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Abstract
Telomeres have emerged as important biomarkers of health and senescence as they 
predict chances of survival in various species. Tropical birds live in more benign envi‐
ronments with lower extrinsic mortality and higher juvenile and adult survival than 
temperate birds. Therefore, telomere biology may play a more important role in trop‐
ical compared to temperate birds. We measured mean telomere length of male 
stonechats (Saxicola spp.) at four age classes from tropical African and temperate 
European breeding regions. Tropical and temperate stonechats had similarly long tel‐
omeres as nestlings. However, while in tropical stonechats pre‐breeding first‐years 
had longer telomeres than nestlings, in temperate stonechats pre‐breeding first‐
years had shorter telomeres than nestlings. During their first breeding season, tel‐
omere length was again similar between tropical and temperate stonechats. These 
patterns may indicate differential survival of high‐quality juveniles in tropical envi‐
ronments. Alternatively, more favorable environmental conditions, that is, extended 
parental care, may enable tropical juveniles to minimize telomere shortening. As sug‐
gested by previous studies, our results imply that variation in life history and life span 
may be reflected in different patterns of telomere shortening rather than telomere 
length. Our data provide first evidence that distinct selective pressures in tropical 
and temperate environments may be reflected in diverging patterns of telomere loss 
in birds.
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extended parental care, life history, pace of life, selective disappearance, telomeres, tropical 
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1  | INTRODUC TION

Variation in life histories is thought to result from differential alloca‐
tion of limited resources to competing life history traits. Such trade‐
offs and the resulting optimal resource allocation may vary with 
environmental conditions (Stearns, 1992). For example, tropical en‐
vironments have favored a slow pace of life, that is, reduced fecun‐
dity but increased life span, in many vertebrates (Ricklefs & Wikelski, 
2002). This is especially well studied in birds where tropical species 
produce fewer, but higher quality offspring (Jetz, Sekercioglu, & 
Böhning‐Gaese, 2008; Martin, 2015), have lower basal metabolic 
rates (Tieleman et al., 2009; Wiersma, Muñoz‐Garcia, Walker, & 
Williams, 2007) and live longer (Møller, 2007; Peach, Hanmer, & 
Oatley, 2001) than temperate species. Therefore, a comparison be‐
tween tropical and temperate species may reveal physiological con‐
straints that may limit the evolution of alternative combinations of 
life history traits (Ricklefs & Wikelski, 2002).

An important candidate mechanism with respect to physiologi‐
cal constraints of growth, reproduction and survival are telomeres 
(Haussmann & Marchetto, 2010). Telomeres are noncoding DNA—
protein caps at the end of eukaryotic chromosomes that protect ge‐
nomic integrity, but shorten during cell division and potentially when 
exposed to oxidative stress (Boonekamp, Bauch, Mulder, & Verhulst, 
2017; Reichert & Stier, 2017; Zglinicki, 2002). Critically, short telo‐
meres eventually lead to cell senescence or death (Blackburn, 2000, 
2005), and the accumulation of cells with short telomeres may be 
one of the factors that causes aging and senescence in vertebrates 
(López‐Otín, Blasco, Partridge, Serrano, & Kroemer, 2013).

Both longitudinal and cross‐sectional studies in birds show 
that, in general, older individuals have shorter telomeres than 
younger ones with the greatest loss in telomeres occurring early 
in life (Heidinger et al., 2012; Pauliny, Larsson, & Blomqvist, 2012; 
Salomons et al., 2009; Spurgin et al., 2018; Tricola et al., 2018). 
Furthermore, an increasing number of studies in birds show that 
individuals with longer telomeres or little telomere attrition have 
better survival prospects than individuals with short telomeres or 
high levels of telomere attrition (reviewed in Wilbourn et al., 2018). 
This has been especially well studied in zebra finches (Taeniopygia 
guttata), for which it has been shown that long telomeres in early life 
are associated with increased survival and a long life span (Heidinger 
et al., 2012). In addition, studies in a variety of species show that 
telomere dynamics are sensitive to environmental influences such 
as variations in food availability (Spurgin et al., 2018), parasitic dis‐
eases (Asghar et al., 2015), and exposure to stress (Hau et al., 2015). 
In particular, conditions experienced during development can influ‐
ence telomere dynamics. For example, exposure to poor or stress‐
ful environments can lead to accelerated telomere loss in young 
birds (Costanzo et al., 2017; Haussmann, Longenecker, Marchetto, 
Juliano, & Bowden, 2012; Herborn et al., 2014; Nettle et al., 2017; 
Salmon, Nilsson, Nord, Bensch, & Isaksson, 2016; Soler et al., 2017; 
Young et al., 2017), which can be predictive of decreased survival as 
nestlings or fledglings (Boonekamp, Mulder, Salomons, Dijkstra, & 
Verhulst, 2014; Salmon, Nilsson, Watson, Bensch, & Isaksson, 2017; 

