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ABSTRACT

High-throughput molecular technologies can profile
microbial communities at high resolution even
in complex environments like the intestinal micro-
biota. Recent improvements in next-generation
sequencing technologies allow for even finer reso-
lution. We compared phylogenetic profiling of both
longer (454 Titanium) sequence reads with shorter,
but more numerous, paired-end reads (Illumina).
For both approaches, we targeted six tandem com-
binations of 16S rRNA gene variable regions, in mi-
crobial DNA extracted from a human faecal sample,
in order to investigate their limitations and poten-
tials. In silico evaluations predicted that the V3/V4
and V4/V5 regions would provide the highest classi-
fication accuracies for both technologies. However,
experimental sequencing of the V3/V4 region
revealed significant amplification bias compared to
the other regions, emphasising the necessity for
experimental validation of primer pairs. The latest
developments of 454 and Illumina technologies
offered higher resolution compared to their
previous versions, and showed relative consistency
with each other. However, the majority of the
Illumina reads could not be classified down to
genus level due to their shorter length and higher
error rates beyond 60 nt. Nonetheless, with
improved quality and longer reads, the far greater
coverage of Illumina promises unparalleled

insights into highly diverse and complex environ-
ments such as the human gut.

INTRODUCTION

Complex microbial communities, like the human gastro-
intestinal tract (GIT) and other bacterium-dense environ-
ments, are currently receiving increasing interest, due in
large part to technological advances in culture-
independent methods in recent years. Compared to capil-
lary sequencing and non-sequence-based molecular
methods, high-throughput sequencing provides unparal-
leled insight into community structures. Typically carried
out by pyrosequencing on a 454 Genome Sequencer FLX
machine (1), amplicons (sequence reads) of a single
variable 16S rRNA gene region are quantified and subse-
quently assigned to microbial phylogenies (and thence to
taxonomies). The nine different variable 16S rRNA gene
regions are flanked by conserved stretches in most bacteria
(2), and they can be used as targets for PCR primers with
near-universal bacterial specificity (3,4). Although less
discriminatory than the full-length 16S rRNA gene, mas-
sively parallel sequencing of the shorter reads offer either
much higher coverage per sample (5) or many more
samples per instrument run by means of innovative bar-
coding techniques (6,7). The trade-off with the longer, but
fewer, reads generated by traditional capillary sequencing
means a lower proportion of amplicons that can be
classified at genus or species levels. In contrast, the reso-
lution of the community composition with amplicon
pyrosequencing is potentially several orders of magnitude
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larger than clone library sequencing, and can be achieved
at a significantly lower cost.
Different variable regions have been targeted in differ-

ent studies. Generally, this selection has not been depend-
ent on the sampled environment, but rather on published
or unpublished recommendations and/or experimental
familiarity with a certain region in the author’s laboratory.
A few comparative studies have focused on assessing
region suitability: after using different methodological
approaches Sundquist et al. favored the V1/V2/V4
regions (8); Liu et al. the V2/V3/V4 regions (9); Wang
et al. the V2/V4 regions (10) and Chakravorty et al. the
V2/V3 regions (11). Recently, we compared high and low
pyrosequencing coverage of the V4 and V6 regions and
concluded that the RDP-Classifier consistently assigned
more V4 than V6 reads from the human GIT down to
genus-level (5). Furthermore, a lower coverage (40 000
reads per sample) was sufficient to capture the majority
of the bacterial diversity that was identified by five times
greater sequencing depth. Pyrosequencing of the
V4 region also yielded compositional profiles that were
consistent with HITChip analysis (12), whereby we
hybridised full-length 16S rRNA genes from two
samples onto a phylogenetic array containing probes of
concatenated V1 and V6 sequences.
As compositional studies like these depend on amplicon

generation, they are subject to PCR bias of varying
degrees (13,14). Although it was recently shown that
amplicon length somewhat affected phylotype richness
when comparing pyrosequencing reads of the V1–V2
and V8 regions of microbiota from the termite hindgut,
the choice of region had a much larger impact on diversity
values such as community richness and evenness (15).
Moreover, parallel work from the same group suggested
that far too relaxed quality filtering of raw pyrosequencing
reads had been applied in many previous studies, thereby
inflating previously reported diversity estimates measured
at predefined phylotype similarity levels (16), as was
also alluded to in an earlier study (17). However,
pyrosequencing errors seem to have a lesser impact on
both phylogenetic assignment rates (18) and methods
comparing diversity across different communities (19).
In a separate study, Wang and colleagues highlighted
the lack of coverage and scope estimates for known 16S
rRNA primers, and in response generated a comprehen-
sive list of tested primers, along with recommendations of
a few with particularly high coverage and universal
properties (20).
Another massively parallel sequencing technology, that

