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INTERNAL EQUATORIAL WATER WAVES IN THE f−PLANE

DAVID HENRY

Abstract. In this paper we describe an exact, and explicit, three-dimensional nonlinear
solution for geophysical internal ocean waves in the Equatorial region which incorporates
a transverse-Equatorial meridional current.

1. Introduction

In this paper we describe an exact three-dimensional solution for nonlinear geophysical
internal ocean waves in the Equatorial region which incorporates a transverse-Equatorial
meridional current. The solution corresponds to the classical two-layer model describ-
ing oscillations of the thermocline (which is an interface separating two distinct vertical
ocean layers of differing densities) in the equatorial region, whereby the fluid wave mo-
tion diminishes as one ascends from the thermocline towards the surface. This solution is
valid for oceanic flows within a restricted meridional range of approximately 2◦ latitude
from the Equator, a region where the f−plane approximation of the geophysical governing
equations applies [10,12,27].

The solution we present is explicit in terms of Lagrangian labelling parameters, and
in this, and other, respects the solution may be termed Gerstner-like in reference to the
celebrated Gerstner’s wave. Gerstner’s wave is a two-dimensional wave propagating over
an infinitely-deep fluid domain— cf. [3,5,17], and also [2,28] for a Gerstner-like formulation
of edge-waves propagating over a sloping bed. One of the Gerstner wave’s primary points
of significance is the fact that it is the only known explicit and exact solution of the
nonlinear periodic gravity wave problem with a non-flat free-surface.

Remarkably, considering the Gerstner wave’s rareness, and highly-prescribed mathe-
matical formulation, Constantin recently presented a solution [6] to the geophysical gov-
erning equations which is Gerstner-like, in the sense that it reduces to Gerstner’s solution
upon ignoring Coriolis effects. However, the solution in [6] embodies a significant break-
through since it successfully generalises to the geophysical setting, in the sense that it
defines a inherently three-dimensional eastward-propagating geophysical wave which is
Equatorially-trapped and whose dispersion relation is dependant on the Coriolis parame-
ter. Subsequently a wide variety of exact and explicit solutions were derived and analysed
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2 D. HENRY

in various papers (cf. [7–9,15,18–25]) with the respective solutions modelling a number of
different physical and geophysical scenarios.

Among these were some exact, explicit solutions to the β−plane governing equations cor-
responding to the classical two-layer model describing oscillations of the thermocline in the
equatorial region [7,8]. A feature of these particular solutions is the absence of any merid-
ional flow, and the aim of this paper is to present a solution fitting the two-layer model de-
scribing oscillations of the thermocline which also admits transverse-Equatorial fluid flow,
something which is only achievable in the f−plane formulation. A well-recognised [26] and
advantageous characteristic of exact finite-amplitude solutions to a water wave problem
(particularly if they are explicit) is the opportunity to perturb these solutions to generate
more complex flows. Controlling the perturbations appropriately, it may be possible to de-
rive detailed information about the resulting fluid motion. It is to be hoped that allowing
for transverse Equatorial fluid motion is a physically useful, and mathematically interest-
ing, extension of the f−plane solution presented in [22] in the sense that the additional
physical complexity may be beneficial with respect to potential complex generalisations of
the flow.

2. Governing equations

In a frame of reference with the origin located at a point fixed on Earth’s surface and
rotating with the Earth, the governing equations for geophysical ocean waves are given
by [12,27]

ut + uux + vuy + wuz + 2Ωw cosφ− 2Ωv sinφ = −1

ρ
Px, (2.1a)

vt + uvx + vvy + wvz + 2Ωu sinφ = −1

ρ
Py, (2.1b)

wt + uwx + vwy + wwz − 2Ωu cosφ = −1

ρ
Pz − g, (2.1c)

together with the equation of incompressibility

∇ ·U = 0, (2.2a)

where U = (u, v, w) is the velocity field of the fluid, and the equation of mass conservation