Watson, Bolton, & Monaghan, 2015). Thus, telomere length and the 
rate of telomere loss are considered biomarkers of individual health 
and quality (Young, 2018).

Fewer studies have compared telomere length between taxa that 
vary in their life histories and life span. In mammals, a comparative 
study found that short‐lived, small species have longer telomeres 
and higher telomerase expression than long‐lived, large species 
(Gomes et al., 2011). In a study on rodents, no relationship between 
maximum lifespan and telomere length was detected (Seluanov et 
al., 2007). In birds, absolute telomere length does not seem to re‐
late to variation in lifespan between species; however, longer‐lived 
avian species seem to have lower rates of telomere shortening than 
shorter‐lived species (Dantzer & Fletcher, 2015; Haussmann et al., 
2003; Sudyka, Arct, Drobniak, Gustafsson, & Cichoan, 2016; Tricola 
et al., 2018). This relationship between rate of telomere loss and 
maximum lifespan in birds may be caused by variation between spe‐
cies in how well telomeres are maintained throughout their lifespan. 
In addition, it may reflect selective disappearance of low‐quality 
individuals with short telomeres. In longer‐lived species, that expe‐
rience lower levels of extrinsic mortality, individual condition, and 
thus telomere dynamics, may play a greater role as determinants of 
mortality (Kirkwood & Austad, 2000). Therefore, selective disap‐
pearance of individuals with short telomeres may be more apparent 
in long‐lived species (Tricola et al., 2018).

Tropical species live in less seasonal environments with lower 
levels of adult extrinsic mortality than temperate ones (Brown, 
2014). Consequently, tropical songbirds have higher survival prob‐
abilities than temperate birds (Martin et al., 2017; Muñoz, Kéry, 
Martins, & Ferraz, 2018). Therefore, stronger selective disappear‐
ance of individuals with short telomeres is expected in tropical com‐
pared to temperate birds. However, mortality rates are age‐specific, 
and therefore, the strength of selective disappearance may vary 
with age. In birds, mortality is usually highest during the first year 
of life, especially directly after fledging (Cox, Thompson, Cox, & 
Faaborg, 2014; Naef‐Daenzer & Grüebler, 2016). As predicted by 
life history theory (McNamara, Barta, Wikelski, & Houston, 2008), 
juvenile survival is in general higher in tropical compared to tem‐
perate birds (Lloyd, Martin, & Roskaft, 2016; Remes & Matysiokova, 
2016). Tropical parents take care of their fewer fledglings for con‐
siderably longer than temperate birds and may thereby be able to 
lower extrinsic mortality in juveniles (Styrsky, Brawn, & Robinson, 
2005). We, therefore, hypothesize that differential survival of high‐
quality fledglings should be more apparent in tropical compared to 
temperate birds. Assuming that telomeres are bioindicators of so‐
matic state and individual quality we expect that in tropical birds, 
individuals with short telomeres disappear faster from a population 
than in temperate birds both during the critical first year of life and 
later as adults.