was first described the same year as 454 Pyrosequencing, is
the Illumina technology [then Solexa Ltd. (21)]. Since
then, the Illumina Genome Analyzer instruments have
routinely been producing more than ten times the
number of reads per run as the 454 GS FLX machines,
albeit of much shorter lengths (typically between 36 and
76 bp). Lazarevic and colleagues sequenced over 1.3
million single reads of the latter size from the 16S
V5 region, in order to explore the human oral microbiota
(22). The higher coverage allowed the identification
of low-abundance genera not detected in earlier studies
of oral microbial flora. However, the limitations to the

application of the Illumina technology for compositional
studies were noted in that study, and future enhancements
were predicted to increase its suitability for environments
of even higher complexity. Recently, Illumina sequencing
has also been applied to other single variable 16S
rRNA regions, such as the V4 region in various environ-
mental communities (23), or the V6 region in vaginal
microbiota (24).

In this study, we took advantage of recent performance
improvements in both the Illumina (paired-end 101 bp
reads) and Pyrosequencing (>400 bp reads) technologies,
and applied these on the human gut microbiota.
We targeted the highly diverse microbial community
within a single human faecal sample by separately
sequencing both entire amplicons from six tandem
variable 16S regions, and flanking ends thereof.
In addition to evaluating the effects of biases imposed
by targeting different variable regions and commonly
used primers, we discuss the parameters for what may
become the future methods of choice for microbial
community composition analysis.

MATERIALS AND METHODS

High-throughput sequence assignment simulation

To explore the potential of microbial community compos-
ition analysis using Illumina and 454 Titanium
sequencing, as well as how classification accuracy varies
with reads of different length and quality, we compiled a
high-quality reference set. This was based on the SILVA
SSURef database release 100 (25), comprising 409 907
near full-length 16S rRNA sequences. To increase its
quality and make it representative for bacterial
communities within the GIT, the following filtering
criteria were applied: (i) only bacterial sequences with no
known anomalies, e.g. chimeras (pintail-score=100);
(ii) sequence length at least 1300 bp; (iii) existing
RDP-classification not containing unclassified bacteria;
(iv) sequence quality at least 90 (out of 100) and (v)
isolated from samples of human or animal GIT or
faeces. This filtering process resulted in a high-quality
reference set of 27 013 full-length 16S rRNA sequences,
whereof 98% originated from uncultured bacteria.

By using annealing locations for primers listed in
Table 1, sequences for the six variable tandem regions
were extracted in silico from the full-length sequence
reference set, mimicking data from 454 Titanium reads
(Figure 1). To also simulate paired-end and variously
sized Illumina reads from the same 16S regions, 150/100/
75/50 bp fragments were in turn extracted from both ends
of these Titanium-length reads, filling the interior regions
with 20 N residues. The RDP Probe Match program was
used for calculating coverage among 16S rRNA sequences
in the RDP database. In addition to simulating reads with
perfect quality, we introduced stochastic errors along
the read lengths according to error rates provided by the
sequencing vendors for 454 Titanium (Figure 2a), and
Illumina (average of data from forward and reverse
reads) using the two most recent sequencing kits
(Figure 2b). The simulated reads were then taxonomically
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assigned using the RDP-classifier (10) with a bootstrap
cut-off of 50%. We had previously found this cut-off
value to achieve the optimal balance of between
achieved accuracy and retained number of reads (5).
As the RDP-classifier ignores any 8-mer words with Ns,
the interior regions have no impact on classification
results. Classifications of both the simulated reads and
of their originating full-length 16S rRNA sequences were
imported into a MySQL database. This allowed fast and
precise comparisons with the reference set, resulting in
measurements of classification accuracy for each set of
simulated reads.

