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Toroidal trapped surfaces and isoperimetric inequalities
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We analytically construct an infinite number of trapped toroids in spherically symmetric Cauchy
hypersurfaces of the Einstein equations. We focus on initial data which represent “constant density stars”
momentarily at rest. There exists an infinite number of constant mean curvature tori, but we also deal with
more general configurations. The marginally trapped toroids have been found analytically and numerically;
they are unstable. The topologically toroidal trapped surfaces appear in a finite region surrounded by the
Schwarzschild horizon.
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I. INTRODUCTION

There exists numerical evidence that black hole horizons
can have nonspherical topologies at an early stage of their
development [1–3]. It has been speculated that apparent
horizons also possess a nontrivial topology ([1,4] and
references therein). Recently, quantitative criteria were
found that guarantee the appearance of toroidal trapped
surfaces [5] on an initial Cauchy hypersurface. In this
paper, we explicitly construct trapped surfaces of toroidal
topology in spherically symmetric geometries generated by
“a constant density star” [6]. Remarkably, they can appear
only in strongly curved geometries, when the spherical
apparent horizon is already present. In this environment,
one can find, under some additional conditions, a region
filled with trapped toroids.
In Sec. II we define our coordinate tori inside a constant

density star. Section III is dedicated to the derivation of
relations between parameters—the toroidal radii and the
asymptotic mass of the spacetime—that guarantee the
existence of trapped and marginally trapped toroids.
Explicit solutions are constructed. Section IV displays
graphs of marginally trapped toroids (MTT’s); we show,
in particular, MTT’s that exist both partly in the star and in
the surrounding vacuum. We investigate in Sec. V iso-
perimetric inequalities in order to find those that adequately
describe the situation. It seems that the most appropriate are
those quantities which are related to the binding energy.
The last section contains conclusions.

II. MEAN CURVATURE OF COORDINATE TORI

We shall assume momentarily static (Kij ¼ 0), spheri-
cally symmetric, initial data, for a constant density star,
with the 3-metric in cylindrical coordinates as

ds2 ¼ Φ4ðRÞðdr2 þ r2dϕ2 þ dz2Þ; ð1Þ

where ΦðRÞ ¼ ð1þβR2
0
Þ3=2ffiffiffiffiffiffiffiffiffiffi

1þβR2
p for R ≤ R0 and ΦðRÞ ¼ 1þ β

R3
0

R

for R > R0. Here R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
is the spherical radial

coordinate, and R0 is the radius of the star (in flat
coordinates).
Assume that we are given a family of coordinate tori, of

major radius a and minor radius b, with the z-axis as the
symmetry axis. It is defined by the following formulas:
(1) In region 1 (i.e., r ≤ a): ðr;ϕ; zÞ, with r ¼ a−ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 − z2
p

, the unit normal vector to the torus is
given by

ðniÞ ¼ 1

Φ2ðRÞ
�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − z2

p

b
; 0;

z
b

�
; ð2Þ

(2) and in region 2 (i.e., r ≥ a): ðr;ϕ; zÞ, with r ¼
aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − z2

p
, we have

ðniÞ ¼ 1

Φ2ðRÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 − z2
p

b
; 0;

z
b

�
: ð3Þ

The metric induced on the surface of the torus is given by
ds2ind ¼ Φ4ðRÞðr2dϕ2 þ b2

b2−z2 dz
2Þ. The mean curvature

H ≡∇ini is given by following expressions:
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(1) in region 1:

H ¼ 1

Φ2ðRÞb

×

�
a − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − z2

p

a −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − z2

p þ 4βða
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − z2

p
− b2Þ

1þ βR2

�
;

ð4Þ

(2) in region 2:

H ¼ 1

Φ2ðRÞb

×

�
aþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − z2

p

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − z2

p −
4βða

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − z2

p
þ b2Þ

1þ βR2

�
:

ð5Þ

We assume for convenience that R0 ¼ 1. Then the

conformal factor is given by ΦðRÞ ¼ ð1þβÞ3=2ffiffiffiffiffiffiffiffiffiffi
1þβR2

p for R ≤ 1

andΦðRÞ ¼ 1þ β
R for R > 1. Note that with this choice, the

asymptotic mass of the spacetime becomes m ¼ 2β.