In addition, there is good evidence that tropical species invest 
more into self‐maintenance, but are less fecund than temperate 
species. For example, tropical species exhibit stronger sickness be‐
havior after infection during the breeding season than temperate 
species (Owen‐Ashley, Hasselquist, Raberg, & Wingfield, 2008). 
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Furthermore, in tropical species, reproductive workload is reduced 
as they lay smaller clutches, thereby caring for fewer young and ex‐
pending less energy than temperate birds (Nilsson, 2002; Tieleman 
et al., 2006). Thus, they may reduce high levels of oxidative stress 
(Noguera, 2017) and potential telomere loss associated with breed‐
ing (Reichert et al., 2014). In addition, tropical songbirds seem to 
have lower post‐natal metabolic rates and slower, more sustained 
growth despite similar nestling times than temperate birds (Martin, 
2015; Ton & Martin, 2016). These slower growth trajectories in com‐
bination with increased parental care per offspring may favor lower 
levels of telomere attrition during early life in tropical birds, which 
in turn may be important determinants of their longer life spans 
(Monaghan & Ozanne, 2018). Thus, longer‐lived tropical species, 
which invest more in growth and self‐maintenance than in fecundity, 
are expected to show longer telomeres as nestlings or a slower rate 
of telomere loss than short‐lived temperate species. To determine 
how life history variation has shaped variation in telomeres, com‐
parisons between the same or closely related species in different 
environments are necessary.

Here, we compare telomere length of two closely related sis‐
ter taxa of stonechats, Saxicola torquatus axillaris (Figure 1) and 
Saxicola rubicola that breed in tropical and temperate environments, 
respectively (Doren et al., 2017; Urquhart, 2002). At all latitudes, 
stonechats are socially monogamous, open habitat, insectivorous 
passerines that aggressively defend breeding territories (Apfelbeck, 
Mortega, Flinks, Illera, & Helm, 2017). However, they vary in pace 
of life according to their environment (Ricklefs & Wikelski, 2002). 
Stonechats show a latitudinal cline in metabolic rate, with geneti‐
cally inherited, higher metabolic rates in higher‐latitude popula‐
tions (Klaassen, 1995; Tieleman et al., 2009; Versteegh, Schwabl, 
Jaquier, & Tieleman, 2012; Wikelski, Spinney, Schelsky, Scheuerlein, 
& Gwinner, 2003). Further, temperate stonechats have a geneti‐
cally fixed larger clutch size than tropical ones (Gwinner, König, & 
Haley, 1995), and their higher fecundity correlates with elevated 
baseline corticosterone concentrations during the breeding sea‐
son (Apfelbeck, Helm, et al., 2017). In agreement with lower adult 
extrinsic mortality in tropical environments, local survival of trop‐
ical stonechats appears to be much higher than that of temperate 

F I G U R E  1  Adult male African stonechat TA
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stonechats. In previous studies, the local apparent annual survival of 
stonechats in East Africa varied between 65% and 85% (Scheuerlein, 
2000), while in a European population, it was only 29%–45% (Flinks, 
Helm, & Rothery, 2008; Flinks & Pfeifer, 1984).

We collected samples from Afrotropical (referred to as tropical) 
and temperate European (referred to as temperate) male stonechats 
from different individuals at four age classes: as nestlings, as pre‐
breeding first‐year birds (within their first 6 months of life), during 
their first breeding season (~1‐year‐old), and during their further 
adult life (≥2 years old). Because of their slow pace of life, tropical 
stonechats are expected to prioritize somatic maintenance over fe‐
cundity. Thus, we expected longer telomeres in tropical compared to 
temperate stonechats. Further, because of their higher juvenile sur‐
vival and extended parental care we expected a shallower decrease 
in telomere length during the first year of life in tropical compared to 
temperate stonechats.