Sample processing and sequencing

A faecal sample was collected from an 87-year-old female
[subject D in our previous study (5)], who was a member
of a larger cohort of elderly subjects recruited for
the ELDERMET project (http://eldermet.ucc.ie).
The Clinical Research Ethics Committee of the Cork
Teaching Hospitals (CREC) granted full approval to the
ELDERMET project on the 19th February 2008 [Ref:
ECM 3 (a) 01/04/08]. Formal written consent was
obtained, on the basis of an Information Sheet/Safety
Statement, following an ethics protocol that was
approved by CREC, in compliance with pertaining local,
national and European ethics legislation and guidelines to
best practice. The subject was taking an unknown anti-
biotic at the time of sampling. The sample was processed
from fresh stool the same day as collection and DNA was
extracted according to standard protocol (Qiagen, West
Sussex, UK). Six amplicon libraries were created of
variable 16S rRNA tandem regions using primers in
Table 1. Standard PCR reaction conditions were
employed for reactions with Taq polymerase: 2mM
MgCl2, 200 nM each primer and 200 mM dNTPs. The
PCR conditions were 94�C for 50 s (initialization and
denaturing) followed by 40�C for 30 s (annealing), 72�C

for 60 s in 35 cycles (extension), and a final elongation step
at 72�C for 5min. Two negative control reactions contain-
ing all components, but water instead of template, were
performed alongside all test reactions, and were routinely
free of PCR product, demonstrating lack of contamin-
ation with post-PCR product. The optimal annealing
temperature for the primers, which included either the
454 adapters or the standard paired-end Illumina
adaptors, was empirically determined by gradient PCR
using control reactions with initially purified bacterial
genomic DNA, and validated on faecal microbial commu-
nity DNA (data not shown). The usage of region-specific
16S rRNA primers made additional barcodes redundant.
All six amplicons were pooled and subsequently
sequenced on a 454 Genome Sequencer FLX Titanium
one-quarter picoliter plate (Cogenics, Essex, UK) accord-
ing to 454 protocols. In addition, the same pool of samples
was sequenced on one Illumina GA-IIx lane (Fasteris,
Geneva, Switzerland) for 101 cycles from both ends of
paired-end library preparations, using sequencing kit ver-
sion 3.0 followed by base-calling using the GAPipeline
version 1.4.0.

Sequence analysis

Raw pyrosequencing reads were quality trimmed accord-
ing to published recommendations (26) using a locally in-
stalled version of the RDP Pyrosequencing Pipeline (27):
sequences with inexact matches to both primer sequences,
having poor quality, one or more ambiguous bases
or read-lengths at least 20 bp shorter than the
electropherogram peaks for each set of amplicon, were
filtered off. Chimera sequences were detected with
ChimeraSlayer (28).With the exception of the last criter-
ion, the same criteria were applied to Illumina reads. Prior
to this, purity filtering with ‘chastity’ values >0.6 and a
maximum of one failed base call in the first 24 bases was
applied to the raw reads. Additional filtering criteria were

Table 1. Coverage of primers included in this study, both separately and in combination

Primer Sequence RDP Probe
Match coverage (%)

Simulation
coverage (%)

References

V1-forward 50-AGAGTTTGATCCTGGCTCAG 64 42 8F/19; (38)
V2-reverse 50-CTGCTGCCTYCCGTA 94 96 BSR357/15; (39)
V1/V2 combined 64 40

V2-forward 50-AGYGGCGNACGGGTGAGTAA 72 77 F101/19; (8)
V3-reverse 50-ATTACCGCGGCTGCTGG 86 93 R534/17; (35)
V2/V3 combined 60 72

V3-forward 50-ACTCCTACGGRAGGCAGCAG 93 96 F338/19; (35)
V4-reverse 50-TACNVGGGTATCTAATCC 90 96 R802/18; RDP website (http://

pyro.cme.msu.edu/pyro/help.jsp)
V3/V4 combined 86 91

V4-forward 50-AYTGGGYDTAAAGNG 97 98 F563/16; RDP website (http://
pyro.cme.msu.edu/pyro/help.jsp)

V5-reverse 50-CCGTCAATTYYTTTRAGTTT 83 90 BSR926/20
V4/V5 combined 81 88

V5-forward 50-RGGATTAGATACCC 83 96 BSF784/15
V6-reverse 50-CGACRRCCATGCANCACCT 94 97 R1064/18; (40)
V5/V6 combined 87 93

V7-forward 50-GYAACGAGCGCAACCC 88 89 BSF1099/16
V8-reverse 50-GACGGGCGGTGWGTRC 87 61 BSR1407/16
V7/V8 combined 84 56