III. ANALYTIC CONSTRUCTIONS: TRAPPED
AND MARGINALLY TRAPPED TORI

We shall present below families of trapped surfaces,
including marginally trapped and constant mean curvature
tori (CMCT). It is a simple algebraic exercise to show,
that if

β ¼ 1

a2 − b2
; ð6Þ

then the mean curvature of the coordinate tori is constant
and it is equal to

H ¼ 2β
a2 − 2b2

bð1þ βÞ3 : ð7Þ

This expression vanishes when a ¼ ffiffiffi
2

p
b—the correspond-

ing torus is marginally trapped. We have 1 ≥ aþ b ¼
bð1þ ffiffiffi

2
p Þ, since we assume that the tori are inside

the star; thus the minimal value of β is given by βmin ¼
ð1þ ffiffiffi

2
p Þ2 ¼ 3þ 2

ffiffiffi
2

p
. If β ≥ βmin, then there exists a

marginally trapped coordinate torus with b ¼ 1=
ffiffiffi
β

p
,

a ¼ b
ffiffiffi
2

p
and aþ b ≤ 1.

The constant mean curvature tori are trapped if
a ¼ ffiffiffi

α
p

b, where 1 <
ffiffiffi
α

p
<

ffiffiffi
2

p
. In this case Eq. (6) yields

β ¼ 1=ðb2ðα − 1ÞÞ; note that 1 ≥ aþ b ¼ bð1þ ffiffiffi
α

p Þ.
Therefore we have for trapped tori βTmin ¼ 1þ ffiffi

α
p

−1þ ffiffi
α

p . This

is a decreasing function of α; its minimal value is achieved
at α ¼ 2, that is we get the intuitively obvious estimate:
βTmin > βmin. In order to create configurations with

constant mean curvature trapped tori one needs a bigger
asymptotic mass than for the formation of configurations
that contain only marginally trapped toroids. This is proven
only for marginally trapped coordinate tori, but numerical
calculations suggest that the only MTT’s that exist inside
the star are the coordinate tori found in this section.
In what follows we show how to construct trapped tori,

that do not have constant mean curvature. We assume a and
b satisfy aþ b ¼ 1; these tori are tangent to the boundary
of a star. This assumption is not necessary, but it is makes
the calculation simpler. Moreover, since we exclude self-
intersecting tori, we must have b < 1=2 and a > 1=2.
Direct calculation gives in region 1

dH
dz

¼ K

ða −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða − 1Þ2 − z2

p
Þ2 ð8Þ

and in region 2

dH
dz

¼ −K
ðaþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða − 1Þ2 − z2

p
Þ2 : ð9Þ

Here K ≡ azð−1þβð2a−1ÞÞ
ða−1Þð1þβÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða−1Þ2−z2

p . Note that if β > 1
2a−1,

then—assuming that z > 0—the mean curvature H is a
monotonically decreasing function of z in region 1, and it is
a monotonically increasing function in region 2. Note also
that H is an even function of z. Therefore, in this case it
suffices to prescribe nonpositive values of the mean
curvature at two points; those farthest and closest to the
center. That guarantees that the torus is trapped.

IV. NUMERICS: MARGINALLY TRAPPED
TOROIDAL SURFACES

In the following we use standard toroidal coordinates
ðσ; τ;ϕÞ [7]. They are related to the Cartesian coordinates
ðx; y; zÞ by x ¼ c sinh τ cosϕ

cosh τ−cos σ, y ¼ c sinh τ sinϕ
cosh τ−cos σ and z ¼ c sin σ

cosh τ−cos σ;
here −π ≤ σ ≤ π, τ ≥ 0, 0 ≤ ϕ < 2π and c > 0 is a radius
of the circle in the z ¼ 0 plane corresponding to τ ¼ ∞.
The metric can be expressed as ds2 ¼ Φ4 c2

ðcosh τ−cos σÞ2 ×

ðdσ2 þ dτ2 þ sinh2τdϕ2Þ. We parametrize a toroidal sur-
face S by τ ¼ fðσÞ. The mean curvature of S reads