ρt + uρx + vρy + wρz = 0, (2.2b)

where ρ is the density of the fluid. Here the variable φ denotes the latitude and P is the
pressure of the fluid. The Earth is taken to be a perfect sphere of radius R = 6378km
with constant rotational speed of Ω = 73 ·10−6rad/s, and g = 9.8ms−2 is the gravitational
acceleration at the surface of the Earth. In the Equatorial region the Coriolis terms in
(2.1) are rendered more tractable by employing the small-latitude approximation

sinφ ≈ φ, cosφ ≈ 1,
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reducing the governing equations to the β−plane approximation form:

ut + uux + vuy + wuz + 2Ωw − βyv = −1

ρ
Px,

vt + uvx + vvy + wvz + βyu = −1

ρ
Py,

wt + uwx + vwy + wwz − 2Ωu = −1

ρ
Pz − g,

where β = 2Ω/R = 2.28 · 10−11m−1s−1. Effectively, the Coriolis terms for the curved
Earth’s surface which appear in (2.1) are approximated by a planar model. If we restrict
our focus to purely Equatorial waves then the governing equations are further simplified
[12] giving us the f−plane approximation

ut + uux + vuy + wuz + 2Ωw = −1

ρ
Px, (2.2ca)

vt + uvx + vvy + wvz = −1

ρ
Py, (2.2cb)

wt + uwx + vwy + wwz − 2Ωu = −1

ρ
Pz − g. (2.2cc)

In this paper we present a solution of (2.2c) that satisfies a two-layer model incorporating
the thermocline, which is an interface separating two distinct vertical ocean layers of
differing densities.

L(t)

M(t)

z = η+(x− ct, y)

density ρ0

density ρ+

z = η(x− ct, y) (thermocline)

near-surface layer

motionless fluid

Figure 1. Schematic of the two-layer model

This model may be described as follows. The fluid layer which lies above the thermocline
is subdivided into two parts, which we denote L(t) andM(t), with both regions having a
constant fluid density ρ0. The near-surface layer, labelled L(t), is the region to which wind
effects are confined. Typical values for the mean-depth of L(t) are 80m. Beneath L(t) is
a layer where the fluid motion is entirely due to the propagation of equatorial waves, this
layer is denoted M(t), and typical values for the mean-depth of M(t) are 40m, cf. [7].
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The thermocline is an interface lying at the boundary ofM(t) and the deeper, motionless
layer of fluid which has density ρ+ > ρ0. The relative magnitudes of the fluid densities
may be deduced from observing that the reduced gravity, defined by g̃ = g ρ+−ρ0

ρ0
, has

a typical value of 6 · 10−3m s−2 [13]. We denote the thermocline by z = η(x − ct, y),
while the interface separating L(t) andM(t) is denoted z = η+(x− ct, y), where c is the
constant wave phasespeed. Beneath the thermocline the fluid is assumed motionless, and
so u ≡ v ≡ w ≡ 0 for z < η(x − ct, y). The stillness of fluid beneath the thermocline,
coupled with (2.2c), leads naturally to the boundary condition

P = P0 − ρ+gz on z = η(x− ct, y), (2.2d)

for some constant P0. In this paper we present an exact solution of the governing equations
(2.2) which describes fluid flow in theM region.

3. Exact solution of (2.2)

The equations of motion (2.2c) may be reformulated (where D/Dt is the material or
convective derivative) as

Du

Dt
+ 2Ωw = −1

ρ
Px, (3.1a)

Dv

Dt
= −1

ρ
Py, (3.1b)

Dw

Dt
− 2Ωu = −1

ρ
Pz − g. (3.1c)

In the following we present an exact solution for fluid motion in theM(t) region, which
is explicit in a Lagrangian formulation using the labelling parameters q, r, s. Here q ∈ R,
s ∈ [−s0, s0] for s0 =