Primer references prefixed with a BS notation were obtained from the European Ribosomal RNA Database.
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also applied and evaluated (Supplementary data). Once
filtered, the reverse Illumina read for each amplicon was
reverse-complemented and merged with the corresponding
forward read, inserting 20 Ns in between. Both forward
and reverse 16S rRNA primers were removed from all
pyrosequencing and Illumina reads. The primer sequences
carry per definition very little phylogenetic information, so
their removal did not have an adverse affect on taxonomic
classifications. This was also supported by tests with and
without primers on the simulated reference set (data not
shown).
The Naı̈ve Bayesian Classifier (RDP-Classifier) was used

for assigning reads into the new Bergey’s bacterial
taxonomy (29) with a bootstrap cut-off of 50%. Trimmed
sequences along with their classifications were imported
into a MySQL database for efficient storage and advan-
ced querying. To explore an alternative assignment
method, a hierarchical tree summarising read assignments
into the NCBI taxonomy was constructed using MEGAN
(30) on BLAST searches against a previously published 16S
rRNA—specific database (31) (with a bit-score threshold
of 86, allowing ten hits per read). Pyrosequencing reads
were aligned using Infernal (32) and associated
covariance models obtained from the Ribosomal
Database Project Group. Phylotype clusters of 97%
similarity were obtained by applying the furthest neighbour
approach using the Complete Linkage Clustering applica-
tion of the RDP pyrosequencing pipeline. From these, rar-
efaction curves, Shannon diversities and Chao1 richness
estimations were calculated using RDP software. Good’s
coverage was calculated as G=1�n/N, where n is the
number of singleton phylotypes and N is the total
number of sequences in the sample.

RESULTS

In silico predictions show that classification accuracies are
highly dependent on choice of region, sequencing technol-
ogy and sequence quality
The complete sequences of six tandem variable regions,

extracted from the 27 013 high-quality full-length
16S rRNA genes reference set, were used to simulate 454
Titanium reads, whereas the 150/100/75/50 bp of the
flanking ends were used to simulate corresponding
paired-end Illumina reads of varying lengths (Figure 1).
The coverage of both single and paired primers, as
measured by the RDP Probe Match and matches against
the reference set (Table 1), were generally high except for

the V1/V2, V2/V3 and V7/V8 regions, in large part due to
poor coverage of the single V1-for, V2-for and V8-rev
primers. Many full-length sequences used in the two
reference sets have truncated ends, thereby lacking
complete sequences covering the V1-for and V8-rev
primer regions, which is a likely reason for poor
coverage with these primers.

When ignoring sequencing errors, the 2� 150 bp
Illumina reads were almost as accurate as the longer
Titanium reads, owing to their concatenated lengths ap-
proaching full Titanium read lengths (Figure 3). Not sur-
prisingly, the genus-level accuracies for Illumina reads
dropped as their read lengths decreased. Titanium reads
were, however, still far from full-length 16S rRNA gene
assignment accuracy. Regardless of sequencing technol-
ogy and quality, the V3/V4 and V4/V5 regions were the
most accurate. While in silico—induced errors, as
modelled by error rates provided by the sequencing
vendors (Figure 2), had little effect on the classification
accuracies for pyrosequencing reads, they had a signifi-
cantly negative impact for the longer Illumina reads
which had increasingly deteriorating quality after 60 bp.
Paradoxically, the longer Illumina reads were actually less
accurate for genus-level assignment than the shorter ones,
since error rates increase exponentially with read length.
For example, although the accuracy for the V4/V5 regions
increased with error-free read lengths, the 2� 75 bp reads
with induced KIT-v4 errors (dashed lines) were slightly
more accurate at genus-level than the corresponding
longer reads. With or without sequencing error,
paired-end 50 bp Illumina reads are, however, not worth
pursuing for these types of compositional studies.

Since this analysis was based on GIT-related 16S rRNA
genes, we also wanted to investigate whether we would
obtain similar results if this criterion was removed,
i.e. by not restricting reference sequences to GIT environ-
ments. Consequently, the reference set was increased to 60
000 high-quality full-length sequences on which we
repeated the simulations. As displayed in Supplementary
Figure S5, accuracy values for all regions and read lengths
are lower at all taxonomic levels compared to the GIT-
restricted sequences. Interestingly, the V4/V5 region in
particular showed inferior performance and was here mar-
ginally better than the V7/V8 region. The RDP-classifier is
trained on well-characterized 16S rRNA genes sequenced
from compositional studies of diverse microbial environ-
ments. As such, GIT-related microbiota are over-
represented relative to non-GIT environments (e.g. 45%

Figure 1. Positions of primer sequences and tandem regions used in this work for 454 titanium and Illumina, mapped along 16S rRNA gene
(co-ordinates based on the Escherichia coli 16S rRNA gene sequence). The arrows (�100 bases) show approximately Illumina sequence read length.
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of the 60 000 reference high-quality full-length sequences
originate from the GIT) which could thus explain the dif-
ferent patterns in classification accuracy.