2  | METHODS

Blood samples were collected from two phylogenetically closely re‐
lated stonechat species (Table 1) during their respective breeding 
seasons (nestlings [day 8–14 post‐hatch], first year breeding [~1‐
year‐old] and adult males [≥2 years old]) or just after the breeding 
season (first year pre‐breeding males (3–6 months post‐hatch). In 
addition, in tropical stonechats, we were occasionally able to catch 
fledglings (>16 days old), which had only recently left their nest and 
were still in their juvenile plumage and cared for by their parents. 
Stonechats were sampled in tropical East Africa (Saxicola torqua‐
tus axillaris, four populations, latitudes 0°–4°S, altitudinal range: 
1,376–2,500 m at sea level [asl], sampled from 2012 to 2014) and 
Europe (S. rubicola, three populations, latitudes 37°–51°N, altitudinal 
range: 15–40 m asl, sampled from 2013 to 2015, Table 1). While East 
African stonechats are residents, European populations vary in mi‐
gratory strategy from short‐distance migrants to residents (Table 1). 
Samples from some of these birds were also used to study baseline 
and stress‐induced corticosterone concentrations of tropical and 
temperate stonechats during the breeding season (Apfelbeck, Helm, 
et al., 2017). All samples were analyzed with telomere restriction 
fragment analysis (TRF) and we restricted our analysis to males to 
optimize sample sizes across species and age classes.

2.1 | Capture methods

Male stonechats were caught between 07:00 hr and 18:00 hr with 
baited clap net traps but also in some cases additionally lured by 
a mounted decoy and playback. Traps were observed continuously 
and upon capture birds were immediately removed from the traps. 
Nestlings were bled during the last third of the nestling stage (i.e., 
between day 8 and 14 post‐hatch). Pre‐breeding first‐year males 
were caught 3–6 months (see Table 1) after their likely hatching 
dates, after completing post‐juvenile moult, but before their first 
breeding season. Breeding first‐year males were caught during their 

first breeding season before their first post‐nuptial moult. All males 
were measured (weight, tarsus, and wing length), checked for moult, 
ringed with a numbered aluminum ring and a combination of three 
color rings and were then released back into their territories. We de‐
termined the age of all individuals caught as either in their first year 
or as adults (≥2 years) based on feather moult pattern of the wings 
(Flinks, 1994). Nestlings and fledglings were ringed with a numbered 
aluminum ring only.

2.2 | Blood sampling

Blood samples (~120 µl) were taken within 3 min of capture by 
venipuncture of the wing vein or (less often) with an insulin sy‐
ringe from the jugular vein and collected into heparinized capil‐
laries. Plasma was immediately separated by centrifugation with a 
Compur Minicentrifuge (Bayer Diagnostics) or a Spectrafuge Mini 
Laboratory Centrifuge (Labnet International, Inc.) and plasma and 
blood cells were stored separately in pure ethanol or in few cases in 
Queens buffer. In the case of fledglings and nestlings, whole blood 
(~40 µl) was directly stored in pure ethanol. Correct measurement of 
telomere length across samples relies on DNA integrity and recent 
studies have shown that DNA integrity can depend on the way sam‐
ples were stored (Nussey et al., 2014; Reichert et al., 2017), and thus, 
preferentially samples should be treated similarly across groups. 
Although in our study storage method varied across samples, we are 
confident that this did not influence our results as DNA integrity was 
checked for each sample by standard gel electrophoresis (Kimura et 
al., 2010). Samples that showed signs of degradation were not in‐
cluded in the TRF assay. Upon return from the field, samples were 
stored at ~2°C whenever possible. During periods of transportation, 
samples were stored at room temperature.

2.3 | Sex determination of nestling and 
fledgling samples

Molecular sexing was carried out by amplification of the chromodo‐
main‐helicase‐DNA binding (CHD) genes in 10 µl PCR reactions fol‐
lowing the standard procedure described in Fridolfsson and Ellegren 
(1999) and Griffiths, Double, Orr, and Dawson (1998).

2.4 | Telomere length assay

Telomeres were measured with the TRF assay, and the procedure 
was carried out according to previous studies (Haussmann & Mauck, 
2008; Marchetto et al., 2016). Briefly, DNA was extracted from 
packed blood cells using the Puregene Blood Core Kit B following 
the manufacturer’s specifications (Qiagen). DNA integrity was as‐
sessed through the use of integrity gels (Nussey et al., 2014), and 
telomeres of high integrity DNA samples were then measured using 
the TRF assay. A 10 µg quantity of DNA was digested using 1.0 ml 
of RsaI (New England Biolabs, R0167L) and 0.2 ml of HinfI (New 
England Biolabs, R0155M) in CutSmart Buffer (New England Biolabs, 
B7204S) overnight at 37°C. The digested DNA was separated using 



     |  515APFELBECK et al.

