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Abstract 

 

Despite the major advances and successes in finding and establishing new treatments that tackle the 

basic defect in Cystic Fibrosis (CF), there is still an unmet need to bring these potentially curative 

therapies to all individuals with CF. 

 

Here, we review aspects of what is still missing to treat all individuals with CF by such approaches. On 

the one hand, we discuss novel holistic (high-throughput) approaches to elucidate mechanistic defects 

caused by distinct classes of mutations to identify novel drug targets. On the other hand, we examine 

therapeutic approaches to correct the gene in its own environment, i.e., in the genome. 

 

 

Abbreviations: CF, Cystic Fibrosis; CFTR, CF transmembrane conductance regulator; EMT, epithelial-

mesenchymal transition; HC, high-content HT(S), high-throughput (screen). 
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Introduction 

 

Although there are now highly effective CFTR modulator therapies (HEMT) available for clinical use, 

namely the triple combination tezacaftor/ elexacaftor/ ivacaftor that rescues F508del-CFTR (people 

with CF with either one or both CFTR alleles with this mutation are eligible), and other mutations have 

also been progressively demonstrated to be rescued by these and previous drugs (reviewed in 1, 2). 

However, it is estimated that among all individuals with CF worldwide (estimated to be ~162,000 in 

total [3]) still 15-20% have rare mutations which are not targeted by those drugs. 

 

Moreover, although HEMT are ‘game changers’, individuals who take this drug are not completely 

‘free’ of CF symptoms and some individuals have little or no benefit. Besides unknown long-term 

effects, some individuals are intolerant to these drugs and cannot take them. Importantly, it is 

estimated that worldwide only 12% of eligible individuals for these drugs are actually taking it [3], due 

to their high cost [4]. 

 

There is thus a need for alternative drugs based on the fundamental defect caused by distinct 

mutations, so as to improve and optimize the clinical benefit of not only people with CF, but also of 

individuals with CFTR-related disorders (pancreatitis, recurrent bronchitis and disseminated 

bronchiectasis, among others). In parallel to drug discovery to rescue the defective protein, as stated 

below advancements are in progress to change the genome to get rid of the gene defect i.e., the 

mutation (Fig.1). The ultimate goal is to identify novel therapies that not only treat every CFTR variant 

but also at an affordable cost so as to reach every individual with CF. 
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Figure 1. Strategies to rescue CFTR DNA, RNA or protein1 

Theratyping 

 

So far >2,100 reported variants [5] have been reported to occur in CFTR gene and they bring about 

very diverse molecular defects in the cell. Importantly, of these only 20% (i.e., a total of 485 variants) 

are annotated on the CFTR2 website [6]. Accordingly, to facilitate the need to promptly find feasible 

and efficient therapeutic strategies tackling the basic CF defect in individuals with rare mutations who 

are not eligible for currently available HEMT, CFTR mutations have been classified into seven functional 

classes [7]. These have evolved into theratypes based on the expectation that mutations within the 

same group can be tackled by the same molecular/cellular strategy, if not necessarily by the same 

drug. 

 

Theratype I (formerly class IA [8,9]) refers to stop mutations (as for example G542X), i.e., those 

introducing a premature stop codon (PTC), which lead to shorter, non-functional proteins and induce 

degradation of the respective mRNA by a mechanism termed nonsense-mediated decay (NMD) [10]. 

 

Theratype II encompasses mutations (like F508del) that impair plasma membrane (PM) traffic by which 

the protein fails to reach the cell surface, due to a folding defect, being thus retained at the 

endoplasmic reticulum (ER) by the cellular mechanism termed ER quality control (ERQC) [11, 12]. 

 

Theratype III includes mutations impairing CFTR gating, i.e., the opening of the channel in response to 

agonists, as for example G551D [13]. 

 

Mutations in theratype IV (e.g., R334W) cause a defect in the channel conductance, i.e, the number of 

ions that traverse the channel pore per unit time [13]. 