H ¼ ðcosh τ − cos σÞ3
cΦ6ðσ; τÞ sinh τ

����
τ¼fðσÞ

×

�
∂σ

�
Φ4ðσ; τÞ sinh τf0ðσÞ

ðcosh τ − cos σÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f0ðσÞ2

p
�����

τ¼fðσÞ

− ∂τ

�
Φ4ðσ; τÞ sinh τ

ðcosh τ − cos σÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f0ðσÞ2

p
�����

τ¼fðσÞ

	
: ð10Þ

The constant mean curvature tori (CMCT) obtained in
the previous section can be easily recovered by setting
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Φ ¼ ð1þ βÞ3=2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ βR2

p
and c ¼ 1=

ffiffiffi
β

p
. All tori of

constant H are then given by τ ¼ const; the corresponding
mean curvature reads

H ¼
ffiffiffi
β

p ðcoshð2τÞ − 3ÞcschðτÞ
ðβ þ 1Þ3 : ð11Þ

One obtains H ¼ 0 by setting τ ¼ τ0 ¼ logð1þ ffiffiffi
2

p Þ ¼
arccoshð3Þ=2. Figure 1 depicts four such marginally
trapped tori that are contained entirely within the constant
density star and that exist for β ≥ β0 ≡ 3þ 2

ffiffiffi
2

p
.

Let us consider a family of CMCT’s in the vicinity of τ0.

Their area is given by Aτ ¼ π2ð1þβÞ6 sinh τ
βcosh2τ . The first derivative

dAτ
dτ vanishes at τ ¼ τ0 and the second derivative

d2Aτ

dτ2 jτ¼τ0
¼

− π2ð1þβÞ6
β is strictly negative at τ ¼ τ0. This deformation

locally maximizes the torus area. Therefore, when τ ¼ τ0,
the marginally trapped torus is not stable. This agrees with
the result of Galloway, who proved that a minimal surface
of toroidal topology can be stable only if the three
dimensional scalar curvature vanishes along the toroid,
and the toroid is totally geodesic [8].
Several MTT’s are depicted in Fig. 1 for β ≥ 3þ 2

ffiffiffi
2

p
.

They can be obtained numerically also for β < 3þ 2
ffiffiffi
2

p
.

Examples of such MTT’s are shown in Fig. 2. In this case
only a part of the surface is contained within the star. We
compute MTT’s by solving the equationH ¼ 0, whereH is
given by Eq. (10), for the function fðσÞ. Assuming
equatorial symmetry we restrict ourselves to the interval
½0; π� with the boundary conditions f0ð0Þ ¼ f0ðπÞ ¼ 0. In
practice, solutions depicted in Fig. 2 are obtained by gluing
solutions corresponding to Φ ¼ ð1þ βÞ3=2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ βR2

p
inside the star and those corresponding to the vacuum
region (R > 1) where we put Φ ¼ 1þ β=R. There is an
interesting behavior of these MTT’s. They cross the sphere
R ¼ 1 and go outward until a value βm ≈ 2.58, and then
they go inward and center along a piece of the sphere
R ¼ 1. They exist for values of β that are arbitrarily close to
β ¼ 1—when trapped spheres do exist—but they are
obviously absent at β ¼ 1, because in such a case the

boundary of the star coincides with the minimal surface and
no spherical trapped surfaces exist.

V. TRAPPED TOROIDS AND
ISOPERIMETRIC INEQUALITIES

We will discuss in this section several inequalities
describing toroidal marginally trapped surfaces.
Momentarily static initial data, which are given by (1),
correspond to constant mass density

ρ ¼ 3β

2π

1

ð1þ βÞ6 : ð12Þ

The corresponding asymptotic mass is m ¼ 2β and the rest
mass is given by

M ¼
Z
V
dVρ ¼ 3

4
ffiffiffi
β

p ð1þ βÞ3
�
arctanð

ffiffiffi
β

p
Þ þ

ffiffiffi
β

p ðβ − 1Þ
ð1þ βÞ2

�
:

ð13Þ
The resulting geometry has been studied in [9]; it turns out
that the first spherical minimal surface appears when
the parameter β ¼ 1, in which case the proper radius
L ¼ R

1
0 dRΦ

2 becomes equal to 4M=3.
The ratio m=M can be bounded for spherical initial data

of compact support [10], mM ≤ 1 − M
2L, where L is the proper

radius of the star. This inequality, that is valid for spheri-
cally symmetric, momentarily static initial geometries, is
just one of many examples of isoperimetric inequalities. Its
right-hand side can be treated as a measure of the strength
of gravity. It is equal to 0.625, when β ¼ 1, that is when the
first minimal surface is born, and it is equal to 0.545 at the
value β ¼ 3þ 2

ffiffiffi
2

p
. It is more instructive, however, to do

the straightforward calculation using the formulas for m
and M. One obtains

FIG. 1. The shapes of MTT’s obtained for β ¼ 3þ 2
ffiffiffi
2

p
;

6; 10; 20. All these surfaces are contained within the star.