pulsed‐field gel electrophoresis (3 V/cm, 0.5‐ to 7.0‐s switch times, 
14°C) for 19 hr on a 0.8% nondenaturing agarose gel. The gel was 
then dried without heating and hybridized overnight with a 32P‐la‐
beled oligo (5′CCCTAA‐3′) that binds to the 3′ overhang of telom‐
eres. Hybridized gels were placed on a phosphor screen (Amersham 
Biosciences, Buckinghamshire, UK), which was scanned on a Storm 
540 Variable Mode Imager (Amersham Biosciences). We used den‐
sitometry (ImageQuant 5.03v and ImageJ 1.42q) to determine the 
position and strength of the radioactive signal in each of the lanes 
compared to the molecular marker (1 kb DNA Extension Ladder; 
Invitrogen, CA). The background was fixed as the nadir of the low‐
MW region on the gel (<1 kb). Samples were distributed among six 
gels and mixed by population and age class. One stonechat sample 
was run three times on each gel to determine intra‐ and inter‐gel 
coefficients of variation, which were 4.86% and 7.54%, respectively.

2.5 | Statistical analysis

Data were analyzed within the R environment (R version 3.2.2; R 
Core Team, 2016) and the packages arm (Gelman & Su, 2018), JAGS 
(Plummer, 2003), and runjags (Denwood, 2016). Linear models 
were used to determine whether variation in mean telomere length 
was related to breeding region (tropical, temperate), age class or 
the interaction between breeding region and age class. We tested 
whether tropical stonechats had longer telomeres than temperate 
stonechats and whether differences between taxa declined with 
age by comparing tropical and temperate male stonechats in differ‐
ent age classes (nestling, first year pre‐breeding, first year breeding, 
≥2 years). We applied linear models using tropical nestlings as refer‐
ence level. Body mass was included as a covariate in the initial model, 
but dropped in the final model as it did not detectably explain vari‐
ance in the data. Because samples from tropical stonechats covered 
the widest range of age classes, we ran a separate linear model on 
tropical stonechats including the additional factor level “fledglings.”

We chose a Bayesian approach to draw inferences from the 
models. Bayesian statistics estimate probability distributions of the 

parameters in the model (i.e., posterior distributions) given the data 
and prior knowledge about the distribution of the data (specified as 
priors) (Korner‐Nievergelt, Roth, Felten, & Guélat, 2015). Model pa‐
rameters were estimated as the mean of their posterior distributions, 
and the 2.5% and 97.5% upper and lower margins of the credible in‐
tervals. Minimally informative priors for both mean (dnorm [0, 10−6]) 
and variance (dgamma [0.001, 0.001]) parameters were used, that 
is, we assumed no prior knowledge about the factors in our models. 
Marcov Chain Monte Carlo simulations were checked for conver‐
gence of chains using trace plots and psrf values (Brooks & Gelman, 
1997). Effective sample sizes were >15,000 in all cases. Model resid‐
uals were graphically checked for violations of model assumptions 
(normality, heteroscedasticity, autocorrelations) (Korner‐Nievergelt 
et al., 2015). Data are presented as means and their 95% Bayesian 
credible intervals in figures and as the difference and 95% Bayesian 
credible interval (in squared brackets) from the mean intercept in 
tables. Bayesian statistics do not produce test statistics or p‐values; 
however, when the Bayesian 95% credible interval of the difference 
between two means does not include zero, this can be interpreted as 
a detectable difference (Held & Sabanés Bové, 2014).