 

Theratype V includes mutations that drastically reduce CFTR protein levels, in general due to 

creation/abolition of an alternative splicing site (e.g., 3272-26A>G), resulting in the presence of both 

species of aberrant and normal CFTR mRNA [14]. 

 

Theratype VI comprises mutations destabilising CFTR protein at the PM (e.g., F508del-CFTR after PM 

rescue), either by promoting its internalization (via endocytosis) or by impairing its return to the PM 

after internalization, or even by relaxing its cytoskeleton tethering [15]. 

 
1 Although multiple organs are affected in CF, only the lung is shown in this diagram as airway delivery and targeting is the 
major focus of current gene-based approaches. 
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A novel theratype – VII (formerly class IB [8, 9]) – was proposed [7] to include CFTR mutations, such as 

large deletions (e.g., CFTRdele2,3), causing frameshift (e.g., 2183AA->G), or disrupting canonical splice 

sites (e.g., 621+1G->T), which cannot be rescued by small-molecule drugs [7]. Accordingly, these 

mutations are termed ‘unrescuable’. 

 

Importantly, we are still lacking a global view of mechanisms and pathways involved in CF 

pathophysiology. Indeed, although CF is caused by a defective anion channel, CFTR has also been 

implicated in other cellular processes, namely epithelial cell differentiation [16] and, when 

dysfunctional, cancer, particularly high for digestive tract cancers [17, 18] which was even reported 

among CF carriers [19]. 

 

The lab of one of us (MDA) developed several cell-based high-throughput (HT) assays and used them 

either in functional genomics approaches (siRNA screens) or compound screens for both a global 

mechanistic characterization of defects underlying CFTR mutations from different functional classes 

and the identification of putative drug targets. Approaches were designed for: class I (stop mutations); 

class II (trafficking defect); and class VII (‘unrescuable’ CFTR). 

 

For class I mutations, we introduced G542X into a CFTR mini-gene assay [7] to identify novel genes and 

compounds suppressing premature termination codon (PTC) mutations and inhibiting nonsense-

mediated decay (NMD) of PTC-mRNAs. 

 

For class II mutations, we applied a HT microscopy F508del-CFTR traffic assay in human bronchial 

epithelial cells [20] to screen ~27,000 siRNAs targeting about half of the human genome. We found 

key regulator genes (kinases) with additive effect to current highly effective CFTR correctors. 

 

For class VII mutations, we applied a HT microscopy-based traffic assay for TMEM16A/Anoctamin 1 

[21] to screen a library of siRNAs targeting ~700 traffic regulators [22]. About 700 genes were screened 

(2 siRNAs per gene) of which 262 were identified as candidate TMEM16A modulators (179 siRNAs 

enhanced and 83 decreased TMEM16A traffic), on the primary hit list. Twenty genes could be 

functionally validated as hits, among the 179 siRNAs identified as enhancing TMEM16A traffic. Further 

mechanistic studies revealed that downregulation of two G-protein coupled receptors (GPCRs) - 

ADRA2C and CXCR3 - increased TMEM16A-mediated Cl- secretion in human airway cells, in parallel 

with the observation that their overexpression significantly decreased TMEM16A currents in these 

cells. Accordingly, inhibition of these GPCRs leading to the activation of this alternative Cl- channel 
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emerge as possible drug targets to compensate for dysfunctional CFTR in individuals with CF, 

irrespective of the genotype. 

 

To start tackling the delay in differentiation observed in native CF tissues and cells [23], we have 

designed a HT wound-healing assay and applied it to CF cells. Data from this screen led to the 

identification of key transcriptional factors linking CFTR to both epithelial differentiation, namely KLF4 

[24], and epithelial-mesenchymal transition (EMT), namely TWIST1 [25] and YAP1 [26]. 

