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A theoretical model based on linear potential flow theory and an eigenfunction matching13

method is developed to analyse the hydroelastic interaction between water waves and14

multiple circular floating porous elastic plates. The water domain is divided into the15

interior and exterior regions, representing the domain beneath each plate and the rest,16

which extends towards infinity horizontally, respectively. Spatial potentials in these two17

regions can be expressed as a series expansion of eigenfunctions. Three different types18

of edge conditions are considered. The unknown coefficients in the potential expressions19

can be determined by satisfying the continuity conditions for pressure and velocity at the20

interface of the two regions, together with the requirements for the motion/force at the21

edge of the plates. Apart from the straightforward method to evaluate the exact power22

dissipated by the array of porous elastic plates, an indirect method based on Green’s23

theorem is determined. The indirect method expresses the wave-power dissipation in24

terms of Kochin functions. It is found that wave-power dissipation of an array of circular25

porous elastic plates can be enhanced by the constructive hydrodynamic interaction26

between the plates, and there is a profound potential of porous elastic plates for wave-27

power extraction. The results can be applied to a range of floating structures but have28

special application in modelling energy loss in flexible ice floes and wave-power extraction29

by flexible plate wave-energy converters. (doi:10.1017/jfm.2020.508)30

Key words: wave–structure interactions, surface gravity waves, wave scattering31

1. Introduction32

In recent years, due to industrial and residential applications, the demand for the33

development and utilisation of artificial marine structures nearshore and offshore has34

increased significantly (Lamas-Pardo et al. 2015). Among the wide variety of nearshore35

and offshore artificial structures, some can be identified as floating porous elastic plates36

with small draught relative to their horizontal dimensions, e.g., floating flexible break-37

waters (Michailides & Angelides 2012), artificial floating vegetation fields (Kamble &38

† Email address for correspondence: siming.zheng@plymouth.ac.uk
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Patil 2012) and extensive aquaculture farms (Wang & Tay 2011). The floating elastic39

plate model is the basis for understanding this process (Squire 2020). In particular, the40

scattering characteristics are best analysed by considering multiple ice floes to account41

for interactions (Bennetts et al. 2010; Montiel et al. 2015a, 2016; Montiel & Squire 2017).42

However, these elastic plate scattering models cannot account for the loss of energy, and43

there are several models which propose that a porous or equivalent layer can account for44

the observed energy loss (Zhao & Shen 2018; Sutherland et al. 2019). These models45

motivate the study of flexural deformations of floating porous elastic plates subject46

to water waves and to evaluate carefully the wave-energy dissipation caused by their47

porosity.48

The water–wave scattering of floating elastic plates has been comprehensively investi-49

gated by numerous researchers , and there are several reviews that relate to this topic50

(e.g., Squire 2008, 2011, 2020). To evaluate the interaction of waves with a horizontal51

floating semi–infinite elastic plate, Sahoo et al. (2001) used the analytic representation52

based on the eigenfunction expansion method of Fox & Squire (1994), in the context53

of two–dimensional (2-D) linear potential flow theory. The influence of various edge54

conditions, i.e., a free edge, a simply supported edge and a built–in edge, on the55

hydrodynamic behaviour was investigated. The free–edge condition was shown to result56

in the maximum plate deflection. Squire & Dixon (2000) studied wave propagation57

across a narrow straight–line crack in an infinite thin plate floating on water of infinite58

depth with a Green’s function model. The reflection and transmission coefficients were59

observed to depend significantly on the wave frequency. Evans & Porter (2003) provided60

an explicit solution for the wave scattering of an infinite thin plate with a crack for finite61

water depth. They obtained a more straightforward approach by splitting the higher–62

order conditions to be satisfied at the edge of each plate into the sum of even and odd63

solutions. These models (Squire & Dixon 2000; Evans & Porter 2003) for the single-crack64

problem were later extended to an elastic plate with multiple cracks (Squire & Dixon65

2001; Porter & Evans 2006), but where all the plates have identical properties. Then,66

Kohout et al. (2007) studied a 2-D fluid covered by a finite number of elastic plates, which67

were of arbitrary characteristics. Williams & Porter (2009) introduced an eigenfunction68

expansion method based on deriving an integral equation, which was then solved using69

the Galerkin technique, to determine the problem of wave scattering by two semi–infinite70

plates. These two semi–infinite plates can have different properties, including variable71

submergence following Archimedes’ principle. A similar problem was later investigated72

by Zhao & Shen (2013) in which the plates were considered to have viscoelastic material73

properties. More recently, Kalyanaraman et al. (2019) considered wave interactions with74

a land–attached elastic plate of constant thickness and non–zero draught. The solution75

was found to be strongly influenced by the draught. Koley et al. (2018) investigated wave76

scattering of a flexible plate composed of porous materials floating in water of finite and77

infinite depths employing the Green’s function procedure. The porosity was modelled78

using Darcy’s law, and the porous–effect parameter was taken as a complex number to79

account for both the resistance and inertia effects. The dissipation of the wave power due80

to structural porosity reduced the wave transmission on the lee side of the plate, which81

led to the creation of a tranquil zone.82

In order to understand the hydroelastic problem of elastic plates floating in ocean83

waves when the plate length along the crest line of the incident waves is not much larger84

than the wavelength, three–dimensional effects must be considered. Meylan & Squire85

(1996) studied the behaviour of a solitary, circular, flexible ice floe brought into motion86

by the action of long-crested sea waves. Two independent methods were developed in87

their model, i.e., an expansion in the eigenfunctions of a thin circular plate, and the88
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more general method of eigenfunctions used to construct a Green’s function for the89

plate, enabling a check to be carried out on the model. Zilman & Miloh (2000) developed90

a three-dimensional closed–form solution based on the angular eigenfunction expansion91

method for water–wave interaction with a circular thin elastic plate floating in shallow92

water. Their method was based on the roots of the dispersion equation. Since the shallow–93

water approximation was considered, only three roots in the plate–covered region and94

one root in open water were required in their model. The potential was matched at the95

edge of the plate, and the plate boundary conditions were applied to solve the wave96

scattering problem. Peter et al. (2004) extended the earlier study (Zilman & Miloh 2000)97

to a theoretical solution for a circular elastic plate floating in finite–depth water, i.e.,98

without the restriction of the shallow-water approximation. Therefore, more roots of the99

dispersion equation for both the plate–covered region and the open–water region were100

required. The potential throughout the water depth, rather than at a point, was matched101

and the plate boundary conditions were applied. Since the plate geometry was circular102

(Zilman & Miloh 2000; Peter et al. 2004), the angular eigenfunctions can be decoupled.103

Hence each angular eigenfunction can be solved separately, and the matching problem104

becomes 2-D, similar to the method of Sahoo et al. (2001) and others. Montiel et al.105

(2013a,b) reported a series of wave basin experiments and analytical simulations that106

investigated the flexural response of one or two circular floating thin elastic plates to107

monochromatic waves. The plate–plate hydrodynamic interactions were observed in the108

two–plate tests. Recently, Meylan et al. (2017) carried out an analytical study on wave109

scattering by a circular floating porous elastic plate. A quantity proportional to the110

energy dissipated by the plate due to porosity was calculated by integrating the far–field111

amplitude functions, but the exact dissipated power was not given. The hydroelastic112

characteristics of elastic plates in other situations, such as a horizontal elastic plate113

submerged in the water (Mahmood-Ul-Hassan et al. 2009; Mohapatra et al. 2018a), a114

submerged horizontal flexible porous plate (Behera & Sahoo 2015; Renzi 2016; Mohapatra115

et al. 2018b), submerged multilayer horizontal porous plate breakwaters (Fang et al.116

