstances. A future synthe-
sis of both approaches may compensate for these shortcomings and enable a
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more efficient and accurate prediction of the folding of a chain.
The differential equation describing the dynamics so far only supports a
specific set of constraints. Different constraints need to be explored. Fur-
thermore the error of the Euler integration is proportional to the speed of
the components. A better integration method might be implemented to solve
the non-linear differential equation and lower the resulting error.
The variant of the Newton-Euler approach presented in this paper, should
be translated to 3D, in order to enable a simulation of meaningful physical
systems. The use of quaternions to represent 3D coordinates, could enable
the folding dynamics to be described in a similar approach to that presented
in this work.
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