
Title Exploring an agent as an economic insider threat solution

Authors Tagle, Betina;Felch, Henry

Publication date 2015-05

Original Citation TAGLE, B. & FELCH, H. 2015. Exploring an agent as an economic
insider threat solution. In: DONNELLAN, B., GLEASURE, R.,
HELFERT, M., KENNEALLY, J., ROTHENBERGER, M., CHIARINI
TREMBLAY, M., VANDERMEER, D. & WINTER, R. (eds.) At the
Vanguard of Design Science: First Impressions and Early Findings
from Ongoing Research Research-in-Progress Papers and Poster
Presentations from the 10th International Conference, DESRIST
2015. Dublin, Ireland, 20-22 May. pp. 1-8

Type of publication Conference item

Link to publisher's
version

http://desrist2015.computing.dcu.ie/

Rights ©2015, The Author(s).

Download date 2024-04-19 03:57:39

Item downloaded
from

https://hdl.handle.net/10468/1797

https://hdl.handle.net/10468/1797

Exploring an Agent as an Economic Insider Threat
Solution

Betina Tagle1, Dr. Henry Felch2

1Colorado Technical University, Colorado Springs, USA

tina_tagle2000@yahoo.com

2University of Maine at Augusta, August, USA

henry.felch@maine.edu

Abstract. The insider threat is a security problem that is well-known and has a
long history, yet it still remains an invisible enemy. Insiders know the security
processes and have accesses that allow them to easily cover their tracks. In re-
cent years the idea of monitoring separately for these threats has come into its
own. However, the tools currently in use have disadvantages and one of the
most effective techniques of human review is costly. This paper explores the
development of an intelligent agent that uses already in-place computing mate-
rial for inference as an inexpensive monitoring tool for insider threats. Design
Science Research (DSR) is a methodology used to explore and develop an IT
artifact, such as for this intelligent agent research. This methodology allows for
a structure that can guide a deep search method for problems that may not be
possible to solve or could add to a phenomenological instantiation.

Keywords: Insider Threat · Linear Genetic Programming · inference, software
agent · learning.

1 Introduction

The insider threat continues to be a problem, but not due to a growth in occurrences.
Ponemon Institute (2013) reports that the frequency of security breaches have had
either "no change or decreased at 47%", but the severity has "increased by 52%". It is
estimated that organizations typically experience a security breach yearly where more
than half of them are caused by an employ for non-compliance [26]. The insider is
internal to an organization behind the firewall as a trusted user [29]. Blackwell (2009)
suggests that "The attacker uses a tool to perform an action that exploits a vulnerabil-
ity on a target causing an unauthorized result that meets its objectives". Since insiders
need a physical means to commit insider crime and logical security policies are tech-
nical settings that can be configured, then it is system monitoring that is the effective
technique to determined non-compliant behavior [8].

The need is for a tool that learns on its own, as well as one that can promote cost
friendly insider threat detection programs for organizations. This paper explores the
intelligent agent as an effective and inexpensive tool for the detection of insider
threats. First the issue of current tools available is discussed (Section 2). Next is a
discussion on software agents (Section 3). Fourth is the presentation of the proposed
intelligent agent (Section 4). Next is the research methodology to design and build the
intelligent agent (Section 5). Lastly is the conclusion that includes future research
intended (Section 6).

2 Issues with Hardware Tools

The hardware tools available that may be used for insider threat monitoring are costly
to implement and manage both in funding and man hours. Typically different tools
would have to be combined for complete effective monitoring for insider threats.
There are other possible hardware solutions other than the examples in this section.
However, the idea is that an effective insider tool has the ability to stand on its own
and be specifically for internal threats so two examples of possibilities is used.

2.1 Intrusion Detection System (IDS)

The intrusion detection system (IDS) is to detect intrusion to a network or computer.
The anomaly signature-based IDS is the traditional configuration, but requires con-
stant updates with new signatures and these are increasing at a fast pace, for example,
five years ago SNORT reported an increase from 1500 to 2800 over a two-year period
[3, 5]. According to Axelsson (2000) high false-alarm rates plague the IDS. Configur-
ing the audit policy within the IDS is complicated and would be especially so for
insider threats [15]. This device may be able to be used for insider threat detection,
but the performance continues to be an issue [11].