2017), multiple floating elastic plates with a body floating or submerged in the water (Li117

et al. 2018a,b) have also been investigated.118

The methods used to calculate the scattering from a single body can be extended to119

multiple bodies, but there is a rapid growth in the computational cost. For this reason,120

methods based on a scattering matrix (or diffraction transfer matrix) have been developed121

to solve for multiple floating bodies, using the theory of Kagemoto & Yue (1986). This122

has been particularly true for the case of floating elastic plates used to model ice floes.123

The first application of this theory was by Peter & Meylan (2004) and this remains124

the only application of the theory to ice floes where they were not assumed circular.125

The circular floe case has been extended in a number of steps, first by considering arrays126

(Peter & Meylan 2009; Bennetts et al. 2010) and then to random layers using a quasi-2-D127

representation (Montiel et al. 2015a, 2016; Montiel & Squire 2017).128

Although water–wave interaction with floating elastic plates has been widely stud-129

ied, most of these plates were non–porous. Until now only a few research works on130

porous elastic plates have been reported, among which the investigation carried out131

by Koley et al. (2018); Meylan et al. (2017); Zheng et al. (2020) was focused on132

a single porous elastic plate. For an array of such porous elastic plates, especially133

with the individual plates deployed close to one another, the hydrodynamic interaction134

between them can significantly influence their responses. To the best of the authors’135

knowledge, the hydrodynamic interaction between multiple floating porous elastic plates136

has not been investigated yet. In this paper, a theoretical model is developed based on137

linear potential flow theory and an eigenfunction matching method to investigate wave138
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Figure 1. Schematic of an array of circular floating porous elastic plates: (a) side view; (b)
plan view.

scattering by multiple circular floating porous elastic plates with three different types of139

edge conditions, i.e., free edge, simply supported edge and clamped edge. Two methods140

for evaluating the exact power dissipated by the array of porous plates are proposed.141

The rest of this paper is organised as follows. §–2 outlines the mathematical model142

for wave scattering problem. §–3 presents the theoretical solutions of spatial velocity143

potentials in the water domain. The methods for evaluating the scattered far-field144

amplitude function and power dissipation are supplied in §–4. Validation of the present145

theoretical model is presented in §–5. The validated model is then applied to carry out a146

multiparameter study, the results of which can be found in §–6. Finally, conclusions are147

outlined in §–7.148

2. Mathematical model149

The scattering problem of an array of circular floating porous elastic plates is consid-150

ered (Fig. 1). The water domain is divided into two parts, (a) interior region, i.e., the re-151

gion beneath each plate and (b) the exterior region, i.e., the remainder extending towards152

infinite distance horizontally. A Cartesian coordinate system Oxyz is applied to describe153

the wave scattering problem with z = 0 at the mean water surface and Oz pointing154

upwards. Here, N local cylindrical coordinate systems Onrnθnz for n = 1, 2, 3, · · · , N155

are also introduced corresponding to the n–th plate (see Fig. 1b). Additionally, one more156

cylindrical coordinate system Or0θ0z (not plotted in Fig. 1) is defined with its origin157

coinciding with the Cartesian coordinate system. The mean wetted surface of the n–th158

plate is denoted by Ωn.159

An array of circular porous elastic plates are set in motion by a plane incident wave.160

The water is assumed to be homogeneous, inviscid and incompressible, and its motion161

irrotational and time harmonic with a prescribed angular frequency ω. The velocity162

potential in the fluid domain can be expressed as Re[φ(x, y, z)e−iωt], where φ is the163

complex spatial velocity potential, i denotes the imaginary unit and t is the time.164

The spatial velocity potential φ is a solution of the governing equations165

(∂2x + ∂2y + ∂2z )φ = 0 in the fluid domain (2.1)

with

∂zφ = 0, on z = −h (2.2)
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and

−ω2φ+ g∂zφ = 0, on z = 0 (2.3)

at the water surface of the exterior region.166

The floating porous elastic plate is modelled as a thin plate of constant thickness and
shallow draft, which is assumed to be in contact with the water at all times following
Meylan (2002). Kirchhoff–Love thin–plate theory, modified to include porosity, is used
to model the plate motions. The velocity potential is coupled to the plate displacement
function via kinematic and dynamic conditions, respectively,

∂zφ = −iωη(n) + icφ, g[χ∆2 + 1− (ω2/g)γ]η(n) − iωφ = 0, for Ωn (2.4)

where η(n) denotes the complex vertical displacement of the lower surface of the n–
th plate; g represents the acceleration of gravity; c = ωKρ/(µh) denotes the porosity
parameter, in which K represents the permeability of the plate, ρ and µ are the density
and dynamic viscosity of water, respectively; γ and χ denote the mass per unit area and
the flexural rigidity of the plate, respectively, scaled with respect to the water density; ∆
is the Laplacian operator in the horizontal plane. With the employment of the Laplace
equation as given in Eq. (2.1), the kinematic and dynamic conditions as given in Eq.
(2.4) can be combined into

(ω2/g)φ = [χ∂4z + 1− (ω2/g)γ](∂z − ic)φ. (2.5)

Additionally, in the far–field horizontally, the scattered wave potential, φS = φ − φI,167

where φI is the velocity potential of the undisturbed incident waves whose expression168

will be given in §–3, is subject to the Sommerfeld radiation condition.169

The boundary conditions at the edge of each plate should be satisfied as well, which170

are dependent on the type of plate edge. In this paper, three different edge types, i.e., a171

clamped edge, a simply supported edge and a free edge, are considered.172

For a clamped edge, both displacement and slope vanish at the edge, providing

η(n) = 0 and ∂nη
(n) = 0, (2.6)

where η(n) can be expressed in terms of φ by using the first component of Eq. (2.4) and173

∂n represents the derivative operator corresponding to the normal vector on the edge174

~n = (cosαn, sinαn), in which αn is a function of the parameter s defining locations on175

the boundary of the n–th plate (Meylan et al. 2017).176

For a simply supported edge, both displacement and moment vanish at the edge,
providing

η(n) = 0 and F
(n)
M = 0, (2.7)

where

F
(n)
M = ∆η(n)− (1− υ)

(
∂2sη

(n) +
dαn
ds

∂nη
(n)

)
=
∂2η(n)

∂r2n
+

υ

R2
n

∂2η(n)

∂θ2n
+

υ

Rn

∂η(n)

∂rn
, (2.8)

in which υ denotes the Poisson ratio, ∂s represents the derivative operator corresponding177

to the tangential vector on the plate edge ~s = (− sinαn, cosαn).178

For a free edge, both moment and shearing stress vanish at the edge, providing

F
(n)
M = 0 and F

(n)
V = 0, (2.9)
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where

F
(n)
V = ∂n∆η

(n) + (1− υ)∂s∂n∂sη
(n)

=
∂3η(n)

∂r3n
+

(2− υ)

R2
n

∂3η(n)

∂rn∂θ2n
+

1

Rn

∂2η(n)

∂r2n
− (3− υ)

R3
n

∂2η(n)

∂θ2n
− 1

R2
n

∂η(n)

∂rn
.