3  | RESULTS

Overall, temperate and tropical male stonechats showed similar 
mean telomere lengths (Table 2, Figure 2). In particular, temperate 
and tropical males had similar telomere lengths as nestlings, first 
year and adult breeders. Breeding males (first year and adults) had 
shorter telomeres than nestlings both in tropical and in temperate 
stonechats (negative differences from intercept for first year and 
adult tropical breeders, no additional detectable difference for first 
year and adult temperate breeders, Table 2, Figure 2). However, 
telomere lengths of tropical and temperate stonechats differed in 
their first year of life. While tropical first year pre‐breeding males 
had longer telomeres than nestlings (positive difference from inter‐
cept), temperate first year pre‐breeding males had shorter telomeres 

TA B L E  2  Mean telomere length of male stonechats (Saxicola ssp.) in relation to breeding region (tropical, temperate) and age class 
(nestling, first year pre‐breeding, first year breeding, adult breeding)

Factor level
Estimates (differences from the intercept) and 95% credible 
intervals, (mean telomere length, kpb)

Estimates and 95% credible intervals 
(mean telomere length, kbp)

Intercept: tropical, nestling 12.5 [11.9, 13.0] 12.5 [11.9, 13.0]

Tropical, first year pre‐breeding 1.3 [0.4, 2.2] 13.8 [12.3, 15.2]

Tropical, first year breeding −1.8 [−2.6, −1.0] 10.7 [9.3, 12.0]

Tropical, adult breeding −1.7 [−2.4, −1.1] 10.8 [9.5, 11.9]

Temperate, nestling 0.3 [−0.5, 1.1] 12.8 [11.4, 14.1]

Temperate, first year pre‐breeding −4.7 [−6.0, −3.5] 9.0 [6.5, 11.6]

Temperate, first year breeding 0.2 [−0.8, 1.2] 10.9 [8.6, 13.5]

Temperate, adult breeding −0.8 [−1.8, 0.3] 10.0 [7.8, 12.1]

Note. The second column shows the estimated difference from the intercept. In this case the reference level was “tropical nestlings.” The third column 
shows the mean estimates for each factor level, which were calculated from column 2. As the reference level was “tropical nestlings,” for temperate 
birds the estimated difference has to be added to the estimate obtained for tropical birds for each age class. When 0 (zero) is not included in the credible 
intervals there is an effect of this parameter on the dependent variable (shown in bold).
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than nestlings (negative difference from intercept, Table 2, Figure 2). 
Analysis of tropical stonechats across the whole range of age classes 
revealed that average telomere length was similar in nestlings and 
fledglings of tropical stonechats (Table 3). Similar telomere lengths 
of tropical and temperate first year breeding males indicate a de‐
crease in mean telomere length in tropical stonechats, but an in‐
crease in mean telomere length in temperate stonechats from first 
year pre‐breeding to first year breeding males. To confirm this in‐
crease in temperate stonechats from first year pre‐breeding to first 
year breeding males, we ran a linear model for temperate stonechats 
restricted to the age classes first year pre‐breeding, first year breed‐
ing and adult. This post hoc analysis confirmed a detectable increase 
from first year pre‐breeding to first year breeding in temperate 
males (intercept first year pre‐breeding: 9.3 [8.7, 10.0], difference 
first year breeding 1.3 [0.5, 2.0], difference adult 0.9 [−0.04, 1.8]).

4  | DISCUSSION

Our data provide first evidence that distinct selective pressures in 
tropical and temperate environments may be reflected in diverging 
patterns of telomere loss between age classes. Similar to other stud‐
ies (e.g., Spurgin et al., 2018), we find that mean telomere length de‐
creased fastest during the first year of life in temperate stonechats. 
In contrast, in tropical stonechats mean telomere length increased 
initially from nestlings to fledglings to first year pre‐breeding before 
dropping in first year breeding males. This suggests that tropical 
compared to temperate stonechats may either experience lower lev‐
els of telomere loss and/or more pronounced differential survival of 
individuals with long telomeres during their first year of life.

In tropical birds, the post‐fledging period has emerged as a criti‐
cal period during reproduction that may have a considerable impact 