As a reference, we also calculated similar accuracies for
single variable regions (Supplementary Figure S6).
Reassuringly, the accuracy of single V3/V4/V5 regions
were consistent with, and slightly lower than, correspond-
ing tandem regions of Titanium length derived from simu-
lations of the GIT-related reference set. The V1 and V9
regions showed the poorest results, followed by the V7/V8
region.

Diversity metrics are highly dependent on region choice
and sequencing depth

The same regions modelled above were sequenced on both
the 454 Titanium and Illumina platforms, using primers
from Table 1. Our filtering approach decreased the
numbers of accepted reads significantly, notably more
for the Illumina reads. As quality deteriorates dramatical-
ly with increasing read length for Illumina (Figure 2b), we
investigated the effect of additional quality filtering
criteria (Supplementary Data). We concluded that the
standard criteria provided the best balance of good clas-
sification efficiency, high retention of reads, even compos-
ition between regions and high similarity to composition
as derived by 454 Titanium reads.

Sequencing and diversity characteristics (based on the
97% phylotype similarity level) are outlined in Table 2.
The variations in amplicon mean lengths for 454 Titanium
is a reflection of the differently sized tandem regions, while
Illumina reads are consistently of the same length
(2� 101 bp). Length deviations for the latter technology
are instead due to trimming of the variously sized primer
sequences. The observed richness levels varied dramatic-
ally depending on sequenced region and adapted technol-
ogy; for Titanium reads, the range was 349 to 1146
phylotypes, and from 97 670 to 173 857 phylotypes for

Illumina reads. Interestingly, the richness values that
were the highest/lowest for Titanium were not necessarily
the highest/lowest for Illumina reads. This is probably
because the shorter Illumina reads sometimes cover
regions of variability different from the overall variability
as sequenced by the longer Titanium reads for the same
region.
Figure 4A shows similarly deviating rarefaction curves

for the six different 454 Titanium and Illumina amplicons.
Similar curves for the complete set of Illumina reads were
omitted due to computational difficulties, and for their
apparent lack of reliability. Instead we calculated curves
from random sub-samplings of 229 048 reads, equal in size
to the region with fewest reads. We included curves for
random sub-samplings of 8277 reads (amplicon V2/V3) to
examine the underestimating effect we had previously
observed (5), and which was also pronounced here for
all amplicons except V4/V5. The inflated richness levels
for the Illumina sequenced amplicons, as well as the
nearly linear rarefaction curves, seemed unrealistic at
best and are presumably artefacts of the high error rates
in combination with the vast number of reads for each
amplicon. This is also supported by the fact that
richness values derived from random sub-samplings of
Illumina reads (equal in numbers to the corresponding
454 regions) were substantially higher than for the 454
reads at the same read number levels (Table 2 and inset
Figure 4A). Likewise, Good’s coverage values from
Illumina reads are relatively small compared to the cor-
responding Titanium reads. This parameter is an estima-
tor of the completeness of sampling (33) and should not be
mistaken for sequencing coverage. High error rates
produces many singleton phylotypes which results in
lower Good’s coverage values (see formula in Methods).
Thus, for the same reasons that the rarefaction curves are
nearly linear and the Chao1 richness estimations are
extremely high, Good’s coverage is relatively low; the

Figure 2. Error rates as function of read lengths (provided by Roche and Fasteris). Error rates beyond 100 bp for Kit v4 were obtained through
extrapolation [f(x)=0.0763e0.0408x].
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V3/V4 and V7/V8 amplicon data produced the highest
richness estimations and also the lowest Good’s
coverage values.

Classification efficiencies among sequencing technologies
are significantly different and ultimately affect resolution

When comparing classification efficiencies (CE), defined as
the proportion of all reads confidently classified to a
certain taxonomic level (genus-level from here on), we
observed acceptable values (>87%) for all Titanium
reads (Figure 4B). We included reads from the single V4
region (5) as a comparison, and its CE was grouped in the
middle of the variable tandem regions, below V4/V5 and,
interestingly, above V3/V4. The Illumina technology had
far worse CE for all regions, owing to a combination of
shorter read lengths and poorer quality. Overall, the
V4/V5 region showed best performance for both
technologies, while the V3/V4 region was the worst.
It has been reported that in some studies that reverse

reads on the Illumina instrument are inferior in quality to

the forward reads (34). Here, however, we only noted a
slight difference in the average quality values of 15.4 and
16.6 for forward and reverse reads, respectively.
To investigate if this quality difference had an effect on
the classification potential, we RDP-classified the forward
and reverse reads separately, and found that there was a
clear difference between forward and reverse reads from
all six tandem regions in terms of representative sequences
in the RDP reference database: Classification efficiencies
at the genus level were between 12 and 36 percentage
points higher for the forward reads than for the corres-
ponding reverse reads. It is unclear whether these
discrepancies are due to the slight quality difference
between forward and reverse reads, or the fact that the
partial variable regions covered by the reverse reads are all
less discriminatory. However, the fact that the phenom-
enon was evident for all six tandem regions suggests that
the former explanation is the more likely one.