(2.10)

3. Theoretical solution to velocity potentials179

The velocity potentials in the exterior region and interior region beneath the n–th plate180

are denoted by φext and φ
(n)
int , respectively. Expressions for them are given as follows.181

3.1. Exterior region182

Here

φext = φI +

N∑
n=1

∞∑
m=−∞

∞∑
l=0

A
(n)
m,lHm(klrn)Zl(z)e

imθn , (3.1)

where the accumulative term denotes the scattered wave potential, φS; A
(n)
m,l are the

unknown coefficients to be determined; Zl(z) = cosh[kl(z+h)]
cosh(klh)

; k0 ∈ R+ and kl ∈ iR+ for

l = 1, 2, 3, · · · support the propagating waves and evanescent waves, respectively, and
they are the positive real root and the infinite positive imaginary roots of the dispersion
relation for the exterior region

ω2 = gkl tanh(klh); (3.2)

Hm is the Hankel function of the first kind of the m–th order; φI denotes the undisturbed
incident wave velocity potential, which can be expressed as

φI(x, y, z) = − igA

ω
Z0(z)eik(x cos β+y sin β), (3.3a)

φI(rn, θn, z) = − igA

ω
Z0(z)eik(xn cos β+yn sin β)

∞∑
m=−∞

ime−imβJm(krn)eimθn , (3.3b)

where Eqs. (3.3a) and (3.3b) are written in the general Cartesian coordinate system Oxyz183

and the local cylindrical coordinate systems Onrnθnz, respectively, in which Jm denotes184

the Bessel function of the m–th order. The second term on the right–hand side of Eq.185

(3.1), i.e., the accumulation term, represents the scattered wave potential, φS = φ− φI,186

as mentioned in §–2, which is subject to the Sommerfeld radiation condition.187

After using Graf’s addition theorem for Bessel functions (Abramowitz & Stegun 1972;
Zheng et al. 2018, 2019), Eq. (3.1) can be rewritten in the cylindrical coordinates Onrnθnz
as

φext(rn, θn, z) = φI +

∞∑
m=−∞

∞∑
l=0

A
(n)
m,lHm(klrn)Zl(z)e

imθn

+

N∑
j=1,
j 6=n

∞∑
m=−∞

∞∑
l=0

A
(j)
m,lZl(z)

∞∑
m′=−∞

(−1)m
′
Hm−m′(klRn,j)Jm′(klrn)ei(mαj,n−m′αn,j)eim

′θn

for rn < min
j=1,N ;
j 6=n

Rn,j .

(3.4)
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3.2. Interior region188

Here

φ
(n)
int (rn, θn, z) =

∞∑
m=−∞

∞∑
l=−2

B
(n)
m,lJm(κlrn)Yl(z)e

imθn , (3.5)

where B
(n)
m,l are the unknown coefficients to be determined; Yl = cosh[κl(z+h)]

cosh(κlh)
; κl for

l = −2, −1, 0, 1, 2, · · · are the roots of the dispersion relation for the interior region

[χκ4l + 1− (ω2/g)γ][κl tanh(κlh)− ic] = ω2/g. (3.6)

For c = 0, κ0 ∈ R+ and κl ∈ iR+ for l = 1, 2, 3, · · · can be obtained, which support the189

propagating waves and evanescent waves, respectively. The remaining two roots, κ−2 and190

κ−1, support damped propagating waves, and satisfy κ−1 ∈ R+ + iR+ and κ−2 = −κ∗−1,191

in which * denotes the complex conjugate. For c 6= 0, the structure of κl is perturbed.192

Generally, neither pure real nor pure imaginary roots exist, and the symmetry between193

κ−2 and κ−1 is not valid either (Meylan et al. 2017). The method to compute them194

efficiently is given in Meylan et al. (2017) and Zheng et al. (2020).195

Note that the spatial velocity potentials as given in Eqs. (3.4) and (3.5) already196

satisfy all the governing equation and boundary conditions as listed in §–2, except at the197

plate edges. In addition, continuity of pressure and the radial velocity at the interfaces198

between the exterior region and interior regions should also be satisfied. These continuity199

conditions can be expressed as follows.200

(i) Continuity of pressure at the boundary rn = Rn:

φext
∣∣
rn=Rn

= φ
(n)
int

∣∣
rn=Rn

, −h < z < 0. (3.7)

(ii) Continuity of radial velocity at the boundary rn = Rn:

∂φext
∂rn

∣∣∣∣
rn=Rn

=
∂φ

(n)
int

∂rn

∣∣∣∣
rn=Rn

, −h < z < 0. (3.8)

The continuity conditions, i.e., Eqs. (3.7)–(3.8), together with the edge type dependent201

edge conditions, i.e., Eq. (2.6), (2.7) or (2.9), can be used to derive a complex linear202

matrix equation by using the orthogonality characteristics of Zl(z) and eimθn , and203

the eigenfunction–matching method. The unknown coefficients A
(n)
m,l and B

(n)
m,l can then204

be calculated by solving the complex linear matrix equation. Detailed derivation and205

calculations for the unknown coefficients are given in Appendix A.206

4. Far–field coefficients, Kochin functions and wave-power dissipation207

We present here two derivations of the wave-power dissipation due to the porosity.208

4.1. Wave-power dissipation–direct method209

The energy dissipated by the N plates due to the porosity, Pdiss, can be calculated by

Pdiss =
c

2ρω

N∑
n=1

∫∫
Ωn

|p|2ds =
ρωc

2

N∑
n=1

∫∫
Ωn

|φ|2ds

=
ρωc

2

N∑
n=1

∫∫
Ωn

∣∣∣∣ ∞∑
m=−∞

∞∑
l=−2

B
(n)
m,lJm(κlrn)eimθn

∣∣∣∣2ds,

(4.1)

where p denotes the hydrodynamic pressure under the plates, p = iωρφ.210
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The dimensionless quantity of Pdiss can be defined by

ηdiss = kPdiss/Pin, (4.2)

in which Pin is the incoming wave power per unit width of the wave front given by

Pin =
ρgA2

2

ω

2k

(
1 +

2kh

sinh(2kh)

)
. (4.3)

4.2. Wave-power dissipation–indirect method211

We present here another, more general, derivation of the power dissipation identity.212

In this expression, we use the very general equations of motion which govern a floating213

elastic plate of arbitrary geometry.214

Firstly, let us consider the far–field coefficients and Kochin functions. In the fluid
domain, far away from an array of porous elastic plates, only the propagating modes
exist in the scattered waves. With the asymptotic forms of Hm for r0 →∞,

Hm(kr0) =
√

2/πe−i(mπ/2+π/4)(kr0)−1/2eikr0 for r0 →∞, (4.4)

where k is employed to represent k0 for simplification, the scattered wave potential, i.e.,
the accumulative term in Eq. (3.1), can be rewritten as

φS =
√

2/πZ0(z)