FIG. 2. The shapes of MTT’s obtained for β ¼ 5, 4, 2.58, 1.5,
1.1, 1.01.
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m
M

¼ 8β

3ð1þ βÞ3
�
arctanð ffiffiffi

β
p Þffiffiffi
β

p þ ðβ − 1Þ
ð1þ βÞ2

�−1
: ð14Þ

One can check that m=M → 1 when β → 0. At β ¼ 1
(allowing the appearance of the first spherical apparent
horizon) we have m=M ≈ 0.42 and at β ¼ 3þ 2

ffiffiffi
2

p
(allowing the appearance of the first MTT) we get
m=M ≈ 0.083. The ratio of the two masses monotonically
decreases, and for large β we obtain small values of m=M.
The quantity ϵm ≡ 1 − m

M can be interpreted as the
binding energy per unit rest mass. We hypothesise that
the following is true:
Conjecture. If the value of the binding energy per unit

mass ϵm is large enough, that ism=M is small, then trapped
surfaces of topologies different than S2 can form.
The more precise statement would be that: MTT’s will

exist if ϵm > 0.5. The lower bound ϵm ¼ 0.5 is saturated by
massive spherical shells, when the minimal surface coin-
cideswith the shell itself [10], and there should be noMTT’s.
In the remainder of this section we shall discuss inequal-

ities of [5], using our explicit solutions. The total rest mass
of a marginally trapped torus is given by

MT ¼
Z
V
ρdV ¼ ρ × Volume

¼ 3βð1þ βÞ3
Z

b

−b
dz

Z
aþ

ffiffiffiffiffiffiffiffiffi
b2−z2

p

a−
ffiffiffiffiffiffiffiffiffi
b2−z2

p rdr
ð1þ βðr2 þ z2ÞÞ3

¼ 3ð1þ βÞ3
4

ffiffiffi
β

p
Z

1

−1
dxðI−2− − I−2þ Þ: ð15Þ

Here x ¼ z
ffiffiffi
β

p
and I� ¼ 1þ βða2 þ b2 � 2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − z2

p
Þ ¼

4� 2
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
.

The circumferential radius Lr ¼ rΦ2 through a margin-
ally trapped torus is maximized at r ¼ 1=

ffiffiffi
β

p
, z ¼ 0 and it

has a maximal length equal to Lr ¼ ð1þβÞ3
2

ffiffi
β

p .

The Khuri-Xie [[5] Eq. (5.3), Theorem 5.1 (i)] bound
expressed in terms of the maximal length of the circum-
ferential radius Lr reads now

2MT
πLr

≤ 1. We easily get that the
left-hand side is equal to 3

π

R
1
−1 dxðI−2− − I−2þ Þ ¼ 3

4
. It is

remarkable that all marginally trapped tori satisfy this
bound with the same coefficient 3

4
.

On the other hand we did not find trapped tori that satisfy
the sufficient condition [[5] Eq. (5.5), Theorem 5.1 (iii)].

VI. SUMMARY

We have constructed explicit and numerical families of
toroidal trapped surfaces (H < 0) and marginally trapped
toroids (H ¼ 0). They constitute the first explicit examples
of unstable MTT’s. The analytic MTT’s show a remarkable
universality—the ratio MT=Lr is the same for all of them.
We constructed solutions for the fixed orientation of the

coordinate system, but our initial data are spherically
symmetric, which means that rotated coordinate systems
also possess their own MTT’s. Thus there exists infinite
number ofMTT’s in our set of initial data.MTT’s exist in the
volume contained beneath the outermost minimal sphere,
which is located at R ¼ β. We conjecture that they can
appear for systems with sufficiently large binding energies.
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