on the fitness of tropical birds. Tropical birds experience high levels 
of nest predation (Martin, 1992), but high levels of adult survival. 
Therefore, tropical parents may raise small clutches in favor of ex‐
tended offspring care (Russell, Yom‐Tov, & Geffen, 2004; Tarwater, 
Ricklefs, Maddox, & Brawn, 2011), which has been shown to in‐
crease fledgling survival (Grüebler & Naef‐Daenzer, 2010). Tropical 
stonechats lay on average smaller clutches (3) than temperate 
stonechats (5) and care for fledglings for several weeks after fledg‐
ing, often allowing juveniles to remain on their territories (Dittami & 
Gwinner, 1985; Scheuerlein, Van’t Hof, & Gwinner, 2001). In addi‐
tion, especially under high predation pressure, stonechats often skip 
a second clutch in favor of their fledglings (Scheuerlein et al., 2001). 
Also, as has been shown for other species, parents may actively 
favor the strongest of their fledglings (Barrios‐Miller & Siefferman, 
2013). Thus, while survival probabilities post‐fledging are in gen‐
eral low (Naef‐Daenzer & Grüebler, 2016), high‐quality fledglings 
may have a higher survival probability in tropical than in temperate 
stonechats, leading to longer telomeres in tropical compared to tem‐
perate juveniles.

In addition, as environmental conditions and parental care during 
growth can influence telomere loss and maintenance (e.g., Costanzo 
et al., 2017), extended parental care may create more favorable 
conditions for tropical fledglings and juveniles that may allow them 
to maintain their telomeres better than temperate ones. A number 
of recent studies in temperate songbirds during the nestling period 
have shown that the rearing environment has an influence on telo‐
mere attrition rates in early life (e.g., Salmon et al., 2016; Soler et al., 
2017). For example, growing up in large broods, high begging effort 
and low food availability hasten telomere loss in nestlings (Costanzo 
et al., 2017; Nettle et al., 2017; Young et al., 2017). Furthermore, 
studies in jackdaws, Corvus monedula, and great tits, Parus major, 
demonstrated that the rate of telomere loss early in life matters, as 
individuals that recruited into the breeding population in the follow‐
ing year showed lower rates of telomere loss and longer telomeres as 
nestlings than those that did not survive their first year (Boonekamp 

F I G U R E  2  Mean telomere length (kbp) of tropical and 
temperate male stonechats (Saxicola ssp.) in different age classes. 
Depicted are posterior means and their 95% Bayesian credible 
intervals (errors bars). Smaller dots represent data points from 
individuals. Sample sizes are given below dot plots

TA B L E  3  Mean telomere length of tropical stonechats in 
relation to age class (nestling, fledgling, first year pre‐breeding, first 
year breeding, adult)

Factor level

Estimates (differences 
from the intercept) and 
95% credible intervals 
(mean telomere length 
[kbp])

Intercept: nestling 12.5 [11.9, 13.0]

Fledgling 0.6 [−0.5, 1.6]

First year nonbreeding 1.3 [0.4, 2.2]

First year breeding −1.8 [−2.6, −1.0]

Adult breeding −1.7 [−2.4, −1.0]

Note. Estimates are relative to the intercept as reference level, in this 
case nestlings. When 0 (zero) is not included in the credible intervals 
there is an effect of this parameter on the dependent variable (shown in 
bold).
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et al., 2014; Salmon et al., 2017). The effect of extended parental 
care in tropical birds on telomere dynamics in fledglings should be 
further investigated, for example through brood size manipulation 
experiments.

In contrast to telomere length in juveniles, telomere length at 
the end of the nestling stage did not differ between temperate and 
tropical stonechats despite smaller clutches in tropical stonechats, 
which favor increased feeding rates per offspring (Martin, 2015). 
As ground‐nesting birds in open habitat, high nest predation rates 
may favor fast growth and consequently similar telomere loss during 
development in tropical and temperate environments. In tropical 
stonechats, frequent presence of predators reduced the growth 
rate of nestlings (Scheuerlein & Gwinner, 2006), highlighting that 
lower growth rates in stonechats may not represent a mechanism 
for (supposedly) slower aging of tropical stonechats. However, direct 
comparisons of growth rates in nestlings of tropical and temperate 
stonechats are necessary to further clarify this issue.

Selective disappearance of individuals with short telomeres 
during the first year of life also seems to take place in temper‐
ate stonechats, albeit later than in tropical stonechats, potentially 
during the first migration and overwinter period. Migration or the 
winter period are especially challenging for inexperienced, subor‐
dinate juvenile birds and accordingly mortality during migration 
and winter is higher for juveniles than for adults (Ekman, 1984; 
Rotics et al., 2016). Only the highest quality individuals with the 
longest telomeres may be able to survive, which may lead to longer 
telomeres in first year breeding males compared to males caught 
before their first winter (first year pre‐breeding). Thus, mean telo‐
mere length across age classes may indicate when selective disap‐
pearance of low‐quality individuals with short telomeres is most 
likely to occur.