N∑
n=1

∞∑
m=−∞

A
(n)
m,0e−i(mπ/2+π/4)(krn)−1/2eikrneimθn , r0 →∞, (4.5)

which can be further expressed in the global polar coordinate system O0r0θ0z as

φS =
√

2/π(kr0)−1/2eikr0Z0(z)

N∑
n=1

∞∑
m=−∞

A
(n)
m,0e−ikR0,n cos(α0,n−θ0)e−i(mπ/2+π/4)eimθ0

= AR(θ0)(kr0)−1/2eikr0Z0(z), r0 →∞,
(4.6)

where AR is the so–called far–field coefficient that is independent of r0 and z, and can
be expressed as

AR(θ0) =
√

2/π

N∑
n=1

∞∑
m=−∞

A
(n)
m,0e−ikR0,n cos(α0,n−θ0)e−i(mπ/2+π/4)eimθ0 . (4.7)

The Kochin function, HR, which is a scale version of the far–field coefficient, can be
obtained from AR as follows (Falnes 2002):

HR(θ0) =
√

2πe−iπ/4AR(θ0)

= 2

N∑
n=1

∞∑
m=−∞

A
(n)
m,0e−ikR0,n cos(α0,n−θ0)(−i)m+1eimθ0 .

(4.8)

In the water domain enclosed by Ω1 ∪Ω2 ∪ · · · ∪ΩN ∪ΩR, free water surface and the
sea bed, using Green’s theorem (Falnes 2002; Flavià & Meylan 2019), we have∫∫

©
(
φ
∂φ∗

∂n
− φ∗ ∂φ

∂n

)
ds

=

N∑
n=1

∫∫
Ωn

(
φ
∂φ∗

∂z
− φ∗ ∂φ

∂z

)
ds+

∫∫
ΩR

(
φ
∂φ∗

∂r
− φ∗ ∂φ

∂r

)
ds = 0,

(4.9)
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where ΩR represents an envisaged vertical cylindrical control surface with its radius215

denoted by r0 = R0, which is large enough to enclose all the plates.216

With utilisation of the first component of Eq. (2.4), Eq. (4.9) can be rewritten as

N∑
n=1

∫∫
Ωn

[
iω

(
φη(n)∗ + φ∗η(n)

)
− 2ic|φ|2

]
ds+

∫∫
ΩR

(
φ
∂φ∗

∂r
− φ∗ ∂φ

∂r

)
ds = 0. (4.10)

We are setting out to show that the accumulation of the terms within the first217

parentheses in Eq. (4.10) vanishes.218

The response of the n–th plate can be expressed by a series of natural modes of
vibration of the plate in vacuo as (Meylan et al. 2017)

η(n) ≈
Q∑
q=1

u(n)q η(n)q , (4.11)

where the modes η
(n)
q satisfy the eigenvalue problem for the biharmonic operator

∆2η(n)q = λqη
(n)
q , (4.12)

together with the edge conditions as given in §–2; η
(n)
q are orthogonal for different219

eigenvalues λq, and Q denotes the truncated numbers of the infinite modes.220

The dynamic motion of the plates can be coupled with the hydrodynamics by(
K + C − ω2

g
M
)
u = iωρ

∫∫
Ωsum

φnds, (4.13)

where Ωsum = Ω1 ∪Ω2 ∪ · · · ∪ΩN , K , C and M are (NQ)× (NQ) square matrices that
represent stiffness, hydrostatic–restoring and mass matrices, respectively,

K =

〈
χλq

〉
(n−1)Q+q

; C = I ; M = γI , (4.14)

in which 〈ci〉j denotes a diagonal matrix with diagonal entries ci at the position (j, j), I
is the identity matrix and

u =

[
u(n)q

]
(n−1)Q+q

, n =

[
η(n)q

]
(n−1)Q+q

, (4.15)

where [ci]j represents a vector with entries ci at the j–th row.221

With the employment of Eqs. (4.11) and (4.13), it can be proved that

N∑
n=1

∫∫
Ωn

(
φη(n)∗ + φ∗η(n)

)
ds =

N∑
n=1

∫∫
Ωn

(
φ

Q∑
q=1

u(n)∗q η(n)q + φ∗
Q∑
q=1

u(n)q η(n)q

)
ds

=

∫∫
Ωsum

{
− φ(x)

[(
K + C − ω2

g
M
)−1

iωρ

∫∫
Ωsum

φ∗(x̄)n(x̄)ds̄

]T
n(x)

+ φ∗(x)

[(
K + C − ω2

g
M
)−1

iωρ

∫∫
Ωsum

φ(x̄)n(x̄)ds̄

]T
n(x)

}
ds

= 0,

(4.16)



10 S. Zheng, M.H. Meylan, G. Zhu, D. Greaves, G. Iglesias

where we used the symmetry of the matrix

(
K + C − ω2

g M
)−1

and reversed the order222

of integration.223

Therefore, Eq. (4.10) reads

N∑
n=1

∫∫
Ωn

(
− 2ic

∣∣φ∣∣2)ds+

∫∫
ΩR

(
φ
∂φ∗

∂r
− φ∗ ∂φ

∂r

)
ds = 0, (4.17)

hence the power dissipation can be expressed as

Pdiss =
ρωc

2

N∑
n=1

∫∫
Ωn

∣∣φ∣∣2ds =
ρω

4i

∫∫
ΩR

(
φ
∂φ∗

∂r
− φ∗ ∂φ

∂r

)
ds, (4.18)

which, from the view of energy identities, presents an approach to evaluate the power224

dissipation based on the spatial potentials in the exterior region.225

When r0 = R0 → ∞, Eq. (4.18) holds as well with the control surface ΩR replaced
by Ω∞, i.e., r0 → ∞. An expression for the integral in Eq. (4.18) in terms of Kochin
functions (Falnes 2002) is∫∫

Ω∞

(
φ
∂φ∗

∂r0
−φ∗ ∂φ

∂r0

)
ds =

2iAgD(kh)

ωk
Re[HR(β)]− iD(kh)

2πk

∫ 2π

0

|HR(θ0)|2dθ0, (4.19)

where

D(kh) =

[
1 +

2kh

sinh(2kh)

]
tanh(kh). (4.20)

Therefore, the power dissipated by the array of porous elastic plates can be evaluated
by using an indirect method based on Kochin functions

Pdiss =
ρωD(kh)

k

(
Ag

2ω
Re[HR(β)]− 1

8π

∫ 2π

0

|HR(θ0)|2dθ0

)
. (4.21)