2.2 Expert Systems

Expert systems are considered the knowledgeable device and experts in problem solv-
ing. They make decisions based on the information it is given and inferences referred
to as modus ponens, "given (p) q) and p we deduce q" [12]. Expert systems are not
able to learn more than the knowledge base they are provided. The device is not con-
figured for game-base programming or decision-theory computation [16]. Heuristics
is available, however, this capability is useless unless it was programmed for such
where the decision is based on the knowledge and rules it is given [2, 13].

3 A Software Approach

Software agents have the capability to be created and configured to learn, evolve,
adapt, and have self-reliance in any environment. They are able to abide by them-

selves where constant intervention is not required [6, 22]. This is an important charac-
teristic with so many users within an organization. Agents have the ability to under-
stand their environment by learning as they complete their tasks. They are commonly
known as micro software systems that interact in an environment to achieve a goal
[28]. There are many types of software agents available that could be insider monitor-
ing tools.

3.1 Agent Types

The adaptive agent is one that creates an explicit control plan for events that occur in
dynamic and difficult computing infrastructure, it adapts to its environment on its own
[10]. The intelligent agent has three attributes for its intelligence where they can per-
ceive the changes in their environment, react and impact the conditions of the envi-
ronment, and possess reasoning in order to infer, interpret, determine, and take action
[10]. This type of agent has the capability to modify its own code since its code is part
of the environment [20]. The artificial intelligent (AI) agent is where humanistic
abilities are applied and at a high-level of cognition [19, 31]. With these different
qualities available, the software agent is capable of insider threat detection.

4 Proposed Artifact

The Intelligent Agent Monitoring Inference Engine (IAMIE) is a one-tool solution to
detect and respond to insider threats while making use of already in-place operating
system (OS) components, in this research it is Windows. The software agent produc-
es cognitive units of programming object classes (considered cognitive units hereaf-
ter) that monitor the actions and objects of an insider threat. These are translated from
audit logs and user actions then assimilated into an instance of context within the
context engine. Here the units are arranged with the logical elements of inferential
mechanics to identify what has occurred. They are then sent to the inference engine
without their knowledge factors to infer possible responses using Linear genetic pro-
gramming (LGP). The LGP allows the intelligent agent to respond to actions within
the context engine. It is a method that uses the I/O (inherent to the OS) to read and
write ad hoc protocols into the agent's source file with the C# code. This provides the
ability to execute all possible inferred responses for context input and output.

The inference engine processes input through predicate and fuzzy logic to associate
knowledge to the input. The process of predicate logic is the loop where the starts and
stops are coded into the loop, such as true and false. The loop checks for conditions
over and over. The fuzzy logic is used to check for conditions based on reasoning
from approximation and possess partial evidence of true where logic is between the
range of 0 and 1, not completely true and false [17]. These processes of logic allow
the structure for the agent to take into account Scruffy and NeuroEvolution of Aug-
menting Topologies (NEAT) computation. The Scruffy performs ad hoc inference
processing, meaning math is not used; while, the NEAT option of inference does per-

form discrete measurements [14]. Code tells the inference platform how to process the
structure.

The cognitive units are then sent to the cognitive engine to obtain their knowledge
once the first phase of inference . The cognitive units obtain their knowledge from the
cognitive engine through the engine's memory retrieval from Extensible Markup Lan-
guage (XML). Once the new knowledge is obtained they will go back through the
inference engine to manipulate the assessed knowledge into the cognitive units.

Finally the context engine converts the inferred, processed, and assimilated
knowledge into new instances of the cognitive units for each implication made in the
previous context. A response is displayed and an action is taken by the cognitive
units. If it is determined that the action is a possible insider threat a simple alert mes-
sage is sent to the PC of the user and the monitoring PC of the agent. Figure 1, Arti-
fact Diagram, provides an overview of how the intelligent agent works.

Fig. 1. Artifact Diagram

4.1 Artifact Example

The intelligent agent takes input that comes in the form of actual command line
prompt inputs of natural language, it reads event log entries, or it watches for specific
actions to occur that are established as rules in its programs. For example, the organi-
zation may have a specific folder that is restricted to only specific personnel since it
contains the designs that gives a product its competitive advantages. The folder lists

of users that have permission to access, read, write, and execute the folder contents.
The agent is a software program that resides on the computing device where the fold-
er is located. The agent produces cognitive units that infer if accessing users are al-
lowed to perform the actions they take with the folder. Flags set within the agent per-
form an alert message when certain activities in the folder are performed and if an
unauthorized user is found it will send out an alert message. The key to the intelligent
agent is that it watches the actions performed by trusted individuals.