In contrast to our predictions, tropical and temperate 
stonechats had telomeres of similar length during their first breed‐
ing season and as adults. Reproduction, especially parental care, 
is energetically costly (Nilsson, 2002), can lead to oxidative DNA 
damage (Noguera, 2017) and potentially increased telomere loss 
(Heidinger et al., 2012; Reichert et al., 2014). Our previous com‐
parative studies on hormone levels and mating behavior in tropical 
and temperate stonechats have shown that territorial aggression is 
accompanied by a peak in testosterone and corticosterone concen‐
trations during nest‐building in both temperate and tropical male 
stonechats (Apfelbeck, Helm, et al., 2017; Apfelbeck, Mortega, et 
al., 2017). Thus, tropical and temperate male stonechats engage 
similarly in costly mating behaviors which may potentially affect 
telomere length. Furthermore, in adult birds, the exact age of indi‐
viduals could not be determined and we probably sampled across 
their life expectancy, which might mask selective disappearance or 
lower telomere attrition in tropical birds and account for similar 
telomere lengths in tropical and temperate adult stonechats. To de‐
termine whether lower mortality in benign tropical environments 
favors selective disappearance of individuals with short telomeres, 
studies in populations, in which the age of adult individuals is 
known, are needed.

In this study, samples from different age classes were col‐
lected from different individuals. Longitudinal studies show that 
telomere shortening rates are often higher within individuals than 
telomere shortening rates at the population level (Salomons et 
al., 2009). Thus, in studies based on cross‐sectional samples, it 
is difficult to disentangle the effects of telomere attrition and 
selective disappearance for different age classes. Also, we were 
not able to sample all age classes in all populations. Thus, dif‐
ferences between populations and taxa in breeding altitude and 
migratory strategy may have confounded our results as they 
may affect telomere dynamics (Bauer, Heidinger, Ketterson, & 
Greives, 2016; Stier et al., 2016). For stonechats, the effects of 
breeding latitude, altitude, and migratory strategy are not easily 
separable as tropical stonechats breed at high altitudes and are 
residents, while breeding altitudes and migratory strategies of 
European stonechats vary more. However, a resident lifestyle is 
commonly found in the tropics and is actually part of a slow life 
history (Dobson, 2012). Variation between European stonechat 
populations can be used to disentangle potential effects of breed‐
ing altitude and migratory strategy on telomere dynamics in fu‐
ture studies.

Nevertheless, our data indicate that different life history strat‐
egies of tropical and temperate birds may be reflected in distinct 
patterns of telomere loss during the first year of life and can be the 
basis for future in‐depth studies on variation in telomere dynamics 
between tropical and temperate environments. To separate the rel‐
ative importance of telomere attrition and selective disappearance 
during the first year of life, future studies should measure telomere 
length and survival of tropical and temperate nestlings and fledglings 
longitudinally in different stonechat populations within tropical and 
temperate breeding regions and with different migratory strategies. 
Ideally, the experiments should be extended to other tropical and 
temperate species to determine whether the patterns found here 
are indeed a consequence of life history variation between tropical 
and temperate environments.

5  | CONCLUSIONS

To the best of our knowledge, this is one of the first studies to 
compare mean telomere length across several age classes in 
closely related species that breed in tropical and temperate en‐
vironments and differ in their pace of life. As indicated by pre‐
vious interspecific studies, our results suggest that variation in 
life history and life span may be reflected in different patterns 
of telomere loss between species rather than absolute telomere 
length. Our data reveal that mean telomere length across age 
classes may indicate during which life‐cycle phases individuals 
with short telomeres, and thus of potentially low quality, are most 
likely to disappear from a population. These patterns closely fit 
with expectations from life history theory and match variation 
in parental behavior and juvenile mortality between tropical and 
temperate birds.
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