√
c0/β ≈ 250km the equatorial radius of deformation [12], and

r ∈ [r0, r+], where r = r0 determines the thermocline η and r = r+ determines the interface
η+ which separates theM(t) and L(t) region. It is shown below that r+(s) > r0(s) > 0.
In this section we show that the following system of Eulerian coordinates for the flow,
defined in terms of these Lagrangian labelling variables (q, r, s) and time t, represent a
solution of the governing equations (2.2):

x = q − 1

k
e−kr sin [k(q − ct)], (3.2a)

y = s+ ψ(q, r)t, (3.2b)

z = r − 1

k
e−kr cos [k(q − ct)]. (3.2c)
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Denoting ξ = −kr, θ = k(q − ct), the Jacobian matrix of the transformation (3.2) takes
the following form

 ∂x
∂q

∂y
∂q

∂z
∂q

∂x
∂s

∂y
∂s

∂z
∂s

∂x
∂r

∂y
∂r

∂z
∂r

 =

 1− eξ cos θ ψq(q, r)t eξ sin θ
0 1 0

eξ sin θ ψr(q, r)t 1 + eξ cos θ

 . (3.3)

The Jacobian has a time independent determinant 1− e2ξ (which is non-zero since r0 > 0)
thus it follows that the flow defined by (3.2) must be volume preserving, ensuring that
(2.2a) holds in the Eulerian setting, cf. [1]. We note for future reference that the inverse
of the Jacobian (3.3) is given by

 ∂q
∂x

∂s
∂x

∂r
∂x

∂q
∂y

∂s
∂y

∂r
∂y

∂q
∂z

∂s
∂z

∂r
∂z

 =
1

1− e2ξ

 1 + eξ cos θ −t[ψq(1 + eξ cos θ)− ψreξ sin θ] −eξ sin θ
0 1− e2ξ 0

−eξ sin θ −t[ψr(1− eξ cos θ)− ψqeξ sin θ] 1− eξ cos θ

 .

(3.4)
Calculating directly from (3.2) we get

u =
Dx

Dt
= ceξ cos θ, (3.5a)

v =
Dy

Dt
= ψ(q, r), (3.5b)

w =
Dz

Dt
= −ceξ sin θ. (3.5c)

It is apparent from (3.5) that the solution (3.2) comprises a travelling wave-like term
in the zonal direction, determined by the velocity components (3.5a) and (3.5c), mov-
ing with constant wave phasespeed c (given by dispersion relations (3.11) below) and
constant wavelength L, with wavenumber k = 2π/L. The velocity component (3.5b)
represents a meridional transverse current term ψ(q, r) which is both latitudinally- and
time-independent. It is also clear from (3.5) that the wave motion is three-dimensional
if ψ 6≡ 0. Furthermore, if the current term ψ is non-constant then the vorticity is also
three-dimensional with a steady periodic time-dependence, since we have

ω = ∇×U = (wy − vz, uz − wx, vx − uy)

=
1

1− e−2kr

(
ψqe

−kr sin θ + ψr(1− e−kr cos θ), 2kce−2kr, ψq(1 + e−kr cos θ) + ψre
−kr sin θ

)
,
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where the vorticity component may be easily obtained from the velocity gradient tensor ∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z

 =

 ∂q
∂x

∂s
∂x

∂r
∂x

∂q
∂y

∂s
∂y

∂r
∂y

∂q
∂z

∂s
∂z

∂r
∂z

 ∂u
∂q

∂v
∂q

∂w
∂q

∂u
∂s

∂v
∂s

∂w
∂s

∂u
∂r

∂v
∂r

∂w
∂r


=

1

1− e2ξ

 −ckeξ sin θ ψq(1 + eξ cos θ) + ψre
ξ sin θ −ckeξ(cos θ + eξ)

0 0 0
−ckeξ(cos θ − eξ) −ψqeξ sin θ − ψr(1− eξ cos θ) ckeξ sin θ

 .