 

Rescuing the gene defect 

 

In 1989, Science gave us the CFTR gene, its cDNA, and details of the first CF-causing mutation, F508del 

[27-29], and sparked the search for gene-based treatments of genetic disorders. Over the last three 

decades, a growing number of options (Figure 1) have emerged starting with a proof of concept study 

that the CFTR cDNA could complement the F508del mutation [30], and if translated to the clinic, could 

in principle, work for any CF mutation. This was followed by antisense oligonucleotides (AONs) that 

could restore normal splicing of the deep-intronic mutation 3849+10kbC>T [31], and one of use (PTH) 

showed that DNA gene-editing could correct the F508del mutation [32]. Other groups have shown that 

CFTR mRNA (rather than cDNA) can express functional CFTR protein in transfected cells [33], that the 

CFTR mRNA can be directly edited [34], and that anticodon engineered tRNAs have the ability to 

“readthrough” certain CFTR premature termination codon (PTC) mutations [35]. And this has been 

coupled with dramatic improvements and options for DNA, RNA and protein delivery, a small 

menagerie of CF animal models [36] and a large number of cell and organoid models for testing [37]. 

But how close is a clinical breakthrough for CF using gene-based therapies?  

 

There are no a priori limitations to develop gene-based medicines for CF, as witnessed by numerous 

clinical breakthroughs for a number of other diseases, with licenced cDNA therapies for spinal muscular 

atrophy and Leber congenital amaurosis, and there many other successful cDNA therapy clinical trials, 

most recently for haemophilia B [38]. With AON to induce exon skipping, there has been substantial 

progress for Duchenne’s muscular dystrophy with four licenced AONs targeting different mutations 

[39]. It is seven years since the first gene-edited CAR T cells were tested in the clinic for leukaemia [40], 

and there nearly a dozen licenced cell therapies [41], and numerous clinical trials on-going for other 

inherited disorders using both virus vectors [42] and mRNA delivery [43] of a number of gene editing 

approaches.  

 



7 
 

For cDNA therapy in CF, there have been ~25 clinical trials, the most recent a large scale repeat dose 

cDNA trial delivery DNA using lipid nanoparticles. Whilst the clinical benefit was small, no serious 

adverse effects were observed in 62 people who received at least nine doses of the therapeutic agent. 

Importantly, this trial firmly established both the feasibility of recruiting a large number of people with 

CF to gene-based trials, and the logistics of delivering gene-based drugs on a regular basis. Plans are 

now in place for a new cDNA based clinical trial using a lentiviral delivery vector [44] known as BI 

3720931 [45].  

 

The direct delivery of mRNA has been shown to restore CFTR function in a number of cell and animal 

models in studies by several groups, and a phase I/II trial to test a clinical formulation of the mRNA 

(MRT5005) administered by nebulization in adults with CF is on-going. Early studies suggested 

improvements in FEV1, but follow-up analysis indicated no significant change at the doses tested to 

date [46]; plans are in place to test higher doses, and other companies and many academic groups are 

actively working in this area.  

 

Numerous gene editing strategies have been reported to correct multiple mutations through the 

targeted integration of CFTR superexons (partial cDNA sequences) that results in production of full 

length CFTR mRNA and functional protein, an approach that could be used for in vivo targeting of 

actively dividing basal cells [47], or ex vivo editing and engraftment of cells [48]. A major advantage of 

these approaches is that most or potentially all CF mutations could be corrected with one reagent.  

 

High efficiency adenine base editing (ABE) of individual CF mutations has been reported by several 

groups, though further refinements will be required to remove potentially disruptive by-stander edits 

[49-51]. A major advantage of this approach is that editing is performed without the need for double 

stranded breaks, but each mutation will require the development of a separate guide RNA. Low levels 

of off-target deamination have been detected ABE, though a number of strategies exist to minimise 

this [52], and a clinical trial of ABE for another disease has recently commenced [53]. 

 

In 2019, prime editing emerged as a strategy which could potentially correct virtually any CF mutation, 

or even clusters of CF mutations [54].  To date, only one study of prime editing of a CFTR mutation has 

been described [55]. But several recent refinements to prime editing, and advances in delivery of both 

base and prime editing [56-58], should see greater impact of this approach in the near future.  