In order to compare resolution levels provided by the
two sequencing technologies, we quantified the number
of unique genera that could be identified by the

Figure 3. Proportion of full-length 16S rRNA and tandem regions from simulated Titanium and Illumina reads, accurately classified at five
taxonomic levels. Sequencing errors were also introduced using error rates above (dashed lines: KIT-v4; dotted lines: KIT-v3).
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RDP-classifier for the single V4 and tandem V4/V5 region
(Figure 5). Even though the V4/V5 region were
pyrosequenced with just over a quarter of the reads used
for the single V4 region, 74% of all the V4 genera could be
captured by the longer reads. Furthermore, the significant-
ly higher Illumina coverage resulted in only a dispropor-
tionate increase in genera identified not detected
by Pyrosequencing: These were Sporobacterium,
Paludibacter, Oribacterium, Campylobacter, Abiotrophia
and Johnsonella. This demonstrates that resolution is
ultimately dependent on not only sequence coverage, but
also classification efficiency, i.e. choice of region and
sequence quality.

Relative taxa abundances are generally consistent across
technologies, but show dramatic variation for two regions
due to significant amplification bias

The two sequencing technologies revealed relatively
similar profiles at phylum level, while they were more dif-
ferent at genus level (Figure 6). This is probably due to the
much lower CE for Illumina, manifested by the signifi-
cantly larger numbers of unclassified genera. It is not
unlikely that genera which are classified to a higher
extent with Titanium reads, such as Lachnospiraceae
Incertae Sedis, are found within the larger cohort of
unclassified Illumina reads.
Since the different sequencing targets and technologies

used in this study were all applied on a single sample, we
also wanted to investigate how phylum and genus profiles
varied between replicates. Based on pyrosequencing of du-
plicate V4 amplicons libraries from four separate individ-
uals (Supplementary Data), we found that even though
taxonomic profiles between samples were not identical at
phylum/genus level, all replicates still group together when
compared to each other at the finest possible level of
resolution (unique sequences). Thus, seemingly large vari-
ations in e.g. phylum distributions between samples may
not necessarily reflect large differences in the overall
microbiota, which should be taken into consideration
when comparing the slighter variations in taxonomic
profiles observed between the six sets of amplicons
(Figure 6).
Intriguingly, the relative taxa abundances from the pre-

viously sequenced V4 region (5) were much more similar
to V4/V5 than the V3/V4 region. The V3/V4 region also
had by far the most deviating composition profile
compared to the other regions, followed to some extent
by V7/V8. This discrepancy was observed across the two
technologies at both phylum and genus levels. Neither the
RDP Probe Match (86% coverage) nor simulation
(91% coverage) estimates (Table 1) implied any bias for
the V3/V4 region. Similarly, Pearson correlations between
genus classifications of full-length 16S rRNA sequences
and the in silico—extracted variable regions from the ref-
erence set did not reveal any such bias either: V1/V2
(r=81%), V2/V3 (r=96%), V3/V4 (r=98%), V4/V5
(r=97%), V5/V6 (r=83%), V7/V8 (r=93%), and
single regions V3 (r=85%) and V4 (r=87%).
To further investigate reasons behind V3/V4 and V7/V8
deviations, we compared family classifications betweenT
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these amplicons and HITChip hybridisations of
full-length 16S rRNA from our previous study (5). From
Supplementary Figure S7 it is evident that both these
regions, and especially V3/V4, have much poorer correl-
ations with HITChip hybridisations. Following compari-
sons with the sequenced single V4 region we already know
that the V4-rev primer used is not responsible for the said
bias. To finally exclude the possibility that the V3-for
primer is the sole error-causing source we compared
aggregates of full-length 16S rRNA gene sequences with
V3 reads, sequenced with capillary Sanger sequencing and
454 Pyrosequencing, respectively (35). The ratios of the
two largest phyla Bacteroidetes and Firmicutes were 0.66
for the full-length sequences and 0.77 for the V3 reads,
thus relatively close, and definitely not as disparate as
for the V3/V4 and V4/V5 regions. Only 41 chimera
sequences were detected among the V3/V4 Titanium
reads, which again would not explain the observed differ-
ence. Altogether, these data are conclusive evidence that