Compared with the straightforward method, i.e., Eq. (4.1), which includes the surface226

integrals over all the plates with both propagating and evanescent waves considered, the227

indirect method as given in Eq. (4.21) consists of only one angular integral regardless228

of the number of plates, and uses the propagating waves only to achieve an accurate229

evaluation of the wave-power dissipation. Moreover, Eq. (4.21) is derived without any230

employment of the “circular–shape” restriction, therefore the indirect method applies to231

the floating porous elastic plates with non–circular shapes as well. Finally, the existence232

of two different identities gives a method to check the accuracy of the numerical solution,233

in much the same way that energy conservation can be used in the case of a floating234

body which does not dissipate energy.235

5. Validation236

If the spacing between the porous elastic plates is large, the hydrodynamic interaction237

between them can be neglected. Therefore the response of every plate will be close to238

that of the plate in isolation. Figure 2 presents the comparison of the displacements of239

a circular porous elastic plate in isolation (Meylan et al. 2017) and a pair of the same240

plates arranged far away from one another, where c, χ and γ are non–dimensionalised with241

respect to the water depth as c̄ = ch, χ̄ = χ/h4 and γ̄ = γ/h, respectively. Additionally,242

the energy dissipated due to porosity as a function of c̄/N is provided in Fig. 3, where E243

is a quantity proportional to the wave-energy dissipated due to the porosity, which was244
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Figure 2. (a)–(c) Displacements of a circular plate in isolation (Meylan et al. 2017), where a typo
of the incident wave direction existed (i.e., β was typed as 0 rather than π); (d)–(f) and (g)–(i)
displacements of plate–1 and plate–2 in a pair of plates (present results) at t = 0 for different
porosity parameter c̄ = 0, 0.5 and 1.0. (R1 = R2 = R, x1 = x2 = 0, y1/R = −y2/R = 50,
R/h = 2.0, β = π, hω2/g = 2.0 and χ̄ = γ̄ = 0.01, free edge.)

calculated by integrating the far-field amplitude functions based on a coupled boundary–245

element and finite element method (Meylan et al. 2017). The present results agree well246

with those of Meylan et al. (2017) and Zheng et al. (2020).247

We have also compared our model with the experimental data in the case of non–248

porous plates. Montiel et al. (2013a) carried out a series of wave basin experiments on249

a pair of circular floating elastic plates and observed strong hydrodynamic interaction250

between them. One of the cases tested by Montiel et al. (2013a), is plotted in Fig. 4,251

where four motion tracking markers were placed on each plate. Figure 5 illustrates the252

theoretical and experimental deflection of the four markers for the two plates. The results253

show that the present conceptual model can be used to predict the response of the two254

elastic plates accurately and that it provides insights into the interaction between the255

two plates.256

In addition to the comparison of the present theoretical results with the published data,257

wave-power dissipation by two porous elastic plates is evaluated by using both direct and258

indirect methods (Fig. 6). The excellent agreement of the results (Fig. 6), together with259

those plotted in Figs. 2, 3 and 5 gives clear validation of the present theoretical model for260
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Figure 3. Wave-power dissipation by floating circular plates with a free edge versus the porosity
parameter for R/h = 2.0, β = π, hω2/g = 2.0 and χ̄ = γ̄ = 0.01 (lines: present results with
N = 2, R1 = R2 = R, x1 = x2 = 0, y1/R = −y2/R = 50; symbols: Zheng et al. (2020) and
Meylan et al. (2017) with N = 1).

Figure 4. Deployment of two circular elastic plates. Four markers are labelled in each plate
for reference. (c̄ = 0, χ̄ = 3.55× 10−4, γ̄ = 2.79× 10−3, free edge.)

Figure 5. Deflection of (a) marker 1; (b) marker 2; (c) marker 3 and (d) marker 4 for the
two–plate arrangement as given in Fig. 4, as a function of frequency. Each figure contains the
present theoretical results and the experimental data (Montiel et al. 2013a) associated with
both plates. (c̄ = 0, χ̄ = 3.55× 10−4, γ̄ = 2.79× 10−3, free edge.)

solving wave scattering and evaluating wave dissipation by an array of circular floating261

porous elastic plates.262
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Figure 6. Wave-power dissipation of two plates with different edge conditions evaluated by
using direct method (lines) and indirect method (symbols): (a) variation of ηdiss with c̄ for
β = π/6; (b) variation of ηdiss with β for c̄ = 1.0. (N = 2, −x1/h = x2/h = 3.0, y1 = y2 = 0,
R/h = 2.0, hω2/g = 2.0, χ̄ = γ̄ = 0.01.)

6. Results and discussion263

6.1. Effect of porosity and incident wave direction264

The response of an array of circular floating porous elastic plates and their performance265

in terms of wave-power dissipation are strongly affected by both the porosity, c̄, and the266

incident wave direction, β. In this subsection, a pair of plates deployed along the x–axis267

with R/h = 2.0, R1,2/h = 6.0, χ̄ = γ̄ = 0.01 and hω2/g = 2.0 is taken as an example268

to examine the influence of c̄ and β. Figure 7 presents how ηdiss varies with the incident269

wave direction β and also with the porosity parameter c̄ for the cases with free edges,270

simply supported edges and clamped edges.271

When c̄ → 0, the plates become non–porous and no power will be dissipated. When272

c̄→∞, on the other hand, there is no resistance to flow by the plate, and in this limit,273

there is also no dissipation of power. For this reason, there exists an optimal porosity274

parameter c̄ to maximise the dissipated wave power. As shown in Fig. 7, for any given275

wave incident direction, the more strictly the plate edge is constrained, the larger the276

optimal c̄ for maximising wave-power dissipation. Although ηdiss varies dramatically with277

the change of c̄ for c̄ < 0.5 for all the three cases, it becomes less sensitive to c̄ for278

1.0 < c̄ < 4.0 compared with c̄ < 1.0, especially for the simply supported and clamped279

edge cases.280

For the pair of plates with a fixed porosity, the wave-power dissipated is minimum281

when incident waves propagate along the two plates, i.e., β = 0. This minimal case282

results from the significant reduction of the wave power dissipated by the leeward plate283

due to the “shadowing effect” of the wave-ward plate. For R1,2/h = 6.0, as β increases284

from 0 towards π/2, ηdiss first increases and then decreases after reaching its peak value,285

regardless of the types of edge conditions. The wave incident direction corresponding to286

the maximum wave-power dissipation, as illustrated in Fig. 7 remains around β/π = 0.3287

for all three cases. The largest wave-power dissipation in terms of ηdiss for these cases are288

15.79, 12.24 and 11.63, occurring at (c̄, β/π)= (1.05, 0.30), (1.35, 0.31) and (2.10, 0.32),289

respectively.290

6.2. Effect of the distance between the plate centres291

The distance between the plate centres is a pivotal parameter affecting the response and292

wave-power dissipation of an array of porous elastic plates. The two plates, as studied in293
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Figure 7. Contour plot for the variation of ηdiss as a function of porosity parameter c̄ and
incident wave direction β: (a) free edge; (b) simply supported edge; (c) clamped edge. (N = 2,
−x1/h = x2/h = 3.0, y1 = y2 = 0, R/h = 2, hω2/g = 2.0, χ̄ = γ̄ = 0.01.)