Indeed even if ψ ≡ 0 the flow is inherently rotational, an observation which may be inferred
from the closed (circular) particle trajectories resulting from (3.2), which are redolent of
Gerstner’s wave solution— see [14]. It has recently been shown that a characteristic of
irrotational flow (at least in the gravity wave setting) is the non-closed nature of particle
paths, cf. [4, 11,16]. To prove that (3.2) defines an exact solution of (3.1), we calculate

Du

Dt
= kc2eξ sin θ, (3.6a)

Dv

Dt
= 0, (3.6b)

Dw

Dt
= kc2eξ cos θ, (3.6c)

and inserting the terms from (3.5) and (3.6) into (3.1) gives us

Px = −ρ0(kc2eξ sin θ − 2Ωceξ sin θ), (3.7a)
Py = 0, (3.7b)

Pz = −ρ0(kc2eξ cos θ − 2Ωceξ cos θ + g). (3.7c)

Multiplying both sides of (3.7) by the Jacobian matrix (3.3) we derive the following ex-
pression for the pressure gradient in terms of the Lagrangian variables Pq

Ps
Pr

 = −ρ0

 (kc2 − 2Ωc+ g)eξ sin θ
0

(kc2 − 2Ωc)e2ξ + (kc2 − 2Ωc+ g)eξ cos θ + g

 . (3.8)

To conclude our demonstration that (3.2) is an exact solution of the governing equations
(2.2), we must prescribe a suitable pressure function P which satisfies (3.8) and which
satisfies suitable boundary conditions on the interface η. To this end we propose

P̃ = ρ0
kc2 − 2Ωc

2k
e2ξ − ρ0gr + ρ0

kc2 − 2Ωc+ g

k
eξ cos θ + P̃0 (3.9)
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whose gradient takes the form

P̃q = −ρ0(kc2 − 2Ωc+ g)eξ sin θ

P̃s = 0

P̃r = −ρ0(kc2 − 2Ωc)e2ξ − ρ0g − ρ0(kc2 − 2Ωc+ g)eξ cos θ,

which correctly matches the right hand side of (3.8). The pressure function itself must also
match the boundary condition (2.2d) at the thermocline η(x− ct), so we work as follows.
Let us first suppose that the thermocline is determined by setting r = r0, for some r0,
then (2.2d) together with (3.2c) gives us

P |z=η(x−ct) = P0 − ρ+gr0 +
ρ+g

k
eξ0 cos θ, (3.10)

and comparing the time-dependent θ term in (3.10) with that in (3.9) leads us to impose
the matching condition

ρ0(kc
2 − 2Ωc+ g) = ρ+g,

or kc2 − 2Ωc = g̃, a quadratic in c which we solve to get the dispersion relations

c =
Ω±

√
Ω2 + kg̃

k
. (3.11)

Choosing the plus sign in (3.11) gives c > 0 for which the wavelike term is eastward
propagating, whereas choosing the minus sign gives c < 0 and so the wavelike term is then
propagating westwards. This apparent freedom in propagation direction is unique to the
f−plane formulation, as similar exact solutions in the β−plane are exclusively eastward
propagating [7, 8]. With the wave speed c prescribed by (3.11), rematching the interface
pressure condition (3.10) with (3.9) leads to the equation

e−2kr0

2k
+ r0 =

1

g(ρ+ − ρ0)
(
P0 − P̃0

)
. (3.12)

This relation implies that for a given P̃0, if a unique solution r0 exists for which (3.12)
holds, then the parameter choice r = r0 uniquely determines the thermocline. Since the
mapping

r 7→ e−2kr

2k
+ r

is strictly increasing, and since r > 0, it follows that if
1

g(ρ+ − ρ0)
(
P0 − P̃0

)
>

1

2k

then there is a unique value r0 > 0 where (3.12) holds, and accordingly the parameter
choice r = r0 prescribes the thermocline. A similar analysis shows that we can determine
the interface z = η+ which separates L andM by fixing some constant

P ∗ >
1

g(ρ+ − ρ0)
(
P0 − P̃0

)
>

1

2k
,
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and the unique solution of

P ∗ =
e−2kr

2k
+ r,

given by r = r+ > r0, will specify this interface. This shows that the solution (3.2) allows
some freedom in locating both interfaces η and η+, in the sense that we have some choice
in the constants P̃0 and P ∗. We further remark that, reasoning along similar lines as the
β−plane setting (cf. [7, 8]), these interfaces will be troichoidal (and therefore inherently
nonlinear) in appearance.
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