Figure 4. Rarefaction curves for Titanium and Illumina reads at the 97% similarity phylotype level. Dashed lines are for 8277 randomly
sub-sampled Titanium reads, equal in size to the smallest Titanium amplicon dataset. Illumina rarefaction curves were calculated from random
sub-samplings of 229 048 reads, equal in size to the region with fewest reads (the V3/V4 region). The inset shows rarefaction curves from randomly
sub-sampled Illumina reads equal in numbers to the corresponding 454 regions. (A) Proportion of sequenced Titanium and Illumina reads that were
classified at four taxonomic levels (B) Single V4 reads sequenced in our earlier study (5) were included for comparison.

Figure 5. Resolution at genus level for Titanium and Illumina V4/V5
reads. Single V4 reads sequenced at two different depths in our earlier
study (5) were included for comparison.
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the V3/V4 deviations are due to bias associated with the
experimental amplification process occurring when these
particular V3-for and V4-rev primers are combined, rather
than to uneven primer coverage.

MEGAN assignments are consistent with the
RDP-classifier only for a minority of tandem regions

The RDP-classifier uses Bayesian probability theory for
observing eight-character sub-sequences within each
unknown query sequence, and has been trained on over
7000 bacterial full-length 16S rRNA genes. To investigate
if a common alternative assignment approach would
generate similar results, we applied the MEGAN tool
(36) on BLAST searches of the trimmed Titanium reads
against the RDP database. We deemed BLAST searches
of the 4.6 million Illumina reads as being too computa-
tionally intense, and therefore performed the analysis on
subsets of 40 000 sequences per region instead.
Correlations between genus classifications of 10 different
sub-samplings were all consistently high (r> 0.99),

suggesting that any of these sub-sampled sets were repre-
sentative for the complete set of Illumina reads. Figure 7
shows the comparison tree generated by MEGAN using
all the Titanium reads and the subsets of Illumina reads,
with relative taxonomic abundances for the six variable
tandem regions at various taxonomic levels. Similarly to
results from the RDP-classifier, composition profiles
based upon the V3/V4 and V7/V8 regions indicated
larger proportions of the Firmicutes phylum for both
sequencing technologies. In contrast, there are several sig-
nificant differences between the two assignment
approaches at genus level; perhaps most strikingly,
Bacteroides reads account for a large fraction of the com-
munity only for the V1/V2 and V3/V4 regions according
to the MEGAN analysis of the Titanium reads.
To further investigate these discrepancies we generated

correlation plots (Supplementary Figures S8 and S9)
between phylum and genus classifications for the two
approaches and sequencing technologies. For Titanium,
only the V1/V2 and V4/V5 regions showed good

Figure 6. Relative phylum and genus abundances for sequence reads from both sequencing technologies. Single V4 reads sequenced using
non-Titanium pyrosequencing in our earlier study (5) were included for comparison.

PAGE 9 OF 13 Nucleic Acids Research, 2010, Vol. 38, No. 22 e200



F
ig
u
re

7
.
M
E
G
A
N

co
m
p
a
ri
so
n
b
a
se
d
o
n
B
L
A
S
T

se
a
rc
h
es

o
f
a
ll
4
5
4
T
it
a
n
iu
m

re
a
d
s
(A

)
a
n
d
a
ra
n
d
o
m

su
b
se
t
o
f
Il
lu
m
in
a
re
a
d
s
(B

)
a
g
a
in
st

a
n
rR

N
A
-s
p
ec
ifi
c
d
a
ta
b
a
se
.