5 Artifact Methodology

Design Science Research (DSR) is a method focused on the construction and im-
provement of an information Technology (IT) artifact or prototype and requires strong
evaluation [21, 27]. Its use allows the whole of the research to add to the knowledge
base [27]. For this agent research the DSR model chosen is the five-cycled General
Design Cycle (GDC) model of awareness, problem, suggestion, development, and
evaluation [25]. The frame used from DSR is the experiments and exploration to
guide the research outcome to an operational prototype [24]. This research involves
software development and the development life cycle (SDLC) chosen is an Agile
approach of Rapid Application Development (RAD) using Iterative and Incremental
phases (known as RADII within research documentation). Figure 2, Artifact Research
Model, provides an overview of how DSR and a Software Development Life Cycle
(SDLC) is used for developing the artifact.

Fig. 2. Artifact Research Model

This intelligent agent research will include the dynamics of the suggested seven
principles of DSR to address the rigor and processing, as follows: 1) Design as an
Artifact; 2) Problem Relevance; 3) Design Evaluation; 4) Research Contributions; 5)
Research Rigor; 6) Design as a Search Process; and, 7) Communication of the Re-
search [26]. The same rigor to apply principles of the design of experimental research
also must be applied to and by DSR [9].

5.1 Reason for DSR

DSR has the purpose of finding solutions to problems in technology that may not
seem solvable or cannot be fixed with engineering alone [27]. The iterative and cy-
cled approach of DSR is useful for practitioners and researchers who have some expe-
rience in using this approach [7]. The goal is to create a solution to a real-world prob-
lem and provide practical relevance. The key is the relevance of the problem to de-
termine if research is needed beyond engineering. This is important since the activity
of research is to contribute to the understanding of a phenomenon and add to the ex-
isting body of knowledge [1, 23]. The research goal is that the intelligent agent's cog-
nitive engine can indeed write new instantiations of itself from LGP processed learn-
ing so it can better detect the invisibility of insider threats.

6 Conclusion

This research has defined the nature of the problem where the increase of insider
threats is not the frequency of incidents, but the damage and its cost of one incident at
one time. The the research is an intelligent software agent as an economical tool that
effectively detects insider threats.

The DSR methodology is specifically to find solutions to problems within the field
of technology. The ability for a research method that can go beyond engineering to
answer to those problems that may not be solvable is invaluable. When a technology
problem exists the first course of action is to decide if engineering can solve the issue
or if DSR is applicable. Although DSR can go beyond creating a prototype or im-
provement by providing new knowledge, to force its use may not help the outcome.

In this specific agent research the use of DSR is valuable in order to take the IT ar-
tifact into operations. The intelligent agent processing information through the Con-
text, Inference, and Cognitive engines makes possible emergent intelligent, where an
agent's cognition grows as it performs its inferences [30]. When emergent intelligence
is embraced in this specific research it exposes the availability of further implementa-
tion of the agent for different areas of technology. Research being performed in a
parallel form is the knowledge that can be applied to the intelligent agent as an audit
log reduction tool. The future research is the agent being structured for cloud applica-
tion and open source processing.

References

1. Abecker, A., Bernardi, A., Hinkelmann, K., Kühn, O., & Sintek, M. (1997, March). To-

wards a well-founded technology for organizational memories. In Proceedings of the
AAAI Spring Symposium on Artificial Intelligence in Knowledge Management (pp. 24-
26).

2. Abraham, A. (2005). Rule‐Based Expert Systems. Handbook of measuring system design.
3. Beg, S., Naru, U., Ashraf, M., & Mohsin, S. (2010). Feasibility of intrusion detection sys-

tem with high performance computing: A survey. International Journal for Advances in
Computer Science, 1(1).

4. Blackwell, C. (2009, April). Security architecture to protect against the insider threat from
damage, fraud and theft. In Proceedings of the 5th Annual Workshop on Cyber Security
and Information Intelligence Research: Cyber Security and Information Intelligence Chal-
lenges and Strategies (p. 45). ACM.

5. Brox, A. (2002). Signature-based or anomaly-based intrusion detection: the practice and
pitfalls. Multimedia information & technology, 28(1), 17-19.