§–6.1, with their centre distance R1,2/h ranging from 5.0 to 8.0, together with different294

porosity parameters in wave condition hω2/g = 2.0, β = π/2, are examined in this295

section, the results of which are plotted in Fig. 8.296

In the computed range of c̄ and R1,2/h there are two peaks of ηdiss, one occurring at297

R1,2/h = 5.0 and the other at R1,2/h = 8.0, in which the former one is higher than the aft298

one regardless of the types of plate edge condition. More specifically, the largest values of299

ηdiss are 16.49, 12.79, 12.38, for the free, simply supported and clamped cases, occurring300

at (c̄, R1,2/h)=(1.25, 5.0), (2.25, 5.0) and (3.00, 5.0), respectively, which are caused by301

the hydrodynamic interaction between the plates – the so–called array effect. Different302

regimes of wave interaction with the pair of plates are obtained as the spacing changes.303

The second peak is an effect of constructive interference, which can be analysed from304

the infinite array problem (see e.g., Peter et al. (2006)). As R1,2/h continues to increase305

until it is large enough, hydrodynamic interaction between the plates will be negligible,306

and each of the plates will ultimately work as a plate working in isolation (see §–5).307

Case studies will be carried out with the centre distance between two adjacent plates as308

Rj,j+1/h = 5.0 due to the corresponding larger wave-power dissipation compared with309

the other values of Rj,j+1/h.310

6.3. Effect of the number of plates311

Figure 9 presents the variation of the wave-power dissipation of a line array of porous312

elastic plates in terms of ηdiss/N with the porosity parameter c̄ for hω2/g = 2.0, β = π/2313

and Rj,j+1/h = 5.0.314

For c̄ < 0.25, the curves of ηdiss/N with different values of N nearly overlap with315

each other, denoting the negligible impact of the number of plates in the array on wave-316

power dissipation. This is a case of the long array behaviour (see e.g., Montiel et al.317

(2015b)) being well approximated by a small array. For the rest of the computed range318

of c̄, i.e., c̄ > 0.25, the ηdiss/N − c̄ curve rises with an increase of N . The most significant319

improvement of ηdiss/N occurs when N increases from 1 to 2. For larger values of N ,320

the increase in ηdiss/N is weaker. This holds for all the edge conditions, i.e., free edges,321

simply supported edges and clamped edges, as plotted in Fig. 9. For instance, in the322

free–edge case with c̄ = 1.0, the ηdiss/N corresponding to N = 1 ∼ 5 are 7.40, 8.19, 8.45,323
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Figure 8. Contour plot for the variation of ηdiss as a function of porosity parameter c̄ and
distance between the centres of the plates R1,2: (a) free edge; (b) simply supported edge; (c)
clamped edge. (N = 2, −x1/h = x2/h = 0.5R1,2/h, y1 = y2 = 0, R/h = 2.0, hω2/g = 2.0,
β = π/2, χ̄ = γ̄ = 0.01.)

Figure 9. Variation of ηdiss/N with porosity parameter c̄ for different number of plates in the
array, N : (a) free edge; (b) simply supported edge; (c) clamped edge. ((xj+1 − xj)/h = 5.0,
yj = 0, R/h = 2.0, hω2/g = 2.0, β = π/2, χ̄ = γ̄ = 0.01.)

8.56 and 8.63, with the increasing percentage 10.7%, 3.1%, 1.3% and 0.9%, respectively.324

It can also be observed that the more plates the array contains, the larger the value of325

c̄ required to achieve maximum wave-power dissipation. The peak value of ηdiss/N and326

the corresponding optimal c̄ for the array consisting of different numbers of plates with327

different edge conditions are listed in Table 1.328

Figure 10 presents the frequency response of the wave-power dissipation of an array329

of porous elastic plates in terms of ηdiss/N for c̄ = 1.0, β = π/2. For the free–edge330

condition (Fig. 10a), the ηdiss/N increases monotonically as kR increases from 0 towards331

8.0 regardless of the plate numbers included in the array. While for the N = 5 cases with332

the simply supported and the clamped-edge conditions (Figs. 10b and 10c), a flat valley333

can be observed around kR = 6.0. As shown in Fig. 10, the array which contains more334

plates is found to lead to a larger value of ηdiss/N for the whole computed range of wave335
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Table 1. The peak value of wave-power dissipation and the corresponding optimal porosity
parameter, (ηdiss/N, c̄), for the array consisting of different number of plates with different edge
conditions. ( (xj+1 − xj)/h = 5.0, yj = 0, R/h = 2.0, hω2/g = 2.0, β = π/2, χ̄ = γ̄ = 0.01.)

Edge condition N = 1 N = 2 N = 3 N = 4 N = 5

free (7.40, 1.0) (8.25, 1.2) (8.55, 1.3) (8.69, 1.4) (8.79, 1.4)
simply supported (5.21, 1.7) (6.40, 2.2) (6.82, 2.5) (7.02, 2.6) (7.15, 2.6)

clamped (4.95, 2.5) (6.19, 3.0) (6.63, 3.2) (6.84, 3.2) (6.97, 3.3)

Figure 10. Variation of ηdiss/N with wave number kR for different number of plates in the
array, N : (a) free edge; (b) simply supported edge; (c) clamped edge. ((xj+1 − xj)/h = 5.0,
yj = 0, R/h = 2.0, c̄ = 1.0, β = π/2, χ̄ = γ̄ = 0.01.)

conditions, except for the very long waves, e.g., kR < 1.0, where, on the contrary, the336

largest value of ηdiss/N is obtained when N = 1. Similar to the results illustrated in Fig.337

9, the frequency response of ηdiss/N as given in Fig. 10 indicates that for most of the338

computed range of wave conditions, e.g., kR > 1.5, the most apparent increment of the339

wave-power dissipation in terms of ηdiss/N is obtained when N increases from 1 to 2.340

The variation of ηdiss/N with incident wave direction β in the range of 0 6 β 6 0.5π for341

different numbers of plates in the array, N , with hω2/g = 2.0, c̄ = 1.0 is plotted in Fig.342

11. As expected, the wave power dissipated by a single circular porous elastic plate, i.e.,343

N = 1, is independent of β, regardless of the edge conditions. For the cases with N > 2,344

an overall growth of ηdiss/N is observed as β increases from 0 to 0.5π. For β varying from345

a specified value, e.g., 0.29π for the free–edge condition, to 0.5π, the more plates included346

in the array, the larger wave-power dissipation per plate, ηdiss/N , becomes. Whereas when347

β is smaller than the specified value, the number of plates plays a negative role in the348

wave-power dissipation. It means that for the incident direction roughly perpendicular to349

the row of plates, the hydrodynamic interaction between the plates plays a constructive350

role in dissipating wave power. Moreover, this effect gets stronger as more plates are351

included in the array. However, if the incident waves propagate along the row of plates,352

a destructive effect of hydrodynamic interaction on wave-power dissipation is obtained,353

and the negative influence gets stronger correspondingly as the number of plates in the354

array increases. This is reasonable from the point of view of the shadow effect. The front355
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Figure 11. Variation of ηdiss/N with incident wave direction β for different number of plates in
the array, N : (a) free edge; (b) simply supported edge; (c) clamped edge. ((xj+1 − xj)/h = 5.0,
yj = 0, R/h = 2.0, c̄ = 1.0, hω2/g = 2.0, χ̄ = γ̄ = 0.01.)

plate creates a shadow, and the plates behind it do not respond as much. The more plates356

included in the array, the stronger the shadow effect for the plates at the back.357

To demonstrate the effect of the number of plates on their response, the plate deflec-358

tions for different edge conditions for various values of N with c̄ = 1.0, hω2/g = 2.0,359

β = π/2 are plotted in Figs. 12–14. For the sake of simplicity, only the results of the first360

half of the plates in the array are displayed, including the middle one if N is odd.361

As shown in Fig. 12, for the isolated single plate with free–edge condition, the largest362

deflection (|η(n)|max/A = 0.93) occurs at the front edge, i.e., the wave-ward edge.363