e200 Nucleic Acids Research, 2010, Vol. 38, No. 22 PAGE 10 OF 13



correlations between the two classification methods, with
Pearson correlations of 0.97 and 0.98, respectively.
The reason behind the genus discrepancy was revealed
from closer examininations of the MEGAN data for the
Bacteroides assignments; in order to assign a read to the
Bacteroides genus, all 10 first BLAST hits had to be
against Bacteroides species. As it were in many cases, the
ninth hit was against a group of bacteria labelled ‘uncul-
tured bacterium adhufec’ (acronym for adult human
faeces). These bacteria were, however, classified as belong-
ing to the Bacteroidales family, and were, according to
additional BLAST searches, unambiguous Bacteroides
species (data not shown). Moreover, BLAST hits against
the genera Clostridium, Roseburia and Ruminococcus are
in many cases indistinguishable, which thus explain these
genus deviations. In comparison, MEGAN analysis of
the Illumina reads showed better consistency with the
corresponding RDP-classifications, especially for the
Bacteroides genus (Figure 7B and Supplementary Figure
S6). The problematic ninth BLAST hit against the incor-
rectly labelled Bacteroides species was simply not an issue
for the Illumina reads, since the reads had fewer hits with
high scores. It is also important to note that the average
classification efficiency for the RDP-classified Illumina
reads was nearly twice that for the reads classified with
MEGAN (59 versus 30%). To summarize, the deviating
compositions of the V3/V4 and V7/V8 reads did not seem
to be caused by poor performance of the RDP-classifier
relative to the MEGAN approach.

DISCUSSION

The number of compositional studies of complex
microbial communities that use high-throughput
sequencing of partial 16S rRNA amplicons is increasing
rapidly, encouraged by earlier successful studies and
by the growing output-per-cost-ratio. Nonetheless, to
obtain as accurate results as possible it is of paramount
importance to minimize the amplification bias inherent in
this approach, and to select variable 16S rRNA gene
regions and sequencing primers with utmost care.
Our main aim in this comparative study was not to
investigate the primers with the highest performance
expected, nor to test as many as possible. It was rather
to investigate anomalous data generated with previously
published primers, while at the same time evaluating their
suitability, in new variable region combinations, in
conjunction with recent sequencing technology
improvements.

For sequencing by synthesis on the Illumina platform,
standard paired-end linkers were ligated to the amplicons
that been generated by universal 16S rRNA gene variable
region primers. This does not significantly affect the yield
of sequence data. Although it is theoretically possible that
the ligation step might introduce a bias, such an effect has
not been noted in the multiple genome re-sequencing
projects completed on this platform (Fasteris, personal
communication). Furthermore, analysis of the first
base sequenced in any particular Illumina run did not
identify bias towards a particular nucleotide (data not

shown),which would be expected if there was a bias in
the ligation, and the GC bias of the genome was
maintained.
Based on simulation accuracies, classification

efficiencies and consistency between two different classifi-
cation approaches (RDP-Classifier and MEGAN based
on BLAST searches), the V4/V5 region showed the best
performance across the two sequencing technologies.
Somewhat surprisingly however, we noted that sequenced
reads of the V3/V4 region performed the worst; this was
in spite of its high simulated accuracy (primer coverage
and regional classification potential), and previous
indications of good classification consistency for its con-
stituent V3 and V4 parts (5,35). Hence, the bias was not
associated with the selected individual primers or with the
choice of sequencing method, but rather with amplifica-
tion artefacts arising from the combination of these
two specific V3-forward and V4-reverse primers. This em-
phasises that we should not blindly trust in silico predic-
tions or primers, nor known results from separate
components of the variable region in question. In
contrast, support from actual amplification experiments
using the proposed primer combination is absolutely
necessary.
Moreover, even with longer variable regions, further

developed sequencing technologies and higher coverage,
it was evident that the microbial diversities measured
from the same sample differed significantly depending
on choice of variable region(s). We could therefore
confirm the highly region-specific behaviour across
datasets observed by other groups (16,17,37), and
thereby re-iterate the weakness of comparing diversities
between communities based on different ribosomal gene
regions. Comparisons of additionally sequenced
V4 amplicons also highlighted that although microbiota
compositions may not be identical at phylum and genus
level, their overall composition revealed at finer resolution
could still have better discriminatory effect.
The extremely inflated diversity metrics, as derived from

the Illumina reads, could in large part be explained by the
high error rates above 60 bp. The exponentially
deteriorating quality after this point was also the source
of poor accuracy and classification efficiency for the
shorter Illumina reads. It is possible that a more suitable
alternative to these paired-end reads, which flank the
variable tandem regions, could be shorter-insert fragments
where the poor quality read ends partly overlap, resulting
in improved consensus quality in the critical sequence
region. At present, neither taxonomic classifications nor
community diversity as derived from Illumina reads are
reliable enough, and the coverage improvement over
pyrosequencing does not result in an equivalently
increased insight into the rare community members.
Subsequent analysis of beta diversity (between subjects
or along time series) would also produce unreliable
results, due to this limitation. Notwithstanding, the tech-
nology has enormous potential, and when quality
improves further, the Illumina technology may reveal
unprecedented diversity from even the most complex
microbial environments on earth.
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