6. Genesereth, M. R., & Ketchpel, S. P. (1994). Software agents. Commun. ACM, 37(7), 48-
53.

7. Göbel, H., & Cronholm, S. (2012). Design science research in action-experiences from a
process perspective.

8. Greitzer, F. L., & Frincke, D. A. (2010). Combining traditional cyber security audit data
with psychosocial data: towards predictive modeling for insider threat mitigation. In Insid-
er Threats in Cyber Security (pp. 85-113). Springer US.

9. Hassan, N. R. (2014). Value of IS research: Is there a crisis?. Communications of the As-
sociation for Information Systems, 34(41), 801-816.

10. Hayes-Roth, B. (1990). Architectural foundations for real-time performance in intelligent
agents. Real-Time Systems, 2(1-2), 99-125.

11. Jonnalagadda, S. K., & Reddy, R. P. (2013). A Literature Survey and Comprehensive
Study of Intrusion Detection. International Journal of Computer Applications, 81(16), 40-
47.

12. Lindqvist, U., & Porras, P. A. (1999). Detecting computer and network misuse through the
production-based expert system toolset (P-BEST). In Security and Privacy, 1999. Proceed-
ings of the 1999 IEEE Symposium on (pp. 146-161). IEEE.

13. Mauri, G., Filippini, M., & Gardin, F. (Eds.). (1990). Computational Intelligence, II (Vol.
2). Elsevier.

14. Minsky, M. L. (1991). Logical versus analogical or symbolic versus connectionist or neat
versus scruffy. AI magazine, 12(2), 34.

15. Myers, J., Grimaila, M. R., & Mills, R. F. (2009, April). Towards insider threat detection
using web server logs. In Proceedings of the 5th Annual Workshop on Cyber Security and
Information Intelligence Research: Cyber Security and Information Intelligence Challeng-
es and Strategies (p. 54). ACM.

16. Parsons, S., & Wooldridge, M. (2002). Game theory and decision theory in multi-agent
systems. Autonomous Agents and Multi-Agent Systems, 5 (3), 243-254.

17. Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible infer-
ence. Morgan Kaufmann.

18. Ponemon, L. (2013). Cost of Data Breach Study: Global Analysis. Poneomon Institute
sponsored by Symantec.

19. Popplestone, R. J. (1970). An experiment in automatic induction. Machine Intelligence, 5,
203-215.

20. Ring, M., & Orseau, L. (2011). Delusion, survival, and intelligent agents. In Artificial
General Intelligence (pp. 11-20). Springer Berlin Heidelberg.

21. Robey, D. (1996). Research commentary: diversity in information systems research: threat,
promise, and responsibility. Information Systems Research, 7(4), 400-408.

22. Shoham, Y. (1993). Agent-oriented programming. Artificial intelligence, 60(1), 51-92.
23. Simon, H. (1996). The Sciences of the Artificial. MIT Press.
24. Tichy, W. F. (1998). Should computer scientists experiment more?. Computer, 31(5), 32-

40.
25. Vaishnavi, V. K., & Kuechler Jr, W. (2007). Design science research methods and pat-

terns: innovating information and communication technology. CRC Press.
26. Vance, A., Siponen, M., & Pahnila, S. (2012). Motivating IS security compliance: insights

from habit and protection motivation theory. Information & Management, 49(3), 190-198.
27. von Alan, R. H., March, S. T., Park, J., & Ram, S. (2004). Design science in information

systems research. MIS quarterly, 28(1), 75-105.
28. Wang, H., Liu, S., & Zhang, X. (2006, August). A prediction model of insider threat based

on multi-agent. In Pervasive Computing and Applications, 2006 1st International Sympo-
sium on (pp. 273-278). IEEE.

29. Warkentin, M., & Willison, R. (2009). Behavioral and policy issues in information sys-
tems security: the insider threat. European Journal of Information Systems, 18(2), 101.

30. Wooldridge, M. (2009). An introduction to multi-agent systems. John Wiley & Sons.
31. Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: Theory and practice. The

knowledge engineering review, 10(02), 115-152.

	1 Introduction
	2 Issues with Hardware Tools
	2.1 Intrusion Detection System (IDS)
	2.2 Expert Systems

	3 A Software Approach
	3.1 Agent Types

	4 Proposed Artifact
	4.1 Artifact Example

	5 Artifact Methodology
	5.1 Reason for DSR

	6 Conclusion
	References