Moreover, there is an internal region near the leeward edge, where the response is weaker364

than the other regions of the plate, with the smallest deflection |η(n)|min/A = 0.02. When365

another plate with the same physical properties is placed nearby (i.e., N = 2), the weak366

response internal region shifts towards the array side slightly. The largest and smallest367

deflection (i.e., |η(n)|max/A = 0.99 and |η(n)|min/A = 0.03) are both larger than those for368

N = 1. What is more, apart from the largest deflection at the front edge, there is a second369

peak response (|η(n)|/A = 0.78) observed at the edge close to the other plate, which is370

excited by the hydrodynamic interaction between them and contributes to the increase of371

ηdiss/N . For the three-plate array, the side plates response is similar to those of the array372

with N = 2. The central plate holds a larger overall deflection with |η(n)|max/A = 1.05,373

|η(n)|min/A = 0.07 and two other peak responses (|η(n)|/A = 0.79) occurring at the edges374

close to the two side plates. As N increases, responses of the two side plates remain375

approximately the same, as do the remaining plates in the middle.376

Similar changes also apply to the array of plates with a simply supported or clamped-377

edge condition as shown in Figs. 13 and 14. In contrast to the free-edge condition, the378

largest deflection for the simply supported and clamped-edge conditions occurs in the379

interior of the plate. For the cases of simply supported and clamped edge conditions with380

N > 3, there is an obvious valley of the deflection contour at the central region of each381

plate except the two side plates, and this valley disappears for the plate with a free–edge382

condition.383

In this paper, a porosity parameter is used to consider the resistance effect induced by384

the porosity. In fact, this “resistance effect” acts in much the same way as the “damping385

effect”, which has been widely employed to simulate the power takeoff (PTO) of wave-386
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Figure 12. Deflection of the plates with a free edge in different cases for different number
of plates in the array, N : (a) N = 1; (b) N = 2; (c) N = 3; (d) N = 4; (e) N = 5.
((xj+1 − xj)/h = 5.0, yj = 0, R/h = 2.0, c̄ = 1.0, hω2/g = 2.0, β = π/2, χ̄ = γ̄ = 0.01.)

Figure 13. Deflection of the plates with a simply supported edge in different cases for different
number of plates in the array, N : (a) N = 1; (b) N = 2; (c) N = 3; (d) N = 4; (e) N = 5.
((xj+1 − xj)/h = 5.0, yj = 0, R/h = 2.0, c̄ = 1.0, hω2/g = 2.0, β = π/2, χ̄ = γ̄ = 0.01.)

energy converters (WECs). It should be pointed out that the present model for porous387

elastic plates may be used to simulate the performance of elastic plate–shaped WECs,388

provided that a special PTO system is designed, which satisfies the surface boundary389

condition, i.e., Eq. (2.4) or Eq. (2.5). Indeed, the surface boundary condition employed390

here is similar to the one Renzi (2016) derived for a piezoelectric plate WEC and also the391

one Garnaud & Mei (2010) derived for arrays of small buoys. Thus, the corresponding392

wave-power dissipation can be used to denote the corresponding wave-power absorption of393

the elastic plate–shaped WECs being consumed by the PTO damping. For a conventional394
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Figure 14. Deflection of the plates with a clamped edge in different cases for different number
of plates in the array, N : (a) N = 1; (b) N = 2; (c) N = 3; (d) N = 4; (e) N = 5.
((xj+1 − xj)/h = 5.0, yj = 0, R/h = 2.0, c̄ = 1.0, hω2/g = 2.0, β = π/2, χ̄ = γ̄ = 0.01.)

single WEC consisting of an axisymmetric rigid body with heave motion as the only mode395

of oscillation, the maximum relative absorption width, i.e. ηdiss, is 1.0 (see, e.g., Budal396

& Falnes (1975); Evans (1976)). Note that when a porous elastic plate works as a WEC,397

ηdiss > 2.0 and even ηdiss > 4.0 are obtained over a large range of circumstances, such398

as porosity parameters (Fig. 9), wave frequencies (Fig. 10) and incident wave direction399

(Fig. 11), absorbing more than twice, and even four times, as much wave power as400

a conventional heaving cylinder can ever achieve. The wave-power absorption can be401

further enhanced when several elastic circular plates deployed in an array due to the402

constructive hydrodynamic interaction between them (i.e., the wave power absorbed by403

the array is larger than that produced by those plates working in isolation), indicating404

the profound potential of elastic plates for wave-power extraction.405

A typical case of an elastic plate–shaped WEC is the piezoelectric plate WEC, which406

consists of piezoelectric layers bonded to both faces of a flexible substrate. The tension407

variations at the plate–water interface can be converted into a voltage by the piezoceramic408

layers owing to the piezoelectric effect, and in this way, the elastic motion excited by water409

waves is transformed into useful electricity (see e.g., Renzi (2016)).410

7. Conclusions411

A theoretical model based on linear potential flow theory and the eigenfunction412

matching method has been developed to investigate the interaction of waves with an array413

of circular floating porous elastic plates. This model can be used to represent artificial ma-414

rine structures, such as floating flexible breakwaters, artificial floating vegetation fields,415

and large aquaculture farms with small draught relative to their horizontal dimension.416

It also provides a possible model for ice floes or flexible plate WECs in which the energy417

dissipation or wave-power absorption and scattering can be included in a unified way.418

Graf’s addition theorem was applied to consider the hydrodynamic interaction between419

the plates. The edge condition of the plates can be free, simply supported or clamped.420

The response of a pair of porous/non–porous elastic plates predicted by the present421
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theoretical model agreed well with the published theoretical and experimental data, which422

gave confidence in the current model for solving wave scattering by an array of circular423

floating porous elastic plates.424

Using Green’s theorem, it has been proved that the exact wave power dissipated by425

the plates due to porosity can be evaluated indirectly by using the spatial potentials426

in the exterior region in terms of the Kochin functions, without consideration of the427

evanescent waves. This indirect method was shown to produce the same wave-power428

dissipation as the straightforward method, which takes the area integrals of the unit429

area dissipated power over all plates with the effect of both propagating and evanescent430

waves included. The excellent agreement between them gives confidence in the ability of431

the present theoretical model to calculate wave dissipation by multiple circular floating432

porous elastic plates.433

A multiparameter impact analysis was carried out by applying the validated theoretical434

model. The main findings are as follows.435

(i) For a pair of plates with R/h = 2.0, R1,2/h = 6.0 and hω2/g = 2.0, the wave436

incident direction corresponding to the maximum wave-power dissipation remains around437

β/π = 0.3 for all the three different edge conditions.438

(ii) In the computed range of c̄ (i.e., c̄ < 4.0) and R1,2/h (i.e., 5.0 6 R1,2/h 6 8.0)439

with R/h = 2.0, hω2/g = 2.0, β = π/2, the largest ηdiss occurs at R1,2/h = 5.0 regardless440

of the types of the plate edges.441

(iii) For a row of plates with R/h = 2.0, Rj,j+1/h = 5.0, hω2/g = 2.0 and β = π/2,442

the ηdiss/N–c̄ curve rises with the increase of N . The most significant improvement of443