 

One possibility for a small number of CF PTC mutations is direct correction of the CFTR mRNA using an 

RNA editing approach known as Repair, though to date this has only been described for W1282X [34]. 
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As with all approaches targeting mRNA for correction, repeat dosing will be required, but this could 

actually be advantageous as it may provide more options when assessing dosing and safety for clinical 

trials. Another option for a wider number of PTCs could be to use anticodon engineered tRNAs. A panel 

of these small RNA molecules, known as ACE-tRNAs have developed to enable readthrough of three 

common CF-causing PTCs, G542X, R1162X, and W1282X, with concomitant restoration of CFTR 

function [35]. Potential advantages of ACE-tRNA therapy is that its payload is ~50-times smaller than a 

full length CFTR mRNA, which should simplify delivery to target cells. Moreover, CFTR protein should 

only be restored in cells that normally express the CFTR gene. 

 

Finally, what about strategies to restore correct splicing for the six characterised deep intronic CF 

mutations? One of our labs (PTH) and others have successfully disrupted the splice sites for CF 

mutations 3849+10kbC>T, 1811+1.6kbA>G and 3272-26A>G by CRISPR Cas9 targeted excision [59] or 

Cas12a targeted ablation [60], essentially the same approach in clinical trials for LCA10 [42]. But it 

looks like a quicker route to clinic is by using AONs to restore splicing, at least for 3849+10kbC>T. 

Since the original proof of concept study [31], many academic and industry labs have continued to 

research this approach [61, 62], with the possibility of an antisense drug SPL84 being evaluated in a 

clinical trial commencing in late 2022 [63]. 

 

Concluding Remarks 

 

The last decade has seen remarkable breakthroughs with licencing approval for small molecule drugs 

for the treatment of many people with cystic fibrosis, though as discussed here, not everyone can 

access these drugs for a variety of reasons. Thus, the continuing aim of CF research is to develop 

effective and accessible treatments for everyone with CF as soon as possible. Here, we have 

discussed two complementary areas of current research, the search for novel small molecule 

treatments, and on-going development of nucleic acid-based strategies.  

 

The use of HT assays and functional genomics is leading to a greater mechanistic characterization of 

defects underlying CFTR mutations, and the identification of putative drug targets for theraptype 

classes I and II. For class VII mutations, where there is no CFTR protein produced, the search for novel 

TMEM16A modulator targets could lead to the identification of small molecules that could offer 

treatment options for a class of mutations known as “unrescuable”, and potentially be used for 

everyone with CF regardless of genotype.  
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The development of at least seven different nucleic acid-based strategies has already resulted in 

multiple clinical trials, and many potential therapeutic options are in the pipeline. Some strategies 

such as mRNA or cDNA-based treatments, and/or gene editing with very long superexons, have the 

potential to work for almost everyone with CF using a single set of reagents, which could simplify 

clinical trial co-ordination and regulatory matters. All gene-based approaches targeting an individual 

will however be more challenging to develop as there will be many cohorts of people, each requiring 

separate clinical trials and regulatory approval processes.  

 

An updated theraptyping model may also be required for gene-based approaches, but this also raises 

the exciting possibility that as clinical breakthroughs emerge for a particular approach for an 

individual mutation, it should be possible to develop similar treatments using the same mechanism 

for other mutations. Indeed, this strategy has already been observed for AONs used in exon-skipping 

strategies for DMD [36]; the same could apply for breakthroughs in gene editing for CF.  

 

Once a curative treatment is found for anyone with CF, then the challenge will be to translate this to 

everyone with CF. For example, if a base or prime editing strategy were successful for one particular 

CF mutation, then it should be feasible to change the guide RNA or prime editor guide RNA 

sequence, and then use the same delivery strategy to enable many other people with different 

genotypes to be treated. A clear and imaginative strategy to successfully approach this challenge in 

terms of genetics, logistics, regulatory and financing perspectives, has recently been proposed [64].  
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