ηdiss/N occurs when N increases from 1 to 2. This also applies to the frequency response444

of ηdiss/N with c̄ = 1.0.445

(iv) For the incident waves incoming roughly perpendicular to the row of plates,446

hydrodynamic interaction between the plates plays a constructive role in dissipating wave447

power, and the effect strengthens with more plates included in the array. By contrast, if448

the incident waves propagate along the row of plates, a destructive effect of hydrodynamic449

interaction on wave-power dissipation is obtained, and the negative influence becomes450

stronger as the array size increases.451

(v) There is a profound potential of elastic plates for wave-power extraction provided452

that a special PTO system is designed. An elastic plate–shaped WEC is found to453

capture more than twice, and even four times, as much wave power as a conventional454

axisymmetric heaving cylinder can ever achieve over a large range of circumstances. Due455

to the constructive hydrodynamic interaction between the plates in an array, wave-power456

absorption of the plates can be further enhanced.457

Finally, we note that the present theoretical model is developed in the framework458

of potential flow theory; hence it may not be suitable for the extreme wave–structure459

interactions.460
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Appendix A. Derivation process of the formulas and calculation for471

the unknown coefficients A
(n)
m,l and B

(n)
m,l472

Here we take the case of an array of circular floating porous elastic plates with free–

edge condition as an example to show how to determine the unknown coefficients A
(n)
m,l

and B
(n)
m,l. Inserting the expression of the spatial potentials for both the exterior and

interior regions, i.e., Eqs. (3.4)–(3.5), into continuity conditions at the interfaces and the
free–edge boundary conditions, Eqs. (2.9) and (3.7)–(3.8), gives

− igA

ω
Z0(z)eik(xn cos β+yn sin β)

∞∑
m=−∞

ime−imβJm(kRn)eimθn

+

∞∑
m=−∞

∞∑
l=0

A
(n)
m,lHm(klRn)Zl(z)e

imθn

+

N∑
j=1,
j 6=n

∞∑
m=−∞

∞∑
l=0

A
(j)
m,lZl(z)

∞∑
m′=−∞

(−1)m
′
Hm−m′(klRn,j)Jm′(klRn)ei(mαj,n−m′αn,j)eim

′θn

=

∞∑
m=−∞

∞∑
l=−2

B
(n)
m,lJm(κlRn)Yl(z)e

imθn , −h < z < 0,

(A 1)

− igA

ω
Z0(z)eik(xn cos β+yn sin β)

∞∑
m=−∞

ime−imβkJ ′m(kRn)eimθn

+

∞∑
m=−∞

∞∑
l=0

A
(n)
m,lklH

′
m(klRn)Zl(z)e

imθn

+

N∑
j=1,
j 6=n

∞∑
m=−∞

∞∑
l=0

A
(j)
m,lklZl(z)

∞∑
m′=−∞

(−1)m
′
Hm−m′(klRn,j)J

′
m′(klRn)ei(mαj,n−m′αn,j)eim

′θn

=

∞∑
m=−∞

∞∑
l=−2

B
(n)
m,lκlJ

′
m(κlRn)Yl(z)e

imθn , −h < z < 0,

(A 2)

∞∑
m=−∞

∞∑
l=−2

B
(n)
m,lfM (n,m, l)

χκ4l + 1− (ω2/g)γ
eimθn = 0, (A 3)

∞∑
m=−∞

∞∑
l=−2

B
(n)
m,lfV (n,m, l)

χκ4l + 1− (ω2/g)γ
eimθn = 0, (A 4)

where

fM (n,m, l) = R2
nκ

2
l J
′′
m(κlRn)−m2υJm(κlRn) +RnκlυJ

′
m(κlRn), (A 5)

fV (n,m, l) = R3
nκ

3
l J
′′′
m (κlRn)− (2− υ)Rnm

2κlJ
′
m(κlRn)

+R2
nκ

2
l J
′′
m(κlRn)− (υ − 3)m2Jm(κlRn)−RnκlJ ′m(κlRn).

(A 6)
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After multiplying both sides of Eqs. (A 1)–(A 2) by Zζ(z)e
−iτθn , integrating in z ∈

[−h, 0] and θn ∈ [0, 2π] and using their orthogonality characteristics, Eqs. (A 1)–(A 2)
can be rewritten as

A
(n)
τ,ζHτ (kζRn)Aζ +

N∑
j=1,
j 6=n

∞∑
m=−∞

A
(j)
m,ζAζ(−1)τHm−τ (kζRn,j)Jτ (kζRn)ei(mαj,n−ταn,j)

−
∞∑

l=−2

B
(n)
τ,l Jτ (κlRn)Yl,ζ =

igA

ω
δ0,ζAζe

ik(xn cos β+yn sin β)iτe−iτβJτ (kRn),

(A 7)

A
(n)
τ,ζ kζH

′
τ (kζRn)Aζ +

N∑
j=1,
j 6=n

∞∑
m=−∞

A
(j)
m,ζAζ(−1)τHm−τ (kζRn,j)kζJ

′
τ (kζRn)ei(mαj,n−ταn,j)

−
∞∑

l=−2

B
(n)
τ,l κlJ

′
τ (κlRn)Yl,ζ =

igA

ω
δ0,ζAζe

ik(xn cos β+yn sin β)iτe−iτβkJ ′τ (kRn),

(A 8)

where

Al =

∫ 0

−h
Z2
l (z)dz =

sinh(klh) cosh(klh) + klh

2kl cosh2(klh)
, (A 9)

Yl,ζ =

∫ 0

−h
Yl(z)Zζ(z)dz =

κl sinh(κlh) cosh(kζh)− kζ cosh(κlh) sinh(kζh)

(κ2l − k2ζ) cosh(κlh) cosh(kζh)
. (A 10)

In a similar way, after multiplying both sides of Eqs. (A 3)–(A 4) by e−iτθn and
integrating in θn ∈ [0, 2π], Eqs. (A 3)–(A 4) can be rewritten as

∞∑
l=−2

B
(n)
τ,l fM (n, τ, l)

χκ4l + 1− (ω2/g)γ
= 0, (A 11)

∞∑
l=−2

B
(n)
τ,l fV (n, τ, l)

χκ4l + 1− (ω2/g)γ
= 0. (A 12)

In order to evaluate the unknown coefficients A
(n)
m,l and B

(n)
m,l, we truncate all infinite473

series of vertical eigenfunctions at L, i.e., (L + 1) terms (l = 0, 1, · · · , L) for A
(n)
m,l474

and (L + 3) terms (l = −2, −1, 0, 1, · · · , L) for B
(n)
m,l, and we take (2M + 1) terms475

(m = −M, · · · , 0, · · · , M), resulting in 2N(2M + 1)(L + 2) unknown coefficients to be476

determined. After taking (τ = −M, · · · , 0, · · · , M) and (ζ = 0, 1, · · · , L) in Eqs. (A 7)–477

(A 8) and (A 11)–(A 12), a 2N(2M + 1)(L + 2)-order complex linear equation matrix is478

obtained, which can be used to determine the exact same number of unknown coefficients.479

Here, M and L should be chosen large enough to lead to accurate results. In all the480

theoretical computations as given in this paper, M = 10 and L = 10 are used.481
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